Sensor Network Architectures for Monitoring Underwater Pipelines
Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren
2011-01-01
This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669
Sensor network architectures for monitoring underwater pipelines.
Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren
2011-01-01
This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.
Hybrid architecture for building secure sensor networks
NASA Astrophysics Data System (ADS)
Owens, Ken R., Jr.; Watkins, Steve E.
2012-04-01
Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.
Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman
2008-08-04
Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.
Decentralized sensor fusion for Ubiquitous Networking Robotics in Urban Areas.
Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T J
2010-01-01
In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.
Open architecture of smart sensor suites
NASA Astrophysics Data System (ADS)
Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten
2017-10-01
Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.
ERIC Educational Resources Information Center
McNeal, McKenzie, III.
2012-01-01
Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…
Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas
Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.
2010-01-01
In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927
Sensing and Measurement Architecture for Grid Modernization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taft, Jeffrey D.; De Martini, Paul
2016-02-01
This paper addresses architecture for grid sensor networks, with primary emphasis on distribution grids. It describes a forward-looking view of sensor network architecture for advanced distribution grids, and discusses key regulatory, financial, and planning issues.
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network
Brennan, Robert W.
2017-01-01
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.
Taboun, Mohammed S; Brennan, Robert W
2017-09-14
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.
2009-03-01
SENSOR NETWORKS THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and...hierarchical, and Secure Lock within a wireless sensor network (WSN) under the Hubenko architecture. Using a Matlab computer simulation, the impact of the...rekeying protocol should be applied given particular network parameters, such as WSN size. 10 1.3 Experimental Approach A computer simulation in
Wireless Sensor Networks Approach
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2003-01-01
This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.
Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks
NASA Astrophysics Data System (ADS)
Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.
2015-10-01
The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.
Wireless Sensor Networks for Ambient Assisted Living
Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe
2013-01-01
This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665
Design, Implementation and Case Study of WISEMAN: WIreless Sensors Employing Mobile AgeNts
NASA Astrophysics Data System (ADS)
González-Valenzuela, Sergio; Chen, Min; Leung, Victor C. M.
We describe the practical implementation of Wiseman: our proposed scheme for running mobile agents in Wireless Sensor Networks. Wiseman’s architecture derives from a much earlier agent system originally conceived for distributed process coordination in wired networks. Given the memory constraints associated with small sensor devices, we revised the architecture of the original agent system to make it applicable to this type of networks. Agents are programmed as compact text scripts that are interpreted at the sensor nodes. Wiseman is currently implemented in TinyOS ver. 1, its binary image occupies 19Kbytes of ROM memory, and it occupies 3Kbytes of RAM to operate. We describe the rationale behind Wiseman’s interpreter architecture and unique programming features that can help reduce packet overhead in sensor networks. In addition, we gauge the proposed system’s efficiency in terms of task duration with different network topologies through a case study that involves an early-fire-detection application in a fictitious forest setting.
A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Diaz, Juan R.
2009-01-01
A wireless sensor network is a self-configuring network of mobile nodes connected by wireless links where the nodes have limited capacity and energy. In many cases, the application environment requires the design of an exclusive network topology for a particular case. Cluster-based network developments and proposals in existence have been designed to build a network for just one type of node, where all nodes can communicate with any other nodes in their coverage area. Let us suppose a set of clusters of sensor nodes where each cluster is formed by different types of nodes (e.g., they could be classified by the sensed parameter using different transmitting interfaces, by the node profile or by the type of device: laptops, PDAs, sensor etc.) and exclusive networks, as virtual networks, are needed with the same type of sensed data, or the same type of devices, or even the same type of profiles. In this paper, we propose an algorithm that is able to structure the topology of different wireless sensor networks to coexist in the same environment. It allows control and management of the topology of each network. The architecture operation and the protocol messages will be described. Measurements from a real test-bench will show that the designed protocol has low bandwidth consumption and also demonstrates the viability and the scalability of the proposed architecture. Our ccluster-based algorithm is compared with other algorithms reported in the literature in terms of architecture and protocol measurements. PMID:22303185
A Multi-Agent System Architecture for Sensor Networks
Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo
2009-01-01
The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work. PMID:22303172
A multi-agent system architecture for sensor networks.
Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo
2009-01-01
The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.
A Mobile Sensor Network System for Monitoring of Unfriendly Environments.
Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo
2008-11-14
Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.
NASA Astrophysics Data System (ADS)
Schneider, J.; Klein, A.; Mannweiler, C.; Schotten, H. D.
2011-08-01
In the future, sensors will enable a large variety of new services in different domains. Important application areas are service adaptations in fixed and mobile environments, ambient assisted living, home automation, traffic management, as well as management of smart grids. All these applications will share a common property, the usage of networked sensors and actuators. To ensure an efficient deployment of such sensor-actuator networks, concepts and frameworks for managing and distributing sensor data as well as for triggering actuators need to be developed. In this paper, we present an architecture for integrating sensors and actuators into the future Internet. In our concept, all sensors and actuators are connected via gateways to the Internet, that will be used as comprehensive transport medium. Additionally, an entity is needed for registering all sensors and actuators, and managing sensor data requests. We decided to use a hierarchical structure, comparable to the Domain Name Service. This approach realizes a cost-efficient architecture disposing of "plug and play" capabilities and accounting for privacy issues.
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-19
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-01
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, C; Elgorriaga, I; McConaghy, C
2001-07-03
Emerging CMOS and MEMS technologies enable the implementation of a large number of wireless distributed microsensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors should operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. This paper presents a direct-sequence spread-spectrum modem architecture that provides robust communications for wireless sensor networks while dissipating very low power. The modem architecture has been verified in an FPGA implementation that dissipates only 33 mWmore » for both transmission and reception. The implementation can be easily mapped to an ASIC technology, with an estimated power performance of less than 1 mW.« less
Wireless Sensors Network (Sensornet)
NASA Technical Reports Server (NTRS)
Perotti, J.
2003-01-01
The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.
Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon
2011-01-01
Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values. PMID:22163687
Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon
2011-01-01
Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values.
Imran, Noreen; Seet, Boon-Chong; Fong, A C M
2015-01-01
Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian-Wolf and Wyner-Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs.
Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.
Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio
2008-11-24
Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.
Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks.
Alshinina, Remah; Elleithy, Khaled
2017-03-08
Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs.
Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks
Alshinina, Remah; Elleithy, Khaled
2017-01-01
Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs. PMID:28282896
Integrated Sensor Architecture (ISA) for Live Virtual Constructive (LVC) Environments
2014-03-01
connect, publish their needs and capabilities, and interact with other systems even on disadvantaged networks. Within the ISA project, three levels of...constructive, disadvantaged network, sensor 1. INTRODUCTION In 2003 the Networked Sensors for the Future Force (NSFF) Advanced Technology Demonstration...While this combination is less optimal over disadvantaged networks, and we do not recommend it there, TCP and TLS perform adequately over networks with
Ubiquitous Sensor Networking for Development (USN4D): an application to pollution monitoring.
Bagula, Antoine; Zennaro, Marco; Inggs, Gordon; Scott, Simon; Gascon, David
2012-01-01
This paper presents a new Ubiquitous Sensor Network (USN) Architecture to be used in developing countries and reveals its usefulness by highlighting some of its key features. In complement to a previous ITU proposal, our architecture referred to as "Ubiquitous Sensor Network for Development (USN4D)" integrates in its layers features such as opportunistic data dissemination, long distance deployment and localisation of information to meet the requirements of the developing world. Besides describing some of the most important requirements for the sensor equipment to be used in a USN4D setting, we present the main features and experiments conducted using the "WaspNet" as one of the wireless sensor deployment platforms that meets these requirements. Furthermore, building upon "WaspNet" platform, we present an application to Air pollution Monitoring in the city of Cape Town, in South Africa as one of the first steps towards building community wireless sensor networks (CSN) in the developing world using off-the-shelf sensor equipment.
Ubiquitous Sensor Networking for Development (USN4D): An Application to Pollution Monitoring
Bagula, Antoine; Zennaro, Marco; Inggs, Gordon; Scott, Simon; Gascon, David
2012-01-01
This paper presents a new Ubiquitous Sensor Network (USN) Architecture to be used in developing countries and reveals its usefulness by highlighting some of its key features. In complement to a previous ITU proposal, our architecture referred to as “Ubiquitous Sensor Network for Development (USN4D)” integrates in its layers features such as opportunistic data dissemination, long distance deployment and localisation of information to meet the requirements of the developing world. Besides describing some of the most important requirements for the sensor equipment to be used in a USN4D setting, we present the main features and experiments conducted using the “WaspNet” as one of the wireless sensor deployment platforms that meets these requirements. Furthermore, building upon “WaspNet” platform, we present an application to Air pollution Monitoring in the city of Cape Town, in South Africa as one of the first steps towards building community wireless sensor networks (CSN) in the developing world using off-the-shelf sensor equipment. PMID:22368476
Agent Collaborative Target Localization and Classification in Wireless Sensor Networks
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapline, G.
1998-03-01
The engineering problems of constructing autonomous networks of sensors and data processors that can provide alerts for dangerous situations provide a new context for debating the question whether man-made systems can emulate the cognitive capabilities of the mammalian brain. In this paper we consider the question whether a distributed network of sensors and data processors can form ``perceptions`` based on sensory data. Because sensory data can have exponentially many explanations, the use of a central data processor to analyze the outputs from a large ensemble of sensors will in general introduce unacceptable latencies for responding to dangerous situations. A bettermore » idea is to use a distributed ``Helmholtz machine`` architecture in which the sensors are connected to a network of simple processors, and the collective state of the network as a whole provides an explanation for the sensory data. In general communication within such a network will require time division multiplexing, which opens the door to the possibility that with certain refinements to the Helmholtz machine architecture it may be possible to build sensor networks that exhibit a form of artificial consciousness.« less
Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks
Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio
2008-01-01
Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper. PMID:27873941
Analysis of three-dimensionally proliferated sensor architectures for flexible SSA
NASA Astrophysics Data System (ADS)
Cunio, Phillip M.; Flewelling, Brien
2018-05-01
The evolution of space into a congested, contested, and competitive regime drives a commensurate need for awareness of events there. As the number of systems on orbit grows, so will the need for sensing and tracking these systems. One avenue for advanced sensing capability is a widespread network of small but capable Space Situational Awareness (SSA) sensors, proliferated widely in the three-dimensional volume extending from the Earth's surface to the Geosynchronous Earth Orbit (GEO) belt, incorporating multiple different varieties and types of sensors. Due to the freedom of movement afforded by solid surfaces and atmosphere, some of these sensors may have substantial mobility. Accordingly, designing a network for maximum SSA coverage at reasonable cost may entail heterogeneous architectures with common logistics (including modular sensor packages or mobility platforms, which may be flexibly re-assigned). Smaller mobile sensors leveraging Commercial-Off-The-Shelf (COTS) components and software are appealing for their ability to simplify logistics versus large, monolithic, uniquely-exquisite sensor systems. This paper examines concepts for such sensor systems, and analyzes the costs associated with their use, while assessing the benefits (including reduced gap time, weather resilience, and multiple-sensor coverage) that such an architecture enables. Recommendations for preferred modes and mixes of fielding sensors in a heterogeneous architecture are made, and directions for future related research are suggested.
MASM: a market architecture for sensor management in distributed sensor networks
NASA Astrophysics Data System (ADS)
Viswanath, Avasarala; Mullen, Tracy; Hall, David; Garga, Amulya
2005-03-01
Rapid developments in sensor technology and its applications have energized research efforts towards devising a firm theoretical foundation for sensor management. Ubiquitous sensing, wide bandwidth communications and distributed processing provide both opportunities and challenges for sensor and process control and optimization. Traditional optimization techniques do not have the ability to simultaneously consider the wildly non-commensurate measures involved in sensor management in a single optimization routine. Market-oriented programming provides a valuable and principled paradigm to designing systems to solve this dynamic and distributed resource allocation problem. We have modeled the sensor management scenario as a competitive market, wherein the sensor manager holds a combinatorial auction to sell the various items produced by the sensors and the communication channels. However, standard auction mechanisms have been found not to be directly applicable to the sensor management domain. For this purpose, we have developed a specialized market architecture MASM (Market architecture for Sensor Management). In MASM, the mission manager is responsible for deciding task allocations to the consumers and their corresponding budgets and the sensor manager is responsible for resource allocation to the various consumers. In addition to having a modified combinatorial winner determination algorithm, MASM has specialized sensor network modules that address commensurability issues between consumers and producers in the sensor network domain. A preliminary multi-sensor, multi-target simulation environment has been implemented to test the performance of the proposed system. MASM outperformed the information theoretic sensor manager in meeting the mission objectives in the simulation experiments.
Architecture for an integrated real-time air combat and sensor network simulation
NASA Astrophysics Data System (ADS)
Criswell, Evans A.; Rushing, John; Lin, Hong; Graves, Sara
2007-04-01
An architecture for an integrated air combat and sensor network simulation is presented. The architecture integrates two components: a parallel real-time sensor fusion and target tracking simulation, and an air combat simulation. By integrating these two simulations, it becomes possible to experiment with scenarios in which one or both sides in a battle have very large numbers of primitive passive sensors, and to assess the likely effects of those sensors on the outcome of the battle. Modern Air Power is a real-time theater-level air combat simulation that is currently being used as a part of the USAF Air and Space Basic Course (ASBC). The simulation includes a variety of scenarios from the Vietnam war to the present day, and also includes several hypothetical future scenarios. Modern Air Power includes a scenario editor, an order of battle editor, and full AI customization features that make it possible to quickly construct scenarios for any conflict of interest. The scenario editor makes it possible to place a wide variety of sensors including both high fidelity sensors such as radars, and primitive passive sensors that provide only very limited information. The parallel real-time sensor network simulation is capable of handling very large numbers of sensors on a computing cluster of modest size. It can fuse information provided by disparate sensors to detect and track targets, and produce target tracks.
Unattended Ground Sensors for Expeditionary Force 21 Intelligence Collections
2015-06-01
tamper. 55 Size: 3 ½ x 3 ½ x 1 ¾ inches. Wireless RF networked communications. Built in seismic, acoustic , magnetic, and PIR sensors ...Marine Corps VHF Very High Frequency WSN Wireless Sensor Network xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii ACKNOWLEDGMENTS I want...that allow digital wireless RF communications from each sensor interfaced into a variety of network architectures to relay critical data to a final
Energy efficient sensor network implementations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frigo, Janette R; Raby, Eric Y; Brennan, Sean M
In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study.more » We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.« less
Open-WiSe: a solar powered wireless sensor network platform.
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.
NASA Astrophysics Data System (ADS)
Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.
2011-06-01
We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.
Software Architecture of Sensor Data Distribution In Planetary Exploration
NASA Technical Reports Server (NTRS)
Lee, Charles; Alena, Richard; Stone, Thom; Ossenfort, John; Walker, Ed; Notario, Hugo
2006-01-01
Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed.
A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context.
Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo; Pozzebon, Alessandro
2018-04-21
This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented.
A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context
Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo
2018-01-01
This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented. PMID:29690552
Networked sensors for the combat forces
NASA Astrophysics Data System (ADS)
Klager, Gene
2004-11-01
Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details of these products and recent test results will be presented.
A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.
Khan, Murad; Silva, Bhagya Nathali; Han, Kijun
2017-02-09
The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.
A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems
Khan, Murad; Silva, Bhagya Nathali; Han, Kijun
2017-01-01
The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances. PMID:28208787
UAV Cooperation Architectures for Persistent Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, R S; Kent, C A; Jones, E D
2003-03-20
With the number of small, inexpensive Unmanned Air Vehicles (UAVs) increasing, it is feasible to build multi-UAV sensing networks. In particular, by using UAVs in conjunction with unattended ground sensors, a degree of persistent sensing can be achieved. With proper UAV cooperation algorithms, sensing is maintained even though exceptional events, e.g., the loss of a UAV, have occurred. In this paper a cooperation technique that allows multiple UAVs to perform coordinated, persistent sensing with unattended ground sensors over a wide area is described. The technique automatically adapts the UAV paths so that on the average, the amount of time thatmore » any sensor has to wait for a UAV revisit is minimized. We also describe the Simulation, Tactical Operations and Mission Planning (STOMP) software architecture. This architecture is designed to help simulate and operate distributed sensor networks where multiple UAVs are used to collect data.« less
An Architecture for SCADA Network Forensics
NASA Astrophysics Data System (ADS)
Kilpatrick, Tim; Gonzalez, Jesus; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet
Supervisory control and data acquisition (SCADA) systems are widely used in industrial control and automation. Modern SCADA protocols often employ TCP/IP to transport sensor data and control signals. Meanwhile, corporate IT infrastructures are interconnecting with previously isolated SCADA networks. The use of TCP/IP as a carrier protocol and the interconnection of IT and SCADA networks raise serious security issues. This paper describes an architecture for SCADA network forensics. In addition to supporting forensic investigations of SCADA network incidents, the architecture incorporates mechanisms for monitoring process behavior, analyzing trends and optimizing plant performance.
A comparative study of wireless sensor networks and their routing protocols.
Bhattacharyya, Debnath; Kim, Tai-hoon; Pal, Subhajit
2010-01-01
Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.
Open-WiSe: A Solar Powered Wireless Sensor Network Platform
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396
ReTrust: attack-resistant and lightweight trust management for medical sensor networks.
He, Daojing; Chen, Chun; Chan, Sammy; Bu, Jiajun; Vasilakos, Athanasios V
2012-07-01
Wireless medical sensor networks (MSNs) enable ubiquitous health monitoring of users during their everyday lives, at health sites, without restricting their freedom. Establishing trust among distributed network entities has been recognized as a powerful tool to improve the security and performance of distributed networks such as mobile ad hoc networks and sensor networks. However, most existing trust systems are not well suited for MSNs due to the unique operational and security requirements of MSNs. Moreover, similar to most security schemes, trust management methods themselves can be vulnerable to attacks. Unfortunately, this issue is often ignored in existing trust systems. In this paper, we identify the security and performance challenges facing a sensor network for wireless medical monitoring and suggest it should follow a two-tier architecture. Based on such an architecture, we develop an attack-resistant and lightweight trust management scheme named ReTrust. This paper also reports the experimental results of the Collection Tree Protocol using our proposed system in a network of TelosB motes, which show that ReTrust not only can efficiently detect malicious/faulty behaviors, but can also significantly improve the network performance in practice.
NASA Astrophysics Data System (ADS)
Kerkez, B.; Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.
2012-12-01
We describe our improved, robust, and scalable architecture by which to rapidly instrument large-scale watersheds, while providing the resulting data in real-time. Our system consists of more than twenty wireless sensor networks and thousands of sensors, which will be deployed in the American River basin (5000 sq. km) of California. The core component of our system is known as a mote, a tiny, ultra-low-power, embedded wireless computer that can be used for any number of sensing applications. Our new generation of motes is equipped with IPv6 functionality, effectively giving each sensor in the field its own unique IP address, thus permitting users to remotely interact with the devices without going through intermediary services. Thirty to fifty motes will be deployed across 1-2 square kilometer regions to form a mesh-based wireless sensor network. Redundancy of local wireless links will ensure that data will always be able to traverse the network, even if hash wintertime conditions adversely affect some network nodes. These networks will be used to develop spatial estimates of a number of hydrologic parameters, focusing especially on snowpack. Each wireless sensor network has one main network controller, which is responsible with interacting with an embedded Linux computer to relay information across higher-powered, long-range wireless links (cell modems, satellite, WiFi) to neighboring networks and remote, offsite servers. The network manager is also responsible for providing an Internet connection to each mote. Data collected by the sensors can either be read directly by remote hosts, or stored on centralized servers for future access. With 20 such networks deployed in the American River, our system will comprise an unprecedented cyber-physical architecture for measuring hydrologic parameters in large-scale basins. The spatiotemporal density and real-time nature of the data is also expected to significantly improve operational hydrology and water resource management in the basin.
Learning and diagnosing faults using neural networks
NASA Technical Reports Server (NTRS)
Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis
1990-01-01
Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.
NASA Astrophysics Data System (ADS)
Wang, Zi; Pakzad, Shamim; Cheng, Liang
2012-04-01
In recent years, wireless sensor network (WSN), as a powerful tool, has been widely applied to structural health monitoring (SHM) due to its low cost of deployment. Several commercial hardware platforms of wireless sensor networks (WSN) have been developed and used for structural monitoring applications [1,2]. A typical design of a node includes a sensor board and a mote connected to it. Sensing units, analog filters and analog-to-digital converters (ADCs) are integrated on the sensor board and the mote consists of a microcontroller and a wireless transceiver. Generally, there are a set of sensor boards compatible with the same model of mote and the selection of the sensor board depends on the specific applications. A WSN system based on this node lacks the capability of interrupting its scheduled task to start a higher priority task. This shortcoming is rooted in the hardware architecture of the node. The proposed sandwich-node architecture is designed to remedy the shortcomings of the existing one for task preemption. A sandwich node is composed of a sensor board and two motes. The first mote is dedicated to managing the sensor board and processing acquired data. The second mote controls the first mote via commands. A prototype has been implemented using Imote2 and verified by an emulation in which one mote is triggered by a remote base station and then preempts the running task at the other mote for handling an emergency event.
Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo
2011-01-01
Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114
Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo
2011-01-01
Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.
Data aggregation in wireless sensor networks using the SOAP protocol
NASA Astrophysics Data System (ADS)
Al-Yasiri, A.; Sunley, A.
2007-07-01
Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks.
Scalable sensor management for automated fusion and tactical reconnaissance
NASA Astrophysics Data System (ADS)
Walls, Thomas J.; Wilson, Michael L.; Partridge, Darin C.; Haws, Jonathan R.; Jensen, Mark D.; Johnson, Troy R.; Petersen, Brad D.; Sullivan, Stephanie W.
2013-05-01
The capabilities of tactical intelligence, surveillance, and reconnaissance (ISR) payloads are expanding from single sensor imagers to integrated systems-of-systems architectures. Increasingly, these systems-of-systems include multiple sensing modalities that can act as force multipliers for the intelligence analyst. Currently, the separate sensing modalities operate largely independent of one another, providing a selection of operating modes but not an integrated intelligence product. We describe here a Sensor Management System (SMS) designed to provide a small, compact processing unit capable of managing multiple collaborative sensor systems on-board an aircraft. Its purpose is to increase sensor cooperation and collaboration to achieve intelligent data collection and exploitation. The SMS architecture is designed to be largely sensor and data agnostic and provide flexible networked access for both data providers and data consumers. It supports pre-planned and ad-hoc missions, with provisions for on-demand tasking and updates from users connected via data links. Management of sensors and user agents takes place over standard network protocols such that any number and combination of sensors and user agents, either on the local network or connected via data link, can register with the SMS at any time during the mission. The SMS provides control over sensor data collection to handle logging and routing of data products to subscribing user agents. It also supports the addition of algorithmic data processing agents for feature/target extraction and provides for subsequent cueing from one sensor to another. The SMS architecture was designed to scale from a small UAV carrying a limited number of payloads to an aircraft carrying a large number of payloads. The SMS system is STANAG 4575 compliant as a removable memory module (RMM) and can act as a vehicle specific module (VSM) to provide STANAG 4586 compliance (level-3 interoperability) to a non-compliant sensor system. The SMS architecture will be described and results from several flight tests and simulations will be shown.
Fusion solution for soldier wearable gunfire detection systems
NASA Astrophysics Data System (ADS)
Cakiades, George; Desai, Sachi; Deligeorges, Socrates; Buckland, Bruce E.; George, Jemin
2012-06-01
Currently existing acoustic based Gunfire Detection Systems (GDS) such as soldier wearable, vehicle mounted, and fixed site devices provide enemy detection and localization capabilities to the user. However, the solution to the problem of portability versus performance tradeoff remains elusive. The Data Fusion Module (DFM), described herein, is a sensor/platform agnostic software supplemental tool that addresses this tradeoff problem by leveraging existing soldier networks to enhance GDS performance across a Tactical Combat Unit (TCU). The DFM software enhances performance by leveraging all available acoustic GDS information across the TCU synergistically to calculate highly accurate solutions more consistently than any individual GDS in the TCU. The networked sensor architecture provides additional capabilities addressing the multiple shooter/fire-fight problems in addition to sniper detection/localization. The addition of the fusion solution to the overall Size, Weight and Power & Cost (SWaP&C) is zero to negligible. At the end of the first-year effort, the DFM integrated sensor network's performance was impressive showing improvements upwards of 50% in comparison to a single sensor solution. Further improvements are expected when the networked sensor architecture created in this effort is fully exploited.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.
2008-01-01
Recently there has been a growth in the number of fiber optical sensors used for health monitoring in the hostile environment of commercial aircraft. Health monitoring to detect the onset of failure in structural systems from such causes as corrosion, stress corrosion cracking, and fatigue is a critical factor in safety as well in aircraft maintenance costs. This report presents an assessment of an analysis model of optical data networking architectures used for monitoring data signals among these optical sensors. Our model is focused on the design concept of the wavelength-division multiplexing (WDM) method since most of the optical sensors deployed in the aircraft for health monitoring typically operate in a wide spectrum of optical wavelengths from 710 to 1550 nm.
A General theory of Signal Integration for Fault-Tolerant Dynamic Distributed Sensor Networks
1993-10-01
related to a) the architecture and fault- tolerance of the distributed sensor network, b) the proper synchronisation of sensor signals, c) the...Computational complexities of the problem of distributed detection. 5) Issues related to recording of events and synchronization in distributed sensor...Intervals for Synchronization in Real Time Distributed Systems", Submitted to Electronic Encyclopedia. 3. V. G. Hegde and S. S. Iyengar "Efficient
Sensor-based architecture for medical imaging workflow analysis.
Silva, Luís A Bastião; Campos, Samuel; Costa, Carlos; Oliveira, José Luis
2014-08-01
The growing use of computer systems in medical institutions has been generating a tremendous quantity of data. While these data have a critical role in assisting physicians in the clinical practice, the information that can be extracted goes far beyond this utilization. This article proposes a platform capable of assembling multiple data sources within a medical imaging laboratory, through a network of intelligent sensors. The proposed integration framework follows a SOA hybrid architecture based on an information sensor network, capable of collecting information from several sources in medical imaging laboratories. Currently, the system supports three types of sensors: DICOM repository meta-data, network workflows and examination reports. Each sensor is responsible for converting unstructured information from data sources into a common format that will then be semantically indexed in the framework engine. The platform was deployed in the Cardiology department of a central hospital, allowing identification of processes' characteristics and users' behaviours that were unknown before the utilization of this solution.
Applications of wireless sensor networks in marine environment monitoring: a survey.
Xu, Guobao; Shen, Weiming; Wang, Xianbin
2014-09-11
With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.
Easy Handling of Sensors and Actuators over TCP/IP Networks by Open Source Hardware/Software
Mejías, Andrés; Herrera, Reyes S.; Márquez, Marco A.; Calderón, Antonio José; González, Isaías; Andújar, José Manuel
2017-01-01
There are several specific solutions for accessing sensors and actuators present in any process or system through a TCP/IP network, either local or a wide area type like the Internet. The usage of sensors and actuators of different nature and diverse interfaces (SPI, I2C, analogue, etc.) makes access to them from a network in a homogeneous and secure way more complex. A framework, including both software and hardware resources, is necessary to simplify and unify networked access to these devices. In this paper, a set of open-source software tools, specifically designed to cover the different issues concerning the access to sensors and actuators, and two proposed low-cost hardware architectures to operate with the abovementioned software tools are presented. They allow integrated and easy access to local or remote sensors and actuators. The software tools, integrated in the free authoring tool Easy Java and Javascript Simulations (EJS) solve the interaction issues between the subsystem that integrates sensors and actuators into the network, called convergence subsystem in this paper, and the Human Machine Interface (HMI)—this one designed using the intuitive graphical system of EJS—located on the user’s computer. The proposed hardware architectures and software tools are described and experimental implementations with the proposed tools are presented. PMID:28067801
Easy Handling of Sensors and Actuators over TCP/IP Networks by Open Source Hardware/Software.
Mejías, Andrés; Herrera, Reyes S; Márquez, Marco A; Calderón, Antonio José; González, Isaías; Andújar, José Manuel
2017-01-05
There are several specific solutions for accessing sensors and actuators present in any process or system through a TCP/IP network, either local or a wide area type like the Internet. The usage of sensors and actuators of different nature and diverse interfaces (SPI, I2C, analogue, etc.) makes access to them from a network in a homogeneous and secure way more complex. A framework, including both software and hardware resources, is necessary to simplify and unify networked access to these devices. In this paper, a set of open-source software tools, specifically designed to cover the different issues concerning the access to sensors and actuators, and two proposed low-cost hardware architectures to operate with the abovementioned software tools are presented. They allow integrated and easy access to local or remote sensors and actuators. The software tools, integrated in the free authoring tool Easy Java and Javascript Simulations (EJS) solve the interaction issues between the subsystem that integrates sensors and actuators into the network, called convergence subsystem in this paper, and the Human Machine Interface (HMI)-this one designed using the intuitive graphical system of EJS-located on the user's computer. The proposed hardware architectures and software tools are described and experimental implementations with the proposed tools are presented.
NASA Astrophysics Data System (ADS)
Baumann, Erwin W.; Williams, David L.
1993-08-01
Artificial neural networks capable of learning and recalling stochastic associations between non-deterministic quantities have received relatively little attention to date. One potential application of such stochastic associative networks is the generation of sensory 'expectations' based on arbitrary subsets of sensor inputs to support anticipatory and investigate behavior in sensor-based robots. Another application of this type of associative memory is the prediction of how a scene will look in one spectral band, including noise, based upon its appearance in several other wavebands. This paper describes a semi-supervised neural network architecture composed of self-organizing maps associated through stochastic inter-layer connections. This 'Stochastic Associative Memory' (SAM) can learn and recall non-deterministic associations between multi-dimensional probability density functions. The stochastic nature of the network also enables it to represent noise distributions that are inherent in any true sensing process. The SAM architecture, training process, and initial application to sensor image prediction are described. Relationships to Fuzzy Associative Memory (FAM) are discussed.
Underwater Sensor Nodes and Networks
Lloret, Jaime
2013-01-01
Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489
An open and reconfigurable wireless sensor network for pervasive health monitoring.
Triantafyllidis, A; Koutkias, V; Chouvarda, I; Maglaveras, N
2008-01-01
Sensor networks constitute the backbone for the construction of personalized monitoring systems. Up to now, several sensor networks have been proposed for diverse pervasive healthcare applications, which are however characterized by a significant lack of open architectures, resulting in closed, non-interoperable and difficult to extend solutions. In this context, we propose an open and reconfigurable wireless sensor network (WSN) for pervasive health monitoring, with particular emphasis in its easy extension with additional sensors and functionality by incorporating embedded intelligence mechanisms. We consider a generic WSN architecture comprised of diverse sensor nodes (with communication and processing capabilities) and a mobile base unit (MBU) operating as the gateway between the sensors and the medical personnel, formulating this way a body area network (BAN). The primary focus of this work is on the intra-BAN data communication issues, adopting SensorML as the data representation mean, including the encoding of the monitoring patterns and the functionality of the sensor network. In our prototype implementation two sensor nodes are emulated; one for heart rate monitoring and the other for blood glucose observations, while the MBU corresponds to a personal digital assistant (PDA) device. Java 2 Micro Edition (J2ME) is used to implement both the sensor nodes and the MBU components. Intra-BAN wireless communication relies on the Blue-tooth protocol. Via an adaptive user interface in the MBU, health professionals may specify the monitoring parameters of the WSN and define the monitoring patterns of interest in terms of rules. This work constitutes an essential step towards the construction of open, extensible, inter-operable and intelligent WSNs for pervasive health monitoring.
Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker
2014-08-21
Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation.
Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker
2014-01-01
Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation. PMID:25196165
Ensuring Data Storage Security in Tree cast Routing Architecture for Sensor Networks
NASA Astrophysics Data System (ADS)
Kumar, K. E. Naresh; Sagar, U. Vidya; Waheed, Mohd. Abdul
2010-10-01
In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In contrast to traditional solutions, where the IT services are under proper physical, logical and personnel controls, this routing architecture moves the application software and databases to the large data centers, where the management of the data and services may not be fully trustworthy. This unique attribute, however, poses many new security challenges which have not been well understood. In this paper, we focus on data storage security, which has always been an important aspect of quality of service. To ensure the correctness of users' data in this architecture, we propose an effective and flexible distributed scheme with two salient features, opposing to its predecessors. By utilizing the homomorphic token with distributed verification of erasure-coded data, our scheme achieves the integration of storage correctness insurance and data error localization, i.e., the identification of misbehaving server(s). Unlike most prior works, the new scheme further supports secure and efficient dynamic operations on data blocks, including: data update, delete and append. Extensive security and performance analysis shows that the proposed scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server colluding attacks.
Service Oriented Architecture for Wireless Sensor Networks in Agriculture
NASA Astrophysics Data System (ADS)
Sawant, S. A.; Adinarayana, J.; Durbha, S. S.; Tripathy, A. K.; Sudharsan, D.
2012-08-01
Rapid advances in Wireless Sensor Network (WSN) for agricultural applications has provided a platform for better decision making for crop planning and management, particularly in precision agriculture aspects. Due to the ever-increasing spread of WSNs there is a need for standards, i.e. a set of specifications and encodings to bring multiple sensor networks on common platform. Distributed sensor systems when brought together can facilitate better decision making in agricultural domain. The Open Geospatial Consortium (OGC) through Sensor Web Enablement (SWE) provides guidelines for semantic and syntactic standardization of sensor networks. In this work two distributed sensing systems (Agrisens and FieldServer) were selected to implement OGC SWE standards through a Service Oriented Architecture (SOA) approach. Online interoperable data processing was developed through SWE components such as Sensor Model Language (SensorML) and Sensor Observation Service (SOS). An integrated web client was developed to visualize the sensor observations and measurements that enables the retrieval of crop water resources availability and requirements in a systematic manner for both the sensing devices. Further, the client has also the ability to operate in an interoperable manner with any other OGC standardized WSN systems. The study of WSN systems has shown that there is need to augment the operations / processing capabilities of SOS in order to understand about collected sensor data and implement the modelling services. Also, the very low cost availability of WSN systems in future, it is possible to implement the OGC standardized SWE framework for agricultural applications with open source software tools.
Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network.
Fernandez, Susel; Hadfi, Rafik; Ito, Takayuki; Marsa-Maestre, Ivan; Velasco, Juan R
2016-08-15
Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.
Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network
Fernandez, Susel; Hadfi, Rafik; Ito, Takayuki; Marsa-Maestre, Ivan; Velasco, Juan R.
2016-01-01
Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors. PMID:27537878
Fast notification architecture for wireless sensor networks
NASA Astrophysics Data System (ADS)
Lee, Dong-Hahk
2013-03-01
In an emergency, since it is vital to transmit the message to the users immediately after analysing the data to prevent disaster, this article presents the deployment of a fast notification architecture for a wireless sensor network. The sensor nodes of the proposed architecture can monitor an emergency situation periodically and transmit the sensing data, immediately to the sink node. We decide on the grade of fire situation according to the decision rule using the sensing values of temperature, CO, smoke density and temperature increasing rate. On the other hand, to estimate the grade of air pollution, the sensing data, such as dust, formaldehyde, NO2, CO2, is applied to the given knowledge model. Since the sink node in the architecture has a ZigBee interface, it can transmit the alert messages in real time according to analysed results received from the host server to the terminals equipped with a SIM card-type ZigBee module. Also, the host server notifies the situation to the registered users who have cellular phone through short message service server of the cellular network. Thus, the proposed architecture can adapt an emergency situation dynamically compared to the conventional architecture using video processing. In the testbed, after generating air pollution and fire data, the terminal receives the message in less than 3 s. In the test results, this system can also be applied to buildings and public areas where many people gather together, to prevent unexpected disasters in urban settings.
Low Latency MAC Protocol in Wireless Sensor Networks Using Timing Offset
NASA Astrophysics Data System (ADS)
Choi, Seung Sik
This paper proposes a low latency MAC protocol that can be used in sensor networks. To extend the lifetime of sensor nodes, the conventional solution is to synchronize active/sleep periods of all sensor nodes. However, due to these synchronized sensor nodes, packets in the intermediate nodes must wait until the next node wakes up before it can forward a packet. This induces a large delay in sensor nodes. To solve this latency problem, a clustered sensor network which uses two types of sensor nodes and layered architecture is considered. Clustered heads in each cluster are synchronized with different timing offsets to reduce the sleep delay. Using this concept, the latency problem can be solved and more efficient power usage can be obtained.
Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol
Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.
NASA Astrophysics Data System (ADS)
Bell, Caroline; Nammari, Abdullah; Uttamchandani, Pranay; Rai, Amit; Shah, Pujan; Moore, Arden L.
2017-06-01
Diabetic individuals need simple, accurate, and cost effective means by which to independently assess their glucose levels in a non-invasive way. In this work, a sensor based on randomly oriented CuO nanowire networks supported by a polyethylene terephthalate thin film is evaluated as a flexible, transparent, non-enzymatic glucose sensing system analogous to those envisioned for future wearable diagnostic devices. The amperometric sensing characteristics of this type of device architecture are evaluated both before and after bending, with the system’s glucose response, sensitivity, lower limit of detection, and effect of applied bias being experimentally determined. The obtained data shows that the sensor is capable of measuring changes in glucose levels within a physiologically relevant range (0-12 mM glucose) and at lower limits of detection (0.05 mM glucose at +0.6 V bias) consistent with patient tears and saliva. Unlike existing studies utilizing a conductive backing layer or macroscopic electrode setup, this sensor demonstrates a percolation network-like trend of current versus glucose concentration. In this implementation, controlling the architectural details of the CuO nanowire network could conceivably allow the sensor’s sensitivity and optimal sensing range to be tuned. Overall, this work shows that integrating CuO nanowires into a sensor architecture compatible with transparent, flexible electronics is a promising avenue to realizing next generation wearable non-enzymatic glucose diagnostic devices.
Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey
Xu, Guobao; Shen, Weiming; Wang, Xianbin
2014-01-01
With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942
Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.
Prakash, R; Balaji Ganesh, A; Sivabalan, Somu
2017-05-01
The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.
Wireless sensor network for wide-area high-mobility applications
NASA Astrophysics Data System (ADS)
del Castillo, Ignacio; Esper-Chaín, Roberto; Tobajas, Félix; de Armas, Valentín.
2013-05-01
In recent years, IEEE 802.15.4-based Wireless Sensor Networks (WSN) have experienced significant growth, mainly motivated by the standard features, such as small size oriented devices, low power consumption nodes, wireless communication links, and sensing and data processing capabilities. In this paper, the development, implementation and deployment of a novel fully compatible IEEE 802.15.4-based WSN architecture for applications operating over extended geographic regions with high node mobility support, is described. In addition, a practical system implementation of the proposed WSN architecture is presented and described for experimental validation and characterization purposes.
Advanced Lighting Controls for Reducing Energy use and Cost in DoD Installations
2013-05-01
OccuSwitch Wireless is a room-based lighting control system employing dimmable light sources, occupancy and daylight sensors , wireless interconnection...combination of wireless and wired control solution for building-wide networked system that maximizes the use of daylight while improving visual...architecture of Hybrid ILDC. Architecture: The system features wireless connectivity among sensors and actuators within a zone and exploits wired
Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant
Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; ...
2014-11-01
Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliencymore » is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.« less
Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.
Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T
2014-11-01
Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered.
On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.
Amanowicz, Marek; Krygier, Jaroslaw
2018-05-26
In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.
NASA Astrophysics Data System (ADS)
Belapurkar, Rohit K.
Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.
Motion camera based on a custom vision sensor and an FPGA architecture
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel
1998-09-01
A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.
Architectural Design for European SST System
NASA Astrophysics Data System (ADS)
Utzmann, Jens; Wagner, Axel; Blanchet, Guillaume; Assemat, Francois; Vial, Sophie; Dehecq, Bernard; Fernandez Sanchez, Jaime; Garcia Espinosa, Jose Ramon; Agueda Mate, Alberto; Bartsch, Guido; Schildknecht, Thomas; Lindman, Niklas; Fletcher, Emmet; Martin, Luis; Moulin, Serge
2013-08-01
The paper presents the results of a detailed design, evaluation and trade-off of a potential European Space Surveillance and Tracking (SST) system architecture. The results have been produced in study phase 1 of the on-going "CO-II SSA Architectural Design" project performed by the Astrium consortium as part of ESA's Space Situational Awareness Programme and are the baseline for further detailing and consolidation in study phase 2. The sensor network is comprised of both ground- and space-based assets and aims at being fully compliant with the ESA SST System Requirements. The proposed ground sensors include a surveillance radar, an optical surveillance system and a tracking network (radar and optical). A space-based telescope system provides significant performance and robustness for the surveillance and tracking of beyond-LEO target objects.
Monitoring Architectural Heritage by Wireless Sensors Networks: San Gimignano — A Case Study
Mecocci, Alessandro; Abrardo, Andrea
2014-01-01
This paper describes a wireless sensor network (WSN) used to monitor the health state of architectural heritage in real-time. The WSN has been deployed and tested on the “Rognosa” tower in the medieval village of San Gimignano, Tuscany, Italy. This technology, being non-invasive, mimetic, and long lasting, is particularly well suited for long term monitoring and on-line diagnosis of the conservation state of heritage buildings. The proposed monitoring system comprises radio-equipped nodes linked to suitable sensors capable of monitoring crucial parameters like: temperature, humidity, masonry cracks, pouring rain, and visual light. The access to data is granted by a user interface for remote control. The WSN can autonomously send remote alarms when predefined thresholds are reached. PMID:24394600
Performance and analysis of MAC protocols based on application
NASA Astrophysics Data System (ADS)
Yadav, Ravi; Daniel, A. K.
2018-04-01
Wireless Sensor Network is one of the rapid emerging technology in recent decades. It covers large application area as civilian and military. Wireless Sensor Network primary consists of sensor nodes having low-power, low cost and multifunctional activities to collaborates and communicates via wireless medium. The deployment of sensor nodes are adhoc in nature, so sensor nodes are auto organize themselves in such a way to communicate with each other. The characteristics make more challenging areas on WSNs. This paper gives overview about characteristics of WSNs, Architecture and Contention Based MAC protocol. The paper present analysis of various protocol based on performance.
A Survey on Node Clustering in Cognitive Radio Wireless Sensor Networks.
Joshi, Gyanendra Prasad; Kim, Sung Won
2016-09-10
Cognitive radio wireless sensor networks (CR-WSNs) have attracted a great deal of attention recently due to the emerging spectrum scarcity issue. This work attempts to provide a detailed analysis of the role of node clustering in CR-WSNs. We outline the objectives, requirements, and advantages of node clustering in CR-WSNs. We describe how a CR-WSN with node clustering differs from conventional wireless sensor networks, and we discuss its characteristics, architecture, and topologies. We survey the existing clustering algorithms and compare their objectives and features. We suggest how clustering issues and challenges can be handled.
Air Pollution Monitoring and Mining Based on Sensor Grid in London
Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John
2008-01-01
In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm. PMID:27879895
Air Pollution Monitoring and Mining Based on Sensor Grid in London.
Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John
2008-06-01
In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.
Capella, Juan V.; Perles, Angel; Bonastre, Alberto; Serrano, Juan J.
2011-01-01
We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties. PMID:22346630
Capella, Juan V; Perles, Angel; Bonastre, Alberto; Serrano, Juan J
2011-01-01
We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.
Consistent Steering System using SCTP for Bluetooth Scatternet Sensor Network
NASA Astrophysics Data System (ADS)
Dhaya, R.; Sadasivam, V.; Kanthavel, R.
2012-12-01
Wireless communication is the best way to convey information from source to destination with flexibility and mobility and Bluetooth is the wireless technology suitable for short distance. On the other hand a wireless sensor network (WSN) consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Using Bluetooth piconet wireless technique in sensor nodes creates limitation in network depth and placement. The introduction of Scatternet solves the network restrictions with lack of reliability in data transmission. When the depth of the network increases, it results in more difficulties in routing. No authors so far focused on the reliability factors of Scatternet sensor network's routing. This paper illustrates the proposed system architecture and routing mechanism to increase the reliability. The another objective is to use reliable transport protocol that uses the multi-homing concept and supports multiple streams to prevent head-of-line blocking. The results show that the Scatternet sensor network has lower packet loss even in the congestive environment than the existing system suitable for all surveillance applications.
Integrated microelectronics for smart textiles.
Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner
2005-01-01
The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.
NASA Astrophysics Data System (ADS)
Stack, J. R.; Guthrie, R. S.; Cramer, M. A.
2009-05-01
The purpose of this paper is to outline the requisite technologies and enabling capabilities for network-centric sensor data analysis within the mine warfare community. The focus includes both automated processing and the traditional humancentric post-mission analysis (PMA) of tactical and environmental sensor data. This is motivated by first examining the high-level network-centric guidance and noting the breakdown in the process of distilling actionable requirements from this guidance. Examples are provided that illustrate the intuitive and substantial capability improvement resulting from processing sensor data jointly in a network-centric fashion. Several candidate technologies are introduced including the ability to fully process multi-sensor data given only partial overlap in sensor coverage and the ability to incorporate target identification information in stride. Finally the critical enabling capabilities are outlined including open architecture, open business, and a concept of operations. This ability to process multi-sensor data in a network-centric fashion is a core enabler of the Navy's vision and will become a necessity with the increasing number of manned and unmanned sensor systems and the requirement for their simultaneous use.
Baladrón, Carlos; Aguiar, Javier M; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Hernández, Luis
2012-01-01
This paper presents a proposal for an Artificial Neural Network (ANN)-based architecture for completion and prediction of data retrieved by underwater sensors. Due to the specific conditions under which these sensors operate, it is not uncommon for them to fail, and maintenance operations are difficult and costly. Therefore, completion and prediction of the missing data can greatly improve the quality of the underwater datasets. A performance study using real data is presented to validate the approach, concluding that the proposed architecture is able to provide very low errors. The numbers show as well that the solution is especially suitable for cases where large portions of data are missing, while in situations where the missing values are isolated the improvement over other simple interpolation methods is limited.
If it walks like a duck: nanosensor threat assessment
NASA Astrophysics Data System (ADS)
Chachis, George C.
2003-09-01
A convergence of technologies is making deployment of unattended ground nanosensors operationally feasible in terms of energy, communications for both arbitrated and self-organizing distributed, collective behaviors. A number of nano communications technologies are already making network-centric systems possible for MicroElectrical Mechanical (MEM) sensor devices today. Similar technologies may make NanoElectrical Mechanical (NEM) sensor devices operationally feasible a few years from now. Just as organizational behaviors of large numbers of nanodevices can derive strategies from social insects and other group-oriented animals, bio-inspired heuristics for threat assessment provide a conceptual approach for successful integration of nanosensors into unattended smart sensor networks. Biological models such as the organization of social insects or the dynamics of immune systems show promise as biologically-inspired paradigms for protecting nanosensor networks for security scene analysis and battlespace awareness. The paradox of nanosensors is that the smaller the device is the more useful it is but the smaller it is the more vulnerable it is to a variety of threats. In other words simpler means networked nanosensors are more likely to fall prey to a wide-range of attacks including jamming, spoofing, Janisserian recruitment, Pied-Piper distraction, as well as typical attacks computer network security. Thus, unattended sensor technologies call for network architectures that include security and countermeasures to provide reliable scene analysis or battlespace awareness information. Such network centric architectures may well draw upon a variety of bio-inspired approaches to safeguard, validate and make sense of large quantities of information.
von Luhmann, Alexander; Wabnitz, Heidrun; Sander, Tilmann; Muller, Klaus-Robert
2017-06-01
For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our openNIRS technology. The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 μV pp , NIRS noise equivalent power NEP 750 nm = 5.92 pW pp , and NEP 850 nm = 4.77 pW pp ) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal modal biosignal acquisition architecture (M3BA), multimodal, near-infrared spectroscopy (NIRS), wireless body area network (WBAN), wireless body sensor network (WBSN).
Efficient security mechanisms for mHealth applications using wireless body sensor networks.
Sahoo, Prasan Kumar
2012-01-01
Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme.
Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks
Sahoo, Prasan Kumar
2012-01-01
Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme. PMID:23112734
Ad Hoc Network Architecture for Multi-Media Networks
2007-12-01
sensor network . Video traffic is modeled and simulations are performed via the use of the Sun Small Programmable Object Technology (Sun SPOT) Java...characteristics of video traffic must be studied and understood. This thesis focuses on evaluating the possibility of routing video images over a wireless
Plug-and-Play Environmental Monitoring Spacecraft Subsystem
NASA Technical Reports Server (NTRS)
Patel, Jagdish; Brinza, David E.; Tran, Tuan A.; Blaes, Brent R.
2011-01-01
A Space Environment Monitor (SEM) subsystem architecture has been developed and demonstrated that can benefit future spacecraft by providing (1) real-time knowledge of the spacecraft state in terms of exposure to the environment; (2) critical, instantaneous information for anomaly resolution; and (3) invaluable environmental data for designing future missions. The SEM architecture consists of a network of plug-and- play (PnP) Sensor Interface Units (SIUs), each servicing one or more environmental sensors. The SEM architecture is influenced by the IEEE Smart Transducer Interface Bus standard (IEEE Std 1451) for its PnP functionality. A network of PnP Spacecraft SIUs is enabling technology for gathering continuous real-time information critical to validating spacecraft health in harsh space environments. The demonstrated system that provided a proof-of-concept of the SEM architecture consisted of three SIUs for measurement of total ionizing dose (TID) and single event upset (SEU) radiation effects, electromagnetic interference (EMI), and deep dielectric charging through use of a prototype Internal Electro-Static Discharge Monitor (IESDM). Each SIU consists of two stacked 2X2 in. (approximately 5X5 cm) circuit boards: a Bus Interface Unit (BIU) board that provides data conversion, processing and connection to the SEM power-and-data bus, and a Sensor Interface Electronics (SIE) board that provides sensor interface needs and data path connection to the BIU.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoliang; Du, Li; Liu, Bendong; Zhe, Jiang
2016-06-01
We present a method based on an electrochemical sensor array and a back propagation artificial neural network for detection and quantification of four properties of lubrication oil, namely water (0, 500 ppm, 1000 ppm), total acid number (TAN) (13.1, 13.7, 14.4, 15.6 mg KOH g-1), soot (0, 1%, 2%, 3%) and sulfur content (1.3%, 1.37%, 1.44%, 1.51%). The sensor array, consisting of four micromachined electrochemical sensors, detects the four properties with overlapping sensitivities. A total set of 36 oil samples containing mixtures of water, soot, and sulfuric acid with different concentrations were prepared for testing. The sensor array’s responses were then divided to three sets: training sets (80% data), validation sets (10%) and testing sets (10%). Several back propagation artificial neural network architectures were trained with the training and validation sets; one architecture with four input neurons, 50 and 5 neurons in the first and second hidden layer, and four neurons in the output layer was selected. The selected neural network was then tested using the four sets of testing data (10%). Test results demonstrated that the developed artificial neural network is able to quantitatively determine the four lubrication properties (water, TAN, soot, and sulfur content) with a maximum prediction error of 18.8%, 6.0%, 6.7%, and 5.4%, respectively, indicting a good match between the target and predicted values. With the developed network, the sensor array could be potentially used for online lubricant oil condition monitoring.
The resilient hybrid fiber sensor network with self-healing function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shibo, E-mail: Shibo-Xu@tju.edu.cn; Liu, Tiegen; Ge, Chunfeng
This paper presents a novel resilient fiber sensor network (FSN) with multi-ring architecture, which could interconnect various kinds of fiber sensors responsible for more than one measurands. We explain how the intelligent control system provides sensors with self-healing function meanwhile sensors are working properly, besides each fiber in FSN is under real-time monitoring. We explain the software process and emergency mechanism to respond failures or other circumstances. To improve the efficiency in the use of limited spectrum resources in some situations, we have two different structures to distribute the light sources rationally. Then, we propose a hybrid sensor working inmore » FSN which is a combination of a distributed sensor and a FBG (Fiber Bragg Grating) array fused in a common fiber sensing temperature and vibrations simultaneously with neglectable crosstalk to each other. By making a failure to a working fiber in experiment, the feasibility and effectiveness of the network with a hybrid sensor has been demonstrated, hybrid sensors could not only work as designed but also survive from destructive failures with the help of resilient network and smart and quick self-healing actions. The network has improved the viability of the fiber sensors and diversity of measurands.« less
Sensor network based vehicle classification and license plate identification system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frigo, Janette Rose; Brennan, Sean M; Rosten, Edward J
Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform.more » Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.« less
ExScal Backbone Network Architecture
2005-01-01
802.11 battery powered nodes was laid over the sensor network. We adopted the Stargate platform for the backbone tier to serve as the basis for...its head. XSS Hardware and Network: XSS stands for eXtreme Scaling Stargate . A stargate is a linux-based single board computer. It has a 400 MHz
2015-02-01
are conducting research in areas such as networked Soldier helmet sensors . For mobility, we have a large effort in establishing Degraded Visual...will allow Soldiers to access information that they don’t have a sensor for, but because they are on a network or shared architecture, they will be...something we control. No one seriously wakes up saying, “Today, I will discover something.” However, we can increase the likelihood of discovery through
NASA Astrophysics Data System (ADS)
Zhou, Hao; Hirose, Mitsuhito; Greenwood, William; Xiao, Yong; Lynch, Jerome; Zekkos, Dimitrios; Kamat, Vineet
2016-04-01
Unmanned aerial vehicles (UAVs) can serve as a powerful mobile sensing platform for assessing the health of civil infrastructure systems. To date, the majority of their uses have been dedicated to vision and laser-based spatial imaging using on-board cameras and LiDAR units, respectively. Comparatively less work has focused on integration of other sensing modalities relevant to structural monitoring applications. The overarching goal of this study is to explore the ability for UAVs to deploy a network of wireless sensors on structures for controlled vibration testing. The study develops a UAV platform with an integrated robotic gripper that can be used to install wireless sensors in structures, drop a heavy weight for the introduction of impact loads, and to uninstall wireless sensors for reinstallation elsewhere. A pose estimation algorithm is embedded in the UAV to estimate the location of the UAV during sensor placement and impact load introduction. The Martlet wireless sensor network architecture is integrated with the UAV to provide the UAV a mobile sensing capability. The UAV is programmed to command field deployed Martlets, aggregate and temporarily store data from the wireless sensor network, and to communicate data to a fixed base station on site. This study demonstrates the integrated UAV system using a simply supported beam in the lab with Martlet wireless sensors placed by the UAV and impact load testing performed. The study verifies the feasibility of the integrated UAV-wireless monitoring system architecture with accurate modal characteristics of the beam estimated by modal analysis.
An Architecture for Cooperative Localization in Underwater Acoustic Networks
2015-10-24
range. (b) Independent navigation and control system onboard Iver AUVs . The cooperative localization process is highlighted in red. Figure 1: Block...Iver2 AUVs (Fig. 3) and a topside ship. While we make spe- cific notes about this three vehicle network, the architecture is vehicle independent. 3.1...Single vehicle subsystem Each vehicle executes several processes including sensor drivers, a pose estimator (Section 2), and, in the case of the AUVs
Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-05-28
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.
Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-01-01
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087
Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation
Zhang, Shaowei; Yu, Jiancheng; Zhang, Aiqun; Yang, Lei; Shu, Yeqiang
2012-01-01
The micro-scale and meso-scale ocean dynamic processes which are nonlinear and have large variability, have a significant impact on the fisheries, natural resources, and marine climatology. A rapid, refined and sophisticated observation system is therefore needed in marine scientific research. The maneuverability and controllability of mobile sensor platforms make them a preferred choice to establish ocean observing networks, compared to the static sensor observing platform. In this study, marine vehicles are utilized as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi vehicles mission assignment and path planning methods, and ocean feature tracking and observing techniques is given. Combined with the observation plan in the South China Sea, we provide an overview of the mobile sensor networks established with marine vehicles, and the corresponding simulation results. PMID:22368475
Sensor network architecture for monitoring turtles on seashore
NASA Astrophysics Data System (ADS)
Carvajal-Gámez, Blanca E.; Cruz, Victor; Díaz-Casco, Manuel A.; Franco, Andrea; Escobar, Carolina; Colin, Abilene; Carreto-Arellano, Chadwick
2017-04-01
In the last decade, advances in information and communication technologies have made it possible to diversify the use of sensor networks in different areas of knowledge (medicine, education, militia, urbanization, protection of the environment, etc.). At present, this type of tools is used to develop applications that allow the identification and monitoring of endangered animals in their natural habitat; however, there are still limitations because some of the devices used alter the behavior of the animals, as in the case of sea turtles. Research and monitoring of sea turtles is of vital importance in identifying possible threats and ensuring their preservation, the behavior of this species (migration, reproduction, and nesting) is highly related to environmental conditions. Because of this, behavioral changes information of this species can be used to monitor global climatic conditions. This work presents the design, development and implementation of an architecture for the monitoring and identification of the sea turtle using sensor networks. This will allow to obtain information for the different investigations with a greater accuracy than the conventional techniques, through non-invasive means for the species and its habitat. The proposed architecture contemplates the use of new technology devices, selfconfigurable, with low energy consumption, interconnection with various communication protocols and sustainable energy supply (solar, wind, etc.).
A Semantic Sensor Web for Environmental Decision Support Applications
Gray, Alasdair J. G.; Sadler, Jason; Kit, Oles; Kyzirakos, Kostis; Karpathiotakis, Manos; Calbimonte, Jean-Paul; Page, Kevin; García-Castro, Raúl; Frazer, Alex; Galpin, Ixent; Fernandes, Alvaro A. A.; Paton, Norman W.; Corcho, Oscar; Koubarakis, Manolis; De Roure, David; Martinez, Kirk; Gómez-Pérez, Asunción
2011-01-01
Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England. PMID:22164110
Biomimetic Models for An Ecological Approach to Massively-Deployed Sensor Networks
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng
2005-01-01
Promises of ubiquitous control of the physical environment by massively-deployed wireless sensor networks open avenues for new applications that will redefine the way we live and work. Due to small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors ubiquitous throughout our environment working in concert. Recent research has concentrated on developing techniques for performing relatively simple tasks with minimal energy expense, assuming some form of centralized control. Unfortunately, centralized control is not conducive to parallel activities and does not scale to massive size networks. Execution of simple tasks in sparse networks will not lead to the sophisticated applications predicted. We propose a new way of looking at massively-deployed sensor networks, motivated by lessons learned from the way biological ecosystems are organized. We demonstrate that in such a model, fully distributed data aggregation can be performed in a scalable fashion in massively deployed sensor networks, where motes operate on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects. We show that such architectures may be used to facilitate communication and synchronization in a fault-tolerant manner, while balancing workload and required energy expenditure throughout the network.
All-IP-Ethernet architecture for real-time sensor-fusion processing
NASA Astrophysics Data System (ADS)
Hiraki, Kei; Inaba, Mary; Tezuka, Hiroshi; Tomari, Hisanobu; Koizumi, Kenichi; Kondo, Shuya
2016-03-01
Serendipter is a device that distinguishes and selects very rare particles and cells from huge amount of population. We are currently designing and constructing information processing system for a Serendipter. The information processing system for Serendipter is a kind of sensor-fusion system but with much more difficulties: To fulfill these requirements, we adopt All IP based architecture: All IP-Ethernet based data processing system consists of (1) sensor/detector directly output data as IP-Ethernet packet stream, (2) single Ethernet/TCP/IP streams by a L2 100Gbps Ethernet switch, (3) An FPGA board with 100Gbps Ethernet I/F connected to the switch and a Xeon based server. Circuits in the FPGA include 100Gbps Ethernet MAC, buffers and preprocessing, and real-time Deep learning circuits using multi-layer neural networks. Proposed All-IP architecture solves existing problem to construct large-scale sensor-fusion systems.
Architecture for WSN Nodes Integration in Context Aware Systems Using Semantic Messages
NASA Astrophysics Data System (ADS)
Larizgoitia, Iker; Muguira, Leire; Vazquez, Juan Ignacio
Wireless sensor networks (WSN) are becoming extremely popular in the development of context aware systems. Traditionally WSN have been focused on capturing data, which was later analyzed and interpreted in a server with more computational power. In this kind of scenario the problem of representing the sensor information needs to be addressed. Every node in the network might have different sensors attached; therefore their correspondent packet structures will be different. The server has to be aware of the meaning of every single structure and data in order to be able to interpret them. Multiple sensors, multiple nodes, multiple packet structures (and not following a standard format) is neither scalable nor interoperable. Context aware systems have solved this problem with the use of semantic technologies. They provide a common framework to achieve a standard definition of any domain. Nevertheless, these representations are computationally expensive, so a WSN cannot afford them. The work presented in this paper tries to bridge the gap between the sensor information and its semantic representation, by defining a simple architecture that enables the definition of this information natively in a semantic way, achieving the integration of the semantic information in the network packets. This will have several benefits, the most important being the possibility of promoting every WSN node to a real semantic information source.
Overview of the Smart Network Element Architecture and Recent Innovations
NASA Technical Reports Server (NTRS)
Perotti, Jose M.; Mata, Carlos T.; Oostdyk, Rebecca L.
2008-01-01
In industrial environments, system operators rely on the availability and accuracy of sensors to monitor processes and detect failures of components and/or processes. The sensors must be networked in such a way that their data is reported to a central human interface, where operators are tasked with making real-time decisions based on the state of the sensors and the components that are being monitored. Incorporating health management functions at this central location aids the operator by automating the decision-making process to suggest, and sometimes perform, the action required by current operating conditions. Integrated Systems Health Management (ISHM) aims to incorporate data from many sources, including real-time and historical data and user input, and extract information and knowledge from that data to diagnose failures and predict future failures of the system. By distributing health management processing to lower levels of the architecture, there is less bandwidth required for ISHM, enhanced data fusion, make systems and processes more robust, and improved resolution for the detection and isolation of failures in a system, subsystem, component, or process. The Smart Network Element (SNE) has been developed at NASA Kennedy Space Center to perform intelligent functions at sensors and actuators' level in support of ISHM.
A Hierarchical Communication Architecture for Oceanic Surveillance Applications
Macias, Elsa; Suarez, Alvaro; Chiti, Francesco; Sacco, Andrea; Fantacci, Romano
2011-01-01
The interest in monitoring applications using underwater sensor networks has been growing in recent years. The severe communication restrictions imposed by underwater channels make that efficient monitoring be a challenging task. Though a lot of research has been conducted on underwater sensor networks, there are only few concrete applications to a real-world case study. In this work, hence, we propose a general three tier architecture leveraging low cost wireless technologies for acoustic communications between underwater sensors and standard technologies, Zigbee and Wireless Fidelity (WiFi), for water surface communications. We have selected a suitable Medium Access Control (MAC) layer, after making a comparison with some common MAC protocols. Thus the performance of the overall system in terms of Signals Discarding Rate (SDR), signalling delay at the surface gateway as well as the percentage of true detection have been evaluated by simulation, pointing out good results which give evidence in applicability’s favour. PMID:22247669
Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer
1997-01-01
A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.
An epidemic model for biological data fusion in ad hoc sensor networks
NASA Astrophysics Data System (ADS)
Chang, K. C.; Kotari, Vikas
2009-05-01
Bio terrorism can be a very refined and a catastrophic approach of attacking a nation. This requires the development of a complete architecture dedicatedly designed for this purpose which includes but is not limited to Sensing/Detection, Tracking and Fusion, Communication, and others. In this paper we focus on one such architecture and evaluate its performance. Various sensors for this specific purpose have been studied. The accent has been on use of Distributed systems such as ad-hoc networks and on application of epidemic data fusion algorithms to better manage the bio threat data. The emphasis has been on understanding the performance characteristics of these algorithms under diversified real time scenarios which are implemented through extensive JAVA based simulations. Through comparative studies on communication and fusion the performance of channel filter algorithm for the purpose of biological sensor data fusion are validated.
NASA Astrophysics Data System (ADS)
Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming
2013-12-01
Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.
Simulating Operation of a Complex Sensor Network
NASA Technical Reports Server (NTRS)
Jennings, Esther; Clare, Loren; Woo, Simon
2008-01-01
Simulation Tool for ASCTA Microsensor Network Architecture (STAMiNA) ["ASCTA" denotes the Advanced Sensors Collaborative Technology Alliance.] is a computer program for evaluating conceptual sensor networks deployed over terrain to provide military situational awareness. This or a similar program is needed because of the complexity of interactions among such diverse phenomena as sensing and communication portions of a network, deployment of sensor nodes, effects of terrain, data-fusion algorithms, and threat characteristics. STAMiNA is built upon a commercial network-simulator engine, with extensions to include both sensing and communication models in a discrete-event simulation environment. Users can define (1) a mission environment, including terrain features; (2) objects to be sensed; (3) placements and modalities of sensors, abilities of sensors to sense objects of various types, and sensor false alarm rates; (4) trajectories of threatening objects; (5) means of dissemination and fusion of data; and (6) various network configurations. By use of STAMiNA, one can simulate detection of targets through sensing, dissemination of information by various wireless communication subsystems under various scenarios, and fusion of information, incorporating such metrics as target-detection probabilities, false-alarm rates, and communication loads, and capturing effects of terrain and threat.
Ubiquitous healthcare computing with SEnsor Grid Enhancement with Data Management System (SEGEDMA).
Preve, Nikolaos
2011-12-01
Wireless Sensor Network (WSN) can be deployed to monitor the health of patients suffering from critical diseases. Also a wireless network consisting of biomedical sensors can be implanted into the patient's body and can monitor the patients' conditions. These sensor devices, apart from having an enormous capability of collecting data from their physical surroundings, are also resource constraint in nature with a limited processing and communication ability. Therefore we have to integrate them with the Grid technology in order to process and store the collected data by the sensor nodes. In this paper, we proposed the SEnsor Grid Enhancement Data Management system, called SEGEDMA ensuring the integration of different network technologies and the continuous data access to system users. The main contribution of this work is to achieve the interoperability of both technologies through a novel network architecture ensuring also the interoperability of Open Geospatial Consortium (OGC) and HL7 standards. According to the results, SEGEDMA can be applied successfully in a decentralized healthcare environment.
Autonomic Intelligent Cyber Sensor to Support Industrial Control Network Awareness
Vollmer, Todd; Manic, Milos; Linda, Ondrej
2013-06-01
The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of Autonomic computing and a SOAP based IF-MAP external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, self-managed framework. The contribution of this paper is two-fold: 1) A flexible two level communication layer based on Autonomic computing and Service Oriented Architecture is detailed and 2) Three complementary modules that dynamically reconfiguremore » in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific Operating System and port configurations. Additionally the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.« less
An Embedded Sensor Node Microcontroller with Crypto-Processors.
Panić, Goran; Stecklina, Oliver; Stamenković, Zoran
2016-04-27
Wireless sensor network applications range from industrial automation and control, agricultural and environmental protection, to surveillance and medicine. In most applications, data are highly sensitive and must be protected from any type of attack and abuse. Security challenges in wireless sensor networks are mainly defined by the power and computing resources of sensor devices, memory size, quality of radio channels and susceptibility to physical capture. In this article, an embedded sensor node microcontroller designed to support sensor network applications with severe security demands is presented. It features a low power 16-bitprocessor core supported by a number of hardware accelerators designed to perform complex operations required by advanced crypto algorithms. The microcontroller integrates an embedded Flash and an 8-channel 12-bit analog-to-digital converter making it a good solution for low-power sensor nodes. The article discusses the most important security topics in wireless sensor networks and presents the architecture of the proposed hardware solution. Furthermore, it gives details on the chip implementation, verification and hardware evaluation. Finally, the chip power dissipation and performance figures are estimated and analyzed.
An Embedded Sensor Node Microcontroller with Crypto-Processors
Panić, Goran; Stecklina, Oliver; Stamenković, Zoran
2016-01-01
Wireless sensor network applications range from industrial automation and control, agricultural and environmental protection, to surveillance and medicine. In most applications, data are highly sensitive and must be protected from any type of attack and abuse. Security challenges in wireless sensor networks are mainly defined by the power and computing resources of sensor devices, memory size, quality of radio channels and susceptibility to physical capture. In this article, an embedded sensor node microcontroller designed to support sensor network applications with severe security demands is presented. It features a low power 16-bitprocessor core supported by a number of hardware accelerators designed to perform complex operations required by advanced crypto algorithms. The microcontroller integrates an embedded Flash and an 8-channel 12-bit analog-to-digital converter making it a good solution for low-power sensor nodes. The article discusses the most important security topics in wireless sensor networks and presents the architecture of the proposed hardware solution. Furthermore, it gives details on the chip implementation, verification and hardware evaluation. Finally, the chip power dissipation and performance figures are estimated and analyzed. PMID:27128925
Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications
NASA Technical Reports Server (NTRS)
Wagner, Raymond S.
2010-01-01
Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.
Surveillance and reconnaissance ground system architecture
NASA Astrophysics Data System (ADS)
Devambez, Francois
2001-12-01
Modern conflicts induces various modes of deployment, due to the type of conflict, the type of mission, and phase of conflict. It is then impossible to define fixed architecture systems for surveillance ground segments. Thales has developed a structure for a ground segment based on the operational functions required, and on the definition of modules and networks. Theses modules are software and hardware modules, including communications and networks. This ground segment is called MGS (Modular Ground Segment), and is intended for use in airborne reconnaissance systems, surveillance systems, and U.A.V. systems. Main parameters for the definition of a modular ground image exploitation system are : Compliance with various operational configurations, Easy adaptation to the evolution of theses configurations, Interoperability with NATO and multinational forces, Security, Multi-sensors, multi-platforms capabilities, Technical modularity, Evolutivity Reduction of life cycle cost The general performances of the MGS are presented : type of sensors, acquisition process, exploitation of images, report generation, data base management, dissemination, interface with C4I. The MGS is then described as a set of hardware and software modules, and their organization to build numerous operational configurations. Architectures are from minimal configuration intended for a mono-sensor image exploitation system, to a full image intelligence center, for a multilevel exploitation of multi-sensor.
A mobile sensing system for structural health monitoring: design and validation
NASA Astrophysics Data System (ADS)
Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie
2010-05-01
This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring.
Pervasive Monitoring—An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures
Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael
2010-01-01
Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making. PMID:22163537
Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael
2010-01-01
Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a "digital skin for planet earth". The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.
Intelligent Wireless Sensor Networks for System Health Monitoring
NASA Technical Reports Server (NTRS)
Alena, Rick
2011-01-01
Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of PAN configuration, providing the appropriate response for maintaining overall sensor system function, even when sensor modules fail or the WSN is reconfigured. The session will present the architecture and technical feasibility of creating fault-tolerant WSNs for aerospace applications based on our application of the technology to a Structural Health Monitoring testbed. The interim results of WSN development and testing including our software architecture for intelligent sensor management will be discussed in the context of the specific tradeoffs required for effective use. Initial certification measurement techniques and test results gauging WSN susceptibility to Radio Frequency interference are introduced as key challenges for technology adoption. A candidate Developmental and Flight Instrumentation implementation using intelligent sensor networks for wind tunnel and flight tests is developed as a guide to understanding key aspects of the aerospace vehicle design, test and operations life cycle.
Distributed Prognostics and Health Management with a Wireless Network Architecture
NASA Technical Reports Server (NTRS)
Goebel, Kai; Saha, Sankalita; Sha, Bhaskar
2013-01-01
A heterogeneous set of system components monitored by a varied suite of sensors and a particle-filtering (PF) framework, with the power and the flexibility to adapt to the different diagnostic and prognostic needs, has been developed. Both the diagnostic and prognostic tasks are formulated as a particle-filtering problem in order to explicitly represent and manage uncertainties in state estimation and remaining life estimation. Current state-of-the-art prognostic health management (PHM) systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to a loss in functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become for a number of reasons somewhat ungainly for successful deployment, and efficient distributed architectures can be more beneficial. The distributed health management architecture is comprised of a network of smart sensor devices. These devices monitor the health of various subsystems or modules. They perform diagnostics operations and trigger prognostics operations based on user-defined thresholds and rules. The sensor devices, called computing elements (CEs), consist of a sensor, or set of sensors, and a communication device (i.e., a wireless transceiver beside an embedded processing element). The CE runs in either a diagnostic or prognostic operating mode. The diagnostic mode is the default mode where a CE monitors a given subsystem or component through a low-weight diagnostic algorithm. If a CE detects a critical condition during monitoring, it raises a flag. Depending on availability of resources, a networked local cluster of CEs is formed that then carries out prognostics and fault mitigation by efficient distribution of the tasks. It should be noted that the CEs are expected not to suspend their previous tasks in the prognostic mode. When the prognostics task is over, and after appropriate actions have been taken, all CEs return to their original default configuration. Wireless technology-based implementation would ensure more flexibility in terms of sensor placement. It would also allow more sensors to be deployed because the overhead related to weights of wired systems is not present. Distributed architectures are furthermore generally robust with regard to recovery from node failures.
Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao
2018-01-02
In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.
A reference architecture for telemonitoring.
Clarke, Malcolm
2004-01-01
The Telecare Interactive Continuous Monitoring System exploits GPRS to provide an ambulatory device that monitors selected vital signs on a continuous basis. Alarms are sent when parameters fall outside preset limits, and accompanying physiological data may also be transmitted. The always-connected property of GPRS allows continuous interactive control of the device and its sensors, permitting changes to monitoring parameters or even enabling continuous monitoring of a sensor in emergency. A new personal area network (PAN) has been developed to support short-range wireless connection to sensors worn on the body including ECG and finger worn SpO2. Most notable is use of ultra low radio frequency to reduce power to minimum. The system has been designed to use a hierarchical architecture for sensors and "derived" signals, such as HR from ECG, so that each can be independently controlled and managed. Sensors are treated as objects, and functions are defined to control aspects of behaviour. These are refined in order to define a generic set of abstract functions to handle the majority of functions, leaving a minimum of sensor specific commands. The intention is to define a reference architecture in order to research the functionality and system architecture of a telemonitoring system. The Telecare project is funded through a grant from the European Commission (IST programme).
Web Service Architecture Framework for Embedded Devices
ERIC Educational Resources Information Center
Yanzick, Paul David
2009-01-01
The use of Service Oriented Architectures, namely web services, has become a widely adopted method for transfer of data between systems across the Internet as well as the Enterprise. Adopting a similar approach to embedded devices is also starting to emerge as personal devices and sensor networks are becoming more common in the industry. This…
Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.
Zhang, Ying; Xiao, Hannan
2009-11-01
Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.
Mobile Context Provider for Social Networking
NASA Astrophysics Data System (ADS)
Santos, André C.; Cardoso, João M. P.; Ferreira, Diogo R.; Diniz, Pedro C.
The ability to infer user context based on a mobile device together with a set of external sensors opens up the way to new context-aware services and applications. In this paper, we describe a mobile context provider that makes use of sensors available in a smartphone as well as sensors externally connected via bluetooth. We describe the system architecture from sensor data acquisition to feature extraction, context inference and the publication of context information to well-known social networking services such as Twitter and Hi5. In the current prototype, context inference is based on decision trees, but the middleware allows the integration of other inference engines. Experimental results suggest that the proposed solution is a promising approach to provide user context to both local and network-level services.
Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture
2017-01-01
The interconnection between sensors, controllers and instruments through a communication network plays a vital role in the performance and effectiveness of a control system. Since its inception in the 90s, the Object Linking and Embedding for Process Control (OPC) protocol has provided open connectivity for monitoring and automation systems. It has been widely used in several environments such as industrial facilities, building and energy automation, engineering education and many others. This paper presents a novel OPC-based architecture to implement automation systems devoted to R&D and educational activities. The proposal is a novel conceptual framework, structured into four functional layers where the diverse components are categorized aiming to foster the systematic design and implementation of automation systems involving OPC communication. Due to the benefits of OPC, the proposed architecture provides features like open connectivity, reliability, scalability, and flexibility. Furthermore, four successful experimental applications of such an architecture, developed at the University of Extremadura (UEX), are reported. These cases are a proof of concept of the ability of this architecture to support interoperability for different domains. Namely, the automation of energy systems like a smart microgrid and photobioreactor facilities, the implementation of a network-accessible industrial laboratory and the development of an educational hardware-in-the-loop platform are described. All cases include a Programmable Logic Controller (PLC) to automate and control the plant behavior, which exchanges operative data (measurements and signals) with a multiplicity of sensors, instruments and supervisory systems under the structure of the novel OPC architecture. Finally, the main conclusions and open research directions are highlighted. PMID:28654002
Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture.
González, Isaías; Calderón, Antonio José; Barragán, Antonio Javier; Andújar, José Manuel
2017-06-27
The interconnection between sensors, controllers and instruments through a communication network plays a vital role in the performance and effectiveness of a control system. Since its inception in the 90s, the Object Linking and Embedding for Process Control (OPC) protocol has provided open connectivity for monitoring and automation systems. It has been widely used in several environments such as industrial facilities, building and energy automation, engineering education and many others. This paper presents a novel OPC-based architecture to implement automation systems devoted to R&D and educational activities. The proposal is a novel conceptual framework, structured into four functional layers where the diverse components are categorized aiming to foster the systematic design and implementation of automation systems involving OPC communication. Due to the benefits of OPC, the proposed architecture provides features like open connectivity, reliability, scalability, and flexibility. Furthermore, four successful experimental applications of such an architecture, developed at the University of Extremadura (UEX), are reported. These cases are a proof of concept of the ability of this architecture to support interoperability for different domains. Namely, the automation of energy systems like a smart microgrid and photobioreactor facilities, the implementation of a network-accessible industrial laboratory and the development of an educational hardware-in-the-loop platform are described. All cases include a Programmable Logic Controller (PLC) to automate and control the plant behavior, which exchanges operative data (measurements and signals) with a multiplicity of sensors, instruments and supervisory systems under the structure of the novel OPC architecture. Finally, the main conclusions and open research directions are highlighted.
Wireless Multimedia Sensor Networks: Current Trends and Future Directions
Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.; Morillo-Pozo, Julian
2010-01-01
Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571
Invocation oriented architecture for agile code and agile data
NASA Astrophysics Data System (ADS)
Verma, Dinesh; Chan, Kevin; Leung, Kin; Gkelias, Athanasios
2017-05-01
In order to address the unique requirements of sensor information fusion in a tactical coalition environment, we are proposing a new architecture - one based on the concept of invocations. An invocation is a combination of a software code and a piece of data, both managed using techniques from Information Centric networking. This paper will discuss limitations of current approaches, present the architecture for an invocation oriented architecture, illustrate how it works with an example scenario, and provide reasons for its suitability in a coalition environment.
Performance Evaluation Modeling of Network Sensors
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Jennings, Esther H.; Gao, Jay L.
2003-01-01
Substantial benefits are promised by operating many spatially separated sensors collectively. Such systems are envisioned to consist of sensor nodes that are connected by a communications network. A simulation tool is being developed to evaluate the performance of networked sensor systems, incorporating such metrics as target detection probabilities, false alarms rates, and classification confusion probabilities. The tool will be used to determine configuration impacts associated with such aspects as spatial laydown, and mixture of different types of sensors (acoustic, seismic, imaging, magnetic, RF, etc.), and fusion architecture. The QualNet discrete-event simulation environment serves as the underlying basis for model development and execution. This platform is recognized for its capabilities in efficiently simulating networking among mobile entities that communicate via wireless media. We are extending QualNet's communications modeling constructs to capture the sensing aspects of multi-target sensing (analogous to multiple access communications), unimodal multi-sensing (broadcast), and multi-modal sensing (multiple channels and correlated transmissions). Methods are also being developed for modeling the sensor signal sources (transmitters), signal propagation through the media, and sensors (receivers) that are consistent with the discrete event paradigm needed for performance determination of sensor network systems. This work is supported under the Microsensors Technical Area of the Army Research Laboratory (ARL) Advanced Sensors Collaborative Technology Alliance.
A two-tiered self-powered wireless monitoring system architecture for bridge health management
NASA Astrophysics Data System (ADS)
Kurata, Masahiro; Lynch, Jerome P.; Galchev, Tzeno; Flynn, Michael; Hipley, Patrick; Jacob, Vince; van der Linden, Gwendolyn; Mortazawi, Amir; Najafi, Khalil; Peterson, Rebecca L.; Sheng, Li-Hong; Sylvester, Dennis; Thometz, Edward
2010-04-01
Bridges are an important societal resource used to carry vehicular traffic within a transportation network. As such, the economic impact of the failure of a bridge is high; the recent failure of the I-35W Bridge in Minnesota (2007) serves as a poignant example. Structural health monitoring (SHM) systems can be adopted to detect and quantify structural degradation and damage in an affordable and real-time manner. This paper presents a detailed overview of a multi-tiered architecture for the design of a low power wireless monitoring system for large and complex infrastructure systems. The monitoring system architecture employs two wireless sensor nodes, each with unique functional features and varying power demand. At the lowest tier of the system architecture is the ultra-low power Phoenix wireless sensor node whose design has been optimized to draw minimal power during standby. These ultra low-power nodes are configured to communicate their measurements to a more functionally-rich wireless sensor node residing on the second-tier of the monitoring system architecture. While the Narada wireless sensor node offers more memory, greater processing power and longer communication ranges, it also consumes more power during operation. Radio frequency (RF) and mechanical vibration power harvesting is integrated with the wireless sensor nodes to allow them to operate freely for long periods of time (e.g., years). Elements of the proposed two-tiered monitoring system architecture are validated upon an operational long-span suspension bridge.
A survey of body sensor networks.
Lai, Xiaochen; Liu, Quanli; Wei, Xin; Wang, Wei; Zhou, Guoqiao; Han, Guangyi
2013-04-24
The technology of sensor, pervasive computing, and intelligent information processing is widely used in Body Sensor Networks (BSNs), which are a branch of wireless sensor networks (WSNs). BSNs are playing an increasingly important role in the fields of medical treatment, social welfare and sports, and are changing the way humans use computers. Existing surveys have placed emphasis on the concept and architecture of BSNs, signal acquisition, context-aware sensing, and system technology, while this paper will focus on sensor, data fusion, and network communication. And we will introduce the research status of BSNs, the analysis of hotspots, and future development trends, the discussion of major challenges and technical problems facing currently. The typical research projects and practical application of BSNs are introduced as well. BSNs are progressing along the direction of multi-technology integration and intelligence. Although there are still many problems, the future of BSNs is fundamentally promising, profoundly changing the human-machine relationships and improving the quality of people's lives.
Design of nodes for embedded and ultra low-power wireless sensor networks
NASA Astrophysics Data System (ADS)
Xu, Jun; You, Bo; Cui, Juan; Ma, Jing; Li, Xin
2008-10-01
Sensor network integrates sensor technology, MEMS (Micro-Electro-Mechanical system) technology, embedded computing, wireless communication technology and distributed information management technology. It is of great value to use it where human is quite difficult to reach. Power consumption and size are the most important consideration when nodes are designed for distributed WSN (wireless sensor networks). Consequently, it is of great importance to decrease the size of a node, reduce its power consumption and extend its life in network. WSN nodes have been designed using JN5121-Z01-M01 module produced by jennic company and IEEE 802.15.4/ZigBee technology. Its new features include support for CPU sleep modes and a long-term ultra low power sleep mode for the entire node. In low power configuration the node resembles existing small low power nodes. An embedded temperature sensor node has been developed to verify and explore our architecture. The experiment results indicate that the WSN has the characteristic of high reliability, good stability and ultra low power consumption.
A Survey of Body Sensor Networks
Lai, Xiaochen; Liu, Quanli; Wei, Xin; Wang, Wei; Zhou, Guoqiao; Han, Guangyi
2013-01-01
The technology of sensor, pervasive computing, and intelligent information processing is widely used in Body Sensor Networks (BSNs), which are a branch of wireless sensor networks (WSNs). BSNs are playing an increasingly important role in the fields of medical treatment, social welfare and sports, and are changing the way humans use computers. Existing surveys have placed emphasis on the concept and architecture of BSNs, signal acquisition, context-aware sensing, and system technology, while this paper will focus on sensor, data fusion, and network communication. And we will introduce the research status of BSNs, the analysis of hotspots, and future development trends, the discussion of major challenges and technical problems facing currently. The typical research projects and practical application of BSNs are introduced as well. BSNs are progressing along the direction of multi-technology integration and intelligence. Although there are still many problems, the future of BSNs is fundamentally promising, profoundly changing the human-machine relationships and improving the quality of people's lives. PMID:23615581
Sensor Systems Based on FPGAs and Their Applications: A Survey
de la Piedra, Antonio; Braeken, An; Touhafi, Abdellah
2012-01-01
In this manuscript, we present a survey of designs and implementations of research sensor nodes that rely on FPGAs, either based upon standalone platforms or as a combination of microcontroller and FPGA. Several current challenges in sensor networks are distinguished and linked to the features of modern FPGAs. As it turns out, low-power optimized FPGAs are able to enhance the computation of several types of algorithms in terms of speed and power consumption in comparison to microcontrollers of commercial sensor nodes. We show that architectures based on the combination of microcontrollers and FPGA can play a key role in the future of sensor networks, in fields where processing capabilities such as strong cryptography, self-testing and data compression, among others, are paramount.
SensorKit: An End-to-End Solution for Environmental Sensor Networking
NASA Astrophysics Data System (ADS)
Silva, F.; Graham, E.; Deschon, A.; Lam, Y.; Goldman, J.; Wroclawski, J.; Kaiser, W.; Benzel, T.
2008-12-01
Modern day sensor network technology has shown great promise to transform environmental data collection. However, despite the promise, these systems have remained the purview of the engineers and computer scientists who design them rather than a useful tool for the environmental scientists who need them. SensorKit is conceived of as a way to make wireless sensor networks accessible to The People: it is an advanced, powerful tool for sensor data collection that does not require advanced technological know-how. We are aiming to make wireless sensor networks for environmental science as simple as setting up a standard home computer network by providing simple, tested configurations of commercially-available hardware, free and easy-to-use software, and step-by-step tutorials. We designed and built SensorKit using a simplicity-through-sophistication approach, supplying users a powerful sensor to database end-to-end system with a simple and intuitive user interface. Our objective in building SensorKit was to make the prospect of using environmental sensor networks as simple as possible. We built SensorKit from off the shelf hardware components, using the Compact RIO platform from National Instruments for data acquisition due to its modular architecture and flexibility to support a large number of sensor types. In SensorKit, we support various types of analog, digital and networked sensors. Our modular software architecture allows us to abstract sensor details and provide users a common way to acquire data and to command different types of sensors. SensorKit is built on top of the Sensor Processing and Acquisition Network (SPAN), a modular framework for acquiring data in the field, moving it reliably to the scientist institution, and storing it in an easily-accessible database. SPAN allows real-time access to the data in the field by providing various options for long haul communication, such as cellular and satellite links. Our system also features reliable data storage and transmission, using a custody transfer mechanism that ensures data is retained until successful delivery to the scientist can be confirmed. The ability for the scientist to communicate in real-time with the sensor network in the field enables remote sensor reconfiguration and system health and status monitoring. We use a spiral approach of design, test, deploy and revise, and, by going to the field frequently and getting feedback from field scientists, we have been able to include additional functionality that is useful to the scientist while ensuring SensorKit remains intuitive to operate. Users can configure, control, and monitor SensorKit using a number of tools we have developed. An intuitive user interface running on a desktop or laptop allows scientists to setup the system, add and configure sensors, and specify when and how the data will be collected. We also have a mobile version of our interface that runs on a PDA and lets scientists calibrate sensors and "tune" the system while in the field, allowing for data validation before leaving the field and returning to the research lab. SensorKit also features SensorBase, an intuitive user interface built on top of a standard SQL database, which allows scientists to store and share their data with other researchers. SensorKit has been used for diverse scientific applications and deployed throughout the world: from studying mercury cycling in rice paddies in China, to ecological research in the neotropical rainforests of Costa Rica, to monitoring the contamination of salt lakes in Argentina.
C4I Architecture Supporting Conduct of Defensive and Offensive Joint ASW
2008-09-01
David H. Olwell, Ph.D...Switched Network DWTS Digital Wideband Transmission System ECC Elliptic Curve Cryptography ECU End Crypto Unit EEZ Economic Exclusion Zone EHF... relatively short ranges. With a stand alone acoustic sensor system, sensor operators never really know if the area is clear, they only have a
Service-oriented Reasoning Architecture for Resource-Task Assignment in Sensor Networks
2011-04-01
www.csd.abdn.ac.uk/research/ita/sam/downloads/ontology/ISTAR.owl Sensing Resource Platform Sensors SR4 Nimrod MR2 LDRFCamera, SARCamera, TVCamera SR5 WASP...resources in the theatre. This is because according to the knowledge available to the ISTAR reasoner service, a ‘ Nimrod ’ could perform high altitude
Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand
NASA Astrophysics Data System (ADS)
Rocha, Rui Pedro; Alhais Lopes, Pedro; de Almeida, Anibal T.; Tavakoli, Mahmoud; Majidi, Carmel
2018-03-01
We demonstrate fabrication, characterization, and implementation of ‘soft-matter’ pressure and bending sensors for a soft robotic hand. The elastomer-based sensors are embedded in a robot finger composed of a 3D printed endoskeleton and covered by an elastomeric skin. Two types of sensors are evaluated, resistive pressure sensors and capacitive pressure sensors. The sensor is fabricated entirely out of insulating and conductive rubber, the latter composed of polydimethylsiloxane (PDMS) elastomer embedded with a percolating network of structured carbon black (CB). The sensor-integrated fingers have a simple materials architecture, can be fabricated with standard rapid prototyping methods, and are inexpensive to produce. When incorporated into a robotic hand, the CB-PDMS sensors and PDMS carrier medium function as an ‘artificial skin’ for touch and bend detection. Results show improved response with a capacitive sensor architecture, which, unlike a resistive sensor, is robust to electromechanical hysteresis, creep, and drift in the CB-PDMS composite. The sensorized fingers are integrated in an anthropomorphic hand and results for a variety of grasping tasks are presented.
REVIEW ARTICLE: Sensor communication technology towards ambient intelligence
NASA Astrophysics Data System (ADS)
Delsing, J.; Lindgren, P.
2005-04-01
This paper is a review of the fascinating development of sensors and the communication of sensor data. A brief historical introduction is given, followed by a discussion on architectures for sensor networks. Further, realistic specifications on sensor devices suitable for ambient intelligence and ubiquitous computing are given. Based on these specifications, the status and current frontline development are discussed. In total, it is shown that future technology for ambient intelligence based on sensor and actuator devices using standardized Internet communication is within the range of possibilities within five years.
A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web
de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández
2014-01-01
Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678
A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.
de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso
2014-06-18
Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.
Supervisory control of mobile sensor networks: math formulation, simulation, and implementation.
Giordano, Vincenzo; Ballal, Prasanna; Lewis, Frank; Turchiano, Biagio; Zhang, Jing Bing
2006-08-01
This paper uses a novel discrete-event controller (DEC) for the coordination of cooperating heterogeneous wireless sensor networks (WSNs) containing both unattended ground sensors (UGSs) and mobile sensor robots. The DEC sequences the most suitable tasks for each agent and assigns sensor resources according to the current perception of the environment. A matrix formulation makes this DEC particularly useful for WSN, where missions change and sensor agents may be added or may fail. WSN have peculiarities that complicate their supervisory control. Therefore, this paper introduces several new tools for DEC design and operation, including methods for generating the required supervisory matrices based on mission planning, methods for modifying the matrices in the event of failed nodes, or nodes entering the network, and a novel dynamic priority assignment weighting approach for selecting the most appropriate and useful sensors for a given mission task. The resulting DEC represents a complete dynamical description of the WSN system, which allows a fast programming of deployable WSN, a computer simulation analysis, and an efficient implementation. The DEC is actually implemented on an experimental wireless-sensor-network prototyping system. Both simulation and experimental results are presented to show the effectiveness and versatility of the developed control architecture.
Revolutionize Situational Awareness in Emergencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hehlen, Markus Peter
This report describes an integrated system that provides real-time actionable information to first responders. LANL will integrate three technologies to form an advanced predictive real-time sensor network including compact chemical and wind sensor sin low cost rugged package for outdoor installation; flexible robust communication architecture linking sensors in near-real time to globally accessible servers; and the QUIC code which predicts contamination transport and dispersal in urban environments in near real time.
Design of Distributed Engine Control Systems with Uncertain Delay.
Liu, Xiaofeng; Li, Yanxi; Sun, Xu
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.
Design of Distributed Engine Control Systems with Uncertain Delay
Li, Yanxi; Sun, Xu
2016-01-01
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method. PMID:27669005
Faulty node detection in wireless sensor networks using a recurrent neural network
NASA Astrophysics Data System (ADS)
Atiga, Jamila; Mbarki, Nour Elhouda; Ejbali, Ridha; Zaied, Mourad
2018-04-01
The wireless sensor networks (WSN) consist of a set of sensors that are more and more used in surveillance applications on a large scale in different areas: military, Environment, Health ... etc. Despite the minimization and the reduction of the manufacturing costs of the sensors, they can operate in places difficult to access without the possibility of reloading of battery, they generally have limited resources in terms of power of emission, of processing capacity, data storage and energy. These sensors can be used in a hostile environment, such as, for example, on a field of battle, in the presence of fires, floods, earthquakes. In these environments the sensors can fail, even in a normal operation. It is therefore necessary to develop algorithms tolerant and detection of defects of the nodes for the network of sensor without wires, therefore, the faults of the sensor can reduce the quality of the surveillance if they are not detected. The values that are measured by the sensors are used to estimate the state of the monitored area. We used the Non-linear Auto- Regressive with eXogeneous (NARX), the recursive architecture of the neural network, to predict the state of a node of a sensor from the previous values described by the functions of time series. The experimental results have verified that the prediction of the State is enhanced by our proposed model.
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
A Survey of Middleware for Sensor and Network Virtualization
Khalid, Zubair; Fisal, Norsheila; Rozaini, Mohd.
2014-01-01
Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization. PMID:25615737
EMMNet: sensor networking for electricity meter monitoring.
Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang
2010-01-01
Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.
A survey of middleware for sensor and network virtualization.
Khalid, Zubair; Fisal, Norsheila; Rozaini, Mohd
2014-12-12
Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization.
EMMNet: Sensor Networking for Electricity Meter Monitoring
Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang
2010-01-01
Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters. PMID:22163551
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2002-01-01
As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.
NASA Astrophysics Data System (ADS)
Abeynayake, Canicious; Chant, Ian; Kempinger, Siegfried; Rye, Alan
2005-06-01
The Rapid Route Area and Mine Neutralisation System (RRAMNS) Capability Technology Demonstrator (CTD) is a countermine detection project undertaken by DSTO and supported by the Australian Defence Force (ADF). The limited time and budget for this CTD resulted in some difficult strategic decisions with regard to hardware selection and system architecture. Although the delivered system has certain limitations arising from its experimental status, many lessons have been learned which illustrate a pragmatic path for future development. RRAMNS a similar sensor suite to other systems, in that three complementary sensors are included. These are Ground Probing Radar, Metal Detector Array, and multi-band electro-optic sensors. However, RRAMNS uses a unique imaging system and a network based real-time control and sensor fusion architecture. The relatively simple integration of each of these components could be the basis for a robust and cost-effective operational system. The RRAMNS imaging system consists of three cameras which cover the visible spectrum, the mid-wave and long-wave infrared region. This subsystem can be used separately as a scouting sensor. This paper describes the system at its mid-2004 status, when full integration of all detection components was achieved.
A miniature disposable radio (MiDR) for unattended ground sensor systems (UGSS) and munitions
NASA Astrophysics Data System (ADS)
Wells, Jeffrey S.; Wurth, Timothy J.
2004-09-01
Unattended and tactical sensors are used by the U.S. Army"s Future Combat Systems (FCS) and Objective Force Warrior (OFW) to detect and identify enemy targets on the battlefield. The radios being developed as part of the Networked Sensors for the Objective Force (NSOF) are too costly and too large to deploy in missions requiring throw-away hardware. A low-cost miniature radio is required to satisfy the communication needs for unmanned sensor and munitions systems that are deployed in a disposable manner. A low cost miniature disposable communications suite is leveraged using the commercial off-the-shelf market and employing a miniature universal frequency conversion architecture. Employing the technology of universal frequency architecture in a commercially available communication unit delivers a robust disposable transceiver that can operate at virtually any frequency. A low-cost RF communication radio has applicability in the commercial, homeland defense, military, and other government markets. Specific uses include perimeter monitoring, infrastructure defense, unattended ground sensors, tactical sensors, and border patrol. This paper describes a low-cost radio architecture to meet the requirements of throw-away radios that can be easily modified or tuned to virtually any operating frequency required for the specific mission.
A low power medium access control protocol for wireless medical sensor networks.
Lamprinos, I; Prentza, A; Sakka, E; Koutsouris, D
2004-01-01
The concept of a wireless integrated network of sensors, already applied in several sectors of our everyday life, such as security, transportation and environment monitoring, can as well provide an advanced monitor and control resource for healthcare services. By networking medical sensors wirelessly, attaching them in patient's body, we create the appropriate infrastructure for continuous and real-time monitoring of patient without discomforting him. This infrastructure can improve healthcare by providing the means for flexible acquisition of vital signs, while at the same time it provides more convenience to the patient. Given the type of wireless network, traditional medium access control (MAC) protocols cannot take advantage of the application specific requirements and information characteristics occurring in medical sensor networks, such as the demand for low power consumption and the rather limited and asymmetric data traffic. In this paper, we present the architecture of a low power MAC protocol, designated to support wireless networks of medical sensors. This protocol aims to improve energy efficiency by exploiting the inherent application features and requirements. It is oriented towards the avoidance of main energy wastage sources, such as idle listening, collision and power outspending.
On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; Gonzalez-Castaño, Francisco Javier
2013-01-01
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively. PMID:23939582
On maximizing the lifetime of Wireless Sensor Networks by optimally assigning energy supplies.
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; González-Castano, Francisco Javier
2013-08-09
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively.
NASA Technical Reports Server (NTRS)
Uldomkesmalee, Suraphol; Suddarth, Steven C.
1997-01-01
VIGILANTE is an ultrafast smart sensor testbed for generic Automatic Target Recognition (ATR) applications with a series of capability demonstration focussed on cruise missile defense (CMD). VIGILANTE's sensor/processor architecture is based on next-generation UV/visible/IR sensors and a tera-operations per second sugar-cube processor, as well as supporting airborne vehicle. Excellent results of efficient ATR methodologies that use an eigenvectors/neural network combination and feature-based precision tracking have been demonstrated in the laboratory environment.
Virtual Sensor Web Architecture
NASA Astrophysics Data System (ADS)
Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.
2006-12-01
NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.
Analysis of power management and system latency in wireless sensor networks
NASA Astrophysics Data System (ADS)
Oswald, Matthew T.; Rohwer, Judd A.; Forman, Michael A.
2004-08-01
Successful power management in a wireless sensor network requires optimization of the protocols which affect energy-consumption on each node and the aggregate effects across the larger network. System optimization for a given deployment scenario requires an analysis and trade off of desired node and network features with their associated costs. The sleep protocol for an energy-efficient wireless sensor network for event detection, target classification, and target tracking developed at Sandia National Laboratories is presented. The dynamic source routing (DSR) algorithm is chosen to reduce network maintenance overhead, while providing a self-configuring and self-healing network architecture. A method for determining the optimal sleep time is developed and presented, providing reference data which spans several orders of magnitude. Message timing diagrams show, that a node in a five-node cluster, employing an optimal cyclic single-radio sleep protocol, consumes 3% more energy and incurs a 16-s increase latency than nodes employing the more complex dual-radio STEM protocol.
On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks
Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun
2011-01-01
This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809
Ontology Alignment Architecture for Semantic Sensor Web Integration
Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo
2013-01-01
Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523
Ontology alignment architecture for semantic sensor Web integration.
Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo
2013-09-18
Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.
Sensor fusion V; Proceedings of the Meeting, Boston, MA, Nov. 15-17, 1992
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Topics addressed include 3D object perception, human-machine interface in multisensor systems, sensor fusion architecture, fusion of multiple and distributed sensors, interface and decision models for sensor fusion, computational networks, simple sensing for complex action, multisensor-based control, and metrology and calibration of multisensor systems. Particular attention is given to controlling 3D objects by sketching 2D views, the graphical simulation and animation environment for flexible structure robots, designing robotic systems from sensorimotor modules, cylindrical object reconstruction from a sequence of images, an accurate estimation of surface properties by integrating information using Bayesian networks, an adaptive fusion model for a distributed detection system, multiple concurrent object descriptions in support of autonomous navigation, robot control with multiple sensors and heuristic knowledge, and optical array detectors for image sensors calibration. (No individual items are abstracted in this volume)
Biology-inspired Architecture for Situation Management
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng
2006-01-01
Situation Management is a rapidly developing science combining new techniques for data collection with advanced methods of data fusion to facilitate the process leading to correct decisions prescribing action. Current research focuses on reducing increasing amounts of diverse data to knowledge used by decision makers and on reducing time between observations, decisions and actions. No new technology is more promising for increasing the diversity and fidelity of observations than sensor networks. However, current research on sensor networks concentrates on a centralized network architecture. We believe this trend will not realize the full potential of situation management. We propose a new architecture modeled after biological ecosystems where motes are autonomous and intelligent, yet cooperate with local neighborhoods. Providing a layered approach, they sense and act independently when possible, and cooperate with neighborhoods when necessary. The combination of their local actions results in global effects. While situation management research is currently dominated by military applications, advances envisioned for industrial and business applications have similar requirements. NASA has requirements for intelligent and autonomous systems in future missions that can benefit from advances in situation management. We describe requirements for the Integrated Vehicle Health Management program where our biology-inspired architecture provides a layered approach and decisions can be made at the proper level to improve safety, reduce costs, and improve efficiency in making diagnostic and prognostic assessments of the structural integrity, aerodynamic characteristics, and operation of aircraft.
Jaraíz-Simón, María D; Gómez-Pulido, Juan A; Vega-Rodríguez, Miguel A; Sánchez-Pérez, Juan M
2012-01-01
When a mobile wireless sensor is moving along heterogeneous wireless sensor networks, it can be under the coverage of more than one network many times. In these situations, the Vertical Handoff process can happen, where the mobile sensor decides to change its connection from a network to the best network among the available ones according to their quality of service characteristics. A fitness function is used for the handoff decision, being desirable to minimize it. This is an optimization problem which consists of the adjustment of a set of weights for the quality of service. Solving this problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced applications. Numerous works can be found in the literature dealing with the vertical handoff decision, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision algorithm that explores the entire space of possible combinations of weights, searching that one that minimizes the fitness function; and second, to design and implement a system on chip architecture based on reconfigurable hardware and embedded processors to achieve several goals necessary for competitive mobile terminals: good performance, low power consumption, low economic cost, and small area integration.
Bio-inspired secure data mules for medical sensor network
NASA Astrophysics Data System (ADS)
Muraleedharan, Rajani; Gao, Weihua; Osadciw, Lisa A.
2010-04-01
Medical sensor network consist of heterogeneous nodes, wireless, mobile and wired with varied functionality. The resources at each sensor require to be exploited minimally while sensitive information is sensed and communicated to its access points using secure data mules. In this paper, we analyze the flat architecture, where different functionality and priority information require varied resources forms a non-deterministic polynomial-time hard problem. Hence, a bio-inspired data mule that helps to obtain dynamic multi-objective solution with minimal resource and secure path is applied. The performance of the proposed approach is based on reduced latency, data delivery rate and resource cost.
Self-organizing sensing and actuation for automatic control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, George Shu-Xing
A Self-Organizing Process Control Architecture is introduced with a Sensing Layer, Control Layer, Actuation Layer, Process Layer, as well as Self-Organizing Sensors (SOS) and Self-Organizing Actuators (SOA). A Self-Organizing Sensor for a process variable with one or multiple input variables is disclosed. An artificial neural network (ANN) based dynamic modeling mechanism as part of the Self-Organizing Sensor is described. As a case example, a Self-Organizing Soft-Sensor for CFB Boiler Bed Height is presented. Also provided is a method to develop a Self-Organizing Sensor.
NASA Astrophysics Data System (ADS)
Herz, A.; Herz, E.; Center, K.; George, P.; Axelrad, P.; Mutschler, S.; Jones, B.
2016-09-01
The Space Surveillance Network (SSN) is tasked with the increasingly difficult mission of detecting, tracking, cataloging and identifying artificial objects orbiting the Earth, including active and inactive satellites, spent rocket bodies, and fragmented debris. Much of the architecture and operations of the SSN are limited and outdated. Efforts are underway to modernize some elements of the systems. Even so, the ability to maintain the best current Space Situational Awareness (SSA) picture and identify emerging events in a timely fashion could be significantly improved by leveraging non-traditional sensor sites. Orbit Logic, the University of Colorado and the University of Texas at Austin are developing an innovative architecture and operations concept to coordinate the tasking and observation information processing of non - traditional assets based on information-theoretic approaches. These confirmed tasking schedules and the resulting data can then be used to "inform" the SSN tasking process. The 'Heimdall Web' system is comprised of core tasking optimization components and accompanying Web interfaces within a secure, split architecture that will for the first time allow non-traditional sensors to support SSA and improve SSN tasking. Heimdall Web application components appropriately score/prioritize space catalog objects based on covariance, priority, observability, expected information gain, and probability of detect - then coordinate an efficient sensor observation schedule for non-SSN sensors contributing to the overall SSA picture maintained by the Joint Space Operations Center (JSpOC). The Heimdall Web Ops concept supports sensor participation levels of "Scheduled", "Tasked" and "Contributing". Scheduled and Tasked sensors are provided optimized observation schedules or object tracking lists from central algorithms, while Contributing sensors review and select from a list of "desired track objects". All sensors are "Web Enabled" for tasking and feedback, supplying observation schedules, confirmed observations and related data back to Heimdall Web to complete the feedback loop for the next scheduling iteration.
Implementing wireless sensor networks for architectural heritage conservation
NASA Astrophysics Data System (ADS)
Martínez-Garrido, M. I.; Aparicio, S.; Fort, R.; Izquierdo, M. A. G.; Anaya, J. J.
2012-04-01
Preventive conservation in architectural heritage is one of the most important aims for the development and implementation of new techniques to assess decay, lending to reduce damage before it has occurred and reducing costs in the long term. For that purpose, it is necessary to know all aspects influencing in decay evolution depending on the material under study and its internal and external conditions. Wireless sensor networks are an emerging technology and a minimally invasive technique. The use of these networks facilitates data acquisition and monitoring of a large number of variables that could provoke material damages, such as presence of harmful compounds like salts, dampness, etc. The current project presents different wireless sensors networks (WSN) and sensors used to fulfill the requirements for a complete analysis of main decay agents in a Renaissance church of the 16th century in Madrid (Spain). Current typologies and wireless technologies are studied establishing the most suitable system and the convenience of each one. Firstly, it is very important to consider that microclimate is in close correlation with material deterioration. Therefore a temperature(T) and relative humidity (RH)/moisture network has been developed, using ZigBee wireless communications protocols, and monitoring different points along the church surface. These points are recording RH/T differences depending on the height and the sensor location (inside the material or on the surface). On the other hand, T/RH button sensors have been used, minimizing aesthetical interferences, and concluding which is the most advisable way for monitoring these specific parameters. Due to the fact that microclimate is a complex phenomenon, it is necessary to examine spatial distribution and time evolution at the same time. This work shows both studies since the development expects a long term monitoring. A different wireless network has been deployed to study the effects of pollution caused by other active systems such as a forced-air heating system, the parishioners presence or feasts and other ventilation conditions. Finally weather conditions are registered through a weather station. Outside and inside conditions are compared to incorporate data to the network for a later decay modeling.
Cloud Computing Services for Seismic Networks
NASA Astrophysics Data System (ADS)
Olson, Michael
This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.
Secure chaotic map based block cryptosystem with application to camera sensor networks.
Guo, Xianfeng; Zhang, Jiashu; Khan, Muhammad Khurram; Alghathbar, Khaled
2011-01-01
Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network.
Secure Chaotic Map Based Block Cryptosystem with Application to Camera Sensor Networks
Guo, Xianfeng; Zhang, Jiashu; Khan, Muhammad Khurram; Alghathbar, Khaled
2011-01-01
Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network. PMID:22319371
Smart-Home Architecture Based on Bluetooth mesh Technology
NASA Astrophysics Data System (ADS)
Wan, Qing; Liu, Jianghua
2018-03-01
This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.
SEnviro: a sensorized platform proposal using open hardware and open standards.
Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín
2015-03-06
The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and theWeb of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented.
SEnviro: A Sensorized Platform Proposal Using Open Hardware and Open Standards
Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín
2015-01-01
The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and the Web of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented. PMID:25756864
Neural networks with fuzzy Petri nets for modeling a machining process
NASA Astrophysics Data System (ADS)
Hanna, Moheb M.
1998-03-01
The paper presents an intelligent architecture based a feedforward neural network with fuzzy Petri nets for modeling product quality in a CNC machining center. It discusses how the proposed architecture can be used for modeling, monitoring and control a product quality specification such as surface roughness. The surface roughness represents the output quality specification manufactured by a CNC machining center as a result of a milling process. The neural network approach employed the selected input parameters which defined by the machine operator via the CNC code. The fuzzy Petri nets approach utilized the exact input milling parameters, such as spindle speed, feed rate, tool diameter and coolant (off/on), which can be obtained via the machine or sensors system. An aim of the proposed architecture is to model the demanded quality of surface roughness as high, medium or low.
Le, Duc Van; Oh, Hoon; Yoon, Seokhoon
2013-07-05
In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.
Van Le, Duc; Oh, Hoon; Yoon, Seokhoon
2013-01-01
In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134
Application of Wireless Sensor Networks to Automobiles
NASA Astrophysics Data System (ADS)
Tavares, Jorge; Velez, Fernando J.; Ferro, João M.
2008-01-01
Some applications of Wireless Sensor Networks (WSNs) to the automobile are identified, and the use of Crossbow MICAz motes operating at 2.4 GHz is considered together with TinyOS support. These WSNs are conceived in order to measure, process and supply to the user diverse types of information during an automobile journey. Examples are acceleration and fuel consumption, identification of incorrect tire pressure, verification of illumination, and evaluation of the vital signals of the driver. A brief survey on WSNs concepts is presented, as well as the way the wireless sensor network itself was developed. Calibration curves were produced which allowed for obtaining luminous intensity and temperature values in the appropriate units. Aspects of the definition of the architecture and the choice/implementation of the protocols are identified. Security aspects are also addressed.
NASA Astrophysics Data System (ADS)
Miles, B.; Chepudira, K.; LaBar, W.
2017-12-01
The Open Geospatial Consortium (OGC) SensorThings API (STA) specification, ratified in 2016, is a next-generation open standard for enabling real-time communication of sensor data. Building on over a decade of OGC Sensor Web Enablement (SWE) Standards, STA offers a rich data model that can represent a range of sensor and phenomena types (e.g. fixed sensors sensing fixed phenomena, fixed sensors sensing moving phenomena, mobile sensors sensing fixed phenomena, and mobile sensors sensing moving phenomena) and is data agnostic. Additionally, and in contrast to previous SWE standards, STA is developer-friendly, as is evident from its convenient JSON serialization, and expressive OData-based query language (with support for geospatial queries); with its Message Queue Telemetry Transport (MQTT), STA is also well-suited to efficient real-time data publishing and discovery. All these attributes make STA potentially useful for use in environmental monitoring sensor networks. Here we present Kinota(TM), an Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring. Kinota, which roughly stands for Knowledge from Internet of Things Analyses, relies on Cassandra its underlying data store, which is a horizontally scalable, fault-tolerant open-source database that is often used to store time-series data for Big Data applications (though integration with other NoSQL or rational databases is possible). With this foundation, Kinota can scale to store data from an arbitrary number of sensors collecting data every 500 milliseconds. Additionally, Kinota architecture is very modular allowing for customization by adopters who can choose to replace parts of the existing implementation when desirable. The architecture is also highly portable providing the flexibility to choose between cloud providers like azure, amazon, google etc. The scalable, flexible and cloud friendly architecture of Kinota makes it ideal for use in next-generation large-scale and high-resolution real-time environmental monitoring networks used in domains such as hydrology, geomorphology, and geophysics, as well as management applications such as flood early warning, and regulatory enforcement.
Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety.
Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis
2016-01-15
The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.
Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety
Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis
2016-01-01
The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels. PMID:26784204
Unobstructive Body Area Networks (BAN) for efficient movement monitoring.
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.
Tree-structured sensor fusion architecture for distributed sensor networks
NASA Astrophysics Data System (ADS)
Iyengar, S. Sitharama; Kashyap, Rangasami L.; Madan, Rabinder N.; Thomas, Daryl D.
1990-10-01
An assessment of numerous activities in the field of multisensor target recognition reveals several trends and conditions which are cause for concern. .These concerns are analyzed in terms of their potential impact on the ultimate employment of automatic target recognition in military systems. Suggestions for additional investigation and guidance for current activities are presented with respect to some of the identified concerns.
NASA Technical Reports Server (NTRS)
Figueroa, Jorge Fernando
2008-01-01
In February of 2008; NASA Stennis Space Center (SSC), NASA Kennedy Space Center (KSC), and The Applied Research Laboratory at Penn State University demonstrated a pilot implementation of an Integrated System Health Management (ISHM) capability at the Launch Complex 20 of KSC. The following significant accomplishments are associated with this development: (1) implementation of an architecture for ground operations ISHM, based on networked intelligent elements; (2) Use of standards for management of data, information, and knowledge (DIaK) leading to modular ISHM implementation with interoperable elements communicating according to standards (three standards were used: IEEE 1451 family of standards for smart sensors and actuators, Open Systems Architecture for Condition Based Maintenance (OSA-CBM) standard for communicating DIaK describing the condition of elements of a system, and the OPC standard for communicating data); (3) ISHM implementation using interoperable modules addressing health management of subsystems; and (4) use of a physical intelligent sensor node (smart network element or SNE capable of providing data and health) along with classic sensors originally installed in the facility. An operational demonstration included detection of anomalies (sensor failures, leaks, etc.), determination of causes and effects, communication among health nodes, and user interfaces.
Distributed and Modular CAN-Based Architecture for Hardware Control and Sensor Data Integration
Losada, Diego P.; Fernández, Joaquín L.; Paz, Enrique; Sanz, Rafael
2017-01-01
In this article, we present a CAN-based (Controller Area Network) distributed system to integrate sensors, actuators and hardware controllers in a mobile robot platform. With this work, we provide a robust, simple, flexible and open system to make hardware elements or subsystems communicate, that can be applied to different robots or mobile platforms. Hardware modules can be connected to or disconnected from the CAN bus while the system is working. It has been tested in our mobile robot Rato, based on a RWI (Real World Interface) mobile platform, to replace the old sensor and motor controllers. It has also been used in the design of two new robots: BellBot and WatchBot. Currently, our hardware integration architecture supports different sensors, actuators and control subsystems, such as motor controllers and inertial measurement units. The integration architecture was tested and compared with other solutions through a performance analysis of relevant parameters such as transmission efficiency and bandwidth usage. The results conclude that the proposed solution implements a lightweight communication protocol for mobile robot applications that avoids transmission delays and overhead. PMID:28467381
Distributed and Modular CAN-Based Architecture for Hardware Control and Sensor Data Integration.
Losada, Diego P; Fernández, Joaquín L; Paz, Enrique; Sanz, Rafael
2017-05-03
In this article, we present a CAN-based (Controller Area Network) distributed system to integrate sensors, actuators and hardware controllers in a mobile robot platform. With this work, we provide a robust, simple, flexible and open system to make hardware elements or subsystems communicate, that can be applied to different robots or mobile platforms. Hardware modules can be connected to or disconnected from the CAN bus while the system is working. It has been tested in our mobile robot Rato, based on a RWI (Real World Interface) mobile platform, to replace the old sensor and motor controllers. It has also been used in the design of two new robots: BellBot and WatchBot. Currently, our hardware integration architecture supports different sensors, actuators and control subsystems, such as motor controllers and inertial measurement units. The integration architecture was tested and compared with other solutions through a performance analysis of relevant parameters such as transmission efficiency and bandwidth usage. The results conclude that the proposed solution implements a lightweight communication protocol for mobile robot applications that avoids transmission delays and overhead.
Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott;
2010-01-01
This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.
Smart photonic networks and computer security for image data
NASA Astrophysics Data System (ADS)
Campello, Jorge; Gill, John T.; Morf, Martin; Flynn, Michael J.
1998-02-01
Work reported here is part of a larger project on 'Smart Photonic Networks and Computer Security for Image Data', studying the interactions of coding and security, switching architecture simulations, and basic technologies. Coding and security: coding methods that are appropriate for data security in data fusion networks were investigated. These networks have several characteristics that distinguish them form other currently employed networks, such as Ethernet LANs or the Internet. The most significant characteristics are very high maximum data rates; predominance of image data; narrowcasting - transmission of data form one source to a designated set of receivers; data fusion - combining related data from several sources; simple sensor nodes with limited buffering. These characteristics affect both the lower level network design and the higher level coding methods.Data security encompasses privacy, integrity, reliability, and availability. Privacy, integrity, and reliability can be provided through encryption and coding for error detection and correction. Availability is primarily a network issue; network nodes must be protected against failure or routed around in the case of failure. One of the more promising techniques is the use of 'secret sharing'. We consider this method as a special case of our new space-time code diversity based algorithms for secure communication. These algorithms enable us to exploit parallelism and scalable multiplexing schemes to build photonic network architectures. A number of very high-speed switching and routing architectures and their relationships with very high performance processor architectures were studied. Indications are that routers for very high speed photonic networks can be designed using the very robust and distributed TCP/IP protocol, if suitable processor architecture support is available.
Secure Autonomous Automated Scheduling (SAAS). Rev. 1.1
NASA Technical Reports Server (NTRS)
Walke, Jon G.; Dikeman, Larry; Sage, Stephen P.; Miller, Eric M.
2010-01-01
This report describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the UK-DMC, is used as the space-based sensor. The UK-DMC's availability is determined via machine-to-machine communications using SSTL's mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL's and Universal Space Network's (USN) ground assets. The availability and scheduling of USN's assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards
A wireless sensor enabled by wireless power.
Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey
2012-11-22
Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.
A Wireless Sensor Enabled by Wireless Power
Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey
2012-01-01
Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370
Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao
2015-01-01
A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292
Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao
2015-09-03
A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.
NASA Technical Reports Server (NTRS)
Schmalzel, John L.; Morris, Jon; Turowski, Mark; Figueroa, Fernando; Oostdyk, Rebecca
2008-01-01
There are a number of architecture models for implementing Integrated Systems Health Management (ISHM) capabilities. For example, approaches based on the OSA-CBM and OSA-EAI models, or specific architectures developed in response to local needs. NASA s John C. Stennis Space Center (SSC) has developed one such version of an extensible architecture in support of rocket engine testing that integrates a palette of functions in order to achieve an ISHM capability. Among the functional capabilities that are supported by the framework are: prognostic models, anomaly detection, a data base of supporting health information, root cause analysis, intelligent elements, and integrated awareness. This paper focuses on the role that intelligent elements can play in ISHM architectures. We define an intelligent element as a smart element with sufficient computing capacity to support anomaly detection or other algorithms in support of ISHM functions. A smart element has the capabilities of supporting networked implementations of IEEE 1451.x smart sensor and actuator protocols. The ISHM group at SSC has been actively developing intelligent elements in conjunction with several partners at other Centers, universities, and companies as part of our ISHM approach for better supporting rocket engine testing. We have developed several implementations. Among the key features for these intelligent sensors is support for IEEE 1451.1 and incorporation of a suite of algorithms for determination of sensor health. Regardless of the potential advantages that can be achieved using intelligent sensors, existing large-scale systems are still based on conventional sensors and data acquisition systems. In order to bring the benefits of intelligent sensors to these environments, we have also developed virtual implementations of intelligent sensors.
All-Optical Fibre Networks For Coal Mines
NASA Astrophysics Data System (ADS)
Zientkiewicz, Jacek K.
1987-09-01
A topic of the paper is fiber-optic integrated network (FOIN) suited to the most hostile environments existing in coal mines. The use of optical fibres for transmission of mine instrumentation data offers the prospects of improved safety and immunity to electromagnetic interference (EMI). The feasibility of optically powered sensors has opened up new opportunities for research into optical signal processing architectures. This article discusses a new fibre-optic sensor network involving a time domain multiplexing(TDM)scheme and optical signal processing techniques. The pros and cons of different FOIN topologies with respect to coal mine applications are considered. The emphasis has been placed on a recently developed all-optical fibre network using spread spectrum code division multiple access (COMA) techniques. The all-optical networks have applications in explosive environments where electrical isolation is required.
Research Update: Nanogenerators for self-powered autonomous wireless sensors
NASA Astrophysics Data System (ADS)
Khan, Usman; Hinchet, Ronan; Ryu, Hanjun; Kim, Sang-Woo
2017-07-01
Largely distributed networks of sensors based on the small electronics have great potential for health care, safety, and environmental monitoring. However, in order to have a maintenance free and sustainable operation, such wireless sensors have to be self-powered. Among various energies present in our environment, mechanical energy is widespread and can be harvested for powering the sensors. Piezoelectric and triboelectric nanogenerators (NGs) have been recently introduced for mechanical energy harvesting. Here we introduce the architecture and operational modes of self-powered autonomous wireless sensors. Thereafter, we review the piezoelectric and triboelectric NGs focusing on their working mechanism, structures, strategies, and materials.
Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh
2014-03-01
As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.
Human Mobility Monitoring in Very Low Resolution Visual Sensor Network
Bo Bo, Nyan; Deboeverie, Francis; Eldib, Mohamed; Guan, Junzhi; Xie, Xingzhe; Niño, Jorge; Van Haerenborgh, Dirk; Slembrouck, Maarten; Van de Velde, Samuel; Steendam, Heidi; Veelaert, Peter; Kleihorst, Richard; Aghajan, Hamid; Philips, Wilfried
2014-01-01
This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 × 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics. PMID:25375754
Distributive, Non-destructive Real-time System and Method for Snowpack Monitoring
NASA Technical Reports Server (NTRS)
Frolik, Jeff (Inventor); Skalka, Christian (Inventor)
2013-01-01
A ground-based system that provides quasi real-time measurement and collection of snow-water equivalent (SWE) data in remote settings is provided. The disclosed invention is significantly less expensive and easier to deploy than current methods and less susceptible to terrain and snow bridging effects. Embodiments of the invention include remote data recovery solutions. Compared to current infrastructure using existing SWE technology, the disclosed invention allows more SWE sites to be installed for similar cost and effort, in a greater variety of terrain; thus, enabling data collection at improved spatial resolutions. The invention integrates a novel computational architecture with new sensor technologies. The invention's computational architecture is based on wireless sensor networks, comprised of programmable, low-cost, low-powered nodes capable of sophisticated sensor control and remote data communication. The invention also includes measuring attenuation of electromagnetic radiation, an approach that is immune to snow bridging and significantly reduces sensor footprints.
Piromalis, Dimitrios; Arvanitis, Konstantinos
2016-08-04
Wireless Sensor and Actuators Networks (WSANs) constitute one of the most challenging technologies with tremendous socio-economic impact for the next decade. Functionally and energy optimized hardware systems and development tools maybe is the most critical facet of this technology for the achievement of such prospects. Especially, in the area of agriculture, where the hostile operating environment comes to add to the general technological and technical issues, reliable and robust WSAN systems are mandatory. This paper focuses on the hardware design architectures of the WSANs for real-world agricultural applications. It presents the available alternatives in hardware design and identifies their difficulties and problems for real-life implementations. The paper introduces SensoTube, a new WSAN hardware architecture, which is proposed as a solution to the various existing design constraints of WSANs. The establishment of the proposed architecture is based, firstly on an abstraction approach in the functional requirements context, and secondly, on the standardization of the subsystems connectivity, in order to allow for an open, expandable, flexible, reconfigurable, energy optimized, reliable and robust hardware system. The SensoTube implementation reference model together with its encapsulation design and installation are analyzed and presented in details. Furthermore, as a proof of concept, certain use cases have been studied in order to demonstrate the benefits of migrating existing designs based on the available open-source hardware platforms to SensoTube architecture.
Baldominos, Alejandro; Saez, Yago; Isasi, Pedro
2018-04-23
Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.
2018-01-01
Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures. PMID:29690587
Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki
2016-01-01
Many researchers are devoting attention to the so-called “Internet of Things” (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user’s demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology. PMID:27548177
Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki
2016-08-19
Many researchers are devoting attention to the so-called "Internet of Things" (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user's demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology.
A versatile and interoperable network sensors for water resources monitoring
NASA Astrophysics Data System (ADS)
Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo
2010-05-01
Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act as shortcuts to the heart of the aquifer, causing water contamination much faster than what inferable from average infiltration rates. A new system has been set up, upgrading a legacy sensor network with new sensors to address the monitoring and emergency phase management. Where necessary sensors have been modified in order to manage the whole sensor network through SWE services. The network manage sensors for water parameters (physical and chemical) and for atmospheric ones (for supporting the management of accidental crises). A main property of the developed architecture is that it can be easily reconfigured to pass from the monitoring to the alert phase, by changing sampling frequencies of interesting parameters, or deploying specific additional sensors on identified optimal positions (as in case of the hydrocarbon spill). A hydrogeological model, coupled through a hydrological interface to the atmospheric forcing, has been implemented for the area. Model products (accessed through the same web interface than sensors) give a fundamental added value to the upgraded sensors network (e.g. for data merging procedures). Together with the available measurements, it is shown how the model improves the knowledge of the local hydrogeological system, gives a fundamental support to eventually reconfigure the system (e.g. support on transportable sensors position). The network, basically conceived for real-time monitoring, allow to accumulate an unprecedent amount of information for the aquifer. The availability of such a large set of data (in terms of continuously measured water levels, fluxes, precipitation, concentrations, etc.) from the system, gives a unique opportunity for studying the influences of hydrogeological and geopedological parameters on arsenic and concentrations of other chemicals that are naturally present in water.
2012-11-01
few sensors/complex computations, and many sensors/simple computation. II. CHALLENGES WITH NANO-ENABLED NEUROMORPHIC CHIPS A wide variety of...scenarios. Neuromorphic processors, which are based on the highly parallelized computing architecture of the mammalian brain, show great promise in...in the brain. This fundamentally different approach, frequently referred to as neuromorphic computing, is thought to be better able to solve fuzzy
Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X
2015-12-26
Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols.
Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X.
2015-01-01
Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols. PMID:26712764
A convergent model for distributed processing of Big Sensor Data in urban engineering networks
NASA Astrophysics Data System (ADS)
Parygin, D. S.; Finogeev, A. G.; Kamaev, V. A.; Finogeev, A. A.; Gnedkova, E. P.; Tyukov, A. P.
2017-01-01
The problems of development and research of a convergent model of the grid, cloud, fog and mobile computing for analytical Big Sensor Data processing are reviewed. The model is meant to create monitoring systems of spatially distributed objects of urban engineering networks and processes. The proposed approach is the convergence model of the distributed data processing organization. The fog computing model is used for the processing and aggregation of sensor data at the network nodes and/or industrial controllers. The program agents are loaded to perform computing tasks for the primary processing and data aggregation. The grid and the cloud computing models are used for integral indicators mining and accumulating. A computing cluster has a three-tier architecture, which includes the main server at the first level, a cluster of SCADA system servers at the second level, a lot of GPU video cards with the support for the Compute Unified Device Architecture at the third level. The mobile computing model is applied to visualize the results of intellectual analysis with the elements of augmented reality and geo-information technologies. The integrated indicators are transferred to the data center for accumulation in a multidimensional storage for the purpose of data mining and knowledge gaining.
Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee
NASA Astrophysics Data System (ADS)
Vijayalakshmi, S. R.; Muruganand, S.
2012-01-01
Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.
A Fusion Architecture for Tracking a Group of People Using a Distributed Sensor Network
2013-07-01
Determining the composition of the group is done using several classifiers. The fusion is done at the UGS level to fuse information from all the modalities to...to classification and counting of the targets. Section III also presents the algorithms for fusion of distributed sensor data at the UGS level and...ultrasonic sensors. Determining the composition of the group is done using several classifiers. The fusion is done at the UGS level to fuse
Traffic data collection and anonymous vehicle detection using wireless sensor networks.
DOT National Transportation Integrated Search
2012-05-01
New traffic sensing devices based on wireless sensing technologies were designed and tested. Such devices encompass a cost-effective, battery-free, and energy self-sustained architecture for real-time traffic measurement over distributed points in a ...
NASA Astrophysics Data System (ADS)
Ladd, D.; Reeves, R.; Rumi, E.; Trethewey, M.; Fortescue, M.; Appleby, G.; Wilkinson, M.; Sherwood, R.; Ash, A.; Cooper, C.; Rayfield, P.
The Science and Technology Facilities Council (STFC), Control Loop Concepts Limited (CL2), Natural Environment Research Council (NERC) and Defence Science and Technology Laboratory (DSTL), have recently participated in a campaign of satellite observations, with both radar and optical sensors, in order to demonstrate an initial network concept that enhances the value of coordinated observations. STFC and CL2 have developed a Space Surveillance and Tracking (SST) server/client architecture to slave one sensor to another. The concept was originated to enable the Chilbolton radar (an S-band radar on a 25 m diameter fully-steerable dish antenna called CASTR – Chilbolton Advanced Satellite Tracking Radar) which does not have an auto-track function to follow an object based on position data streamed from another cueing sensor. The original motivation for this was to enable tracking during re-entry of ATV-5, a highly manoeuvrable ISS re-supply vessel. The architecture has been designed to be extensible and allows the interface of both optical and radar sensors which may be geographically separated. Connectivity between the sensors is TCP/IP over the internet. The data transferred between the sensors is translated into an Earth centred frame of reference to accommodate the difference in location, and time-stamping and filtering are applied to cope with latency. The server can accept connections from multiple clients, and the operator can switch between the different clients. This architecture is inherently robust and will enable graceful degradation should parts of the system be unavailable. A demonstration was conducted in 2016 whereby a small telescope connected to an agile mount (an EO tracker known as COATS - Chilbolton Optical Advanced Tracking System) located 50m away from the radar at Chilbolton, autonomously tracked several objects and fed the look angle data into a client. CASTR, slaved to COATS through the server followed and successfully detected the objects. In 2017, the baseline was extended to 135 km by developing a client for the SLR (satellite laser ranger) telescope at the Space Geodesy Facility, Herstmonceux. Trials have already demonstrated that CASTR can accurately track the object using the position data being fed from the SLR.
Signal processing for distributed sensor concept: DISCO
NASA Astrophysics Data System (ADS)
Rafailov, Michael K.
2007-04-01
Distributed Sensor concept - DISCO proposed for multiplication of individual sensor capabilities through cooperative target engagement. DISCO relies on ability of signal processing software to format, to process and to transmit and receive sensor data and to exploit those data in signal synthesis process. Each sensor data is synchronized formatted, Signal-to-Noise Ration (SNR) enhanced and distributed inside of the sensor network. Signal processing technique for DISCO is Recursive Adaptive Frame Integration of Limited data - RAFIL technique that was initially proposed [1] as a way to improve the SNR, reduce data rate and mitigate FPA correlated noise of an individual sensor digital video-signal processing. In Distributed Sensor Concept RAFIL technique is used in segmented way, when constituencies of the technique are spatially and/or temporally separated between transmitters and receivers. Those constituencies include though not limited to two thresholds - one is tuned for optimum probability of detection, the other - to manage required false alarm rate, and limited frame integration placed somewhere between the thresholds as well as formatters, conventional integrators and more. RAFIL allows a non-linear integration that, along with SNR gain, provides system designers more capability where cost, weight, or power considerations limit system data rate, processing, or memory capability [2]. DISCO architecture allows flexible optimization of SNR gain, data rates and noise suppression on sensor's side and limited integration, re-formatting and final threshold on node's side. DISCO with Recursive Adaptive Frame Integration of Limited data may have flexible architecture that allows segmenting the hardware and software to be best suitable for specific DISCO applications and sensing needs - whatever it is air-or-space platforms, ground terminals or integration of sensors network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Autonomic Intelligent Cyber Sensor (AICS) provides cyber security and industrial network state awareness for Ethernet based control network implementations. The AICS utilizes collaborative mechanisms based on Autonomic Research and a Service Oriented Architecture (SOA) to: 1) identify anomalous network traffic; 2) discover network entity information; 3) deploy deceptive virtual hosts; and 4) implement self-configuring modules. AICS achieves these goals by dynamically reacting to the industrial human-digital ecosystem in which it resides. Information is transported internally and externally on a standards based, flexible two-level communication structure.
Using heterogeneous wireless sensor networks in a telemonitoring system for healthcare.
Corchado, Juan M; Bajo, Javier; Tapia, Dante I; Abraham, Ajith
2010-03-01
Ambient intelligence has acquired great importance in recent years and requires the development of new innovative solutions. This paper presents a distributed telemonitoring system, aimed at improving healthcare and assistance to dependent people at their homes. The system implements a service-oriented architecture based platform, which allows heterogeneous wireless sensor networks to communicate in a distributed way independent of time and location restrictions. This approach provides the system with a higher ability to recover from errors and a better flexibility to change their behavior at execution time. Preliminary results are presented in this paper.
NASA Astrophysics Data System (ADS)
Cummins, Kenneth L.; Honma, Noriyasu; Pifer, Alburt E.; Rogers, Tim; Tatsumi, Masataka
The demand for both data quality and the range of Cloud-to-Ground (CG) lightning parameters is highest for forensic applications within the electric utility industry. For years, the research and operational communities within this industry in Japan have pointed out a limitation of these LLS networks in the detection and location of damaging (high-current and/or large charge transfer) lightning flashes during the winter months (so-called “Winter Lightning”). Most of these flashes appear to be upward-connecting discharges, frequently referred to as “Ground-to-Cloud” (GC) flashes. The basic architecture and design of Vaisala’s new LS700x lightning sensor was developed in-part to improve detection of these unusual and complex flashes. This paper presents our progress-to-date on this effort. We include a review of the winter lightning detection problem, an overview of the LS700x architecture, a discussion of how this architecture was exploited to evaluate and improve performance for winter lightning, and a presentation of results-to-date on performance improvement. A comparison of GC detection performance between Tohoku’s operational 9-sensor IMPACT (ALDF 141-T) LLS and its 6-sensor LS700x research network indicates roughly a factor-of-two improvement for this class of discharges, with an overall detection of 23/24 (96%) of GC flashes.
A performance study of unmanned aerial vehicle-based sensor networks under cyber attack
NASA Astrophysics Data System (ADS)
Puchaty, Ethan M.
In UAV-based sensor networks, an emerging area of interest is the performance of these networks under cyber attack. This study seeks to evaluate the performance trade-offs from a System-of-Systems (SoS) perspective between various UAV communications architecture options in the context two missions: tracking ballistic missiles and tracking insurgents. An agent-based discrete event simulation is used to model a sensor communication network consisting of UAVs, military communications satellites, ground relay stations, and a mission control center. Network susceptibility to cyber attack is modeled with probabilistic failures and induced data variability, with performance metrics focusing on information availability, latency, and trustworthiness. Results demonstrated that using UAVs as routers increased network availability with a minimal latency penalty and communications satellite networks were best for long distance operations. Redundancy in the number of links between communication nodes helped mitigate cyber-caused link failures and add robustness in cases of induced data variability by an adversary. However, when failures were not independent, redundancy and UAV routing were detrimental in some cases to network performance. Sensitivity studies indicated that long cyber-caused downtimes and increasing failure dependencies resulted in build-ups of failures and caused significant degradations in network performance.
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
Ordóñez, Francisco Javier; Roggen, Daniel
2016-01-18
Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters' influence on performance to provide insights about their optimisation.
A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks
Costa, Daniel G.; Guedes, Luiz Affonso
2011-01-01
Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908
Track classification within wireless sensor network
NASA Astrophysics Data System (ADS)
Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic
2017-05-01
In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Unobstructive Body Area Networks (BAN) for Efficient Movement Monitoring
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user. PMID:23112726
A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System
Yoo, Seong-eun
2013-01-01
In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy. PMID:23344388
NASA Astrophysics Data System (ADS)
Kyker, Ronald D.; Berry, Nina; Stark, Doug; Nachtigal, Noel; Kershaw, Chris
2004-08-01
The Hybrid Emergency Radiation Detection (HERD) system is a rapidly deployable ad-hoc wireless sensor network for monitoring the radiation hazard associated with a radiation release. The system is designed for low power, small size, low cost, and rapid deployment in order to provide early notification and minimize exposure. The many design tradeoffs, decisions, and challenges in the implementation of this wireless sensor network design will be presented and compared to the commercial systems available. Our research in a scaleable modular architectural highlights the need and implementation of a system level approach that provides flexibility and adaptability for a variety of applications. This approach seeks to minimize power, provide mission specific specialization, and provide the capability to upgrade the system with the most recent technology advancements by encapsulation and modularity. The implementation of a low power, widely available Real Time Operating System (RTOS) for multitasking with an improvement in code maintenance, portability, and reuse will be presented. Finally future design enhancements technology trends affecting wireless sensor networks will be presented.
A wireless sensor network-based portable vehicle detector evaluation system.
Yoo, Seong-eun
2013-01-17
In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.
Sensor Architecture and Task Classification for Agricultural Vehicles and Environments
Rovira-Más, Francisco
2010-01-01
The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way. PMID:22163522
Sensor architecture and task classification for agricultural vehicles and environments.
Rovira-Más, Francisco
2010-01-01
The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way.
Health monitoring of offshore structures using wireless sensor network: experimental investigations
NASA Astrophysics Data System (ADS)
Chandrasekaran, Srinivasan; Chitambaram, Thailammai
2016-04-01
This paper presents a detailed methodology of deploying wireless sensor network in offshore structures for structural health monitoring (SHM). Traditional SHM is carried out by visual inspections and wired systems, which are complicated and requires larger installation space to deploy while decommissioning is a tedious process. Wireless sensor networks can enhance the art of health monitoring with deployment of scalable and dense sensor network, which consumes lesser space and lower power consumption. Proposed methodology is mainly focused to determine the status of serviceability of large floating platforms under environmental loads using wireless sensors. Data acquired by the servers will analyze the data for their exceedance with respect to the threshold values. On failure, SHM architecture will trigger an alarm or an early warning in the form of alert messages to alert the engineer-in-charge on board; emergency response plans can then be subsequently activated, which shall minimize the risk involved apart from mitigating economic losses occurring from the accidents. In the present study, wired and wireless sensors are installed in the experimental model and the structural response, acquired is compared. The wireless system comprises of Raspberry pi board, which is programmed to transmit the acquired data to the server using Wi-Fi adapter. Data is then hosted in the webpage for further post-processing, as desired.
Probabilistic Analysis of Hierarchical Cluster Protocols for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Kaj, Ingemar
Wireless sensor networks are designed to extract data from the deployment environment and combine sensing, data processing and wireless communication to provide useful information for the network users. Hundreds or thousands of small embedded units, which operate under low-energy supply and with limited access to central network control, rely on interconnecting protocols to coordinate data aggregation and transmission. Energy efficiency is crucial and it has been proposed that cluster based and distributed architectures such as LEACH are particularly suitable. We analyse the random cluster hierarchy in this protocol and provide a solution for low-energy and limited-loss optimization. Moreover, we extend these results to a multi-level version of LEACH, where clusters of nodes again self-organize to form clusters of clusters, and so on.
A Distributed Architecture for Tsunami Early Warning and Collaborative Decision-support in Crises
NASA Astrophysics Data System (ADS)
Moßgraber, J.; Middleton, S.; Hammitzsch, M.; Poslad, S.
2012-04-01
The presentation will describe work on the system architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". The challenges for a Tsunami Early Warning System (TEWS) are manifold and the success of a system depends crucially on the system's architecture. A modern warning system following a system-of-systems approach has to integrate various components and sub-systems such as different information sources, services and simulation systems. Furthermore, it has to take into account the distributed and collaborative nature of warning systems. In order to create an architecture that supports the whole spectrum of a modern, distributed and collaborative warning system one must deal with multiple challenges. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. At the bottom layer it has to reliably integrate a large set of conventional sensors, such as seismic sensors and sensor networks, buoys and tide gauges, and also innovative and unconventional sensors, such as streams of messages from social media services. At the top layer it has to support collaboration on high-level decision processes and facilitates information sharing between organizations. In between, the system has to process all data and integrate information on a semantic level in a timely manner. This complex communication follows an event-driven mechanism allowing events to be published, detected and consumed by various applications within the architecture. Therefore, at the upper layer the event-driven architecture (EDA) aspects are combined with principles of service-oriented architectures (SOA) using standards for communication and data exchange. The most prominent challenges on this layer include providing a framework for information integration on a syntactic and semantic level, leveraging distributed processing resources for a scalable data processing platform, and automating data processing and decision support workflows.
Multitarget-multisensor management for decentralized sensor networks
NASA Astrophysics Data System (ADS)
Tharmarasa, R.; Kirubarajan, T.; Sinha, A.; Hernandez, M. L.
2006-05-01
In this paper, we consider the problem of sensor resource management in decentralized tracking systems. Due to the availability of cheap sensors, it is possible to use a large number of sensors and a few fusion centers (FCs) to monitor a large surveillance region. Even though a large number of sensors are available, due to frequency, power and other physical limitations, only a few of them can be active at any one time. The problem is then to select sensor subsets that should be used by each FC at each sampling time in order to optimize the tracking performance subject to their operational constraints. In a recent paper, we proposed an algorithm to handle the above issues for joint detection and tracking, without using simplistic clustering techniques that are standard in the literature. However, in that paper, a hierarchical architecture with feedback at every sampling time was considered, and the sensor management was performed only at a central fusion center (CFC). However, in general, it is not possible to communicate with the CFC at every sampling time, and in many cases there may not even be a CFC. Sometimes, communication between CFC and local fusion centers might fail as well. Therefore performing sensor management only at the CFC is not viable in most networks. In this paper, we consider an architecture in which there is no CFC, each FC communicates only with the neighboring FCs, and communications are restricted. In this case, each FC has to decide which sensors are to be used by itself at each measurement time step. We propose an efficient algorithm to handle the above problem in real time. Simulation results illustrating the performance of the proposed algorithm are also presented.
Volcano Monitoring: A Case Study in Pervasive Computing
NASA Astrophysics Data System (ADS)
Peterson, Nina; Anusuya-Rangappa, Lohith; Shirazi, Behrooz A.; Song, Wenzhan; Huang, Renjie; Tran, Daniel; Chien, Steve; Lahusen, Rick
Recent advances in wireless sensor network technology have provided robust and reliable solutions for sophisticated pervasive computing applications such as inhospitable terrain environmental monitoring. We present a case study for developing a real-time pervasive computing system, called OASIS for optimized autonomous space in situ sensor-web, which combines ground assets (a sensor network) and space assets (NASA’s earth observing (EO-1) satellite) to monitor volcanic activities at Mount St. Helens. OASIS’s primary goals are: to integrate complementary space and in situ ground sensors into an interactive and autonomous sensorweb, to optimize power and communication resource management of the sensorweb and to provide mechanisms for seamless and scalable fusion of future space and in situ components. The OASIS in situ ground sensor network development addresses issues related to power management, bandwidth management, quality of service management, topology and routing management, and test-bed design. The space segment development consists of EO-1 architectural enhancements, feedback of EO-1 data into the in situ component, command and control integration, data ingestion and dissemination and field demonstrations.
Anomaly Detection Using Optimally-Placed μPMU Sensors in Distribution Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamei, Mahdi; Scaglione, Anna; Roberts, Ciaran
IEEE As the distribution grid moves toward a tightly-monitored network, it is important to automate the analysis of the enormous amount of data produced by the sensors to increase the operators situational awareness about the system. Here, focusing on Micro-Phasor Measurement Unit (μPMU) data, we propose a hierarchical architecture for monitoring the grid and establish a set of analytics and sensor fusion primitives for the detection of abnormal behavior in the control perimeter. And due to the key role of the μPMU devices in our architecture, a source-constrained optimal μPMU placement is also described that finds the best location ofmore » the devices with respect to our rules. The effectiveness of the proposed methods are tested through the synthetic and real μPMU data.« less
Anomaly Detection Using Optimally-Placed μPMU Sensors in Distribution Grids
Jamei, Mahdi; Scaglione, Anna; Roberts, Ciaran; ...
2017-10-25
IEEE As the distribution grid moves toward a tightly-monitored network, it is important to automate the analysis of the enormous amount of data produced by the sensors to increase the operators situational awareness about the system. Here, focusing on Micro-Phasor Measurement Unit (μPMU) data, we propose a hierarchical architecture for monitoring the grid and establish a set of analytics and sensor fusion primitives for the detection of abnormal behavior in the control perimeter. And due to the key role of the μPMU devices in our architecture, a source-constrained optimal μPMU placement is also described that finds the best location ofmore » the devices with respect to our rules. The effectiveness of the proposed methods are tested through the synthetic and real μPMU data.« less
Event detection in an assisted living environment.
Stroiescu, Florin; Daly, Kieran; Kuris, Benjamin
2011-01-01
This paper presents the design of a wireless event detection and in building location awareness system. The systems architecture is based on using a body worn sensor to detect events such as falls where they occur in an assisted living environment. This process involves developing event detection algorithms and transmitting such events wirelessly to an in house network based on the 802.15.4 protocol. The network would then generate alerts both in the assisted living facility and remotely to an offsite monitoring facility. The focus of this paper is on the design of the system architecture and the compliance challenges in applying this technology.
2017-08-01
filtering, correlation and radio- astronomy . In this report approximate transforms that closely follow the DFT have been studied and found. The approximate...communications, data networks, sensor networks, cognitive radio, radar and beamforming, imaging, filtering, correlation and radio- astronomy . FFTs efficiently...public release; distribution is unlimited. 4.3 Digital Hardware and Design Architectures Collaboration for Astronomy Signal Processing and Electronics
Piromalis, Dimitrios; Arvanitis, Konstantinos
2016-01-01
Wireless Sensor and Actuators Networks (WSANs) constitute one of the most challenging technologies with tremendous socio-economic impact for the next decade. Functionally and energy optimized hardware systems and development tools maybe is the most critical facet of this technology for the achievement of such prospects. Especially, in the area of agriculture, where the hostile operating environment comes to add to the general technological and technical issues, reliable and robust WSAN systems are mandatory. This paper focuses on the hardware design architectures of the WSANs for real-world agricultural applications. It presents the available alternatives in hardware design and identifies their difficulties and problems for real-life implementations. The paper introduces SensoTube, a new WSAN hardware architecture, which is proposed as a solution to the various existing design constraints of WSANs. The establishment of the proposed architecture is based, firstly on an abstraction approach in the functional requirements context, and secondly, on the standardization of the subsystems connectivity, in order to allow for an open, expandable, flexible, reconfigurable, energy optimized, reliable and robust hardware system. The SensoTube implementation reference model together with its encapsulation design and installation are analyzed and presented in details. Furthermore, as a proof of concept, certain use cases have been studied in order to demonstrate the benefits of migrating existing designs based on the available open-source hardware platforms to SensoTube architecture. PMID:27527180
Ground Optical Signal Processing Architecture for Contributing SSA Space Based Sensor Data
NASA Astrophysics Data System (ADS)
Koblick, D.; Klug, M.; Goldsmith, A.; Flewelling, B.; Jah, M.; Shanks, J.; Piña, R.
2014-09-01
The main objective of the DARPA program Orbit Outlook (O^2) is to improve the metric tracking and detection performance of the Space Situational Network (SSN) by adding a diverse low-cost network of contributing sensors to the Space Situational Awareness (SSA) mission. In order to accomplish this objective, not only must a sensor be in constant communication with a planning and scheduling system to process tasking requests, there must be an underlying framework to provide useful data products, such as angles only measurements. Existing optical signal processing implementations such as the Optical Processing Architecture at Lincoln (OPAL) are capable of converting mission data collections to angles only observations, but may be difficult for many users to obtain, support, and customize for low-cost missions and demonstration programs. The Ground Optical Signal Processing Architecture (GOSPA) will ingest raw imagery and telemetry data from a space based electro optical sensor and perform a background removal process to remove anomalous pixels, interpolate over bad pixels, and dominant temporal noise. After background removal, the streak end points and target centroids are located using a corner detection algorithm developed by Air Force Research Laboratory. These identified streak locations are then fused with the corresponding spacecraft telemetry data to determine the Right Ascension and Declination measurements with respect to time. To demonstrate the performance of GOSPA, non-rate tracking collections against a satellite in Geosynchronous Orbit are simulated from a visible optical imaging sensor in a polar Low Earth Orbit. Stars, noise and bad pixels are added to the simulated images based on look angles and sensor parameters. These collections are run through the GOSPA framework to provide angles- only measurements to the Air Force Research Laboratory Constrained Admissible Region Multiple Hypothesis Filter (CAR-MHF) in which an Initial Orbit Determination is performed and compared to truth data.
NASA Astrophysics Data System (ADS)
Peckens, Courtney A.; Cook, Ireana; Lynch, Jerome P.
2016-04-01
Wireless sensor networks (WSNs) have emerged as a reliable, low-cost alternative to the traditional wired sensing paradigm. While such networks have made significant progress in the field of structural monitoring, significantly less development has occurred for feedback control applications. Previous work in WSNs for feedback control has highlighted many of the challenges of using this technology including latency in the wireless communication channel and computational inundation at the individual sensing nodes. This work seeks to overcome some of those challenges by drawing inspiration from the real-time sensing and control techniques employed by the biological central nervous system and in particular the mammalian cochlea. A novel bio-inspired wireless sensor node was developed that employs analog filtering techniques to perform time-frequency decomposition of a sensor signal, thus encompassing the functionality of the cochlea. The node then utilizes asynchronous sampling of the filtered signal to compress the signal prior to communication. This bio-inspired sensing architecture is extended to a feedback control application in order to overcome the traditional challenges currently faced by wireless control. In doing this, however, the network experiences high bandwidths of low-significance information exchange between nodes, resulting in some lost data. This study considers the impact of this lost data on the control capabilities of the bio-inspired control architecture and finds that it does not significantly impact the effectiveness of control.
Kim, Keonwook
2013-08-23
The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably.
User Needs and Advances in Space Wireless Sensing and Communications
NASA Technical Reports Server (NTRS)
Kegege, Obadiah
2017-01-01
Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets.
An Approach to Automated Fusion System Design and Adaptation
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-01-01
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum. PMID:28300762
An Approach to Automated Fusion System Design and Adaptation.
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-03-16
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.
A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform
Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes
2015-01-01
This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587
A deployment of fine-grained sensor network and empirical analysis of urban temperature.
Thepvilojanapong, Niwat; Ono, Takahiro; Tobe, Yoshito
2010-01-01
Temperature in an urban area exhibits a complicated pattern due to complexity of infrastructure. Despite geographical proximity, structures of a group of buildings and streets affect changes in temperature. To investigate the pattern of fine-grained distribution of temperature, we installed a densely distributed sensor network called UScan. In this paper, we describe the system architecture of UScan as well as experience learned from installing 200 sensors in downtown Tokyo. The field experiment of UScan system operated for two months to collect long-term urban temperature data. To analyze the collected data in an efficient manner, we propose a lightweight clustering methodology to study the correlation between the pattern of temperature and various environmental factors including the amount of sunshine, the width of streets, and the existence of trees. The analysis reveals meaningful results and asserts the necessity of fine-grained deployment of sensors in an urban area.
Chemical sensors based on surface charge transfer
NASA Astrophysics Data System (ADS)
Mohtasebi, Amirmasoud; Kruse, Peter
2018-02-01
The focus of this review is an introduction to chemiresistive chemical sensors. The general concept of chemical sensors is briefly introduced, followed by different architectures of chemiresistive sensors and relevant materials. For several of the most common systems, the fabrication of the active materials used in such sensors and their properties are discussed. Furthermore, the sensing mechanism, advantages, and limitations of each group of chemiresistive sensors are briefly elaborated. Compared to electrochemical sensors, chemiresistive sensors have the key advantage of a simpler geometry, eliminating the need for a reference electrode. The performance of bulk chemiresistors can be improved upon by using freestanding ultra-thin films (nanomaterials) or field effect geometries. Both of those concepts have also been combined in a gateless geometry, where charge transport though a percolation network of nanomaterials is modulated via adsorbate doping.
NASA Astrophysics Data System (ADS)
Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing
2017-02-01
As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
Ordóñez, Francisco Javier; Roggen, Daniel
2016-01-01
Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation. PMID:26797612
A neural network approach to burst detection.
Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J
2002-01-01
This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Coordinated traffic incident management using the I-Net embedded sensor architecture
NASA Astrophysics Data System (ADS)
Dudziak, Martin J.
1999-01-01
The I-Net intelligent embedded sensor architecture enables the reconfigurable construction of wide-area remote sensing and data collection networks employing diverse processing and data acquisition modules communicating over thin- server/thin-client protocols. Adaptive initially for operation using mobile remotely-piloted vehicle platforms such as small helicopter robots such as the Hornet and Ascend-I, the I-Net architecture lends itself to a critical problem in the management of both spontaneous and planned traffic congestion and rerouting over major interstate thoroughfares such as the I-95 Corridor. Pre-programmed flight plans and ad hoc operator-assisted navigation of the lightweight helicopter, using an auto-pilot and gyroscopic stabilization augmentation units, allows daytime or nighttime over-the-horizon flights of the unit to collect and transmit real-time video imagery that may be stored or transmitted to other locations. With on-board GPS and ground-based pattern recognition capabilities to augment the standard video collection process, this approach enables traffic management and emergency response teams to plan and assist real-time in the adjustment of traffic flows in high- density or congested areas or during dangerous road conditions such as during ice, snow, and hurricane storms. The I-Net architecture allows for integration of land-based and roadside sensors within a comprehensive automated traffic management system with communications to and form an airborne or other platform to devices in the network other than human-operated desktop computers, thereby allowing more rapid assimilation and response for critical data. Experiments have been conducted using several modified platforms and standard video and still photographic equipment. Current research and development is focused upon modification of the modular instrumentation units in order to accommodate faster loading and reloading of equipment onto the RPV, extension of the I-Net architecture to enable RPV-to-RPV signaling and control, and refinement of safety and emergency mechanisms to handle RPV mechanical failure during flight.
ESB-based Sensor Web integration for the prediction of electric power supply system vulnerability.
Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja
2013-08-15
Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.
ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability
Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja
2013-01-01
Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application. PMID:23955435
A Multi-Technology Communication Platform for Urban Mobile Sensing.
Almeida, Rodrigo; Oliveira, Rui; Luís, Miguel; Senna, Carlos; Sargento, Susana
2018-04-12
A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network.
Health care applications based on mobile phone centric smart sensor network.
Quero, J M; Tarrida, C L; Santana, J J; Ermolov, V; Jantunen, I; Laine, H; Eichholz, J
2007-01-01
This paper presents the MIMOSA architecture and development platform to create Ambient Intelligence applications. MIMOSA achieves this objective by developing a personal mobile-device centric architecture and open technology platform where microsystem technology is the key enabling technology for their realization due to its low-cost, low power consumption, and small size. This paper focuses the demonstration activities carried out in the field of health care. MIMOSA project is a European level initiative involving 15 enterprises and research institutions and universities.
Managed traffic evacuation using distributed sensor processing
NASA Astrophysics Data System (ADS)
Ramuhalli, Pradeep; Biswas, Subir
2005-05-01
This paper presents an integrated sensor network and distributed event processing architecture for managed in-building traffic evacuation during natural and human-caused disasters, including earthquakes, fire and biological/chemical terrorist attacks. The proposed wireless sensor network protocols and distributed event processing mechanisms offer a new distributed paradigm for improving reliability in building evacuation and disaster management. The networking component of the system is constructed using distributed wireless sensors for measuring environmental parameters such as temperature, humidity, and detecting unusual events such as smoke, structural failures, vibration, biological/chemical or nuclear agents. Distributed event processing algorithms will be executed by these sensor nodes to detect the propagation pattern of the disaster and to measure the concentration and activity of human traffic in different parts of the building. Based on this information, dynamic evacuation decisions are taken for maximizing the evacuation speed and minimizing unwanted incidents such as human exposure to harmful agents and stampedes near exits. A set of audio-visual indicators and actuators are used for aiding the automated evacuation process. In this paper we develop integrated protocols, algorithms and their simulation models for the proposed sensor networking and the distributed event processing framework. Also, efficient harnessing of the individually low, but collectively massive, processing abilities of the sensor nodes is a powerful concept behind our proposed distributed event processing algorithms. Results obtained through simulation in this paper are used for a detailed characterization of the proposed evacuation management system and its associated algorithmic components.
A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks.
Miguel, Marcio L F; Jamhour, Edgard; Pellenz, Marcelo E; Penna, Manoel C
2017-03-25
The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality.
A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks
Miguel, Marcio L. F.; Jamhour, Edgard; Pellenz, Marcelo E.; Penna, Manoel C.
2017-01-01
The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality. PMID:28346339
NASA Astrophysics Data System (ADS)
Leon, Barbara D.; Heller, Paul R.
1987-05-01
A surveillance network is a group of multiplatform sensors cooperating to improve network performance. Network control is distributed as a measure to decrease vulnerability to enemy threat. The network may contain diverse sensor types such as radar, ESM (Electronic Support Measures), IRST (Infrared search and track) and E-0 (Electro-Optical). Each platform may contain a single sensor or suite of sensors. In a surveillance network it is desirable to control sensors to make the overall system more effective. This problem has come to be known as sensor management and control (SM&C). Two major facets of network performance are surveillance and survivability. In a netted environment, surveillance can be enhanced if information from all sensors is combined and sensor operating conditions are controlled to provide a synergistic effect. In contrast, when survivability is the main concern for the network, the best operating status for all sensors would be passive or off. Of course, improving survivability tends to degrade surveillance. Hence, the objective of SM&C is to optimize surveillance and survivability of the network. Too voluminous data of various formats and the quick response time are two characteristics of this problem which make it an ideal application for Artificial Intelligence. A solution to the SM&C problem, presented as a computer simulation, will be presented in this paper. The simulation is a hybrid production written in LISP and FORTRAN. It combines the latest conventional computer programming methods with Artificial Intelligence techniques to produce a flexible state-of-the-art tool to evaluate network performance. The event-driven simulation contains environment models coupled with an expert system. These environment models include sensor (track-while-scan and agile beam) and target models, local tracking, and system tracking. These models are used to generate the environment for the sensor management and control expert system. The expert system, driven by a forward chaining inference engine, makes decisions based on the global database. The global database contains current track and sensor information supplied by the simulation. At present, the rule base emphasizes the surveillance features with rules grouped into three main categories: maintenance and enhancing track on prioritized targets; filling coverage holes and countering jamming; and evaluating sensor status. The paper will describe the architecture used for the expert system and the reasons for selecting the chosen methods. The SM&C simulation produces a graphical representation of sensors and their associated tracks such that the benefits of the sensor management and control expert system are evident. Jammer locations are also part of the display. The paper will describe results from several scenarios that best illustrate the sensor management and control concepts.
Method for Reading Sensors and Controlling Actuators Using Audio Interfaces of Mobile Devices
Aroca, Rafael V.; Burlamaqui, Aquiles F.; Gonçalves, Luiz M. G.
2012-01-01
This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks. PMID:22438726
Method for reading sensors and controlling actuators using audio interfaces of mobile devices.
Aroca, Rafael V; Burlamaqui, Aquiles F; Gonçalves, Luiz M G
2012-01-01
This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks.
Planning in subsumption architectures
NASA Technical Reports Server (NTRS)
Chalfant, Eugene C.
1994-01-01
A subsumption planner using a parallel distributed computational paradigm based on the subsumption architecture for control of real-world capable robots is described. Virtual sensor state space is used as a planning tool to visualize the robot's anticipated effect on its environment. Decision sequences are generated based on the environmental situation expected at the time the robot must commit to a decision. Between decision points, the robot performs in a preprogrammed manner. A rudimentary, domain-specific partial world model contains enough information to extrapolate the end results of the rote behavior between decision points. A collective network of predictors operates in parallel with the reactive network forming a recurrrent network which generates plans as a hierarchy. Details of a plan segment are generated only when its execution is imminent. The use of the subsumption planner is demonstrated by a simple maze navigation problem.
Analysis of electrical tomography sensitive field based on multi-terminal network and electric field
NASA Astrophysics Data System (ADS)
He, Yongbo; Su, Xingguo; Xu, Meng; Wang, Huaxiang
2010-08-01
Electrical tomography (ET) aims at the study of the conductivity/permittivity distribution of the interested field non-intrusively via the boundary voltage/current. The sensor is usually regarded as an electric field, and finite element method (FEM) is commonly used to calculate the sensitivity matrix and to optimize the sensor architecture. However, only the lumped circuit parameters can be measured by the data acquisition electronics, it's very meaningful to treat the sensor as a multi terminal network. Two types of multi terminal network with common node and common loop topologies are introduced. Getting more independent measurements and making more uniform current distribution are the two main ways to minimize the inherent ill-posed effect. By exploring the relationships of network matrixes, a general formula is proposed for the first time to calculate the number of the independent measurements. Additionally, the sensitivity distribution is analyzed with FEM. As a result, quasi opposite mode, an optimal single source excitation mode, that has the advantages of more uniform sensitivity distribution and more independent measurements, is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhen, Jacob; Imam, Neena
2007-01-01
Revolutionary computing technologies are defined in terms of technological breakthroughs, which leapfrog over near-term projected advances in conventional hardware and software to produce paradigm shifts in computational science. For underwater threat source localization using information provided by a dynamical sensor network, one of the most promising computational advances builds upon the emergence of digital optical-core devices. In this article, we present initial results of sensor network calculations that focus on the concept of signal wavefront time-difference-of-arrival (TDOA). The corresponding algorithms are implemented on the EnLight processing platform recently introduced by Lenslet Laboratories. This tera-scale digital optical core processor is optimizedmore » for array operations, which it performs in a fixed-point-arithmetic architecture. Our results (i) illustrate the ability to reach the required accuracy in the TDOA computation, and (ii) demonstrate that a considerable speed-up can be achieved when using the EnLight 64a prototype processor as compared to a dual Intel XeonTM processor.« less
Mueller, Amy V; Hemond, Harold F
2013-12-15
A novel artificial neural network (ANN) architecture is proposed which explicitly incorporates a priori system knowledge, i.e., relationships between output signals, while preserving the unconstrained non-linear function estimator characteristics of the traditional ANN. A method is provided for architecture layout, disabling training on a subset of neurons, and encoding system knowledge into the neuron structure. The novel architecture is applied to raw readings from a chemical sensor multi-probe (electric tongue), comprised of off-the-shelf ion selective electrodes (ISEs), to estimate individual ion concentrations in solutions at environmentally relevant concentrations and containing environmentally representative ion mixtures. Conductivity measurements and the concept of charge balance are incorporated into the ANN structure, resulting in (1) removal of estimation bias typically seen with use of ISEs in mixtures of unknown composition and (2) improvement of signal estimation by an order of magnitude or more for both major and minor constituents relative to use of ISEs as stand-alone sensors and error reduction by 30-50% relative to use of standard ANN models. This method is suggested as an alternative to parameterization of traditional models (e.g., Nikolsky-Eisenman), for which parameters are strongly dependent on both analyte concentration and temperature, and to standard ANN models which have no mechanism for incorporation of system knowledge. Network architecture and weighting are presented for the base case where the dot product can be used to relate ion concentrations to both conductivity and charge balance as well as for an extension to log-normalized data where the model can no longer be represented in this manner. While parameterization in this case study is analyte-dependent, the architecture is generalizable, allowing application of this method to other environmental problems for which mathematical constraints can be explicitly stated. © 2013 Elsevier B.V. All rights reserved.
Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.
Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup
2011-10-01
The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.
An Architecture for Intelligent Systems Based on Smart Sensors
NASA Technical Reports Server (NTRS)
Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi
2004-01-01
Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.
Energy scavenging sensors for ultra-low power sensor networks
NASA Astrophysics Data System (ADS)
O'Brien, Dominic C.; Liu, Jing Jing; Faulkner, Grahame E.; Vachiramon, Pithawat; Collins, Steve; Elston, Steven J.
2010-08-01
The 'internet of things' will require very low power wireless communications, preferably using sensors that scavenge power from their environment. Free space optics allows communications over long ranges, with simple transceivers at each end, offering the possibility of low energy consumption. In addition there can be sufficient energy in the communications beam to power simple terminals. In this paper we report experimental results from an architecture that achieves this. A base station that tracks sensors in its coverage area and communicates with them using low divergence optical beams is presented. Sensor nodes use modulated retro-reflectors to communicate with the base station, and the nodes are powered by the illuminating beam. The paper presents design and implementation details, as well as future directions for this work.
Flexible distributed architecture for semiconductor process control and experimentation
NASA Astrophysics Data System (ADS)
Gower, Aaron E.; Boning, Duane S.; McIlrath, Michael B.
1997-01-01
Semiconductor fabrication requires an increasingly expensive and integrated set of tightly controlled processes, driving the need for a fabrication facility with fully computerized, networked processing equipment. We describe an integrated, open system architecture enabling distributed experimentation and process control for plasma etching. The system was developed at MIT's Microsystems Technology Laboratories and employs in-situ CCD interferometry based analysis in the sensor-feedback control of an Applied Materials Precision 5000 Plasma Etcher (AME5000). Our system supports accelerated, advanced research involving feedback control algorithms, and includes a distributed interface that utilizes the internet to make these fabrication capabilities available to remote users. The system architecture is both distributed and modular: specific implementation of any one task does not restrict the implementation of another. The low level architectural components include a host controller that communicates with the AME5000 equipment via SECS-II, and a host controller for the acquisition and analysis of the CCD sensor images. A cell controller (CC) manages communications between these equipment and sensor controllers. The CC is also responsible for process control decisions; algorithmic controllers may be integrated locally or via remote communications. Finally, a system server images connections from internet/intranet (web) based clients and uses a direct link with the CC to access the system. Each component communicates via a predefined set of TCP/IP socket based messages. This flexible architecture makes integration easier and more robust, and enables separate software components to run on the same or different computers independent of hardware or software platform.
A Distributed Prognostic Health Management Architecture
NASA Technical Reports Server (NTRS)
Bhaskar, Saha; Saha, Sankalita; Goebel, Kai
2009-01-01
This paper introduces a generic distributed prognostic health management (PHM) architecture with specific application to the electrical power systems domain. Current state-of-the-art PHM systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to loss of functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become unsuitable for successful deployment, and efficient distributed architectures are required. A distributed architecture though, is not effective unless there is an algorithmic framework to take advantage of its unique abilities. The health management paradigm envisaged here incorporates a heterogeneous set of system components monitored by a varied suite of sensors and a particle filtering (PF) framework that has the power and the flexibility to adapt to the different diagnostic and prognostic needs. Both the diagnostic and prognostic tasks are formulated as a particle filtering problem in order to explicitly represent and manage uncertainties; however, typically the complexity of the prognostic routine is higher than the computational power of one computational element ( CE). Individual CEs run diagnostic routines until the system variable being monitored crosses beyond a nominal threshold, upon which it coordinates with other networked CEs to run the prognostic routine in a distributed fashion. Implementation results from a network of distributed embedded devices monitoring a prototypical aircraft electrical power system are presented, where the CEs are Sun Microsystems Small Programmable Object Technology (SPOT) devices.
A survey of system architecture requirements for health care-based wireless sensor networks.
Egbogah, Emeka E; Fapojuwo, Abraham O
2011-01-01
Wireless Sensor Networks (WSNs) have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs) that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera). However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera) to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC) protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.
NASA Astrophysics Data System (ADS)
Simonis, Ingo
2015-04-01
Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.
Mic Flocks in the Cloud: Harnessing Mobile Ubiquitous Sensor Networks
NASA Astrophysics Data System (ADS)
Garces, M. A.; Christe, A.
2015-12-01
Smartphones provide a commercial, off-the-shelf solution to capture, store, analyze, and distribute infrasound using on-board or external microphones (mics) as well as on-board barometers. Free iOS infrasound apps can be readily downloaded from the Apple App Store, and Android versions are in progress. Infrasound propagates for great distances, has low sample rates, and provides a tractable pilot study scenario for open distributed sensor networks at regional and global scales using one of the most ubiquitous sensors on Earth - microphones. Data collection is no longer limited to selected vendors at exclusive prices: anybody on Earth can record and stream infrasound, and the diversity of recording systems and environments is rapidly expanding. Global deployment may be fast and easy (www.redvox.io), but comes with the cost of increasing data volume, velocity, variety, and complexity. Flocking - the collective motion of mobile agents - is a natural human response to threats or events of interest. Anticipating, modeling and harnessing flocking sensor topologies will be necessary for adaptive array and network processing. The increasing data quantity and complexity will exceed the processing capacity of human analysts and most research servers. We anticipate practical real-time applications will require the on-demand adaptive scalability and resources of the Cloud. Cloud architectures for such heterogeneous sensor networks will consider eventual integration into the Global Earth Observation System of Systems (GEOSS).
WiSPH: a wireless sensor network-based home care monitoring system.
Magaña-Espinoza, Pedro; Aquino-Santos, Raúl; Cárdenas-Benítez, Néstor; Aguilar-Velasco, José; Buenrostro-Segura, César; Edwards-Block, Arthur; Medina-Cass, Aldo
2014-04-22
This paper presents a system based on WSN technology capable of monitoring heart rate and the rate of motion of seniors within their homes. The system is capable of remotely alerting specialists, caretakers or family members via a smartphone of rapid physiological changes due to falls, tachycardia or bradycardia. This work was carried out using our workgroup's WiSe platform, which we previously developed for use in WSNs. The proposed WSN architecture is flexible, allowing for greater scalability to better allow event-based monitoring. The architecture also provides security mechanisms to assure that the monitored and/or stored data can only be accessed by authorized individuals or devices. The aforementioned characteristics provide the network versatility and solidity required for use in health applications.
Echo State Networks for data-driven downhole pressure estimation in gas-lift oil wells.
Antonelo, Eric A; Camponogara, Eduardo; Foss, Bjarne
2017-01-01
Process measurements are of vital importance for monitoring and control of industrial plants. When we consider offshore oil production platforms, wells that require gas-lift technology to yield oil production from low pressure oil reservoirs can become unstable under some conditions. This undesirable phenomenon is usually called slugging flow, and can be identified by an oscillatory behavior of the downhole pressure measurement. Given the importance of this measurement and the unreliability of the related sensor, this work aims at designing data-driven soft-sensors for downhole pressure estimation in two contexts: one for speeding up first-principle model simulation of a vertical riser model; and another for estimating the downhole pressure using real-world data from an oil well from Petrobras based only on topside platform measurements. Both tasks are tackled by employing Echo State Networks (ESN) as an efficient technique for training Recurrent Neural Networks. We show that a single ESN is capable of robustly modeling both the slugging flow behavior and a steady state based only on a square wave input signal representing the production choke opening in the vertical riser. Besides, we compare the performance of a standard network to the performance of a multiple timescale hierarchical architecture in the second task and show that the latter architecture performs better in modeling both large irregular transients and more commonly occurring small oscillations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimization of wireless Bluetooth sensor systems.
Lonnblad, J; Castano, J; Ekstrom, M; Linden, M; Backlund, Y
2004-01-01
Within this study, three different Bluetooth sensor systems, replacing cables for transmission of biomedical sensor data, have been designed and evaluated. The three sensor architectures are built on 1-, 2- and 3-chip solutions and depending on the monitoring situation and signal character, different solutions are optimal. Essential parameters for all systems have been low physical weight and small size, resistance to interference and interoperability with other technologies as global- or local networks, PC's and mobile phones. Two different biomedical input signals, ECG and PPG (photoplethysmography), have been used to evaluate the three solutions. The study shows that it is possibly to continuously transmit an analogue signal. At low sampling rates and slowly varying parameters, as monitoring the heart rate with PPG, the 1-chip solution is the most suitable, offering low power consumption and thus a longer battery lifetime or a smaller battery, minimizing the weight of the sensor system. On the other hand, when a higher sampling rate is required, as an ECG, the 3-chip architecture, with a FPGA or micro-controller, offers the best solution and performance. Our conclusion is that Bluetooth might be useful in replacing cables of medical monitoring systems.
Reconfigurable optical interconnection network for multimode optical fiber sensor arrays
NASA Technical Reports Server (NTRS)
Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.
1992-01-01
A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.
Research on Localization Algorithms Based on Acoustic Communication for Underwater Sensor Networks
Fan, Liying; Wu, Shan; Yan, Xueting
2017-01-01
The water source, as a significant body of the earth, with a high value, serves as a hot topic to study Underwater Sensor Networks (UWSNs). Various applications can be realized based on UWSNs. Our paper mainly concentrates on the localization algorithms based on the acoustic communication for UWSNs. An in-depth survey of localization algorithms is provided for UWSNs. We first introduce the acoustic communication, network architecture, and routing technique in UWSNs. The localization algorithms are classified into five aspects, namely, computation algorithm, spatial coverage, range measurement, the state of the nodes and communication between nodes that are different from all other survey papers. Moreover, we collect a lot of pioneering papers, and a comprehensive comparison is made. In addition, some challenges and open issues are raised in our paper. PMID:29301369
An intelligent surveillance platform for large metropolitan areas with dense sensor deployment.
Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A; Smilansky, Zeev
2013-06-07
This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage.
Science and Technology Strategic Plan 2012 (Office of Naval Research C4ISR Department)
2012-01-01
Information Dominance domain. Information-based warfare will be fundamentally transformed from today’s paradigm. Today, data resides in mission specific networks, sensors and communication architectures. Information requirements are tied to a mission or mission phase where information for prosecution is generated and held for each mission in separate
Integrated Air Surveillance Concept of Operations
2011-11-01
information, intelligence, weather data, and other situational awareness-related information. 4.2.4 Shared Services Automated processing of sensor and...other surveillance information will occur through shared services , accessible through an enterprise network infrastructure, that provide for collecting...also be provided, such as information discovery and translation. The IS architecture effort will identify specific shared services . Shared
Deng, Yong-Yuan; Chen, Chin-Ling; Tsaur, Woei-Jiunn; Tang, Yung-Wen; Chen, Jung-Hsuan
2017-12-15
As sensor networks and cloud computation technologies have rapidly developed over recent years, many services and applications integrating these technologies into daily life have come together as an Internet of Things (IoT). At the same time, aging populations have increased the need for expanded and more efficient elderly care services. Fortunately, elderly people can now wear sensing devices which relay data to a personal wireless device, forming a body area network (BAN). These personal wireless devices collect and integrate patients' personal physiological data, and then transmit the data to the backend of the network for related diagnostics. However, a great deal of the information transmitted by such systems is sensitive data, and must therefore be subject to stringent security protocols. Protecting this data from unauthorized access is thus an important issue in IoT-related research. In regard to a cloud healthcare environment, scholars have proposed a secure mechanism to protect sensitive patient information. Their schemes provide a general architecture; however, these previous schemes still have some vulnerability, and thus cannot guarantee complete security. This paper proposes a secure and lightweight body-sensor network based on the Internet of Things for cloud healthcare environments, in order to address the vulnerabilities discovered in previous schemes. The proposed authentication mechanism is applied to a medical reader to provide a more comprehensive architecture while also providing mutual authentication, and guaranteeing data integrity, user untraceability, and forward and backward secrecy, in addition to being resistant to replay attack.
Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array
NASA Astrophysics Data System (ADS)
Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul
2008-04-01
This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.
Kim, Keonwook
2013-01-01
The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably. PMID:23979482
All-IP wireless sensor networks for real-time patient monitoring.
Wang, Xiaonan; Le, Deguang; Cheng, Hongbin; Xie, Conghua
2014-12-01
This paper proposes the all-IP WSNs (wireless sensor networks) for real-time patient monitoring. In this paper, the all-IP WSN architecture based on gateway trees is proposed and the hierarchical address structure is presented. Based on this architecture, the all-IP WSN can perform routing without route discovery. Moreover, a mobile node is always identified by a home address and it does not need to be configured with a care-of address during the mobility process, so the communication disruption caused by the address change is avoided. Through the proposed scheme, a physician can monitor the vital signs of a patient at any time and at any places, and according to the IPv6 address he can also obtain the location information of the patient in order to perform effective and timely treatment. Finally, the proposed scheme is evaluated based on the simulation, and the simulation data indicate that the proposed scheme might effectively reduce the communication delay and control cost, and lower the packet loss rate. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dua, Rohit; Watkins, Steve E.
2009-03-01
Strain analysis due to vibration can provide insight into structural health. An Extrinsic Fabry-Perot Interferometric (EFPI) sensor under vibrational strain generates a non-linear modulated output. Advanced signal processing techniques, to extract important information such as absolute strain, are required to demodulate this non-linear output. Past research has employed Artificial Neural Networks (ANN) and Fast Fourier Transforms (FFT) to demodulate the EFPI sensor for limited conditions. These demodulation systems could only handle variations in absolute value of strain and frequency of actuation during a vibration event. This project uses an ANN approach to extend the demodulation system to include the variation in the damping coefficient of the actuating vibration, in a near real-time vibration scenario. A computer simulation provides training and testing data for the theoretical output of the EFPI sensor to demonstrate the approaches. FFT needed to be performed on a window of the EFPI output data. A small window of observation is obtained, while maintaining low absolute-strain prediction errors, heuristically. Results are obtained and compared from employing different ANN architectures including multi-layered feedforward ANN trained using Backpropagation Neural Network (BPNN), and Generalized Regression Neural Networks (GRNN). A two-layered algorithm fusion system is developed and tested that yields better results.
A monitoring system for vegetable greenhouses based on a wireless sensor network.
Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng
2010-01-01
A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring.
A Multi-Technology Communication Platform for Urban Mobile Sensing
Almeida, Rodrigo; Oliveira, Rui
2018-01-01
A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network. PMID:29649175
Bi-Fi: an embedded sensor/system architecture for REMOTE biological monitoring.
Farshchi, Shahin; Pesterev, Aleksey; Nuyujukian, Paul H; Mody, Istvan; Judy, Jack W
2007-11-01
Wireless-enabled processor modules intended for communicating low-frequency phenomena (i.e., temperature, humidity, and ambient light) have been enabled to acquire and transmit multiple biological signals in real time, which has been achieved by using computationally efficient data acquisition, filtering, and compression algorithms, and interfacing the modules with biological interface hardware. The sensor modules can acquire and transmit raw biological signals at a rate of 32 kb/s, which is near the hardware limit of the modules. Furthermore, onboard signal processing enables one channel, sampled at a rate of 4000 samples/s at 12-bit resolution, to be compressed via adaptive differential-pulse-code modulation (ADPCM) and transmitted in real time. In addition, the sensors can be configured to filter and transmit individual time-referenced "spike" waveforms, or to transmit the spike height and width for alleviating network traffic and increasing battery life. The system is capable of acquiring eight channels of analog signals as well as data via an asynchronous serial connection. A back-end server archives the biological data received via networked gateway sensors, and hosts them to a client application that enables users to browse recorded data. The system also acquires, filters, and transmits oxygen saturation and pulse rate via a commercial-off-the-shelf interface board. The system architecture can be configured for performing real-time nonobtrusive biological monitoring of humans or rodents. This paper demonstrates that low-power, computational, and bandwidth-constrained wireless-enabled platforms can indeed be leveraged for wireless biosignal monitoring.
Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors
NASA Astrophysics Data System (ADS)
Xenides, D.; Vlachos, D. S.; Simos, T. E.
2007-12-01
The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.
Energy efficient wireless sensor networks by using a fuzzy-based solution
NASA Astrophysics Data System (ADS)
Tirrito, Salvatore; Nicolosi, Giuseppina
2016-12-01
Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.
Secure Publish-Subscribe Protocols for Heterogeneous Medical Wireless Body Area Networks
Picazo-Sanchez, Pablo; Tapiador, Juan E.; Peris-Lopez, Pedro; Suarez-Tangil, Guillermo
2014-01-01
Security and privacy issues in medical wireless body area networks (WBANs) constitute a major unsolved concern because of the challenges posed by the scarcity of resources in WBAN devices and the usability restrictions imposed by the healthcare domain. In this paper, we describe a WBAN architecture based on the well-known publish-subscribe paradigm. We present two protocols for publishing data and sending commands to a sensor that guarantee confidentiality and fine-grained access control. Both protocols are based on a recently proposed ciphertext policy attribute-based encryption (CP-ABE) scheme that is lightweight enough to be embedded into wearable sensors. We show how sensors can implement lattice-based access control (LBAC) policies using this scheme, which are highly appropriate for the eHealth domain. We report experimental results with a prototype implementation demonstrating the suitability of our proposed solution. PMID:25460814
NASA Astrophysics Data System (ADS)
Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.
2015-12-01
The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.
Polytopol computing for multi-core and distributed systems
NASA Astrophysics Data System (ADS)
Spaanenburg, Henk; Spaanenburg, Lambert; Ranefors, Johan
2009-05-01
Multi-core computing provides new challenges to software engineering. The paper addresses such issues in the general setting of polytopol computing, that takes multi-core problems in such widely differing areas as ambient intelligence sensor networks and cloud computing into account. It argues that the essence lies in a suitable allocation of free moving tasks. Where hardware is ubiquitous and pervasive, the network is virtualized into a connection of software snippets judiciously injected to such hardware that a system function looks as one again. The concept of polytopol computing provides a further formalization in terms of the partitioning of labor between collector and sensor nodes. Collectors provide functions such as a knowledge integrator, awareness collector, situation displayer/reporter, communicator of clues and an inquiry-interface provider. Sensors provide functions such as anomaly detection (only communicating singularities, not continuous observation), they are generally powered or self-powered, amorphous (not on a grid) with generation-and-attrition, field re-programmable, and sensor plug-and-play-able. Together the collector and the sensor are part of the skeleton injector mechanism, added to every node, and give the network the ability to organize itself into some of many topologies. Finally we will discuss a number of applications and indicate how a multi-core architecture supports the security aspects of the skeleton injector.
An LDPC Decoder Architecture for Wireless Sensor Network Applications
Giancarlo Biroli, Andrea Dario; Martina, Maurizio; Masera, Guido
2012-01-01
The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%–80%, depending on considered environment, distance and bit error rate. PMID:22438724
An LDPC decoder architecture for wireless sensor network applications.
Biroli, Andrea Dario Giancarlo; Martina, Maurizio; Masera, Guido
2012-01-01
The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%-80%, depending on considered environment, distance and bit error rate.
Sánchez, Antonio; Blanc, Sara; Yuste, Pedro; Perles, Angel; Serrano, Juan José
2012-01-01
This paper is focused on the description of the physical layer of a new acoustic modem called ITACA. The modem architecture includes as a major novelty an ultra-low power asynchronous wake-up system implementation for underwater acoustic transmission that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature enables a reduced power dissipation of 10 μW in stand-by mode and registers very low power values during reception and transmission. The modem also incorporates clear channel assessment (CCA) to support CSMA-based medium access control (MAC) layer protocols. The design is part of a compact platform for a long-life short/medium range underwater wireless sensor network. PMID:22969324
Sánchez, Antonio; Blanc, Sara; Yuste, Pedro; Perles, Angel; Serrano, Juan José
2012-01-01
This paper is focused on the description of the physical layer of a new acoustic modem called ITACA. The modem architecture includes as a major novelty an ultra-low power asynchronous wake-up system implementation for underwater acoustic transmission that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature enables a reduced power dissipation of 10 μW in stand-by mode and registers very low power values during reception and transmission. The modem also incorporates clear channel assessment (CCA) to support CSMA-based medium access control (MAC) layer protocols. The design is part of a compact platform for a long-life short/medium range underwater wireless sensor network.
Communication Architecture in Mixed-Reality Simulations of Unmanned Systems.
Selecký, Martin; Faigl, Jan; Rollo, Milan
2018-03-14
Verification of the correct functionality of multi-vehicle systems in high-fidelity scenarios is required before any deployment of such a complex system, e.g., in missions of remote sensing or in mobile sensor networks. Mixed-reality simulations where both virtual and physical entities can coexist and interact have been shown to be beneficial for development, testing, and verification of such systems. This paper deals with the problems of designing a certain communication subsystem for such highly desirable realistic simulations. Requirements of this communication subsystem, including proper addressing, transparent routing, visibility modeling, or message management, are specified prior to designing an appropriate solution. Then, a suitable architecture of this communication subsystem is proposed together with solutions to the challenges that arise when simultaneous virtual and physical message transmissions occur. The proposed architecture can be utilized as a high-fidelity network simulator for vehicular systems with implicit mobility models that are given by real trajectories of the vehicles. The architecture has been utilized within multiple projects dealing with the development and practical deployment of multi-UAV systems, which support the architecture's viability and advantages. The provided experimental results show the achieved similarity of the communication characteristics of the fully deployed hardware setup to the setup utilizing the proposed mixed-reality architecture.
Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming
Cambra, Carlos; Lacuesta, Raquel
2018-01-01
Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN) to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB) which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation. PMID:29693611
Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming.
Cambra, Carlos; Sendra, Sandra; Lloret, Jaime; Lacuesta, Raquel
2018-04-25
Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN) to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB) which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation.
NASA Astrophysics Data System (ADS)
Anderson, Thomas S.
2016-05-01
The Global Information Network Architecture is an information technology based on Vector Relational Data Modeling, a unique computational paradigm, DoD network certified by USARMY as the Dragon Pulse Informa- tion Management System. This network available modeling environment for modeling models, where models are configured using domain relevant semantics and use network available systems, sensors, databases and services as loosely coupled component objects and are executable applications. Solutions are based on mission tactics, techniques, and procedures and subject matter input. Three recent ARMY use cases are discussed a) ISR SoS. b) Modeling and simulation behavior validation. c) Networked digital library with behaviors.
Managing Communications with Experts in Geographically Distributed Collaborative Networks
2009-03-01
agent architectures, and management of sensor-unmanned vehicle decision maker self organizing environments . Although CENETIX has its beginnings...understanding how everything in a complex system is interconnected. Additionally, environmental factors that impact the management of communications with...unrestricted warfare environment . In “Unconventional Insights for Managing Stakeholder Trust”, Pirson, et al. (2008) emphasizes the challenges of managing
Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar
2018-01-30
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
Evaluation of Alternative Field Buses for Lighting ControlApplications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Ed; Rubinstein, Francis
2005-03-21
The Subcontract Statement of Work consists of two major tasks. This report is the Final Report in fulfillment of the contract deliverable for Task 1. The purpose of Task 1 was to evaluate existing and emerging protocols and standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The detailed task description follows: Task 1. Evaluate alternative sensor/field buses. The objective of this task is to evaluate existing and emerging standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The protocols to be evaluated will include atmore » least: (1) 1-Wire Net, (2) DALI, (3) MODBUS (or appropriate substitute such as EIB) and (4) ZigBee. The evaluation will include a comparative matrix for comparing the technical performance features of the different alternative systems. The performance features to be considered include: (1) directionality and network speed, (2) error control, (3) latency times, (4) allowable cable voltage drop, (5) topology, and (6) polarization. Specifically, Subcontractor will: (1) Analyze the proposed network architecture and identify potential problems that may require further research and specification. (2) Help identify and specify additional software and hardware components that may be required for the communications network to operate properly. (3) Identify areas of the architecture that can benefit from existing standards and technology and enumerate those standards and technologies. (4) Identify existing companies that may have relevant technology that can be applied to this research. (5) Help determine if new standards or technologies need to be developed.« less
Vernet, David; Corral, Guiomar
2018-01-01
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748
Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey
Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang
2008-01-01
New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation. PMID:18604301
Ubiquitous computing for remote cardiac patient monitoring: a survey.
Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang
2008-01-01
New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation.
Networked gamma radiation detection system for tactical deployment
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Smith, Ethan; Guss, Paul; Mitchell, Stephen
2015-08-01
A networked gamma radiation detection system with directional sensitivity and energy spectral data acquisition capability is being developed by the National Security Technologies, LLC, Remote Sensing Laboratory to support the close and intense tactical engagement of law enforcement who carry out counterterrorism missions. In the proposed design, three clusters of 2″ × 4″ × 16″ sodium iodide crystals (4 each) with digiBASE-E (for list mode data collection) would be placed on the passenger side of a minivan. To enhance localization and facilitate rapid identification of isotopes, advanced smart real-time localization and radioisotope identification algorithms like WAVRAD (wavelet-assisted variance reduction for anomaly detection) and NSCRAD (nuisance-rejection spectral comparison ratio anomaly detection) will be incorporated. We will test a collection of algorithms and analysis that centers on the problem of radiation detection with a distributed sensor network. We will study the basic characteristics of a radiation sensor network and focus on the trade-offs between false positive alarm rates, true positive alarm rates, and time to detect multiple radiation sources in a large area. Empirical and simulation analyses of critical system parameters, such as number of sensors, sensor placement, and sensor response functions, will be examined. This networked system will provide an integrated radiation detection architecture and framework with (i) a large nationally recognized search database equivalent that would help generate a common operational picture in a major radiological crisis; (ii) a robust reach back connectivity for search data to be evaluated by home teams; and, finally, (iii) a possibility of integrating search data from multi-agency responders.
Using a Communication Model to Collect Measurement Data through Mobile Devices
Bravo, José; Villarreal, Vladimir; Hervás, Ramón; Urzaiz, Gabriel
2012-01-01
Wireless systems and services have undergone remarkable development since the first mobile phone system was introduced in the early 1980s. The use of sensors in an Ambient Intelligence approach is a great solution in a medical environment. We define a communication architecture to facilitate the information transfer between all connected devices. This model is based in layers to allow the collection of measurement data to be used in our framework monitoring architecture. An overlay-based solution is built between network elements in order to provide an efficient and highly functional communication platform that allows the connection of a wide variety of devices and technologies, and serves also to perform additional functions such as the possibility to perform some processing in the network that may help to improve overall performance. PMID:23012542
Data-centric multiobjective QoS-aware routing protocol for body sensor networks.
Razzaque, Md Abdur; Hong, Choong Seon; Lee, Sungwon
2011-01-01
In this paper, we address Quality-of-Service (QoS)-aware routing issue for Body Sensor Networks (BSNs) in delay and reliability domains. We propose a data-centric multiobjective QoS-Aware routing protocol, called DMQoS, which facilitates the system to achieve customized QoS services for each traffic category differentiated according to the generated data types. It uses modular design architecture wherein different units operate in coordination to provide multiple QoS services. Their operation exploits geographic locations and QoS performance of the neighbor nodes and implements a localized hop-by-hop routing. Moreover, the protocol ensures (almost) a homogeneous energy dissipation rate for all routing nodes in the network through a multiobjective Lexicographic Optimization-based geographic forwarding. We have performed extensive simulations of the proposed protocol, and the results show that DMQoS has significant performance improvements over several state-of-the-art approaches.
An Authentication Protocol for Future Sensor Networks.
Bilal, Muhammad; Kang, Shin-Gak
2017-04-28
Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN-logic) and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.
An Authentication Protocol for Future Sensor Networks
Bilal, Muhammad; Kang, Shin-Gak
2017-01-01
Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN-logic) and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols. PMID:28452937
A context management system for a cost-efficient smart home platform
NASA Astrophysics Data System (ADS)
Schneider, J.; Klein, A.; Mannweiler, C.; Schotten, H. D.
2012-09-01
This paper presents an overview of state-of-the-art architectures for integrating wireless sensor and actuators networks into the Future Internet. Furthermore, we will address advantages and disadvantages of the different architectures. With respect to these criteria, we develop a new architecture overcoming these weaknesses. Our system, called Smart Home Context Management System, will be used for intelligent home utilities, appliances, and electronics and includes physical, logical as well as network context sources within one concept. It considers important aspects and requirements of modern context management systems for smart X applications: plug and play as well as plug and trust capabilities, scalability, extensibility, security, and adaptability. As such, it is able to control roller blinds, heating systems as well as learn, for example, the user's taste w.r.t. to home entertainment (music, videos, etc.). Moreover, Smart Grid applications and Ambient Assisted Living (AAL) functions are applicable. With respect to AAL, we included an Emergency Handling function. It assures that emergency calls (police, ambulance or fire department) are processed appropriately. Our concept is based on a centralized Context Broker architecture, enhanced by a distributed Context Broker system. The goal of this concept is to develop a simple, low-priced, multi-functional, and save architecture affordable for everybody. Individual components of the architecture are well tested. Implementation and testing of the architecture as a whole is in progress.
NASA Astrophysics Data System (ADS)
Kaniyantethu, Shaji
2011-06-01
This paper discusses the many features and composed technologies in Firestorm™ - a Distributed Collaborative Fires and Effects software. Modern response management systems capitalize on the capabilities of a plethora of sensors and its output for situational awareness. Firestorm utilizes a unique networked lethality approach by integrating unmanned air and ground vehicles to provide target handoff and sharing of data between humans and sensors. The system employs Bayesian networks for track management of sensor data, and distributed auction algorithms for allocating targets and delivering the right effect without information overload to the Warfighter. Firestorm Networked Effects Component provides joint weapon-target pairing, attack guidance, target selection standards, and other fires and effects components. Moreover, the open and modular architecture allows for easy integration with new data sources. Versatility and adaptability of the application enable it to devise and dispense a suitable response to a wide variety of scenarios. Recently, this application was used for detecting and countering a vehicle intruder with the help of radio frequency spotter sensor, command driven cameras, remote weapon system, portable vehicle arresting barrier, and an unmanned aerial vehicle - which confirmed the presence of the intruder, as well as provided lethal/non-lethal response and battle damage assessment. The completed demonstrations have proved Firestorm's™ validity and feasibility to predict, detect, neutralize, and protect key assets and/or area against a variety of possible threats. The sensors and responding assets can be deployed with numerous configurations to cover the various terrain and environmental conditions, and can be integrated to a number of platforms.
Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics
NASA Astrophysics Data System (ADS)
Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.
2015-12-01
Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in NetCDF format has been implemented and will be demonstrated at AGU.
Vicentini, Federico; Pedrocchi, Nicola; Malosio, Matteo; Molinari Tosatti, Lorenzo
2014-09-01
Robot-assisted neurorehabilitation often involves networked systems of sensors ("sensory rooms") and powerful devices in physical interaction with weak users. Safety is unquestionably a primary concern. Some lightweight robot platforms and devices designed on purpose include safety properties using redundant sensors or intrinsic safety design (e.g. compliance and backdrivability, limited exchange of energy). Nonetheless, the entire "sensory room" shall be required to be fail-safe and safely monitored as a system at large. Yet, sensor capabilities and control algorithms used in functional therapies require, in general, frequent updates or re-configurations, making a safety-grade release of such devices hardly sustainable in cost-effectiveness and development time. As such, promising integrated platforms for human-in-the-loop therapies could not find clinical application and manufacturing support because of lacking in the maintenance of global fail-safe properties. Under the general context of cross-machinery safety standards, the paper presents a methodology called SafeNet for helping in extending the safety rate of Human Robot Interaction (HRI) systems using unsafe components, including sensors and controllers. SafeNet considers, in fact, the robotic system as a device at large and applies the principles of functional safety (as in ISO 13489-1) through a set of architectural procedures and implementation rules. The enabled capability of monitoring a network of unsafe devices through redundant computational nodes, allows the usage of any custom sensors and algorithms, usually planned and assembled at therapy planning-time rather than at platform design-time. A case study is presented with an actual implementation of the proposed methodology. A specific architectural solution is applied to an example of robot-assisted upper-limb rehabilitation with online motion tracking. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Socially Aware Heterogeneous Wireless Networks
Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos
2015-01-01
The development of smart cities has been the epicentre of many researchers’ efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users’ locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402
NASA Astrophysics Data System (ADS)
Mueller, A. V.; Hemond, H.
2009-12-01
The capability for comprehensive, real-time, in-situ characterization of the chemical constituents of natural waters is a powerful tool for the advancement of the ecological and geochemical sciences, e.g. by facilitating rapid high-resolution adaptive sampling campaigns and avoiding the potential errors and high costs related to traditional grab sample collection, transportation and analysis. Portable field-ready instrumentation also promotes the goals of large-scale monitoring networks, such as CUASHI and WATERS, without the financial and human resources overhead required for traditional sampling at this scale. Problems of environmental remediation and monitoring of industrial waste waters would additionally benefit from such instrumental capacity. In-situ measurement of all major ions contributing to the charge makeup of natural fresh water is thus pursued via a combined multi-sensor/multivariate signal processing architecture. The instrument is based primarily on commercial electrochemical sensors, e.g. ion selective electrodes (ISEs) and ion selective field-effect transistors (ISFETs), to promote low cost as well as easy maintenance and reproduction,. The system employs a novel architecture of multivariate signal processing to extract accurate information from in-situ data streams via an "unmixing" process that accounts for sensor non-linearities at low concentrations, as well as sensor cross-reactivities. Conductivity, charge neutrality and temperature are applied as additional mathematical constraints on the chemical state of the system. Including such non-ionic information assists in obtaining accurate and useful calibrations even in the non-linear portion of the sensor response curves, and measurements can be made without the traditionally-required standard additions or ionic strength adjustment. Initial work demonstrates the effectiveness of this methodology at predicting inorganic cations (Na+, NH4+, H+, Ca2+, and K+) in a simplified system containing only a single anion (Cl-) in addition to hydroxide, thus allowing charge neutrality to be easily and explicitly invoked. Calibration of every probe relative to each of the five cations present is undertaken, and resulting curves are used to create a representative environmental data set based on USGS data for New England waters. Signal processing methodologies, specifically artificial neural networks (ANNs), are extended to use a feedback architecture based on conductivity measurements and charge neutrality calculations. The algorithms are then tuned to optimize performance of the algorithm at predicting actual concentrations from these simulated signals. Results are compared to use of component probes as stand-alone sensors. Future extension of this instrument for multiple anions (including carbonate and bicarbonate, nitrate, and sulfate) will ultimately provide rapid, accurate field measurements of the entire charge balance of natural waters at high resolution, improving sampling abilities while reducing costs and errors related to transport and analysis of grab samples.
Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems
NASA Technical Reports Server (NTRS)
Innocenti, M.; Napolitano, M.
2003-01-01
Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.
Deng, Yong-Yuan; Chen, Chin-Ling; Tsaur, Woei-Jiunn; Tang, Yung-Wen; Chen, Jung-Hsuan
2017-01-01
As sensor networks and cloud computation technologies have rapidly developed over recent years, many services and applications integrating these technologies into daily life have come together as an Internet of Things (IoT). At the same time, aging populations have increased the need for expanded and more efficient elderly care services. Fortunately, elderly people can now wear sensing devices which relay data to a personal wireless device, forming a body area network (BAN). These personal wireless devices collect and integrate patients’ personal physiological data, and then transmit the data to the backend of the network for related diagnostics. However, a great deal of the information transmitted by such systems is sensitive data, and must therefore be subject to stringent security protocols. Protecting this data from unauthorized access is thus an important issue in IoT-related research. In regard to a cloud healthcare environment, scholars have proposed a secure mechanism to protect sensitive patient information. Their schemes provide a general architecture; however, these previous schemes still have some vulnerability, and thus cannot guarantee complete security. This paper proposes a secure and lightweight body-sensor network based on the Internet of Things for cloud healthcare environments, in order to address the vulnerabilities discovered in previous schemes. The proposed authentication mechanism is applied to a medical reader to provide a more comprehensive architecture while also providing mutual authentication, and guaranteeing data integrity, user untraceability, and forward and backward secrecy, in addition to being resistant to replay attack. PMID:29244776
An Intelligent Surveillance Platform for Large Metropolitan Areas with Dense Sensor Deployment
Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M.; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A.; Smilansky, Zeev
2013-01-01
This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage. PMID:23748169
Sensor Proxy Mobile IPv6 (SPMIPv6)—A Novel Scheme for Mobility Supported IP-WSNs
Islam, Md. Motaharul; Huh, Eui-Nam
2011-01-01
IP based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6). We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly. PMID:22319386
Sensor proxy mobile IPv6 (SPMIPv6)--a novel scheme for mobility supported IP-WSNs.
Islam, Md Motaharul; Huh, Eui-Nam
2011-01-01
IP based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6). We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly.
NASA Astrophysics Data System (ADS)
Moghaddam, M.; Silva, A.; Clewley, D.; Akbar, R.; Entekhabi, D.
2013-12-01
Soil Moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) is a wireless in-situ sensor network technology, developed under the support of NASA ESTO/AIST program, for multi-scale validation of soil moisture retrievals from the Soil Moisture Active and Passive (SMAP) mission. The SMAP sensor suite is expected to produce soil moisture retrievals at 3 km scale from the radar instrument, at 36 km from the radiometer, and at 10 km from the combination of the two sensors. To validate the retrieved soil moisture maps at any of these scales, it is necessary to perform in-situ observations at multiple scales (ten, hundreds, and thousands of meters), representative of the true spatial variability of soil moisture fields. The most recent SoilSCAPE network, deployed in the California central valley, has been designed, built, and deployed to accomplish this goal, and is expected to become a core validation site for SMAP. The network consists of up to 150 sensor nodes, each comprised of 3-4 soil moisture sensors at various depths, deployed over a spatial extent of 36 km by 36 km. The network contains multiple sub-networks, each having up to 30 nodes, whose location is selected in part based on maximizing the land cover diversity within the 36 km cell. The network has achieved unprecedented energy efficiency, longevity, and spatial coverage using custom-designed hardware and software protocols. The network architecture utilizes a nested strategy, where a number of end devices (EDs) communicate to a local coordinator (LC) using our recently developed hardware with ultra-efficient circuitry and best-effort-timeslot allocation communication protocol. The LCs in turn communicates with the base station (BS) via text messages and a new compression scheme. The hardware and software technologies required to implement this latest deployment of the SoilSCAPE network will be presented in this paper, and several data sets resulting from the measurements will be shown. The data are available publicly in near-real-time from the project web site, and are also available and searchable via an extensive set of metadata fields through the ORNL-DAAC.
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.
IR sensors and imagers in networked operations
NASA Astrophysics Data System (ADS)
Breiter, Rainer; Cabanski, Wolfgang
2005-05-01
"Network-centric Warfare" is a common slogan describing an overall concept of networked operation of sensors, information and weapons to gain command and control superiority. Referring to IR sensors, integration and fusion of different channels like day/night or SAR images or the ability to spread image data among various users are typical requirements. Looking for concrete implementations the German Army future infantryman IdZ is an example where a group of ten soldiers build a unit with every soldier equipped with a personal digital assistant (PDA) for information display, day photo camera and a high performance thermal imager for every unit. The challenge to allow networked operation among such a unit is bringing information together and distribution over a capable network. So also AIM's thermal reconnaissance and targeting sight HuntIR which was selected for the IdZ program provides this capabilities by an optional wireless interface. Besides the global approach of Network-centric Warfare network technology can also be an interesting solution for digital image data distribution and signal processing behind the FPA replacing analog video networks or specific point to point interfaces. The resulting architecture can provide capabilities of data fusion from e.g. IR dual-band or IR multicolor sensors. AIM has participated in a German/UK collaboration program to produce a demonstrator for day/IR video distribution via Gigabit Ethernet for vehicle applications. In this study Ethernet technology was chosen for network implementation and a set of electronics was developed for capturing video data of IR and day imagers and Gigabit Ethernet video distribution. The demonstrator setup follows the requirements of current and future vehicles having a set of day and night imager cameras and a crew station with several members. Replacing the analog video path by a digital video network also makes it easy to implement embedded training by simply feeding the network with simulation data. The paper addresses the special capabilities, requirements and design considerations of IR sensors and imagers in applications like thermal weapon sights and UAVs for networked operating infantry forces.
An Architecture for Controlling Multiple Robots
NASA Technical Reports Server (NTRS)
Aghazarian, Hrand; Pirjanian, Paolo; Schenker, Paul; Huntsberger, Terrance
2004-01-01
The Control Architecture for Multirobot Outpost (CAMPOUT) is a distributed-control architecture for coordinating the activities of multiple robots. In the CAMPOUT, multiple-agent activities and sensor-based controls are derived as group compositions and involve coordination of more basic controllers denoted, for present purposes, as behaviors. The CAMPOUT provides basic mechanistic concepts for representation and execution of distributed group activities. One considers a network of nodes that comprise behaviors (self-contained controllers) augmented with hyper-links, which are used to exchange information between the nodes to achieve coordinated activities. Group behavior is guided by a scripted plan, which encodes a conditional sequence of single-agent activities. Thus, higher-level functionality is composed by coordination of more basic behaviors under the downward task decomposition of a multi-agent planner
NASA Astrophysics Data System (ADS)
Papageorgas, Panagiotis G.; Agavanakis, Kyriakos; Dogas, Ioannis; Piromalis, Dimitrios D.
2018-05-01
A cloud-based architecture is presented for the internetworking of sensors and actuators through a universal gateway, network server and application user interface design. The proposed approach targets to Energy Efficiency and sustainability in a holistic way, by integrating an open-source test bed prototype based on long-range low-bandwidth wireless networking technology for sensing and actuation as the elementary block of a viable, cost-effective and reliable solution. The prototype presented is capable of supporting both sensors and actuators, processing data locally and transmitting the results of the imposed computations to a higher level node. Additionally, it is combined with a service-oriented architecture and involves publish/subscribe middleware protocols and cloud technology to confront with the system needs in terms of data volume and processing power. In this context, the integration of instant message (chat) services is demonstrated so that they can be part of an emerging global-scope eco-system of Cyber-Physical Systems to support a wide variety of IoT applications, with strong advantages such as usability, scalability and security, while adopting a unified gateway design and a simple - yet powerful - user interface.
Smart Building: Decision Making Architecture for Thermal Energy Management.
Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo
2015-10-30
Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.
Scalability Issues for Remote Sensing Infrastructure: A Case Study.
Liu, Yang; Picard, Sean; Williamson, Carey
2017-04-29
For the past decade, a team of University of Calgary researchers has operated a large "sensor Web" to collect, analyze, and share scientific data from remote measurement instruments across northern Canada. This sensor Web receives real-time data streams from over a thousand Internet-connected sensors, with a particular emphasis on environmental data (e.g., space weather, auroral phenomena, atmospheric imaging). Through research collaborations, we had the opportunity to evaluate the performance and scalability of their remote sensing infrastructure. This article reports the lessons learned from our study, which considered both data collection and data dissemination aspects of their system. On the data collection front, we used benchmarking techniques to identify and fix a performance bottleneck in the system's memory management for TCP data streams, while also improving system efficiency on multi-core architectures. On the data dissemination front, we used passive and active network traffic measurements to identify and reduce excessive network traffic from the Web robots and JavaScript techniques used for data sharing. While our results are from one specific sensor Web system, the lessons learned may apply to other scientific Web sites with remote sensing infrastructure.
Shamwell, E Jared; Nothwang, William D; Perlis, Donald
2018-05-04
Aimed at improving size, weight, and power (SWaP)-constrained robotic vision-aided state estimation, we describe our unsupervised, deep convolutional-deconvolutional sensor fusion network, Multi-Hypothesis DeepEfference (MHDE). MHDE learns to intelligently combine noisy heterogeneous sensor data to predict several probable hypotheses for the dense, pixel-level correspondence between a source image and an unseen target image. We show how our multi-hypothesis formulation provides increased robustness against dynamic, heteroscedastic sensor and motion noise by computing hypothesis image mappings and predictions at 76⁻357 Hz depending on the number of hypotheses being generated. MHDE fuses noisy, heterogeneous sensory inputs using two parallel, inter-connected architectural pathways and n (1⁻20 in this work) multi-hypothesis generating sub-pathways to produce n global correspondence estimates between a source and a target image. We evaluated MHDE on the KITTI Odometry dataset and benchmarked it against the vision-only DeepMatching and Deformable Spatial Pyramids algorithms and were able to demonstrate a significant runtime decrease and a performance increase compared to the next-best performing method.
A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network
Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng
2010-01-01
A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391
Fletcher, Richard Ribon; Dobson, Kelly; Goodwin, Matthew S; Eydgahi, Hoda; Wilder-Smith, Oliver; Fernholz, David; Kuboyama, Yuta; Hedman, Elliott Bruce; Poh, Ming-Zher; Picard, Rosalind W
2010-03-01
Widespread use of affective sensing in healthcare applications has been limited due to several practical factors, such as lack of comfortable wearable sensors, lack of wireless standards, and lack of low-power affordable hardware. In this paper, we present a new low-cost, low-power wireless sensor platform implemented using the IEEE 802.15.4 wireless standard, and describe the design of compact wearable sensors for long-term measurement of electrodermal activity, temperature, motor activity, and photoplethysmography. We also illustrate the use of this new technology for continuous long-term monitoring of autonomic nervous system and motion data from active infants, children, and adults. We describe several new applications enabled by this system, discuss two specific wearable designs for the wrist and foot, and present sample data.
NASA Technical Reports Server (NTRS)
Panangadan, Anand; Monacos, Steve; Burleigh, Scott; Joswig, Joseph; James, Mark; Chow, Edward
2012-01-01
In this paper, we describe the architecture of both the PATS and SAP systems and how these two systems interoperate with each other forming a unified capability for deploying intelligence in hostile environments with the objective of providing actionable situational awareness of individuals. The SAP system works in concert with the UICDS information sharing middleware to provide data fusion from multiple sources. UICDS can then publish the sensor data using the OGC's Web Mapping Service, Web Feature Service, and Sensor Observation Service standards. The system described in the paper is able to integrate a spatially distributed sensor system, operating without the benefit of the Web infrastructure, with a remote monitoring and control system that is equipped to take advantage of SWE.
Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondrej Linda; Todd Vollmer; Milos Manic
The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, thismore » paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.« less
OR.NET RT: how service-oriented medical device architecture meets real-time communication.
Pfeiffer, Jonas H; Kasparick, Martin; Strathen, Benjamin; Dietz, Christian; Dingler, Max E; Lueth, Tim C; Timmermann, Dirk; Radermacher, Klaus; Golatowski, Frank
2018-02-23
Today's landscape of medical devices is dominated by stand-alone systems and proprietary interfaces lacking cross-vendor interoperability. This complicates or even impedes the innovation of novel, intelligent assistance systems relying on the collaboration of medical devices. Emerging approaches use the service-oriented architecture (SOA) paradigm based on Internet protocol (IP) to enable communication between medical devices. While this works well for scenarios with no or only soft timing constraints, the underlying best-effort communication scheme is insufficient for time critical data. Real-time (RT) networks are able to reliably guarantee fixed latency boundaries, for example, by using time division multiple access (TDMA) communication patterns. However, deterministic RT networks come with their own limitations such as tedious, inflexible configuration and a more restricted bandwidth allocation. In this contribution we overcome the drawbacks of both approaches by describing and implementing mechanisms that allow the two networks to interact. We introduce the first implementation of a medical device network that offers hard RT guarantees for control and sensor data and integrates into SOA networks. Based on two application examples we show how the flexibility of SOA networks and the reliability of RT networks can be combined to achieve an open network infrastructure for medical devices in the operating room (OR).
González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel
2016-10-31
In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.
González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel
2016-01-01
In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented. PMID:27809229
NASA Astrophysics Data System (ADS)
Edwards, Mark; Hu, Fei; Kumar, Sunil
2004-10-01
The research on the Novelty Detection System (NDS) (called as VENUS) at the authors' universities has generated exciting results. For example, we can detect an abnormal behavior (such as cars thefts from the parking lot) from a series of video frames based on the cognitively motivated theory of habituation. In this paper, we would like to describe the implementation strategies of lower layer protocols for using large-scale Wireless Sensor Networks (WSN) to NDS with Quality-of-Service (QoS) support. Wireless data collection framework, consisting of small and low-power sensor nodes, provides an alternative mechanism to observe the physical world, by using various types of sensing capabilities that include images (and even videos using Panoptos), sound and basic physical measurements such as temperature. We do not want to lose any 'data query command' packets (in the downstream direction: sink-to-sensors) or have any bit-errors in them since they are so important to the whole sensor network. In the upstream direction (sensors-to-sink), we may tolerate the loss of some sensing data packets. But the 'interested' sensing flow should be assigned a higher priority in terms of multi-hop path choice, network bandwidth allocation, and sensing data packet generation frequency (we hope to generate more sensing data packet for that novel event in the specified network area). The focus of this paper is to investigate MAC-level Quality of Service (QoS) issue in Wireless Sensor Networks (WSN) for Novelty Detection applications. Although QoS has been widely studied in other types of networks including wired Internet, general ad hoc networks and mobile cellular networks, we argue that QoS in WSN has its own characteristics. In wired Internet, the main QoS parameters include delay, jitter and bandwidth. In mobile cellular networks, two most common QoS metrics are: handoff call dropping probability and new call blocking probability. Since the main task of WSN is to detect and report events, the most important QoS parameters should include sensing data packet transmission reliability, lifetime extension degree from sensor sleeping control, event detection latency, congestion reduction level through removal of redundant sensing data. In this paper, we will focus on the following bi-directional QoS topics: (1) Downstream (sink-to-sensor) QoS: Reliable data query command forwarding to particular sensor(s). In other words, we do not want to lose the query command packets; (2) Upstream (sensor-to-sink) QoS: transmission of sensed data with priority control. The more interested data that can help in novelty detection should be transmitted on an optimal path with higher reliability. We propose the use of Differentiated Data Collection. Due to the large-scale nature and resource constraints of typical wireless sensor networks, such as limited energy, small memory (typically RAM < 4K bytes) and short communication range, the above problems become even more challenging. Besides QoS support issue, we will also describe our low-energy Sensing Data Transmission network Architecture. Our research results show the scalability and energy-efficiency of our proposed WSN QoS schemes.
Communication Architecture in Mixed-Reality Simulations of Unmanned Systems
2018-01-01
Verification of the correct functionality of multi-vehicle systems in high-fidelity scenarios is required before any deployment of such a complex system, e.g., in missions of remote sensing or in mobile sensor networks. Mixed-reality simulations where both virtual and physical entities can coexist and interact have been shown to be beneficial for development, testing, and verification of such systems. This paper deals with the problems of designing a certain communication subsystem for such highly desirable realistic simulations. Requirements of this communication subsystem, including proper addressing, transparent routing, visibility modeling, or message management, are specified prior to designing an appropriate solution. Then, a suitable architecture of this communication subsystem is proposed together with solutions to the challenges that arise when simultaneous virtual and physical message transmissions occur. The proposed architecture can be utilized as a high-fidelity network simulator for vehicular systems with implicit mobility models that are given by real trajectories of the vehicles. The architecture has been utilized within multiple projects dealing with the development and practical deployment of multi-UAV systems, which support the architecture’s viability and advantages. The provided experimental results show the achieved similarity of the communication characteristics of the fully deployed hardware setup to the setup utilizing the proposed mixed-reality architecture. PMID:29538290
NASA Astrophysics Data System (ADS)
Ciurapiński, Wieslaw; Dulski, Rafal; Kastek, Mariusz; Szustakowski, Mieczyslaw; Bieszczad, Grzegorz; Życzkowski, Marek; Trzaskawka, Piotr; Piszczek, Marek
2009-09-01
The paper presents the concept of multispectral protection system for perimeter protection for stationary and moving objects. The system consists of active ground radar, thermal and visible cameras. The radar allows the system to locate potential intruders and to control an observation area for system cameras. The multisensor construction of the system ensures significant improvement of detection probability of intruder and reduction of false alarms. A final decision from system is worked out using image data. The method of data fusion used in the system has been presented. The system is working under control of FLIR Nexus system. The Nexus offers complete technology and components to create network-based, high-end integrated systems for security and surveillance applications. Based on unique "plug and play" architecture, system provides unmatched flexibility and simplistic integration of sensors and devices in TCP/IP networks. Using a graphical user interface it is possible to control sensors and monitor streaming video and other data over the network, visualize the results of data fusion process and obtain detailed information about detected intruders over a digital map. System provides high-level applications and operator workload reduction with features such as sensor to sensor cueing from detection devices, automatic e-mail notification and alarm triggering.
Smart sensing surveillance system
NASA Astrophysics Data System (ADS)
Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen
2010-04-01
An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4 network and use the specific presentation methods. In addition, the S4 is compliant with Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) standards to efficiently discover, access, use, and control heterogeneous sensors and their metadata. These S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. The S4 system is directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.
Multiple-Sensor Discrimination of Closely-Spaced Objects on a Ballistic Trajectory
2015-05-18
Nominal System Architecture ..................................................................................... 8 2 Simulation Environment... architecture ........................................................................................... 8 Figure 2. Simulation environment developed...uncertainty band for one or multiple sensors within the observation architecture . Resolving targets from one sensor image to another can prove difficult
A resilient and secure software platform and architecture for distributed spacecraft
NASA Astrophysics Data System (ADS)
Otte, William R.; Dubey, Abhishek; Karsai, Gabor
2014-06-01
A distributed spacecraft is a cluster of independent satellite modules flying in formation that communicate via ad-hoc wireless networks. This system in space is a cloud platform that facilitates sharing sensors and other computing and communication resources across multiple applications, potentially developed and maintained by different organizations. Effectively, such architecture can realize the functions of monolithic satellites at a reduced cost and with improved adaptivity and robustness. Openness of these architectures pose special challenges because the distributed software platform has to support applications from different security domains and organizations, and where information flows have to be carefully managed and compartmentalized. If the platform is used as a robust shared resource its management, configuration, and resilience becomes a challenge in itself. We have designed and prototyped a distributed software platform for such architectures. The core element of the platform is a new operating system whose services were designed to restrict access to the network and the file system, and to enforce resource management constraints for all non-privileged processes Mixed-criticality applications operating at different security labels are deployed and controlled by a privileged management process that is also pre-configuring all information flows. This paper describes the design and objective of this layer.
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Glasheen, W. M.
1989-01-01
A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.
Open architecture design and approach for the Integrated Sensor Architecture (ISA)
NASA Astrophysics Data System (ADS)
Moulton, Christine L.; Krzywicki, Alan T.; Hepp, Jared J.; Harrell, John; Kogut, Michael
2015-05-01
Integrated Sensor Architecture (ISA) is designed in response to stovepiped integration approaches. The design, based on the principles of Service Oriented Architectures (SOA) and Open Architectures, addresses the problem of integration, and is not designed for specific sensors or systems. The use of SOA and Open Architecture approaches has led to a flexible, extensible architecture. Using these approaches, and supported with common data formats, open protocol specifications, and Department of Defense Architecture Framework (DoDAF) system architecture documents, an integration-focused architecture has been developed. ISA can help move the Department of Defense (DoD) from costly stovepipe solutions to a more cost-effective plug-and-play design to support interoperability.
System approach to distributed sensor management
NASA Astrophysics Data System (ADS)
Mayott, Gregory; Miller, Gordon; Harrell, John; Hepp, Jared; Self, Mid
2010-04-01
Since 2003, the US Army's RDECOM CERDEC Night Vision Electronic Sensor Directorate (NVESD) has been developing a distributed Sensor Management System (SMS) that utilizes a framework which demonstrates application layer, net-centric sensor management. The core principles of the design support distributed and dynamic discovery of sensing devices and processes through a multi-layered implementation. This results in a sensor management layer that acts as a System with defined interfaces for which the characteristics, parameters, and behaviors can be described. Within the framework, the definition of a protocol is required to establish the rules for how distributed sensors should operate. The protocol defines the behaviors, capabilities, and message structures needed to operate within the functional design boundaries. The protocol definition addresses the requirements for a device (sensors or processes) to dynamically join or leave a sensor network, dynamically describe device control and data capabilities, and allow dynamic addressing of publish and subscribe functionality. The message structure is a multi-tiered definition that identifies standard, extended, and payload representations that are specifically designed to accommodate the need for standard representations of common functions, while supporting the need for feature-based functions that are typically vendor specific. The dynamic qualities of the protocol enable a User GUI application the flexibility of mapping widget-level controls to each device based on reported capabilities in real-time. The SMS approach is designed to accommodate scalability and flexibility within a defined architecture. The distributed sensor management framework and its application to a tactical sensor network will be described in this paper.
A smart checkpointing scheme for improving the reliability of clustering routing protocols.
Min, Hong; Jung, Jinman; Kim, Bongjae; Cho, Yookun; Heo, Junyoung; Yi, Sangho; Hong, Jiman
2010-01-01
In wireless sensor networks, system architectures and applications are designed to consider both resource constraints and scalability, because such networks are composed of numerous sensor nodes with various sensors and actuators, small memories, low-power microprocessors, radio modules, and batteries. Clustering routing protocols based on data aggregation schemes aimed at minimizing packet numbers have been proposed to meet these requirements. In clustering routing protocols, the cluster head plays an important role. The cluster head collects data from its member nodes and aggregates the collected data. To improve reliability and reduce recovery latency, we propose a checkpointing scheme for the cluster head. In the proposed scheme, backup nodes monitor and checkpoint the current state of the cluster head periodically. We also derive the checkpointing interval that maximizes reliability while using the same amount of energy consumed by clustering routing protocols that operate without checkpointing. Experimental comparisons with existing non-checkpointing schemes show that our scheme reduces both energy consumption and recovery latency.
A Smart Checkpointing Scheme for Improving the Reliability of Clustering Routing Protocols
Min, Hong; Jung, Jinman; Kim, Bongjae; Cho, Yookun; Heo, Junyoung; Yi, Sangho; Hong, Jiman
2010-01-01
In wireless sensor networks, system architectures and applications are designed to consider both resource constraints and scalability, because such networks are composed of numerous sensor nodes with various sensors and actuators, small memories, low-power microprocessors, radio modules, and batteries. Clustering routing protocols based on data aggregation schemes aimed at minimizing packet numbers have been proposed to meet these requirements. In clustering routing protocols, the cluster head plays an important role. The cluster head collects data from its member nodes and aggregates the collected data. To improve reliability and reduce recovery latency, we propose a checkpointing scheme for the cluster head. In the proposed scheme, backup nodes monitor and checkpoint the current state of the cluster head periodically. We also derive the checkpointing interval that maximizes reliability while using the same amount of energy consumed by clustering routing protocols that operate without checkpointing. Experimental comparisons with existing non-checkpointing schemes show that our scheme reduces both energy consumption and recovery latency. PMID:22163389
Llor, Jesús; Malumbres, Manuel P
2012-01-01
Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios.
Llor, Jesús; Malumbres, Manuel P.
2012-01-01
Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios. PMID:22438712
Template-Free Synthesis of Functional 3D BN architecture for removal of dyes from water
Liu, Dan; Lei, Weiwei; Qin, Si; Chen, Ying
2014-01-01
Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156 m2 g−1, and the total pore volume is about 1.17 cm3 g−1. The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment. PMID:24663292
Template-free synthesis of functional 3D BN architecture for removal of dyes from water.
Liu, Dan; Lei, Weiwei; Qin, Si; Chen, Ying
2014-03-25
Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156 m(2) g(-1), and the total pore volume is about 1.17 cm(3) g(-1). The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment.
Tunca, Can; Alemdar, Hande; Ertan, Halil; Incel, Ozlem Durmaz; Ersoy, Cem
2014-01-01
Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs) provide a great potential for ambient assisted living (AAL) applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting. PMID:24887044
Tunca, Can; Alemdar, Hande; Ertan, Halil; Incel, Ozlem Durmaz; Ersoy, Cem
2014-05-30
Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs) provide a great potential for ambient assisted living (AAL) applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting.
Design of Distributed Engine Control Systems for Stability Under Communication Packet Dropouts
2009-08-01
remarks. II. Distributed Engine Control Systems A. FADEC based on Distributed Engine Control Architecture (DEC) In Distributed Engine...Control, the functions of Full Authority Digital Engine Control ( FADEC ) are distributed at the component level. Each sensor/actuator is to be replaced...diagnostics and health management functionality. Dual channel digital serial communication network is used to connect these smart modules with FADEC . Fig
Linguistic Model for Engine Power Loss
2011-11-27
Intelligent Vehicle Health Management System (IVHMS) for light trucks. In particular, this paper is focused on the system architecture for monitoring...developed for the cooling system of a diesel engine, integrating a priori, ‘expert’ knowledge , sensor data, and the adaptive network-based fuzzy...domain knowledge . However, in a nonlinear system in which not all possible causes to engine power loss are considered and measured, merely relying
Evaluating Implementations of Service Oriented Architecture for Sensor Network via Simulation
2011-04-01
Subject: COMPUTER SCIENCE Approved: Boleslaw Szymanski , Thesis Adviser Rensselaer Polytechnic Institute Troy, New York April 2011 (For Graduation May 2011...simulation supports distributed and centralized composition with a type hierarchy and multiple -service statically-located nodes in a 2-dimensional space...distributed and centralized composition with a type hierarchy and multiple -service statically-located nodes in a 2-dimensional space. The second simulation
Incorpoaration of Geosensor Networks Into Internet of Things for Environmental Monitoring
NASA Astrophysics Data System (ADS)
Habibi, R.; Alesheikh, A. A.
2015-12-01
Thanks to the recent advances of miniaturization and the falling costs for sensors and also communication technologies, Internet specially, the number of internet-connected things growth tremendously. Moreover, geosensors with capability of generating high spatial and temporal resolution data, measuring a vast diversity of environmental data and automated operations provide powerful abilities to environmental monitoring tasks. Geosensor nodes are intuitively heterogeneous in terms of the hardware capabilities and communication protocols to take part in the Internet of Things scenarios. Therefore, ensuring interoperability is an important step. With this respect, the focus of this paper is particularly on incorporation of geosensor networks into Internet of things through an architecture for monitoring real-time environmental data with use of OGC Sensor Web Enablement standards. This approach and its applicability is discussed in the context of an air pollution monitoring scenario.
Structural health monitoring system for bridges based on skin-like sensor
NASA Astrophysics Data System (ADS)
Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd
2017-09-01
Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.
Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process.
Arriandiaga, Ander; Portillo, Eva; Sánchez, Jose A; Cabanes, Itziar; Pombo, Iñigo
2014-05-19
Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 μm). In the case of surface finish, the absolute error is well below Ra 1 μm (average value 0.32 μm). The present approach can be easily generalized to other grinding operations.
Modular multiplication in GF(p) for public-key cryptography
NASA Astrophysics Data System (ADS)
Olszyna, Jakub
Modular multiplication forms the basis of modular exponentiation which is the core operation of the RSA cryptosystem. It is also present in many other cryptographic algorithms including those based on ECC and HECC. Hence, an efficient implementation of PKC relies on efficient implementation of modular multiplication. The paper presents a survey of most common algorithms for modular multiplication along with hardware architectures especially suitable for cryptographic applications in energy constrained environments. The motivation for studying low-power and areaefficient modular multiplication algorithms comes from enabling public-key security for ultra-low power devices that can perform under constrained environments like wireless sensor networks. Serial architectures for GF(p) are analyzed and presented. Finally proposed architectures are verified and compared according to the amount of power dissipated throughout the operation.
A Sensor Middleware for integration of heterogeneous medical devices.
Brito, M; Vale, L; Carvalho, P; Henriques, J
2010-01-01
In this paper, the architecture of a modular, service-oriented, Sensor Middleware for data acquisition and processing is presented. The described solution was developed with the purpose of solving two increasingly relevant problems in the context of modern pHealth systems: i) to aggregate a number of heterogeneous, off-the-shelf, devices from which clinical measurements can be acquired and ii) to provide access and integration with an 802.15.4 network of wearable sensors. The modular nature of the Middleware provides the means to easily integrate pre-processing algorithms into processing pipelines, as well as new drivers for adding support for new sensor devices or communication technologies. Tests performed with both real and artificially generated data streams show that the presented solution is suitable for use both in a Windows PC or a Windows Mobile PDA with minimal overhead.
Adhikari, Shyam Prasad; Yang, Changju; Slot, Krzysztof; Kim, Hyongsuk
2018-01-10
This paper presents a vision sensor-based solution to the challenging problem of detecting and following trails in highly unstructured natural environments like forests, rural areas and mountains, using a combination of a deep neural network and dynamic programming. The deep neural network (DNN) concept has recently emerged as a very effective tool for processing vision sensor signals. A patch-based DNN is trained with supervised data to classify fixed-size image patches into "trail" and "non-trail" categories, and reshaped to a fully convolutional architecture to produce trail segmentation map for arbitrary-sized input images. As trail and non-trail patches do not exhibit clearly defined shapes or forms, the patch-based classifier is prone to misclassification, and produces sub-optimal trail segmentation maps. Dynamic programming is introduced to find an optimal trail on the sub-optimal DNN output map. Experimental results showing accurate trail detection for real-world trail datasets captured with a head mounted vision system are presented.
Manes, Gianfranco; Collodi, Giovanni; Gelpi, Leonardo; Fusco, Rosanna; Ricci, Giuseppe; Manes, Antonio; Passafiume, Marco
2016-01-20
This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN) architecture, is organised into sub-networks to be positioned in the plant's critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks) gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events.
A Framework for Real-Time Collection, Analysis, and Classification of Ubiquitous Infrasound Data
NASA Astrophysics Data System (ADS)
Christe, A.; Garces, M. A.; Magana-Zook, S. A.; Schnurr, J. M.
2015-12-01
Traditional infrasound arrays are generally expensive to install and maintain. There are ~10^3 infrasound channels on Earth today. The amount of data currently provided by legacy architectures can be processed on a modest server. However, the growing availability of low-cost, ubiquitous, and dense infrasonic sensor networks presents a substantial increase in the volume, velocity, and variety of data flow. Initial data from a prototype ubiquitous global infrasound network is already pushing the boundaries of traditional research server and communication systems, in particular when serving data products over heterogeneous, international network topologies. We present a scalable, cloud-based approach for capturing and analyzing large amounts of dense infrasonic data (>10^6 channels). We utilize Akka actors with WebSockets to maintain data connections with infrasound sensors. Apache Spark provides streaming, batch, machine learning, and graph processing libraries which will permit signature classification, cross-correlation, and other analytics in near real time. This new framework and approach provide significant advantages in scalability and cost.
FM-UWB: Towards a Robust, Low-Power Radio for Body Area Networks
Kopta, Vladimir; Farserotu, John; Enz, Christian
2017-01-01
The Frequency Modulated Ultra-Wideband (FM-UWB) is known as a low-power, low-complexity modulation scheme targeting low to moderate data rates in applications such as wireless body area networks. In this paper, a thorough review of all FM-UWB receivers and transmitters reported in literature is presented. The emphasis is on trends in power reduction that exhibit an improvement by a factor 20 over the past eight years, showing the high potential of FM-UWB. The main architectural and circuit techniques that have led to this improvement are highlighted. Seldom explored potential of using higher data rates and more complex modulations is demonstrated as a way to increase energy efficiency of FM-UWB. Multi-user communication over a single Radio Frequency (RF) channel is explored in more depth and multi-channel transmission is proposed as an extension of standard FM-UWB. The two techniques provide means of decreasing network latency, improving performance, and allow the FM-UWB to accommodate the increasing number of sensor nodes in the emerging applications such as High-Density Wireless Sensor Networks. PMID:28481248
NASA Astrophysics Data System (ADS)
Haseeb, Shariq; Hashim, Aisha Hassan A.; Khalifa, Othman O.; Faris Ismail, Ahmad
2017-11-01
IoT aims to interconnect sensors and actuators built into devices (also known as Things) in order for them to share data and control each other to improve existing processes for making people’s life better. IoT aims to connect between all physical devices like fridges, cars, utilities, buildings and cities so that they can take advantage of small pieces of information collected by each one of these devices and derive more complex decisions. However, these devices are heterogeneous in nature because of various vendor support, connectivity options and protocol suit. Heterogeneity of such devices makes it difficult for them to leverage on each other’s capabilities in the traditional IoT architecture. This paper highlights the effects of heterogeneity challenges on connectivity, interoperability, management in greater details. It also surveys some of the existing solutions adopted in the core network to solve the challenges of massive IoT deployments. Finally, the paper proposes a new architecture based on NFV to address the problems.
Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2008-01-01
Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology composed of scheduled, bounded communication contacts in a network built on the Delay-Tolerant Networking (DTN) architecture. It is designed to support operations in a space network based on DTN, but it also could be used in terrestrial applications where operation according to a predefined schedule is preferable to opportunistic communication, as in a low-power sensor network. This paper will describe the operation of the CGR system and explain how it can enable data delivery over scheduled transmission opportunities, fully utilizing the available transmission capacity, without knowing the current state of any bundle protocol node (other than the local node itself) and without exhausting processing resources at any bundle router.
Standards-based sensor interoperability and networking SensorWeb: an overview
NASA Astrophysics Data System (ADS)
Bolling, Sam
2012-06-01
The War fighter lacks a unified Intelligence, Surveillance, and Reconnaissance (ISR) environment to conduct mission planning, command and control (C2), tasking, collection, exploitation, processing, and data discovery of disparate sensor data across the ISR Enterprise. Legacy sensors and applications are not standardized or integrated for assured, universal access. Existing tasking and collection capabilities are not unified across the enterprise, inhibiting robust C2 of ISR including near-real time, cross-cueing operations. To address these critical needs, the National Measurement and Signature Intelligence (MASINT) Office (NMO), and partnering Combatant Commands and Intelligence Agencies are developing SensorWeb, an architecture that harmonizes heterogeneous sensor data to a common standard for users to discover, access, observe, subscribe to and task sensors. The SensorWeb initiative long term goal is to establish an open commercial standards-based, service-oriented framework to facilitate plug and play sensors. The current development effort will produce non-proprietary deliverables, intended as a Government off the Shelf (GOTS) solution to address the U.S. and Coalition nations' inability to quickly and reliably detect, identify, map, track, and fully understand security threats and operational activities.
Observation of beta and X rays with 3-D-architecture silicon microstrip sensors
NASA Astrophysics Data System (ADS)
Kenney, C. J.; Parker, S. I.; Krieger, B.; Ludewigt, B.; Dubbs, T. P.; Sadrozinski, H.
2001-04-01
The first silicon radiation sensors based on the three-dimensional (3-D) architecture have been successfully fabricated. X-ray spectra from iron-55 and americium-241 have been recorded by reading out a 3-D architecture detector via wire bonds to a low-noise, charge-sensitive preamplifier. Using a beta source, coincidences between a 3-D sensor and a plastic scintillator were observed. This is the first observation of ionizing radiation using a silicon sensor based on the 3-D architecture. Details of the apparatus and measurements are described.
Real-time Data Access to First Responders: A VORB application
NASA Astrophysics Data System (ADS)
Lu, S.; Kim, J. B.; Bryant, P.; Foley, S.; Vernon, F.; Rajasekar, A.; Meier, S.
2006-12-01
Getting information to first responders is not an easy task. The sensors that provide the information are diverse in formats and come from many disciplines. They are also distributed by location, transmit data at different frequencies and are managed and owned by autonomous administrative entities. Pulling such types of data in real-time, needs a very robust sensor network with reliable data transport and buffering capabilities. Moreover, the system should be extensible and scalable in numbers and sensor types. ROADNet is a real- time sensor network project at UCSD gathering diverse environmental data in real-time or near-real-time. VORB (Virtual Object Ring Buffer) is the middleware used in ROADNet offering simple, uniform and scalable real-time data management for discovering (through metadata), accessing and archiving real-time data and data streams. Recent development in VORB, a web API, has offered quick and simple real-time data integration with web applications. In this poster, we discuss one application developed as part of ROADNet. SMER (Santa Margarita Ecological Reserve) is located in interior Southern California, a region prone to catastrophic wildfires each summer and fall. To provide data during emergencies, we have applied the VORB framework to develop a web-based application for providing access to diverse sensor data including weather data, heat sensor information, and images from cameras. Wildfire fighters have access to real-time data about weather and heat conditions in the area and view pictures taken from cameras at multiple points in the Reserve to pinpoint problem areas. Moreover, they can browse archived images and sensor data from earlier times to provide a comparison framework. To show scalability of the system, we have expanded the sensor network under consideration through other areas in Southern California including sensors accessible by Los Angeles County Fire Department (LACOFD) and those available through the High Performance Wireless Research and Education Network (HPWREN). The poster will discuss the system architecture and components, the types of sensor being used and usage scenarios. The system is currently operational through the SMER web-site.
Integrated Land- and Underwater-Based Sensors for a Subduction Zone Earthquake Early Warning System
NASA Astrophysics Data System (ADS)
Pirenne, B.; Rosenberger, A.; Rogers, G. C.; Henton, J.; Lu, Y.; Moore, T.
2016-12-01
Ocean Networks Canada (ONC — oceannetworks.ca/ ) operates cabled ocean observatories off the coast of British Columbia (BC) to support research and operational oceanography. Recently, ONC has been funded by the Province of BC to deliver an earthquake early warning (EEW) system that integrates offshore and land-based sensors to deliver alerts of incoming ground shaking from the Cascadia Subduction Zone. ONC's cabled seismic network has the unique advantage of being located offshore on either side of the surface expression of the subduction zone. The proximity of ONC's sensors to the fault can result in faster, more effective warnings, which translates into more lives saved, injuries avoided and more ability for mitigative actions to take place.ONC delivers near real-time data from various instrument types simultaneously, providing distinct advantages to seismic monitoring and earthquake early warning. The EEW system consists of a network of sensors, located on the ocean floor and on land, that detect and analyze the initial p-wave of an earthquake as well as the crustal deformation on land during the earthquake sequence. Once the p-wave is detected and characterized, software systems correlate the data streams of the various sensors and deliver alerts to clients through a Common Alerting Protocol-compliant data package. This presentation will focus on the development of the earthquake early warning capacity at ONC. It will describe the seismic sensors and their distribution, the p-wave detection algorithms selected and the overall architecture of the system. It will further overview the plan to achieve operational readiness at project completion.
Distributed cyberinfrastructure tools for automated data processing of structural monitoring data
NASA Astrophysics Data System (ADS)
Zhang, Yilan; Kurata, Masahiro; Lynch, Jerome P.; van der Linden, Gwendolyn; Sederat, Hassan; Prakash, Atul
2012-04-01
The emergence of cost-effective sensing technologies has now enabled the use of dense arrays of sensors to monitor the behavior and condition of large-scale bridges. The continuous operation of dense networks of sensors presents a number of new challenges including how to manage such massive amounts of data that can be created by the system. This paper reports on the progress of the creation of cyberinfrastructure tools which hierarchically control networks of wireless sensors deployed in a long-span bridge. The internet-enabled cyberinfrastructure is centrally managed by a powerful database which controls the flow of data in the entire monitoring system architecture. A client-server model built upon the database provides both data-provider and system end-users with secured access to various levels of information of a bridge. In the system, information on bridge behavior (e.g., acceleration, strain, displacement) and environmental condition (e.g., wind speed, wind direction, temperature, humidity) are uploaded to the database from sensor networks installed in the bridge. Then, data interrogation services interface with the database via client APIs to autonomously process data. The current research effort focuses on an assessment of the scalability and long-term robustness of the proposed cyberinfrastructure framework that has been implemented along with a permanent wireless monitoring system on the New Carquinez (Alfred Zampa Memorial) Suspension Bridge in Vallejo, CA. Many data interrogation tools are under development using sensor data and bridge metadata (e.g., geometric details, material properties, etc.) Sample data interrogation clients including those for the detection of faulty sensors, automated modal parameter extraction.
NASA Astrophysics Data System (ADS)
Redfern, Andrew; Koplow, Michael; Wright, Paul
2007-01-01
Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.
NASA Astrophysics Data System (ADS)
Strachan, Scotty; Slater, David; Fritzinger, Eric; Lyles, Bradley; Kent, Graham; Smith, Kenneth; Dascalu, Sergiu; Harris, Frederick
2017-04-01
Sensor-based data collection has changed the potential scale and resolution of in-situ environmental studies by orders of magnitude, increasing expertise and management requirements accordingly. Cost-effective management of these observing systems is possible by leveraging cyberinfrastructure resources. Presented is a case study environmental observation network in the Great Basin region, USA, the Nevada Climate-ecohydrological Assessment Network (NevCAN). NevCAN stretches hundreds of kilometers across several mountain ranges and monitors climate and ecohydrological conditions from low desert (900 m ASL) to high subalpine treeline (3360 m ASL) down to 1-minute timescales. The network has been operating continuously since 2010, collecting billions of sensor data points and millions of camera images that record hourly conditions at each site, despite requiring relatively low annual maintenance expenditure. These data have provided unique insight into fine-scale processes across mountain gradients, which is crucial scientific information for a water-scarce region. The key to maintaining data continuity for these remotely-located study sites has been use of uniform data transport and management systems, coupled with high-reliability power system designs. Enabling non-proprietary digital communication paths to all study sites and sensors allows the research team to acquire data in near-real-time, troubleshoot problems, and diversify sensor hardware. A wide-area network design based on common Internet Protocols (IP) has been extended into each study site, providing production bandwidth of between 2 Mbps and 60 Mbps, depending on local conditions. The network architecture and site-level support systems (such as power generation) have been implemented with the core objectives of capacity, redundancy, and modularity. NevCAN demonstrates that by following simple but uniform "best practices", the next generation of regionally-specific environmental observatories can evolve to provide dramatically improved levels of scientific and hazard monitoring that span complex topographies and remote geography.
WebTag: Web browsing into sensor tags over NFC.
Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Alvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio
2012-01-01
Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm.
WebTag: Web Browsing into Sensor Tags over NFC
Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Álvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio
2012-01-01
Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm. PMID:23012511
Semi-Autonomous Vehicle Project
NASA Technical Reports Server (NTRS)
Stewart, Christopher
2016-01-01
The primary objective this summer is "evaluating standards for wireless architecture for the internet of things". The Internet of Things is the network of physical objects or "things" embedded with electronics, software, sensors and network connectivity which enables these objects to collect and exchange data and make decisions based on said data. This was accomplished by creating a semi-autonomous vehicle that takes advantage of multiple sensors, cameras, and onboard computers and combined them with a mesh network which enabled communication across large distances with little to no interruption. The mesh network took advantage of what is known as DTN - Disruption Tolerant Networking which according to NASA is the new communications protocol that is "the first step towards interplanetary internet." The use of DTN comes from the fact that it will store information if an interruption in communications is detected and even forward that information via other relays within range so that the data is not lost. This translates well into the project because as the car moves further away from whatever is sending it commands (in this case a joystick), the information can still be forwarded to the car with little to no loss of information thanks to the mesh nodes around the driving area.
NASA Astrophysics Data System (ADS)
Bruschini, Claudio; Charbon, Edoardo; Veerappan, Chockalingam; Braga, Leo H. C.; Massari, Nicola; Perenzoni, Matteo; Gasparini, Leonardo; Stoppa, David; Walker, Richard; Erdogan, Ahmet; Henderson, Robert K.; East, Steve; Grant, Lindsay; Játékos, Balázs; Ujhelyi, Ferenc; Erdei, Gábor; Lörincz, Emöke; André, Luc; Maingault, Laurent; Jacolin, David; Verger, L.; Gros d'Aillon, Eric; Major, Peter; Papp, Zoltan; Nemeth, Gabor
2014-05-01
The SPADnet FP7 European project is aimed at a new generation of fully digital, scalable and networked photonic components to enable large area image sensors, with primary target gamma-ray and coincidence detection in (Time-of- Flight) Positron Emission Tomography (PET). SPADnet relies on standard CMOS technology, therefore allowing for MRI compatibility. SPADnet innovates in several areas of PET systems, from optical coupling to single-photon sensor architectures, from intelligent ring networks to reconstruction algorithms. It is built around a natively digital, intelligent SPAD (Single-Photon Avalanche Diode)-based sensor device which comprises an array of 8×16 pixels, each composed of 4 mini-SiPMs with in situ time-to-digital conversion, a multi-ring network to filter, carry, and process data produced by the sensors at 2Gbps, and a 130nm CMOS process enabling mass-production of photonic modules that are optically interfaced to scintillator crystals. A few tens of sensor devices are tightly abutted on a single PCB to form a so-called sensor tile, thanks to TSV (Through Silicon Via) connections to their backside (replacing conventional wire bonding). The sensor tile is in turn interfaced to an FPGA-based PCB on its back. The resulting photonic module acts as an autonomous sensing and computing unit, individually detecting gamma photons as well as thermal and Compton events. It determines in real time basic information for each scintillation event, such as exact time of arrival, position and energy, and communicates it to its peers in the field of view. Coincidence detection does therefore occur directly in the ring itself, in a differed and distributed manner to ensure scalability. The selected true coincidence events are then collected by a snooper module, from which they are transferred to an external reconstruction computer using Gigabit Ethernet.
Network Science Research Laboratory (NSRL) Telemetry Warehouse
2016-06-01
Functionality and architecture of the NSRL Telemetry Warehouse are also described as well as the web interface, data structure, security aspects, and...Experiment Controller 6 4.5 Telemetry Sensors 7 4.6 Custom Data Processing Nodes 7 5. Web Interface 8 6. Data Structure 8 6.1 Measurements 8...telemetry in comma-separated value (CSV) format from the web interface or via custom applications developed by researchers using the client application
Operating Systems for Wireless Sensor Networks: A Survey
Farooq, Muhammad Omer; Kunz, Thomas
2011-01-01
This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes’ life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems. PMID:22163934
Experiences with a Decade of Wireless Sensor Networks in Mountain Cryosphere Research
NASA Astrophysics Data System (ADS)
Beutel, Jan
2017-04-01
Research in geoscience depends on high-quality measurements over long periods of time in order to understand processes and to create and validate models. The promise of wireless sensor networks to monitor autonomously at unprecedented spatial and temporal scale motivated the use of this novel technology for studying mountain permafrost in the mid 2000s. Starting from a first experimental deployment to investigate the thermal properties of steep bedrock permafrost in 2006 on the Jungfraujoch, Switzerland at 3500 m asl using prototype wireless sensors the PermaSense project has evolved into a multi-site and multi-discipline initiative. We develop, deploy and operate wireless sensing systems customized for long-term autonomous operation in high-mountain environments. Around this central element, we develop concepts, methods and tools to investigate and to quantify the connection between climate, cryosphere (permafrost, glaciers, snow) and geomorphodynamics. In this presentation, we describe the concepts and system architecture used both for the wireless sensor network as well as for data management and processing. Furthermore, we will discuss the experience gained in over a decade of planning, installing and operating large deployments on field sites spread across a large part of the Swiss and French Alps and applications ranging from academic, experimental research campaigns, long-term monitoring and natural hazard warning in collaboration with government authorities and local industry partners. Reference http://www.permasense.ch Online Open Data Access http://data.permasense.ch
Operating systems for wireless sensor networks: a survey.
Farooq, Muhammad Omer; Kunz, Thomas
2011-01-01
This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes' life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems.
Autonomic and Coevolutionary Sensor Networking
NASA Astrophysics Data System (ADS)
Boonma, Pruet; Suzuki, Junichi
(WSNs) applications are often required to balance the tradeoffs among conflicting operational objectives (e.g., latency and power consumption) and operate at an optimal tradeoff. This chapter proposes and evaluates a architecture, called BiSNET/e, which allows WSN applications to overcome this issue. BiSNET/e is designed to support three major types of WSN applications: , and hybrid applications. Each application is implemented as a decentralized group of, which is analogous to a bee colony (application) consisting of bees (agents). Agents collect sensor data or detect an event (a significant change in sensor reading) on individual nodes, and carry sensor data to base stations. They perform these data collection and event detection functionalities by sensing their surrounding network conditions and adaptively invoking behaviors such as pheromone emission, reproduction, migration, swarming and death. Each agent has its own behavior policy, as a set of genes, which defines how to invoke its behaviors. BiSNET/e allows agents to evolve their behavior policies (genes) across generations and autonomously adapt their performance to given objectives. Simulation results demonstrate that, in all three types of applications, agents evolve to find optimal tradeoffs among conflicting objectives and adapt to dynamic network conditions such as traffic fluctuations and node failures/additions. Simulation results also illustrate that, in hybrid applications, data collection agents and event detection agents coevolve to augment their adaptability and performance.
Real-time distributed video coding for 1K-pixel visual sensor networks
NASA Astrophysics Data System (ADS)
Hanca, Jan; Deligiannis, Nikos; Munteanu, Adrian
2016-07-01
Many applications in visual sensor networks (VSNs) demand the low-cost wireless transmission of video data. In this context, distributed video coding (DVC) has proven its potential to achieve state-of-the-art compression performance while maintaining low computational complexity of the encoder. Despite their proven capabilities, current DVC solutions overlook hardware constraints, and this renders them unsuitable for practical implementations. This paper introduces a DVC architecture that offers highly efficient wireless communication in real-world VSNs. The design takes into account the severe computational and memory constraints imposed by practical implementations on low-resolution visual sensors. We study performance-complexity trade-offs for feedback-channel removal, propose learning-based techniques for rate allocation, and investigate various simplifications of side information generation yielding real-time decoding. The proposed system is evaluated against H.264/AVC intra, Motion-JPEG, and our previously designed DVC prototype for low-resolution visual sensors. Extensive experimental results on various data show significant improvements in multiple configurations. The proposed encoder achieves real-time performance on a 1k-pixel visual sensor mote. Real-time decoding is performed on a Raspberry Pi single-board computer or a low-end notebook PC. To the best of our knowledge, the proposed codec is the first practical DVC deployment on low-resolution VSNs.
Scalability Issues for Remote Sensing Infrastructure: A Case Study
Liu, Yang; Picard, Sean; Williamson, Carey
2017-01-01
For the past decade, a team of University of Calgary researchers has operated a large “sensor Web” to collect, analyze, and share scientific data from remote measurement instruments across northern Canada. This sensor Web receives real-time data streams from over a thousand Internet-connected sensors, with a particular emphasis on environmental data (e.g., space weather, auroral phenomena, atmospheric imaging). Through research collaborations, we had the opportunity to evaluate the performance and scalability of their remote sensing infrastructure. This article reports the lessons learned from our study, which considered both data collection and data dissemination aspects of their system. On the data collection front, we used benchmarking techniques to identify and fix a performance bottleneck in the system’s memory management for TCP data streams, while also improving system efficiency on multi-core architectures. On the data dissemination front, we used passive and active network traffic measurements to identify and reduce excessive network traffic from the Web robots and JavaScript techniques used for data sharing. While our results are from one specific sensor Web system, the lessons learned may apply to other scientific Web sites with remote sensing infrastructure. PMID:28468262
Coordinating an Autonomous Earth-Observing Sensorweb
NASA Technical Reports Server (NTRS)
Sherwood, Robert; Cichy, Benjamin; Tran, Daniel; Chien, Steve; Rabideau, Gregg; Davies, Ashley; Castano, Rebecca; frye, Stuart; Mandl, Dan; Shulman, Seth;
2006-01-01
A system of software has been developed to coordinate the operation of an autonomous Earth-observing sensorweb. Sensorwebs are collections of sensor units scattered over large regions to gather data on spatial and temporal patterns of physical, chemical, or biological phenomena in those regions. Each sensor unit is a node in a data-gathering/ data-communication network that spans a region of interest. In this case, the region is the entire Earth, and the sensorweb includes multiple terrestrial and spaceborne sensor units. In addition to acquiring data for scientific study, the sensorweb is required to give timely notice of volcanic eruptions, floods, and other hazardous natural events. In keeping with the inherently modular nature of the sensory, communication, and data-processing hardware, the software features a flexible, modular architecture that facilitates expansion of the network, customization of conditions that trigger alarms of hazardous natural events, and customization of responses to alarms. The soft8 NASA Tech Briefs, July 2006 ware facilitates access to multiple sources of data on an event of scientific interest, enables coordinated use of multiple sensors in rapid reaction to detection of an event, and facilitates the tracking of spacecraft operations, including tracking of the acquisition, processing, and downlinking of requested data.
Yi, Wei-Ying; Leung, Kwong-Sak; Leung, Yee
2017-12-22
Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems' hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field.
2017-01-01
Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems’ hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field. PMID:29271952
A High-Resolution Sensor Network for Monitoring Glacier Dynamics
NASA Astrophysics Data System (ADS)
Edwards, S.; Murray, T.; O'Farrell, T.; Rutt, I. C.; Loskot, P.; Martin, I.; Selmes, N.; Aspey, R.; James, T.; Bevan, S. L.; Baugé, T.
2013-12-01
Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the adoption of beacon based time division multiple access (tdma). In-house single-epoch GNSS processing software provides 1-2 cm coordinate time-series capable of detecting a major calving event during the 2012 pilot study. These data can be synthesised with other remotely sensed data e.g. airborne lidar, oblique photogrammetry and TanDEM-X satellite imagery derived DEMs giving an opportunity to fine-tune glacial models delivering a deeper understanding of the contribution to sea-level rise made by tidewater glaciers such as Helheim. The flexibility of our network would make it suitable for deployment in other extreme environments such as areas at risk from earthquakes and landslides.
MEDUSA: an airborne multispectral oil spill detection and characterization system
NASA Astrophysics Data System (ADS)
Wagner, Peter; Hengstermann, Theo; Zielinski, Oliver
2000-12-01
MEDUSA is a sensor network, consisting of and effectively combining a variety of different remote sensing instruments. Installed in 1998 it is operationally used in a maritime surveillance aircraft maintained by the German Ministry of Transport, Building and Housing. On one hand routine oil pollution monitoring with remote sensing equipment like Side Looking Airborne Radar (SLAR), Infrared/Ultraviolet Line Scanner (IR/UV line scanner), Microwave Radiometer (MWR), Imaging Airborne Laserfluorosensor (IALFS) and Forward Looking Infrared (FLIR) requires a complex network and communication structure to be operated by a single operator. On the other hand the operation of such a variety of sensors on board of one aircraft provides an excellent opportunity to establish new concepts of integrated sensor fusion and data evaluation. In this work a general survey of the German surveillance aircraft instrumentation is given and major features of the sensor package as well as advantages of the design and architecture are presented. Results from routine operation over North and Baltic Sea are shown to illustrate the successful application of MEDUSA in maritime patrol of oil slicks and polluters. Recently the combination of the different sensor results towards one multispectral information has met with increasing interest. Thus new application fields and parameter sets could be derived, like oceanography or river flood management. The basic concepts and first results in the fusion of sensoric information will conclude the paper.
Community Seismic Network (CSN)
NASA Astrophysics Data System (ADS)
Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.; Liu, A.; Strand, L.
2012-12-01
We report on developments in sensor connectivity, architecture, and data fusion algorithms executed in Cloud computing systems in the Community Seismic Network (CSN), a network of low-cost sensors housed in homes and offices by volunteers in the Pasadena, CA area. The network has over 200 sensors continuously reporting anomalies in local acceleration through the Internet to a Cloud computing service (the Google App Engine) that continually fuses sensor data to rapidly detect shaking from earthquakes. The Cloud computing system consists of data centers geographically distributed across the continent and is likely to be resilient even during earthquakes and other local disasters. The region of Southern California is partitioned in a multi-grid style into sets of telescoping cells called geocells. Data streams from sensors within a geocell are fused to detect anomalous shaking across the geocell. Temporal spatial patterns across geocells are used to detect anomalies across regions. The challenge is to detect earthquakes rapidly with an extremely low false positive rate. We report on two data fusion algorithms, one that tessellates the surface so as to fuse data from a large region around Pasadena and the other, which uses a standard tessellation of equal-sized cells. Since September 2011, the network has successfully detected earthquakes of magnitude 2.5 or higher within 40 Km of Pasadena. In addition to the standard USB device, which connects to the host's computer, we have developed a stand-alone sensor that directly connects to the internet via Ethernet or wifi. This bypasses security concerns that some companies have with the USB-connected devices, and allows for 24/7 monitoring at sites that would otherwise shut down their computers after working hours. In buildings we use the sensors to model the behavior of the structures during weak events in order to understand how they will perform during strong events. Visualization models of instrumented buildings ranging between five and 22 stories tall have been constructed using Google SketchUp. Ambient vibration records are used to identify the first set of horizontal vibrational modal frequencies of the buildings. These frequencies are used to compute the response on every floor of the building, given either observed data or scenario ground motion input at the buildings' base.
Wireless augmented reality communication system
NASA Technical Reports Server (NTRS)
Devereaux, Ann (Inventor); Agan, Martin (Inventor); Jedrey, Thomas (Inventor)
2006-01-01
The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.
Wireless Augmented Reality Communication System
NASA Technical Reports Server (NTRS)
Jedrey, Thomas (Inventor); Agan, Martin (Inventor); Devereaux, Ann (Inventor)
2014-01-01
The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.
Wireless Augmented Reality Communication System
NASA Technical Reports Server (NTRS)
Agan, Martin (Inventor); Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor)
2016-01-01
The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.
A Web service-based architecture for real-time hydrologic sensor networks
NASA Astrophysics Data System (ADS)
Wong, B. P.; Zhao, Y.; Kerkez, B.
2014-12-01
Recent advances in web services and cloud computing provide new means by which to process and respond to real-time data. This is particularly true of platforms built for the Internet of Things (IoT). These enterprise-scale platforms have been designed to exploit the IP-connectivity of sensors and actuators, providing a robust means by which to route real-time data feeds and respond to events of interest. While powerful and scalable, these platforms have yet to be adopted by the hydrologic community, where the value of real-time data impacts both scientists and decision makers. We discuss the use of one such IoT platform for the purpose of large-scale hydrologic measurements, showing how rapid deployment and ease-of-use allows scientists to focus on their experiment rather than software development. The platform is hardware agnostic, requiring only IP-connectivity of field devices to capture, store, process, and visualize data in real-time. We demonstrate the benefits of real-time data through a real-world use case by showing how our architecture enables the remote control of sensor nodes, thereby permitting the nodes to adaptively change sampling strategies to capture major hydrologic events of interest.
A novel modular ANN architecture for efficient monitoring of gases/odours in real-time
NASA Astrophysics Data System (ADS)
Mishra, A.; Rajput, N. S.
2018-04-01
Data pre-processing is tremendously used for enhanced classification of gases. However, it suppresses the concentration variances of different gas samples. A classical solution of using single artificial neural network (ANN) architecture is also inefficient and renders degraded quantification. In this paper, a novel modular ANN design has been proposed to provide an efficient and scalable solution in real–time. Here, two separate ANN blocks viz. classifier block and quantifier block have been used to provide efficient and scalable gas monitoring in real—time. The classifier ANN consists of two stages. In the first stage, the Net 1-NDSRT has been trained to transform raw sensor responses into corresponding virtual multi-sensor responses using normalized difference sensor response transformation (NDSRT). These responses have been fed to the second stage (i.e., Net 2-classifier ). The Net 2-classifier has been trained to classify various gas samples to their respective class. Further, the quantifier block has parallel ANN modules, multiplexed to quantify each gas. Therefore, the classifier ANN decides class and quantifier ANN decides the exact quantity of the gas/odor present in the respective sample of that class.
Smart Building: Decision Making Architecture for Thermal Energy Management
Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo
2015-01-01
Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978
Long-range allosteric signaling in red light–regulated diguanylyl cyclases
Gourinchas, Geoffrey; Etzl, Stefan; Göbl, Christoph; Vide, Uršula; Madl, Tobias; Winkler, Andreas
2017-01-01
Nature has evolved an astonishingly modular architecture of covalently linked protein domains with diverse functionalities to enable complex cellular networks that are critical for cell survival. The coupling of sensory modules with enzymatic effectors allows direct allosteric regulation of cellular signaling molecules in response to diverse stimuli. We present molecular details of red light–sensing bacteriophytochromes linked to cyclic dimeric guanosine monophosphate–producing diguanylyl cyclases. Elucidation of the first crystal structure of a full-length phytochrome with its enzymatic effector, in combination with the characterization of light-induced changes in conformational dynamics, reveals how allosteric light regulation is fine-tuned by the architecture and composition of the coiled-coil sensor-effector linker and also the central helical spine. We anticipate that consideration of molecular principles of sensor-effector coupling, going beyond the length of the characteristic linker, and the appreciation of dynamically driven allostery will open up new directions for the design of novel red light–regulated optogenetic tools. PMID:28275738
Synthetic Foveal Imaging Technology
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh (Inventor); Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor)
2013-01-01
Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.
Milde, Moritz B.; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia
2017-01-01
Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware. PMID:28747883
Real-Time and Secure Wireless Health Monitoring
Dağtaş, S.; Pekhteryev, G.; Şahinoğlu, Z.; Çam, H.; Challa, N.
2008-01-01
We present a framework for a wireless health monitoring system using wireless networks such as ZigBee. Vital signals are collected and processed using a 3-tiered architecture. The first stage is the mobile device carried on the body that runs a number of wired and wireless probes. This device is also designed to perform some basic processing such as the heart rate and fatal failure detection. At the second stage, further processing is performed by a local server using the raw data transmitted by the mobile device continuously. The raw data is also stored at this server. The processed data as well as the analysis results are then transmitted to the service provider center for diagnostic reviews as well as storage. The main advantages of the proposed framework are (1) the ability to detect signals wirelessly within a body sensor network (BSN), (2) low-power and reliable data transmission through ZigBee network nodes, (3) secure transmission of medical data over BSN, (4) efficient channel allocation for medical data transmission over wireless networks, and (5) optimized analysis of data using an adaptive architecture that maximizes the utility of processing and computational capacity at each platform. PMID:18497866
Milde, Moritz B; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia
2017-01-01
Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.
Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco
2017-11-07
Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.
DualTrust: A Distributed Trust Model for Swarm-Based Autonomic Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiden, Wendy M.; Dionysiou, Ioanna; Frincke, Deborah A.
2011-02-01
For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, trust management is important for the acceptance of the mobile agent sensors and to protect the system from malicious behavior by insiders and entities that have penetrated network defenses. This paper examines the trust relationships, evidence, and decisions in a representative system and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. We then propose the DualTrust conceptual trust model. By addressing themore » autonomic manager’s bi-directional primary relationships in the ACS architecture, DualTrust is able to monitor the trustworthiness of the autonomic managers, protect the sensor swarm in a scalable manner, and provide global trust awareness for the orchestrating autonomic manager.« less
NASA Astrophysics Data System (ADS)
Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing
2016-06-01
Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.
NASA Technical Reports Server (NTRS)
Chau, Savio; Vatan, Farrokh; Randolph, Vincent; Baroth, Edmund C.
2006-01-01
Future In-Space propulsion systems for exploration programs will invariably require data collection from a large number of sensors. Consider the sensors needed for monitoring several vehicle systems states of health, including the collection of structural health data, over a large area. This would include the fuel tanks, habitat structure, and science containment of systems required for Lunar, Mars, or deep space exploration. Such a system would consist of several hundred or even thousands of sensors. Conventional avionics system design will require these sensors to be connected to a few Remote Health Units (RHU), which are connected to robust, micro flight computers through a serial bus. This results in a large mass of cabling and unacceptable weight. This paper first gives a survey of several techniques that may reduce the cabling mass for sensors. These techniques can be categorized into four classes: power line communication, serial sensor buses, compound serial buses, and wireless network. The power line communication approach uses the power line to carry both power and data, so that the conventional data lines can be eliminated. The serial sensor bus approach reduces most of the cabling by connecting all the sensors with a single (or redundant) serial bus. Many standard buses for industrial control and sensor buses can support several hundreds of nodes, however, have not been space qualified. Conventional avionics serial buses such as the Mil-Std-1553B bus and IEEE 1394a are space qualified but can support only a limited number of nodes. The third approach is to combine avionics buses to increase their addressability. The reliability, EMI/EMC, and flight qualification issues of wireless networks have to be addressed. Several wireless networks such as the IEEE 802.11 and Ultra Wide Band are surveyed in this paper. The placement of sensors can also affect cable mass. Excessive sensors increase the number of cables unnecessarily. Insufficient number of sensors may not provide adequate coverage of the system. This paper also discusses an optimal technique to place and validate sensors.
NASA Astrophysics Data System (ADS)
Bosse, Stefan
2013-05-01
Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour, interaction (communication), and mobility features are modelled and specified on a machine-independent abstract programming level using a state-based agent behaviour language (APL). With this APL a high-level agent compiler is able to synthesize a hardware model (RTL, VHDL), a software model (C, ML), or a simulation model (XML) suitable to simulate a multi-agent system using the SeSAm simulator framework. Agent communication is provided by a simple tuple-space database implemented on node level providing fault tolerant access of global data. A novel synthesis development kit (SynDK) based on a graph-structured database approach is introduced to support the rapid development of compilers and synthesis tools, used for example for the design and implementation of the APL compiler.
Sensor Webs with a Service-Oriented Architecture for On-demand Science Products
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Ungar, Stephen; Ames, Troy; Justice, Chris; Frye, Stuart; Chien, Steve; Tran, Daniel; Cappelaere, Patrice; Derezinsfi, Linda; Paules, Granville;
2007-01-01
This paper describes the work being managed by the NASA Goddard Space Flight Center (GSFC) Information System Division (ISD) under a NASA Earth Science Technology Ofice (ESTO) Advanced Information System Technology (AIST) grant to develop a modular sensor web architecture which enables discovery of sensors and workflows that can create customized science via a high-level service-oriented architecture based on Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) web service standards. These capabilities serve as a prototype to a user-centric architecture for Global Earth Observing System of Systems (GEOSS). This work builds and extends previous sensor web efforts conducted at NASA/GSFC using the Earth Observing 1 (EO-1) satellite and other low-earth orbiting satellites.
A Service Oriented Architecture to Enable Sensor Webs
NASA Technical Reports Server (NTRS)
Sohlberg, Rob; Frye, Stu; Cappelaere, Pat; Ungar, Steve; Ames, Troy; Chien, Steve
2006-01-01
This viewgraph presentation reviews the development of a Service Oriented Architecture to assist in lowering the cost of new Earth Science products. This architecture will enable rapid and cost effective reconfiguration of new sensors.
Wireless sensor network: an aimless gadget or a necessary tool for natural hazards warning systems
NASA Astrophysics Data System (ADS)
Hloupis, George; Stavrakas, Ilias; Triantis, Dimos
2010-05-01
The purpose of the current study is to review the current technical and scientific state of wireless sensor networks (WSNs) with application on natural hazards. WSN have received great attention from the research community in the last few years, mainly due to the theoretical and practical efforts from challenges that led to mature solutions and adoption of standards, such as Bluetooth [2] and ZigBee [3]. Wireless technology solutions allows Micro-ElectroMechanical Systems sensors (MEMS) to be integrated (with all the necessary circuitry) to small wireless capable devices, the nodes. Available MEMS today include pressure, temperature, humidity, inertial and strain-gauge sensors as well as transducers for velocity, acceleration, vibration, flow position and inclination [4]. A WSN is composed by a large number of nodes which are deployed densely adjacent to the area under monitoring. Each node collects data which transmitted to a gateway. The main requirements that WSNs must fulfilled are quite different than those of ad-hoc networks. WSNs have to be self-organized (since the positions of individual nodes are not known in advance), they must present cooperative processing of tasks (where groups of nodes cooperate in order to provide the gathered data to the user), they require security mechanisms that are adaptive to monitoring conditions and all algorithms must be energy optimized. In this paper, the state of the art in hardware, software, algorithms and protocols for WSNs, focused on natural hazards, is surveyed. Architectures for WSNs are investigated along with their advantages and drawbacks. Available research prototypes as well as commercially proposed solutions that can be used for natural hazards monitoring and early warning systems are listed and classified. [1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey, Comput. Networks (Elsevier) 38 (4) (2002) 393-422. [2] Dursch, A.; Yen, D.C.; Shih, D.H. Bluetooth technology: an exploratory study of the analysis and implementation frameworks. Comput. Stand. Interface. 2004, 26, 263-277. [3] Baronti, P.; Pillai, P.; Chook, V.W.C.; Chessa, S.; Gotta, A.; Hu, Y.F. Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Comput. Commun. 2007, 30, 1655-1695. [4] Arampatzis, T.; Lygeros, J.; Manesis, S. A survey of applications of wireless sensors and Wireless Sensor Networks. In 2005 IEEE International Symposium on Intelligent Control & 13th Mediterranean Conference on Control and Automation. Limassol, Cyprus, 2005, 1-2, 719-724.
Virtual Sensors for On-line Wheel Wear and Part Roughness Measurement in the Grinding Process
Arriandiaga, Ander; Portillo, Eva; Sánchez, Jose A.; Cabanes, Itziar; Pombo, Iñigo
2014-01-01
Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 μm). In the case of surface finish, the absolute error is well below Ra 1 μm (average value 0.32 μm). The present approach can be easily generalized to other grinding operations. PMID:24854055
Integration of RFID and web service for assisted living.
Unluturk, Mehmet S; Kurtel, Kaan
2012-08-01
The number of people over 65 years old throughout most stable and prosperous countries in the world is increasing. Availability of their care in their own homes is imperative because of the economic reasons and their choices where to live (World Health Organization, Definition of an older or elderly person. http://www.who.int/healthinfo/survey/ageingdefnolder/en/ ; EQUIP-European Framework for Qualifications in Home Care Services for Older People, http://www.equip-project.com ; Salonen, 2009). "Recent advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be utilized in various application areas." (Akyildiz, et al. 2002) These two statements show that there is a great promise in wireless technology and utilizing it in assisted living might be very beneficial to the elderly people. In this paper, we propose software architecture called Location Windows Service (LWS) which integrates the Radio Frequency Identification (RFID) technology and the web service to build an assisted living system for elderly people at home. This architecture monitors the location of elderly people without interfering in their daily activities. Location information messages that are generated as the elderly move from room to room indicate that the elderly person is fit and healthy and going about their normal life. The communication must be timely enough to follow elderly people as they move from room to room without missing a location. Unacknowledged publishing, subscription filtering and short location change messages are also included in this software model to reduce the network traffic in large homes. We propose some defense schemes being applied to the network environment of the assisted living system to prevent any external attacks.
0.5 V and 0.43 pJ/bit Capacitive Sensor Interface for Passive Wireless Sensor Systems
Beriain, Andoni; Gutierrez, Iñigo; Solar, Hector; Berenguer, Roc
2015-01-01
This paper presents an ultra low-power and low-voltage pulse-width modulation based ratiometric capacitive sensor interface. The interface was designed and fabricated in a standard 90 nm CMOS 1P9M technology. The measurements show an effective resolution of 10 bits using 0.5 V of supply voltage. The active occupied area is only 0.0045 mm2 and the Figure of Merit (FOM), which takes into account the energy required per conversion bit, is 0.43 pJ/bit. Furthermore, the results show low sensitivity to PVT variations due to the proposed ratiometric architecture. In addition, the sensor interface was connected to a commercial pressure transducer and the measurements of the resulting complete pressure sensor show a FOM of 0.226 pJ/bit with an effective linear resolution of 7.64 bits. The results validate the use of the proposed interface as part of a pressure sensor, and its low-power and low-voltage characteristics make it suitable for wireless sensor networks and low power consumer electronics. PMID:26343681
0.5 V and 0.43 pJ/bit Capacitive Sensor Interface for Passive Wireless Sensor Systems.
Beriain, Andoni; Gutierrez, Iñigo; Solar, Hector; Berenguer, Roc
2015-08-28
This paper presents an ultra low-power and low-voltage pulse-width modulation based ratiometric capacitive sensor interface. The interface was designed and fabricated in a standard 90 nm CMOS 1P9M technology. The measurements show an effective resolution of 10 bits using 0.5 V of supply voltage. The active occupied area is only 0.0045 mm2 and the Figure of Merit (FOM), which takes into account the energy required per conversion bit, is 0.43 pJ/bit. Furthermore, the results show low sensitivity to PVT variations due to the proposed ratiometric architecture. In addition, the sensor interface was connected to a commercial pressure transducer and the measurements of the resulting complete pressure sensor show a FOM of 0.226 pJ/bit with an effective linear resolution of 7.64 bits. The results validate the use of the proposed interface as part of a pressure sensor, and its low-power and low-voltage characteristics make it suitable for wireless sensor networks and low power consumer electronics.
Smart sensing surveillance system
NASA Astrophysics Data System (ADS)
Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen
2010-04-01
Unattended ground sensor (UGS) networks have been widely used in remote battlefield and other tactical applications over the last few decades due to the advances of the digital signal processing. The UGS network can be applied in a variety of areas including border surveillance, special force operations, perimeter and building protection, target acquisition, situational awareness, and force protection. In this paper, a highly-distributed, fault-tolerant, and energyefficient Smart Sensing Surveillance System (S4) is presented to efficiently provide 24/7 and all weather security operation in a situation management environment. The S4 is composed of a number of distributed nodes to collect, process, and disseminate heterogeneous sensor data. Nearly all S4 nodes have passive sensors to provide rapid omnidirectional detection. In addition, Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR cameras are integrated to selected nodes to track the objects and capture associated imagery. These S4 camera-connected nodes will provide applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. In the S4, all the nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology, which can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The S4 utilizes a Service Oriented Architecture such that remote applications can interact with the S4 network and use the specific presentation methods. The S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments and near perimeters and borders. The S4 is compliant with Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE®) standards. It would be directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.
Internet-Protocol-Based Satellite Bus Architecture Designed
NASA Technical Reports Server (NTRS)
Slywczak, Richard A.
2004-01-01
NASA is designing future complex satellite missions ranging from single satellites and constellations to space networks and sensor webs. These missions require more interoperability, autonomy, and coordination than previous missions; in addition, a desire exists to have scientists retrieve data directly from the satellite rather than a central distribution source. To meet these goals, NASA has been studying the possibility of extending the Transmission Control Protocol/Internet Protocol (TCP/IP) suite for spacebased applications.
2011-06-01
time delays, and even insurance premiums [3]. Piracy has plagued the straits of Malacca and Singapore for many years. Though the number of...Island while traversing west to east, it will attract considerable attention when it cuts across the TSS before heading towards Jurong Island (see the...delimited vectors), ’cutvector’ % (NaN-clipped vectors with cuts connecting holes to the % exterior of the polygon
Tidal analysis of GNSS data from a high resolution sensor network at Helheim Glacier
NASA Astrophysics Data System (ADS)
Martin, Ian; Aspey, Robin; Baugé, Tim; Edwards, Stuart; Everett, Alistair; James, Timothy; Loskot, Pavel; Murray, Tavi; O'Farrell, Tim; Rutt, Ian
2014-05-01
Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four 'collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to 'floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the adoption of beacon based time division multiple access (tdma). The processed GNSS data provides 1-2 cm accurate coordinate time-series at 3-5 second intervals. These time series are able to capture the glaciers response to major calving events as it receded ~1.5 km and smaller diurnal and semi-diurnal variations in vertical and horizontal motion linked to tidal forcing. Using images from time lapse cameras to locate the calving events we are able to quantify the variation in tidal response over the 3km x 5km area at the calving front during the 53 day study period.
An Indoor Monitoring System for Ambient Assisted Living Based on Internet of Things Architecture
Marques, Gonçalo; Pitarma, Rui
2016-01-01
The study of systems and architectures for ambient assisted living (AAL) is undoubtedly a topic of great relevance given the aging of the world population. The AAL technologies are designed to meet the needs of the aging population in order to maintain their independence as long as possible. As people typically spend more than 90% of their time in indoor environments, indoor air quality (iAQ) is perceived as an imperative variable to be controlled for the inhabitants’ wellbeing and comfort. Advances in networking, sensors, and embedded devices have made it possible to monitor and provide assistance to people in their homes. The continuous technological advancements make it possible to build smart objects with great capabilities for sensing and connecting several possible advancements in ambient assisted living systems architectures. Indoor environments are characterized by several pollutant sources. Most of the monitoring frameworks instantly accessible are exceptionally costly and only permit the gathering of arbitrary examples. iAQ is an indoor air quality system based on an Internet of Things paradigm that incorporates in its construction Arduino, ESP8266, and XBee technologies for processing and data transmission and micro sensors for data acquisition. It also allows access to data collected through web access and through a mobile application in real time, and this data can be accessed by doctors in order to support medical diagnostics. Five smaller scale sensors of natural parameters (air temperature, moistness, carbon monoxide, carbon dioxide, and glow) were utilized. Different sensors can be included to check for particular contamination. The results reveal that the system can give a viable indoor air quality appraisal in order to anticipate technical interventions for improving indoor air quality. Indeed indoor air quality might be distinctively contrasted with what is normal for a quality living environment. PMID:27869682
An Indoor Monitoring System for Ambient Assisted Living Based on Internet of Things Architecture.
Marques, Gonçalo; Pitarma, Rui
2016-11-17
The study of systems and architectures for ambient assisted living (AAL) is undoubtedly a topic of great relevance given the aging of the world population. The AAL technologies are designed to meet the needs of the aging population in order to maintain their independence as long as possible. As people typically spend more than 90% of their time in indoor environments, indoor air quality (iAQ) is perceived as an imperative variable to be controlled for the inhabitants' wellbeing and comfort. Advances in networking, sensors, and embedded devices have made it possible to monitor and provide assistance to people in their homes. The continuous technological advancements make it possible to build smart objects with great capabilities for sensing and connecting several possible advancements in ambient assisted living systems architectures. Indoor environments are characterized by several pollutant sources. Most of the monitoring frameworks instantly accessible are exceptionally costly and only permit the gathering of arbitrary examples. iAQ is an indoor air quality system based on an Internet of Things paradigm that incorporates in its construction Arduino, ESP8266, and XBee technologies for processing and data transmission and micro sensors for data acquisition. It also allows access to data collected through web access and through a mobile application in real time, and this data can be accessed by doctors in order to support medical diagnostics. Five smaller scale sensors of natural parameters (air temperature, moistness, carbon monoxide, carbon dioxide, and glow) were utilized. Different sensors can be included to check for particular contamination. The results reveal that the system can give a viable indoor air quality appraisal in order to anticipate technical interventions for improving indoor air quality. Indeed indoor air quality might be distinctively contrasted with what is normal for a quality living environment.
Gust prediction via artificial hair sensor array and neural network
NASA Astrophysics Data System (ADS)
Pankonien, Alexander M.; Thapa Magar, Kaman S.; Beblo, Richard V.; Reich, Gregory W.
2017-04-01
Gust Load Alleviation (GLA) is an important aspect of flight dynamics and control that reduces structural loadings and enhances ride quality. In conventional GLA systems, the structural response to aerodynamic excitation informs the control scheme. A phase lag, imposed by inertia, between the excitation and the measurement inherently limits the effectiveness of these systems. Hence, direct measurement of the aerodynamic loading can eliminate this lag, providing valuable information for effective GLA system design. Distributed arrays of Artificial Hair Sensors (AHS) are ideal for surface flow measurements that can be used to predict other necessary parameters such as aerodynamic forces, moments, and turbulence. In previous work, the spatially distributed surface flow velocities obtained from an array of artificial hair sensors using a Single-State (or feedforward) Neural Network were found to be effective in estimating the steady aerodynamic parameters such as air speed, angle of attack, lift and moment coefficient. This paper extends the investigation of the same configuration to unsteady force and moment estimation, which is important for active GLA control design. Implementing a Recurrent Neural Network that includes previous-timestep sensor information, the hair sensor array is shown to be capable of capturing gust disturbances with a wide range of periods, reducing predictive error in lift and moment by 68% and 52% respectively. The L2 norms of the first layer of the weight matrices were compared showing a 23% emphasis on prior versus current information. The Recurrent architecture also improves robustness, exhibiting only a 30% increase in predictive error when undertrained as compared to a 170% increase by the Single-State NN. This diverse, localized information can thus be directly implemented into a control scheme that alleviates the gusts without waiting for a structural response or requiring user-intensive sensor calibration.
Open Source Dataturbine (OSDT) Android Sensorpod in Environmental Observing Systems
NASA Astrophysics Data System (ADS)
Fountain, T. R.; Shin, P.; Tilak, S.; Trinh, T.; Smith, J.; Kram, S.
2014-12-01
The OSDT Android SensorPod is a custom-designed mobile computing platform for assembling wireless sensor networks for environmental monitoring applications. Funded by an award from the Gordon and Betty Moore Foundation, the OSDT SensorPod represents a significant technological advance in the application of mobile and cloud computing technologies to near-real-time applications in environmental science, natural resources management, and disaster response and recovery. It provides a modular architecture based on open standards and open-source software that allows system developers to align their projects with industry best practices and technology trends, while avoiding commercial vendor lock-in to expensive proprietary software and hardware systems. The integration of mobile and cloud-computing infrastructure represents a disruptive technology in the field of environmental science, since basic assumptions about technology requirements are now open to revision, e.g., the roles of special purpose data loggers and dedicated site infrastructure. The OSDT Android SensorPod was designed with these considerations in mind, and the resulting system exhibits the following characteristics - it is flexible, efficient and robust. The system was developed and tested in the three science applications: 1) a fresh water limnology deployment in Wisconsin, 2) a near coastal marine science deployment at the UCSD Scripps Pier, and 3) a terrestrial ecological deployment in the mountains of Taiwan. As part of a public education and outreach effort, a Facebook page with daily ocean pH measurements from the UCSD Scripps pier was developed. Wireless sensor networks and the virtualization of data and network services is the future of environmental science infrastructure. The OSDT Android SensorPod was designed and developed to harness these new technology developments for environmental monitoring applications.
NASA Astrophysics Data System (ADS)
Coughlin, J.; Mital, R.; Nittur, S.; SanNicolas, B.; Wolf, C.; Jusufi, R.
2016-09-01
Operational analytics when combined with Big Data technologies and predictive techniques have been shown to be valuable in detecting mission critical sensor anomalies that might be missed by conventional analytical techniques. Our approach helps analysts and leaders make informed and rapid decisions by analyzing large volumes of complex data in near real-time and presenting it in a manner that facilitates decision making. It provides cost savings by being able to alert and predict when sensor degradations pass a critical threshold and impact mission operations. Operational analytics, which uses Big Data tools and technologies, can process very large data sets containing a variety of data types to uncover hidden patterns, unknown correlations, and other relevant information. When combined with predictive techniques, it provides a mechanism to monitor and visualize these data sets and provide insight into degradations encountered in large sensor systems such as the space surveillance network. In this study, data from a notional sensor is simulated and we use big data technologies, predictive algorithms and operational analytics to process the data and predict sensor degradations. This study uses data products that would commonly be analyzed at a site. This study builds on a big data architecture that has previously been proven valuable in detecting anomalies. This paper outlines our methodology of implementing an operational analytic solution through data discovery, learning and training of data modeling and predictive techniques, and deployment. Through this methodology, we implement a functional architecture focused on exploring available big data sets and determine practical analytic, visualization, and predictive technologies.
Design and Analysis of Self-Adapted Task Scheduling Strategies in Wireless Sensor Networks
Guo, Wenzhong; Xiong, Naixue; Chao, Han-Chieh; Hussain, Sajid; Chen, Guolong
2011-01-01
In a wireless sensor network (WSN), the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm’s ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms. PMID:22163971
NASA Enterprise Architecture and Its Use in Transition of Research Results to Operations
NASA Astrophysics Data System (ADS)
Frisbie, T. E.; Hall, C. M.
2006-12-01
Enterprise architecture describes the design of the components of an enterprise, their relationships and how they support the objectives of that enterprise. NASA Stennis Space Center leads several projects involving enterprise architecture tools used to gather information on research assets within NASA's Earth Science Division. In the near future, enterprise architecture tools will link and display the relevant requirements, parameters, observatories, models, decision systems, and benefit/impact information relationships and map to the Federal Enterprise Architecture Reference Models. Components configured within the enterprise architecture serving the NASA Applied Sciences Program include the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool. The Earth Science Components Knowledge Base systematically catalogues NASA missions, sensors, models, data products, model products, and network partners appropriate for consideration in NASA Earth Science applications projects. The Systems Components database is a centralized information warehouse of NASA's Earth Science research assets and a critical first link in the implementation of enterprise architecture. The Earth Science Architecture Tool is used to analyze potential NASA candidate systems that may be beneficial to decision-making capabilities of other Federal agencies. Use of the current configuration of NASA enterprise architecture (the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool) has far exceeded its original intent and has tremendous potential for the transition of research results to operational entities.
GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems
NASA Astrophysics Data System (ADS)
Barooah, Prabir; Collins, Gaemus E.; Hespanha, João P.
2009-05-01
Research from the Institute for Collaborative Biotechnologies (ICB) at the University of California at Santa Barbara (UCSB) has identified swarming algorithms used by flocks of birds and schools of fish that enable these animals to move in tight formation and cooperatively track prey with minimal estimation errors, while relying solely on local communication between the animals. This paper describes ongoing work by UCSB, the University of Florida (UF), and the Toyon Research Corporation on the utilization of these algorithms to dramatically improve the capabilities of small unmanned aircraft systems (UAS) to cooperatively locate and track ground targets. Our goal is to construct an electronic system, called GeoTrack, through which a network of hand-launched UAS use dedicated on-board processors to perform multi-sensor data fusion. The nominal sensors employed by the system will EO/IR video cameras on the UAS. When GMTI or other wide-area sensors are available, as in a layered sensing architecture, data from the standoff sensors will also be fused into the GeoTrack system. The output of the system will be position and orientation information on stationary or mobile targets in a global geo-stationary coordinate system. The design of the GeoTrack system requires significant advances beyond the current state-of-the-art in distributed control for a swarm of UAS to accomplish autonomous coordinated tracking; target geo-location using distributed sensor fusion by a network of UAS, communicating over an unreliable channel; and unsupervised real-time image-plane video tracking in low-powered computing platforms.
NASA Astrophysics Data System (ADS)
Darling, N. T.; Mendez, J. S.; Fritz, T. A.; Hoffman, C.
2012-12-01
The lack of rapidly reconfigurable and easily deployable instrumentation packages often results in information loss during unannounced or time-critical geophysical events such as spaceweather flare-ups, earthquakes, volcanic eruptions, and tsunamis. While increasingly powerful and sensitive sensor technologies have been created in the last years to study our planet, robust, yet simple and cost-effective, mechanical, electrical, and data interfaces between these devices and the user (scientist) have yet to be developed. Non-standardized interfaces make instrument integration and field operation cumbersome and error-prone. Indeed, the assembly and deployment of some systems can take months and incur high costs. To address this problem, we present the LIthosphere-to-IOnosphere Plug-aNd-Play architecture (LION-PNP), a complete, low cost integration protocol for space, atmospheric, and terrestrial sensor networks. Similar to the USB plug-and-play protocols created for personal computers, LION-PNP offers geophysicists and space scientists the ability to assemble and operate complex sensor packages by simply "plugging" devices (magnetometers, seismometers, GPS, spectrometers, etc) into a centralized Command and Data Handling unit (CDH). LION-PNP accomplishes this by inserting a Generic Sensor Interpreter (GSI) between the back-end of a device and the CDH. The GSI allows the CDH to automatically configure a sensor without requiring the user to manually install drivers. Mechanical integration is also accelerated by repackaging instruments according to the CubeSAT form-factor (multiples of 10 x 10 x 10 cm cubes). In the following work, we report on the development of LION-PNP. To demonstrate our initial success, we first discuss the Boston University Student-satellite for Applications and Training (BUSAT), a low-cost, modular, spaceweather satellite running LION-PNP. BUSAT is a completely student-driven project meant for magnetospheric-ionospheric research incorporating 4 scientific payloads. To further stress the broad applicability of LION-PNP we also present VolcanoNET, a ground-based, multi-sensor package that will explore charging of volcanic ash plumes and volcanic lightning.; The Boston University Student satellite for Applications and Training (BUSAT) canisterized scientific satellite concept.
Feasibility study on sensor data fusion for the CP-140 aircraft: fusion architecture analyses
NASA Astrophysics Data System (ADS)
Shahbazian, Elisa
1995-09-01
Loral Canada completed (May 1995) a Department of National Defense (DND) Chief of Research and Development (CRAD) contract, to study the feasibility of implementing a multi- sensor data fusion (MSDF) system onboard the CP-140 Aurora aircraft. This system is expected to fuse data from: (a) attributed measurement oriented sensors (ESM, IFF, etc.); (b) imaging sensors (FLIR, SAR, etc.); (c) tracking sensors (radar, acoustics, etc.); (d) data from remote platforms (data links); and (e) non-sensor data (intelligence reports, environmental data, visual sightings, encyclopedic data, etc.). Based on purely theoretical considerations a central-level fusion architecture will lead to a higher performance fusion system. However, there are a number of systems and fusion architecture issues involving fusion of such dissimilar data: (1) the currently existing sensors are not designed to provide the type of data required by a fusion system; (2) the different types (attribute, imaging, tracking, etc.) of data may require different degree of processing, before they can be used within a fusion system efficiently; (3) the data quality from different sensors, and more importantly from remote platforms via the data links must be taken into account before fusing; and (4) the non-sensor data may impose specific requirements on the fusion architecture (e.g. variable weight/priority for the data from different sensors). This paper presents the analyses performed for the selection of the fusion architecture for the enhanced sensor suite planned for the CP-140 aircraft in the context of the mission requirements and environmental conditions.
Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation.
Villarrubia, Gabriel; Paz, Juan F De; Iglesia, Daniel H De La; Bajo, Javier
2017-08-02
Monitoring mechanisms that ensure efficient crop growth are essential on many farms, especially in certain areas of the planet where water is scarce. Most farmers must assume the high cost of the required equipment in order to be able to streamline natural resources on their farms. Considering that many farmers cannot afford to install this equipment, it is necessary to look for more effective solutions that would be cheaper to implement. The objective of this study is to build virtual organizations of agents that can communicate between each other while monitoring crops. A low cost sensor architecture allows farmers to monitor and optimize the growth of their crops by streamlining the amount of resources the crops need at every moment. Since the hardware has limited processing and communication capabilities, our approach uses the PANGEA architecture to overcome this limitation. Specifically, we will design a system that is capable of collecting heterogeneous information from its environment, using sensors for temperature, solar radiation, humidity, pH, moisture and wind. A major outcome of our approach is that our solution is able to merge heterogeneous data from sensors and produce a response adapted to the context. In order to validate the proposed system, we present a case study in which farmers are provided with a tool that allows us to monitor the condition of crops on a TV screen using a low cost device.
Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation
Villarrubia, Gabriel; De Paz, Juan F.; De La Iglesia, Daniel H.; Bajo, Javier
2017-01-01
Monitoring mechanisms that ensure efficient crop growth are essential on many farms, especially in certain areas of the planet where water is scarce. Most farmers must assume the high cost of the required equipment in order to be able to streamline natural resources on their farms. Considering that many farmers cannot afford to install this equipment, it is necessary to look for more effective solutions that would be cheaper to implement. The objective of this study is to build virtual organizations of agents that can communicate between each other while monitoring crops. A low cost sensor architecture allows farmers to monitor and optimize the growth of their crops by streamlining the amount of resources the crops need at every moment. Since the hardware has limited processing and communication capabilities, our approach uses the PANGEA architecture to overcome this limitation. Specifically, we will design a system that is capable of collecting heterogeneous information from its environment, using sensors for temperature, solar radiation, humidity, pH, moisture and wind. A major outcome of our approach is that our solution is able to merge heterogeneous data from sensors and produce a response adapted to the context. In order to validate the proposed system, we present a case study in which farmers are provided with a tool that allows us to monitor the condition of crops on a TV screen using a low cost device. PMID:28767089
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loparo, Kenneth; Kolacinski, Richard; Threeanaew, Wanchat
A central goal of the work was to enable both the extraction of all relevant information from sensor data, and the application of information gained from appropriate processing and fusion at the system level to operational control and decision-making at various levels of the control hierarchy through: 1. Exploiting the deep connection between information theory and the thermodynamic formalism, 2. Deployment using distributed intelligent agents with testing and validation in a hardware-in-the loop simulation environment. Enterprise architectures are the organizing logic for key business processes and IT infrastructure and, while the generality of current definitions provides sufficient flexibility, the currentmore » architecture frameworks do not inherently provide the appropriate structure. Of particular concern is that existing architecture frameworks often do not make a distinction between ``data'' and ``information.'' This work defines an enterprise architecture for health and condition monitoring of power plant equipment and further provides the appropriate foundation for addressing shortcomings in current architecture definition frameworks through the discovery of the information connectivity between the elements of a power generation plant. That is, to identify the correlative structure between available observations streams using informational measures. The principle focus here is on the implementation and testing of an emergent, agent-based, algorithm based on the foraging behavior of ants for eliciting this structure and on measures for characterizing differences between communication topologies. The elicitation algorithms are applied to data streams produced by a detailed numerical simulation of Alstom’s 1000 MW ultra-super-critical boiler and steam plant. The elicitation algorithm and topology characterization can be based on different informational metrics for detecting connectivity, e.g. mutual information and linear correlation.« less
Virtual Sensor Test Instrumentation
NASA Technical Reports Server (NTRS)
Wang, Roy
2011-01-01
Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of functions. The sensor data is processed in a distributed fashion across the network, providing a large pool of resources in real time to meet stringent latency requirements.
GeoCENS: a geospatial cyberinfrastructure for the world-wide sensor web.
Liang, Steve H L; Huang, Chih-Yuan
2013-10-02
The world-wide sensor web has become a very useful technique for monitoring the physical world at spatial and temporal scales that were previously impossible. Yet we believe that the full potential of sensor web has thus far not been revealed. In order to harvest the world-wide sensor web's full potential, a geospatial cyberinfrastructure is needed to store, process, and deliver large amount of sensor data collected worldwide. In this paper, we first define the issue of the sensor web long tail followed by our view of the world-wide sensor web architecture. Then, we introduce the Geospatial Cyberinfrastructure for Environmental Sensing (GeoCENS) architecture and explain each of its components. Finally, with demonstration of three real-world powered-by-GeoCENS sensor web applications, we believe that the GeoCENS architecture can successfully address the sensor web long tail issue and consequently realize the world-wide sensor web vision.
GeoCENS: A Geospatial Cyberinfrastructure for the World-Wide Sensor Web
Liang, Steve H.L.; Huang, Chih-Yuan
2013-01-01
The world-wide sensor web has become a very useful technique for monitoring the physical world at spatial and temporal scales that were previously impossible. Yet we believe that the full potential of sensor web has thus far not been revealed. In order to harvest the world-wide sensor web's full potential, a geospatial cyberinfrastructure is needed to store, process, and deliver large amount of sensor data collected worldwide. In this paper, we first define the issue of the sensor web long tail followed by our view of the world-wide sensor web architecture. Then, we introduce the Geospatial Cyberinfrastructure for Environmental Sensing (GeoCENS) architecture and explain each of its components. Finally, with demonstration of three real-world powered-by-GeoCENS sensor web applications, we believe that the GeoCENS architecture can successfully address the sensor web long tail issue and consequently realize the world-wide sensor web vision. PMID:24152921
A parallel unbalanced digitization architecture to reduce the dynamic range of multiple signals
NASA Astrophysics Data System (ADS)
Vallérian, Mathieu; HuÅ£u, Florin; Villemaud, Guillaume; Miscopein, Benoît; Risset, Tanguy
2016-05-01
Technologies employed in urban sensor networks are permanently evolving, and thus the gateways employed to collect data in such kind of networks have to be very flexible in order to be compliant with the new communication standards. A convenient way to do that is to digitize all the received signals in one shot and then to digitally perform the signal processing, as it is done in software-defined radio (SDR). All signals can be emitted with very different features (bandwidth, modulation type, and power level) in order to respond to the various propagation conditions. Their difference in terms of power levels is a problem when digitizing them together, as no current commercial analog-to-digital converter (ADC) can provide a fine enough resolution to digitize this high dynamic range between the weakest possible signal in the presence of a stronger signal. This paper presents an RF front end receiver architecture capable of handling this problem by using two ADCs of lower resolutions. The architecture is validated through a set of simulations using Keysight's ADS software. The main validation criterion is the bit error rate comparison with a classical receiver.
Manes, Gianfranco; Collodi, Giovanni; Gelpi, Leonardo; Fusco, Rosanna; Ricci, Giuseppe; Manes, Antonio; Passafiume, Marco
2016-01-01
This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN) architecture, is organised into sub-networks to be positioned in the plant’s critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks) gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events. PMID:26805832
Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network
2015-01-01
For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system. PMID:26089863
NASA Technical Reports Server (NTRS)
Albus, James S.
1996-01-01
The Real-time Control System (RCS) developed at NIST and elsewhere over the past two decades defines a reference model architecture for design and analysis of complex intelligent control systems. The RCS architecture consists of a hierarchically layered set of functional processing modules connected by a network of communication pathways. The primary distinguishing feature of the layers is the bandwidth of the control loops. The characteristic bandwidth of each level is determined by the spatial and temporal integration window of filters, the temporal frequency of signals and events, the spatial frequency of patterns, and the planning horizon and granularity of the planners that operate at each level. At each level, tasks are decomposed into sequential subtasks, to be performed by cooperating sets of subordinate agents. At each level, signals from sensors are filtered and correlated with spatial and temporal features that are relevant to the control function being implemented at that level.
Energy neutral and low power wireless communications
NASA Astrophysics Data System (ADS)
Orhan, Oner
Wireless sensor nodes are typically designed to have low cost and small size. These design objectives impose restrictions on the capacity and efficiency of the transceiver components and energy storage units that can be used. As a result, energy becomes a bottleneck and continuous operation of the sensor network requires frequent battery replacements, increasing the maintenance cost. Energy harvesting and energy efficient transceiver architectures are able to overcome these challenges by collecting energy from the environment and utilizing the energy in an intelligent manner. However, due to the nature of the ambient energy sources, the amount of useful energy that can be harvested is limited and unreliable. Consequently, optimal management of the harvested energy and design of low power transceivers pose new challenges for wireless network design and operation. The first part of this dissertation is on energy neutral wireless networking, where optimal transmission schemes under different system setups and objectives are investigated. First, throughput maximization for energy harvesting two-hop networks with decode-and-forward half-duplex relays is studied. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Next, the energy cost of the processing circuitry as well as the transmission energy are taken into account for communication over a broadband fading channel powered by an energy harvesting transmitter. Under this setup, throughput maximization, energy maximization, and transmission completion time minimization problems are studied. Finally, source and channel coding for an energy-limited wireless sensor node is investigated under various energy constraints including energy harvesting, processing and sampling costs. For each objective, optimal transmission policies are formulated as the solutions of a convex optimization problem, and the properties of these optimal policies are identified. In the second part of this thesis, low power transceiver design is considered for millimeter wave communication systems. In particular, using an additive quantization noise model, the effect of analog-digital conversion (ADC) resolution and bandwidth on the achievable rate is investigated for a multi-antenna system under a receiver power constraint. Two receiver architectures, analog and digital combining, are compared in terms of performance.
XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker
Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea
2016-01-01
This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet. PMID:26978360
XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker.
Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea
2016-03-10
This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet.
NASA Astrophysics Data System (ADS)
Koubaa, Zied
The communication network and the detection mechanisms are two critical systems in a plane. Their performance has a direct impact on aircrafts. This is of particular interest for avionics designers, who have increasingly invested more and more in the development of these elements. As a part of a project in this domain, we introduce the design and the development of a smart interface for position sensors dedicated to flights (Smart Sensor Interface - SSI). This interface will serve to connect sensors of different technologies (electromagnetic, optical and MEMS) to the new communication network, AFDX. The role of this interface is to generate an appropriate excitation signal for certain types of sensors (R/LVDT), and to treat, demodulate, and digitize their output signals. The proposed interface is thus composed of a Signal Acquisition Path (SAP) and an Excitation Signal Generation (ESG). By adopting the Integrated Modular Avionics architecture (IMA), we can minimize the size of the classic interface, reduce its energy consumption and improve its reliability and its performance. The focus of our design is particularly on the Data Acquisition Path (DAP). An Architecture characterized by a high resolution (14 bits) and a low latency (1.2 ms) of this module is introduced and developed in this prestigious work. This architecture was developed after a wellconducted study of existing solutions found in literature work and a detailed analysis of the problems arise in the design and implementation of this system (DAP). The conversion of the sensor signal into a digital signal is the most important step in acquiring data, as it sets the resolution of the acquired information and generates the majority of its latency. This module can also affect the reliability and stability of the system. Among different models and architectures, the Delta-Sigma analog-to-digital converter (ADC) is preferred for this application (for better resolution). This converter is formed by an analog circuit (modulator) followed by digital filters. The complexity of the implementation, the processing delay and the output resolution are all susceptible to change depending on the architecture of these filters. Thus, the main problem while designing such a system arises in the opposing evolution of the resolution and latency parameters; the improvement or evolution of one, results in the destruction of the other. Therefore, our work aims to provide one or more method to optimize the latency caused by the CAN while maintaining the same resolution of the desired data (14 bits). This optimization takes into account the objective of integrating the DAP in modules of small size and low power consumption. This proposed solution was implemented in order to validate the design of the conception of the interface. We are also interested to achieve the proposed solution and validate our design. The obtained results will be evaluated after following the manufacturing strategy. The data acquisition unit is made up of two electronic components. The first component is an integrated circuit, which uses CMOS 0.13mum IBM technology and contains the analog part of CAN (SigmaDelta modulator). The second component is a Virtex-6 FPGA, which allows one to acquire the necessary digital processing required for the acquisition and conversion of the sensor signal. In the final version of the interface, our analog portion will be integrated with the analog portion of GSE in the same chip. The integrated digital logic in the (FPGA) role will thus provide digital data to the ESG module in order to generate the excitation signal.
Physical limits to biomechanical sensing in disordered fibre networks
NASA Astrophysics Data System (ADS)
Beroz, Farzan; Jawerth, Louise M.; Münster, Stefan; Weitz, David A.; Broedersz, Chase P.; Wingreen, Ned S.
2017-07-01
Cells actively probe and respond to the stiffness of their surroundings. Since mechanosensory cells in connective tissue are surrounded by a disordered network of biopolymers, their in vivo mechanical environment can be extremely heterogeneous. Here we investigate how this heterogeneity impacts mechanosensing by modelling the cell as an idealized local stiffness sensor inside a disordered fibre network. For all types of networks we study, including experimentally-imaged collagen and fibrin architectures, we find that measurements applied at different points yield a strikingly broad range of local stiffnesses, spanning roughly two decades. We verify via simulations and scaling arguments that this broad range of local stiffnesses is a generic property of disordered fibre networks. Finally, we show that to obtain optimal, reliable estimates of global tissue stiffness, a cell must adjust its size, shape, and position to integrate multiple stiffness measurements over extended regions of space.
Liu, Weisong; Huang, Zhitao; Wang, Xiang; Sun, Weichao
2017-01-01
In a cognitive radio sensor network (CRSN), wideband spectrum sensing devices which aims to effectively exploit temporarily vacant spectrum intervals as soon as possible are of great importance. However, the challenge of increasingly high signal frequency and wide bandwidth requires an extremely high sampling rate which may exceed today’s best analog-to-digital converters (ADCs) front-end bandwidth. Recently, the newly proposed architecture called modulated wideband converter (MWC), is an attractive analog compressed sensing technique that can highly reduce the sampling rate. However, the MWC has high hardware complexity owing to its parallel channel structure especially when the number of signals increases. In this paper, we propose a single channel modulated wideband converter (SCMWC) scheme for spectrum sensing of band-limited wide-sense stationary (WSS) signals. With one antenna or sensor, this scheme can save not only sampling rate but also hardware complexity. We then present a new, SCMWC based, single node CR prototype System, on which the spectrum sensing algorithm was tested. Experiments on our hardware prototype show that the proposed architecture leads to successful spectrum sensing. And the total sampling rate as well as hardware size is only one channel’s consumption of MWC. PMID:28471410
NASA Astrophysics Data System (ADS)
Lenzini, Gabriele
We describe an existing software architecture for context and proximity aware services that enables trust-based and context-aware authentication. A service is proximity aware when it automatically detects the presence of entities in its proximity. Authentication is context-aware when it uses contextual information to discern among different identities and to evaluate to which extent they are authentic. The software architecture that we describe here is functioning in our Institute: It manages a sensor network to detect the presence and location of users and their devices. A context manager is responsible to merge the different sources of contextual information, to solve potential contradictions, and to determine the level of authentication of the identity of the person approaching one of the services offered in the coffee-break corners of our Institute. In our solution for context-aware authentication, sensors are managed as if they were recommenders having subjective belief, disbelief, and uncertainty (i.e., trust) on the position and identity of users. A sensor’s subjective trust depends on what it has been sensing in the environment. We discuss the results of an array of simulations that we conducted to validate our concept of trust-based and context-aware authentication. We use Subjective Logic to manage trust.
Compact VLSI neural computer integrated with active pixel sensor for real-time ATR applications
NASA Astrophysics Data System (ADS)
Fang, Wai-Chi; Udomkesmalee, Gabriel; Alkalai, Leon
1997-04-01
A compact VLSI neural computer integrated with an active pixel sensor has been under development to mimic what is inherent in biological vision systems. This electronic eye- brain computer is targeted for real-time machine vision applications which require both high-bandwidth communication and high-performance computing for data sensing, synergy of multiple types of sensory information, feature extraction, target detection, target recognition, and control functions. The neural computer is based on a composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi- dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile, the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN neural computer is effectively designed to perform programmable functions for machine vision processing in all levels with its embedded host processor. It provides a two order-of-magnitude increase in computation power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3D 16X8X9-cube neural processor chip design in a 2-micrometers CMOS technology. Integration of this neural computer as one slice of a 4'X4' multichip module into the 3D MCM based avionics architecture for NASA's New Millennium Program is also described.
SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors.
Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin
2014-11-25
Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.
SVANET: A Smart Vehicular Ad Hoc Network for Efficient Data Transmission with Wireless Sensors
Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin
2014-01-01
Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency. PMID:25429409
Distributed Coding/Decoding Complexity in Video Sensor Networks
Cordeiro, Paulo J.; Assunção, Pedro
2012-01-01
Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality. PMID:22736972
Distributed coding/decoding complexity in video sensor networks.
Cordeiro, Paulo J; Assunção, Pedro
2012-01-01
Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality.
Image processing for navigation on a mobile embedded platform
NASA Astrophysics Data System (ADS)
Preuss, Thomas; Gentsch, Lars; Rambow, Mark
2006-02-01
Mobile computing devices such as PDAs or cellular phones may act as "Personal Multimedia Exchanges", but they are limited in their processing power as well as in their connectivity. Sensors as well as cellular phones and PDAs are able to gather multimedia data, e. g. images, but leak computing power to process that data on their own. Therefore, it is necessary, that these devices connect to devices with more performance, which provide e.g. image processing services. In this paper, a generic approach is presented that connects different kinds of clients with each other and allows them to interact with more powerful devices. This architecture, called BOSPORUS, represents a communication framework for dynamic peer-to-peer computing. Each peer offers and uses services in this network and communicates loosely coupled and asynchronously with the others. These features make BOSPORUS a service oriented network architecture (SONA). A mobile embedded system, which uses external services for image processing based on the BOSPORUS Framework is shown as an application of the BOSPORUS framework.
Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma
2015-04-21
Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.
Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma
2015-01-01
Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources. PMID:25905698
Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico
2017-01-01
Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions. PMID:29112128
Manyscale Computing for Sensor Processing in Support of Space Situational Awareness
NASA Astrophysics Data System (ADS)
Schmalz, M.; Chapman, W.; Hayden, E.; Sahni, S.; Ranka, S.
2014-09-01
Increasing image and signal data burden associated with sensor data processing in support of space situational awareness implies continuing computational throughput growth beyond the petascale regime. In addition to growing applications data burden and diversity, the breadth, diversity and scalability of high performance computing architectures and their various organizations challenge the development of a single, unifying, practicable model of parallel computation. Therefore, models for scalable parallel processing have exploited architectural and structural idiosyncrasies, yielding potential misapplications when legacy programs are ported among such architectures. In response to this challenge, we have developed a concise, efficient computational paradigm and software called Manyscale Computing to facilitate efficient mapping of annotated application codes to heterogeneous parallel architectures. Our theory, algorithms, software, and experimental results support partitioning and scheduling of application codes for envisioned parallel architectures, in terms of work atoms that are mapped (for example) to threads or thread blocks on computational hardware. Because of the rigor, completeness, conciseness, and layered design of our manyscale approach, application-to-architecture mapping is feasible and scalable for architectures at petascales, exascales, and above. Further, our methodology is simple, relying primarily on a small set of primitive mapping operations and support routines that are readily implemented on modern parallel processors such as graphics processing units (GPUs) and hybrid multi-processors (HMPs). In this paper, we overview the opportunities and challenges of manyscale computing for image and signal processing in support of space situational awareness applications. We discuss applications in terms of a layered hardware architecture (laboratory > supercomputer > rack > processor > component hierarchy). Demonstration applications include performance analysis and results in terms of execution time as well as storage, power, and energy consumption for bus-connected and/or networked architectures. The feasibility of the manyscale paradigm is demonstrated by addressing four principal challenges: (1) architectural/structural diversity, parallelism, and locality, (2) masking of I/O and memory latencies, (3) scalability of design as well as implementation, and (4) efficient representation/expression of parallel applications. Examples will demonstrate how manyscale computing helps solve these challenges efficiently on real-world computing systems.
A procedure concept for local reflex control of grasping
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Chang, Jeffrey
1989-01-01
An architecture is proposed for the control of robotic devices, and in particular of anthropomorphic hands, characterized by a hierarchical structure in which every level of the architecture contains data and control function with varying degree of abstraction. Bottom levels of the hierarchy interface directly with sensors and actuators, and process raw data and motor commands. Higher levels perform more symbolic types of tasks, such as application of boolean rules and general planning operations. Layers implementation has to be consistent with the type of operation and its requirements for real time control. It is proposed to implement the rule level with a Boolean Artificial Neural Network characterized by a response time sufficient for producing reflex corrective action at the actuator level.
Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Khan, Muhammad Farhan; Naeem, Muhammad; Anpalagan, Alagan
2015-03-25
The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed.
Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Farhan Khan, Muhammad; Naeem, Muhammad; Anpalagan, Alagan
2015-01-01
The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed. PMID:25815444
Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot; Thomas, George; Culley, Dennis; Kratz, Jonathan
2017-01-01
Distributed engine control (DEC) systems alter aircraft engine design constraints because of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.
Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Thomas, George Lindsey; Culley, Dennis E.; Kratz, Jonathan L.
2017-01-01
Distributed engine control (DEC) systems alter aircraft engine design constraints be- cause of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.
Open architecture CMM motion controller
NASA Astrophysics Data System (ADS)
Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John
2001-12-01
Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.
NASA Technical Reports Server (NTRS)
Mandl, Dan; Sohlberg, Rob; Frye, Stu; Cappelaere, P.; Derezinski, L.; Ungar, Steve; Ames, Troy; Chien, Steve; Tran, Danny
2007-01-01
A viewgraph presentation on experiments with sensor webs and service oriented architectures is shown. The topics include: 1) Problem; 2) Basic Service Oriented Architecture Approach; 3) Series of Experiments; and 4) Next Experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreedharan, Priya
The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships amongmore » sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system performance and offset the need for more contaminant sensors. Physics- and algorithm-based frameworks are presented for selecting and fusing information from noncontaminant sensors. The frameworks are demonstrated with door-position sensors, which are found to be more useful in natural airflow conditions, but which cannot compensate for poor placement of contaminant sensors. The concepts and empirical findings have the potential to help in the design of sensor systems for more complex building systems. The research has broader relevance to additional environmental monitoring problems, fault detection and diagnostics, and system design.« less
Modeling for Visual Feature Extraction Using Spiking Neural Networks
NASA Astrophysics Data System (ADS)
Kimura, Ichiro; Kuroe, Yasuaki; Kotera, Hiromichi; Murata, Tomoya
This paper develops models for “visual feature extraction” in biological systems by using “spiking neural network (SNN)”. The SNN is promising for developing the models because the information is encoded and processed by spike trains similar to biological neural networks. Two architectures of SNN are proposed for modeling the directionally selective and the motion parallax cell in neuro-sensory systems and they are trained so as to possess actual biological responses of each cell. To validate the developed models, their representation ability is investigated and their visual feature extraction mechanisms are discussed from the neurophysiological viewpoint. It is expected that this study can be the first step to developing a sensor system similar to the biological systems and also a complementary approach to investigating the function of the brain.
Applying Web-Based Tools for Research, Engineering, and Operations
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2011-01-01
Personnel in the NASA Glenn Research Center Network and Architectures branch have performed a variety of research related to space-based sensor webs, network centric operations, security and delay tolerant networking (DTN). Quality documentation and communications, real-time monitoring and information dissemination are critical in order to perform quality research while maintaining low cost and utilizing multiple remote systems. This has been accomplished using a variety of Internet technologies often operating simultaneously. This paper describes important features of various technologies and provides a number of real-world examples of how combining Internet technologies can enable a virtual team to act efficiently as one unit to perform advanced research in operational systems. Finally, real and potential abuses of power and manipulation of information and information access is addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subekti, M.; Center for Development of Reactor Safety Technology, National Nuclear Energy Agency of Indonesia, Puspiptek Complex BO.80, Serpong-Tangerang, 15340; Ohno, T.
2006-07-01
The neuro-expert has been utilized in previous monitoring-system research of Pressure Water Reactor (PWR). The research improved the monitoring system by utilizing neuro-expert, conventional noise analysis and modified neural networks for capability extension. The parallel method applications required distributed architecture of computer-network for performing real-time tasks. The research aimed to improve the previous monitoring system, which could detect sensor degradation, and to perform the monitoring demonstration in High Temperature Engineering Tested Reactor (HTTR). The developing monitoring system based on some methods that have been tested using the data from online PWR simulator, as well as RSG-GAS (30 MW research reactormore » in Indonesia), will be applied in HTTR for more complex monitoring. (authors)« less
Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Glomb, W. L., Jr.
1989-01-01
Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.
Moradi, Saber; Qiao, Ning; Stefanini, Fabio; Indiveri, Giacomo
2018-02-01
Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here, we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multicore neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.
Wireless Sensor Networks for Developmental and Flight Instrumentation
NASA Technical Reports Server (NTRS)
Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George
2011-01-01
Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments. Test results from our prototype WSN running the Mobitrum software system are summarized and the implications to the scalability and reliability for DFI applications are discussed. Our demonstration system, incorporating sensors for life support system and structural health monitoring is described along with test results obtained by running the demonstration prototype in relevant environments such as the Wireless Habitat Testbed at Johnson Space Center in Houston. An operations concept for improved sensor process flow from design to flight test is outlined specific to the areas of Environmental Control and Life Support System performance characterization and structural health monitoring of human-rated spacecraft. This operations concept will be used to highlight the areas where WSN technology, particularly plug-and-play software based on IEEE 1451, can improve the current process, resulting in significant reductions in the technical effort, overall cost and schedule for providing DFI capability for future spacecraft. RELEASED -
Next Generation Space Surveillance System-of-Systems
NASA Astrophysics Data System (ADS)
McShane, B.
2014-09-01
International economic and military dependence on space assets is pervasive and ever-growing in an environment that is now congested, contested, and competitive. There are a number of natural and man-made risks that need to be monitored and characterized to protect and preserve the space environment and the assets within it. Unfortunately, today's space surveillance network (SSN) has gaps in coverage, is not resilient, and has a growing number of objects that get lost. Risks can be efficiently and effectively mitigated, gaps closed, resiliency improved, and performance increased within a next generation space surveillance network implemented as a system-of-systems with modern information architectures and analytic techniques. This also includes consideration for the newest SSN sensors (e.g. Space Fence) which are born Net-Centric out-of-the-box and able to seamlessly interface with the JSpOC Mission System, global information grid, and future unanticipated users. Significant opportunity exists to integrate legacy, traditional, and non-traditional sensors into a larger space system-of-systems (including command and control centers) for multiple clients through low cost sustainment, modification, and modernization efforts. Clients include operations centers (e.g. JSpOC, USSTRATCOM, CANSPOC), Intelligence centers (e.g. NASIC), space surveillance sensor sites (e.g. AMOS, GEODSS), international governments (e.g. Germany, UK), space agencies (e.g. NASA), and academic institutions. Each has differing priorities, networks, data needs, timeliness, security, accuracy requirements and formats. Enabling processes and technologies include: Standardized and type accredited methods for secure connections to multiple networks, machine-to-machine interfaces for near real-time data sharing and tip-and-queue activities, common data models for analytical processing across multiple radar and optical sensor types, an efficient way to automatically translate between differing client and sensor formats, data warehouse of time based space events, secure collaboration tools for international coalition space operations, shared concept-of-operations, tactics, techniques, and procedures.
Using Zigbee to integrate medical devices.
Frehill, Paul; Chambers, Desmond; Rotariu, Cosmin
2007-01-01
Wirelessly enabling Medical Devices such as Vital Signs Monitors, Ventilators and Infusion Pumps allows central data collection. This paper discusses how data from these types of devices can be integrated into hospital systems using wireless sensor networking technology. By integrating devices you are protecting investment and opening up the possibility of networking with similar devices. In this context we present how Zigbee meets our requirements for bandwidth, power, security and mobility. We have examined the data throughputs for various medical devices, the requirement of data frequency, security of patient data and the logistics of moving patients while connected to devices. The paper describes a new tested architecture that allows this data to be seamlessly integrated into a User Interface or Healthcare Information System (HIS). The design supports the dynamic addition of new medical devices to the system that were previously unsupported by the system. To achieve this, the hardware design is kept generic and the software interface for different types of medical devices is well defined. These devices can also share the wireless resources with other types of sensors being developed in conjunction on this project such as wireless ECG (Electrocardiogram) and Pulse-Oximetry sensors.
Sensor/Transducer Bus Alternatives for Space derived from Automotive Networks
NASA Astrophysics Data System (ADS)
Heyer, H.-V.
2004-06-01
Both automotive and space industry have major constraints concerning cable and harness. As in a satellite, the dry mass of the harness in the empty car is about 3.3% of the total car mass and the harness costs are about 12% of the total production cost. So a lot of new architectural communication and power distribution concepts are needed to reduce these drawbacks. One of the possible solutions is the use of distributed bus systems which contains in a decentralized topology busses such as CAN, TTCAN or FLEX-RAY for hard-real-time applications, MOST for fast video communication via optical fiber cabling and fire wire IEEE1394 as backbone.For the general purpose sensor/actuator tasks a simple robust one-wire bus has been defined, the Local Interconnect Network (LIN) bus. This bus is an open standard which is supported by several semiconductor manufactures. The bus was firstly introduced in 1999 and has now reached an acceptable maturity with version 2.0 turning out to be quite interesting as sensor / transducer bus for space applications.This presentation will focus on the LIN Bus and present an overview of that bus.
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.