Sellers and Fossum on the end of the OBSS during EVA1 on STS-121 / Expedition 13 joint operations
2006-07-08
STS121-323-011 (8 July 2006) --- Astronauts Piers J. Sellers and Michael E. Fossum, STS-121 mission specialists, work in tandem on Space Shuttle Discovery's Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) during the mission's first scheduled session of extravehicular activity (EVA). Also visible on the OBSS are the Laser Dynamic Range Imager (LDRI), Intensified Television Camera (ITVC) and Laser Camera System (LCS).
OBSS and RMS arm during a survey of the TPS during STS-115
2006-09-09
S115-E-05307 (10 Sept. 2006) --- As in the case of the previous two shuttle missions, a tandem of the orbiter boom sensor system (OBSS) and the remote manipulator system (RMS) arm conducts a survey of the thermal protection system on the Space Shuttle Atlantis.
RMS/OBSS inspection of shuttle thermal tile system
2011-02-25
S133-E-006073 (25 Feb. 2011) --- Controlled by the STS-133 astronauts inside Discovery's cabin, the Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) equipped with special cameras, begins to conduct thorough inspections of the shuttle’s thermal tile system on flight day 2. Photo credit: NASA or National Aeronautics and Space Administration
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A shipping container transporting part of the new Orbiter Boom Sensor System (OBSS) is delivered by truck to the Remote Manipulator System lab in the Vehicle Assembly Building (VAB). Once the entire structure has arrived, the OBSS will be assembled and undergo final checkout and testing in the lab prior to being transferred to the Orbiter Processing Facility (OPF) for installation on Space Shuttle Discovery. The 50-foot-long OBSS will be attached to the Remote Manipulator System, or Shuttle arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttle's Thermal Protection System while in space. Discovery is slated to fly mission STS-114 once Space Shuttle launches resume. The launch planning window is May 12 to June 3, 2005.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A shipping container housing part of the new Orbiter Boom Sensor System (OBSS) is lifted from a truck into the Remote Manipulator System lab in the Vehicle Assembly Building (VAB). Once the entire structure has arrived, the OBSS will be assembled and undergo final checkout and testing in the lab prior to being transferred to the Orbiter Processing Facility (OPF) for installation on Space Shuttle Discovery. The 50-foot- long OBSS will be attached to the Remote Manipulator System, or Shuttle arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttle's Thermal Protection System while in space. Discovery is slated to fly mission STS-114 once Space Shuttle launches resume. The launch planning window is May 12 to June 3, 2005.
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, a crane lowers the orbiter boom sensor system, or OBSS, into space shuttle Atlantis' payload bay where it will be installed. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, installation of the orbiter boom sensor system, or OBSS, into space shuttle Atlantis' payload bay is under way. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, technicians prepare to install the orbiter boom sensor system, or OBSS, into space shuttle Atlantis' payload bay. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, the orbiter boom sensor system, or OBSS, is installed in space shuttle Atlantis' payload bay. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, technicians install the orbiter boom sensor system, or OBSS, in space shuttle Atlantis' payload bay across from the remote manipulator system arm. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
PMA-2 and SRMS/OBSS during Expedition 18 / STS-126 Joint Operations
2008-11-26
S126-E-011973 (26 Nov. 2008) --- The Canadian-built Orbiter Boom Sensor System (OBSS), in its parked position, and part of the International Space Station are featured in this image, photographed over the Blue Ridge Mountains of West Virginia and Tennessee by one of the Endeavour crew members on the eve of Thanksgiving. The OBSS, on the end of the Canadarm, awaits the final part of its STS-126 role when it will inspect the shuttle one more time, following separation of the orbiter from the space station in a couple of days. When that task is complete, it will be stowed across the payload bay from the robot arm.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility bay 1 at NASAs Kennedy Space Center, a worker rolls the plastic cover removed from the Orbital Boom Sensor System (OBSS), at right, which will be installed in the payload bay of Atlantis. The 50- foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. The Return to Flight mission STS-121 has a launch window of July 12 - July 31, 2005.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility bay 3, workers oversee the lowering of the Orbiter Boom Sensor System (OBSS) on the starboard side of Discoverys payload bay. At lower right is the Remote Manipulator System (RMS), or Shuttle robotic arm. The 50-foot-long OBSS attaches to the RMS, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. The Return to Flight mission, STS-114, has a launch window of May 12 to June 3, 2005.
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, technicians ensure that the installation of the orbiter boom sensor system, or OBSS, into space shuttle Atlantis' payload bay meets the correct specifications. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
International Space Station (ISS)
2006-07-08
The shadows of astronauts Piers J. Sellers and Michael E. Fossum, STS-121 mission specialists, who are anchored to the Space Shuttle Discovery's Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) foot restraint, are visible against a shuttle's payload bay door during a session of extravehicular activity (EVA).
STS-131 crew member and JAXA astronaut Naoko Yamazaki
2010-01-12
JSC2010-E-008557 (12 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a Thermal Protection System (TPS) Orbiter Boom Sensor System (OBSS) training session in the Jake Garn Simulation and Training Facility at NASA?s Johnson Space Center.
STS-131 crew member and JAXA astronaut Naoko Yamazaki
2010-01-12
JSC2010-E-008556 (12 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a Thermal Protection System (TPS) Orbiter Boom Sensor System (OBSS) training session in the Jake Garn Simulation and Training Facility at NASA?s Johnson Space Center.
STS-131 crew member and JAXA astronaut Naoko Yamazaki
2010-01-12
JSC2010-E-008553 (12 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a Thermal Protection System (TPS) Orbiter Boom Sensor System (OBSS) training session in the Jake Garn Simulation and Training Facility at NASA?s Johnson Space Center.
2010-02-20
S130-E-012478 (20 Feb. 2010) --- Backdropped by Earth?s horizon and the blackness of space, a partial view of space shuttle Endeavour's payload bay, vertical stabilizer, orbital maneuvering system (OMS) pods, Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) and docking mechanism are featured in this image photographed by an STS-130 crew member from an aft flight deck window.
NASA Astrophysics Data System (ADS)
Yamashita, Y.; Shinohara, M.; Yamada, T.; Shiobara, H.
2017-12-01
It is important to understand coupling between plates in a subduction zone for studies of earthquake generation. Recently low frequency tremor and very low frequency earthquake (VLFE) were discovered in plate boundary near a trench. These events (slow earthquakes) in shallow plate boundary should be related to slow slip on a plate boundary. For observation of slow earthquakes, Broad Band Ocean Bottom Seismometer (BBOBS) is useful, however a number of BBOBSs are limited due to cost. On the other hand, a number of Long-term OBSs (LT-OBSs) with recording period of one year are available. However, the LT-OBS has seismometer with a natural period of 1 second. Therefore frequency band of observation is slightly narrow for slow earthquakes. Therefore we developed a compact long-term broad-band OBS by replacement of the seismic sensor of the LT-OBSs to broadband seismometer.We adopted seismic sensor with natural period of 20 seconds (Trillium Compact Broadband Seismometer, Nanometrics). Because tilt of OBS on seafloor can not be controlled due to free-fall, leveling system for seismic sensor is necessary. The broadband seismic senor has cylinder shape with diameter of 90 mm and height of 100 mm, and the developed levelling system can mount the seismic sensor with no modification of shape. The levelling system has diameter of 160 mm and height of 110 mm, which is the same size as existing levelling system of the LT-OBS. The levelling system has two horizontal axes and each axis is driven by motor. Leveling can be performed up to 20 degrees by using micro-processor (Arduino). Resolution of levelling is less than one degree. The system immediately starts leveling by the power-on of controller. After levelling, the the seismic senor is powered and the controller records angles of levelling to SD RAM. Then the controller is shut down to consume no power. Compact long-term broadband ocean bottom seismometer is useful for observation of slow earthquakes on seafloor. In addition, seafloor observations of teleseismic events and deep earthquakes to estimate seismic structure of deep regions and observations of submarine volcanoes are expected.
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, space shuttle Atlantis' orbiter boom sensor system, or OBSS, awaits inspection. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, space shuttle Atlantis' orbiter boom sensor system, or OBSS, is prepared for maintenance. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
Return to Flight: Crew Activities Resource Reel 1 of 2
NASA Technical Reports Server (NTRS)
2005-01-01
The crew of the STS-114 Discovery Mission is seen in various aspects of training for space flight. The crew activities include: 1) STS-114 Return to Flight Crew Photo Session; 2) Tile Repair Training on Precision Air Bearing Floor; 3) SAFER Tile Inspection Training in Virtual Reality Laboratory; 4) Guidance and Navigation Simulator Tile Survey Training; 5) Crew Inspects Orbital Boom and Sensor System (OBSS); 6) Bailout Training-Crew Compartment; 7) Emergency Egress Training-Crew Compartment Trainer (CCT); 8) Water Survival Training-Neutral Buoyancy Lab (NBL); 9) Ascent Training-Shuttle Motion Simulator; 10) External Tank Photo Training-Full Fuselage Trainer; 11) Rendezvous and Docking Training-Shuttle Engineering Simulator (SES) Dome; 12) Shuttle Robot Arm Training-SES Dome; 13) EVA Training Virtual Reality Lab; 14) EVA Training Neutral Buoyancy Lab; 15) EVA-2 Training-NBL; 16) EVA Tool Training-Partial Gravity Simulator; 17) Cure in Place Ablator Applicator (CIPAA) Training Glove Vacuum Chamber; 16) Crew Visit to Merritt Island Launch Area (MILA); 17) Crew Inspection-Space Shuttle Discovery; and 18) Crew Inspection-External Tank and Orbital Boom and Sensor System (OBSS). The crew are then seen answering questions from the media at the Space Shuttle Landing Facility.
Lindsey and Boe on forward flight deck
2011-02-26
S133-E-006081 (25 Feb. 2011) --- On space shuttle Discovery’s forward flight deck, astronauts Steve Lindsey (right), STS-133 commander, and Eric Boe, pilot, switch seats for a brief procedure as the crew heads toward a weekend docking with the International Space Station. Earlier the crew conducted thorough inspections of the shuttle’s thermal tile system using the Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) and special cameras. Photo credit: NASA or National Aeronautics and Space Administration
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
STS-114 Flight Day 11 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
Flight Day 11 begins with the STS-114 crew of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) awaking to "Anchors Away," to signify the undocking of the Raffaello Multipurpose Logistics Module (MPLM) from the International Space Station (ISS). Canadarm 2, the Space Station Remote Manipulator System (SSRMS), retrieves the Raffaello Multipurpose Logistics Module (MPLM) from the nadir port of the Unity node of the ISS and returns it to Discovery's payload bay. The Shuttle Remote Manipulator System (SRMS) hands the Orbiter Boom Sensor System (OBSS) to its counterpart, the SSRMS, for rebearthing in the payload bay as well. The rebearthing of the OBSS is shown in detail, including centerline and split-screen views. Collins sends a message to her husband, and talks with Representative Tom DeLay (R-TX). Earth views include the Amalfi coast of Italy. The ISS control room bids farewell to the STS-114 crew and the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS.
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, this close-up shows the forward transition and X-guide restraint of the inspection boom assembly, or IBA, on space shuttle Atlantis' orbiter boom sensor system, or OBSS. The IBA is removed from the shuttle every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab, or RMS Lab, inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, Rafael Rodriguez, lead RMS advanced systems technician with United Space Alliance, installs the mid-transition thermal blanket onto the inspection boom assembly, or IBA, on space shuttle Atlantis' orbiter boom sensor system, or OBSS. The IBA is removed from the shuttle every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, Patrick Manning, an advanced systems technician with United Space Alliance, installs the mid-transition thermal blanket onto the inspection boom assembly, or IBA, on space shuttle Atlantis' orbiter boom sensor system, or OBSS. The IBA is removed from the shuttle every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, this close-up shows the electrical flight grapple fixture which will be installed in the forward transition and X-guide restraint of the inspection boom assembly, or IBA, on space shuttle Atlantis' orbiter boom sensor system, or OBSS. The IBA is removed from the shuttle every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
Very low frequency earthquakes in Tohoku-Oki recorded by short-period ocean bottom seismographs
NASA Astrophysics Data System (ADS)
Takahashi, H.; Hino, R.; Ohta, Y.; Uchida, N.; Suzuki, S.; Shinohara, M.; Nakatani, Y.; Matsuzawa, T.
2017-12-01
Various kind of slow earthquakes have been found along many plate boundary zones in the world (Obara, and Kato, 2016). In the Tohoku subduction zone where slow event activities have been considered insignificant, slow slip events associated with low frequency tremors were identified prior to the 2011 Tohoku-Oki earthquake based on seafloor geodetic and seismographical observations. Recently very low frequency earthquakes (VLFEs) have been discovered by inspecting onshore broad-band seismograms. Although the activity of the detected VLFEs is low and the VLFEs occurred in the limited area, VLFEs tends to occur successively in a short time period. In this study, we try to characterize the VLFEs along the Japan Trench based on the seismograms obtained by the instruments deployed near the estimated epicenters.Temporary seismic observations using Ocean Bottom Seismometers (OBSs) have been carried out several times after the 2011 Tohoku-Oki earthquake, and several VLFE activities were observed during the deployments of the OBSs. Amplitudes of horizontal component seismograms of the OBSs grow shortly after the estimated origin times of the VLFEs identified by the onshore seismograms, even though the sensors are 4.5 Hz geophones. It is difficult to recognize evident onsets of P or S waves, correspondence between order of arrivals of discernible wave packets and their amplitudes suggests that these wave packets are seismic signals radiated from the VLFE sources. The OBSs detect regular local earthquakes of the similar magnitudes as the VLFEs. Signal powers of the possible VLFE seismograms are comparable to the regular earthquakes in the frequency range < 1 Hz, while significant deficiency of higher frequency components are observed.
NASA Astrophysics Data System (ADS)
hello, yann; Charvis, Philippe; Yegikyan, Manuk; verfaillie, Romain; Rivet, Diane
2016-04-01
Real time monitoring of seismic activity is a major issue for early warning of earthquakes and tsunamis. It can be done using regional scale wired nodes, such as Neptune in Canada and in the U.S, or DONET in Japan. Another approach to monitor seismic activity at sea is to deploying repeatedly OBS array like during the amphibious Cascadia Initiative (four time 1-year deployments), the Japanese Pacific Array (broadband OBSs "ocean-bottom broadband dispersion survey" with 2-years autonomy), the Obsismer program in the French Lesser Antilles (eight time 6-months deployments) and the Osisec program in Ecuador (four time 6-months deployments). These autonomous OBSs are self-recovered or recovered using an ROV. These systems are costly including ship time, and require to recover the OBS before to start working on data. Among the most recent alternative we developed a 3/4 years autonomy ocean bottom system with 9 channels (?) allowing the acquisition of different seismic or environmental parameters. MUG-OBS is a free falling instrument rated down to 6000 m. The installation of the sensor is monitored by acoustic commands from the surface and a health bulletin with data checking is recovered by acoustic during the installation. The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a crisis) using one of the 6 data-shuttles released from the surface by acoustic command using a one day fast cruise boat of opportunity. Since sensors stayed at the same location for 3 years, it is a perfect tool to monitor large seismic events, background seismic activity and aftershock distribution. Clock, drift measurement and GPS localization is automatic when the shuttle reaches the surface. For remote areas, shuttles released automatically and a seismic events bulletin is transmitted. Selected data can be recovered by two-way Iridium satellite communication. After a period of 3 years the main station is self-recovered by acoustic.
International Space Station (ISS)
2006-11-03
While anchored to a foot restraint on the end of the Orbiter Boom Sensor System (OBSS), astronaut Scott Parazynski, STS-120 mission specialist, participated in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). During the 7-hour and 19-minute space walk, Parazynski cut a snagged wire and installed homemade stabilizers designed to strengthen the structure and stability of the damaged P6 4B solar array wing. Astronaut Doug Wheelock (out of frame), mission specialist, assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.
International Space Station (ISS)
2007-11-03
While anchored to a foot restraint on the end of the Orbiter Boom Sensor System (OBSS), astronaut Scott Parazynski, STS-120 mission specialist, participated in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). During the 7-hour and 19-minute space walk, Parazynski cut a snagged wire and installed homemade stabilizers designed to strengthen the structure and stability of the damaged P6 4B solar array wing. Astronaut Doug Wheelock (out of frame), mission specialist, assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.
STS-120 Mission Specialist Scott Parazynski Repairs ISS Solar Array
NASA Technical Reports Server (NTRS)
2007-01-01
While anchored to a foot restraint on the end of the Orbiter Boom Sensor System (OBSS), astronaut Scott Parazynski, STS-120 mission specialist, participated in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). During the 7-hour and 19-minute space walk, Parazynski cut a snagged wire and installed homemade stabilizers designed to strengthen the structure and stability of the damaged P6 4B solar array wing. Astronaut Doug Wheelock (out of frame), mission specialist, assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.
STS-120 Mission Specialist Scott Parazynski Repairs ISS Solar Array
NASA Technical Reports Server (NTRS)
2006-01-01
While anchored to a foot restraint on the end of the Orbiter Boom Sensor System (OBSS), astronaut Scott Parazynski, STS-120 mission specialist, participated in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). During the 7-hour and 19-minute space walk, Parazynski cut a snagged wire and installed homemade stabilizers designed to strengthen the structure and stability of the damaged P6 4B solar array wing. Astronaut Doug Wheelock (out of frame), mission specialist, assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Wilcock, W. S.
2011-12-01
As part of an active source land-sea tomography experiment, ocean bottom seismometers (OBSs) were deployed at Deception Island Volcano, Antarctica, in January 2005. Following the tomography study, three OBSs were left for a month inside the flooded caldera and ten on the outer slopes of the volcano to record seismo-volcanic signals. The OBS sensor package included three-orthogonal 1-Hz geophones but no hydrophone. The OBSs were deployed in water depths of 125 to 143 m inside the caldera and at depths of 119 to 475 m on the volcano's flanks. Only two volcano-tectonic earthquakes and three long period events were recorded by the network. However, the OBSs inside the caldera recorded over 4,500 unusual seismic events. These were detected by only one station at a time and were completely absent from OBSs on the flank of the volcano and from land stations deployed on the island. The signals had a dominant frequency of 5 Hz and were one to ten seconds long. Event activity in the caldera was variable with the number of events per hour ranging from 0 up to 60 and the level of activity decreasing slightly over the study period. We categorize the signals into three types based on waveform characteristics. Type 1 events have an impulsive onset and last 1 to 2 s with characteristics that are consistent with the impulse response of a poorly coupled OBS. Type 2 events typically last 2 to 4 s and comprise a low amplitude initial arrival followed less than a second later by a more energetic second phase that looks a Type 1 event. Type 3 events last up to 10 s and have more complex waveforms that appear to comprise several arrivals of varying amplitudes. Type 1 events are similar to the 'fish-bump' signals reported from previous studies that attributed them to biological activity. The consistent timing and relative amplitudes of the two arrivals for Type 2 events are difficult to explain by animals randomly touching the OBSs. Type 3 events are quite similar in frequency, duration, and signal characteristics to long-period seismic events recorded by an onshore seismic array deployed in an earlier study at Deception Island. Particle motions suggest that Type 3 events may be surface waves while the particle motions for Type 1 and Type 2 events are ambiguous and unlike any signals recorded by land arrays at the volcano. Binomial tests of the event distribution show no significant changes in the rate of events with time of day that would be indicative of a biological source. Since the events are entirely absent in biologically productive waters outside the caldera, we postulate that they may be volcanic signals related to hydrothermal flow across the seafloor in the flooded caldera of Deception Island. Future OBS deployments at Deception Island should include a hydrophone to discriminate unambiguously between biological and volcanic signals.
2004-08-23
KENNEDY SPACE CENTER, FLA. - The Remote Manipulator System (RMS), also known as the Canadian robotic arm, for the orbiter Discovery has arrived at KSC’s Vehicle Assembly Building Lab. Seen on the left end is the shoulder pitch joint. The wrist and shoulder joints on the RMS allow the basic structure of the arm to maneuver similar to a human arm. The RMS is used to deploy and retrieve payloads, provide a mobile extension ladder or foot restraints for crew members during extravehicular activities; and to aid the flight crew members in viewing surfaces of the orbiter or payloads through a television camera on the RMS. The arm is also serving as the base for the new Orbiter Boom Sensor System (OBSS), one of the safety measures for Return to Flight, equipping the Shuttle with cameras and laser systems to inspect the Shuttle’s Thermal Protection System while in space. Discovery is scheduled for a launch planning window of March 2005 on mission STS-114.
Gupta, Varun; Parikh, Rikesh; Nguyen, Lyly; Afshari, Ashkan; Shack, R Bruce; Grotting, James C; Higdon, K Kye
2017-02-01
There has been a dramatic rise in office-based surgery. However, due to wide variations in regulatory standards, the safety of office-based aesthetic surgery has been questioned. This study compares complication rates of cosmetic surgery performed at office-based surgical suites (OBSS) to ambulatory surgery centers (ASCs) and hospitals. A prospective cohort of patients undergoing cosmetic surgery between 2008 and 2013 were identified from the CosmetAssure database (Birmingham, AL). Patients were grouped by type of accredited facility where the surgery was performed: OBSS, ASC, or hospital. The primary outcome was the incidence of major complication(s) requiring emergency room visit, hospital admission, or reoperation within 30 days postoperatively. Potential risk factors including age, gender, body mass index (BMI), smoking, diabetes, type of procedure, and combined procedures were reviewed. Of the 129,007 patients (183,914 procedures) in the dataset, the majority underwent the procedure at ASCs (57.4%), followed by hospitals (26.7%) and OBSS (15.9%). Patients operated in OBSS were less likely to undergo combined procedures (30.3%) compared to ASCs (31.8%) and hospitals (35.3%, P < .01). Complication rates in OBSS, ASCs, and hospitals were 1.3%, 1.9%, and 2.4%, respectively. On multivariate analysis, there was a lower risk of developing a complication in an OBSS compared to an ASC (RR 0.67, 95% CI 0.59-0.77, P < .01) or a hospital (RR 0.59, 95% CI 0.52-0.68, P < .01). Accredited OBSS appear to be a safe alternative to ASCs and hospitals for cosmetic procedures. Plastic surgeons should continue to triage their patients carefully based on other significant comorbidities that were not measured in this present study. LEVEL OF EVIDENCE 3. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Hello, Y.; Yegikyan, M.; Charvis, P.; Verfaillie, R.; Philippe, O.
2015-12-01
There are several attempts to monitor real time seismic activity, using regional scale wired nodes, such as Neptune in Canada and in the U.S, Antares in France or DONET in Japan.On another hand there are also initiatives in deploying repeatedly OBS array like during the amphibious Cascadia Initiative (four 1-year deployments), the Japanese Pacific Array (broadband OBSs "ocean-bottom broadband dispersion survey" with 2-years autonomy), the Obsismer program in the French Lesser Antilles (eight 6-months deployments) and the Osisec program in Ecuador (four 6-months deployments). These OBSs are autonomous, they are self-recovered or recovered using an ROV. These systems are costly including ship time, and require to recover the OBS before to start working on data.Among the most recent alternative we developed a 3-years autonomy OBS equipped with a Nanometrics Trillium 120 s, a triaxial accelerometer, a differential, an absolute pressure gauge, and a hydrophone. MUG-OBS is a free falling instrument rated down to 6000 m. The installation of the sensor is monitored by acoustic commands from the surface and a health bulletin with data checking is recovered by acoustic during the installation. The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a seismic crisis) utilizing one of the 6 data-shuttles released from the surface by acoustic command using a one day fast cruise boat of opportunity. Since sensors stayed at the same location for 3 years (when an OBS is redeployed on the same site, it will not land in the same place), it is a perfect tool to monitor slow seismic events, background seismic activity and aftershock distribution. Clock, drift measurement and GPS localization is automatic when the shuttle reaches the surface. A new version is being developed; for remote areas, shuttles released automatically and a seismic events bulletin is transmitted. Selected data can be recovered by two- way Iridium satellite communication. After a period of 3 years the main station is self-recovered by acoustic.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Launch Pad 39B, the Orbiter Boom Sensor System (OBSS) sensor package is viewed before the orbiter's payload bay doors are closed for launch. Payload bay door closure is a significant milestone in the preparations of Discovery for the first Return to Flight mission, STS-114. This sensor package will provide surface area and depth defect inspection for all the surfaces of the orbiter. It includes an intensified television camera (ITVC) and a laser dynamic range imager, which are mounted on a pan and tilt unit, and a laser camera system (LCS) mounted on a stationary bracket. The package is part of the new safety measures added for all future Space Shuttle missions. During its 12-day mission, Discoverys seven- person crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Discoverys payloads include the Multi-Purpose Logistics Module Raffaello, the Lightweight Multi-Purpose Experiment Support Structure Carrier (LMC), and the External Stowage Platform-2 (ESP-2). Raffaello will deliver supplies to the International Space Station including food, clothing and research equipment. The LMC supports a replacement Control Moment Gyroscope and a tile repair sample box. The ESP-2 is outfitted with replacement parts. Launch of mission STS-114 was set for July 13 at the conclusion of the Flight Readiness Review yesterday.
Long term seismic observation using ocean bottom seismographs in Marmara Sea, Turkey
NASA Astrophysics Data System (ADS)
Takahashi, N.; Pinar, A.; Kalafat, D.; Yamamoto, Y.; Citak, S.; Comoglu, M.; Çok, Ö.; Ogutcu, Z.; Suvarikli, M.; Tunc, S.; Gurbuz, C.; Ozel, N.; Kaneda, Y.
2015-12-01
The North Anatolian Fault crosses the Marmara Sea with a direction of E-W. There are many large earthquakes repeatedly along the fault with a linkage each other. Due to recent large eastern Aegean earthquake with M6, the Marmara Sea is the "blank zone". Japan and Turkey have a SATREPS collaborative study to clarify the structural characters, construct fault models, simulate the strong motion and tsunami, evaluate these risks with hazard maps and educate disaster prevention for local governments and residents. Our activity is one of the most basic studies, and the objectives are to clarify hypocenter locations, monitor the move, and construct fault models referring seismic/magnetotelluric structures, geodetic nature and trenching works. The target area is from western Marmara Sea to the off Istanbul area along the north Anatolian Fault. We deployed ten Ocean Bottom Seismographs (OBSs) between the Tekirdag Basin and the Central Basin in September, 2014. Then, we added five Japanese OBSs and deployed them at the western end of the Marmara Sea and the eastern Central Basin to extend observed area in March, 2015. The OBS has a three-component velocity sensor with a natural frequency of 4.5 Hz and a hydrophone. Japanese team have clarified seismicity around Japan using the OBS. The magnitude of the detected events is 1.0-1.5. We retrieved all 15 OBSs in July, 2015 and deployed them again on the same locations after data copy and battery maintenance. We started OBS data analysis combined with land stations data. Now we detect events automatically using these data and succeeded detection of over one thousand around the north Anatolian Fault. The tentative results show heterogeneous seismicity. The western and central basins have relative high seismicity and the seismogenic zone becomes thicker rather than previous estimation. Then we will evaluate hypocenter locations with high resolution and discuss the shape of faults in each segment and their linkage.
NASA Astrophysics Data System (ADS)
Shinohara, Masanao; Ichihara, Mie; Sakai, Shin'ichi; Yamada, Tomoaki; Takeo, Minoru; Sugioka, Hiroko; Nagaoka, Yutaka; Takagi, Akimichi; Morishita, Taisei; Ono, Tomozo; Nishizawa, Azusa
2017-11-01
Nishinoshima in Izu-Ogasawara started erupting in November 2013, and the island size increased. Continuous monitoring is important for study of the formation process. Since it is difficult to make continuous observations on a remote uninhabited island, we started seismic observations near Nishinoshima using ocean bottom seismometers (OBSs) from February 2015. Our OBSs have a recording period of 1 year, and recovery and re-deployment of OBSs were repeated to make continuous observations. The OBSs were deployed with distances of less than 13 km from the crater. Events with particular characteristics were frequently recorded during the eruption period and are estimated to correlate with the release of plumes from the crater by comparison with temporal on-site records using a video camera and microphones. We estimated the number of events using the amplitude average of records to monitor volcanic activity. There were approximately 1800 detected events per day from February to July 2015. The number started to decrease from July 2015, and reached less than 100 per day in November 2015. The surface activity of the volcano was estimated to have ceased in November 2015. Characteristic events began re-occurring in the middle of April 2017. The number of events reached approximately 1400 events per day at the end of May 2017. Seafloor seismic observations using OBSs are a powerful tool for continuous monitoring of island volcanic activity.[Figure not available: see fulltext.
STS-114 orbiter Discovery during docking of Raffaello
2005-08-05
ISS011-E-11510 (5 August 2005) --- On the eve of the separation of Discovery and the International Space Station, an Expedition 11 crew member took this digital still picture. Crews onboard the orbital outpost and Discovery were wrapping up nine days of joint operations. The Space Shuttle is partially visible beneath other hardware. The Canadian-built robot arms for both spacecraft are dominant in the frame. A Russian Soyuz is docked to the Station in the foreground. After the Italian-built Multi-Purpose Logistics Module Raffaello was secured in Discovery's cargo bay, Astronauts Charles J. Camarda and Andrew S.W. Thomas, mission specialists operating from Discovery's aft flight deck, used the Shuttle arm to hand off the Orbiter Boom Sensor System to the Station arm. Then Astronauts Wendy B. Lawrence, mission specialist, and James M. Kelly, pilot, onboard Destiny, reberthed the OBSS in its position on the starboard sill of the cargo bay. Undocking is scheduled shortly before 2:30 a.m. (CDT) on August 6.
STS-121: Discovery Pre-Flight Crew News Briefing
NASA Technical Reports Server (NTRS)
2006-01-01
The STS-121 crew is shown during this pre-flight news briefing. Steve Lindsey, Commander, begins with saying that they are only a few weeks from flight and the vehicle is in good shape. Mark Kelly, Pilot, is introduced by Lindsey and he discusses Kelly's main objective which is to direct the three spacewalks scheduled. Kelly introduces Mike Fossum, Mission Specialist. Kelly says that Fossum will be involved in three spacewalks. Fossum introduces Lisa Nowak, Mission Specialist, who is involved in robotics. Also Stephanie Wilson, Mission Specialist, will be involved in robotics. Piers Sellers, Mission Specialist, is introduced by Wilson, who is the lead spacewalker for this mission. Sellers then introduce Thomas Reiter, Mission Specialist, who is involved in spacewalks. The educational background of each crew member is given. Questions from the news media on the subjects of long term flights on the International Space Station, Ice frost ramp replacement, Orbiter Boom Sensor System (OBSS) stability, foam loss during STS-114 flight, duration of the mission, and mental preparation for test flights are addressed.
STS-114: Discovery Post MMT Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
On flight day 13, Leroy Cain, STS-114 Ascent/Entry Flight Director, discusses the condition of the Space Shuttle Discovery, and the weather outlook for landing. He answers questions from the news media about his feelings about re-entry since the Columbia tragedy, possible new information during re-entry, critical moments in the Mission Control Room during landing, and differences between night landing and day landing. Footage of the Mission Control Room and a talk with Soichi Noguchi in orbit is shown. Also, footage of the truss structure of the International Space Station, Destiny Laboratory, crew cabin of Discovery, and the Orbiter Docking System linked up to forward docking port on Discovery is shown. Eileen Collins and Wendy Lawrence are shown in the flight deck of Discovery. Charles Camarda is also shown in the mid-deck. Downlink television from Discovery shows spacewalk choreographer Andy Thomas with Stephen Robinson and Soichi Noguchi preparing for depressurization and pre-breathing activities that will lead to the opening of the hatch. The installation of a replacement GPS antenna, images of the port wing of Discovery and Canadarm moving with the Orbital Boom Sensor System (OBSS) extension is shown.
Social stress contagion in rats: Behavioural, autonomic and neuroendocrine correlates.
Carnevali, Luca; Montano, Nicola; Statello, Rosario; Coudé, Gino; Vacondio, Federica; Rivara, Silvia; Ferrari, Pier Francesco; Sgoifo, Andrea
2017-08-01
The negative emotional consequences associated with life stress exposure in an individual can affect the emotional state of social partners. In this study, we describe an experimental rat model of social stress contagion and its effects on social behaviour and cardiac autonomic and neuroendocrine functions. Adult male Wistar rats were pair-housed and one animal (designated as "demonstrator" (DEM)) was submitted to either social defeat stress (STR) by an aggressive male Wild-type rat in a separate room or just exposed to an unfamiliar empty cage (control condition, CTR), once a day for 4 consecutive days. We evaluated the influence of cohabitation with a STR DEM on behavioural, cardiac autonomic and neuroendocrine outcomes in the cagemate (defined "observer" (OBS)). After repeated social stress, STR DEM rats showed clear signs of social avoidance when tested in a new social context compared to CTR DEM rats. Interestingly, also their cagemate STR OBSs showed higher levels of social avoidance compared to CTR OBSs. Moreover, STR OBS rats exhibited a higher heart rate and a larger shift of cardiac autonomic balance toward sympathetic prevalence (as indexed by heart rate variability analysis) immediately after the first reunification with their STR DEMs, compared to the control condition. This heightened cardiac autonomic responsiveness habituated over time. Finally, STR OBSs showed elevated plasma corticosterone levels at the end of the experimental protocol compared to CTR OBSs. These findings demonstrate that cohabitation with a DEM rat, which has experienced repeated social defeat stress, substantially disrupts social behaviour and induces short-lasting cardiac autonomic activation and hypothalamic-pituitary-adrenal axis hyperactivity in the OBS rat, thus suggesting emotional state-matching between the OBS and the DEM rats. We conclude that this rodent model may be further exploited for investigating the neurobiological bases of negative affective sharing between social partners under chronic social stress conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamada, T.; Nakahigashi, K.; Shinohara, M.; Mochizuki, K.; Shiobara, H.
2014-12-01
Huge earthquakes cause vastly stress field change around the rupture zones, and many aftershocks and other related geophysical phenomenon such as geodetic movements have been observed. It is important to figure out the time-spacious distribution during the relaxation process for understanding the giant earthquake cycle. In this study, we pick up the southern rupture area of the 2011 Tohoku earthquake (M9.0). The seismicity rate keeps still high compared with that before the 2011 earthquake. Many studies using ocean bottom seismometers (OBSs) have been doing since soon after the 2011 Tohoku earthquake in order to obtain aftershock activity precisely. Here we show one of the studies at off the coast of Fukushima which is located on the southern part of the rupture area caused by the 2011 Tohoku earthquake. We deployed 4 broadband type OBSs (BBOBSs) and 12 short-period type OBSs (SOBS) in August 2012. Other 4 BBOBSs attached with absolute pressure gauges and 20 SOBSs were added in November 2012. We recovered 36 OBSs including 8 BBOBSs in November 2013. We selected 1,000 events in the vicinity of the OBS network based on a hypocenter catalog published by the Japan Meteorological Agency, and extracted the data after time corrections caused by each internal clock. Each P and S wave arrival times, P wave polarity and maximum amplitude were picked manually on a computer display. We assumed one dimensional velocity structure based on the result from an active source experiment across our network, and applied time corrections every station for removing ambiguity of the assumed structure. Then we adopted a maximum-likelihood estimation technique and calculated the hypocenters. The results show that intensive activity near the Japan Trench can be seen, while there was a quiet seismic zone between the trench zone and landward high activity zone.
The Origin Billions Star Survey: Galactic Explorer
2006-10-18
Using OBSS, it will be possible to measure proper motions of galaxies (the motion in the plane of the sky) out to the distance of the Virgo Cluster ...within the Milky Way, as well as the local group toward the Virgo Cluster , will also be discerned at the microarcsecond level. All of this will be...supercluster of galaxies, dark matter, star for- mation, open clusters , the solar system, and the celestial ref- erence frame. This research was supported by
STABLE CONIC-HELICAL ORBITS OF PLANETS AROUND BINARY STARS: ANALYTICAL RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oks, E.
2015-05-10
Studies of planets in binary star systems are especially important because it was estimated that about half of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. One-planet binary star systems (OBSS) have a limited analogy to objects studied in atomic/molecular physics: one-electron Rydberg quasimolecules (ORQ). Specifically, ORQ, consisting of two fully stripped ions of the nuclear charges Z and Z′ plus one highly excited electron, are encountered in various plasmas containing more than one kind of ion. Classical analytical studies of ORQ resulted in the discovery of classical stable electronic orbits with the shape ofmore » a helix on the surface of a cone. In the present paper we show that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable planetary orbits in the shape of a helix on a conical surface, whose axis of symmetry coincides with the interstellar axis; the stability is not affected by the rotation of the stars. Further, we demonstrate that the eccentricity of the stars’ orbits does not affect the stability of the helical planetary motion if the center of symmetry of the helix is relatively close to the star of the larger mass. We also show that if the center of symmetry of the conic-helical planetary orbit is relatively close to the star of the smaller mass, a sufficiently large eccentricity of stars’ orbits can switch the planetary motion to the unstable mode and the planet would escape the system. We demonstrate that such planets are transitable for the overwhelming majority of inclinations of plane of the stars’ orbits (i.e., the projections of the planet and the adjacent start on the plane of the sky coincide once in a while). This means that conic-helical planetary orbits at binary stars can be detected photometrically. We consider, as an example, Kepler-16 binary stars to provide illustrative numerical data on the possible parameters and the stability of the conic-helical planetary orbits, as well as on the transitability. Then for the general case, we also show that the power of the gravitational radiation due to this planet can be comparable or even exceed the power of the gravitational radiation due to the stars in the binary. This means that in the future, with a progress of gravitational wave detectors, the presence of a planet in a conic-helical orbit could be revealed by the noticeably enhanced gravitational radiation from the binary star system.« less
Endeavour SRMS / OBSS during Survey OPS
2010-02-09
S130-E-005338 (8 Feb. 2010) --- Backdropped by the South China Sea and the Gulf of Tonkin, the Tranquility node in space shuttle Endeavour’s payload bay, vertical stabilizer, orbital maneuvering system (OMS) pods and a shadow-covered docking mechanism are featured in this image photographed by the STS-130 crew from an aft flight deck window. Hainan Island can be seen between the South China Sea (bottom) and Gulf of Tonkin (top). The Leizhou Peninsula of the Chinese mainland is on the upper right.
Ambient Noise Tomography of the Northwestern U.S. and the Adjacent Juan de Fuca and Gorda Plates
NASA Astrophysics Data System (ADS)
Wang, H.; Feng, L.; Tian, Y.; Ritzwoller, M. H.
2017-12-01
The NSF Cascadia Initiative (CI) experiment includes 4-year deployments of ocean bottom seismometers (OBSs) on the Juan de Fuca and Gorda Plates. The CI experiment provides the unprecedented opportunity to investigate the crustal and upper mantle structure of this region. The 259 OBSs switched between Cascadia North in Years 1 and 3 and Cascadia South in Years 2 and 4 at around 160 different sites. Using the OBSs together with 89 stations near the Pacific coast, we estimate empirical Green's function (EGF) between station pairs by cross-correlating ambient noise recorded on their vertical components. Unlike continental stations, the OBSs are contaminated mainly by tilt and compliance noise at low frequencies (<0.1 Hz), which obscures the coherent ambient noise and makes it more difficult to retrieve reliable EGFs. Compliance noise comes from the seafloor deformation under gravity waves and its strength depends mostly on the pressure signal, thus compliance noise can be reduced significantly using the pressure record. Tilt noise is induced by currents near the seafloor, and the horizontal records are dominated by tilt noise at frequencies below 0.1 Hz. Tilt noise on the vertical components can be reduced using horizontal components. The "denoised" cross-correlations provide more reliable and higher signal to noise ratio (SNR) EGFs. Based on the estimated EGFs from the "denoised" vertical records, we use frequency-time analysis (FTAN) to retrieve the dispersion curve of Rayleigh waves between station pairs. Using the Rayleigh wave dispersion curves, we perform seismic tomography to construct isotropic and azimuthally anisotropic phase velocity maps at periods from about 8 to 30s across the Juan de Fuca and Gorda plates, extending up onto the continent. Previous studies have shown that the fast axis directions of 2ψ azimuthal anisotropy align parallel to present-day plate motion directions at longer periods and parallel to paleospreading directions at shorter periods. We also investigate the relationship between azimuthal anisotropy and plate motion direction across the Juan de Fuca and Gorda plates.
NASA Astrophysics Data System (ADS)
Vermeesch, P. M.; Henstock, T. J.; Lange, D.; McNeill, L. C.; Barton, P. J.; Tang, G.; Bull, J. M.; Tilmann, F.; Dean, S. M.; Djajadihardja, Y.; Permana, H.
2009-04-01
In 2008 a 3D onshore-offshore controlled-source seismic experiment was carried out in an area of 300 km x 400 km, centered on the southern termination of the great Sumatra-Andaman 2005 earthquake rupture. In the first part of cruise SO198 on R/V Sonne ~10000 airgun shots were fired into an array of 47 Ocean Bottom Seismometers (OBSs). A further ~50000 shots were fired into an array of 10 long-deployment OBSs. All shots were recorded on ~15 seismometers on the islands and more than 20 seismometers along the coast of Sumatra. An initial velocity model has been derived from 70132 first-arrival traveltimes from 45 OBSs, using the First-Arrival Seismic Tomography (FAST) inversion code developed by Zelt and Barton (1998). Root Mean Square traveltime misfit reduces from 1311 ms in the 1D starting model to 81 ms after 20 non-linear iterations. Offsets range between 0 and 265 km, with rays penetrating up to 28 km depth in the final model, hereby imaging the top of the subducting oceanic plate and revealing its complex 3D topography. Ray coverage is still being extended by including first-arrival traveltime picks from the landstations on the coast of Sumatra and the islands and from the 10 long-term deployment OBSs that will be recovered in January. The robustness and resolution of the final 3D model is examined by exploring different starting models, different inversion parameters and by carrying out checkerboard tests and synthetic tests. The resulting crustal 3D velocity model will allow us to explore the nature and physical cause of the rupture barrier of the 2005 great earthquake. Comparison with a similar dataset and subsequent 3D velocity model acquired at the boundary between the 2004 and 2005 earthquakes will provide important insights into the segmentation of the Sumatra subduction zone and the dynamics of its great earthquakes. Zelt, C. A. and P. J. Barton (1998). Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faroe Basin. Journal of Geophysical Research 103: 7187-7210.
NASA Astrophysics Data System (ADS)
Zhao, M.; Wang, Q.; Sibuet, J. C.; Sun, L.; Sun, Z.; Qiu, X.
2017-12-01
The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which has experienced extension, rifting, breakup, post-spreading magmatism on its northern margin during the Cenozoic era. The complexity of this margin is exacerbated by rifting and seafloor spreading processes, which developed at the expenses of the subducting proto-South China Sea. Based on Sun et al. (2014, 2016) proposals, 6 sites were drilled on the northern SCS margin from February to June 2017, during IODP Expeditions 367/368. The preliminary results indicate that the width of the COT is about 20 km and is different from the typical magma-poor Iberia margin whose width is around 100 km. The combination of three-dimensional (3D) Ocean Bottom Seismometers (OBS) refractive survey with IODP drilling results, will improve the drilling achievement and greatly contribute to the understanding of the specific mechanism of rifting and breakup processes of the northern SCS. In particular, it is expected to constrain: 1) the nature of the crust in the COT, 2) the degree of serpentinization of the upper mantle beneath the COT, and 3) the 3D extension of the COT, the oceanic crust and the serpentinized mantle. We firstly carry out the resolution tests and calculate the interval of OBSs using a ray tracing and travel time modelling software. 7-km interval between OBSs is the optimal interval for the resolution tests and ray coverage, which will provide optimal constraints for the characterization of the 20-km wide COT. The 3D seismic survey will be carried out in 2018. The design of the OBSs arrangement and the location of shooting lines are extremely important. At present, we propose 5 main profiles and 14 shooting lines along the multi-channel seismic lines already acquired in the vicinity of the 6 drilling sites. Any comments and suggestions concerning the OBSs arrangement will be appreciated. This work is supported by the Chinese National Natural Science Foundation (contracts 91428204, 41576070 and 41176053). Key words: Continental-ocean transition zone (COT); 3D refraction survey; IODP Expeditions 367/368; nature of crust.
Studying deep seafloor processes based on the analysis of Ocean Bottom Seismometer records
NASA Astrophysics Data System (ADS)
Geli, L. B.; Evangelia, B.; Bayrakci, G.; Tary, J. B.; Klingelhoefer, F.
2017-12-01
Ocean Bottom Seismometers (OBSs) are ultra-sensible instruments capable to detect micrometric motions of seafloor sediments. OBSs commonly record Short Duration Events (SDEs) characterized by durations of less than 0.8 s, by frequencies ranging between 4 and 30 Hz, by highly variable amplitudes and by one single wavetrain, e.g. with undistinguishable P and S arrivals. SDEs may occur either on a regular, permanent basis, at a rate of a few hundred times per day; either as swarms of SDEs, occurring over time spans of a few hours. Seafloor sediment motion may result from a large variety of causes, among which four are described here: i) seabottom currents (including tidal currents); ii) bioturbation processes through which living organisms buried within the uppermost centimeters of sediments expel fluids from tiny cavities just below the seafloor; iii) fluid (water or gas) migration processes, possibly triggered by earthquakes shaking the seafloor sediments; iv) marine mammals, such as finback whales, which also produce signals recorded by hydrophones in the water column. Hence, OBSs are powerful tools that could contribute addressing a number of critical challenges in ocean sciences, provided that we can discriminate between the different causes, e.g.: i) the coupling between ocean current and sediment properties; ii) the role of bioturbation processes in global carbon budgets; iii) the amount of methane and carbon dioxide released by earthquakes into the water column; iv) the tracking of marine mammals, etc.
Offshore seismicity in the western Marmara Sea, Turkey, revealed by ocean bottom observation
NASA Astrophysics Data System (ADS)
Yamamoto, Yojiro; Takahashi, Narumi; Citak, Seckin; Kalafat, Doǧan; Pinar, Ali; Gürbüz, Cemil; Kaneda, Yoshiyuki
2015-04-01
The North Anatolian Fault (NAF) extends 1600 km westward from a junction with the East Anatolian Fault at the Karliova Triple Junction in eastern Turkey, across northern Turkey and into the Aegean Sea, accommodating about 25 mm/yr of right-lateral motion between Anatolia and the Eurasian plate. Since 1939, devastating earthquakes with magnitude greater than seven ruptured NAF westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.7) and the Duzce (Ms=7.4) earthquakes in the Marmara region. Considering the fault segments ruptured by the May 24th, 2014 Northern Aegean earthquake (Mw=6.9), the only un-ruptured segments left behind the 1600 km long NAF locate beneath the Marmara Sea and those segments keep their mystery due to their underwater location. To consider the earthquake hazard and disaster mitigation, the detailed information about fault geometry and its stick-slip behavior beneath the western Marmara Sea is very important. Thus, we started to operate a series of ocean bottom seismographic (OBS) observations to estimate the fault geometry from microearthquake distribution. As a first step, we deployed 3 pop-up type OBSs on 20th of March 2014 as a trial observation, and recovered them on 18th of June 2014. Although one of the OBSs worked only 6 days from the start of the observation, other two OBSs functioned properly during the whole 3-month observation period. We first searched for the microearthquakes missing by the land seismic network and estimated their precious location by using the initial 6 days data, i.e., using all the temporary OBS stations. Although there are only 3 earthquakes listed on the Kandilli Observatory and Earthquake Research Institute (KOERI) catalogue, we could identify 41 earthquakes with more than 5 picking data of P and S first arrivals, and two-third of them located within the OBS network. We found the earthquake cluster along the main NAF and whose depth interval is 12-20 km. This cluster indicates that the dip angle of the main NAF is almost vertical. We also relocated the KOERI-catalogued earthquakes in 3 months periods by combining the land and OBS seismic data. The results indicated that some earthquakes occurred 5-10 km away from the main NAF. Besides, the upper limit of seismicity along NAF seems to dip eastward. To obtain more information of the fault geometry beneath the Marmara Sea, we started a second step observation by using 10 OBSs from September 2014 to June 2015. In addition, we are planning to add 5 OBSs to this observation in Mar. 2015. All OBS observations are conducted as a part of the "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education in Turkey" project, financially supported by Japan International Cooperation Agency (JICA), Japan Science and Technology Agency (JST), and the Ministry of Development in Turkey.
Offshore Seismic Observation in the Western Marmara Sea, Turkey
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Takahashi, N.; Citak, S.; Kalafat, D.; Pinar, A.; Gurbuz, C.; Kaneda, Y.
2014-12-01
The North Anatolian Fault (NAF) extends 1600 km westward from a junction with the East Anatolian Fault at the Karliova Triple Junction in eastern Turkey, across northern Turkey and into the Aegean Sea, accommodating about 25 mm/yr of right-lateral motion between Anatolia and the Eurasian plate. Since 1939, devastating earthquakes with magnitude greater than seven ruptured NAF westward, starting from 1939 Erzincan at the eastern Turkey and including the latest 1999 Izmit-Golcuk and the Duzce earthquakes in the Marmara region. Considering the fault segments ruptured by the May 24th, 2014 Northern Aegean earthquake, the only un-ruptured segments left behind NAF locate beneath the Marmara Sea and those segments keep their mystery due to their underwater location. To clarify the detailed fault geometry beneath the western Marmara Sea, we started to operate a series of ocean bottom seismographic (OBS) observations. As a first step, we deployed 3 pop-up type OBSs on 20th of March 2014 as a trial observation, and recovered them on 18thof June 2014. Although one of the OBSs worked only 6 days from the start of the observation, other two OBSs functioned properly during the whole 3-month observation period. Only 8 earthquakes were reported near the OBS network in 3 months periods according to the Kandilli Observatory and Earthquake Research Institute catalogue. Thus, we first searched for the microearthquakes missing by the land seismic network and estimated their precious location by using the initial 6 days data. We could identify about 50 earthquakes with more than 5 picking data of P and S first arrivals, and half of them located near the NAF. We also tested the hypocenter relocation by combining the land and OBS seismic data for the 8 earthquakes, and found that these earthquakes are located in between 12-24 km depths. Next, we are planning to deploy 10 OBSs from September 2014 to June 2015 as a second step for our observation. At the AGU fall meeting, we will be able to introduce the OBS location of this new observation. These OBS observations are conducted as a part of the "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education in Turkey" project, financially supported by Japan International Cooperation Agency (JICA), Japan Science and Technology Agency (JST), and the Ministry of Development in Turkey.
Ambient Noise Tomography and Microseism Directionalities across the Juan de Fuca Plate
NASA Astrophysics Data System (ADS)
Tian, Ye
Ambient noise tomography has been well developed over the past decade and proven to be effective in studying the crust and upper mantle structure beneath the Earth’s continents. With new seismic array deployments beginning in the oceans, the application of the tomographic methods based on ambient noise observed at ocean bottom seismometers (OBSs) has become an important topic for research. In this thesis, I investigate the application of ambient noise tomography to oceanic bottom seismic data recorded by the Cascadia Initiative experiment across the Juan de Fuca plate. With higher local noise levels recorded by OBSs, I find that traditional data processing procedures used in ambient noise tomography produce measurable Rayleigh wave Green’s functions between deep ocean stations, whereas the shallow water stations are severely contaminated by both tilt noise and compliance noise and require new methods of processing. Because the local noise level varies across the study region, four semi-independent studies are conducted to both utilize the quieter deep-water stations and to address the problem posed by noisy shallow water stations. First, I construct an age-dependent shear wave speed model of the crust and uppermost mantle with 18 deep-water stations near the Juan de Fuca Ridge. The model possess a shallow low shear velocity zone near the ridge and has its sedimentary thickness, lithospheric thickness, and mantle shear wave speeds increase systematically with age Second, I investigate the locations and mechanisms of microseism generation using ambient noise cross-correlations constructed between 61 OBSs and 42 continental stations near the western US coast and find that the primary and secondary microseisms are generated at different locations and possibly have different physical mechanisms. Third, I show that tilt and compliance noise on the vertical components of the OBSs can be reduced substantially using the horizontal components and the differential pressure gauge records. Removal of these types of noise improves the signal-to-noise ratio of ambient noise cross-correlations significantly at beyond 10 sec period. Lastly, I present a new single-station method to estimate the microseism Rayleigh wave strength and directionality based on the horizontal-to-vertical transfer function. The high spatial and temporal resolution of this method may open up the microseism Rayleigh waves for a wider range of studies.
NASA Astrophysics Data System (ADS)
Hayashimoto, N.; Hoshiba, M.
2013-12-01
1. Introduction Ocean bottom seismograph (OBS) is useful for making Earthquake Early Warning (EEW) earlier. However, careful handling of these data is required because the installation environment of OBSs may be different from that of land stations. Site amplification factor is an important factor to estimate the magnitudes, and to predict ground motions (e.g. seismic intensity) in EEW. In this presentation, we discuss the site amplification factor of OBS in the Tonankai area of Japan from these two points of view. 2. Examination of magnitude correction of OBS In the EEW of JMA, the magnitude is estimated from the maximum amplitude of the displacement in real time. To provide the fast magnitude estimation, the magnitude-estimation algorithm switches from the P to S formula (Meew(P) to Meew(S)) depending on the expected S-phase arrival (Kamigaichi,2004). To estimate the magnitude correction for OBS, we determine Meew(P) and Meew(S) at OBSs and compare them with JMA magnitude (Mjma). We find Meew(S) at OBS is generally larger than Mjma by approximately 0.6. The slight differences of spatial distribution of Meew(S) amplification are also found among other OBSs. From the numerical simulations, Nakamura et al. (MGR,submitted) pointed out that the oceanic layer and the low-velocity sediment layers causes the large amplifications in low frequency range (0.1-0.2Hz) at OBSs. We conclude that the site effect of OBS characterized by such a low velocity sediment layers causes those amplification of Magnitude. 3. The frequency-dependent site factor of OBS estimated from Fourier spectrum ratio and their application for prediction of seismic intensity of land station We compare Fourier spectra of S-wave portion on OBSs with those on adjacent land stations. Station pair whose distance is smaller than 50 km is analyzed, and we obtain that spectral ratio of land station (MIEH05 of the KiK-net/NIED) to OBS (KMA01 of the DONET/JAMSTEC) is 5-20 for frequencies 10-20Hz for both horizontal and vertical components, whereas it is approximately 0.2 at less than 2Hz for the horizontal component, which corresponds to the relative site amplification factors in the frequency domain. In addition, we compare the accuracies of expected seismic intensity of land stations using the average of seismic intensity difference with those using the spectral ratio as the empirical amplification factor. In an example of station pair mentioned above, the RMS of the difference between measured and predicted seismic intensity is improved by about 38% by using a spectral ratio as the amplification factor. These results indicate that the frequency-dependent site factor is crucial factor to predict seismic intensity from OBS data, and also show that OBS can be used as front stations in the method for prediction of ground motion based on the real-time monitoring (Hoshiba, 2013). Acknowledgement: Waveform data were obtained from the JMA network, DONET of the JAMSTEC, K-net and KiK-net of the NIED.
NASA Astrophysics Data System (ADS)
Uemura, Miyuu; Ito, Yoshihiro; Ohta, Kazuaki; Hino, Ryota; Shinohara, Masanao
2017-04-01
Seismic interferometry is one of the most effective techniques to detect temporal variations in seismic velocity before or after a large earthquake. Some previous studies have been reported on seismic velocity reduction due to the occurrence of large earthquakes (e.g., Wegler et al., 2009; Yamada et al., 2010) as well as preceding them (e.g., Lockner et al., 1977; Yoshimitsu et al., 2009). However, there have only been a few studies thus far which attempt to detect seismic velocity changes associated with slow slip events (SSEs). In this study, we focus on applying seismic interferometry to ambient noise data from ocean bottom seismometers (OBSs) deployed near a subduction zone. Between the end of January 2011 and the largest foreshock occurring on March 9th that precedes the March 11, 2011 Tohoku-Oki earthquake, SSEs and low-frequency tremors were detected offshore Miyagi Prefecture (Ito et al., 2013, 2015; Katakami et al., 2016). We applied our seismic interferometry analysis using ambient noise to recordings from 17 OBS stations that were installed in the vicinity of the 2011 Tohoku-Oki earthquake source region, and only considered the recordings from before that major earthquake. All the OBSs are short-period seismometers with three components which have an eigenfrequency of 4.5 Hz. These OBSs were deployed offshore Miyagi Prefecture between November 2010 and April 2011. Before proceeding with the seismic interferometry analysis, we needed to estimate the two horizontal components of the original deployment orientation for 13 OBSs in (we could not estimate them for 4 OBSs). To obtain the OBS orientation, we used particle orbits of some direct P waves from selected tectonic earthquakes, in order to extract one vertical and two horizontal components. Then, the seismic interferometry analysis consisted of the following steps. First, we applied a band-pass filter of 0.25-2.0 Hz and one-bit technique to the ambient noise signal. Second, we calculated auto-correlation functions (ACFs) for the radial and transverse components using a 5-s time window with lag time from -30 s to 30 s, sampled at intervals of 0.1 s. Using either seven or sixteen days of continuous waveform records or the entire time period, we can construct either a 7-day ACF, a 16-day ACF, or a reference ACF. Finally, we calculated the Correlation Coefficients (CCs) between the 7-day ACF or the 16-day ACF and the reference ACF. There are three important points in our results. First, during the occurrence of the SSE, the values of the CCs decrease. Second, the changes in the values of the CCs display regional differences across the OBS network. Third, the locations of the stations for which the drop of the CC from a value of 1.0 is large corresponds to the seafloor region above the rupture area of the largest foreshock, whereas the locations of the stations for which the drop from the CC of the previous period is large corresponds to the seafloor above the slip area of the SSEs detected before that foreshock.
NASA Astrophysics Data System (ADS)
Tian, Ye; Ritzwoller, Michael H.
2017-09-01
Ambient noise tomography exploits seismic ground motions that propagate coherently over long interstation distances. Such ground motions provide information about the medium of propagation that is recoverable from interstation cross-correlations. Local noise sources, which are particularly strong in ocean bottom environments, corrupt ambient noise cross-correlations and compromise the effectiveness of ambient noise tomography. Based on 62 ocean bottom seismometers (OBSs) located on Juan de Fuca (JdF) plate from the Cascadia Initiative experiment and 40 continental stations near the coast of the western United States obtained in 2011 and 2012, we attempt to reduce the effects of local noise on vertical component seismic records across the plate and onto US continent. The goal is to provide better interstation cross-correlations for use in ambient noise tomography and the study of ambient noise directionality. As shown in previous studies, tilt and compliance noise are major sources of noise that contaminate the vertical channels of the OBSs and such noise can be greatly reduced by exploiting information on the horizontal components and the differential pressure gauge records, respectively. We find that ambient noise cross-correlations involving OBSs are of significantly higher signal-to-noise ratio at periods greater than 10 s after reducing these types of noise, particularly in shallow water environments where tilt and compliance noise are especially strong. The reduction of tilt and compliance noise promises to improve the accuracy and spatial extent of ambient noise tomography, allowing measurements based on coherently propagating ambient noise to be made at stations in the shallower parts of the JdF plate and at longer periods than in previous studies. In addition such local noise reduction produces better estimates of the azimuthal content of ambient noise.
Using OBS Data to Constrain the Characteristics of Microseisms in South China Sea
NASA Astrophysics Data System (ADS)
Xiao, H.; Xue, M.; Yang, T.; Liu, C.; Hua, Q.; Xia, S.; Huo, D.; Huang, H.; Le, B. M.; Pan, M.; Li, L.
2016-12-01
It has long been recognized that ocean gravity waves can generate microseisms through the coupling with the solid earth. Their generation mechanisms, wave types and propagation have been studied and debated intensively. In this study, we are aiming to study microseisms in South China Sea. We use six OBS data from an OBS array experiment supported by Natural Science Foundation of China, all available land broadband seismic data, and all available global satellite data from May 01, 2012 through August 20, 2012 (UTC). We mainly apply four techniques, i.e., power spectrum density (PSD), correlation, temporal frequency spectrum, and frequency dependent polarization analysis to study microseisms in South China Sea. We found that 1) the energy level of microseisms observed on OBSs are higher than land stations and there is no SF (0.05-0.08Hz) on OBSs; 2) SPDF is predominant on both the DF band (0.1-0.5Hz) as well as the whole band of microseisms (0.05-0.5Hz) for both OBSs and Land stations; 3) DF microseisms are significantly intensified by typhoons; 4) the variations of microseisms correlate well with the variations of nearby significant ocean wave height; 5) LPDF microseisms and SPDF microseisms have different polarization directions at most stations, suggesting they are generated from different source area; 6) the predominant directions of SPDF microseisms are much more scattered than those of LPDF microseisms, probably implying that SPDF microseisms have multiple sources; 7) most of microseisms are probably a mixture of P, Love and Rayleigh waves in this region. From our study, we found that the source regions for microseisms observed near marginal seas such as South China Sea are local and do not overlap with the source regions for global microseisms.
NASA Astrophysics Data System (ADS)
Kono, A.; Sato, T.; Shinohara, M.; Mochizuki, K.; Yamada, T.; Uehira, K.; Shimbo, T.; Machida, Y.; Hino, R.; Azuma, R.
2017-12-01
Off the Boso Peninsula, Japan, the Pacific plate (PAC) is subducting westward beneath the Honshu Island Arc (HIA) and the Philippine Sea plate (PHS), while the PHS is subducting northwestward under the HIA. Such tectonic interactions have caused various seismic events such as the Boso Slow Slip Events (SSEs). To better understand these seismic events, it is important to determine the structure under this region. In May 2017, we published 2D P-wave velocity structure under the survey area, and showed geometry of the upper surface of PHS (UPHS) and reflection intensity variation along it. From our result and previous studies, relatively strong reflection from the UPHS can be observed near the main slip area of Boso SSEs, and such reflective area may relate with the Boso SSEs. However, it is still insufficient to link both only from the 2D models and further work is needed to reveal spatial distribution of the strong reflection area. From July to August 2009, we conducted a marine seismic experiment using airgun as source off the east coast of the Boso Peninsula. Airgun was shot along the 4 survey lines, and 27 Ocean Bottom Seismometers (OBSs) were deployed in the survey area. In our presentation, we used 18 OBSs to determine 3D P-wave velocity structure. We estimated 3D velocity structure from airgun data recorded in the OBSs by using the FAST (Zelt and Barton, 1998). Next, we picked the reflection traveltimes likely reflected from the UPHS and applied them to the Traveltime mapping method (Fujie et al. 2006) to estimate spatial locations of the reflectors. As a result, reflections from the UPHS seem to concentrate near the main slip area of the Boso SSEs and an area where the serpentine seamount chain of the Izu-Bonin subduction zone is subducting. Acknowledgement The marine seismic experiment was conducted by R/V Hakuhou-maru of Japan Agency for Marine-Earth Science and Technology, and the OBSs were retrieved by Shincho-maru of Shin-Nihon-Kaiji co. Ltd. (Present, Fukada salvage co. Ltd.). We would like to thank captains and the crew of Hakuho-maru and Shincho-maru. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of japan, under its Observation and Research Program for Prediction of Earthquakes and Volcanic Eruptions, and from the Grants in Aid for Scientific Research (25287109).
Nowak reads a checklist during OBSS berthing operations on STS-121
2006-07-05
S121-E-05401 (5 July 2006) --- Astronaut Lisa M. Nowak, STS-121 mission specialist, uses a handy reference manual while stationed at the controls on the aft flight deck of the Space Shuttle Discovery. She is preparing for the next day's activities which include docking with the International Space Station.
Nowak reads a checklist during OBSS berthing operations on STS-121
2006-07-05
S121-E-05402 (5 July 2006) --- Astronaut Lisa M. Nowak, STS-121 mission specialist, uses a handy reference manual while stationed at the controls on the aft flight deck of the Space Shuttle Discovery. She is preparing for the next day's activities which include docking with the International Space Station.
Interferometric imaging of crustal structure from wide-angle multicomponent OBS-airgun data
NASA Astrophysics Data System (ADS)
Shiraishi, K.; Fujie, G.; Sato, T.; Abe, S.; Asakawa, E.; Kodaira, S.
2015-12-01
In wide-angle seismic surveys with ocean bottom seismograph (OBS) and airgun, surface-related multiple reflections and upgoing P-to-S conversions are frequently observed. We applied two interferometric imaging methods to the multicomponent OBS data in order to highly utilize seismic signals for subsurface imaging.First, seismic interferometry (SI) is applied to vertical component in order to obtain reflection profile with multiple reflections. By correlating seismic traces on common receiver records, pseudo seismic data are generated with virtual sources and receivers located on all original shot positions. We adopt the deconvolution SI because source and receiver spectra can be canceled by spectral division. Consequently, gapless reflection images from just below the seafloor to the deeper are obtained.Second, receiver function (RF) imaging is applied to multicomponent OBS data in order to image P-to-S conversion boundary. Though RF is commonly applied to teleseismic data, our purpose is to extract upgoing PS converted waves from wide-angle OBS data. The RF traces are synthesized by deconvolution of radial and vertical components at same OBS location for each shot. Final section obtained by stacking RF traces shows the PS conversion boundaries beneath OBSs. Then, Vp/Vs ratio can be estimated by comparing one-way traveltime delay with two-way traveltime of P wave reflections.We applied these methods to field data sets; (a) 175 km survey in Nankai trough subduction zone using 71 OBSs with from 1 km to 10 km intervals and 878 shots with 200 m interval, and (b) 237 km survey in northwest pacific ocean with almost flat layers before subduction using 25 OBSs with 6km interval and 1188 shots with 200 m interval. In our study, SI imaging with multiple reflections is highly applicable to OBS data even in a complex geological setting, and PS conversion boundary is well imaged by RF imaging and Vp/Vs ratio distribution in sediment is estimated in case of simple structure.
Ocean bottom seismometer: design and test of a measurement system for marine seismology.
Mànuel, Antoni; Roset, Xavier; Del Rio, Joaquin; Toma, Daniel Mihai; Carreras, Normandino; Panahi, Shahram Shariat; Garcia-Benadí, A; Owen, Tim; Cadena, Javier
2012-01-01
The Ocean Bottom Seismometer (OBS) is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal-to-Noise Ratio (SNR) based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth's crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure.
Ocean Bottom Seismometer: Design and Test of a Measurement System for Marine Seismology
Mànuel, Antoni; Roset, Xavier; Del Rio, Joaquin; Toma, Daniel Mihai; Carreras, Normandino; Panahi, Shahram Shariat; Garcia-Benadí, A.; Owen, Tim; Cadena, Javier
2012-01-01
The Ocean Bottom Seismometer (OBS) is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal–to-Noise Ratio (SNR) based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth’s crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure. PMID:22737032
Observation and Simulation of Microseisms Offshore Ireland
NASA Astrophysics Data System (ADS)
Le Pape, Florian; Bean, Chris; Craig, David; Jousset, Philippe; Donne, Sarah; Möllhoff, Martin
2017-04-01
Although more and more used in seismic imagery, ocean induced ambient seismic noise is still not so well understood, particularly how the signal propagates from ocean to land. Between January and September 2016, 10 broadband Ocean Bottom Seismometers (OBSs) stations, including acoustic sensors (hydrophone), were deployed across the shelf offshore Donegal and out into the Rockall Trough. The preliminary results show spatial and temporal variability in the ocean generated seismic noise which holds information about changes in the generation source process, including meteorological information, but also in the geological structure. In addition to the collected OBS data, numerical simulations of acoustic/seismic wave propagation are also considered in order to study the spatio-temporal variation of the broadband acoustic wavefield and its connection with the measured seismic wavefield in the region. Combination of observations and simulations appears significant to better understand what control the acoustic/seismic coupling at the sea floor as well as the effect of the water column and sediments thickness on signal propagation. Ocean generated seismic ambient noise recorded at the seafloor appears to behave differently in deep and shallow water and 3D simulations of acoustic/seismic wave propagation look particularly promising for reconciling deep ocean, shelf and land seismic observations.
Improving OBS operations in ultra-deep ocean during the Southern Mariana Trench expeditions
NASA Astrophysics Data System (ADS)
Zeng, X.; Lin, J.; Xu, M.; Zhou, Z.
2017-12-01
The Mariana Trench Research Initiative, led by the South China Sea Institute of Oceanology of the Chinese Academy of Sciences and through international collaboration, focuses on investigating the deep and shallow lithospheric structure, earthquake characteristics, extreme geological environments, and the controlling geodynamic mechanisms for the formation of Earth's deepest basins in the southern Mariana Trench. Two multidisciplinary research expeditions were executed during December 2016 and June 2017, respectively, on board R/V Shiyan 3. A main task of the Mariana Initiative is to conduct the Southern Mariana OBS Experiment (SMOE), the first OBS seismic experiment across the Challenger Deep. The SMOE expeditions include both active and passive source seismic experiments and employed a large number of broadband OBS instruments. Due to the deep water, rough weather, strong winds, and other unfavorable factors, it was challenging to deploy/recover the OBSs. During the two expeditions we developed and experimented with a number of ways to improve the success rate of OBS operations in the harsh ultra-deep ocean environment of the Southern Mariana Trench. All newly acquired OBSs underwent a series of uniquely designed deep-ocean tests to improve the instrument performance and maximize reliability during their deployment under the ultra-high pressure conditions. The OBS deployment and recovery followed a unified standard operation procedure and aided by an instrumental checklist, which were specifically designed and strictly enforced for operation during the expeditions. Furthermore, an advanced ship-based radio positioning system was developed to rapidly and accurately locate the OBS instruments when they reached the sea surface; the system proved its effectiveness even under extreme weather conditions. Through the development and application of the novel methods for operation in deep oceans, we overcame the rough sea and other unfavorable factors during the first two expeditions to the southern Mariana Trench and achieved a highly successful OBS operation program.
Tracking fin whale calls offshore the Galicia Margin, North East Atlantic Ocean.
Gaspà Rebull, Oriol; Díaz Cusí, Jordi; Ruiz Fernández, Mario; Gallart Muset, Josep
2006-10-01
Data recorded during a temporary deployment of ocean bottom seismometers (OBSs) are used in this study to monitor the presence of fin whales around the array. In the summer of 2003, ten OBSs were placed 250 km from the NW coast of Iberia in the Galicia Margin, NE Atlantic Ocean for a period of one month. The recorded data set provided a large variety of signals, including fin whale vocalizations identified by their specific acoustic signature. The use of a dense array of seafloor receivers allowed investigation into the locations and tracks of the signal-generating whales using a seismological hypocentral location code. Individual pulses of different sequences have been chosen to study such tracks. Problems related to the correct identification of pulses, discrimination between direct and multiple arrivals, and the presence of more than one individual have been considered prior to location. Fin calls were concentrated in the last two weeks of the deployment and the locations were spread around the area covered by the array. These results illustrate that, besides its classical seismological aim, deployment of semipermanent seafloor seismic arrays can also provide valuable data for marine mammal behavior studies.
Preliminary results of the Source China Sea passive source OBS array experiment
NASA Astrophysics Data System (ADS)
Yang, T.; Liu, C.; Pei, Y.; Xia, S.
2013-12-01
The Scarborough, or Huangyan, Seamount chain in South China Sea (SCS) represents an extreme case of the global mid-ocean ridge system where the magmatism continues for many million years after the cessation of spreading. To understand this unique process, the South China Sea Deep (SCSD) program funded an experiment deploying a passive source OBS array to image the lithospheric structure beneath the extinct ridge. In April 2012, 18 passive source OBSs, including 15 Guralp CMG-40T OBS and 3 I-4C OBS, were deployed around the Huangyan Island for one year. 11 OBSs were successfully recovered this April, and their data are being processed. Here we present some preliminary results from analyses of this dataset, including the general quality of three-component seismograms, characteristics of seafloor ambient noise spectra, determining the OBS orientation from the Rayleigh wave polarization, and the dispersion analysis of Rayleigh waves. We found that, for most stations, seismograms from teleseismic, regional and local events are generally good with the horizontal records being comparable with vertical component. The noise levels in these seafloor stations are much higher than land-based stations, especially in shorter periods, likely suggesting the direct and stronger impact from the tempestuous SCS. Applications of more sophisticated seismic techniques such as surface wave tomography, seismic anisotropy, receiver function and ambient noise cross-correlation are underway. In addition to the low recovery rate, there are other lessons learned from this experiment. For example, at least two stations have detectable timing problems; Airgun shots should have been used to constrain the timings and orientations in both deployment and recovery. It is still challenging and costly to carry out long-term passive source seismic observations in deep sea.
The Hawaiian PLUME Project Successfully Completes its First Deployment
NASA Astrophysics Data System (ADS)
Laske, G.; Collins, J. A.; Wolfe, C. J.; Weeraratne, D.; Solomon, S. C.; Detrick, R. S.; Orcutt, J. A.; Bercovici, D. A.; Hauri, E. H.
2006-12-01
The Hawaiian PLUME (Plume-Lithosphere Undersea Melt Experiment) project is a multi-disciplinary program to study the deep mantle roots of the Hawaiian hotspot. The nearly linear alignment of the Hawaiian Islands has heretofore prevented high-resolution, three-dimensional imaging of mantle structure in the region from land seismic observations, a situation that has permitted debates to persist over whether or not the Hawaiian hotspot is underlain by a classical plume from the deep mantle and how mantle upwelling interacts with the overlying lithosphere beneath the Hawaiian Swell. The centerpiece of the PLUME project is a large broadband seismic network that includes ocean-bottom seismometers (OBSs) as well as portable land stations. Occupying a total of more than 80 sites and having a two-dimensional aperture of more than 1000~km, this network includes one of the first large-scale, long-term deployments of broadband OBSs. The seismic experiment has been conducted in two stages to record teleseismic body and surface waves over a total duration of two years. A first deployment of 35 OBSs extended from January 2005 through January 2006 and was centered on the island of Hawaii, the locus of the hotspot. A second OBS deployment, with a larger aperture and larger station spacing was carried out in May 2006 to collect data for another year. The first deployment was a technical success, with 32 of 35 OBSs recovered and many large events at suitable distances and azimuths well recorded. We recorded 225 events with scalar seismic moments greater than 5× 1017Nm. Our database includes the great 28 March 2005, M_S=8.2 aftershock of the 26 December 2004 Sumatra-Andaman earthquake and two large earthquakes on the Juan de Fuca plate on 15 and 17 June 2005. Our surface wave analysis will be based on 102 large, shallow (h_0<200 km) earthquakes with scalar seismic moments M_0≥ 20/times 1017Nm. This number of events is about 20% more than what was gathered during the year--long SWELL pilot deployment in the same region in 1997-98 using solely differential pressure gauges. The database also includes excellent long-period body wave waveforms suitable for tomographic imaging as well as horizontal- component data suitable for a shear-wave splitting analysis and for identifying converted phases from the upper-mantle transition zone with receiver function techniques. In addition to the seismic experiment, nine of eleven dredges on the first deployment cruise yielded coral and basalt samples that will help to constrain subsidence rates of the Hawaiian Islands and the origin of rift volcanism. On the two deployment cruises we also obtained high-resolution multi-beam bathymetry along previously unmapped transects covering areas of the eastern parts of the Maui and the Molokai Fracture Zones as well as portions of the Bach Ridge at the southern end of the Musician Seamounts.
New tools for subsurface imaging of 3D seismic Node data in hydrocarbon exploration =
NASA Astrophysics Data System (ADS)
Benazzouz, Omar
A aquisicao de dados sismicos de reflexao multicanal 3D/4D usando Ocean Bottom NODES de 4 componentes constitui atualmente um sector de importancia crescente no mercado da aquisicao de dados reflexao sismica marinha na industria petrolifera. Este tipo de dados permite obter imagens de sub-superficie de alta qualidade, com baixos niveis de ruido, banda larga, boa iluminacao azimutal, offsets longos, elevada resolucao e aquisicao de tanto ondas P como S. A aquisicao de dados e altamente repetitiva e portanto ideal para campanhas 4D. No entanto, existem diferencas significativas na geometria de aquisicao e amostragem do campo de ondas relativamente aos metodos convencionais com streamers rebocados a superficie, pelo que e necessario desenvolver de novas ferramentas para o processamento deste tipo de dados. Esta tese investiga tres aspectos do processamento de dados de OBSs/NODES ainda nao totalmente resolvidos de forma satisfatoria: a deriva aleatoria dos relogios internos, o posicionamento de precisao dos OBSs e a implementacao de algoritmos de migracao prestack 3D em profundidade eficientes para obtencao de imagens precisas de subsuperficie. Foram desenvolvidos novos procedimentos para resolver estas situacoes, que foram aplicados a dados sinteticos e a dados reais. Foi desenvolvido um novo metodo para deteccao e correccao de deriva aleatoria dos relogios internos, usando derivadas de ordem elevada. Foi ainda desenvolvido um novo metodo de posicionamento de precisao de OBSs usando multilateracao e foram criadas ferramentas de interpolacao/extrapolacao dos modelos de velocidades 3D de forma a cobrirem a extensao total area de aquisicao. Foram implementados algoritmos robustos de filtragem para preparar o campo de velocidades para o tracado de raios e minimizar os artefactos na migracao Krichhoff pre-stack 3D em profundidade. Os resultados obtidos mostram um melhoramento significativo em todas as situacoes analisadas. Foi desenvolvido o software necessario para o efeito e criadas solucoes computacionais eficientes. As solucoes computacionais desenvolvidas foram integradas num software standard de processamento de sismica (SPW) utilizado na industria, de forma a criar, conjuntamente com as ferramentas ja existentes, um workflow de processamento integrado para dados de OBS/NODES, desde a aquisicao e controle de qualidade a producao dos volumes sismicos migrados pre-stack em profundidade.
EVA Hazards due to TPS Inspection and Repair
NASA Technical Reports Server (NTRS)
Stewart, Christine E.
2007-01-01
Tile inspection and repair activities have implicit hazards associated with them. When an Extra Vehicular Activities (EVA) crewmember and associated hardware are added into the equation, additional hazards are introduced. Potential hazards to the Extravehicular Mobility Unit (EMU), the Orbiter or the crew member themselves are created. In order to accurately assess the risk of performing a TPS inspection or repair, an accurate evaluation of potential hazards and how adequately these hazards are controlled is essential. The EMU could become damaged due to sharp edges, protrusions, thermal extremes, molten metal or impact with the Orbiter. Tools, tethers and the presence of a crew member in the vicinity of the Orbiter Thermal Protection System (TPS) pose hazards to the Orbiter. Hazards such as additional tile or Reinforced Carbon-Carbon (RCC) damage from a loose tool, safety tethers, crewmember or arm impact are introduced. Additionally, there are hazards to the crew which should be addressed. Crew hazards include laser injury, electrical shock, inability to return to the airlock for EMU failures or Orbiter rapid safing scenarios, as well as the potential inadvertent release of a crew member from the arm/boom. The aforementioned hazards are controlled in various ways. Generally, these controls are addressed operationally versus by design, as the majority of the interfaces are to the Orbiter and the Orbiter design did not originally account for tile repair. The Shuttle Remote Manipulator System (SRMS), for instance, was originally designed to deploy experiments, and therefore has insufficient design controls for retention of the Orbiter Boom Sensor System (OBSS). Although multiple methods to repair the Orbiter TPS exist, the majority of the hazards are applicable no matter which specific repair method is being performed. TPS Inspection performed via EVA also presents some of the same hazards. Therefore, the hazards common to all TPS inspection or repair methods will be addressed.
Overview of the Ocean Bottom Seismology Component of the Cascadia Initiative (Invited)
NASA Astrophysics Data System (ADS)
Toomey, D. R.; Allen, R. M.; Collins, J. A.; Dziak, R. P.; Hooft, E. E.; Livelybrooks, D.; McGuire, J. J.; Schwartz, S. Y.; Tolstoy, M.; Trehu, A. M.; Wilcock, W. S.
2013-12-01
We report on the experimental progress of the ocean bottom seismology component of the Cascadia Initiative (CI). The CI is an onshore/offshore seismic and geodetic experiment that takes advantage of an Amphibious Array Facility (AAF) to study questions ranging from megathrust earthquakes to volcanic arc structure to the formation, deformation and hydration of the Juan de Fuca and Gorda plates. This diverse set of objectives are all components of understanding the overall subduction zone system and require an array that provides high quality data that crosses the shoreline and encompasses relevant plate boundaries. In October 2010, an open community workshop was convened in Portland, Oregon that produced a series of recommendations to maximize the scientific return of the CI and to develop deployment plans for the offshore component of the experiment. The NSF Cascadia Initiative Workshop Report1 presents the scientific objectives of the CI, the resources involved and the community-defined ocean bottom seismometer (OBS) deployment plan. There are several noteworthy aspects of the CI: The CI is the first to utilize a new generation of OBSs that are designed to withstand trawling by fisheries, thus allowing the collection of seismic data in the shallow water that overlies much of the Cascadia megathrust. The CI is a plate-scale experiment that provides a unique opportunity to study the structure and dynamics of an entire oceanic plate, from its birth at a spreading center to its subduction beneath a continental plate. Together with the land stations that are part of the amphibious array and other land networks, the OBSs will provide coverage at a density comparable to the Transportable Array of Earthscope from the volcanic arc out to the Pacific-Juan de Fuca spreading center segments. The CI is a community experiment that provides open access to all data via the IRIS Data Management Center, thus ensuring that the scientific return from the investment of resources is maximized. Lastly, the CI includes a significant education and outreach component that is providing berths for students, post-docs and other scientists to participate in either deployment or recovery legs, thus providing the seismological community with opportunities to gain valuable experience in planning and carrying out an OBS experiment. The Cascadia Initiative Expedition Team (CIET) is a group of scientists who are leading the seagoing expeditions to deploy and recover OBSs and are developing related Education and Outreach modules. The CIET maintains a web site for the community where information regarding CI expeditions and OBS metadata are provided2. The CI is currently in its third year of data acquisition. The CIET presentation will report on the 2011-2013 field seasons, data quantity and quality, ongoing E&O efforts, and the schedule for OBS operations in 2014.
Bottom Interaction in Ocean Acoustic Propagation
2014-09-30
deep seafloor (greater than the critical depth). What is the relationship between the seismic (ground motion) noise on the seafloor and the acoustic...ocean bottom seismometers (OBSs), but were very weak on the deep vertical line array (Deep VLA), located above 750 m from the seafloor. Stephen et al...was carried out in April-May 2011 near the location of the PhilSea10 Distributed Vertical Line Array (DVLA) (Stephen et al., 2011). The second
Bottom Interaction in Ocean Acoustic Propagation
2015-09-30
the deep seafloor (greater than the critical depth). What is the relationship between the seismic (ground motion) noise on the seafloor and the...ocean bottom seismometers (OBSs), but were very weak on the deep vertical line array (Deep VLA), located above 750 m from the seafloor. Stephen et...carried out in April-May 2011 near the location of the PhilSea10 Distributed Vertical Line Array (DVLA) (Stephen et al., 2011). The second experiment
NASA Astrophysics Data System (ADS)
Obana, Koichiro; Nakamura, Yasuyuki; Fujie, Gou; Kodaira, Shuichi; Kaiho, Yuka; Yamamoto, Yojiro; Miura, Seiichi
2018-03-01
In the northern part of the Japan Trench, the 1933 Showa-Sanriku earthquake (Mw 8.4), an outer-trench, normal-faulting earthquake, occurred 37 yr after the 1896 Meiji-Sanriku tsunami earthquake (Mw 8.0), a shallow, near-trench, plate-interface rupture. Tsunamis generated by both earthquakes caused severe damage along the Sanriku coast. Precise locations of earthquakes in the source areas of the 1896 and 1933 earthquakes have not previously been obtained because they occurred at considerable distances from the coast in deep water beyond the maximum operational depth of conventional ocean bottom seismographs (OBSs). In 2015, we incorporated OBSs designed for operation in deep water (ultradeep OBSs) in an OBS array during two months of seismic observations in the source areas of the 1896 and 1933 Sanriku earthquakes to investigate the relationship of seismicity there to outer-rise normal-faulting earthquakes and near-trench tsunami earthquakes. Our analysis showed that seismicity during our observation period occurred along three roughly linear trench-parallel trends in the outer-trench region. Seismic activity along these trends likely corresponds to aftershocks of the 1933 Showa-Sanriku earthquake and the Mw 7.4 normal-faulting earthquake that occurred 40 min after the 2011 Tohoku-Oki earthquake. Furthermore, changes of the clarity of reflections from the oceanic Moho on seismic reflection profiles and low-velocity anomalies within the oceanic mantle were observed near the linear trends of the seismicity. The focal mechanisms we determined indicate that an extensional stress regime extends to about 40 km depth, below which the stress regime is compressional. These observations suggest that rupture during the 1933 Showa-Sanriku earthquake did not extend to the base of the oceanic lithosphere and that compound rupture of multiple or segmented faults is a more plausible explanation for that earthquake. The source area of the 1896 Meiji-Sanriku tsunami earthquake is characterized by an aseismic region landward of the trench axis. Spatial heterogeneity of seismicity and crustal structure might indicate the near-trench faults that could lead to future hazardous events such as the 1896 and 1933 Sanriku earthquakes, and should be taken into account in assessment of tsunami hazards related to large near-trench earthquakes.
Analysis of Deep Seafloor Arrivals Observed on NPAL04
2012-12-03
transmission station to the scattering point (black line) to compute the time spent on the PE-predicted path to the scattering point. This time would...arrives at the OBSs at times corresponding to caustics of the PE predicted time fronts, there are large amplitude, late arrivals that occur between... caustics and even after the PE predicted coda. Similar analysis was done for T500 to T2300 with similar results and is discussed in Section 4 of
NASA Astrophysics Data System (ADS)
Shinohara, M.; Nakahigashi, K.; Yamashita, Y.; Yamada, T.; Mochizuki, K.; Shiobara, H.
2016-12-01
The Japanese Islands are located at subduction zones where Philippine Sea (PHS) plate subducts from the southeast beneath the Eurasian plate and the Pacific plate descends from the east beneath the PHS and Eurasian plates and have a high density of seismic stations. Many seismic tomography studies using land seismic station data were conducted to reveal the seismic structure. These studies discussed the relationship between heterogeneous structures and the release of fluids from the subducting slab, magma generation and movement in the subduction zone. However, regional tomography using the land station data did not have a sufficient resolution to image a deep structure beneath the Japan Sea.To obtain the deep structure, observations of natural earthquakes within the Japan Sea are essential. Therefore, we started the repeating long-term seismic observations using ocean bottom seismometers(OBSs) in the Yamato Basin from 2013 to 2016. We apply travel-time tomography method to the regional earthquake and teleseismic arrival-data recorded by OBSs and land stations. In this presentation, we will report the P and S wave tomographic images down to a depth of 300 km beneath the southern part of the Japan Sea. This study was supported by "Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan" conducted by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.
Characteristics of fin whale vocalizations recorded on instruments in the northeast Pacific Ocean
NASA Astrophysics Data System (ADS)
Weirathmueller, Maria Michelle Josephine
This thesis focuses on fin whale vocalizations recorded on ocean bottom seismometers (OBSs) in the Northeast Pacific Ocean, using data collected between 2003 and 2013. OBSs are a valuable, and largely untapped resource for the passive acoustic monitoring of large baleen whales. This dissertation is divided into three parts, each of which uses the recordings of fin whale vocalizations to better understand their calling behaviors and distributions. The first study describes the development of a technique to extract source levels of fin whale vocalizations from OBS recordings. Source levels were estimated using data collected on a network of eight OBSs in the Northeast Pacific Ocean. The acoustic pressure levels measured at the instruments were adjusted for the propagation path between the calling whales and the instruments using the call location and estimating losses along the acoustic travel path. A total of 1241 calls were used to estimate an average source level of 189 +/-5.8 dB re 1uPa 1m. This variability is largely attributed to uncertainties in the horizontal and vertical position of the fin whale at the time of each call, and the effect of these uncertainties on subsequent calculations. The second study describes a semi-automated method for obtaining horizontal ranges to vocalizing fin whales using the timing and relative amplitude of multipath arrivals. A matched filter is used to detect fin whale calls and pick the relative times and amplitudes of multipath arrivals. Ray-based propagation models are used to predict multipath times and amplitudes as function of range. Because the direct and first multiple arrivals are not always observed, three hypotheses for the paths of the observed arrivals are considered; the solution is the hypothesis and range that optimizes the fit to the data. Ray-theoretical amplitudes are not accurate and solutions are improved by determining amplitudes from the observations using a bootstrap method. Data from ocean bottom seismometers at two locations are used to assess the method: one on the Juan de Fuca Ridge, a bathymetrically complex mid-ocean ridge environment, and the other at a flat sedimented location in the Cascadia Basin. At both sites, the method is reliable up to 4 km range which is sufficient to enable estimates of call density. The third study explores spatial and temporal trends in fin whale calling patterns. The frequency and inter-pulse interval of fin whale 20 Hz vocalizations were observed over 10 years from 2003-2013 on bottom mounted hydrophones and OBSs in the northeast Pacific Ocean. The instrument locations extended from 40°N and 130°W to 125°W with water depths ranging from 1500-4000 m. The inter-pulse interval (IPI) of fin whale song sequences was observed to increase at a rate of 0.59 seconds/year over the decade of observation. During the same time period, peak frequency decreased at a rate of 0.16 Hz/year. Two primary call patterns were observed. During the earlier years, the more commonly observed pattern had a single frequency and single IPI. In later years, a doublet pattern emerged, with two dominant frequencies and two IPIs. Many call sequences in the intervening years appeared to represent a transitional state between the two patterns. The overall trend was consistent across the entire geographical span, although some regional differences exist.
SRMS History, Evolution and Lessons Learned
NASA Technical Reports Server (NTRS)
Jorgensen, Glenn; Bains, Elizabeth
2011-01-01
Early in the development of the Space Shuttle, it became clear that NASA needed a method of deploying and retrieving payloads from the payload bay. The Shuttle Remote Manipulator System (SRMS) was developed to fill this need. The 50 foot long robotic arm is an anthropomorphic design consisting of three electromechanical joints, six degrees of freedom, and two boom segments. Its composite boom construction provided a light weight solution needed for space operations. Additionally, a method of capturing payloads with the arm was required and a unique End Effector was developed using an electromechanical snare mechanism. The SRMS is operated using a Displays and Controls Panel and hand controllers located within the aft crew compartment of the shuttle. Although the SRMS was originally conceived to deploy and retrieve payloads, its generic capabilities allowed it to perform many other functions not originally conceived of. Over the years it has been used for deploying and retrieving constrained and free flying payloads, maneuvering and supporting EVA astronauts, satellite repair, International Space Station construction, and as a viewing aid for on-orbit International Space Station operations. After the Columbia accident, a robotically compatible Orbiter Boom Sensor System (OBSS) was developed and used in conjunction with the SRMS to scan the Thermal Protection System (TPS) of the shuttle. These scans ensure there is not a breach of the TPS prior to shuttle re-entry. Ground operations and pre mission simulation, analysis and planning played a major role in the success of the SRMS program. A Systems Engineering Simulator (SES) was developed to provide a utility complimentary to open loop engineering simulations. This system provided a closed-loop real-time pilot-driven simulation giving visual feedback, display and control panel interaction, and integration with other vehicle systems, such as GN&C. It has been useful for many more applications than traditional training. Evolution of the simulations, guided by the Math Model Working Group, showed the utility of input from multiple modeling groups with a structured forum for discussion.There were many unique development challenges in the areas of hardware, software, certification, modeling and simulation. Over the years, upgrades and enhancements were implemented to increase the capability, performance and safety of the SRMS. The history and evolution of the SRMS program provided many lessons learned that can be used for future space robotic systems.
NASA Astrophysics Data System (ADS)
Lynch, James F.; Irish, James D.; Sherwood, Christopher R.; Agrawal, Yogesh C.
1994-08-01
During the winter of 1990-1991 an Acoustic BackScatter System (ABSS), five Optical Backscatterance Sensors (OBSs) and a Laser In Situ Settling Tube (LISST) were deployed in 90 m of water off the California coast for 3 months as part of the Sediment Transport Events on Shelves and Slopes (STRESS) experiment. By looking at sediment transport events with both optical (OBS) and acoustic (ABSS) sensors, one obtains information about the size of the particles transported as well as their concentration. Specifically, we employ two different methods of estimating "average particle size". First, we use vertical scattering intensity profile slopes (acoustical and optical) to infer average particle size using a Rouse profile model of the boundary layer and a Stokes law fall velocity assumption. Secondly, we use a combination of optics and acoustics to form a multifrequency (two frequency) inverse for the average particle size. These results are compared to independent observations from the LISST instrument, which measures the particle size spectrum in situ using laser diffraction techniques. Rouse profile based inversions for particle size are found to be in good agreement with the LISST results except during periods of transport event initiation, when the Rouse profile is not expected to be valid. The two frequency inverse, which is boundary layer model independent, worked reasonably during all periods, with average particle sizes correlating well with the LISST estimates. In order to further corroborate the particle size inverses from the acoustical and optical instruments, we also examined size spectra obtained from in situ sediment grab samples and water column samples (suspended sediments), as well as laboratory tank experiments using STRESS sediments. Again, good agreement is noted. The laboratory tank experiment also allowed us to study the acoustical and optical scattering law characteristics of the STRESS sediments. It is seen that, for optics, using the cross sectional area of an equivalent sphere is a very good first approximation whereas for acoustics, which is most sensitive in the region ka ˜ 1, the particle volume itself is best sensed. In concluding, we briefly interpret the history of some STRESS transport events in light of the size distribution and other information available. For one of the events "anomalous" suspended particle size distributions are noted, i.e. larger particles are seen suspended before finer ones. Speculative hypotheses for why this signature is observed are presented.
OBS development for long term observation in the Marmara Sea, NW Turkey
NASA Astrophysics Data System (ADS)
Takahashi, Narumi; Shimizu, Satoshi; Maekawa, Takuya; Kalafat, Dogan; Pinar, Ali; Citak, Seckin; Kaneda, Yoshiyuki
2015-04-01
We have carried out a collaboration study between Japan and Turkey since 2013, which is one of SATREPS projects, "Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey". The main objective of this project is to reduce risk brought by earthquakes and tsunamis. In particular, the North Anatolian Fault system runs through the Marmara sea and it is expected that the seismic gap exists there according to past seismic studies. The details of seismicity distribution in the Marmara Sea is, however, still insufficient to construct fault model along the active faults. Therefore, we prepare ten ocean bottom seismographs (OBSs) to realize long term observation. We aim to identify size and depth of seismogenic zones using micro seismicity. In addition, we need to cover relative broad area from off-shore Istanbul city to the western end of the Marmara Sea. To clear these conditions, OBS specifications we need are high dynamic range and low instrument noise to observe micro seismicity, low electrical consumption to realize long term observation of over one year, high cost performance to cover the broad area for OBS installation, low cost implementation, and good operability to treat by relatively small number of persons. All items, which are three components velocity sensor, batteries, a recorder, a GPS receiver, a transponder and its transducer to control OBS retrieval, a flasher and a beacon, are installed in the 17 inches glass sphere. The natural frequency of the velocity sensor is 4.5 Hz and the frequency range of our OBS is from 4.5 Hz to 250 Hz. Data sampling is selectable among 100 Hz, 250 Hz and 500 Hz. Because our OBS is deployed by free fall, accuracy of the OBS clock is essentially one of important factors, and it is less than 0.1 ppm. And the resolution of A/D conversion performed on the recorder is 24 bit and we keep the dynamic range of over 135 dB. These data is stored on a semiconductor memory and the capacity is over 300 days with 100 Hz sampling observation. We adopted noncontact charge using lithium ion batteries to reduce implementation cost. And we can charge batteries and transfer stored data without opening glass sphere. All parameters of each OBS are controlled using wireless LAN. In this presentation, we introduce details of OBS development for Japan-Turkey project.
Student Experiences: the 2013 Cascadia Initiative Expedition Team's Apply to Sail Program
NASA Astrophysics Data System (ADS)
Mejia, H.; Hooft, E. E.; Fattaruso, L.
2013-12-01
During the summer of 2013, the Cascadia Initiative Expedition Team led six oceanographic expeditions to recover and redeploy ocean bottom seismometers (OBSs) across the Cascadia subduction zone and Juan de Fuca plate. The Cascadia Initiative (CI) is an onshore/offshore seismic and geodetic experiment to study questions ranging from megathrust earthquakes to volcanic arc structure to the formation, deformation and hydration of the Juan de Fuca and Gorda plates with the overarching goal of understanding the entire subduction zone system. The Cascadia Initiative Expedition Team is a team of scientists charged with leading the oceanographic expeditions to deploy and recover CI OBSs and developing the associated Education and Outreach effort. Students and early career scientists were encouraged to apply to join the cruises via the Cascadia Initiative Expedition Team's Apply to Sail Program. The goal of this call for open participation was to help expand the user base of OBS data by providing opportunities for students and scientists to directly experience at-sea acquisition of OBS data. Participants were required to have a strong interest in learning field techniques, be willing to work long hours at sea assisting in OBS deployment, recovery and preliminary data processing and have an interest in working with the data collected. In total, there were 51 applicants to the Apply to Sail Program from the US and 4 other countries; 21 graduate students as well as a few undergraduate students, postdocs and young scientists from the US and Canada were chosen to join the crew. The cruises lasted from 6 to 14 days in length. OBS retrievals comprised the three first legs, of which the first two were aboard the Research Vessel Oceanus. During each of the retrievals, multiple acoustic signals were sent while the vessel completed a semi-circle around the OBS to accurately determine its position, a final signal was sent to drop the seismometer's anchor, and finally the ship and crew waited as the OBS traveled at around 40 meters a minute to the surface. The entire retrieval process could take anywhere from 2 hours to 4 hours for each seismometer. The third retrieval leg was aboard the Research Vessel Atlantis and utilized the submersible Remotely Operated Vehicle (ROV) Jason. The ROV was used to recover 12 of the 30 seismometers for this last retrieval mission. The final three legs were OBS deployments conducted with the assistance of the Research Vessel Oceanus. The seismometers were dropped in a desired location and allowed to sink to the ocean bottom. The ship would then obtain an exact location of the deployed seismometer using the same method described above. Participants will share their newfound knowledge of everyday life at sea and learning about the science behind deploying and retrieving OBSs. Even though participants were on different legs of the 2013 Cascadia Expedition, they all shared similar experiences. Some of the most memorable moments include amazing food, learning about the different components of an ocean bottom seismometer, and some of the most beautiful blue water.
NASA Astrophysics Data System (ADS)
Nakanishi, A.; Shimomura, N.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Sato, T.; Kashiwase, K.; Fujimori, H.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.
2011-12-01
In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In order to reduce a great deal of damage to coastal area from both strong ground motion and tsunami generation, it is necessary to understand rupture synchronization and segmentation of the Nankai megathrust earthquake. For a precise estimate of the rupture area of the Nankai megathrust event, it is important to know the geometry of the subducting Philippine Sea plate and deep subduction structure along the Nankai Trough. To obtain the deep subduction structure of the coseismic rupture area of the Nankai earthquake in 1946 off Shikoku area, the large-scale high-resolution wide-angle seismic study was conducted in 2009 and 2010. In this study, 201 and 200 ocean bottom seismographs were deployed off the Shikoku Island and the Kii channel respectively. A tuned airgun system (7800 cu. in.) shot every 200m along 13 profiles. Airgun shots were also recorded along an onshore seismic profile (prepared by ERI, univ. of Tokyo and NIED) prolonged from the offshore profile off the Kii Peninsula. Long-term observation was conducted for ~9 months by 21 OBSs off the Shikoku area and 20 OBSs off the Kii channel.This research is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Structural images of the overriding plate indicate the old accreted sediments (the Cretaceous-Tertiary accretionary prism) with the velocity greater than 6km/s extend seaward from off the Shikoku to the Hyuga-nada. Moreover, the young accreted sediments become relatively thinner eastward from off the cape Ashizuri to Muroto. These structural variations might be related to the different rupture pattern of the Nankai event. Structural image of the deep low frequency earthquakes and tremors is shown by using the airgun shots recorded at onshore Hi-net (NIED, Japan) data located along prolongation of the offshore seismic profiles.
NASA Astrophysics Data System (ADS)
Last, T.
2007-12-01
Thales LAST stands for Lesser Antilles Subduction zone Team which gathers the scientific teams of a cluster of surveys and cruises that have been carried out in 2007 and coordinated under the European Union THALES WAS RIGHT project (Coord. A. Hirn). This cluster is composed by the German cruise TRAIL with the vessel F/S Merian (PI E. Flueh and H. Kopp, IFM-GEOMAR), the French cruise SISMANTILLES 2 with the IFREMER vessel N/O Atalante (PI M. Laigle, IPG Paris and JF. Lebrun, Univ. Antilles Guyane), and French cruise OBSANTILLES with the IRD vessel N/O Antea (PI P. Charvis, Geoazur, Nice, France). During these cruises and surveys, 84 Ocean Bottom 3-components Seismometers (OBS) and 20 Hydrophones (OBHs) have been brought together from several pools (Geoazur, INSU, IPGP, IFM-GEOMAR, AWI,), with up to 30 land stations (CSIC Barcelone, IPG Paris, INSU-RLBM and -LITHOSCOPE) in addition to the permanent onshore arrays of IPGP and SRU. The deployment of all these instruments has been supported principally by ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI), by the EU SALVADOR Programme of IFM-GEOMAR, as well as by the EU project THALES WAS RIGHT on the Antilles and Hellenic active subductions to which contribute IPGP, Geoazur, IFM-GEOMAR (Germany), ETH Zurich (Switzerland), CSIC Barcelona (Spain), Univ. Trieste (Italy) and NOA Athens (Greece). The main goal of this large seismic investigation effort is the understanding of the behaviour of the seismogenic zone and location of potential source regions of mega-thrust earthquakes. Specific goals are the mapping of the subduction interplate in the range where it may be seismogenic along the Lesser Antilles Arc from Antigua to southern Martinique Islands, as a contribution to identification and localisation in advance of main rupture zones of possible future major earthquakes, and to the search for transient signals of the activity. The forearc region, commonly considered as a proxy to the seismogenic portion of the subduction mega-thrust fault plane, and which is here the main target has been localized along 3 transects to the Arc thanks to a preliminary survey in 2001, the French SISMANTILLES cuise. We will present the first results obtained during these experiments dedicated specifically to image at depth the seismic structure and activity of this region. To image faults at depth and the detailed upper-crustal structure, 3700 km of multi-beam bathymetry and multi-channel reflection seismic profiles have been collected along a grid comprising 7 strike-lines of up to 300 km long and spaced by 15 km and 12 transects of up to 150 km long and spaced by 25 km (SISMANTILLES 2). All these airgun shots dedicated to deep penetration have been recorded by the 84 OBSs and 20 OBHs deployed by the F/S Merian and N/O Atalante on the nodes of this grid of profiles. It will permit to get Vp constraints on the deep forearc region and mantle wedge by wide-angle refraction studies, as well as constraints on the updip and downdip limits of the seismogenic part of the mega-thrust fault plane. Two of these transects have been extended across the whole arc during the TRAIL survey, with up to 50 OBSs deployed along both 240 km long profiles. All these OBSs remained several months beyond the shot experiments for local earthquakes Vp and Vp/Vs tomography. They have been recovered and partly redeployed by N/O Antea during the OBSANTILLES survey. A significant number of those instruments had broadband seismometers, a notable originality in the case of the OBSs to detect low-frequency transient signals.
NASA Astrophysics Data System (ADS)
Hirn, Alfred; Laigle, Mireille; Charvis, Philippe; Flueh, Ernst; Gallart, Josep; Kissling, Edi; Lebrun, Jean-Frederic; Nicolich, Rinaldo; Sachpazi, Maria
2010-05-01
In order to increase the understanding of plate boundaries that show currently low seismic activity, as was the Sumatra-Andaman subduction before the major earthquake in 2004, a cluster of surveys and cruises has been carried out in 2007 and coordinated under the European Union THALES WAS RIGHT project on the Lesser Antilles subduction zone of the Carribean-America plate boundary. A segment of the corresponding transform boundary just tragically ruptured in the 2010 January 12, Haïti earthquake. This cluster is composed by the German cruise TRAIL with the vessel F/S M. A. MERIAN, the French cruise SISMANTILLES II with the IFREMER vessel N/O ATALANTE), and French cruise OBSANTILLES with the IRD vessel N/O ANTEA. During these cruises and surveys, 80 OBS, Ocean Bottom Seismometers, 64 of which with 3-components seismometers and hydrophones, and 20 OBH with hydrophones have been brought together from several pools (Geoazur Nice, INSU/IPGP Paris, IfM-GEOMAR Kiel, AWI Bremerhaven), with up to 30 land stations (CSIC Barcelona, IPG Paris, INSU-RLBM and -Lithoscope, ETH Zurich). The deployment of all these instruments has been supported principally in addition by ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI), by the EU SALVADOR Programme of IFM-GEOMAR, as well as by the EU project THALES WAS RIGHT. The main goal of this large seismic investigation effort is the understanding of the behaviour of the seismogenic zone and location of potential source regions of mega-thrust earthquakes. Specific goals are the mapping of the subduction interplate in the range where it may be seismogenic along the Lesser Antilles Arc from Antigua to Martinique Islands, as a contribution to identification and localisation in advance of main rupture zones of possible future major earthquakes, and to the search for transient signals of the activity. The forearc region, commonly considered as a proxy to the seismogenic portion of the subduction mega-thrust fault plane, and which is here the main target has been localized along 3 transects to the Arc, thanks to a preliminary survey in 2001, the French SISMANTILLES cruise. We will present the first results obtained during these experiments dedicated specifically to image at depth the seismic structure and activity of this region. To image faults at depth and the detailed upper-crustal structure, 3700 km of multi-beam bathymetry and multi-channel reflection seismic profiles have been collected along a grid comprising 7 strike-lines of up to 300 km long and spaced by 15 km and 12 transects of up to 150 km long and spaced by 25 km (SISMANTILLES II). All these airgun shots dedicated to deep penetration have been recorded by the 80 OBSs and 20 OBHs deployed by the F/S Merian and N/O Atalante on the nodes of this grid of profiles. It will permit to get Vp constraints on the deep forearc region and mantle wedge by wide-angle refraction studies, as well as constraints on the updip and downdip limits of the seismogenic part of the mega-thrust fault plane. Two of these transects have been extended across the whole arc during the TRAIL survey, with up to 50 OBSs deployed along both 240 km long profiles. All these OBSs remained several months after the shot experiments to gather data for accurate location of local earthquakes and possibly Vp and Vp/Vs tomography. They have been recovered and partly redeployed by N/O Antea during the OBSANTILLES survey. A significant number of those instruments had broadband seismometers, a notable originality in the case of the OBSs to probe the conditions for detecting low-frequency transient signals which have been found recently in the case of the Cascadia and Central Japan subductions and associated to their seismogenic character.
NASA Astrophysics Data System (ADS)
Yamamoto, Yojiro; Takahashi, Narumi; Pinar, Ali; Kalafat, Doǧan; Citak, Seckin; Comoglu, Mustafa; Polat, Remzi; Çok, Özkan; Ogutcu, Zafer; Suvariklı, Murat; Tunc, Suleyman; Gürbüz, Cemil; Turhan, Fatih; Ozel, Nurcan; Kaneda, Yoshiyuki
2016-04-01
The North Anatolian Fault (NAF) crosses the Marmara Sea in E-W direction, accommodating about 25 mm/yr of right-lateral motion between Anatolia and the Eurasian plate. There are many large earthquakes along the 1500 km long NAF repeatedly occurred and interacted each other. The recent large northern Aegean earthquake with Mw=6.9 filled one of the last two seismic gaps on NAF that experienced extraordinary seismic moment release cycle during the last century and confirmed a remained blank zone in the Marmara Sea. However, this segment keeps its mystery due to its underwater location. Earthquake hazard and disaster mitigation studies in Marmara region are sensitive to detailed information on fault geometry and its stick-slip behavior beneath the western Marmara Sea. We have started ocean bottom seismographic observations to obtain the detailed information about fault geometry and its stick-slip behavior beneath the western Marmara Sea, as a part of the SATREPS collaborative project between Japan and Turkey namely "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education in Turkey". The target area spans from western Marmara Sea to offshore Istanbul along the NAF. In the beginning of the project, we deployed ten Ocean Bottom Seismographs (OBSs) between the Tekirdag Basin and the Central Basin (CB) in September 2014. Then, we added five Japanese OBSs and deployed them in the western end of the Marmara Sea and in the eastern CB to extend the observed area in March 2015. We retrieved all 15 OBSs in July 2015 and deployed them again in the same locations after data retrieve and battery maintenance. From continuous OBS records, we could detect more than 700 events near the seafloor trace of NAF during 10 months observation period whereas land-seismic network could detect less than 200 events. We estimated the micro-earthquake location using manual-picking arrival times incorporating station corrections. The tentative results show heterogeneous seismicity. The Western High (WH) and CB have relative high seismicity and the seismogenic zone was found to be thicker than the previous estimations done by other researchers. Our result clearly shows that the maximum depth of seismogenic zone is about 24 km beneath the WH and the western half of CB. This depth suddenly decrease to about 15 km in the eastern half of CB, suggesting that there is some structural or frictional boundary on NAF around 28°E. Our results also suggested that the dip angle of NAF is almost vertical beneath WH, whereas it is about 10 degrees southward dipping beneath the eastern CB. We will perform local seismic tomography to obtain more precious hypocenter location and fault geometry.
1986 Great Lakes Seismic refraction survey (GLIMPCE): Line A - refraction mode
Morel-a-l'Huissier, Patrick; Karl, John H.; Tréhu, Anne M.; Hajnal, Zoltan; Mereu, Robert F.; Meyer, Robert P.; Sexton, John L.; Ervin, C. Patrick; Green, Alan G.; Hutchinson, Deborah
1990-01-01
In the fall of 1986, the Geological Survey of Canada (GSC), the United States Geological Survey (USGS), two Canadian universities -- University of Western Ontario and University of Saskatchewan, and four American universities -- Northern Illinois University, Southern Illinois University, University of Wisconsin-Madison and University of Wisconsin-Oshkosh participated in a major deep seismic experiment in Lake Superior under the GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) umbrella. This Open-File Report presents the seismic sections for line A, which was shot specifically for refraction recording. The main target for study by this line was the Mid-Continent Rift System. All recording stations, 31 in total (26 land stations and 5 OBSs), recorded energy from shots fired every two minutes (333 m spacing) by a tuned airgun array towed by a contracted ship along line A in Lake Superior. These data are the densest such data ever recorded in the continental North America over such distances. It is also unique since coincident seismic reflection and refraction are available.
Dual-vergence structure from multiple migration of widely spaced OBSs
NASA Astrophysics Data System (ADS)
Yelisetti, Subbarao; Spence, George D.; Scherwath, Martin; Riedel, Michael; Klaeschen, Dirk
2017-10-01
The detailed structure of the northern Cascadia basin and frontal ridge region was obtained using data from several widely spaced ocean bottom seismometers (OBSs). Mirror imaging was used in which the downgoing multiples (mirror signal) are migrated as they provide information about a much larger area than imaging with primary signal alone. Specifically, Kirchhoff time migration was applied to hydrophone and vertical geophone data. Our results indicate remarkable structures that were not observed on the northern Cascadia margin in previous single-channel or multi-channel seismic (MCS) data. Results show that, in these water depths (2.0-2.5 km), an OBS can image up to 5 km on either side of its position on the seafloor and hence an OBS spacing of 5 km is sufficient to provide a two-fold migration stack. Results also show the top of the igneous oceanic crust at 5-6 km beneath the seafloor using only a small airgun source (120 in.3). Specifically, OBS migration results clearly show the continuity of reflectors which enabled the identification of frontal thrusts and a main thrust fault. These faults indicate, for the first time on this margin, the presence of a dual-vergence structure. These kinds of structures have so far been observed in < 0.5% of modern convergent margins and could be related to horizontal compression associated with subduction and low basal shear stress resulting from over-pressure. Reanalysis of previous MCS data from this region augmented the OBS migration results and further suggests that the vergence switches from seaward to landward around central Vancouver Island. Furthermore, fault geometry analyses indicate that the total amount of shortening accommodated due to faulting and folding is about 3 km, which suggest that thrusting would have started at least ∼ 65 ky ago.
NASA Astrophysics Data System (ADS)
Lin, J. Y.; Tsia, C. H.; Cheng, W. B.; Chin, S. J.; Lin, S. S.; Liang, C. W.
2015-12-01
The Nakamura's method, which calculates the ratios between horizontal and vertical component spectra of seismic signals (H/V), is widely used in the inland area. However, few related estimations were performed for the offshore area and little knowledge for the marine sediments were obtained. From 2013 to 2015, three passive ocean bottom seismometer (OBS) experiments were conducted in gas hydrate-rich area offshore SW Taiwan in the aim of acquiring information related to the physical properties of seafloor sediments. The H/V of the seafloor sediments in the three areas were estimated by using the ambient noise and seismic signal recorded by OBSs. The resonance frequency of each site was estimated from the main peak of H/V distribution and a range between 5 and 10 Hz were obtained. Based on the empirical law, this resonance frequency range should correspond to a sediment thickness of approximately several to ten of meters. This estimation is consistent with the thickness of the sedimentary cover imaged by chirp sonar survey, suggesting that the site response of seafloor is dominantly controlled by the unconsolidated sedimentary layer on the top of the sea bed. Remarkably, the H/V ratios obtained in our study area are much larger than that calculated for the inland areas. The magnification can reach as high as 50 to more than 100. This observation infers that the sea water movement might emphasize the horizontal motion of the marine sediments, which is crucial for the slope stability assessment. Moreover, for most stations located in the active margin, no distinct peak is observed for the H/V pattern calculated during earthquakes. However, in the passive margin, the H/V peak calculated from ambient noise and earthquakes is mostly identical. This phenomenon may suggest that relatively unclear sedimentary boundary exist in the active margin environment. Estimating H/V spectral ratios of data recorded by the OBSs deployed in the southwest Taiwan offshore area offers a general understanding of the preferential vibration modes of seafloor sediment systems. By comparing the resonance characteristics of each site and the chirp sonar profiles, we hope to provide precious information for the designing of marine structures such as oil drilling and production platforms.
NASA Astrophysics Data System (ADS)
Takahashi, N.; Kodaira, S.; Yamashita, M.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.; Kaneda, Y.
2009-12-01
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic experiments using a multichannel reflection system and ocean bottom seismographs (OBSs) in the Izu-Ogasawara (Bonin)-Mariana (IBM) arc region since 2002 to understand growth process of continental crust. The source was an airgun array with a total capacity of 12,000 cubic inches and the OBSs as the receiver were deployed with an interval of 5 km for all seismic refraction experiments. As the results, we obtained crustal structures across the whole IBM arc with an interval of 50 km and detected the structural characteristics showing the crustal growth process. The IBM arc is one of typical oceanic island arc, which crustal growth started from subduction of an oceanic crust beneath the other oceanic crust. The arc crust has developed through repeatedly magmatic accretion from subduction slab and backarc opening. The volcanism has activated in Eocene, Oligocene, Miocene and Quaternary (e.g., Taylor, 1992), however, these detailed locations of past volcanic arc has been remained as one of unknown issues. In addition, a role of crustal rifting for the crustal growth has also been still unknown issue yet. Our seismic structures show three rows of past volcanic arc crusts except current arc. A rear arc and a forearc side have one and two, respectively. The first one, which was already reported by Kodaira et al. (2008), distributes in northern side from 27 N of the rear arc region. The second one, which develops in the forearc region next to the recent volcanic front, distributes in whole of the Izu-Ogasawara arc having crustal variation along arc direction. Ones of them sometimes have thicker crust than that beneath current volcanic front and no clear topographic high. Last one in the forearc connects to the Ogasawara Ridge. However, thickest crust is not always located beneath these volcanic arcs. The initial rifting region like the northern end of the Mariana Trough and the Sumisu Rift has thicker crust than that beneath recent volcanic front, although crustal thinning with high velocity lower crust was detected beneath advanced rifted region. This suggests that the magmatic underplating play a role to make open the crust. The magmatic underplating accompanied with the initial rifting is one of important issues to discuss the crustal evolution.
The Oceanic Crustal Structure of the Southwestern Subbasin in the South China Sea
NASA Astrophysics Data System (ADS)
Wu, Z.; Ruan, A.; Li, J.; Lee, C.
2012-12-01
Located at the southwestern part of the South China Sea (SCS) among the Zhongsha Islands(Macclesfield Bank), the east subbasin, the Nansha Islands(Dangerous Ground), the V type southwest subbasin (SWSB) is an unique ocean basin in all the three subbasins of SCS. The crustal structure is one of the key problems to study the formation and evolution of SWSB. During December 2010 to March 2011, Ocean Bottom Seismometers (OBSs) experiment has been carried out in the SWSB to get the deep crustal structure information, especially under the fossil spreading center. Three types of OBS, Sedis IV type, I-4C type and MicrOBS type have been used in the experiment, and the energy source was supplied by 6000 inch3 large volume air-gun. High quality seismic data of four 2D profiles which covered the fossil spreading center of SWSB have been acquired. The data of the experiment can supply evidence for the study of oceanic crustal structure of the SWSB and seafloor spreading course, etc. The profile 1 extended 130 km in length. A total of 8 OBSs were deployed at intervals of 10 or 15 km and 7 OBSs were recovered. The data of the 7 stations of profile 1 have been processed, which shows that the seismic records are clear and seismic phases are abundance, and the air-guns have enough energy supply. The velocity model was obtained by using an interactive trial-and-error 2D ray-tracing method. The crustal structure indicates that the crustal thickness under the SWSB is about 6 km, and the moho depth is about 10km. The results reveal that the crust of SWSB is normal oceanic crust with a thin sedimentary layer on the seamount and shallow moho surface. The crustal velocity under the spreading center is extremely low, which shows the characteristic of the deep crustal structure of the fossil spreading center. Acknowledgements This study was supported by the National Natural Science Foundation of China (Grant No. 91028006, 41106053, 41176046), Scientific Research Fund of the Second Institute of Oceanography, SOA(Grant No. JT1101) References: Ruan A G, Qiu X L, Li J B, et al. Wide aperture seismic sounding in the margin seas of China. South China Journal of Seismology,2009,29:10-18(in Chinese). Li J B, Jin X L, Gao J Y. Morpho-tectonic study on late-stage spreading of the Eastern Subbasin of South China Sea. Sci China Ser D-Earth Sci,2002, 45:978-989 WU Z L, LI J B, RUAN A G, et al. Crustal structure of the northwestern sub-basin, South China Sea: Results from a wide-angle seismic experiment[J]. Sci China Earth Sci, 2012,55:159-172. doi: 10.1007/s11430-011-4324-9.
NASA Astrophysics Data System (ADS)
Baeye, Matthias; Fettweis, Michael
2015-08-01
Suspended particulate matter (SPM) plumes associated with the monopile foundations of the Belgian offshore wind farm (OWF) Belwind I were acoustically profiled by means of a Doppler current profiler (ADCP). Together with the analysis of a bottom lander dataset of optical and acoustic backscatter sensors (OBSs and ADPs respectively), the spatiotemporal SPM plume dynamics were inferred. The fieldwork comprised (1) near-bed measurements of hydrodynamics and SPM concentrations in the direct vicinity of the wind turbines, by means of a bottom lander over a spring-neap cycle in May 2010; this dataset represents a typically tide-driven situation because there was no significant meteorological forcing during the measurement period; (2) additional vessel-based measurements conducted in May 2013 to capture the SPM plumes inside and outside the OWF over part of a tidal cycle. Both in situ datasets revealed that the SPM plumes were generated at the turbine piles, consistent with aerial and space-borne imagery. The SPM plumes are well aligned with the tidal current direction in the wake of the monopiles, concentrations being estimated to reach up to 5 times that of the background concentration of about 3 mg/l. It is suggested that the epifaunal communities colonizing the monopile surface and the protective rock collar at the base play a key role as source of the suspended matter recorded in the plumes. The organisms filter and trap fine SPM from the water column, resulting in predominant accumulation of SPM, including detritus and (pseudo-) faeces, at the base of the piles. When tidal currents exceed a certain velocity, fine particles in the near-bed fluff layer are re-suspended and transported downstream in the wake of the piles.
Cascadia Initiative Ocean Bottom Seismograph Performance
NASA Astrophysics Data System (ADS)
Evers, B.; Aderhold, K.
2017-12-01
The Ocean Bottom Seismograph Instrument Pool (OBSIP) provided instrumentation and operations support for the Cascadia Initiative community experiment. This experiment investigated geophysical processes across the Cascadia subduction zone through a combination of onshore and offshore seismic data. The recovery of Year 4 instruments in September 2015 marked the conclusion of a multi-year experiment that utilized 60 ocean-bottom seismographs (OBSs) specifically designed for the subduction zone boundary, including shallow/deep water deployments and active fisheries. The new instruments featured trawl-resistant enclosures designed by Lamont-Doherty Earth Observatory (LDEO) and Scripps Institution of Oceanography (SIO) for shallow deployment [water depth ≤ 500 m], as well as new deep-water instruments designed by Woods Hole Oceanographic Institute (WHOI). Existing OBSIP instruments were also deployed along the Blanco Transform Fault and on the Gorda Plate through complementary experiments. Station instrumentation included weak and strong motion seismometers, differential pressure gauges (DPG) and absolute pressure gauges (APG). All data collected from the Cascadia, Blanco, and Gorda deployments is available through the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). The Cascadia Initiative is the largest amphibious seismic experiment undertaken to date, encompassing a diverse technical implementation and demonstrating an effective structure for community experiments. Thus, the results from Cascadia serve as both a technical and operational resource for the development of future community experiments, such as might be contemplated as part of the SZ4D Initiative. To guide future efforts, we investigate and summarize the quality of the Cascadia OBS data using basic metrics such as instrument recovery and more advanced metrics such as noise characteristics through power spectral density analysis. We also use this broad and diverse deployment to explore other environmental and configuration factors that can impact sensor and network performance and inform the design of future deployments.
NASA Astrophysics Data System (ADS)
Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.
2014-12-01
The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.
NASA Astrophysics Data System (ADS)
Yamamoto, Yojiro; Takahashi, Narumi; Pinar, Ali; Kalafat, Dogan; Citak, Seckin; Comoglu, Mustafa; Polat, Remzi; Kaneda, Yoshiyuki
2017-04-01
Both the geometry and the depth of the seismogenic zone of the North Anatolian Fault under the Marmara Sea (the Main Marmara Fault; MMF) are poorly understood, in part because of the fault's undersea location. We have started a series of long-term ocean bottom seismographs (OBSs) observation since 2014, as a part of the SATREPS collaborative project between Japan and Turkey namely "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education in Turkey". We recorded 10 months of microseismic data with a dense array of OBSs from Sep. 2014 to Jul. 2015 and then applied double-difference relocation and 3-D tomographic modeling to obtain precise hypocenters on the MMF beneath the central and western Marmara Sea. The hypocenters show distinct lateral changes along the MMF: (1) Both the upper and lower crust beneath the Western High are seismically active and the maximum focal depth reaches 26 km, (2) seismic events are confined to the upper crust beneath the region extending from the eastern part of the Central Basin to the Kumburgaz Basin, and (3) the magnitude and direction of dip of the main fault changes under the Central Basin, where there is also an abrupt change in the depth of the lower limit of the seismogenic zone. We attribute this change to a segment boundary of the MMF. Our data show that the upper limit of the seismogenic zone corresponds to sedimentary basement. We also identified several inactive seismicity regions within the upper crust along the MMF; their spatial extent beneath the Kumburgaz Basin is greater than beneath the Western High. From the comparison with seafloor extensometer data, we consider that these inactive seismicity regions might indicate zones of strong coupling that are accumulating stress for release during future large earthquakes. In this presentation, we will also show the preliminary result of our second phase observation from Jul. 2015 to Jun. 2016.
Characterization of Dutch dairy farms using sensor systems for cow management.
Steeneveld, W; Hogeveen, H
2015-01-01
To improve cow management in large dairy herds, sensors have been developed that can measure physiological, behavioral, and production indicators on individual cows. Recently, the number of dairy farms using sensor systems has increased. It is not known, however, to what extent sensor systems are used on dairy farms, and the reasons why farmers invest or not in sensor systems are unclear. The first objective of this study was to give an overview of the sensor systems currently used in the Netherlands. The second objective was to investigate the reasons for investing or not investing in sensor systems. The third objective was to characterize farms with and without sensor systems. A survey was developed to investigate first, the reasons for investing or not in sensor systems and, then, how the sensor systems are used in daily cow management. The survey was sent to 1,672 Dutch dairy farmers. The final data set consisted of 512 dairy farms (response rate of 30.6%); 202 farms indicated that they had sensor systems and 310 farms indicated that they did not have sensor systems. A wide variety of sensor systems was used on Dutch dairy farms; those for mastitis detection and estrus detection were the most-used sensor systems. The use of sensor systems was different for farms using an automatic milking system (AMS) and a conventional milking system (CMS). Reasons for investing were different for different sensor systems. For sensor systems attached to the AMS, the farmers made no conscious decision to invest: they answered that the sensors were standard in the AMS or were bought for reduced cost with the AMS. The main reasons for investing in estrus detection sensor systems were improving detection rates, gaining insights into the fertility level of the herd, improving profitability of the farm, and reducing labor. Main reasons for not investing in sensor systems were economically related. It was very difficult to characterize farms with and without sensor systems. Farms with CMS and sensor systems had more cows than CMS farms without sensor systems. Furthermore, farms with sensor systems had fewer labor hours per cow compared with farms without sensor systems. Other farm characteristics (age of the farmer, availability of a successor, growth in herd size, milk production per cow, number of cows per hectare, and milk production per hectare) did not differ for farms with and without sensor systems. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Steeneveld, W; Vernooij, J C M; Hogeveen, H
2015-06-01
To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study was to investigate the effect of using sensor systems on measures of health and production in dairy herds. Data of 414 Dutch dairy farms with (n=152) and without (n=262) sensor systems were available. For these herds, information on milk production per cow, days to first service, first calving age, and somatic cell count (SCC) was provided for the years 2003 to 2013. Moreover, year of investment in sensor systems was available. For every farm year, we determined whether that year was before or after the year of investment in sensor systems on farms with an automatic milking system (AMS) or a conventional milking system (CMS), or whether it was a year on a farm that never invested in sensor systems. Separate statistical analyses were performed to determine the effect of sensor systems for mastitis detection (color, SCC, electrical conductivity, and lactate dehydrogenase sensors), estrus detection for dairy cows, estrus detection for young stock, and other sensor systems (weighing platform, rumination time sensor, fat and protein sensor, temperature sensor, milk temperature sensor, urea sensor, β-hydroxybutyrate sensor, and other sensor systems). The AMS farms had a higher average SCC (by 12,000 cells/mL) after sensor investment, and CMS farms with a mastitis detection system had a lower average SCC (by 10,000 cells/mL) in the years after sensor investment. Having sensor systems was associated with a higher average production per cow on AMS farms, and with a lower average production per cow on CMS farms in the years after investment. The most likely reason for this lower milk production after investment was that on 96% of CMS farms, the sensor system investment occurred together with another major change at the farm, such as a new barn or a new milking system. Most likely, these other changes had led to a decrease in milk production that could not be compensated for by the use of sensor systems. Having estrus detection sensor systems did not improve reproduction performance. Labor reduction was an important reason for investing in sensor systems. Therefore, economic benefits from investments in sensor systems can be expected more from the reduction in labor costs than from improvements in measures of health and production in dairy herds. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Method of calibrating a fluid-level measurement system
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2010-01-01
A method of calibrating a fluid-level measurement system is provided. A first response of the system is recorded when the system's sensor(s) is (are) not in contact with a fluid of interest. A second response of the system is recorded when the system's sensor(s) is (are) fully immersed in the fluid of interest. Using the first and second responses, a plurality of expected responses of the system's sensor(s) is (are) generated for a corresponding plurality of levels of immersion of the sensor(s) in the fluid of interest.
Aerospace Sensor Systems: From Sensor Development To Vehicle Application
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2008-01-01
This paper presents an overview of years of sensor system development and application for aerospace systems. The emphasis of this work is on developing advanced capabilities for measurement and control of aeropropulsion and crew vehicle systems as well as monitoring the safety of those systems. Specific areas of work include chemical species sensors, thin film thermocouples and strain gages, heat flux gages, fuel gages, SiC based electronic devices and sensors, space qualified electronics, and MicroElectroMechanical Systems (MEMS) as well as integrated and multifunctional sensor systems. Each sensor type has its own technical challenges related to integration and reliability in a given application. The general approach has been to develop base sensor technology using microfabrication techniques, integrate sensors with "smart" hardware and software, and demonstrate those systems in a range of aerospace applications. Descriptions of the sensor elements, their integration into sensors systems, and examples of sensor system applications will be discussed. Finally, suggestions related to the future of sensor technology will be given. It is concluded that smart micro/nano sensor technology can revolutionize aerospace applications, but significant challenges exist in maturing the technology and demonstrating its value in real-life applications.
A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2012-01-01
Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.
Massively parallel diffuse optical tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandusky, John V.; Pitts, Todd A.
Diffuse optical tomography systems and methods are described herein. In a general embodiment, the diffuse optical tomography system comprises a plurality of sensor heads, the plurality of sensor heads comprising respective optical emitter systems and respective sensor systems. A sensor head in the plurality of sensors heads is caused to act as an illuminator, such that its optical emitter system transmits a transillumination beam towards a portion of a sample. Other sensor heads in the plurality of sensor heads act as observers, detecting portions of the transillumination beam that radiate from the sample in the fields of view of themore » respective sensory systems of the other sensor heads. Thus, sensor heads in the plurality of sensors heads generate sensor data in parallel.« less
The Anisotropic Structure of South China Sea: Using OBS Data to Constrain Mantle Flow
NASA Astrophysics Data System (ADS)
Li, L.; Xue, M.; Yang, T.; Liu, C.; Hua, Q.; Xia, S.; Huang, H.; Le, B. M.; Huo, D.; Pan, M.
2015-12-01
The dynamic mechanism of the formation of South China Sea (SCS) has been debated for decades. The anisotropic structure can provide useful insight into the complex evolution of SCS by indicating its mantle flow direction and strength. In this study, we employ shear wave splitting methods on two half-year seismic data collected from 10 and 6 passive source Ocean Bottom Seismometers (OBS) respectively. These OBSs were deployed along both sides of the extinct ridge in the central basin of SCS by Tongji University in 2012 and 2013 respectively, which were then successfully recovered in 2013 and 2015 respectively. Through processing and inspecting the global and regional earthquakes (with local events being processing) of the 2012 dataset, measurements are made for 2 global events and 24 regional events at 5 OBSs using the tangential energy minimization, the smallest eigenvalue minimization, as well as the correlation methods. We also implement cluster analysis on the splitting results obtained for different time windows as well as filtered at different frequency bands. For teleseismic core phases like SKS and PKS, we find the fast polarization direction beneath the central basin is approximately NE-SW, nearly parallel to the extinct ridge in the central basin of SCS. Whereas for regional events, the splitting analysis on S, PS and ScS phases shows much more complicated fast directions as the ray path varies for different phases. The fast directions observed can be divided into three groups: (1) for the events from the Eurasia plate, a gradual rotation of the fast polarization direction from NNE-SSW to NEE-SWW along the path from the inner Eurasia plate to the central SCS is observed, implying the mantle flow is controlled by the India-Eurasia collision; (2) for the events located at the junction of Pacific plate and Philippine plate, the dominant fast direction is NW-SE, almost perpendicular to Ryukyu Trench as well as sub-parallel to the absolute direction of Philippine plate; (3) for the events occurred in the SE direction near the Philippine Fault zone, the observed NE-SW fast direction is sub-parallel to the subduction direction of the Philippine plate.
NASA Astrophysics Data System (ADS)
Yamashita, M.; Kodaira, S.; Takahashi, N.; Tatsumi, Y.; Kaneda, Y.
2009-12-01
The Izu-Bonin (Ogasawara)-Mariana (IBM) arc is known to the typical oceanic island arc, and it is the most suitable area to understand the growth process of island arc. By previous seismic survey and deep sea drilling, convex basements are distributed along North-South direction in present forearc region. The convex basements are reported to be formed during Oligocene and Eocene (Taylor, 1992). In IBM forearc region, the middle crust with 6 km/s is recognized by seismic survey using OBSs. In IBM region, four IODP drilling sites are proposed in order to understand comprehensive growth process of arc and continental crust evolution. Two of them are located in forearc region. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection survey using 7,800/12,000 cu.in. air gun and 5-6 km streamer with 444/204 ch hydrophones in the IBM region since 2004. We investigate the crustal structure beneath the Izu-Bonin forearc region for contribution of IBM drilling site along five long survey lines, which are across from present volcanic front to forearc basin. Seismic refraction survey is also conducted across forearc region using 84 OBSs every 1 km interval. Shallow crustal structure can be classified four units including basement which compared between previous drilling results and obtained seismic profiles. In IBM forearc region, thick sedimentary basin distribute from east side of volcanic front. Two convex basement peaks are indicated in across profile of forearc region. These peaks are estimated the top of paleoarc (Oligocene and Eocene) by previous ODP drilling. The half graben structure with major displacement is identified from west side of present volcanic front to the top of Oligocene arc. On the other hand, there is no displacement of sediments between the Oligocene arc and Eocene arc. This result shows the same origin of basement between the present volcanic front and Oligocene arc. There is long time difference of tectonic activity of sediments between the west and east side of Oligocene paleoarc. We would present the crustal condition before rifting between present volcanic front and Oligocene paleoarc by comparison of reflection and velocity structure.
Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies
NASA Astrophysics Data System (ADS)
Hauptmann, Peter R.
2006-03-01
The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.
Geoazur's contribution in instrumentation to monitor seismic activity of the Earth
NASA Astrophysics Data System (ADS)
Yates, B.; Hello, Y.; Anglade, A.; Desprez, O.; Ogé, A.; Charvis, P.; Deschamps, A.; Galve, A.; Nolet, G.; Sukhovich, A.
2011-12-01
Seismic activity in the earth is mainly located near the tectonic plate boundaries, in the deep ocean (expansion centers) or near their margins (subduction zones). Travel times and waveforms of recorded seismograms can be used to reconstruct the three-dimensional wave speed distribution in the earth with seismic tomography or to image specific boundaries in the deep earth. Because of the lack of permanent sea-bottom seismometers these observation are conducted over short period of time using portable ocean bottom seismometers. Geaozur has a long experience and strong skills in designing and deploying Ocean Bottom Seismometers all over the world. We have developed two types of ocean bottom instruments. The "Hippocampe" for long deployment and "Lady bug" for aftershock monitoring or for fast overlaps during wide angle experiments. Early warning systems for tsunamis and earthquakes have been developed in recent years but these need real time data transmission and direct control of the instrument. We have developed a permanent real time Broad Band instrument installed in the Mediterranean Sea and connected to the Antares Neutrinos telescope. This instrument offers all the advantages of a very heavy and costly installation, such as the ability to do real-time seismology on the seafloor. Such real-time seafloor monitoring is especially important for seismic hazard. Major earthquakes cause human and economic losses directly related to the strong motion of the ground or by induced phenomena such as tsunamis and landslides. Fiber optical cables provide a high-capacity lightweight alternative to traditional copper cables. Three-component sensors analyze permanently the noise signal and detect the events to record. Major events can force the network to transmit data with almost zero lag time. The optical link also allows us to retrieve events at a later date. However, OBSs alone can never provide the density and long term, homogeneous data coverage needed for local and global seismic imaging of the earth. To complete our pool of instruments we have developed a floating underwater robot that can detect seismic P waves from earthquakes at large distances and transmit these data by the Iridium satellite network in Rudics mode. The robot is named MERMAID for `Mobile Earthquake Recording in Marine Areas by Independent Divers'.
Energy Systems Sensor Laboratory | Energy Systems Integration Facility |
NREL Sensor Laboratory Energy Systems Sensor Laboratory The Energy Systems Integration Facility's Energy Systems Sensor Laboratory is designed to support research, development, testing, and evaluation of advanced hydrogen sensor technologies to support the needs of the emerging hydrogen
A fiber optic multi-stress monitoring system for power transformer
NASA Astrophysics Data System (ADS)
Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho
2017-04-01
A fiber-optic multi-stress monitoring system which uses 4 FBG sensors and a fiber-optic mandrel acoustic emission sensor is proposed. FBG sensors and a mandrel sensor measure different types of stresses occurring in electrical power transformer, such as temperature and acoustic signals. The sensor system uses single broadband light source to address the outputs of both sensors using single fiber-optic circuitry. An athermal-packaged FBG is used to supply quasi-coherent light for the Sagnac interferometer demodulation which processes the mandrel sensor output. The proposed sensor system could simplify the optical circuit for the multi-stress measurements and enhance the cost-effectiveness of the sensor system.
NASA Astrophysics Data System (ADS)
Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.
2016-02-01
This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.
An efficient management system for wireless sensor networks.
Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu
2010-01-01
Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.
Vehicle Fault Diagnose Based on Smart Sensor
NASA Astrophysics Data System (ADS)
Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng
In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreedharan, Priya
The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships amongmore » sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system performance and offset the need for more contaminant sensors. Physics- and algorithm-based frameworks are presented for selecting and fusing information from noncontaminant sensors. The frameworks are demonstrated with door-position sensors, which are found to be more useful in natural airflow conditions, but which cannot compensate for poor placement of contaminant sensors. The concepts and empirical findings have the potential to help in the design of sensor systems for more complex building systems. The research has broader relevance to additional environmental monitoring problems, fault detection and diagnostics, and system design.« less
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Vargas-Valencia, Laura; dos Santos, Wilian M.; Schneider, Felipe B. A.; Siqueira, Adriano A. G.; Pontes, Maria José; Frizera, Anselmo
2018-07-01
This paper presents a low cost and highly reliable system for angle measurement based on a sensor fusion between inertial and fiber optic sensors. The system consists of the sensor fusion through Kalman filter of two inertial measurement units (IMUs) and an intensity variation-based polymer optical fiber (POF) curvature sensor. In addition, the IMU was applied as a reference for a compensation technique of POF curvature sensor hysteresis. The proposed system was applied on the knee angle measurement of a lower limb exoskeleton in flexion/extension cycles and in gait analysis. Results show the accuracy of the system, where the Root Mean Square Error (RMSE) between the POF-IMU sensor system and the encoder was below 4° in the worst case and about 1° in the best case. Then, the POF-IMU sensor system was evaluated as a wearable sensor for knee joint angle assessment without the exoskeleton, where its suitability for this purpose was demonstrated. The results obtained in this paper pave the way for future applications of sensor fusion between electronic and fiber optic sensors in movement analysis.
Rooftop package unit diagnostician
Chassin, David P [Pasco, WA; Pratt, Robert G [Kennewick, WA; Reid, Larry Dean [Benton City, WA
2004-08-17
A diagnostic system for an HVAC system includes a number of sensors used to measure the operation of the HVAC system. Sensor readings are measured by timing the delay between when a strobe signal is sent to a sensor and when an interrupt signal from the sensor is received. A device driver used to measure the sensor readings stores the sensor readings in pseudo-character device files, which are universally accessible by different subsystems of the diagnostic system. Based on the readings from these sensors, this diagnostic system is able to determine the operational status of the HVAC system and if an economizer in the HVAC system is operating properly.
Advanced sensor-simulation capability
NASA Astrophysics Data System (ADS)
Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.
1990-09-01
This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.
Fiber Optic Control System Integration program: for optical flight control system development
NASA Astrophysics Data System (ADS)
Weaver, Thomas L.; Seal, Daniel W.
1994-10-01
Hardware and software were developed for optical feedback links in the flight control system of an F/A-18 aircraft. Developments included passive optical sensors and optoelectronics to operate the sensors. Sensors with different methods of operation were obtained from different manufacturers and integrated with common optoelectronics. The sensors were the following: Air Data Temperature; Air Data Pressure; and Leading Edge Flap, Nose Wheel Steering, Trailing Edge Flap, Pitch Stick, Rudder, Rudder Pedal, Stabilator, and Engine Power Lever Control Position. The sensors were built for a variety of aircraft locations and harsh environments. The sensors and optoelectronics were as similar as practical to a production system. The integrated system was installed by NASA for flight testing. Wavelength Division Multiplexing proved successful as a system design philosophy. Some sensors appeared to be better choices for aircraft applications than others, with digital sensors generally being better than analog sensors, and rotary sensors generally being better than linear sensors. The most successful sensor approaches were selected for use in a follow-on program in which the sensors will not just be flown on the aircraft and their performance recorded; but, the optical sensors will be used in closing flight control loops.
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori
2017-01-01
Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori
2017-08-28
Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.
Optical fiber sensors: Systems and applications. Volume 2
NASA Astrophysics Data System (ADS)
Culshaw, Brian; Dakin, John
State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.
Open architecture of smart sensor suites
NASA Astrophysics Data System (ADS)
Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten
2017-10-01
Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.
Multidimensional System Analysis of Electro-Optic Sensors with Sampled Deterministic Output.
1987-12-18
System descriptions of scanning and staring electro - optic sensors with sampled output are developed as follows. Functions representing image...to complete the system descriptions. The results should be useful for designing electro - optic sensor systems and correcting data for instrumental...effects and other experimental conditions. Keywords include: Electro - optic system analysis, Scanning sensors, Staring sensors, Spatial sampling, and Temporal sampling.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
Sensor Webs as Virtual Data Systems for Earth Science
NASA Astrophysics Data System (ADS)
Moe, K. L.; Sherwood, R.
2008-05-01
The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing improved science predictions. Still other projects are maturing technology to support autonomous operations, communications and system interoperability. This paper will highlight lessons learned by various projects during the first half of the AIST program. Several sensor web demonstrations have been implemented and resulting experience with evolving standards, such as the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) among others, will be featured. The role of sensor webs in support of the intergovernmental Group on Earth Observations' Global Earth Observation System of Systems (GEOSS) will also be discussed. The GEOSS vision is a distributed system of systems that builds on international components to supply observing and processing systems that are, in the whole, comprehensive, coordinated and sustained. Sensor web prototypes are under development to demonstrate how remote sensing satellite data, in situ sensor networks and decision support systems collaborate in applications of interest to GEO, such as flood monitoring. Furthermore, the international Committee on Earth Observation Satellites (CEOS) has stepped up to the challenge to provide the space-based systems component for GEOSS. CEOS has proposed "virtual constellations" to address emerging data gaps in environmental monitoring, avoid overlap among observing systems, and make maximum use of existing space and ground assets. Exploratory applications that support the objectives of virtual constellations will also be discussed as a future role for sensor webs.
Distributed sensor coordination for advanced energy systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumer, Kagan
Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectivesmore » and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor coordination, and sensor network control in advanced power systems. Each application has specific needs, but they all share the one crucial underlying problem: how to ensure that the interactions of a large number of heterogenous agents lead to coordinated system behavior. This proposal describes a new paradigm that addresses that very issue in a systematic way. Key Results and Findings: All milestones have been completed. Our results demonstrate that by properly shaping agent objective functions, we can develop large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first milestone shows that properly choosing agent-specific objective functions increases system performance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary algorithms learn excellent sensor network coordination policies prior to network deployment, and these policies can be refined online once the network is deployed. The third milestone shows the resulting sensor networks networks are extremely robust to sensor noise, where networks with up to 25% sensor noise are capable of providing measurements with errors on the order of 10⁻³. The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the sensors in the system failing resulting in no significant performance losses after system reconfiguration.« less
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.
2008-01-01
The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.
Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems
NASA Technical Reports Server (NTRS)
Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)
2017-01-01
A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.
Microfabricated Hydrogen Sensor Technology for Aerospace and Commercial Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Bickford, R. L.; Jansa, E. D.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Powers, W. T.
1994-01-01
Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.
NASA Technical Reports Server (NTRS)
Foyle, David C.
1993-01-01
Based on existing integration models in the psychological literature, an evaluation framework is developed to assess sensor fusion displays as might be implemented in an enhanced/synthetic vision system. The proposed evaluation framework for evaluating the operator's ability to use such systems is a normative approach: The pilot's performance with the sensor fusion image is compared to models' predictions based on the pilot's performance when viewing the original component sensor images prior to fusion. This allows for the determination as to when a sensor fusion system leads to: poorer performance than one of the original sensor displays, clearly an undesirable system in which the fused sensor system causes some distortion or interference; better performance than with either single sensor system alone, but at a sub-optimal level compared to model predictions; optimal performance compared to model predictions; or, super-optimal performance, which may occur if the operator were able to use some highly diagnostic 'emergent features' in the sensor fusion display, which were unavailable in the original sensor displays.
Disbonding effects on elastic wave generation and reception by bonded piezoelectric sensor systems
NASA Astrophysics Data System (ADS)
Blackshire, James L.; Martin, Steven A.; Na, Jeong K.
2007-04-01
Durable integrated sensor systems are needed for long-term health monitoring evaluations of aerospace systems. For legacy aircraft the primary means of implementing a sensor system will be through surface mounting or bonding of the sensors to the structure. Previous work has shown that the performance of surface-bonded piezo sensors can degrade due to environmental effects such as vibrations, temperature fluctuations, and substrate flexure motions. This performance degradation included sensor cracking, disbonding, and general loss of efficiency over time. In this research effort, the bonding state of a piezo sensor system was systematically studied to understand and improve the long-term durability and survivability of the sensor system. Analytic and computational models were developed and used to understand elastic wave generation and reception performance for various states of sensor disbond. Experimental studies were also conducted using scanning laser vibrometry, pitch-catch ultrasound, and pulse-echo ultrasound methods to understand elastic wave propagation effects in thin plate materials. Significant performance loss was observed for increasing levels of sensor disbond as well as characteristic frequency signatures which may be useful in understanding sensor performance levels for future structural health monitoring systems.
Integrated active sensor system for real time vibration monitoring.
Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue
2015-11-05
We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.
Integrated active sensor system for real time vibration monitoring
Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue
2015-01-01
We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293
Kwonjoon Lee; Kiseok Song; Taehwan Roh; Hoi-Jun Yoo
2016-08-01
The wrist patch-type ECG/APW sensor system is proposed for continuous and comprehensive monitoring of the patient's cardiovascular system. The wrist patch-type ECG/APW sensor system is consists of ECG/APW sensor, ECG/APW electrodes, and base station for real-time monitoring of the patient's status. The ECG/APW sensor and electrodes are composed of wrist patch, bandage-type ECG electrode and fabric APW electrode, respectively so that the patient's cardiovascular system can be continuously monitored in daily life with free hand-movement. Since the proposed wrist patchtype ECG/APW sensor simultaneously measures ECG/APW, the cardiac indicators, such as HR and PAT, can be extracted for comprehensive and accurate monitoring of the patient's cardiovascular system. The proposed wrist patch-type ECG/APW sensor system is successfully verified using the commercial PPG sensor (RP520) and demonstrated with the customized Android application on the smart phone.
An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web
NASA Astrophysics Data System (ADS)
Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.
2013-09-01
Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an architecture to represent how integrate air quality sensor data stream into geospatial data infrastructure to present an interoperable air quality monitoring system for supporting disaster management systems by real time information. Developed system tested on Tehran air pollution sensors for calculating Air Quality Index (AQI) for CO pollutant and subsequently notifying registered users in emergency cases by sending warning E-mails. Air quality monitoring portal used to retrieving and visualize sensor observation through interoperable framework. This system provides capabilities to retrieve SOS observation using WPS in a cascaded service chaining pattern for monitoring trend of timely sensor observation.
Real-Time Sensor Validation System Developed for Reusable Launch Vehicle Testbed
NASA Technical Reports Server (NTRS)
Jankovsky, Amy L.
1997-01-01
A real-time system for validating sensor health has been developed for the reusable launch vehicle (RLV) program. This system, which is part of the propulsion checkout and control system (PCCS), was designed for use in an integrated propulsion technology demonstrator testbed built by Rockwell International and located at the NASA Marshall Space Flight Center. Work on the sensor health validation system, a result of an industry-NASA partnership, was completed at the NASA Lewis Research Center, then delivered to Marshall for integration and testing. The sensor validation software performs three basic functions: it identifies failed sensors, it provides reconstructed signals for failed sensors, and it identifies off-nominal system transient behavior that cannot be attributed to a failed sensor. The code is initiated by host software before the start of a propulsion system test, and it is called by the host program every control cycle. The output is posted to global memory for use by other PCCS modules. Output includes a list indicating the status of each sensor (i.e., failed, healthy, or reconstructed) and a list of features that are not due to a sensor failure. If a sensor failure is found, the system modifies that sensor's data array by substituting a reconstructed signal, when possible, for use by other PCCS modules.
NASA Astrophysics Data System (ADS)
Ledermann, Christoph; Pauer, Hendrikje; Woern, Heinz
2014-05-01
In minimally invasive surgery, exible mechatronic instruments promise to improve the overall performance of surgical interventions. However, those instruments require highly developed sensors in order to provide haptic feedback to the surgeon or to enable (semi-)autonomous tasks. Precisely, haptic sensors and a shape sensor are required. In this paper, we present our ber optical sensor system of Fiber Bragg Gratings, which consists of a shape sensor, a kinesthetic sensor and a tactile sensor. The status quo of each of the three sensors is described, as well as the concept to integrate them into one ber optical sensor system.
Electron beam diagnostic system using computed tomography and an annular sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmer, John W.; Teruya, Alan T.
2015-08-11
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less
Electron beam diagnostic system using computed tomography and an annular sensor
Elmer, John W.; Teruya, Alan T.
2014-07-29
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
First Observation of the Earth's Permanent Free Oscillations on Ocean Bottom Seismometers
NASA Astrophysics Data System (ADS)
Deen, M.; Wielandt, E.; Stutzmann, E.; Crawford, W.; Barruol, G.; Sigloch, K.
2017-11-01
The Earth's hum is the permanent free oscillations of the Earth recorded in the absence of earthquakes, at periods above 30 s. We present the first observations of its fundamental spheroidal eigenmodes on broadband ocean bottom seismometers (OBSs) in the Indian Ocean. At the ocean bottom, the effects of ocean infragravity waves (compliance) and seafloor currents (tilt) overshadow the hum. In our experiment, data are also affected by electronic glitches. We remove these signals from the seismic trace by subtracting average glitch signals; performing a linear regression; and using frequency-dependent response functions between pressure, horizontal, and vertical seismic components. This reduces the long period noise on the OBS to the level of a good land station. Finally, by windowing the autocorrelation to include only the direct arrival, the first and second orbits around the Earth, and by calculating its Fourier transform, we clearly observe the eigenmodes at the ocean bottom.
Development of wireless sensor network for landslide monitoring system
NASA Astrophysics Data System (ADS)
Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S.
2017-05-01
A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km2. Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website.
The application of micromachined sensors to manned space systems
NASA Technical Reports Server (NTRS)
Bordano, Aldo; Havey, Gary; Wald, Jerry; Nasr, Hatem
1993-01-01
Micromachined sensors promise significant system advantages to manned space vehicles. Vehicle Health Monitoring (VHM) is a critical need for most future space systems. Micromachined sensors play a significant role in advancing the application of VHM in future space vehicles. This paper addresses the requirements that future VHM systems place on micromachined sensors such as: system integration, performance, size, weight, power, redundancy, reliability and fault tolerance. Current uses of micromachined sensors in commercial, military and space systems are used to document advantages that are gained and lessons learned. Based on these successes, the future use of micromachined sensors in space programs is discussed in terms of future directions and issues that need to be addressed such as how commercial and military sensors can meet future space system requirements.
NASA Astrophysics Data System (ADS)
Laskar, S.; Bordoloi, S.
2016-01-01
This paper presents an instrumentation system to measure the degradation in lubricating oil using a bare, tapered and bent multi-mode optical fiber (BTBMOF) sensor probe and a temperature probe. The sensor system consists of (i) a bare, tapered and bent multi-mode optical fiber (BTBMOF) as optical sensor along with a laser source and a LDR (Light Dependent Resistor) as detector (ii) a temperature sensor (iii) a ATmega microcontroller based data acquisition system and (iv) a trained ANN for processing and calibration. The BTBMOF sensor and the temperature sensor are used to provide the measure of refractive index (RI) and the temperature of a lubricating oil sample. A microcontroller based instrumentation system with trained ANN algorithm has been developed to determine the degradation of the lubricating oil sample by sampling the readings of the optical fiber sensor, and the temperature sensor.
Development of Sic Gas Sensor Systems
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Okojie, R. S.; Beheim, G. M.; Thomas, V.; Chen, L.; Lukco, D.; Liu, C. C.; Ward, B.; Makel, D.
2002-01-01
Silicon carbide (SiC) based gas sensors have significant potential to address the gas sensing needs of aerospace applications such as emission monitoring, fuel leak detection, and fire detection. However, in order to reach that potential, a range of technical challenges must be overcome. These challenges go beyond the development of the basic sensor itself and include the need for viable enabling technologies to make a complete gas sensor system: electrical contacts, packaging, and transfer of information from the sensor to the outside world. This paper reviews the status at NASA Glenn Research Center of SiC Schottky diode gas sensor development as well as that of enabling technologies supporting SiC gas sensor system implementation. A vision of a complete high temperature microfabricated SiC gas sensor system is proposed. In the long-term, it is believed that improvements in the SiC semiconductor material itself could have a dramatic effect on the performance of SiC gas sensor systems.
Sense, decide, act, communicate (SDAC): next generation of smart sensor systems
NASA Astrophysics Data System (ADS)
Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian
2004-09-01
The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.
Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System
NASA Technical Reports Server (NTRS)
Duncan, Joshua J.; Youngquist, Robert C.
2013-01-01
The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors
A civil structural monitoring system based on fiber grating sensors
NASA Astrophysics Data System (ADS)
Zhang, Yan; Cai, Haiwen; Pastore, Robert; Ju, Jing; Zeng, Debing; Yin, Zhifan; Cui, Hong-Liang
2003-08-01
Optical fiber sensors based on Fiber Bragg Grating (FBG) technology have found many applications in the area of civil structural monitoring systems, such as in bridge monitoring and maintenance. FBG sensors can measure the deformation, overload and cracks on bridge with a high sensitivity. In this paper we report on our recent work a structural monitoring system using FBG sensors. Basic theoretical background and design of the system is described here, including the light source, FBG sensors, demodulator sensors, signal detection and processing schemes. The system will be installed on a major arch bridge currently under construction in Shanghai, China for long-term in situ health monitoring. The system schematic arrangement on the bridge is introduced in brief. Simulation experiments in the laboratory were carried out to test the performance of FBG strain sensors. The sensor response shows excellent linearity against the strain imposed on it. Traffic and overload monitoring on bridge using FBG sensors is also discussed and planned for the near future.
New virtual sonar and wireless sensor system concepts
NASA Astrophysics Data System (ADS)
Houston, B. H.; Bucaro, J. A.; Romano, A. J.
2004-05-01
Recently, exciting new sensor array concepts have been proposed which, if realized, could revolutionize how we approach surface mounted acoustic sensor systems for underwater vehicles. Two such schemes are so-called ``virtual sonar'' which is formulated around Helmholtz integral processing and ``wireless'' systems which transfer sensor information through radiated RF signals. The ``virtual sonar'' concept provides an interesting framework through which to combat the dilatory effects of the structure on surface mounted sensor systems including structure-borne vibration and variations in structure-backing impedance. The ``wireless'' concept would eliminate the necessity of a complex wiring or fiber-optic external network while minimizing vehicle penetrations. Such systems, however, would require a number of advances in sensor and RF waveguide technologies. In this presentation, we will discuss those sensor and sensor-related developments which are desired or required in order to make practical such new sensor system concepts, and we will present several underwater applications from the perspective of exploiting these new sonar concepts. [Work supported by ONR.
Continued Development of Compact Multi-Gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado-Alonso, Jesus; Phillips, Straun; Berry, David; DiCarmine, Paul; Chullen, Cinda; Quinn, Gregory
2016-01-01
Miniature optical gas sensors based on luminescent materials have shown great potential as alternatives to NIR-based gas sensor systems for the Portable Life Support System (PLSS). The unique capability of luminescent sensors for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages over both traditional and advanced non-dispersive infrared (NDIR) gas sensors, which have so far shown longer life than luminescent sensors. In this paper we present the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted in Intelligent Optical Systems laboratories, a United Technologies Corporation Aerospace Systems (UTC) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems, and the advantages and limitations found through detailed sensor validation are discussed.
Airborne net-centric multi-INT sensor control, display, fusion, and exploitation systems
NASA Astrophysics Data System (ADS)
Linne von Berg, Dale C.; Lee, John N.; Kruer, Melvin R.; Duncan, Michael D.; Olchowski, Fred M.; Allman, Eric; Howard, Grant
2004-08-01
The NRL Optical Sciences Division has initiated a multi-year effort to develop and demonstrate an airborne net-centric suite of multi-intelligence (multi-INT) sensors and exploitation systems for real-time target detection and targeting product dissemination. The goal of this Net-centric Multi-Intelligence Fusion Targeting Initiative (NCMIFTI) is to develop an airborne real-time intelligence gathering and targeting system that can be used to detect concealed, camouflaged, and mobile targets. The multi-INT sensor suite will include high-resolution visible/infrared (EO/IR) dual-band cameras, hyperspectral imaging (HSI) sensors in the visible-to-near infrared, short-wave and long-wave infrared (VNIR/SWIR/LWIR) bands, Synthetic Aperture Radar (SAR), electronics intelligence sensors (ELINT), and off-board networked sensors. Other sensors are also being considered for inclusion in the suite to address unique target detection needs. Integrating a suite of multi-INT sensors on a single platform should optimize real-time fusion of the on-board sensor streams, thereby improving the detection probability and reducing the false alarms that occur in reconnaissance systems that use single-sensor types on separate platforms, or that use independent target detection algorithms on multiple sensors. In addition to the integration and fusion of the multi-INT sensors, the effort is establishing an open-systems net-centric architecture that will provide a modular "plug and play" capability for additional sensors and system components and provide distributed connectivity to multiple sites for remote system control and exploitation.
Ontological Problem-Solving Framework for Dynamically Configuring Sensor Systems and Algorithms
Qualls, Joseph; Russomanno, David J.
2011-01-01
The deployment of ubiquitous sensor systems and algorithms has led to many challenges, such as matching sensor systems to compatible algorithms which are capable of satisfying a task. Compounding the challenges is the lack of the requisite knowledge models needed to discover sensors and algorithms and to subsequently integrate their capabilities to satisfy a specific task. A novel ontological problem-solving framework has been designed to match sensors to compatible algorithms to form synthesized systems, which are capable of satisfying a task and then assigning the synthesized systems to high-level missions. The approach designed for the ontological problem-solving framework has been instantiated in the context of a persistence surveillance prototype environment, which includes profiling sensor systems and algorithms to demonstrate proof-of-concept principles. Even though the problem-solving approach was instantiated with profiling sensor systems and algorithms, the ontological framework may be useful with other heterogeneous sensing-system environments. PMID:22163793
Chemiresistive Graphene Sensors for Ammonia Detection.
Mackin, Charles; Schroeder, Vera; Zurutuza, Amaia; Su, Cong; Kong, Jing; Swager, Timothy M; Palacios, Tomás
2018-05-09
The primary objective of this work is to demonstrate a novel sensor system as a convenient vehicle for scaled-up repeatability and the kinetic analysis of a pixelated testbed. This work presents a sensor system capable of measuring hundreds of functionalized graphene sensors in a rapid and convenient fashion. The sensor system makes use of a novel array architecture requiring only one sensor per pixel and no selector transistor. The sensor system is employed specifically for the evaluation of Co(tpfpp)ClO 4 functionalization of graphene sensors for the detection of ammonia as an extension of previous work. Co(tpfpp)ClO 4 treated graphene sensors were found to provide 4-fold increased ammonia sensitivity over pristine graphene sensors. Sensors were also found to exhibit excellent selectivity over interfering compounds such as water and common organic solvents. The ability to monitor a large sensor array with 160 pixels provides insights into performance variations and reproducibility-critical factors in the development of practical sensor systems. All sensors exhibit the same linearly related responses with variations in response exhibiting Gaussian distributions, a key finding for variation modeling and quality engineering purposes. The mean correlation coefficient between sensor responses was found to be 0.999 indicating highly consistent sensor responses and excellent reproducibility of Co(tpfpp)ClO 4 functionalization. A detailed kinetic model is developed to describe sensor response profiles. The model consists of two adsorption mechanisms-one reversible and one irreversible-and is shown capable of fitting experimental data with a mean percent error of 0.01%.
Operation of remote mobile sensors for security of drinking water distribution systems.
Perelman, By Lina; Ostfeld, Avi
2013-09-01
The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.
MAGID-II: a next-generation magnetic unattended ground sensor (UGS)
NASA Astrophysics Data System (ADS)
Walter, Paul A.; Mauriello, Fred; Huber, Philip
2012-06-01
A next generation magnetic sensor is being developed at L-3 Communications, Communication Systems East to enhance the ability of Army and Marine Corps unattended ground sensor (UGS) systems to detect and track targets on the battlefield. This paper describes a magnetic sensor that provides superior detection range for both armed personnel and vehicle targets, at a reduced size, weight, and level of power consumption (SWAP) over currently available magnetic sensors. The design integrates the proven technology of a flux gate magnetometer combined with advanced digital signal processing algorithms to provide the warfighter with a rapidly deployable, extremely low false-alarm-rate sensor. This new sensor improves on currently available magnetic UGS systems by providing not only target detection and direction information, but also a magnetic disturbance readout, indicating the size of the target. The sensor integrates with Government Off-the-Shelf (GOTS) systems such as the United States Army's Battlefield Anti-Intrusion System (BAIS) and the United States Marine Corps Tactical Remote Sensor System (TRSS). The system has undergone testing by the US Marine Corps, as well as extensive company testing. Results from these field tests are given.
Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
Lambrecht, Joris M; Kirsch, Robert F
2014-11-01
Inertial and magnetic sensors are valuable for untethered, self-contained human movement analysis. Very recently, complete integration of inertial sensors, magnetic sensors, and processing into single packages, has resulted in miniature, low power devices that could feasibly be employed in an implantable motion capture system. We developed a wearable sensor system based on a commercially available system-in-package inertial and magnetic sensor. We characterized the accuracy of the system in measuring 3-D orientation-with and without magnetometer-based heading compensation-relative to a research grade optical motion capture system. The root mean square error was less than 4° in dynamic and static conditions about all axes. Using four sensors, recording from seven degrees-of-freedom of the upper limb (shoulder, elbow, wrist) was demonstrated in one subject during reaching motions. Very high correlation and low error was found across all joints relative to the optical motion capture system. Findings were similar to previous publications using inertial sensors, but at a fraction of the power consumption and size of the sensors. Such ultra-small, low power sensors provide exciting new avenues for movement monitoring for various movement disorders, movement-based command interfaces for assistive devices, and implementation of kinematic feedback systems for assistive interventions like functional electrical stimulation.
Laser sensor system documentation.
DOT National Transportation Integrated Search
2017-03-01
Phase 1 of TxDOT Project 0-6873, True Road Surface Deflection Measuring Device, developed a : laser sensor system based on several sensors mounted on a rigid beam. : This sensor system remains with CTR currently, as the project is moving into Phase 2...
Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
Yurtman, Aras; Barshan, Billur
2017-08-09
Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-02-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-01-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148
NASA Astrophysics Data System (ADS)
Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.
2015-05-01
The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.
Transient multivariable sensor evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Heifetz, Alexander
A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.
Sensor Systems for Prognostics and Health Management
Cheng, Shunfeng; Azarian, Michael H.; Pecht, Michael G.
2010-01-01
Prognostics and health management (PHM) is an enabling discipline consisting of technologies and methods to assess the reliability of a product in its actual life cycle conditions to determine the advent of failure and mitigate system risk. Sensor systems are needed for PHM to monitor environmental, operational, and performance-related characteristics. The gathered data can be analyzed to assess product health and predict remaining life. In this paper, the considerations for sensor system selection for PHM applications, including the parameters to be measured, the performance needs, the electrical and physical attributes, reliability, and cost of the sensor system, are discussed. The state-of-the-art sensor systems for PHM and the emerging trends in technologies of sensor systems for PHM are presented. PMID:22219686
Sensor systems for prognostics and health management.
Cheng, Shunfeng; Azarian, Michael H; Pecht, Michael G
2010-01-01
Prognostics and health management (PHM) is an enabling discipline consisting of technologies and methods to assess the reliability of a product in its actual life cycle conditions to determine the advent of failure and mitigate system risk. Sensor systems are needed for PHM to monitor environmental, operational, and performance-related characteristics. The gathered data can be analyzed to assess product health and predict remaining life. In this paper, the considerations for sensor system selection for PHM applications, including the parameters to be measured, the performance needs, the electrical and physical attributes, reliability, and cost of the sensor system, are discussed. The state-of-the-art sensor systems for PHM and the emerging trends in technologies of sensor systems for PHM are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttner, William J.; Rivkin, Carl; Burgess, Robert
Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cellmore » Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.« less
Constraining formation of the Eggvin Bank (West of Jan Mayen, N. Atlantic) from OBS data
NASA Astrophysics Data System (ADS)
Tan, P.; Breivik, A. J.; Mjelde, R.; Azuma, R.
2015-12-01
The anomalously high magma flux in the Eggvin Bank area has triggered new research efforts to better understand the crustal development in this area. The Eggvin Bank is located between the Jan Mayen Island and the west coast of Greenland. Some proposed origins of the Eggvin Bank are: a distinct plume located beneath Jan Mayen; an extension of the Iceland plume; minor spreading or leakage along West Jan Mayen Fracture Zone (WJMFZ); intruded continental crust extending from Jan Mayen Microcontinent (JMMC); and rifted Greenland sub-continental lithospheric mantle. In this first modern refraction seismic study of the Eggvin Bank, we present a 2D velocity model based on OBS data. The OBSs were deployed approx. N-S over the Eggvin Bank with good data quality constrained by 4 OBSs. The air-gun array used during OBS shooting produced good quality reflection data. Three distinct seamounts are observed along the profile: the northern seamount (water depth 730m), has a flat top with a thin sedimentary veneer on top, which indicates it has been eroded at sea surface; while the southern two seamounts, one (water depth 550m) is less flat with around 100m thick sedimentary units on top, another one is rounded with tiny sedimentary veneer on top having the shallowest water depth (460m). This could suggest that the southern seamounts are younger, since they are shallower but without obvious signs that they were subaerially exposed. However, increased cooling of the lithosphere across the WJMFZ in the north may also contribute to depth differences. A normal fault offsetting sedimentary strata (~300 m) in the Greenland Basin indicates recent tectonic activity north of the Eggvin Bank. The velocity modeling shows crustal thickness with large variations, ranging from 8 km to 14 km, where crustal thickness changes of 4-5 km are associated with 20-30 km wide segments with thick crust under the seamounts. The crust consists of three oceanic crustal layers: upper crust (2.8km/s-4.8km/s); middle crust (5.5 km/s -6.5 km/s); lower crust (6.7 km/s - 7.35 km/s). The high crustal thickness and crustal morphology differ from the more uniform Kolbeinsey Ridge crust to the south, and it may represent oceanic crust with multiphase off-axis volcanic activity.
Crustal evolution of Eocene paleo arc around Ogasawara region obtained by seismic reflection survey
NASA Astrophysics Data System (ADS)
Yamashita, M.; Takahashi, N.; Kodaira, S.; Miura, S.; Ishizuka, O.; Tatsumi, Y.
2011-12-01
The Izu-Bonin (Ogasawara)-Mariana (IBM) arc is known to the typical oceanic island arc, and it is the most suitable area to understand the growth process of island arc. The existence of two paleo arc which consists of Oligocene and Eocene paleo age is known in IBM forearc region by geological and geophysical studies. The Ogasawara ridge is also known to locate the initial structure of arc evolution from geologic sampling of research submersible. In this region, IODP drilling site: IBM-2 is proposed in order to understand the temporal and spatial change in arc crust composition from 50 to 40Ma magmatism. Site IBM-2 consists of two offset drilling holes (BON-1, BON-2). BON-1 designed to first encounter forearc basalt and will reach the sheeted dykes. BON-2 will start in boninites and finish in fore arc basalts. The purpose of these drilling is sampling the full volcanic stratigraphy from gabbro to boninite. There is no seismic data around BON-1 and BON-2, therefore it is need to conduct the multi-channel seismic reflection survey. Japan Agency for Marine-Earth Science and Technology carried out multi-channel seismic reflection survey and wide-angle reflection survey using 7,800 cu.in. air gun, 5 km streamer with 444 ch hydrophones and 40 OBSs in March 2011. We obtained two seismic reflection profiles of lines KT06 and KT07 along the paleo arc around Ogasawara ridge. Line KT06 located the north side of Ogasawara ridge. Line KT07 located the trench side of Ogasawara ridge. Lines KT06 is also deployed the OBSs every 5 km interval. Thin sediments are covered with basement in both survey lines. There are some sediment filled in depression topography. The low-frequency reflection from the top of subducting Pacific plate is recognized in line KT06. The continuity of this reflection is not clear due to the complicated bathymetry. The displacement of basement in northern side of Ogasawara ridge is identified along the lineament of bathymetry in Line 06. This structure is estimated to relate the deformation in the Ogasawara Trough and lineament of paleo arc. We will discuss the relationship this lineament and deformation with regard to activity such as post volcanism.
Health Monitoring for Airframe Structural Characterization
NASA Technical Reports Server (NTRS)
Munns, Thomas E.; Kent, Renee M.; Bartolini, Antony; Gause, Charles B.; Borinski, Jason W.; Dietz, Jason; Elster, Jennifer L.; Boyd, Clark; Vicari, Larry; Ray, Asok;
2002-01-01
This study established requirements for structural health monitoring systems, identified and characterized a prototype structural sensor system, developed sensor interpretation algorithms, and demonstrated the sensor systems on operationally realistic test articles. Fiber-optic corrosion sensors (i.e., moisture and metal ion sensors) and low-cycle fatigue sensors (i.e., strain and acoustic emission sensors) were evaluated to validate their suitability for monitoring aging degradation; characterize the sensor performance in aircraft environments; and demonstrate placement processes and multiplexing schemes. In addition, a unique micromachined multimeasure and sensor concept was developed and demonstrated. The results show that structural degradation of aircraft materials could be effectively detected and characterized using available and emerging sensors. A key component of the structural health monitoring capability is the ability to interpret the information provided by sensor system in order to characterize the structural condition. Novel deterministic and stochastic fatigue damage development and growth models were developed for this program. These models enable real time characterization and assessment of structural fatigue damage.
NASA Astrophysics Data System (ADS)
Conklin, John Albert
This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also presents future work needed to expand the functionality and utility of the modular sensor.
Sensor Failure Detection of FASSIP System using Principal Component Analysis
NASA Astrophysics Data System (ADS)
Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina
2018-02-01
In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
...; Fiber Optic Sensor Systems Technology Corporation AGENCY: Department of the Navy, DoD. ACTION: Notice..., 2012, announcing an intent to grant to Fiber Optic Sensor Systems Technology Corporation, a revocable... the Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology...
Fibre optic portable rail vehicle detector
NASA Astrophysics Data System (ADS)
Kepak, Stanislav; Cubik, Jakub; Zavodny, Petr; Hejduk, Stanislav; Nedoma, Jan; Davidson, Alan; Vasinek, Vladimir
2016-12-01
During track maintenance operations, the early detection of oncoming rail vehicles is critical for the safety of maintenance personnel. In addition, the detection system should be simple to install at the trackside by minimally qualified personnel. Fibre optic based sensor systems have the inherent advantages of being passive, unaffected by radio frequency interference (RFI) and suffering very low signal attenuation. Such a system therefore represents a good alternative to conventional approaches such as ultrasonic based sensor systems. The proposed system consists of one or more passive fibre trackside sensors and an x86 processing unit located at the work site. The solid fibre connection between sensors and processing unit eliminates the risk of RFI. In addition, the detection system sensors are easy to install with no requirement for electrical power at the sensor site. The system was tested on a tram line in Ostrava with the results obtained indicating the successful detection of all the trams in the monitoring windows using a single sensor. However, the platform allows flexibility in configuring multiple sensors where required by system users.
Smart sensor systems for human health breath monitoring applications.
Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A
2011-09-01
Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Glasheen, W. M.
1989-01-01
A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.
Intelligent Sensors: An Integrated Systems Approach
NASA Technical Reports Server (NTRS)
Mahajan, Ajay; Chitikeshi, Sanjeevi; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando
2005-01-01
The need for intelligent sensors as a critical component for Integrated System Health Management (ISHM) is fairly well recognized by now. Even the definition of what constitutes an intelligent sensor (or smart sensor) is well documented and stems from an intuitive desire to get the best quality measurement data that forms the basis of any complex health monitoring and/or management system. If the sensors, i.e. the elements closest to the measurand, are unreliable then the whole system works with a tremendous handicap. Hence, there has always been a desire to distribute intelligence down to the sensor level, and give it the ability to assess its own health thereby improving the confidence in the quality of the data at all times. This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines some fundamental issues in the development of intelligent sensors under the following two categories: Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).
Multispectral image-fused head-tracked vision system (HTVS) for driving applications
NASA Astrophysics Data System (ADS)
Reese, Colin E.; Bender, Edward J.
2001-08-01
Current military thermal driver vision systems consist of a single Long Wave Infrared (LWIR) sensor mounted on a manually operated gimbal, which is normally locked forward during driving. The sensor video imagery is presented on a large area flat panel display for direct view. The Night Vision and Electronics Sensors Directorate and Kaiser Electronics are cooperatively working to develop a driver's Head Tracked Vision System (HTVS) which directs dual waveband sensors in a more natural head-slewed imaging mode. The HTVS consists of LWIR and image intensified sensors, a high-speed gimbal, a head mounted display, and a head tracker. The first prototype systems have been delivered and have undergone preliminary field trials to characterize the operational benefits of a head tracked sensor system for tactical military ground applications. This investigation will address the advantages of head tracked vs. fixed sensor systems regarding peripheral sightings of threats, road hazards, and nearby vehicles. An additional thrust will investigate the degree to which additive (A+B) fusion of LWIR and image intensified sensors enhances overall driving performance. Typically, LWIR sensors are better for detecting threats, while image intensified sensors provide more natural scene cues, such as shadows and texture. This investigation will examine the degree to which the fusion of these two sensors enhances the driver's overall situational awareness.
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)
2001-01-01
Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.
NASA Astrophysics Data System (ADS)
Putzer, P.; Hurni, A.; Manhart, M.; Tiefenbeck, C.; Plattner, M.; Koch, A. W.
2012-04-01
In this paper the concept and design of the Hybrid Sensor Bus (HSB) system for telecommunication satellites is presented. The HSB development in the frame of an ESA-ARTES project has been started in 2011 and the system will be tested as flight demonstrator onboard the German Heinrich Hertz communication satellite (H2Sat) in 2016. In state-of-the-art telecommunication platforms hundreds of sensors are necessary for satellite control and monitoring. The sensors are wired point-to-point (p2p) to the satellite management unit (SMU) which results in a high mass impact but preliminary increases AIT effort and thereby the overall satellite costs. Sensor bus architectures reduce AIT cost by reduction of wiring effort, reduction in required test time and by providing a flexible sensor network topology. The HSB system is based on a modular concept including a controller module, a fiber-optic interrogator module and an I²C electric interrogator module The HSB system provides advanced performance which includes programmable and sensor specific alarm functions, averaging of dedicated sensor values and thereby a reduction of SMU processor load. The combination of electrical I2C sensors for punctual resolved measurements and fiber-optic sensors for e.g. thermal mapping of panels by embedding sensor fibers in the satellite structures results in a versatile system. In this paper we present the design of the HSB system taking into account the requirements from European platform manufacturers. The HSB design yields a product which can be implemented as replacement of standard p2p systems to build up a more cost efficient sensor system for geostationary satellites.
Application of the Systematic Sensor Selection Strategy for Turbofan Engine Diagnostics
NASA Technical Reports Server (NTRS)
Sowers, T. Shane; Kopasakis, George; Simon, Donald L.
2008-01-01
The data acquired from available system sensors forms the foundation upon which any health management system is based, and the available sensor suite directly impacts the overall diagnostic performance that can be achieved. While additional sensors may provide improved fault diagnostic performance, there are other factors that also need to be considered such as instrumentation cost, weight, and reliability. A systematic sensor selection approach is desired to perform sensor selection from a holistic system-level perspective as opposed to performing decisions in an ad hoc or heuristic fashion. The Systematic Sensor Selection Strategy is a methodology that optimally selects a sensor suite from a pool of sensors based on the system fault diagnostic approach, with the ability of taking cost, weight, and reliability into consideration. This procedure was applied to a large commercial turbofan engine simulation. In this initial study, sensor suites tailored for improved diagnostic performance are constructed from a prescribed collection of candidate sensors. The diagnostic performance of the best performing sensor suites in terms of fault detection and identification are demonstrated, with a discussion of the results and implications for future research.
Application of the Systematic Sensor Selection Strategy for Turbofan Engine Diagnostics
NASA Technical Reports Server (NTRS)
Sowers, T. Shane; Kopasakis, George; Simon, Donald L.
2008-01-01
The data acquired from available system sensors forms the foundation upon which any health management system is based, and the available sensor suite directly impacts the overall diagnostic performance that can be achieved. While additional sensors may provide improved fault diagnostic performance there are other factors that also need to be considered such as instrumentation cost, weight, and reliability. A systematic sensor selection approach is desired to perform sensor selection from a holistic system-level perspective as opposed to performing decisions in an ad hoc or heuristic fashion. The Systematic Sensor Selection Strategy is a methodology that optimally selects a sensor suite from a pool of sensors based on the system fault diagnostic approach, with the ability of taking cost, weight and reliability into consideration. This procedure was applied to a large commercial turbofan engine simulation. In this initial study, sensor suites tailored for improved diagnostic performance are constructed from a prescribed collection of candidate sensors. The diagnostic performance of the best performing sensor suites in terms of fault detection and identification are demonstrated, with a discussion of the results and implications for future research.
Continued Development of Compact Multi-gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado-Alonso, Jesús; Phillips, Straun; Chullen, Cinda; Quinn, Gregory
2016-01-01
Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to Near-Infrared-based gas sensor systems for the advanced space suit portable life support system (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. This paper presents the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.
Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors
NASA Technical Reports Server (NTRS)
Alexander, James; Goldberg, Hannah; Montgomery, James; Spiers, Gary; Liebe, Carl; Johnson, Andrew; Gromov, Konstantin; Konefat, Edward; Lam, Raymond; Meras, Patrick
2008-01-01
To be certain that a candidate sensor system will perform as expected during missions, we have developed a field test system and have executed test flights with a helicopter-mounted sensor platform over desert terrains, which simulate Lunar features. A key advantage to this approach is that different sensors can be tested and characterized in an environment relevant to the flight needs prior to flight. Testing the various sensors required the development of a field test system, including an instrument to validate the truth of the sensor system under test. The field test system was designed to be flexible enough to cover the test needs of many sensors (lidar, radar, cameras) that require an aerial test platform, including helicopters, airplanes, unmanned aerial vehicles (UAV), or balloons. To validate the performance of the sensor under test, the dynamics of the test platform must be known with sufficient accuracy to provide accurate models for input into algorithm development. The test system provides support equipment to measure the dynamics of the field test sensor platform, and allow computation of the truth position, velocity, attitude, and time.
Continued Development of Compact Multi-Gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Phillips, Straun; Chullen, Cinda
2015-01-01
Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to NIR-based gas sensor systems for the Portable Life Support System (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. In this paper we present the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.
Uncooled microbolometer sensors for unattended applications
NASA Astrophysics Data System (ADS)
Kohin, Margaret; Miller, James E.; Leary, Arthur R.; Backer, Brian S.; Swift, William; Aston, Peter
2003-09-01
BAE SYSTEMS has been developing and producing uncooled microbolometer sensors since 1995. Recently, uncooled sensors have been used on Pointer Unattended Aerial Vehicles and considered for several unattended sensor applications including DARPA Micro-Internetted Unattended Ground Sensors (MIUGS), Army Modular Acoustic Imaging Sensors (MAIS), and Redeployable Unattended Ground Sensors (R-UGS). This paper describes recent breakthrough uncooled sensor performance at BAE SYSTEMS and how this improved performance has been applied to a new Standard Camera Core (SCC) that is ideal for these unattended applications. Video imagery from a BAE SYSTEMS 640x480 imaging camera flown in a Pointer UAV is provided. Recent performance results are also provided.
A Fault Tolerant System for an Integrated Avionics Sensor Configuration
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Lancraft, R. E.
1984-01-01
An aircraft sensor fault tolerant system methodology for the Transport Systems Research Vehicle in a Microwave Landing System (MLS) environment is described. The fault tolerant system provides reliable estimates in the presence of possible failures both in ground-based navigation aids, and in on-board flight control and inertial sensors. Sensor failures are identified by utilizing the analytic relationships between the various sensors arising from the aircraft point mass equations of motion. The estimation and failure detection performance of the software implementation (called FINDS) of the developed system was analyzed on a nonlinear digital simulation of the research aircraft. Simulation results showing the detection performance of FINDS, using a dual redundant sensor compliment, are presented for bias, hardover, null, ramp, increased noise and scale factor failures. In general, the results show that FINDS can distinguish between normal operating sensor errors and failures while providing an excellent detection speed for bias failures in the MLS, indicated airspeed, attitude and radar altimeter sensors.
NASA Technical Reports Server (NTRS)
1978-01-01
A digest of information on remote sensor data systems is given. It includes characteristics of spaceborne sensors and the supportive systems immediately associated therewith. It also includes end-to-end systems information that will assist the user in appraising total data system impact produced by a sensor. The objective is to provide a tool for anticipating the complexity of systems and potential data system problems as new user needs are generated. Materials in this handbook span sensor systems from the present to those planned for use in the 1990's. Sensor systems on all planned missions are presented in digest form, condensed from data as available at the time of compilation. Projections are made of anticipated systems.
Manipulation based on sensor-directed control: An integrated end effector and touch sensing system
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
A hand/touch sensing system is described that, when mounted on a position-controlled manipulator, greatly expands the kinds of automated manipulation tasks that can be undertaken. Because of the variety of coordinate conversions, control equations, and completion criteria, control is necessarily dependent upon a small digital computer. The sensing system is designed both to be rugged and to sense the necessary touch and force information required to execute a wide range of manipulation tasks. The system consists of a six-axis wrist sensor, external touch sensors, and a pair of matrix jaw sensors. Details of the construction of the particular sensors, the integration of the end effector into the sensor system, and the control algorithms for using the sensor outputs to perform manipulation tasks automatically are discussed.
Results from CAT/SCAN, the Calabria-Apennine-Tyrrhenian/Subduction-Accretion-Collision Network
NASA Astrophysics Data System (ADS)
Steckler, M. S.; Amato, A.; Guerra, I.; Armbruster, J.; Baccheschi, P.; Diluccio, F.; Gervasi, A.; Harabaglia, P.; Kim, W.; Lerner-Lam, A.; Margheriti, L.; Seeber, L.; Tolstoy, M.; Wilson, C. K.
2005-12-01
The Calabrian Arc region is the final remnant of a Western Mediterranean microplate driven by rollback. Calabria itself is an exotic block that rifted off Sardinia and opened the Tyrrhenian Sea back-arc basin in its wake. The Calabrian Arc rapidly advanced to the southeast, with subduction ahead and extension behind, following subduction rollback of the Mesozoic seafloor. The subduction zone meanwhile collided progressively with the Apulia to form the Apennines in peninsular Italy and with the Africa to form the Maghrebides in Sicily. The Calabrian Arc is where the transition from subduction to continental collision is occurring. The collisions on either side of Calabria have restricted oceanic subduction to a narrow 200-km salient with well-defined edges and seismicity that extends to over 500 km depth. The collisions have also slowed, or possibly even halted, the rapid advance of the arc. Whether rollback of the oceanic lower plate of the Ionian Sea continues and whether the upper plate of Calabria continues to move as an independent plate are both uncertain. The Calabrian-Apennine-Tyrrhenian/Subduction-Collision-Accretion Network (CAT/SCAN) is a passive experiment to study of the Calabrian Arc and the transition to the southern Apennines. The land deployment consisted of three phases. The initial phase included an array of 39 broadband seismometers onshore, deployed in the winter of 2003/4. In September 2004, the array was reduced to 28 broadband and 8 short-period instruments. In April 2005, the array was reduced once again to 20 broadband and 2 short-period instruments. The field deployment was completed in October 2005. Offshore, 12 broadband Ocean Bottom Seismometers (OBSs) were deployed in the beginning of October 2004. Data from 4 OBSs have been recovered so far with deployment durations from a few weeks to almost one year. Fishing activity has been strongly implicated in the early recoveries, (with one instrument returned by fishermen), and is suspected for the instruments that were not recovered. The experiment is determining the structure of the Calabrian subduction and southern Apennine collision systems and the structure of the transition from oceanic subduction in Calabria to continental collision in the southern Apennines. We have delineated a strong anisotropy with a fast direction following the curved arc, but weaker anisotropy beneath the Tyrrhenian Sea. Receiver function images show variations in crustal thickness throughout the region, consistent with previous conceptual models. We also image a negative polarity interface dipping to the southwest that we interpret as the main thrust ramp in the north transitioning to the subduction interface in the south. The transition from one to the other is marked by a loss of amplitude in the Moho conversion. Local seismicity is consistent with surface structure in showing extension normal and parallel to the Calabrian forearc as well as continuing southeastward motion of Calabria relative to the southern Apennines and Maghrebides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.
The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.
NASA Technical Reports Server (NTRS)
Liu, G.
1985-01-01
One of the major concerns in the design of an active control system is obtaining the information needed for effective feedback. This involves the combination of sensing and estimation. A sensor location index is defined as the weighted sum of the mean square estimation errors in which the sensor locations can be regarded as estimator design parameters. The design goal is to choose these locations to minimize the sensor location index. The choice of the number of sensors is a tradeoff between the estimation quality based upon the same performance index and the total costs of installing and maintaining extra sensors. An experimental study for choosing the sensor location was conducted on an aeroelastic system. The system modeling which includes the unsteady aerodynamics model developed by Stephen Rock was improved. Experimental results verify the trend of the theoretical predictions of the sensor location index for different sensor locations at various wind speeds.
The Radio Frequency Health Node Wireless Sensor System
NASA Technical Reports Server (NTRS)
Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.
2009-01-01
The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor units. The RFHN includes a core module that performs generic computer functions, including management of power and input, output, processing, and storage of data. In a typical application, the processing capabilities in the RFHN are utilized to perform preprocessing, trending, and fusion of sensor data. The core module also serves as the unit through which the remote control computer configures the sensor units and the rest of the RFHN.
NASA Astrophysics Data System (ADS)
Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor
2004-08-01
An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.
High pressure fiber optic sensor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guida, Renato; Xia, Hua; Lee, Boon K
2013-11-26
The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.
Sensors-network and its application in the intelligent storage security
NASA Astrophysics Data System (ADS)
Zhang, Qingying; Nicolescu, Mihai; Jiang, Xia; Zhang, Ying; Yue, Weihong; Xiao, Weihong
2004-11-01
Intelligent storage systems run on different advanced technologies, such as linear layout, business intelligence and data mining. Security, the basic desire of the storage system, has been focused on with the indraught of multimedia communication technology and sensors" network. Along with the developing of science and the social demands, multifarious alarming system has been designed and improved to be intelligentized, modularized and have network connections. It is of great moment to make the storage, and further more, the logistics system more and more efficient and perfect with modern science and technology. Diversified information on the spot should be caught by different kinds of sensors. Those signals are treated and communicated to the control center to give the further actions. For fire-proofing, broad-spectrum gas sensors, fume sensors, flame sensors and temperature sensors are used to catch the information in their own ways. Once the fire is taken somewhere, the sensors work by the fume, temperature, and flame as well as gas immediately. Meanwhile the intelligent control system starts. It passes the tidings to the center unit. At the same time, it sets those movable walls on to work quickly to obstruct the fire"s spreading. While for guarding the warehouse against theft, cut-off sensors, body sensors, photoelectric sensors, microwave sensors and closed-circuit television as well as electronic clocks are available to monitor the warehouse reasonably. All of those sensors work in a net way. The intelligent control system is made with a digital circuit instead of traditional switch one. This system can work in a better way in many cases. Its reliability is high and the cost is low.
33 CFR 117.743 - Rahway River.
Code of Federal Regulations, 2010 CFR
2010-07-01
... lights anytime the bridge is not in the full open position. (d) An infrared sensor system shall be... the infrared sensor system. (g) If the infrared sensors detect a vessel or other obstruction.... (j) In the event of a failure, or obstruction to the infrared sensor system, the bridge shall...
DOT National Transportation Integrated Search
2016-08-01
This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) micro-electromechanical sensors and systems (MEMS) embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system f...
33 CFR 117.743 - Rahway River.
Code of Federal Regulations, 2011 CFR
2011-07-01
... lights anytime the bridge is not in the full open position. (d) An infrared sensor system shall be... the infrared sensor system. (g) If the infrared sensors detect a vessel or other obstruction.... (j) In the event of a failure, or obstruction to the infrared sensor system, the bridge shall...
33 CFR 117.743 - Rahway River.
Code of Federal Regulations, 2012 CFR
2012-07-01
... lights anytime the bridge is not in the full open position. (d) An infrared sensor system shall be... the infrared sensor system. (g) If the infrared sensors detect a vessel or other obstruction.... (j) In the event of a failure, or obstruction to the infrared sensor system, the bridge shall...
33 CFR 117.743 - Rahway River.
Code of Federal Regulations, 2014 CFR
2014-07-01
... lights anytime the bridge is not in the full open position. (d) An infrared sensor system shall be... the infrared sensor system. (g) If the infrared sensors detect a vessel or other obstruction.... (j) In the event of a failure, or obstruction to the infrared sensor system, the bridge shall...
33 CFR 117.743 - Rahway River.
Code of Federal Regulations, 2013 CFR
2013-07-01
... lights anytime the bridge is not in the full open position. (d) An infrared sensor system shall be... the infrared sensor system. (g) If the infrared sensors detect a vessel or other obstruction.... (j) In the event of a failure, or obstruction to the infrared sensor system, the bridge shall...
Intelligent Sensors: Strategies for an Integrated Systems Approach
NASA Technical Reports Server (NTRS)
Chitikeshi, Sanjeevi; Mahajan, Ajay; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando
2005-01-01
This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).
A Soft Sensor-Based Three-Dimensional (3-D) Finger Motion Measurement System
Park, Wookeun; Ro, Kyongkwan; Kim, Suin; Bae, Joonbum
2017-01-01
In this study, a soft sensor-based three-dimensional (3-D) finger motion measurement system is proposed. The sensors, made of the soft material Ecoflex, comprise embedded microchannels filled with a conductive liquid metal (EGaln). The superior elasticity, light weight, and sensitivity of soft sensors allows them to be embedded in environments in which conventional sensors cannot. Complicated finger joints, such as the carpometacarpal (CMC) joint of the thumb are modeled to specify the location of the sensors. Algorithms to decouple the signals from soft sensors are proposed to extract the pure flexion, extension, abduction, and adduction joint angles. The performance of the proposed system and algorithms are verified by comparison with a camera-based motion capture system. PMID:28241414
Wearable sensor systems for infants.
Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio
2015-02-05
Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.
Wearable Sensor Systems for Infants
Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio
2015-01-01
Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future. PMID:25664432
Circuits and Systems for Low-Power Miniaturized Wireless Sensors
NASA Astrophysics Data System (ADS)
Nagaraju, Manohar
The field of electronic sensors has witnessed a tremendous growth over the last decade particularly with the proliferation of mobile devices. New applications in Internet of Things (IoT), wearable technology, are further expected to fuel the demand for sensors from current numbers in the range of billions to trillions in the next decade. The main challenges for a trillion sensors are continued miniaturization, low-cost and large-scale manufacturing process, and low power consumption. Traditional integration and circuit design techniques in sensor systems are not suitable for applications in smart dust, IoT etc. The first part of this thesis demonstrates an example sensor system for biosignal recording and illustrates the tradeoffs in the design of low-power miniaturized sensors. The different components of the sensor system are integrated at the board level. The second part of the thesis demonstrates fully integrated sensors that enable extreme miniaturization of a sensing system with the sensor element, processing circuitry, a frequency reference for communication and the communication circuitry in a single hermetically sealed die. Design techniques to reduce the power consumption of the sensor interface circuitry at the architecture and circuit level are demonstrated. The principles are used to design sensors for two of the most common physical variables, mass and pressure. A low-power wireless mass and pressure sensor suitable for a wide variety of biological/chemical sensing applications and Tire Pressure Monitoring Systems (TPMS) respectively are demonstrated. Further, the idea of using high-Q resonators for a Voltage Controlled Oscillator (VCO) is proposed and a low-noise, wide bandwidth FBAR-based VCO is presented.
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines
Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu
2016-01-01
In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved. PMID:27136561
Simulating optoelectronic systems for remote sensing with SENSOR
NASA Astrophysics Data System (ADS)
Boerner, Anko
2003-04-01
The consistent end-to-end simulation of airborne and spaceborne remote sensing systems is an important task and sometimes the only way for the adaptation and optimization of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software ENvironment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. It allows the simulation of a wide range of optoelectronic systems for remote sensing. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. Part three consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimization requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and examples of its use are given. The verification of SENSOR is demonstrated.
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.
Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu
2016-04-29
In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Zvonar, G. A.; Baumann, W. T.; Delos, P. L.
1993-01-01
Recently, a modal domain optical fiber sensor has been demonstrated as a sensor in a control system for vibration suppression of a flexible cantilevered beam. This sensor responds to strain through a mechanical attachment to the structure. Because this sensor is of the interferometric type, the output of the sensor has a sinusoidal nonlinearity. For small levels of strain, the sensor can be operated in its linear region. For large levels of strain, the detection electronics can be configured to count fringes. In both of these configurations, the sensor nonlinearity imposes some restrictions on the performance of the control system. In this paper we investigate the effects of these sensor nonlinearities on the control system, and identify the region of linear operation in terms of the optical fiber sensor parameters.
Attitude measurement: Principles and sensors
NASA Technical Reports Server (NTRS)
Duchon, P.; Vermande, M. P.
1981-01-01
Tools used in the measurement of satellite attitude are described. Attention is given to the elements that characterize an attitude sensor, the references employed (stars, moon, Sun, Earth, magnetic fields, etc.), and the detectors (optical, magnetic, and inertial). Several examples of attitude sensors are described, including sun sensors, star sensors, earth sensors, triaxial magnetometers, and gyrometers. Finally, sensor combinations that make it possible to determine a complete attitude are considered; the SPOT attitude measurement system and a combined CCD star sensor-gyrometer system are discussed.
Seismic structure and segmentation of the axial valley of the Mid-Cayman Spreading Center
NASA Astrophysics Data System (ADS)
Van Avendonk, Harm J. A.; Hayman, Nicholas W.; Harding, Jennifer L.; Grevemeyer, Ingo; Peirce, Christine; Dannowski, Anke
2017-06-01
We report the results of a two-dimensional tomographic inversion of marine seismic refraction data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity model shows variations in the thickness and properties of the young oceanic crust that are consistent with the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5-2.0 km), which we interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system has been found in the southern half of the MCSC.
NASA Technical Reports Server (NTRS)
Kelly, W. L.; Howle, W. M.; Meredith, B. D.
1980-01-01
The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onbaord image processing. Since the IAS is a data preprocessing system which is closely coupled to the sensor system, it serves as a first step in providing a 'Smart' imaging sensor. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner and provide the opportunity to design sensor systems which can be reconfigured in near real time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.
Concept and Design of the Hybrid Sensor Bus System for Telecommunication Satellites
NASA Astrophysics Data System (ADS)
Hurni, Andreas; Tiefenbeck, Christoph; Manhart, Markus; Heyer, Heinz-Volker; Plattner, Markus; Putzer, Philipp; Roßner, Max; Koch, Alexander W.; Furano, Gianluca; McKenzie, Iain; Lam, King
2012-08-01
The Hybrid Sensor Bus (HSB) is a system for sensor interrogation in telecommunication satellites, which will be developed in the frame of the ESA ARTES program. The main target of the HSB system is the replacement of classical point-to-point wired sensors by sensors connected on bus networks. This will save mass and reduces efforts in assembly, integration and testing (AIT). The HSB system is able to manage an electrical I2C and a fiber-optical sensor network. The system consists of an intelligent power module, an electrical and a fiber-optical interrogator module in cold redundancy. Additional features of the HSB system are its modularity and the adaptability to different satellite platforms. The implementation of a HSB system allows platform manufacturers to build a more cost efficient satellite.This paper presents the concept and the design status of the HSB system.
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Maria Q.
2017-04-01
Mobile, heterogeneous, and smart sensor networks produce pervasive structural health monitoring (SHM) information. With various embedded sensors, smartphones have emerged to innovate SHM by empowering citizens to serve as sensors. By default, smartphones meet the fundamental smart sensor criteria, thanks to the built-in processor, memory, wireless communication units and mobile operating system. SHM using smartphones, however, faces technical challenges due to citizen-induced uncertainties, undesired sensor-structure integration, and lack of control over the sensing platform. Previously, the authors presented successful applications of smartphone accelerometers for structural vibration measurement and proposed a monitoring framework under citizen-induced spatiotemporal uncertainties. This study aims at extending the capabilities of smartphone-based SHM with a special focus on the lack of control over the sensor (i.e., the phone) positioning by citizens resulting in unknown sensor orientations. Using smartphone gyroscope, accelerometer, and magnetometer; instantaneous sensor orientation can be obtained with respect to gravitational and magnetic north directions. Using these sensor data, mobile operating system frameworks return processed features such as attitude and heading that can be used to correct misaligned sensor signals. For this purpose, a coordinate transformation procedure is proposed and illustrated on a two-story laboratory structural model and real-scale bridges with various sensor positioning examples. The proposed method corrects the sensor signals by tracking their orientations and improves measurement accuracy. Moreover, knowing structure’s coordinate system a priori, even the data from arbitrarily positioned sensors can automatically be transformed to the structural coordinates. In addition, this paper also touches some secondary mobile and heterogeneous data issues including imperfect sampling and geolocation services. The coordinate system transformation methods proposed in this study can be implemented in other non-smartphone-based SHM systems as long as similar instrumentation is available.
A system for activity recognition using multi-sensor fusion.
Gao, Lei; Bourke, Alan K; Nelson, John
2011-01-01
This paper proposes a system for activity recognition using multi-sensor fusion. In this system, four sensors are attached to the waist, chest, thigh, and side of the body. In the study we present two solutions for factors that affect the activity recognition accuracy: the calibration drift and the sensor orientation changing. The datasets used to evaluate this system were collected from 8 subjects who were asked to perform 8 scripted normal activities of daily living (ADL), three times each. The Naïve Bayes classifier using multi-sensor fusion is adopted and achieves 70.88%-97.66% recognition accuracies for 1-4 sensors.
Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha
2017-12-14
Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.
Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha
2017-01-01
Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system. PMID:29240666
Fluidic Sensor Temperature Indicating System.
A fluidic sensor temperature indicating system designed by Honeywell Inc was tested on a T56 engine during dynamometer calibration. It was also...based on the sensor being mounted in a T56 engine showed a hot gas temperature drop from 1970F at the sensor entrance to 1760F in the sensor pulsation
Proposed evaluation framework for assessing operator performance with multisensor displays
NASA Technical Reports Server (NTRS)
Foyle, David C.
1992-01-01
Despite aggressive work on the development of sensor fusion algorithms and techniques, no formal evaluation procedures have been proposed. Based on existing integration models in the literature, an evaluation framework is developed to assess an operator's ability to use multisensor, or sensor fusion, displays. The proposed evaluation framework for evaluating the operator's ability to use such systems is a normative approach: The operator's performance with the sensor fusion display can be compared to the models' predictions based on the operator's performance when viewing the original sensor displays prior to fusion. This allows for the determination as to when a sensor fusion system leads to: 1) poorer performance than one of the original sensor displays (clearly an undesirable system in which the fused sensor system causes some distortion or interference); 2) better performance than with either single sensor system alone, but at a sub-optimal (compared to the model predictions) level; 3) optimal performance (compared to model predictions); or, 4) super-optimal performance, which may occur if the operator were able to use some highly diagnostic 'emergent features' in the sensor fusion display, which were unavailable in the original sensor displays. An experiment demonstrating the usefulness of the proposed evaluation framework is discussed.
A Sensor System for Detection of Hull Surface Defects
Navarro, Pedro; Iborra, Andrés; Fernández, Carlos; Sánchez, Pedro; Suardíaz, Juan
2010-01-01
This paper presents a sensor system for detecting defects in ship hull surfaces. The sensor was developed to enable a robotic system to perform grit blasting operations on ship hulls. To achieve this, the proposed sensor system captures images with the help of a camera and processes them in real time using a new defect detection method based on thresholding techniques. What makes this method different is its efficiency in the automatic detection of defects from images recorded in variable lighting conditions. The sensor system was tested under real conditions at a Spanish shipyard, with excellent results. PMID:22163590
NASA Technical Reports Server (NTRS)
Powell, Bradley W.; Burroughs, Ivan A.
1994-01-01
Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.
Automatic Line Calling Badminton System
NASA Astrophysics Data System (ADS)
Affandi Saidi, Syahrul; Adawiyah Zulkiplee, Nurabeahtul; Muhammad, Nazmizan; Sarip, Mohd Sharizan Md
2018-05-01
A system and relevant method are described to detect whether a projectile impact occurs on one side of a boundary line or the other. The system employs the use of force sensing resistor-based sensors that may be designed in segments or assemblies and linked to a mechanism with a display. An impact classification system is provided for distinguishing between various events, including a footstep, ball impact and tennis racquet contact. A sensor monitoring system is provided for determining the condition of sensors and providing an error indication if sensor problems exist. A service detection system is provided when the system is used for tennis that permits activation of selected groups of sensors and deactivation of others.
Design and evaluation of a wireless sensor network based aircraft strength testing system.
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.
Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521
Noncontacting Optical Measurement And Inspection Systems
NASA Astrophysics Data System (ADS)
Asher, Jeffrey A.; Jackson, Robert L.
1986-10-01
Product inspection continues to play a growing role in the improvement of quality and reduction of scrap. Recent emphasis on precision measurements and in-process inspection have been a driving force for the development of noncontacting sensors. Noncontacting sensors can provide long term, unattended use due to the lack of sensor wear. Further, in applications where, sensor contact can damage or geometrically change the part to be measured or inspected, noncontacting sensors are the only technical approach available. MTI is involved in the development and sale of noncontacting sensors and custom inspection systems. This paper will review the recent advances in noncontacting sensor development. Machine vision and fiber optics sensor systems are finding a wide variety of industrial inspection applications. This paper will provide detailed examples of several state-of-the-art applications for these noncontacting sensors.
A new method for registration of heterogeneous sensors in a dimensional measurement system
NASA Astrophysics Data System (ADS)
Zhao, Yan; Wang, Zhong; Fu, Luhua; Qu, Xinghua; Zhang, Heng; Liu, Changjie
2017-10-01
Registration of multiple sensors is a basic step in multi-sensor dimensional or coordinate measuring systems before any measurement. In most cases, a common standard is used to be measured by all sensors, and this may work well for general registration of multiple homogeneous sensors. However, when inhomogeneous sensors detect a common standard, it is usually very difficult to obtain the same information, because of the different working principles of the sensors. In this paper, a new method called multiple steps registration is proposed to register two sensors: a video camera sensor (VCS) and a tactile probe sensor (TPS). In this method, the two sensors measure two separated standards: a chrome circle on a reticle and a reference sphere with a constant distance between them, fixed on a steel plate. The VCS captures only the circle and the TPS touches only the sphere. Both simulations and real experiments demonstrate that the proposed method is robust and accurate in the registration of multiple inhomogeneous sensors in a dimensional measurement system.
Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask.
Kieninger, Jochen; Tamari, Yaara; Enderle, Barbara; Jobst, Gerhard; Sandvik, Joe A; Pettersen, Erik O; Urban, Gerald A
2018-04-26
The Sensing Cell Culture Flask (SCCF) is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G) and breast cancer (T-47D) cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.
NeXOS, developing and evaluating a new generation of insitu ocean observation systems.
NASA Astrophysics Data System (ADS)
Delory, Eric; del Rio, Joaquin; Golmen, Lars; Roar Hareide, Nils; Pearlman, Jay; Rolin, Jean-Francois; Waldmann, Christoph; Zielinski, Oliver
2017-04-01
Ocean biological, chemical or physical processes occur over widely varying scales in space and time: from micro- to kilometer scales, from less than seconds to centuries. While space systems supply important data and information, insitu data is necessary for comprehensive modeling and forecasting of ocean dynamics. Yet, collection of in-situ observation on these scales is inherently challenging and remains generally difficult and costly in time and resources. This paper address the innovations and significant developments for a new generation of insitu sensors in FP7 European Union project "Next generation, Cost- effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management" or "NeXOS" for short. Optical and acoustics sensors are the focus of NeXOS but NeXOS moves beyond just sensors as systems that simultaneously address multiple objectives and applications are becoming increasingly important. Thus NeXOS takes a perspective of both sensors and sensor systems with significant advantages over existing observing capabilities via the implementation of innovations such as multiplatform integration, greater reliability through better antifouling management and greater sensor and data interoperability through use of OGC standards. This presentation will address the sensor system development and field-testing of the new NeXOS sensor systems. This is being done on multiple platforms including profiling floats, gliders, ships, buoys and subsea stations. The implementation of a data system based on SWE and PUCK furthers interoperability across measurements and platforms. This presentation will review the sensor system capabilities, the status of field tests and recommendations for long-term ocean monitoring.
Systems and methods for detecting a flame in a fuel nozzle of a gas turbine
Kraemer, Gilbert Otto; Storey, James Michael; Lipinski, John; Mestroni, Julio Enrique; Williamson, David Lee; Marshall, Jason Randolph; Krull, Anthony
2013-05-07
A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed... sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be... the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system...
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed... sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be... the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...
A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
A new sensor system for mobile and aerial emission sampling was developed for open area sources, such as open burning. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, and black carbon, samplers for particulate matter with ...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
Yi, Wei-Ying; Leung, Kwong-Sak; Leung, Yee
2017-12-22
Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems' hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field.
Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites
NASA Astrophysics Data System (ADS)
Thomas, Joseph; Ambroise, Arounaguiry; Birchfield, Kara; Cai, Wensheng; Sandmann, Christian; Singh, Sarabjit; Weidemaier, Kristin; Pitner, J. Bruce
2006-02-01
The early stage development studies of novel implantable continuous metabolite sensor systems for glucose, lactate and fatty acids are discussed. These sensors utilize non-enzymatic "reagentless" sensor systems based on NIR fluorophore-labeled binding proteins. For in vivo applications, NIR fluorescence based systems (beyond 600 nm) have the added benefit of reduced interference from background scattering, tissue and serum absorption and cell auto-fluorescence. The long wavelength emission facilitates implanted sensor disks to transmit fluorescence to an external reader through wireless connections and the resulting fluorescence signals can be correlated to metabolite concentrations. We have developed a prototype optical system that uses a bifurcated optical fiber to transmit excitation and read emission at the surface of the skin. With this system, fluorescence signals were read over time through animal skin. The changes in glucose concentration were studied using immobilized sensor proteins and were compared to non-immobilized sensors in solution. For sensors in solution, no response delay was observed. For immobilized systems, the fluorescence response showed a delay corresponding to the diffusion time for the metabolite to equilibrate within the sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeigler, Kristine E.; Ferguson, Blythe A.
2012-07-01
The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials andmore » condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors installed on the P Reactor Building blocks define the baseline materials condition of the P Reactor ISD external concrete structure. Continued monitoring of the blocks will enable evaluation of the effects of aging on the P Reactor ISD structure. The collected data will support validation of the material degradation model and assessment of the condition of the ISD structure over time. The following are recommendations for continued development of the ISD Sensor Network Test Bed: - Establish a long-term monitoring program using the concrete blocks with existing sensor and/or additional sensors for trending the concrete materials and structural condition; - Continue development of a stand-alone test bed sensor system that is self-powered and provides wireless transmission of data to a user-accessible dashboard; - Develop and implement periodic NDE/DE characterization of the concrete blocks to provide verification and validation for the measurements obtained through the sensor system and concrete degradation model(s). (authors)« less
Position and orientation determination system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpring, Lawrence J.; Farfan, Eduardo B.; Gordon, John R.
A position determination system and method is provided that may be used for obtaining position and orientation information of a detector in a contaminated room. The system includes a detector, a sensor operably coupled to the detector, and a motor coupled to the sensor to move the sensor around the detector. A CPU controls the operation of the motor to move the sensor around the detector and determines distance and angle data from the sensor to an object. The method includes moving a sensor around the detector and measuring distance and angle data from the sensor to an object atmore » incremental positions around the detector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Barhen, Jacob; Glover, Charles Wayne
2012-01-01
Multi-sensor networks may face resource limitations in a dynamically evolving multiple target tracking scenario. It is necessary to task the sensors efficiently so that the overall system performance is maximized within the system constraints. The central sensor resource manager may control the sensors to meet objective functions that are formulated to meet system goals such as minimization of track loss, maximization of probability of target detection, and minimization of track error. This paper discusses the variety of techniques that may be utilized to optimize sensor performance for either near term gain or future reward over a longer time horizon.
Spectrum-modulating fiber-optic sensors for aircraft control systems
NASA Technical Reports Server (NTRS)
Beheim, Glenn; Fritsch, Klaus
1987-01-01
A family of fiber-optic sensors for aircraft engine control systems is described. Each of these sensors uses a spectrum-modulation method to obtain an output which is largely independent of the fiber link transmissivity. A position encoder is described which uses a code plate to digitally modulate the sensor output spectrum. Also described are pressure and temperature sensors, each of which uses a Fabry-Perot cavity to modulate the sensor output spectrum as a continuous function of the measurand. A technique is described whereby a collection of these sensors may be effectively combined to perform a number of the measurements which are required by an aircraft-engine control system.
SENSOR++: Simulation of Remote Sensing Systems from Visible to Thermal Infrared
NASA Astrophysics Data System (ADS)
Paproth, C.; Schlüßler, E.; Scherbaum, P.; Börner, A.
2012-07-01
During the development process of a remote sensing system, the optimization and the verification of the sensor system are important tasks. To support these tasks, the simulation of the sensor and its output is valuable. This enables the developers to test algorithms, estimate errors, and evaluate the capabilities of the whole sensor system before the final remote sensing system is available and produces real data. The presented simulation concept, SENSOR++, consists of three parts. The first part is the geometric simulation which calculates where the sensor looks at by using a ray tracing algorithm. This also determines whether the observed part of the scene is shadowed or not. The second part describes the radiometry and results in the spectral at-sensor radiance from the visible spectrum to the thermal infrared according to the simulated sensor type. In the case of earth remote sensing, it also includes a model of the radiative transfer through the atmosphere. The final part uses the at-sensor radiance to generate digital images by using an optical and an electronic sensor model. Using SENSOR++ for an optimization requires the additional application of task-specific data processing algorithms. The principle of the simulation approach is explained, all relevant concepts of SENSOR++ are discussed, and first examples of its use are given, for example a camera simulation for a moon lander. Finally, the verification of SENSOR++ is demonstrated.
Isolating Gas Sensor From Pressure And Temperature Effects
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.
1994-01-01
Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.
Kidd, David G; McCartt, Anne T
2016-02-01
This study characterized the use of various fields of view during low-speed parking maneuvers by drivers with a rearview camera, a sensor system, a camera and sensor system combined, or neither technology. Participants performed four different low-speed parking maneuvers five times. Glances to different fields of view the second time through the four maneuvers were coded along with the glance locations at the onset of the audible warning from the sensor system and immediately after the warning for participants in the sensor and camera-plus-sensor conditions. Overall, the results suggest that information from cameras and/or sensor systems is used in place of mirrors and shoulder glances. Participants with a camera, sensor system, or both technologies looked over their shoulders significantly less than participants without technology. Participants with cameras (camera and camera-plus-sensor conditions) used their mirrors significantly less compared with participants without cameras (no-technology and sensor conditions). Participants in the camera-plus-sensor condition looked at the center console/camera display for a smaller percentage of the time during the low-speed maneuvers than participants in the camera condition and glanced more frequently to the center console/camera display immediately after the warning from the sensor system compared with the frequency of glances to this location at warning onset. Although this increase was not statistically significant, the pattern suggests that participants in the camera-plus-sensor condition may have used the warning as a cue to look at the camera display. The observed differences in glance behavior between study groups were illustrated by relating it to the visibility of a 12-15-month-old child-size object. These findings provide evidence that drivers adapt their glance behavior during low-speed parking maneuvers following extended use of rearview cameras and parking sensors, and suggest that other technologies which augment the driving task may do the same. Copyright © 2015 Elsevier Ltd. All rights reserved.
Deep-brain stimulator and control of Parkinson's disease
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Harbaugh, Robert; Abraham, Jose K.
2004-07-01
The design of a novel feedback sensor system with wireless implantable polymer MEMS sensors for detecting and wirelessly transmitting physiological data that can be used for the diagnosis and treatment of various neurological disorders, such as Parkinson's disease, epilepsy, head injury, stroke, hydrocephalus, changes in pressure, patient movements, and tremors is presented in this paper. The sensor system includes MEMS gyroscopes, accelerometers, and pressure sensors. This feedback sensor system focuses on the development and integration of implantable systems with various wireless sensors for medical applications, particularly for the Parkinson's disease. It is easy to integrate and modify the sensor network feed back system for other neurological disorders mentioned above. The monitoring and control of tremor in Parkinson's disease can be simulated on a skeleton via wireless telemetry system communicating with electroactive polymer actuator, and microsensors attached to the skeleton hand and legs. Upon sensing any abnormal motor activity which represent the characteristic rhythmic motion of a typical Parkinson's (PD) patient, these sensors will generate necessary control pulses which will be transmitted to a hat sensor system on the skeleton head. Tiny inductively coupled antennas attached to the hat sensor system can receive these control pulses, demodulate and deliver it to actuate the parts of the skeleton to control the abnormal motor activity. This feedback sensor system can further monitor and control depending on the amplitude of the abnormal motor activity. This microsystem offers cost effective means of monitoring and controlling of neurological disorders in real PD patients. Also, this network system offers a remote monitoring of the patients conditions without visiting doctors office or hospitals. The data can be monitored using PDA and can be accessed using internet (or cell phone). Cellular phone technology will allow a health care worker to be automatically notified if monitoring indicates an emergency situation. The main advantage of such system is that it can effectively monitor large number of patients at the same time, which helps to compensate the present shortage of health care workers.
Erbium-doped fiber amplifier elements for structural analysis sensors
NASA Technical Reports Server (NTRS)
Hanna-Hawver, P.; Kamdar, K. D.; Mehta, S.; Nagarajan, S.; Nasta, M. H.; Claus, R. O.
1992-01-01
The use of erbium-doped fiber amplifiers (EDFA's) in optical fiber sensor systems for structural analysis is described. EDFA's were developed for primary applications as periodic regenerator amplifiers in long-distance fiber-based communication systems. Their in-line amplification performance also makes them attractive for optical fiber sensor systems which require long effective lengths or the synthesis of special length-dependent signal processing functions. Sensor geometries incorporating EDFA's in recirculating and multiple loop sensors are discussed. Noise and polarization birefringence are also considered, and the experimental development of system components is discussed.
Flexural impact force absorption of mouthguard materials using film sensor system.
Reza, Fazal; Churei, Hiroshi; Takahashi, Hidekazu; Iwasaki, Naohiko; Ueno, Toshiaki
2014-06-01
Several methods have been used to measure the impact force absorption capacities of mouthguard materials; however, the relationships among these measurement systems have not been clearly determined. The purpose of the present study was to evaluate the impact force-absorbing capability of materials using a drop-ball system with film sensors and load cells to clarify the relationship between these two sensor systems. Disk-shaped specimens (1, 2, and 3 mm thick) were prepared using three commercial thermoplastic mouthguard materials (Bioplast, Impact Guard, MG 21) and one experimental mouthguard material [mixture of Poly (ethyl methacrylate)]. Impact force was applied by letting a stainless steel ball drop free-fall onto the specimens and then measuring the impact load under each specimen using a film sensor system and a load cell sensor system. The total load measured with the film sensor system decreased with an increase in mouthguard thickness, while almost none of the transmitted impact forces measured with the load cell system were statistically different. The film sensor system was considered to be superior to the load cell system because the maximum stress and stress area could be determined. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fiber optic (flight quality) sensors for advanced aircraft propulsion
NASA Technical Reports Server (NTRS)
Poppel, Gary L.
1994-01-01
Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.
Secured network sensor-based defense system
NASA Astrophysics Data System (ADS)
Wei, Sixiao; Shen, Dan; Ge, Linqiang; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe
2015-05-01
Network sensor-based defense (NSD) systems have been widely used to defend against cyber threats. Nonetheless, if the adversary finds ways to identify the location of monitor sensors, the effectiveness of NSD systems can be reduced. In this paper, we propose both temporal and spatial perturbation based defense mechanisms to secure NSD systems and make the monitor sensor invisible to the adversary. The temporal-perturbation based defense manipulates the timing information of published data so that the probability of successfully recognizing monitor sensors can be reduced. The spatial-perturbation based defense dynamically redeploys monitor sensors in the network so that the adversary cannot obtain the complete information to recognize all of the monitor sensors. We carried out experiments using real-world traffic traces to evaluate the effectiveness of our proposed defense mechanisms. Our data shows that our proposed defense mechanisms can reduce the attack accuracy of recognizing detection sensors.
Systematic Sensor Selection Strategy (S4) User Guide
NASA Technical Reports Server (NTRS)
Sowers, T. Shane
2012-01-01
This paper describes a User Guide for the Systematic Sensor Selection Strategy (S4). S4 was developed to optimally select a sensor suite from a larger pool of candidate sensors based on their performance in a diagnostic system. For aerospace systems, selecting the proper sensors is important for ensuring adequate measurement coverage to satisfy operational, maintenance, performance, and system diagnostic criteria. S4 optimizes the selection of sensors based on the system fault diagnostic approach while taking conflicting objectives such as cost, weight and reliability into consideration. S4 can be described as a general architecture structured to accommodate application-specific components and requirements. It performs combinational optimization with a user defined merit or cost function to identify optimum or near-optimum sensor suite solutions. The S4 User Guide describes the sensor selection procedure and presents an example problem using an open source turbofan engine simulation to demonstrate its application.
Optimal Sensor Allocation for Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann
2004-01-01
Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.
Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo
2011-01-01
Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114
A Passive Wireless Multi-Sensor SAW Technology Device and System Perspectives
Malocha, Donald C.; Gallagher, Mark; Fisher, Brian; Humphries, James; Gallagher, Daniel; Kozlovski, Nikolai
2013-01-01
This paper will discuss a SAW passive, wireless multi-sensor system under development by our group for the past several years. The device focus is on orthogonal frequency coded (OFC) SAW sensors, which use both frequency diversity and pulse position reflectors to encode the device ID and will be briefly contrasted to other embodiments. A synchronous correlator transceiver is used for the hardware and post processing and correlation techniques of the received signal to extract the sensor information will be presented. Critical device and system parameters addressed include encoding, operational range, SAW device parameters, post-processing, and antenna-SAW device integration. A fully developed 915 MHz OFC SAW multi-sensor system is used to show experimental results. The system is based on a software radio approach that provides great flexibility for future enhancements and diverse sensor applications. Several different sensor types using the OFC SAW platform are shown. PMID:23666124
Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo
2011-01-01
Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.
Rapp, Bastian E; Schickling, Benjamin; Prokop, Jürgen; Piotter, Volker; Rapp, Michael; Länge, Kerstin
2011-10-01
We describe an integration strategy for arbitrary sensors intended to be used as biosensors in biomedical or bioanalytical applications. For such devices ease of handling (by a potential end user) as well as strict disposable usage are of importance. Firstly we describe a generic array compatible polymer sensor housing with an effective sample volume of 1.55 μl. This housing leaves the sensitive surface of the sensor accessible for the application of biosensing layers even after the embedding. In a second step we show how this sensor housing can be used in combination with a passive disposable microfluidic chip to set up arbitrary 8-fold sensor arrays and how such a system can be complemented with an indirect microfluidic flow injection analysis (FIA) system. This system is designed in a way that it strictly separates between disposable and reusable components- by introducing tetradecane as an intermediate liquid. This results in a sensor system compatible with the demands of most biomedical applications. Comparative measurements between a classical macroscopic FIA system and this integrated indirect microfluidic system are presented. We use a surface acoustic wave (SAW) sensor as an exemplary detector in this work.
3D sensor placement strategy using the full-range pheromone ant colony system
NASA Astrophysics Data System (ADS)
Shuo, Feng; Jingqing, Jia
2016-07-01
An optimized sensor placement strategy will be extremely beneficial to ensure the safety and cost reduction considerations of structural health monitoring (SHM) systems. The sensors must be placed such that important dynamic information is obtained and the number of sensors is minimized. The practice is to select individual sensor directions by several 1D sensor methods and the triaxial sensors are placed in these directions for monitoring. However, this may lead to non-optimal placement of many triaxial sensors. In this paper, a new method, called FRPACS, is proposed based on the ant colony system (ACS) to solve the optimal placement of triaxial sensors. The triaxial sensors are placed as single units in an optimal fashion. And then the new method is compared with other algorithms using Dalian North Bridge. The computational precision and iteration efficiency of the FRPACS has been greatly improved compared with the original ACS and EFI method.
An RFID-based on-lens sensor system for long-term IOP monitoring.
Hsu, Shun-Hsi; Chiou, Jin-Chern; Liao, Yu-Te; Yang, Tzu-Sen; Kuei, Cheng-Kai; Wu, Tsung-Wei; Huang, Yu-Chieh
2015-01-01
In this paper, an RFID-based on-lens sensor system is proposed for noninvasive long-term intraocular pressure monitoring. The proposed sensor IC, fabricated in a 0.18um CMOS process, consists of capacitive sensor readout circuitry, RFID communication circuits, and digital processing units. The sensor IC is integrated with electroplating capacitive sensors and a receiving antenna on the contact lens. The sensor IC can be wirelessly powered, communicate with RFID compatible equipment, and perform IOP measurement using on-lens capacitive sensor continuously from a 2cm distance while the incident power from an RFID reader is 20 dBm. The proposed system is compatible to Gen2 RFID protocol, extending the flexibility and reducing the self-developed firmware efforts.
NASA Technical Reports Server (NTRS)
Joseph, M.; Keat, J.; Liu, K. S.; Plett, M. E.; Shear, M. A.; Shinohara, T.; Wertz, J. R.
1983-01-01
The Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System, designed to determine spin axis orientation and biases in the alignment or performance of optical or infrared horizon sensors and Sun sensors used for spacecraft attitude determination, is described. MSAD/OABIAS uses any combination of eight observation models to process data from a single onboard horizon sensor and Sun sensor to determine simultaneously the two components of the attitude of the spacecraft, the initial phase of the Sun sensor, the spin rate, seven sensor biases, and the orbital in-track error associated with the spacecraft ephemeris information supplied to the system. In addition, the MSAD/OABIAS system provides a data simulator for system and performance testing, an independent deterministic attitude system for preprocessing and independent testing of biases determined, and a multipurpose data prediction and comparison system.
NASA Technical Reports Server (NTRS)
Joseph, M.; Ket, J. E.; Liu, K. S.; Plett, M. E.; Shear, M. A.; Shinohara, T.; Wertz, J. R.
1983-01-01
The Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System, designed to determine spin axis orientation and biases in the alignment or performance of optical or infrared horizon sensors and Sun sensors used for spacecraft attitude determination is described. MSAD/OABIAS uses any combination of eight observation models to process data from a single onboard horizon sensor and Sun sensor to determine simultaneously the two components of the attitude of the spacecraft, the initial phase of the Sun sensor, the spin rate, seven sensor biases, and the orbital in-track error associated with the spacecraft ephemeris information supplied to the system. In addition, the MSAD/OABIAS System provides a data simulator for system and performance testing, an independent deterministic attitude system for preprocessing and independent testing of biases determined, and a multipurpose data prediction and comparison system.
Slush hydrogen liquid level system
NASA Technical Reports Server (NTRS)
Hamlet, J. F.; Adams, R. G.
1972-01-01
A discrete capacitance liquid level system developed is specifically for slush hydrogen, but applicable to LOX, LN2, LH2, and RP1 without modification is described. The signal processing portion of the system is compatible with conventional liquid level sensors. Compatibility with slush hydrogen was achieved by designing the sensor with adequate spacing, while retaining the electrical characteristics of conventional sensors. Tests indicate excellent stability of the system over a temperature range of -20 C to 70 C for the circuit and to cryogenic temperatures of the sensor. The sensor was tested up to 40 g's rms random vibration with no damage to the sensor. Operation with 305 m of cable between the sensor and signal processor was demonstrated. It is concluded that this design is more than adequate for most flight and ground applications.
Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck
2008-04-10
One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; O'Dowd, John A.; Honniball, Arthur; Bessler, Vivian; Farnan, Martin; O'Connor, Peter; Melicher, Milos; Gleeson, Danny
2017-09-01
The Future Launchers Preparatory Programme (FLPP) supported by the European Space Agency (ESA) has a goal of developing various launch vehicle system concepts and identifying the technologies required for the design of Europe's Next-Generation Launcher (NGL) while maintaining competitiveness on the commercial market. Avionics fiber optic sensing technology was investigated as part of the FLPP programme. Here we demonstrate and evaluate a high speed hybrid electrical/optical data acquisition system based on commercial off the shelf (COTS) technology capable of acquiring data from traditional electrical sensors and optical Fibre Bragg Grating (FBG) sensors. The proposed system consists of the KAM-500 data acquisition system developed by Curtis-Wright and the I4 tunable laser based fiber optic sensor interrogator developed by FAZ Technology. The key objective was to demonstrate the capability of the hybrid system to acquire data from traditional electrical sensors used in launcher applications e.g. strain, temperature and pressure in combination with optical FBG sensors, as well as data delivery to spacecraft avionics systems. The KAM-500 was configured as the main acquisition unit (MAU) and provided a 1 kHz sampling clock to the I4 interrogator that was configured as the secondary acquisition unit (SAU) to synchronize the data acquisition sample rate between both systems. The SAU acquired data from an array of optical FBG sensors, while the MAU data acquisition system acquired data from the electrical sensors. Data acquired from the optical sensors was processed by the FAZ I4 interrogation system and then encapsulated into UDP/IP packets and transferred to the KAM-500. The KAM-500 encapsulated the optical sensor data together with the data acquired from electrical sensors and transmitted the data over MIL-STD-1553 and Ethernet data interface. The temperature measurements resulted in the optical and electrical sensors performing on a par with each other, with all sensors recording an accuracy within 0.35% FS over the full temperature range of -70°C to +180°C. The pressure measurements were performed over a 0 to 5 bar absolute pressure range and over different temperatures across a -40°C to +80°C range. The tests concluded that the optical pressure sensors performed on par with the electrical pressure sensor for each temperature set, where both sensor technologies measured a pressure accuracy of 1.2% FS. As for the strain measurements, the results show the optical and electrical sensors can measure to within 1% FS (Full Scale) of measurement range +/-1,200 μstrain. The proposed hybrid system can be potentially used for next generation launcher applications delivering weight reduction, improvement in measurement coverage and reduction in Assembly, Integration and Testing (AIT) over traditional electrical systems.
NASA Astrophysics Data System (ADS)
Lee, Wonwoo; Jung, Yonghee; Jung, Hyunseung; Lee, Hojin
2017-02-01
In the past decade, there have been many studies on metamaterial based chemical and biological sensors due to their exotic resonance properties in microwave ranges. However, in spite of their non-destructive and highly sensitive properties, they have suffered from the use of bulky and expensive external measurement systems like a network analyzer for measuring resonance properties in the microwave regime. In this study, to increase accessibility of the metamaterial-based sensors, we propose a novel wireless chemical sensor system based on energy harvesting metamaterials at the microwave frequencies. The proposed metamaterial chemical sensor consists of a single split ring resonator and rectifier circuit to harvest the energy at the specific frequency, so that the chemical composition of the specific solution can be distinguished by the proposed metamaterial sensor by using the resonance property between the source antenna and the metamaterial which induces the variation in the energy harvesting rate of our sensor system. In our experimental setup, we used a 2.4 GHz Wi-Fi system as a source antenna. To verify the chemical sensitivity of the proposed sensor intuitively, we adopted a light emitting diode as an indicator of which luminescence is proportional to the energy harvesting rate determined by the ratio of ethanol and water in their binary mixture. With these results, it can be expected that our metamaterial-based wireless sensor can pave the way to the miniaturized wireless sensor systems and can be applied to not only for the chemical fluidic sensors but also for other dynamic environment sensing systems.
Review on the Traction System Sensor Technology of a Rail Transit Train.
Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong
2017-06-11
The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed.
Review on the Traction System Sensor Technology of a Rail Transit Train
Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong
2017-01-01
The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed. PMID:28604615
Sensor network based vehicle classification and license plate identification system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frigo, Janette Rose; Brennan, Sean M; Rosten, Edward J
Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform.more » Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.« less
Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali
2017-12-01
Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.
Dealing with the Effects of Sensor Displacement in Wearable Activity Recognition
Banos, Oresti; Toth, Mate Attila; Damas, Miguel; Pomares, Hector; Rojas, Ignacio
2014-01-01
Most wearable activity recognition systems assume a predefined sensor deployment that remains unchanged during runtime. However, this assumption does not reflect real-life conditions. During the normal use of such systems, users may place the sensors in a position different from the predefined sensor placement. Also, sensors may move from their original location to a different one, due to a loose attachment. Activity recognition systems trained on activity patterns characteristic of a given sensor deployment may likely fail due to sensor displacements. In this work, we innovatively explore the effects of sensor displacement induced by both the intentional misplacement of sensors and self-placement by the user. The effects of sensor displacement are analyzed for standard activity recognition techniques, as well as for an alternate robust sensor fusion method proposed in a previous work. While classical recognition models show little tolerance to sensor displacement, the proposed method is proven to have notable capabilities to assimilate the changes introduced in the sensor position due to self-placement and provides considerable improvements for large misplacements. PMID:24915181
Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen
2017-12-01
Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feasibility study on sensor data fusion for the CP-140 aircraft: fusion architecture analyses
NASA Astrophysics Data System (ADS)
Shahbazian, Elisa
1995-09-01
Loral Canada completed (May 1995) a Department of National Defense (DND) Chief of Research and Development (CRAD) contract, to study the feasibility of implementing a multi- sensor data fusion (MSDF) system onboard the CP-140 Aurora aircraft. This system is expected to fuse data from: (a) attributed measurement oriented sensors (ESM, IFF, etc.); (b) imaging sensors (FLIR, SAR, etc.); (c) tracking sensors (radar, acoustics, etc.); (d) data from remote platforms (data links); and (e) non-sensor data (intelligence reports, environmental data, visual sightings, encyclopedic data, etc.). Based on purely theoretical considerations a central-level fusion architecture will lead to a higher performance fusion system. However, there are a number of systems and fusion architecture issues involving fusion of such dissimilar data: (1) the currently existing sensors are not designed to provide the type of data required by a fusion system; (2) the different types (attribute, imaging, tracking, etc.) of data may require different degree of processing, before they can be used within a fusion system efficiently; (3) the data quality from different sensors, and more importantly from remote platforms via the data links must be taken into account before fusing; and (4) the non-sensor data may impose specific requirements on the fusion architecture (e.g. variable weight/priority for the data from different sensors). This paper presents the analyses performed for the selection of the fusion architecture for the enhanced sensor suite planned for the CP-140 aircraft in the context of the mission requirements and environmental conditions.
NASA Astrophysics Data System (ADS)
Sourbier, F.; Operto, S.; Virieux, J.
2006-12-01
We present a distributed-memory parallel algorithm for 2D visco-acoustic full-waveform inversion of wide-angle seismic data. Our code is written in fortran90 and use MPI for parallelism. The algorithm was applied to real wide-angle data set recorded by 100 OBSs with a 1-km spacing in the eastern-Nankai trough (Japan) to image the deep structure of the subduction zone. Full-waveform inversion is applied sequentially to discrete frequencies by proceeding from the low to the high frequencies. The inverse problem is solved with a classic gradient method. Full-waveform modeling is performed with a frequency-domain finite-difference method. In the frequency-domain, solving the wave equation requires resolution of a large unsymmetric system of linear equations. We use the massively parallel direct solver MUMPS (http://www.enseeiht.fr/irit/apo/MUMPS) for distributed-memory computer to solve this system. The MUMPS solver is based on a multifrontal method for the parallel factorization. The MUMPS algorithm is subdivided in 3 main steps: a symbolic analysis step that performs re-ordering of the matrix coefficients to minimize the fill-in of the matrix during the subsequent factorization and an estimation of the assembly tree of the matrix. Second, the factorization is performed with dynamic scheduling to accomodate numerical pivoting and provides the LU factors distributed over all the processors. Third, the resolution is performed for multiple sources. To compute the gradient of the cost function, 2 simulations per shot are required (one to compute the forward wavefield and one to back-propagate residuals). The multi-source resolutions can be performed in parallel with MUMPS. In the end, each processor stores in core a sub-domain of all the solutions. These distributed solutions can be exploited to compute in parallel the gradient of the cost function. Since the gradient of the cost function is a weighted stack of the shot and residual solutions of MUMPS, each processor computes the corresponding sub-domain of the gradient. In the end, the gradient is centralized on the master processor using a collective communation. The gradient is scaled by the diagonal elements of the Hessian matrix. This scaling is computed only once per frequency before the first iteration of the inversion. Estimation of the diagonal terms of the Hessian requires performing one simulation per non redondant shot and receiver position. The same strategy that the one used for the gradient is used to compute the diagonal Hessian in parallel. This algorithm was applied to a dense wide-angle data set recorded by 100 OBSs in the eastern Nankai trough, offshore Japan. Thirteen frequencies ranging from 3 and 15 Hz were inverted. Tweny iterations per frequency were computed leading to 260 tomographic velocity models of increasing resolution. The velocity model dimensions are 105 km x 25 km corresponding to a finite-difference grid of 4201 x 1001 grid with a 25-m grid interval. The number of shot was 1005 and the number of inverted OBS gathers was 93. The inversion requires 20 days on 6 32-bits bi-processor nodes with 4 Gbytes of RAM memory per node when only the LU factorization is performed in parallel. Preliminary estimations of the time required to perform the inversion with the fully-parallelized code is 6 and 4 days using 20 and 50 processors respectively.
Design Considerations For Imaging Charge-Coupled Device (ICCD) Star Sensors
NASA Astrophysics Data System (ADS)
McAloon, K. J.
1981-04-01
A development program is currently underway to produce a precision star sensor using imaging charge coupled device (ICCD) technology. The effort is the critical component development phase for the Air Force Multi-Mission Attitude Determination and Autonomous Navigation System (MADAN). A number of unique considerations have evolved in designing an arcsecond accuracy sensor around an ICCD detector. Three tiers of performance criteria are involved: at the spacecraft attitude determination system level, at the star sensor level, and at the detector level. Optimum attitude determination system performance involves a tradeoff between Kalman filter iteration time and sensor ICCD integration time. The ICCD star sensor lends itself to the use of a new approach in the functional interface between the attitude determination system and the sensor. At the sensor level image data processing tradeoffs are important for optimum sensor performance. These tradeoffs involve the sensor optic configuration, the optical point spread function (PSF) size and shape, the PSF position locator, and the microprocessor locator algorithm. Performance modelling of the sensor mandates the use of computer simulation programs. Five key performance parameters at the ICCD detector level are defined. ICCD error characteristics have also been isolated to five key parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sword, Charles Keith
A scanner system and method for acquisition of position-based ultrasonic inspection data are described. The scanner system includes an inspection probe and a first non-contact linear encoder having a first sensor and a first scale to track inspection probe position. The first sensor is positioned to maintain a continuous non-contact interface between the first sensor and the first scale and to maintain a continuous alignment of the first sensor with the inspection probe. The scanner system may be used to acquire two-dimensional inspection probe position data by including a second non-contact linear encoder having a second sensor and a secondmore » scale, the second sensor positioned to maintain a continuous non-contact interface between the second sensor and the second scale and to maintain a continuous alignment of the second sensor with the first sensor.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
System Aware Cybersecurity: A Multi-Sentinel Scheme to Protect a Weapons Research Lab
2015-12-07
In the simplified deployment scenario, some sensors report their output over a wireless link and other sensors are connected via CAT 5 (Ethernet...cable to reduce the chance of a wireless ‘jamming’ event impacting ALL sensors . In addition to this first sensor suite ( Sensor Suite “A”), the team...generating wind turbines , and video reconnaissance systems on unmanned aerial vehicles (UAVs). The most basic decision problem in designing a systems
Facility Monitoring: A Qualitative Theory for Sensor Fusion
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
2001-01-01
Data fusion and sensor management approaches have largely been implemented with centralized and hierarchical architectures. Numerical and statistical methods are the most common data fusion methods found in these systems. Given the proliferation and low cost of processing power, there is now an emphasis on designing distributed and decentralized systems. These systems use analytical/quantitative techniques or qualitative reasoning methods for date fusion.Based on other work by the author, a sensor may be treated as a highly autonomous (decentralized) unit. Each highly autonomous sensor (HAS) is capable of extracting qualitative behaviours from its data. For example, it detects spikes, disturbances, noise levels, off-limit excursions, step changes, drift, and other typical measured trends. In this context, this paper describes a distributed sensor fusion paradigm and theory where each sensor in the system is a HAS. Hence, given the reach qualitative information from each HAS, a paradigm and formal definitions are given so that sensors and processes can reason and make decisions at the qualitative level. This approach to sensor fusion makes it possible the implementation of intuitive (effective) methods to monitor, diagnose, and compensate processes/systems and their sensors. This paradigm facilitates a balanced distribution of intelligence (code and/or hardware) to the sensor level, the process/system level, and a higher controller level. The primary application of interest is in intelligent health management of rocket engine test stands.
Real-Time Wireless Data Acquisition System
NASA Technical Reports Server (NTRS)
Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos
2007-01-01
Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non-time critical applications. Current wireless standards such as Zigbee(TradeMark) and Bluetooth(Registered TradeMark) do not have these capabilities and can not meet the needs that are provided by the SensorNet technology. Additionally, the system has the ability to automatically reconfigure the wireless communication link to a secondary frequency if interference is encountered and can autonomously search for a sensor that was perceived to be lost using the relay capabilities of the sensors and the secondary frequency. The RFHN and the SensorNet designs are based on modular architectures that allow for future increases in capability and the ability to expand or upgrade with relative ease. The RFHN and SensorNet sensors .can also perform data processing which forms a distributed processing architecture allowing the system to pass along information rather than just sending "raw data points" to the next higher level system. With a relatively small size, weight and power consumption, this system has the potential for both spacecraft and aircraft applications as well as ground applications that require time critical data.
Robotic Vehicle Communications Interoperability
1988-08-01
starter (cold start) X X Fire suppression X Fording control X Fuel control X Fuel tank selector X Garage toggle X Gear selector X X X X Hazard warning...optic Sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor control...optic sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor
Development of an LSI for Tactile Sensor Systems on the Whole-Body of Robots
NASA Astrophysics Data System (ADS)
Muroyama, Masanori; Makihata, Mitsutoshi; Nakano, Yoshihiro; Matsuzaki, Sakae; Yamada, Hitoshi; Yamaguchi, Ui; Nakayama, Takahiro; Nonomura, Yutaka; Fujiyoshi, Motohiro; Tanaka, Shuji; Esashi, Masayoshi
We have developed a network type tactile sensor system, which realizes high-density tactile sensors on the whole-body of nursing and communication robots. The system consists of three kinds of nodes: host, relay and sensor nodes. Roles of the sensor node are to sense forces and, to encode the sensing data and to transmit the encoded data on serial channels by interruption handling. Relay nodes and host deal with a number of the encoded sensing data from the sensor nodes. A sensor node consists of a capacitive MEMS force sensor and a signal processing/transmission LSI. In this paper, details of an LSI for the sensor node are described. We designed experimental sensor node LSI chips by a commercial 0.18µm standard CMOS process. The 0.18µm LSIs were supplied in wafer level for MEMS post-process. The LSI chip area is 2.4mm × 2.4mm, which includes logic, CF converter and memory circuits. The maximum clock frequency of the chip with a large capacitive load is 10MHz. Measured power consumption at 10MHz clock is 2.23mW. Experimental results indicate that size, response time, sensor sensitivity and power consumption are all enough for practical tactile sensor systems.
NASA Astrophysics Data System (ADS)
Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix
New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply, economically and ecologically. Based on the knowledge of the screen printing sensor production a complete solid state electrolyte oxygen sensor could be produced using Inkjet technology. First measurements in oxygen environment already show promising results. A defined oxygen concentration could be seen during exposition of the Inkjet sensors in an oxygen environment. The obtained results demonstrate the potential to use the technology development in other applications such as in situ respiratory gas analysis systems for human spaceflight. Further approaches at the Institute of Space Systems include the implementation of Inkjet printed solid state electrolyte sensors for the use as redundant safety sensors for the Institute's hybrid life support test beds including fuel cells and algal photo bioreactor elements.
A Distributed Signature Detection Method for Detecting Intrusions in Sensor Systems
Kim, Ilkyu; Oh, Doohwan; Yoon, Myung Kuk; Yi, Kyueun; Ro, Won Woo
2013-01-01
Sensor nodes in wireless sensor networks are easily exposed to open and unprotected regions. A security solution is strongly recommended to prevent networks against malicious attacks. Although many intrusion detection systems have been developed, most systems are difficult to implement for the sensor nodes owing to limited computation resources. To address this problem, we develop a novel distributed network intrusion detection system based on the Wu–Manber algorithm. In the proposed system, the algorithm is divided into two steps; the first step is dedicated to a sensor node, and the second step is assigned to a base station. In addition, the first step is modified to achieve efficient performance under limited computation resources. We conduct evaluations with random string sets and actual intrusion signatures to show the performance improvement of the proposed method. The proposed method achieves a speedup factor of 25.96 and reduces 43.94% of packet transmissions to the base station compared with the previously proposed method. The system achieves efficient utilization of the sensor nodes and provides a structural basis of cooperative systems among the sensors. PMID:23529146
A distributed signature detection method for detecting intrusions in sensor systems.
Kim, Ilkyu; Oh, Doohwan; Yoon, Myung Kuk; Yi, Kyueun; Ro, Won Woo
2013-03-25
Sensor nodes in wireless sensor networks are easily exposed to open and unprotected regions. A security solution is strongly recommended to prevent networks against malicious attacks. Although many intrusion detection systems have been developed, most systems are difficult to implement for the sensor nodes owing to limited computation resources. To address this problem, we develop a novel distributed network intrusion detection system based on the Wu-Manber algorithm. In the proposed system, the algorithm is divided into two steps; the first step is dedicated to a sensor node, and the second step is assigned to a base station. In addition, the first step is modified to achieve efficient performance under limited computation resources. We conduct evaluations with random string sets and actual intrusion signatures to show the performance improvement of the proposed method. The proposed method achieves a speedup factor of 25.96 and reduces 43.94% of packet transmissions to the base station compared with the previously proposed method. The system achieves efficient utilization of the sensor nodes and provides a structural basis of cooperative systems among the sensors.
Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics
NASA Astrophysics Data System (ADS)
Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.
2015-12-01
Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in NetCDF format has been implemented and will be demonstrated at AGU.
Electric-field sensors for bullet detection systems
NASA Astrophysics Data System (ADS)
Vinci, Stephen; Hull, David; Ghionea, Simon; Ludwig, William; Deligeorges, Socrates; Gudmundsson, Thorkell; Noras, Maciej
2014-06-01
Research and experimental trials have shown that electric-field (E-field) sensors are effective at detecting charged projectiles. E-field sensors can likely complement traditional acoustic sensors, and help provide a more robust and effective solution for bullet detection and tracking. By far, the acoustic sensor is the most prevalent technology in use today for hostile fire defeat systems due to compact size and low cost, yet they come with a number of challenges that include multipath, reverberant environments, false positives and low signal-to-noise. Studies have shown that these systems can benefit from additional sensor modalities such as E-field sensors. However, E-field sensors are a newer technology that is relatively untested beyond basic experimental trials; this technology has not been deployed in any fielded systems. The U.S. Army Research Laboratory (ARL) has conducted live-fire experiments at Aberdeen Proving Grounds (APG) to collect data from E-field sensors. Three types of E-field sensors were included in these experiments: (a) an electric potential gradiometer manufactured by Quasar Federal Systems (QFS), (b) electric charge induction, or "D-dot" sensors designed and built by the Army Research Lab (ARL), and (c) a varactor based E-field sensor prototype designed by University of North Carolina-Charlotte (UNCC). Sensors were placed in strategic locations near the bullet trajectories, and their data were recorded. We analyzed the performance of each E-field sensor type in regard to small-arms bullet detection capability. The most recent experiment in October 2013 allowed demonstration of improved versions of the varactor and D-dot sensor types. Results of new real-time analysis hardware employing detection algorithms were also tested. The algorithms were used to process the raw data streams to determine when bullet detections occurred. Performance among the sensor types and algorithm effectiveness were compared to estimates from acoustics signatures and known ground truth. Results, techniques and configurations that might work best for a given sensor platform are discussed.
Reactor protection system with automatic self-testing and diagnostic
Gaubatz, Donald C.
1996-01-01
A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically "identical" values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic.
Reactor protection system with automatic self-testing and diagnostic
Gaubatz, D.C.
1996-12-17
A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ``identical`` values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs.
Indexing film with a fluidic sensor
NASA Technical Reports Server (NTRS)
Maciel, A., Jr.
1972-01-01
Fluidic sensor is used to measure passage of film without mechanical contact with counting device. Same sensor system may be used for different sizes of film. System has two fluidic sensors and operates on principle of electrically recording interruptions in air stream.
Wireless sensing and vibration control with increased redundancy and robustness design.
Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan
2014-11-01
Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.
Smart Sensor Demonstration Payload
NASA Technical Reports Server (NTRS)
Schmalzel, John; Bracey, Andrew; Rawls, Stephen; Morris, Jon; Turowski, Mark; Franzl, Richard; Figueroa, Fernando
2010-01-01
Sensors are a critical element to any monitoring, control, and evaluation processes such as those needed to support ground based testing for rocket engine test. Sensor applications involve tens to thousands of sensors; their reliable performance is critical to achieving overall system goals. Many figures of merit are used to describe and evaluate sensor characteristics; for example, sensitivity and linearity. In addition, sensor selection must satisfy many trade-offs among system engineering (SE) requirements to best integrate sensors into complex systems [1]. These SE trades include the familiar constraints of power, signal conditioning, cabling, reliability, and mass, and now include considerations such as spectrum allocation and interference for wireless sensors. Our group at NASA s John C. Stennis Space Center (SSC) works in the broad area of integrated systems health management (ISHM). Core ISHM technologies include smart and intelligent sensors, anomaly detection, root cause analysis, prognosis, and interfaces to operators and other system elements [2]. Sensor technologies are the base fabric that feed data and health information to higher layers. Cost-effective operation of the complement of test stands benefits from technologies and methodologies that contribute to reductions in labor costs, improvements in efficiency, reductions in turn-around times, improved reliability, and other measures. ISHM is an active area of development at SSC because it offers the potential to achieve many of those operational goals [3-5].
Lightning Protection and Detection System
NASA Technical Reports Server (NTRS)
Mielnik, John J. (Inventor); Woodard, Marie (Inventor); Smith, Laura J. (Inventor); Wang, Chuantong (Inventor); Koppen, Sandra V. (Inventor); Dudley, Kenneth L. (Inventor); Szatkowski, George N. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)
2017-01-01
A lightning protection and detection system includes a non-conductive substrate material of an apparatus; a sensor formed of a conductive material and deposited on the non-conductive substrate material of the apparatus. The sensor includes a conductive trace formed in a continuous spiral winding starting at a first end at a center region of the sensor and ending at a second end at an outer corner region of the sensor, the first and second ends being open and unconnected. An electrical measurement system is in communication with the sensor and receives a resonant response from the sensor, to perform detection, in real-time, of lightning strike occurrences and damage therefrom to the sensor and the non-conductive substrate material.
NASA Astrophysics Data System (ADS)
Shahini Shamsabadi, Salar
A web-based PAVEment MONitoring system, PAVEMON, is a GIS oriented platform for accommodating, representing, and leveraging data from a multi-modal mobile sensor system. Stated sensor system consists of acoustic, optical, electromagnetic, and GPS sensors and is capable of producing as much as 1 Terabyte of data per day. Multi-channel raw sensor data (microphone, accelerometer, tire pressure sensor, video) and processed results (road profile, crack density, international roughness index, micro texture depth, etc.) are outputs of this sensor system. By correlating the sensor measurements and positioning data collected in tight time synchronization, PAVEMON attaches a spatial component to all the datasets. These spatially indexed outputs are placed into an Oracle database which integrates seamlessly with PAVEMON's web-based system. The web-based system of PAVEMON consists of two major modules: 1) a GIS module for visualizing and spatial analysis of pavement condition information layers, and 2) a decision-support module for managing maintenance and repair (Mℝ) activities and predicting future budget needs. PAVEMON weaves together sensor data with third-party climate and traffic information from the National Oceanic and Atmospheric Administration (NOAA) and Long Term Pavement Performance (LTPP) databases for an organized data driven approach to conduct pavement management activities. PAVEMON deals with heterogeneous and redundant observations by fusing them for jointly-derived higher-confidence results. A prominent example of the fusion algorithms developed within PAVEMON is a data fusion algorithm used for estimating the overall pavement conditions in terms of ASTM's Pavement Condition Index (PCI). PAVEMON predicts PCI by undertaking a statistical fusion approach and selecting a subset of all the sensor measurements. Other fusion algorithms include noise-removal algorithms to remove false negatives in the sensor data in addition to fusion algorithms developed for identifying features on the road. PAVEMON offers an ideal research and monitoring platform for rapid, intelligent and comprehensive evaluation of tomorrow's transportation infrastructure based on up-to-date data from heterogeneous sensor systems.
Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
Gao, Lei; Bourke, A K; Nelson, John
2014-06-01
Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Application of Open Garden Sensor on Hydroponic Maintenance Management
NASA Astrophysics Data System (ADS)
Nasution, S.; Siregar, B.; Kurniawan, M.; Pranoto, H.; Andayani, U.; Fahmi, F.
2018-03-01
Hydroponic farming system is an agricultural system that uses direct water as a nutrient without using soil as a planting medium. This system allows smallholder farmers to have the opportunity to develop their crop production with less capital. In addition, hydroponic planting has also been widely adapted by individuals as a personal hobby. Application of technology has penetrated various fields including agricultural fields. One of the technologies that can be applied in a hydroponic farming system is the sensor. Sensors are devices that used to convert a physical quantity into a quantity of electricity so that it can be analyse with a certain electrical circuit. In this study, the technology to be applied is wireless sensor technology applied in human life to help get information quickly and accurately. Sensors to be used in this study are pH sensors, conductivity sensors, temperature sensors and humidity. In addition to sensors, the study also involved Arduino technology. Arduino is a microcontroller board that is used to interact with the environment based on programs that have been made. The final results of the application testing show that the system success to display diagram in real-time in an environment from Arduino board to database and web server.
NASA Astrophysics Data System (ADS)
Wang, Yubao; Zhu, Zhaohui; Wang, Lu; Bai, Jian
2016-05-01
A novel GPON-oriented sensing data digitalization system is proposed to achieve remote monitoring of fiber grating sensing networks utilizing existing optical communication networks in some harsh environments. In which, Quick digitalization of sensing information obtained from the reflected lightwaves by fiber Bragg grating (FBG) sensor is realized, and a novel frame format of sensor signal is designed to suit for public transport so as to facilitate sensor monitoring center to receive and analyze the sensor data. The delay effect, identification method of the sensor data, and various interference factors which influence the sensor data to be correctly received are analyzed. The system simulation is carried out with OptiSystem/Matlab co-simulation approach. The theoretical analysis and simulation results verify the feasibility of the integration of the sensor network and communication network.
Invited review: sensors to support health management on dairy farms.
Rutten, C J; Velthuis, A G J; Steeneveld, W; Hogeveen, H
2013-04-01
Since the 1980s, efforts have been made to develop sensors that measure a parameter from an individual cow. The development started with individual cow recognition and was followed by sensors that measure the electrical conductivity of milk and pedometers that measure activity. The aim of this review is to provide a structured overview of the published sensor systems for dairy health management. The development of sensor systems can be described by the following 4 levels: (I) techniques that measure something about the cow (e.g., activity); (II) interpretations that summarize changes in the sensor data (e.g., increase in activity) to produce information about the cow's status (e.g., estrus); (III) integration of information where sensor information is supplemented with other information (e.g., economic information) to produce advice (e.g., whether to inseminate a cow or not); and (IV) the farmer makes a decision or the sensor system makes the decision autonomously (e.g., the inseminator is called). This review has structured a total of 126 publications describing 139 sensor systems and compared them based on the 4 levels. The publications were published in the Thomson Reuters (formerly ISI) Web of Science database from January 2002 until June 2012 or in the proceedings of 3 conferences on precision (dairy) farming in 2009, 2010, and 2011. Most studies concerned the detection of mastitis (25%), fertility (33%), and locomotion problems (30%), with fewer studies (16%) related to the detection of metabolic problems. Many studies presented sensor systems at levels I and II, but none did so at levels III and IV. Most of the work for mastitis (92%) and fertility (75%) is done at level II. For locomotion (53%) and metabolism (69%), more than half of the work is done at level I. The performance of sensor systems varies based on the choice of gold standards, algorithms, and test sizes (number of farms and cows). Studies on sensor systems for mastitis and estrus have shown that sensor systems are brought to a higher level; however, the need to improve detection performance still exists. Studies on sensor systems for locomotion problems have shown that the search continues for the most appropriate indicators, sensor techniques, and gold standards. Studies on metabolic problems show that it is still unclear which indicator reflects best the metabolic problems that should be detected. No systems with integrated decision support models have been found. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Thomas, Paul A.; Marshall, Gillian; Faulkner, David; Kent, Philip; Page, Scott; Islip, Simon; Oldfield, James; Breckon, Toby P.; Kundegorski, Mikolaj E.; Clark, David J.; Styles, Tim
2016-05-01
Currently, most land Intelligence, Surveillance and Reconnaissance (ISR) assets (e.g. EO/IR cameras) are simply data collectors. Understanding, decision making and sensor control are performed by the human operators, involving high cognitive load. Any automation in the system has traditionally involved bespoke design of centralised systems that are highly specific for the assets/targets/environment under consideration, resulting in complex, non-flexible systems that exhibit poor interoperability. We address a concept of Autonomous Sensor Modules (ASMs) for land ISR, where these modules have the ability to make low-level decisions on their own in order to fulfil a higher-level objective, and plug in, with the minimum of preconfiguration, to a High Level Decision Making Module (HLDMM) through a middleware integration layer. The dual requisites of autonomy and interoperability create challenges around information fusion and asset management in an autonomous hierarchical system, which are addressed in this work. This paper presents the results of a demonstration system, known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT), which was shown in realistic base protection scenarios with live sensors and targets. The SAPIENT system performed sensor cueing, intelligent fusion, sensor tasking, target hand-off and compensation for compromised sensors, without human control, and enabled rapid integration of ISR assets at the time of system deployment, rather than at design-time. Potential benefits include rapid interoperability for coalition operations, situation understanding with low operator cognitive burden and autonomous sensor management in heterogenous sensor systems.
Affordable and personalized lighting using inverse modeling and virtual sensors
NASA Astrophysics Data System (ADS)
Basu, Chandrayee; Chen, Benjamin; Richards, Jacob; Dhinakaran, Aparna; Agogino, Alice; Martin, Rodney
2014-03-01
Wireless sensor networks (WSN) have great potential to enable personalized intelligent lighting systems while reducing building energy use by 50%-70%. As a result WSN systems are being increasingly integrated in state-ofart intelligent lighting systems. In the future these systems will enable participation of lighting loads as ancillary services. However, such systems can be expensive to install and lack the plug-and-play quality necessary for user-friendly commissioning. In this paper we present an integrated system of wireless sensor platforms and modeling software to enable affordable and user-friendly intelligent lighting. It requires ⇠ 60% fewer sensor deployments compared to current commercial systems. Reduction in sensor deployments has been achieved by optimally replacing the actual photo-sensors with real-time discrete predictive inverse models. Spatially sparse and clustered sub-hourly photo-sensor data captured by the WSN platforms are used to develop and validate a piece-wise linear regression of indoor light distribution. This deterministic data-driven model accounts for sky conditions and solar position. The optimal placement of photo-sensors is performed iteratively to achieve the best predictability of the light field desired for indoor lighting control. Using two weeks of daylight and artificial light training data acquired at the Sustainability Base at NASA Ames, the model was able to predict the light level at seven monitored workstations with 80%-95% accuracy. We estimate that 10% adoption of this intelligent wireless sensor system in commercial buildings could save 0.2-0.25 quads BTU of energy nationwide.
NASA Astrophysics Data System (ADS)
Avanesov, G. A.; Bessonov, R. V.; Kurkina, A. N.; Nikitin, A. V.; Sazonov, V. V.
2018-01-01
The BOKZ-M60 star sensor (Unit for Measuring Star Coordinates) is intended for determining the parameters of the orientation of the axes of the intrinsic coordinate system relative to the axes of the inertial system by observations of the regions of the stellar sky. It is convenient to characterize an error of the single determination of the orientation of the intrinsic coordinate system of the sensor by the vector of an infinitesimal turn of this system relative to its found position. Full-scale ground-based tests have shown that, for a resting sensor the root-mean-square values of the components of this vector along the axes of the intrinsic coordinate system lying in the plane of the sensor CCD matrix are less than 2″ and the component along the axis perpendicular to the matrix plane is characterized by the root-mean-square value of 15″. The joint processing of one-stage readings of several sensors installed on the same platform allows us to improve the indicated accuracy characteristics. In this paper, estimates of the accuracy of systems from BOKZ-M60 with two and four sensors performed from measurements carried out during the normal operation of these sensors on the Resurs-P satellite are given. Processing the measurements of the sensor system allowed us to increase the accuracy of determining the each of their orientations and to study random and systematic errors in these measurements.
1998-04-01
The result of the project is a demonstration of the fusion process, the sensors management and the real-time capabilities using simulated sensors...demonstrator (TAD) is a system that demonstrates the core ele- ment of a battlefield ground surveillance system by simulation in near real-time. The core...Management and Sensor/Platform simulation . The surveillance system observes the real world through a non-collocated heterogene- ous multisensory system
A Code Division Design Strategy for Multiplexing Fiber Bragg Grating Sensing Networks
Varón, Margarita
2017-01-01
In this paper, an encoding strategy is used to design specialized fiber Bragg grating (FBG) sensors. The encoding of each sensor requires two binary codewords to define the amplitude and phase patterns of each sensor. The combined pattern (amplitude and phase) makes each sensor unique and therefore two or more sensors can be identified under spectral overlapping. In this way, we add another dimension to the multiplexing of FBG sensors, obtaining an increase factor ‘n’ to enhance the number of sensors that the system can handle. A proof-of-concept scenario with three sensors was performed, including the manufacturing of the encoded sensors. Furthermore, an interrogation setup to detect the sensors central wavelength was proposed and its working principle was theoretically developed. Results show that total identification of the central wavelength is performed under spectral overlapping between the manufactured sensors, achieving a three-time improvement of the system capacity. Finally, the error due to overlapping between the sensors was assessed obtaining approximately 3 pm, which makes the approach suitable for use in real measurement systems. PMID:29104231
A Novel Permanent Magnetic Angular Acceleration Sensor
Zhao, Hao; Feng, Hao
2015-01-01
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217
Workshop proceedings: Sensor systems for space astrophysics in the 21st century
NASA Technical Reports Server (NTRS)
1991-01-01
This proceedings provides a summary of the Astrotech 21 Sensor Technology Workshop. Topics covered include: high energy sensors, ultraviolet and visible sensors, direct infrared sensors, heterodyne submillimeter wave sensors, sensor readout electronics, and sensor cooler technology.
Fiber Optic Geophysics Sensor Array
NASA Astrophysics Data System (ADS)
Grochowski, Lucjan
1989-01-01
The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.
Development and evaluation of a lightweight sensor system ...
A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter with diameter of 2.5 µm or less (PM2.5), and volatile organic compounds (VOCs). This extended abstract, intended for oral presentation or poster presentation at this summer's AWMA conference, presents some of the first verification data from laboratory and burn calibration of a newly developed sensor and sampler system for ground and aerial sampling.
Optical Fiber Networks for Remote Fiber Optic Sensors
Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel
2012-01-01
This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011
Composite-cavity-based Fabry-Perot interferometric strain sensors.
Zhang, Jianzhong; Peng, G D; Yuan, Libo; Sun, Weimin
2007-07-01
A composite-cavity-based Fabry-Perot interferometric strain sensor system is proposed to gain the minimum cross sensitivity to temperature and a high multiplexing capability at the same time. The interrogation of the sensor system is based on a white-light interferometric technology, and the demodulation is achieved by analyzing the coherence spectra. A demonstration system with two sensors is presented and tested.
Martinaitis, Arnas; Daunoraviciene, Kristina
2018-05-18
Long sitting causes many health problems for people. Healthy sitting monitoring systems, like real-time pressure distribution measuring, is in high demand and many methods of posture recognition were developed. Such systems are usually expensive and hardly available for the regular user. The aim of study is to develop low cost but sensitive enough pressure sensors and posture monitoring system. New self-made pressure sensors have been developed and tested, and prototype of pressure distribution measuring system was designed. Sensors measured at average noise amplitude of a = 56 mV (1.12%), average variation in sequential measurements of the same sensor s = 17 mV (0.34%). Signal variability between sensors averaged at 100 mV (2.0%). Weight to signal dependency graph was measured and hysteresis calculated. Results suggested the use of total sixteen sensors for posture monitoring system with accuracy of < 1.5% after relaxation and repeatability of around 2%. Results demonstrate that hand-made sensor sensitivity and repeatability are acceptable for posture monitoring, and it is possible to build low cost pressure distribution measurement system with graphical visualization without expensive equipment or complicated software.
The tsunami service bus, an integration platform for heterogeneous sensor systems
NASA Astrophysics Data System (ADS)
Haener, R.; Waechter, J.; Kriegel, U.; Fleischer, J.; Mueller, S.
2009-04-01
1. INTRODUCTION Early warning systems are long living and evolving: New sensor-systems and -types may be developed and deployed, sensors will be replaced or redeployed on other locations and the functionality of analyzing software will be improved. To ensure a continuous operability of those systems their architecture must be evolution-enabled. From a computer science point of view an evolution-enabled architecture must fulfill following criteria: • Encapsulation of and functionality on data in standardized services. Access to proprietary sensor data is only possible via these services. • Loose coupling of system constituents which easily can be achieved by implementing standardized interfaces. • Location transparency of services what means that services can be provided everywhere. • Separation of concerns that means breaking a system into distinct features which overlap in functionality as little as possible. A Service Oriented Architecture (SOA) as e. g. realized in the German Indonesian Tsunami Early Warning System (GITEWS) and the advantages of functional integration on the basis of services described below adopt these criteria best. 2. SENSOR INTEGRATION Integration of data from (distributed) data sources is just a standard task in computer science. From few well known solution patterns, taking into account performance and security requirements of early warning systems only functional integration should be considered. Precondition for this is that systems are realized compliant to SOA patterns. Functionality is realized in form of dedicated components communicating via a service infrastructure. These components provide their functionality in form of services via standardized and published interfaces which could be used to access data maintained in - and functionality provided by dedicated components. Functional integration replaces the tight coupling at data level by a dependency on loosely coupled services. If the interfaces of the service providing components remain unchanged, components can be maintained and evolved independently on each other and service functionality as a whole can be reused. In GITEWS the functional integration pattern was adopted by applying the principles of an Enterprise Service Bus (ESB) as a backbone. Four services provided by the so called Tsunami Service Bus (TSB) which are essential for early warning systems are realized compliant to services specified within the Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC). 3. ARCHITECTURE The integration platform was developed to access proprietary, heterogeneous sensor data and to provide them in a uniform manner for further use. Its core, the TSB provides both a messaging-backbone and -interfaces on the basis of a Java Messaging Service (JMS). The logical architecture of GITEWS consists of four independent layers: • A resource layer where physical or virtual sensors as well as data or model storages provide relevant measurement-, event- and analysis-data: Utilizable for the TSB are any kind of data. In addition to sensors databases, model data and processing applications are adopted. SWE specifies encoding both to access and to describe these data in a comprehensive way: 1. Sensor Model Language (SensorML): Standardized description of sensors and sensor data 2. Observations and Measurements (O&M): Model and encoding of sensor measurements • A service layer to collect and conduct data from heterogeneous and proprietary resources and provide them via standardized interfaces: The TSB enables interaction with sensors via the following services: 1. Sensor Observation Service (SOS): Standardized access to sensor data 2. Sensor Planning Service (SPS): Controlling of sensors and sensor networks 3. Sensor Alert Service (SAS): Active sending of data if defined events occur 4. Web Notification Service (WNS): Conduction of asynchronous dialogues between services • An orchestration layer where atomic services are composed and arranged to high level processes like a decision support process: One of the outstanding features of service-oriented architectures is the possibility to compose new services from existing ones, which can be done programmatically or via declaration (workflow or process design). This allows e. g. the definition of new warning processes which could be adapted easily to new requirements. • An access layer which may contain graphical user interfaces for decision support, monitoring- or visualization-systems: To for example visualize time series graphical user interfaces request sensor data simply via the SOS. 4.BENEFIT The integration platform is realized on top of well known and widely used open source software implementing industrial standards. New sensors could be added easily to the infrastructure. Client components don't need to be adjusted if new sensor-types or -individuals are added to the system, because they access the sensors via standardized services. With implementing SWE fully compatible to the OGC specification it is possible to establish the "detection" and integration of sensors via the Web. Thus realizing a system of systems that combines early warning system functionality at different levels of detail (distant early warning systems, monitoring systems and any sensor system) is feasible.
Implementation of Sensor and Control Designs for Bioregenerative Systems
NASA Technical Reports Server (NTRS)
Rodriguez, Pedro R. (Editor)
1990-01-01
The goal of the Spring 1990 EGM 4001 Design class was to design, fabricate, and test sensors and control systems for a closed loop life support system (CLLSS). The designs investigated were to contribute to the development of NASA's Controlled Ecological Life Support System (CELSS) at Kennedy Space Center (KSC). Designs included a seed moisture content sensor, a porous medium wetness sensor, a plant health sensor, and a neural network control system. The seed group focused on the design and implementation of a sensor that could detect the moisture content of a seed batch. The porous medium wetness group concentrated on the development of a sensor to monitor the amount of nutrient solution within a porous plate incorporating either infrared reflectance or thermal conductance properties. The plant health group examined the possibility of remotely monitoring the health of the plants within the Biomass Production Chamber (BPC) using infrared reflectance properties. Finally, the neural network group concentrated on the ability to use parallel processing in order to control a robot arm and analyze the data from the health sensor to detect regions of a plant.
Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang
2017-12-06
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.
Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices.
Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang
2017-03-01
This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
2017-01-01
Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems’ hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field. PMID:29271952
Detection of Biological Pathogens Using Multiple Wireless Magnetoelastic Biosensors
NASA Astrophysics Data System (ADS)
Shen, Wen
A number of recent, high-profile incidences of food-borne illness spreading through the food supply and the use of anthrax by terrorists after the September 11, 2001 attacks have demonstrated the need for new technologies that can rapidly detect the presence of biological pathogens. A bevy of biosensors show excellent detection sensitivity and specificity. However, false positive and false negative signals remain one of the primary reasons that many of these newly developed biosensors have not found application in the marketplace. The research described in this dissertation focuses on developing a free-standing magnetoelastic based bio-sensing system using a pulse method. This method allows fast detection, eliminates the bias magnetic field that is necessary in current methods, makes the system more simply and suitable for in-field detection. This system has two pairs of transformer coils, where a measurement sensor and a control sensor can be put in each pair of coils. The control sensor is used to compensate for environmental variables. The effect of pulse power on the performance of the magnetoelastic sensors in the pulse system is studied. The system is found to have excellent stability, good detection repeatability when used with multiple sensors. This research has investigated and demonstrated a multiple sensors approach. Because it will involve the simultaneous measurement of many sensors, it will significantly reduce problems encountered with false positive indications. The positioning and interference of sensors are investigated. By adding a multi-channel structure to the pulse detection system, the effect of sensor interference is minimized. The result of the repeatability test shows that the standard deviation when measuring three 1 mm magnetoelastic sensors is around 500 Hz, which is smaller than the minimum requirement for actual spores/bacteria detection. Magnetoelastic sensors immobilized with JRB7 phages and E2 phages have been used to specifically detect Bacillus anthracis spores and Salmonella typhimurium bacteria. The real-time monitoring of the detection of B. anthracis spores in a flowing system was performed using 2 mm sensors and 1 mm sensors. The detection of S. typhimurium in air has been performed using the pulse based system with both single and grouped sensors. Because grouped sensor detection involves the simultaneous measurement of many sensors, statistical evaluation shows that it can significantly reduce problems encountered with false positive indications. This method has been implemented in an investigation of a method that allows direct detection of S. typhimurium on cantaloupe surfaces. It has been demonstrated that multiple E2 phage based magnetoelastic sensors are able to detect Salmonella directly on fresh cantaloupe surfaces. Confirmation of the spore or bacteria binding to the sensor surfaces was achieved through SEM study of the sensor surfaces.
40 CFR 65.112 - Standards: Compressors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an alarm unless the... criterion that indicates failure of the seal system, the barrier fluid system, or both. If the sensor...
40 CFR 63.1031 - Compressors standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... service. Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an... both. If the sensor indicates failure of the seal system, the barrier fluid system, or both based on...
40 CFR 61.242-3 - Standards: Compressors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paragraphs (a)-(c) of this section shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section... system, or both. (f) If the sensor indicates failure of the seal system, the barrier fluid system, or...
NASA Technical Reports Server (NTRS)
Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.
1994-01-01
This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.
NASA Astrophysics Data System (ADS)
Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.
1994-11-01
This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.
Towards an autonomous sensor architecture for persistent area protection
NASA Astrophysics Data System (ADS)
Thomas, Paul A.; Marshall, Gillian F.; Stubbins, Daniel J.; Faulkner, David A.
2016-10-01
The majority of sensor installations for area protection (e.g. critical national infrastructure, military forward operating bases, etc.) make use of banks of screens each containing one or more sensor feeds, such that the burden of combining data from the various sources, understanding the situation, and controlling the sensors all lies with the human operator. Any automation in the system is generally heavily bespoke for the particular installation, leading to an inflexible system which is difficult to change or upgrade. We have developed a modular system architecture consisting of intelligent autonomous sensor modules, a high level decision making module, a middleware integration layer and an end-user GUI. The modules are all effectively "plug and play", and we have demonstrated that it is relatively simple to incorporate legacy sensors into the architecture. We have extended our previously-reported SAPIENT demonstration system to operate with a larger number and variety of sensor modules, over an extended area, detecting and classifying a wider variety of "threat activities", both vehicular and pedestrian. We report the results of a demonstration of the SAPIENT system containing multiple autonomous sensor modules with a range of modalities including laser scanners, radar, TI, EO, acoustic and seismic sensors. They operate from a combination of mains, generator and battery power, and communicate with the central "hub" over Ethernet, point-to-point wireless links and Wi-Fi. The system has been configured to protect an extended area in a complex semi-urban environment. We discuss the operation of the SAPIENT system in a realistic demonstration environment (which included significant activity not under trial control), showing sensor cueing, multi-modal sensor fusion, threat prioritisation and target hand-off.
Sensor Selection and Optimization for Health Assessment of Aerospace Systems
NASA Technical Reports Server (NTRS)
Maul, William A.; Kopasakis, George; Santi, Louis M.; Sowers, Thomas S.; Chicatelli, Amy
2007-01-01
Aerospace systems are developed similarly to other large-scale systems through a series of reviews, where designs are modified as system requirements are refined. For space-based systems few are built and placed into service. These research vehicles have limited historical experience to draw from and formidable reliability and safety requirements, due to the remote and severe environment of space. Aeronautical systems have similar reliability and safety requirements, and while these systems may have historical information to access, commercial and military systems require longevity under a range of operational conditions and applied loads. Historically, the design of aerospace systems, particularly the selection of sensors, is based on the requirements for control and performance rather than on health assessment needs. Furthermore, the safety and reliability requirements are met through sensor suite augmentation in an ad hoc, heuristic manner, rather than any systematic approach. A review of the current sensor selection practice within and outside of the aerospace community was conducted and a sensor selection architecture is proposed that will provide a justifiable, dependable sensor suite to address system health assessment requirements.
Sensor Selection and Optimization for Health Assessment of Aerospace Systems
NASA Technical Reports Server (NTRS)
Maul, William A.; Kopasakis, George; Santi, Louis M.; Sowers, Thomas S.; Chicatelli, Amy
2008-01-01
Aerospace systems are developed similarly to other large-scale systems through a series of reviews, where designs are modified as system requirements are refined. For space-based systems few are built and placed into service these research vehicles have limited historical experience to draw from and formidable reliability and safety requirements, due to the remote and severe environment of space. Aeronautical systems have similar reliability and safety requirements, and while these systems may have historical information to access, commercial and military systems require longevity under a range of operational conditions and applied loads. Historically, the design of aerospace systems, particularly the selection of sensors, is based on the requirements for control and performance rather than on health assessment needs. Furthermore, the safety and reliability requirements are met through sensor suite augmentation in an ad hoc, heuristic manner, rather than any systematic approach. A review of the current sensor selection practice within and outside of the aerospace community was conducted and a sensor selection architecture is proposed that will provide a justifiable, defendable sensor suite to address system health assessment requirements.
Development of Solar Powered Irrigation System
NASA Astrophysics Data System (ADS)
Abdelkerim, A. I.; Sami Eusuf, M. M. R.; Salami, M. J. E.; Aibinu, A.; Eusuf, M. A.
2013-12-01
Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors.
A model-based reasoning approach to sensor placement for monitorability
NASA Technical Reports Server (NTRS)
Chien, Steve; Doyle, Richard; Homemdemello, Luiz
1992-01-01
An approach is presented to evaluating sensor placements to maximize monitorability of the target system while minimizing the number of sensors. The approach uses a model of the monitored system to score potential sensor placements on the basis of four monitorability criteria. The scores can then be analyzed to produce a recommended sensor set. An example from our NASA application domain is used to illustrate our model-based approach to sensor placement.
Magnetic Field Response Measurement Acquisition System
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.
2005-01-01
A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.
Wireless sensor network for irrigation application in cotton
USDA-ARS?s Scientific Manuscript database
A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...
Sensor Systems for Space Life Sciences
NASA Technical Reports Server (NTRS)
Somps, Chris J.; Hines, John W.; Connolly, John P. (Technical Monitor)
1995-01-01
Sensors 2000! (S2K!) is a NASA Ames Research Center engineering initiative designed to provide biosensor and bio-instrumentation systems technology expertise to NASA's life sciences spaceflight programs. S2K! covers the full spectrum of sensor technology applications, ranging from spaceflight hardware design and fabrication to advanced technology development, transfer and commercialization. S2K! is currently developing sensor systems for space biomedical applications on BION (a Russian biosatellite focused on Rhesus Monkey physiology) and NEUROLAB (a Space Shuttle flight devoted to neuroscience). It's Advanced Technology Development-Biosensors (ATD-B) project focuses efforts in five principle areas: biotelemetry Systems, chemical and biological sensors, physiological sensors, advanced instrumentation architectures, and data and information management. Technologies already developed and tested included, application-specific sensors, preamplifier hybrids, modular programmable signal conditioners, power conditioning and distribution systems, and a fully implantable dual channel biotelemeter. Systems currently under development include a portable receiver system compatible with an off-the-shelf analog biotelemeter, a 4 channel digital biotelemetry system which monitors pH, a multichannel, g-processor based PCM biotelemetry system, and hand-held personal monitoring systems. S2K! technology easily lends itself to telescience and telemedicine applications as a front-end measurement and data acquisition device, suitable for obtaining and configuring physiological information, and processing that information under control from a remote location.
Inertial Motion Capture Costume Design Study
Szczęsna, Agnieszka; Skurowski, Przemysław; Lach, Ewa; Pruszowski, Przemysław; Pęszor, Damian; Paszkuta, Marcin; Słupik, Janusz; Lebek, Kamil; Janiak, Mateusz; Polański, Andrzej; Wojciechowski, Konrad
2017-01-01
The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs). Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system. The proposed system is a sequence of the following stages: sensor data acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation. The construction of the system’s architecture with the dataflow programming paradigm makes it easy to add, remove and replace the data processing steps. The modular architecture of the system allows an effortless introduction of a new sensor orientation estimation algorithms. The original contribution of the paper is the design study of the individual components used in the motion capture system. The two key steps of the system design are explored in this paper: the evaluation of sensors and algorithms for the orientation estimation. The three chosen algorithms have been implemented and investigated as part of the experiment. Due to the fact that the selection of the sensor has a significant impact on the final result, the sensor evaluation process is also explained and tested. The experimental results confirmed that the choice of sensor and orientation estimation algorithm affect the quality of the final results. PMID:28304337
A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems
Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling
2015-01-01
The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598
A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.
Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling
2015-12-12
The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.
Infrastructure-Based Sensors Augmenting Efficient Autonomous Vehicle Operations: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Myungsoo; Markel, Anthony J
Autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains. Since traffic in autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehiclesmore » is seen as a potential barrier to broad adoption and achieving system energy efficiency gains.« less
NEEDS - Information Adaptive System
NASA Technical Reports Server (NTRS)
Kelly, W. L.; Benz, H. F.; Meredith, B. D.
1980-01-01
The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onboard image processing. The IAS is a data preprocessing system which is closely coupled to the sensor system. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner, and provide the opportunity to design sensor systems which can be reconfigured in near real-time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.
Ultrasonic Sensors in Urban Traffic Driving-Aid Systems
Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P.; de Pedro, Teresa
2011-01-01
Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems. PMID:22346596
Ultrasonic sensors in urban traffic driving-aid systems.
Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa
2011-01-01
Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.
NASA Astrophysics Data System (ADS)
He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu
2014-11-01
Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.
Novel wireless sensor system for dynamic characterization of borehole heat exchangers.
Martos, Julio; Montero, Álvaro; Torres, José; Soret, Jesús; Martínez, Guillermo; García-Olcina, Raimundo
2011-01-01
The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two special valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way.
Novel Wireless Sensor System for Dynamic Characterization of Borehole Heat Exchangers
Martos, Julio; Montero, Álvaro; Torres, José; Soret, Jesús; Martínez, Guillermo; García-Olcina, Raimundo
2011-01-01
The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two specials valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way. PMID:22164005
Subcellular Carrier-Based Optical Ion-Selective Nanosensors
Carregal-Romero, Susana; Montenegro, Jose-Maria; Parak, Wolfgang J.; Rivera_Gil, Pilar
2012-01-01
In this review, two carrier systems based on nanotechnology for real-time sensing of biologically relevant analytes (ions or other biological molecules) inside cells in a non-invasive way are discussed. One system is based on inorganic nanoparticles with an organic coating, whereas the second system is based on organic microcapsules. The sensor molecules presented within this work use an optical read-out. Due to the different physicochemical properties, both sensors show distinctive geometries that directly affect their internalization patterns. The nanoparticles carry the sensor molecule attached to their surfaces whereas the microcapsules encapsulate the sensor within their cavities. Their different size (nano and micro) enable each sensors to locate in different cellular regions. For example, the nanoparticles are mostly found in endolysosomal compartments but the microcapsules are rather found in phagolysosomal vesicles. Thus, allowing creating a tool of sensors that sense differently. Both sensor systems enable to measure ratiometrically however, only the microcapsules have the unique ability of multiplexing. At the end, an outlook on how more sophisticated sensors can be created by confining the nano-scaled sensors within the microcapsules will be given. PMID:22557969
REVIEW ARTICLE: Sensors for automotive telematics
NASA Astrophysics Data System (ADS)
Turner, J. D.; Austin, L.
2000-02-01
This article reviews the current practice in sensors and sensor applications for automotive and traffic-control systems. Sensors to control engine fuelling, ignition and transmission (known as the powertrain) are reviewed and the likely course of future development is discussed in the light of regulatory and market requirements as well as trends in sensor design and manufacture. Sensor needs for suspension, braking and control of traction are also reviewed and the likely introduction of wheel and tyre sensors to enhance driving safety is discussed. The recent trend towards vehicle-mounted devices to sense the vehicle's environment (such as radar, optical, ultrasound, capacitive and image-based systems) and the implications of the introduction of safety-critical automotive systems such as adaptive cruise control are discussed. Sensors for initiating the deployment of safety systems such as airbags, together with transducers for disconnecting fuel pumps and vehicle batteries in the event of a crash, are reviewed. The paper includes a brief discussion of highway-based sensors for measuring vehicle speed and presence and concludes with a discussion of the likely future developments in the field.
Comparison of the Shack-Hartmann and plenoptic sensor in closed-loop adaptive optics system
NASA Astrophysics Data System (ADS)
Jiang, Pengzhi; Xu, Jieping; Liang, Yonghui; Mao, Hongjun
2016-03-01
The wavefront sensor is used in adaptive optics (AO) to detect the atmospheric distortion, which feeds back to the deformable mirror to compensate for this distortion. While the Shack-Hartmann sensor has been widely used, the plenoptic sensor was proposed in recent years. The two different wavefront sensing methods have different interpretations and numerical consequences, though they are both slope-based. The plenoptic sensor is compared with the Shack-Hartmann sensor in a closed-loop AO system. Simulations are performed to investigate their performances under closed-loop conditions. The plenoptic sensors both without and with modulation are discussed. The results show that the closed-loop performance of the plenoptic sensor without modulation is worse than that of the Shack-Hartmann sensor when the star for observation is brighter than magnitude 7, but better when the star is fainter. The closed-loop performance of the plenoptic sensor could be improved by modulation, except for the faint star. In summary, the limiting magnitude of the astronomical AO system may be improved by using the plenoptic sensor instead of the Shack-Hartmann sensor, and the modulation of the plenoptic sensor is more suitable for the bright star.
Sensor validation and fusion for gas turbine vibration monitoring
NASA Astrophysics Data System (ADS)
Yan, Weizhong; Goebel, Kai F.
2003-08-01
Vibration monitoring is an important practice throughout regular operation of gas turbine power systems and, even more so, during characterization tests. Vibration monitoring relies on accurate and reliable sensor readings. To obtain accurate readings, sensors are placed such that the signal is maximized. In the case of characterization tests, strain gauges are placed at the location of vibration modes on blades inside the gas turbine. Due to the prevailing harsh environment, these sensors have a limited life and decaying accuracy, both of which impair vibration assessment. At the same time bandwidth limitations may restrict data transmission, which in turn limits the number of sensors that can be used for assessment. Knowing the sensor status (normal or faulty), and more importantly, knowing the true vibration level of the system all the time is essential for successful gas turbine vibration monitoring. This paper investigates a dynamic sensor validation and system health reasoning scheme that addresses the issues outlined above by considering only the information required to reliably assess system health status. In particular, if abnormal system health is suspected or if the primary sensor is determined to be faulted, information from available "sibling" sensors is dynamically integrated. A confidence expresses the complex interactions of sensor health and system health, their reliabilities, conflicting information, and what the health assessment is. Effectiveness of the scheme in achieving accurate and reliable vibration evaluation is then demonstrated using a combination of simulated data and a small sample of a real-world application data where the vibration of compressor blades during a real time characterization test of a new gas turbine power system is monitored.
A Solar Position Sensor Based on Image Vision.
Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Acuña, Alexis; Rosales, Pedro; Suastegui, José
2017-07-29
Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors' evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays' direction as well as the tilt and sensor position. The sensor's characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors.
NASA Astrophysics Data System (ADS)
Mitilineos, Stelios A.; Argyreas, Nick D.; Thomopoulos, Stelios C. A.
2009-05-01
A fusion-based localization technique for location-based services in indoor environments is introduced herein, based on ultrasound time-of-arrival measurements from multiple off-the-shelf range estimating sensors which are used in a market-available localization system. In-situ field measurements results indicated that the respective off-the-shelf system was unable to estimate position in most of the cases, while the underlying sensors are of low-quality and yield highly inaccurate range and position estimates. An extensive analysis is performed and a model of the sensor-performance characteristics is established. A low-complexity but accurate sensor fusion and localization technique is then developed, which consists inof evaluating multiple sensor measurements and selecting the one that is considered most-accurate based on the underlying sensor model. Optimality, in the sense of a genie selecting the optimum sensor, is subsequently evaluated and compared to the proposed technique. The experimental results indicate that the proposed fusion method exhibits near-optimal performance and, albeit being theoretically suboptimal, it largely overcomes most flaws of the underlying single-sensor system resulting in a localization system of increased accuracy, robustness and availability.
Optical technologies for space sensor
NASA Astrophysics Data System (ADS)
Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun
2015-10-01
Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.
System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers
NASA Technical Reports Server (NTRS)
Aldridge, Hal A.; Juang, Jer-Nan
1997-01-01
Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.
Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio
2016-08-24
Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).
Transparent Fingerprint Sensor System for Large Flat Panel Display.
Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk; Lee, Myunghee
2018-01-19
In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger's ridges and valleys through the fingerprint sensor array.
Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio
2016-01-01
Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912
NASA Astrophysics Data System (ADS)
Mahajan, Ajay; Chitikeshi, Sanjeevi; Utterbach, Lucas; Bandhil, Pavan; Figueroa, Fernando
2006-05-01
This paper describes the application of intelligent sensors in the Integrated Systems Health Monitoring (ISHM) as applied to a rocket test stand. The development of intelligent sensors is attempted as an integrated system approach, i.e. one treats the sensors as a complete system with its own physical transducer, A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements associated with the rocket tests stands. These smart elements can be sensors, actuators or other devices. Though the immediate application is the monitoring of the rocket test stands, the technology should be generally applicable to the ISHM vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent sensors (PIS) and Virtual Intelligent Sensors (VIS).
Application of zonal model on indoor air sensor network design
NASA Astrophysics Data System (ADS)
Chen, Y. Lisa; Wen, Jin
2007-04-01
Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.
Transparent Fingerprint Sensor System for Large Flat Panel Display
Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk
2018-01-01
In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger’s ridges and valleys through the fingerprint sensor array. PMID:29351218
Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network.
Fernandez, Susel; Hadfi, Rafik; Ito, Takayuki; Marsa-Maestre, Ivan; Velasco, Juan R
2016-08-15
Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.
Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network
Fernandez, Susel; Hadfi, Rafik; Ito, Takayuki; Marsa-Maestre, Ivan; Velasco, Juan R.
2016-01-01
Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors. PMID:27537878
Sensor Networking Testbed with IEEE 1451 Compatibility and Network Performance Monitoring
NASA Technical Reports Server (NTRS)
Gurkan, Deniz; Yuan, X.; Benhaddou, D.; Figueroa, F.; Morris, Jonathan
2007-01-01
Design and implementation of a testbed for testing and verifying IEEE 1451-compatible sensor systems with network performance monitoring is of significant importance. The performance parameters measurement as well as decision support systems implementation will enhance the understanding of sensor systems with plug-and-play capabilities. The paper will present the design aspects for such a testbed environment under development at University of Houston in collaboration with NASA Stennis Space Center - SSST (Smart Sensor System Testbed).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.
2016-06-29
To address the critical site characterization and monitoring needs for Enhance Geothermal Systems (EGS) programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2011 a contract to design, build and test a high temperature fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying a large number of 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor podmore » design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-4.0 at frequencies over 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The data telemetry fibers used for the seismic vector sensors in the system are also used to simultaneously record Distributed Temperature Sensor (DTS) and Distributed Acoustic Sensor (DAS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less
Robust Operation of Tendon-Driven Robot Fingers Using Force and Position-Based Control Laws
NASA Technical Reports Server (NTRS)
Hargrave, Brian (Inventor); Abdallah, Muhammad E (Inventor); Reiland, Matthew J (Inventor); Diftler, Myron A (Inventor); Strawser, Philip A (Inventor); Platt, Jr., Robert J. (Inventor); Ihrke, Chris A. (Inventor)
2013-01-01
A robotic system includes a tendon-driven finger and a control system. The system controls the finger via a force-based control law when a tension sensor is available, and via a position-based control law when a sensor is not available. Multiple tendons may each have a corresponding sensor. The system selectively injects a compliance value into the position-based control law when only some sensors are available. A control system includes a host machine and a non-transitory computer-readable medium having a control process, which is executed by the host machine to control the finger via the force- or position-based control law. A method for controlling the finger includes determining the availability of a tension sensor(s), and selectively controlling the finger, using the control system, via the force or position-based control law. The position control law allows the control system to resist disturbances while nominally maintaining the initial state of internal tendon tensions.
Activity recognition using dynamic multiple sensor fusion in body sensor networks.
Gao, Lei; Bourke, Alan K; Nelson, John
2012-01-01
Multiple sensor fusion is a main research direction for activity recognition. However, there are two challenges in those systems: the energy consumption due to the wireless transmission and the classifier design because of the dynamic feature vector. This paper proposes a multi-sensor fusion framework, which consists of the sensor selection module and the hierarchical classifier. The sensor selection module adopts the convex optimization to select the sensor subset in real time. The hierarchical classifier combines the Decision Tree classifier with the Naïve Bayes classifier. The dataset collected from 8 subjects, who performed 8 scenario activities, was used to evaluate the proposed system. The results show that the proposed system can obviously reduce the energy consumption while guaranteeing the recognition accuracy.
Sensor selection cost optimisation for tracking structurally cyclic systems: a P-order solution
NASA Astrophysics Data System (ADS)
Doostmohammadian, M.; Zarrabi, H.; Rabiee, H. R.
2017-08-01
Measurements and sensing implementations impose certain cost in sensor networks. The sensor selection cost optimisation is the problem of minimising the sensing cost of monitoring a physical (or cyber-physical) system. Consider a given set of sensors tracking states of a dynamical system for estimation purposes. For each sensor assume different costs to measure different (realisable) states. The idea is to assign sensors to measure states such that the global cost is minimised. The number and selection of sensor measurements need to ensure the observability to track the dynamic state of the system with bounded estimation error. The main question we address is how to select the state measurements to minimise the cost while satisfying the observability conditions. Relaxing the observability condition for structurally cyclic systems, the main contribution is to propose a graph theoretic approach to solve the problem in polynomial time. Note that polynomial time algorithms are suitable for large-scale systems as their running time is upper-bounded by a polynomial expression in the size of input for the algorithm. We frame the problem as a linear sum assignment with solution complexity of ?.
An Advanced Sensor Network Design For Subglacial Sensing
NASA Astrophysics Data System (ADS)
Martinez, K.; Hart, J. K.; Elsaify, A.; Zou, G.; Padhy, P.; Riddoch, A.
2006-12-01
In the Glacsweb project a sensor network has been designed to take sensor measurements inside glaciers and send the data back to a web server autonomously. A wide range of experience was gained in the deployment of the earlier systems and this has been used to develop new hardware and software to better meet the needs of glaciologists using the data from the system. The system was reduced in size, new sensors (compass, light sensor) were added and the radio communications system completely changed. The new 173MHz radio system was designed with an antenna tuned to work in ice and a new network algorithm written to provide better data security. Probes can communicate data through each other (ad-hoc network) and store many months of data in a large buffer to cope with long term communications failures. New sensors include a light reflection measurement in order to provide data on the surrounding material. This paper will discuss the design decisions, the effectiveness of the final system and generic outcomes of use to sensor network designers deploying in difficult environments.
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.
Energy storage management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2015-12-08
An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.
NASA Technical Reports Server (NTRS)
1996-01-01
Under a Lewis Research Center Small Business Innovation Research contract, SRICO, Inc. developed a fiber optic voltage sensor to measure voltage in electronic systems in spacecraft. The sensor uses glass and light to sense and transmit electricity, and is relatively safe and accurate. SRICO then commercialized the sensor for measurement of electric field and voltage in applications such as electric power systems and hazardous environments, lightning detection, and fiber optic communication systems.
A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology
Huang, Che-Wei; Huang, Yu-Jie; Lu, Shey-Shi; Lin, Chih-Ting
2012-01-01
A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC) architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm) integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK) wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH) range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.
While drilling system and method
Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward
2007-02-20
A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.
NASA Technical Reports Server (NTRS)
Troiani, N.; Yerazunis, S. W.
1978-01-01
An autonomous roving science vehicle that relies on terrain data acquired by a hierarchy of sensors for navigation was one method of carrying out such a mission. The hierarchy of sensors included a short range sensor with sufficient resolution to detect every possible obstacle and with the ability to make fast and reliable terrain characterizations. A multilaser, multidetector triangulation system was proposed as a short range sensor. The general system was studied to determine its perception capabilities and limitations. A specific rover and low resolution sensor system was then considered. After studying the data obtained, a hazard detection algorithm was developed that accounts for all possible terrains given the sensor resolution. Computer simulation of the rover on various terrains was used to test the entire hazard detection system.
Innovative solutions in monitoring systems in flood protection
NASA Astrophysics Data System (ADS)
Sekuła, Klaudia; Połeć, Marzena; Borecka, Aleksandra
2018-02-01
The article presents the possibilities of ISMOP - IT System of Levee Monitoring. This system is able to collecting data from the reference and experimental control and measurement network. The experimental levee is build in a 1:1 scale and located in the village of Czernichow, near Cracow. The innovation is the utilization of a series of sensors monitoring the changes in the body of levee. It can be done by comparing the results of numerical simulations with results from installed two groups of sensors: reference sensors and experimental sensors. The reference control and measurement sensors create network based on pore pressure and temperature sensors. Additionally, it contains the fiber-optic technology. The second network include design experimental sensors, constructed for the development of solutions that can be used in existing flood embankments. The results are important to create the comprehensive and inexpensive monitoring system, which could be helpful for state authorities and local governments in flood protection.
Electro-optical rendezvous and docking sensors
NASA Technical Reports Server (NTRS)
Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.
1991-01-01
Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.
Predictive sensor method and apparatus
NASA Technical Reports Server (NTRS)
Cambridge, Vivien J.; Koger, Thomas L.
1993-01-01
A microprocessor and electronics package employing predictive methodology was developed to accelerate the response time of slowly responding hydrogen sensors. The system developed improved sensor response time from approximately 90 seconds to 8.5 seconds. The microprocessor works in real-time providing accurate hydrogen concentration corrected for fluctuations in sensor output resulting from changes in atmospheric pressure and temperature. Following the successful development of the hydrogen sensor system, the system and predictive methodology was adapted to a commercial medical thermometer probe. Results of the experiment indicate that, with some customization of hardware and software, response time improvements are possible for medical thermometers as well as other slowly responding sensors.
Wireless Biological Electronic Sensors.
Cui, Yue
2017-10-09
The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.
Combining engineered cell-sensors with multi-agent systems to realize smart environment
NASA Astrophysics Data System (ADS)
Chen, Mei
2013-03-01
The connection of everything in a sensory and an intelligent way is a pursuit in smart environment. This paper introduces the engineered cell-sensors into the multi-agent systems to realize the smart environment. The seamless interface with the natural environment and strong information-processing ability of cell with the achievements of synthetic biology make the construction of engineered cell-sensors possible. However, the engineered cell-sensors are only simple-functional and unreliable computational entities. Therefore how to combine engineered cell-sensors with digital device is a key problem in order to realize the smart environment. We give the abstract structure and interaction modes of the engineered cell-sensors in order to introduce engineered cell-sensors into multi-agent systems. We believe that the introduction of engineered cell-sensors will push forward the development of the smart environment.
A Wireless Fluid-Level Measurement Technique
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, Bryant D.
2006-01-01
This paper presents the application of a recently developed wireless measurement acquisition system to fluid-level measurement. This type of fluid-level measurement system alleviates many shortcomings of fluid-level measurement methods currently being used, including limited applicability of any one fluid-level sensor design. Measurement acquisition shortcomings include the necessity for power to be supplied to each sensor and for the measurement to be extracted from each sensor via a physical connection to the sensor. Another shortcoming is existing measurement systems require that a data channel and signal conditioning electronics be dedicated to each sensor. Use of wires results in other shortcomings such as logistics needed to add or replace sensors, weight, potential for electrical arcing and wire degradations. The fluid level sensor design is a simple passive inductor-capacitor circuit that is not subject to mechanical failure that is possible when float and lever-arm systems are used. Methods are presented for using the sensor in caustic, acidic or cryogenic fluids. Oscillating magnetic fields are used to power the sensor. Once electrically excited, the sensor produces a magnetic field response. The response frequency corresponds to the amount to fluid within the capacitor s electric field. The sensor design can be modified for measuring the level of any fluid or fluent substance that can be stored in a non-conductive reservoir. The interrogation method for discerning changes in the sensor response frequency is also presented.
In Situ Multi-Species (O2, N2, Fuel, Other) Fiber Optic Sensor for Fuel Tank Ullage
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet
2007-01-01
A rugged and compact fiber optic sensor system for in situ real-time measurement of nitrogen (N2), oxygen (O2), hydrocarbon (HC) fuel vapors, and other gases has been developed over the past several years at Glenn Research Center. The intrinsically-safe, solid-state fiber optic sensor system provides a 1% precision measurement (by volume) of multiple gases in a 5-sec time window. The sensor has no consumable parts to wear out and requires less than 25 W of electrical power to operate. The sensor head is rugged and compact and is ideal for use in harsh environments such as inside an aircraft fuel tank, or as a feedback sensor in the vent-box of an on-board inert gas generation system (OBIGGS). Multiple sensor heads can be monitored with a single optical detection unit for a cost-effective multi-point sensor system. The present sensor technology is unique in its ability to measure N2 concentration directly, and in its ability to differentiate different types of HC fuels. The present sensor system provides value-added aircraft safety information by simultaneously and directly measuring the nitrogen-oxygen-fuel triplet, which provides the following advantages: (1) information regarding the extent of inerting by N2, (2) information regarding the chemical equivalence ratio, (3) information regarding the composition of the aircraft fuel, and (4) by providing a self-consistent calibration by utilizing a singular sensor for all species. Using the extra information made available by this sensor permits the ignitability of a fuel-oxidizer mixture to be more accurately characterized, which may permit a reduction in the amount of inerting required on a real-time basis, and yet still maintain a fire-safe fuel tank. This translates to an increase in fuel tank fire-safety through a better understanding of the physics of fuel ignition, and at the same time, a reduction in compressed bleed air usage and concomitant aircraft operational costs over the long-run. The present fiber optic sensor can also be used as a false-alarm-free engine/hidden/cargo space fire detector (by measuring increased CO2 and CO, and decreased O2), a multi-point in situ measurement and certification system for halogenated-compound fire protection systems, and for the testing and certification of other aircraft safety sensor systems. The technology (LEW-17826-1) developed in the present sensor system is patent pending.
Road Weather Systems [SD .WMV (720x480/29fps/25.2 MB)
DOT National Transportation Integrated Search
2009-01-01
Iowas road weather information system at work. The Iowa DOT will install new sensors and upgrades to most road weather information system (RWIS) sites. These include: : color cameras, new precipitation sensors, new speed sensors, revised weathervi...
A Decision Support System for Evaluating Systems of Undersea Sensors and Weapons
2015-12-01
distribution is unlimited A DECISION SUPPORT SYSTEM FOR EVALUATING SYSTEMS OF UNDERSEA SENSORS AND WEAPONS by Team Mental Focus Cohort 142O...A DECISION SUPPORT SYSTEM FOR EVALUATING SYSTEMS OF UNDERSEA SENSORS AND WEAPONS 5. FUNDING NUMBERS 6. AUTHOR(S) Systems Engineering Cohort...undersea weapons, it requires the supporting tools to evaluate and predict the effectiveness of these system concepts. While current naval minefield
Service Oriented Architecture for Wireless Sensor Networks in Agriculture
NASA Astrophysics Data System (ADS)
Sawant, S. A.; Adinarayana, J.; Durbha, S. S.; Tripathy, A. K.; Sudharsan, D.
2012-08-01
Rapid advances in Wireless Sensor Network (WSN) for agricultural applications has provided a platform for better decision making for crop planning and management, particularly in precision agriculture aspects. Due to the ever-increasing spread of WSNs there is a need for standards, i.e. a set of specifications and encodings to bring multiple sensor networks on common platform. Distributed sensor systems when brought together can facilitate better decision making in agricultural domain. The Open Geospatial Consortium (OGC) through Sensor Web Enablement (SWE) provides guidelines for semantic and syntactic standardization of sensor networks. In this work two distributed sensing systems (Agrisens and FieldServer) were selected to implement OGC SWE standards through a Service Oriented Architecture (SOA) approach. Online interoperable data processing was developed through SWE components such as Sensor Model Language (SensorML) and Sensor Observation Service (SOS). An integrated web client was developed to visualize the sensor observations and measurements that enables the retrieval of crop water resources availability and requirements in a systematic manner for both the sensing devices. Further, the client has also the ability to operate in an interoperable manner with any other OGC standardized WSN systems. The study of WSN systems has shown that there is need to augment the operations / processing capabilities of SOS in order to understand about collected sensor data and implement the modelling services. Also, the very low cost availability of WSN systems in future, it is possible to implement the OGC standardized SWE framework for agricultural applications with open source software tools.
Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology.
Hoss, Udo; Budiman, Erwin Satrya
2017-05-01
The use of commercially available continuous glucose monitors for diabetes management requires sensor calibrations, which until recently are exclusively performed by the patient. A new development is the implementation of factory calibration for subcutaneous glucose sensors, which eliminates the need for user calibrations and the associated blood glucose tests. Factory calibration means that the calibration process is part of the sensor manufacturing process and performed under controlled laboratory conditions. The ability to move from a user calibration to factory calibration is based on several technical requirements related to sensor stability and the robustness of the sensor manufacturing process. The main advantages of factory calibration over the conventional user calibration are: (a) more convenience for the user, since no more fingersticks are required for calibration and (b) elimination of use errors related to the execution of the calibration process, which can lead to sensor inaccuracies. The FreeStyle Libre ™ and FreeStyle Libre Pro ™ flash continuous glucose monitoring systems are the first commercially available sensor systems using factory-calibrated sensors. For these sensor systems, no user calibrations are required throughout the sensor wear duration.
Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology
Budiman, Erwin Satrya
2017-01-01
Abstract The use of commercially available continuous glucose monitors for diabetes management requires sensor calibrations, which until recently are exclusively performed by the patient. A new development is the implementation of factory calibration for subcutaneous glucose sensors, which eliminates the need for user calibrations and the associated blood glucose tests. Factory calibration means that the calibration process is part of the sensor manufacturing process and performed under controlled laboratory conditions. The ability to move from a user calibration to factory calibration is based on several technical requirements related to sensor stability and the robustness of the sensor manufacturing process. The main advantages of factory calibration over the conventional user calibration are: (a) more convenience for the user, since no more fingersticks are required for calibration and (b) elimination of use errors related to the execution of the calibration process, which can lead to sensor inaccuracies. The FreeStyle Libre™ and FreeStyle Libre Pro™ flash continuous glucose monitoring systems are the first commercially available sensor systems using factory-calibrated sensors. For these sensor systems, no user calibrations are required throughout the sensor wear duration. PMID:28541139
Photoacoustic CO2 sensor system: design and potential for miniaturization and integration in silicon
NASA Astrophysics Data System (ADS)
Huber, J.; Wöllenstein, J.
2015-05-01
The detection of CO2 indoors has a large impact on today's sensor market. The ambient room climate is important for human health and wellbeing. The CO2 concentration is a main indicator for indoor climate and correlates with the number of persons inside a room. People in Europe spend more than 90% of their time indoors. This leads to a high demand for miniaturized and energy efficient CO2 sensors. To realize small and energy-efficient mass-market sensors, we develop novel miniaturized photoacoustic sensor systems with optimized design for real-time and selective CO2 detection. The sensor system consists of two chambers, a measurement and a detection chamber. The detection chamber consists of an integrated pressure sensor under special gas atmosphere. As pressure sensor we use a commercially available cell phone microphone. We describe a possible miniaturization process of the developed system by regarding the possibility of integration of all sensor parts. The system is manufactured in precision mechanics with IR-optical sapphire windows as optical connections. During the miniaturization process the sapphire windows are replaced by Si chips with a special IR anti-reflection coating. The developed system is characterized in detail with gas measurements and optical transmission investigations. The results of the characterization process offer a high potential for further miniaturization with high capability for mass market applications.
MicroSensors Systems: detection of a dismounted threat
NASA Astrophysics Data System (ADS)
Davis, Bill; Berglund, Victor; Falkofske, Dwight; Krantz, Brian
2005-05-01
The Micro Sensor System (MSS) is a layered sensor network with the goal of detecting dismounted threats approaching high value assets. A low power unattended ground sensor network is dependant on a network protocol for efficiency in order to minimize data transmissions after network establishment. The reduction of network 'chattiness' is a primary driver for minimizing power consumption and is a factor in establishing a low probability of detection and interception. The MSS has developed a unique protocol to meet these challenges. Unattended ground sensor systems are most likely dependant on batteries for power which due to size determines the ability of the sensor to be concealed after placement. To minimize power requirements, overcome size limitations, and maintain a low system cost the MSS utilizes advanced manufacturing processes know as Fluidic Self-Assembly and Chip Scale Packaging. The type of sensing element and the ability to sense various phenomenologies (particularly magnetic) at ranges greater than a few meters limits the effectiveness of a system. The MicroSensor System will overcome these limitations by deploying large numbers of low cost sensors, which is made possible by the advanced manufacturing process used in production of the sensors. The MSS program will provide unprecedented levels of real-time battlefield information which greatly enhances combat situational awareness when integrated with the existing Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. This system will provide an important boost to realizing the information dominant, network-centric objective of Joint Vision 2020.
Magnetic-Field-Response Measurement-Acquisition System
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.
2006-01-01
A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a response inflection. The "transmit-receive-compare" of sequential harmonics is repeated until the inflection is identified. The harmonic producing the amplitude inflection is the sensor resonant frequency. Resonant frequency and response amplitude are stored and then correlated to calibration data.
SENSOR: a tool for the simulation of hyperspectral remote sensing systems
NASA Astrophysics Data System (ADS)
Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel
The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.
Battery management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2016-02-23
A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.
Kuroda, T; Noma, H; Naito, C; Tada, M; Yamanaka, H; Takemura, T; Nin, K; Yoshihara, H
2013-01-01
Development of a clinical sensor network system that automatically collects vital sign and its supplemental data, and evaluation the effect of automatic vital sensor value assignment to patients based on locations of sensors. The sensor network estimates the data-source, a target patient, from the position of a vital sign sensor obtained from a newly developed proximity sensing system. The proximity sensing system estimates the positions of the devices using a Bluetooth inquiry process. Using Bluetooth access points and the positioning system newly developed in this project, the sensor network collects vital sign and its 4W (who, where, what, and when) supplemental data from any Bluetooth ready vital sign sensors such as Continua-ready devices. The prototype was evaluated in a pseudo clinical setting at Kyoto University Hospital using a cyclic paired comparison and statistical analysis. The result of the cyclic paired analysis shows the subjects evaluated the proposed system is more effective and safer than POCS as well as paper-based operation. It halves the times for vital signs input and eliminates input errors. On the other hand, the prototype failed in its position estimation for 12.6% of all attempts, and the nurses overlooked half of the errors. A detailed investigation clears that an advanced interface to show the system's "confidence", i.e. the probability of estimation error, must be effective to reduce the oversights. This paper proposed a clinical sensor network system that relieves nurses from vital signs input tasks. The result clearly shows that the proposed system increases the efficiency and safety of the nursing process both subjectively and objectively. It is a step toward new generation of point of nursing care systems where sensors take over the tasks of data input from the nurses.
Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.
2010-01-01
The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.
System-in Package of Integrated Humidity Sensor Using CMOS-MEMS Technology.
Lee, Sung Pil
2015-10-01
Temperature/humidity microchips with micropump were fabricated using a CMOS-MEMS process and combined with ZigBee modules to implement a sensor system in package (SIP) for a ubiquitous sensor network (USN) and/or a wireless communication system. The current of a diode temperature sensor to temperature and a normalized current of FET humidity sensor to relative humidity showed linear characteristics, respectively, and the use of the micropump has enabled a faster response. A wireless reception module using the same protocol as that in transmission systems processed the received data within 10 m and showed temperature and humidity values in the display.
Remote sensing of oceanic phytoplankton - Present capabilities and future goals
NASA Technical Reports Server (NTRS)
Esaias, W. E.
1980-01-01
A description is given of current work in the development of sensors, and their integration into increasingly powerful systems, for oceanic phytoplankton abundance estimation. Among the problems relevant to such work are phytoplankton ecology, the spatial and temporal domains, available sensor platforms, and sensor combinations. Among the platforms considered are satellites, aircraft, tethered balloons, helicopters, ships, and the Space Shuttle. Sensors discussed include microwave radiometers, laser fluorosensors, microwave scatterometers, multispectral scanners, Coastal Ocean Dynamics Radar (CODAR), and linear array detectors. Consideration is also given to the prospects for such future sensor systems as the National Oceanic Satellite System (NOSS) and the Airborne Integrated Mapping System (AIMS).
Semi autonomous mine detection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Few; Roelof Versteeg; Herman Herman
2010-04-01
CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIKmore » was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.« less
Scalable sensor management for automated fusion and tactical reconnaissance
NASA Astrophysics Data System (ADS)
Walls, Thomas J.; Wilson, Michael L.; Partridge, Darin C.; Haws, Jonathan R.; Jensen, Mark D.; Johnson, Troy R.; Petersen, Brad D.; Sullivan, Stephanie W.
2013-05-01
The capabilities of tactical intelligence, surveillance, and reconnaissance (ISR) payloads are expanding from single sensor imagers to integrated systems-of-systems architectures. Increasingly, these systems-of-systems include multiple sensing modalities that can act as force multipliers for the intelligence analyst. Currently, the separate sensing modalities operate largely independent of one another, providing a selection of operating modes but not an integrated intelligence product. We describe here a Sensor Management System (SMS) designed to provide a small, compact processing unit capable of managing multiple collaborative sensor systems on-board an aircraft. Its purpose is to increase sensor cooperation and collaboration to achieve intelligent data collection and exploitation. The SMS architecture is designed to be largely sensor and data agnostic and provide flexible networked access for both data providers and data consumers. It supports pre-planned and ad-hoc missions, with provisions for on-demand tasking and updates from users connected via data links. Management of sensors and user agents takes place over standard network protocols such that any number and combination of sensors and user agents, either on the local network or connected via data link, can register with the SMS at any time during the mission. The SMS provides control over sensor data collection to handle logging and routing of data products to subscribing user agents. It also supports the addition of algorithmic data processing agents for feature/target extraction and provides for subsequent cueing from one sensor to another. The SMS architecture was designed to scale from a small UAV carrying a limited number of payloads to an aircraft carrying a large number of payloads. The SMS system is STANAG 4575 compliant as a removable memory module (RMM) and can act as a vehicle specific module (VSM) to provide STANAG 4586 compliance (level-3 interoperability) to a non-compliant sensor system. The SMS architecture will be described and results from several flight tests and simulations will be shown.
Technologies for Fire and Damage Control and Condition Based Maintenance
2011-12-01
sheathing, thermal and acoustic insulation, furnishing, bedding, mattresses, flooring , and wood fibre (paper and cardboard) and plastic packaging...Condition Based Maintenance”. The project objective was to develop an improved understanding of how materials, sensors and sensor systems choices impact the...ultraviolet spectral sensors and an acoustic sensor. The system also has data fusion software that analyses the sensor input and determines if the input
A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System
NASA Technical Reports Server (NTRS)
Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James
2012-01-01
A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.
Chemical preconcentrator with integral thermal flow sensor
Manginell, Ronald P.; Frye-Mason, Gregory C.
2003-01-01
A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.
NASA Astrophysics Data System (ADS)
Bird, Alan; Anderson, Scott A.; Linne von Berg, Dale; Davidson, Morgan; Holt, Niel; Kruer, Melvin; Wilson, Michael L.
2010-04-01
EyePod is a compact survey and inspection day/night imaging sensor suite for small unmanned aircraft systems (UAS). EyePod generates georeferenced image products in real-time from visible near infrared (VNIR) and long wave infrared (LWIR) imaging sensors and was developed under the ONR funded FEATHAR (Fusion, Exploitation, Algorithms, and Targeting for High-Altitude Reconnaissance) program. FEATHAR is being directed and executed by the Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL) and FEATHAR's goal is to develop and test new tactical sensor systems specifically designed for small manned and unmanned platforms (payload weight < 50 lbs). The EyePod suite consists of two VNIR/LWIR (day/night) gimbaled sensors that, combined, provide broad area survey and focused inspection capabilities. Each EyePod sensor pairs an HD visible EO sensor with a LWIR bolometric imager providing precision geo-referenced and fully digital EO/IR NITFS output imagery. The LWIR sensor is mounted to a patent-pending jitter-reduction stage to correct for the high-frequency motion typically found on small aircraft and unmanned systems. Details will be presented on both the wide-area and inspection EyePod sensor systems, their modes of operation, and results from recent flight demonstrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.
2015-02-28
To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important –more » a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, M; Kim, T; Kang, S
Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attachingmore » FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by the Industrial R&D program of MOTIE/KEIT. [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh
2003-08-05
A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.
Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh
2006-01-10
A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.
DOT National Transportation Integrated Search
2011-01-01
The increasing emphasis on the maintenance of existing infrastructure systems have led to : greater use of advanced sensors and condition monitoring systems. Wireless sensors and : sensor networks are emerging as sensing paradigms that the structural...
NASA Technical Reports Server (NTRS)
Tucker, C. J.
1978-01-01
The first four LANDSAT-D thematic mapper sensors were evaluated and compared to: the return beam vidicon (RBV) and multispectral scanners (MSS) sensors from LANDSATS 1, 2, and 3; Colvocoresses' proposed 'operational LANDSAT' three band system; and the French SPOT three band system using simulation/intergration techniques and in situ collected spectral reflectance data. Sensors were evaluated by their ability to discriminate vegetation biomass, chlorophyll concentration, and leaf water content. The thematic mapper and SPOT bands were found to be superior in a spectral resolution context to the other three sensor systems for vegetational applications. Significant improvements are expected for most vegetational analyses from LANDSAT-D thematic mapper and SPOT imagery over MSS and RBV imagery.
Preparation and measurement of FBG-based length, temperature, and vibration sensors
NASA Astrophysics Data System (ADS)
Mikel, Bretislav; Helan, Radek; Buchta, Zdenek; Jelinek, Michal; Cip, Ondrej
2016-12-01
We present system of structure health measurement by optical fiber sensors based on fiber Bragg gratings. Our system is focused to additionally install to existing buildings. We prepared first set-up of the system to monitoring of the nuclear power plant containment shape deformation. The presented system can measure up to several tens of sensors simultaneously. Each sensor contains optical fiber grating to measurement of change of length and the other independed fiber grating to monitor the temperature and the other ineligible effects.
Sensor system for web inspection
Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.
2002-01-01
A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.
Development of a wireless air pollution sensor package for aerial-sampling of emissions
A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...
Kampmann, Peter; Kirchner, Frank
2014-01-01
With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach. PMID:24743158
NASA Astrophysics Data System (ADS)
Plattner, M. P.; Hirth, F.; Müller, M. S.; Hoffmann, L.; Buck, T. C.; Koch, A. W.
2017-11-01
Availability of reliable flight sensor data and knowledge of the structural behaviour are essential for safe operation of the Ariane launcher. The Ariane launcher is currently monitored by hundreds of electric sensors during test and qualification. Fibre optic sensors are regarded as a potential technique to overcome limitations of recent monitoring systems for the Ariane launcher [1]. These limitations include cumbersome application of sensors and harness as well as a very limited degree of distributed sensing capability. But, in order to exploit the various advantages of fibre optic sensors (high degree of multiplexing, distributed sensing capability, lower mass impact, etc.) dedicated measurement systems have to be developed and investigated. State-of-the-art fibre optic measurement systems often use free beam setups making them bulky and sensitive to vibration impact. Therefore a new measurement system is developed as part of the ESAstudy [2].
Smart Sensors for Launch Vehicles
NASA Astrophysics Data System (ADS)
Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.
2017-12-01
Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.
40 CFR 63.164 - Standards: Compressors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be observed daily or shall be equipped with an... indicates failure of the seal system, the barrier fluid system, or both. (f) If the sensor indicates failure...
40 CFR 63.164 - Standards: Compressors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be observed daily or shall be equipped with an... indicates failure of the seal system, the barrier fluid system, or both. (f) If the sensor indicates failure...
NASA Technical Reports Server (NTRS)
Hwang, James; Campbell, Perry; Ross, Mike; Price, Charles R.; Barron, Don
1989-01-01
An integrated operating environment was designed to incorporate three general purpose robots, sensors, and end effectors, including Force/Torque Sensors, Tactile Array sensors, Tactile force sensors, and Force-sensing grippers. The design and implementation of: (1) the teleoperation of a general purpose PUMA robot; (2) an integrated sensor hardware/software system; (3) the force-sensing gripper control; (4) the host computer system for dual Robotic Research arms; and (5) the Ethernet integration are described.
Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.
Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C
2018-06-01
Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.
Fly Ear Inspired Miniature Acoustic Sensors for Detection and Localization
2011-07-31
Micro-Opto-Electro-Mechnical-System ( MOEMS ) sensor platform that is capable of integrating multiplexed Fabry-Perot (FP) interferometer based sensors. A...on a single MOEMS chip is shown in Figure 8. Light from a low coherence light source with a coherence length Lc is first sent to the reference...towards developing a low coherence interferometer based MOEMS detection system. An optical Micro-Electro-Mechanical-System (MEMS) sensor platform was
Localization and Tracking of Implantable Biomedical Sensors
Umay, Ilknur; Fidan, Barış; Barshan, Billur
2017-01-01
Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure) parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer) unit for analysis, diagnosis and/or treatment. Implantable sensor units are typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed) units. In particular, capsule-based systems have attracted significant research interest recently, with a variety of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable sensor systems, one of the most challenging problems is the accurate localization and tracking of the microrobotic sensor unit (e.g., robotic capsule) inside the human body. This article presents a literature review of the existing localization and tracking techniques for robotic implantable sensor systems with their merits and limitations and possible solutions of the proposed localization methods. The article also provides a brief discussion on the connection and cooperation of such techniques with wearable biomedical sensor systems. PMID:28335384
Noise Modeling From Conductive Shields Using Kirchhoff Equations.
Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J
2010-10-09
Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding the magnetic noise of conductive materials, especially of magnetic shields based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have radio frequency shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems with complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies, knowledge of the noise correlation between sensors is as important as knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for arbitrary shaped shields and multiple sensor systems. The approach is efficient enough to be able to run on a single PC system and return results on a minute scale. With a multiple sensor system our approach calculates not only the noise for each sensor but also the noise correlation matrix between sensors. Here we will show how the algorithm can be implemented.
Development of a commercially viable piezoelectric force sensor system for static force measurement
NASA Astrophysics Data System (ADS)
Liu, Jun; Luo, Xinwei; Liu, Jingcheng; Li, Min; Qin, Lan
2017-09-01
A compensation method for measuring static force with a commercial piezoelectric force sensor is proposed to disprove the theory that piezoelectric sensors and generators can only operate under dynamic force. After studying the model of the piezoelectric force sensor measurement system, the principle of static force measurement using a piezoelectric material or piezoelectric force sensor is analyzed. Then, the distribution law of the decay time constant of the measurement system and the variation law of the measurement system’s output are studied, and a compensation method based on the time interval threshold Δ t and attenuation threshold Δ {{u}th} is proposed. By calibrating the system and considering the influences of the environment and the hardware, a suitable Δ {{u}th} value is determined, and the system’s output attenuation is compensated based on the Δ {{u}th} value to realize the measurement. Finally, a static force measurement system with a piezoelectric force sensor is developed based on the compensation method. The experimental results confirm the successful development of a simple compensation method for static force measurement with a commercial piezoelectric force sensor. In addition, it is established that, contrary to the current perception, a piezoelectric force sensor system can be used to measure static force through further calibration.
Multi-sensor calibration of low-cost magnetic, angular rate and gravity systems.
Lüken, Markus; Misgeld, Berno J E; Rüschen, Daniel; Leonhardt, Steffen
2015-10-13
We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF) magnetic, angular rate and gravity (MARG) sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN). The 9DOF MARG sensor is part of our recently-developed "Integrated Posture and Activity Network by Medit Aachen" (IPANEMA) BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wang, Pengfei
2012-06-01
The current schemes of detecting the status of passengers in airplanes cannot satisfy the more strict regulations recently released by the United States Transportation Security Administration. In basis of investigation on the current seat occupancy sensors for vehicles, in this paper we present a novel scheme of seat occupancy sensors based on Fiber Bragg Grating technology to improve the in-flight security of airplanes. This seat occupancy sensor system can be used to detect the status of passengers and to trigger the airbags to control the inflation of air bags, which have been installed in the airplanes of some major airlines under the new law. This scheme utilizes our previous research results of Weight-In- Motion sensor system based on optical fiber Bragg grating. In contrast to the current seat occupancy sensors for vehicles, this new seat occupancy sensor has so many merits that it is very suitable to be applied in aerospace industry or high speed railway system. Moreover, combined with existing Fiber Bragg Grating strain or temperature sensor systems built in airplanes, this proposed method can construct a complete airline passenger management system.
Li, Xiangfei; Lin, Yuliang
2017-01-01
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system. PMID:29211017
A pressure and shear sensor system for stress measurement at lower limb residuum/socket interface.
Laszczak, P; McGrath, M; Tang, J; Gao, J; Jiang, L; Bader, D L; Moser, D; Zahedi, S
2016-07-01
A sensor system for measurement of pressure and shear at the lower limb residuum/socket interface is described. The system comprises of a flexible sensor unit and a data acquisition unit with wireless data transmission capability. Static and dynamic performance of the sensor system was characterised using a mechanical test machine. The static calibration results suggest that the developed sensor system presents high linearity (linearity error ≤ 3.8%) and resolution (0.9 kPa for pressure and 0.2 kPa for shear). Dynamic characterisation of the sensor system shows hysteresis error of approximately 15% for pressure and 8% for shear. Subsequently, a pilot amputee walking test was conducted. Three sensors were placed at the residuum/socket interface of a knee disarticulation amputee and simultaneous measurements were obtained during pilot amputee walking test. The pressure and shear peak values as well as their temporal profiles are presented and discussed. In particular, peak pressure and shear of approximately 58 kPa and 27 kPa, respectively, were recorded. Their temporal profiles also provide dynamic coupling information at this critical residuum/socket interface. These preliminary amputee test results suggest strong potential of the developed sensor system for exploitation as an assistive technology to facilitate socket design, socket fit and effective monitoring of lower limb residuum health. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Object detection system using SPAD proximity detectors
NASA Astrophysics Data System (ADS)
Stark, Laurence; Raynor, Jeffrey M.; Henderson, Robert K.
2011-10-01
This paper presents an object detection system based upon the use of multiple single photon avalanche diode (SPAD) proximity sensors operating upon the time-of-flight (ToF) principle, whereby the co-ordinates of a target object in a coordinate system relative to the assembly are calculated. The system is similar to a touch screen system in form and operation except that the lack of requirement of a physical sensing surface provides a novel advantage over most existing touch screen technologies. The sensors are controlled by FPGA-based firmware and each proximity sensor in the system measures the range from the sensor to the target object. A software algorithm is implemented to calculate the x-y coordinates of the target object based on the distance measurements from at least two separate sensors and the known relative positions of these sensors. Existing proximity sensors were capable of determining the distance to an object with centimetric accuracy and were modified to obtain a wide field of view in the x-y axes with low beam angle in z in order to provide a detection area as large as possible. Design and implementation of the firmware, electronic hardware, mechanics and optics are covered in the paper. Possible future work would include characterisation with alternative designs of proximity sensors, as this is the component which determines the highest achievable accur1acy of the system.
NASA Astrophysics Data System (ADS)
Leon, Barbara D.; Heller, Paul R.
1987-05-01
A surveillance network is a group of multiplatform sensors cooperating to improve network performance. Network control is distributed as a measure to decrease vulnerability to enemy threat. The network may contain diverse sensor types such as radar, ESM (Electronic Support Measures), IRST (Infrared search and track) and E-0 (Electro-Optical). Each platform may contain a single sensor or suite of sensors. In a surveillance network it is desirable to control sensors to make the overall system more effective. This problem has come to be known as sensor management and control (SM&C). Two major facets of network performance are surveillance and survivability. In a netted environment, surveillance can be enhanced if information from all sensors is combined and sensor operating conditions are controlled to provide a synergistic effect. In contrast, when survivability is the main concern for the network, the best operating status for all sensors would be passive or off. Of course, improving survivability tends to degrade surveillance. Hence, the objective of SM&C is to optimize surveillance and survivability of the network. Too voluminous data of various formats and the quick response time are two characteristics of this problem which make it an ideal application for Artificial Intelligence. A solution to the SM&C problem, presented as a computer simulation, will be presented in this paper. The simulation is a hybrid production written in LISP and FORTRAN. It combines the latest conventional computer programming methods with Artificial Intelligence techniques to produce a flexible state-of-the-art tool to evaluate network performance. The event-driven simulation contains environment models coupled with an expert system. These environment models include sensor (track-while-scan and agile beam) and target models, local tracking, and system tracking. These models are used to generate the environment for the sensor management and control expert system. The expert system, driven by a forward chaining inference engine, makes decisions based on the global database. The global database contains current track and sensor information supplied by the simulation. At present, the rule base emphasizes the surveillance features with rules grouped into three main categories: maintenance and enhancing track on prioritized targets; filling coverage holes and countering jamming; and evaluating sensor status. The paper will describe the architecture used for the expert system and the reasons for selecting the chosen methods. The SM&C simulation produces a graphical representation of sensors and their associated tracks such that the benefits of the sensor management and control expert system are evident. Jammer locations are also part of the display. The paper will describe results from several scenarios that best illustrate the sensor management and control concepts.
Relative gravimeter prototype based on micro electro mechanical system
NASA Astrophysics Data System (ADS)
Rozy, A. S. A.; Nugroho, H. A.; Yusuf, M.
2018-03-01
This research to make gravity measurement system by utilizing micro electro mechanical system based sensor in Gal order. System design consists of three parts, design of hardware, software, and interface. The design of the hardware include of designing the sensor design to measure the value of a stable gravity acceleration. The ADXL345 and ADXL335 sensors are tuned to obtain stable measurements. The design of the instrumentation system the next stage by creating a design to integrate between the sensor, microcontroller, and GPS. The design of programming algorithm is done with Arduino IDE software. The interface design uses a 20x4 LCD display to display the gravity acceleration value and store data on the storage media. The system uses a box made of iron and plate leveling to minimize measurement errors. The sensor test shows the ADXL345 sensor has a more stable value. The system is examined by comparing with gravity measurement of gravimeter A-10 results in Bandung observation post. The result of system test resulted the average of system correction value equal to 0.19 Gal. The system is expected to use for mineral exploration, water supply analyze, and earthquake precursor.
NASA Astrophysics Data System (ADS)
Abeynayake, Canicious; Chant, Ian; Kempinger, Siegfried; Rye, Alan
2005-06-01
The Rapid Route Area and Mine Neutralisation System (RRAMNS) Capability Technology Demonstrator (CTD) is a countermine detection project undertaken by DSTO and supported by the Australian Defence Force (ADF). The limited time and budget for this CTD resulted in some difficult strategic decisions with regard to hardware selection and system architecture. Although the delivered system has certain limitations arising from its experimental status, many lessons have been learned which illustrate a pragmatic path for future development. RRAMNS a similar sensor suite to other systems, in that three complementary sensors are included. These are Ground Probing Radar, Metal Detector Array, and multi-band electro-optic sensors. However, RRAMNS uses a unique imaging system and a network based real-time control and sensor fusion architecture. The relatively simple integration of each of these components could be the basis for a robust and cost-effective operational system. The RRAMNS imaging system consists of three cameras which cover the visible spectrum, the mid-wave and long-wave infrared region. This subsystem can be used separately as a scouting sensor. This paper describes the system at its mid-2004 status, when full integration of all detection components was achieved.
Bialas, Andrzej
2010-01-01
The paper is focused on the security issues of sensors provided with processors and software and used for high-risk applications. Common IT related threats may cause serious consequences for sensor system users. To improve their robustness, sensor systems should be developed in a restricted way that would provide them with assurance. One assurance creation methodology is Common Criteria (ISO/IEC 15408) used for IT products and systems. The paper begins with a primer on the Common Criteria, and then a general security model of the intelligent sensor as an IT product is discussed. The paper presents how the security problem of the intelligent sensor is defined and solved. The contribution of the paper is to provide Common Criteria (CC) related security design patterns and to improve the effectiveness of the sensor development process. PMID:22315571
Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor
Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan
2012-01-01
We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966
Ultrasensitive surveillance of sensors and processes
Wegerich, Stephan W.; Jarman, Kristin K.; Gross, Kenneth C.
2001-01-01
A method and apparatus for monitoring a source of data for determining an operating state of a working system. The method includes determining a sensor (or source of data) arrangement associated with monitoring the source of data for a system, activating a method for performing a sequential probability ratio test if the data source includes a single data (sensor) source, activating a second method for performing a regression sequential possibility ratio testing procedure if the arrangement includes a pair of sensors (data sources) with signals which are linearly or non-linearly related; activating a third method for performing a bounded angle ratio test procedure if the sensor arrangement includes multiple sensors and utilizing at least one of the first, second and third methods to accumulate sensor signals and determining the operating state of the system.
Ultrasensitive surveillance of sensors and processes
Wegerich, Stephan W.; Jarman, Kristin K.; Gross, Kenneth C.
1999-01-01
A method and apparatus for monitoring a source of data for determining an operating state of a working system. The method includes determining a sensor (or source of data) arrangement associated with monitoring the source of data for a system, activating a method for performing a sequential probability ratio test if the data source includes a single data (sensor) source, activating a second method for performing a regression sequential possibility ratio testing procedure if the arrangement includes a pair of sensors (data sources) with signals which are linearly or non-linearly related; activating a third method for performing a bounded angle ratio test procedure if the sensor arrangement includes multiple sensors and utilizing at least one of the first, second and third methods to accumulate sensor signals and determining the operating state of the system.
Remotely controlled sensor apparatus for use in dig-face characterization system
Josten, N.E.; Svoboda, J.M.
1999-05-25
A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency. 13 figs.
Remotely controlled sensor apparatus for use in dig-face characterization system
Josten, Nicholas E.; Svoboda, John M.
1999-01-01
A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency.
Wireless Biological Electronic Sensors
Cui, Yue
2017-01-01
The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors. PMID:28991220
Scanning Seismic Intrusion Detector
NASA Technical Reports Server (NTRS)
Lee, R. D.
1982-01-01
Scanning seismic intrusion detector employs array of automatically or manually scanned sensors to determine approximate location of intruder. Automatic-scanning feature enables one operator to tend system of many sensors. Typical sensors used with new system are moving-coil seismic pickups. Detector finds uses in industrial security systems.
Sun, Wen; Ge, Yu; Zhang, Zhiqiang; Wong, Wai-Choong
2015-09-25
A wearable sensor system enables continuous and remote health monitoring and is widely considered as the next generation of healthcare technology. The performance, the packet error rate (PER) in particular, of a wearable sensor system may deteriorate due to a number of factors, particularly the interference from the other wearable sensor systems in the vicinity. We systematically evaluate the performance of the wearable sensor system in terms of PER in the presence of such interference in this paper. The factors that affect the performance of the wearable sensor system, such as density, traffic load, and transmission power in a realistic moderate-scale deployment case in hospital are all considered. Simulation results show that with 20% duty cycle, only 68.5% of data transmission can achieve the targeted reliability requirement (PER is less than 0.05) even in the off-peak period in hospital. We then suggest some interference mitigation schemes based on the performance evaluation results in the case study.
NASA Technical Reports Server (NTRS)
Jankovsky, Amy L.; Fulton, Christopher E.; Binder, Michael P.; Maul, William A., III; Meyer, Claudia M.
1998-01-01
A real-time system for validating sensor health has been developed in support of the reusable launch vehicle program. This system was designed for use in a propulsion testbed as part of an overall effort to improve the safety, diagnostic capability, and cost of operation of the testbed. The sensor validation system was designed and developed at the NASA Lewis Research Center and integrated into a propulsion checkout and control system as part of an industry-NASA partnership, led by Rockwell International for the Marshall Space Flight Center. The system includes modules for sensor validation, signal reconstruction, and feature detection and was designed to maximize portability to other applications. Review of test data from initial integration testing verified real-time operation and showed the system to perform correctly on both hard and soft sensor failure test cases. This paper discusses the design of the sensor validation and supporting modules developed at LeRC and reviews results obtained from initial test cases.
Weld Nugget Temperature Control in Thermal Stir Welding
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2014-01-01
A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).
Design and test of a biosensor-based multisensorial system: a proof of concept study.
Santonico, Marco; Pennazza, Giorgio; Grasso, Simone; D'Amico, Arnaldo; Bizzarri, Mariano
2013-12-04
Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB) transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs). The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes). The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a) the characterization of the optical properties of the tested materials; (b) the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol detection (concentration range 0.1-7 ppm) and as a liquid sensor array (concentration range 73-98 μM).
Design of inductive sensors for tongue control system for computers and assistive devices.
Lontis, Eugen R; Struijk, Lotte N S A
2010-07-01
The paper introduces a novel design of air-core inductive sensors in printed circuit board (PCB) technology for a tongue control system. The tongue control system provides a quadriplegic person with a keyboard and a joystick type of mouse for interaction with a computer or for control of an assistive device. Activation of inductive sensors was performed with a cylindrical, soft ferromagnetic material (activation unit). Comparative analysis of inductive sensors in PCB technology with existing hand-made inductive sensors was performed with respect to inductance, resistance, and sensitivity to activation when the activation unit was placed in the center of the sensor. Optimisation of the activation unit was performed in a finite element model. PCBs with air-core inductive sensors were manufactured in a 10 layers, 100 microm and 120 microm line width technology. These sensors provided quality signals that could drive the electronics of the hand-made sensors. Furthermore, changing the geometry of the sensors allowed generation of variable signals correlated with the 2D movement of the activation unit at the sensors' surface. PCB technology for inductive sensors allows flexibility in design, automation of production and ease of possible integration with supplying electronics. The basic switch function of the inductive sensor can be extended to two-dimensional movement detection for pointing devices.
A Real Time AI Approach to Discrimination Boost Phase Optical Sensor Systems in SDI Architectures
NASA Astrophysics Data System (ADS)
Sloggett, David R.
1990-04-01
Interest has been rekindled in the potential utility of Ballistic Missile Defence (BMD) systems 1,2 and their ability to enhance the existing NATO strategic defence posture 3,4. Whereas in the past BMD systems have been thought to be vulnerable to relatively simple offence countermeasures, technological developments that have occurred over the past 20 years offer the potential to solve some of the main criticisms that have bedeviled BMD research since its inception in the early 1950s. One of the key areas where dramatic developments have taken place is in the field of electro-optic sensor technologies where developments in device sensitivity and packing density offer new solutions to threat detection, tracking and discrimination that complement data traditionally associated with radar based systems. Analysis has shown 5 that optical sensor systems can make a significant contribution to threat analysis in the boost and mid course phases of flight of ballistic missile systems. In the Boost phase the large amounts of energy contained within the plume of a ballistic missile system provides a signature that must be detected against cloud and earth backgrounds - necessitating viewing from space. The process of detection is complicated by reflected sunlight and other sources of false alarms. The optical sensor systems must therefore be adaptable and capable of reasoning about the location of the signatures, their persistence and temporal variations. Much of this processing is ideally carried out at the sensor system - in order to eliminate false alarms and reduce the communications bandwidths required to transfer the sensor data to centralised early warning and battle management facilities. In the mid course phase optical sensor systems can be used to detect warm objects against the background of deep space. These sensor systems can form tracks on these objects that can be merged into 3D tracks as data from individual sensor systems are combined. As closely spaced objects are resolved by sensor systems feature data can be extracted on individual objects that can be used by the defence system to attempt to discriminate between warheads, decoys and other penetration aids. This paper reviews work that has arisen from joint US SDIO and UK MOD research programmes into the feasibility of Theatre Missile Defence (TMD) systems that would be suitable for deploy ment and operation in a European theatre. The paper focuses on the problems of threat classification and discrimination in TtD systems and highlights the role of optical sensors. The paper discusses the integration of data derived from optical and radar sensors 6 and expands upon work previously reported into the use of an Artificial Intelligence (AI) approach to object classification and discrimination.
Infrared-Proximity-Sensor Modules For Robot
NASA Technical Reports Server (NTRS)
Parton, William; Wegerif, Daniel; Rosinski, Douglas
1995-01-01
Collision-avoidance system for articulated robot manipulators uses infrared proximity sensors grouped together in array of sensor modules. Sensor modules, called "sensorCells," distributed processing board-level products for acquiring data from proximity-sensors strategically mounted on robot manipulators. Each sensorCell self-contained and consists of multiple sensing elements, discrete electronics, microcontroller and communications components. Modules connected to central control computer by redundant serial digital communication subsystem including both serial and a multi-drop bus. Detects objects made of various materials at distance of up to 50 cm. For some materials, such as thermal protection system tiles, detection range reduced to approximately 20 cm.
Autonomous sensor manager agents (ASMA)
NASA Astrophysics Data System (ADS)
Osadciw, Lisa A.
2004-04-01
Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network
Brennan, Robert W.
2017-01-01
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452
Causal simulation and sensor planning in predictive monitoring
NASA Technical Reports Server (NTRS)
Doyle, Richard J.
1989-01-01
Two issues are addressed which arise in the task of detecting anomalous behavior in complex systems with numerous sensor channels: how to adjust alarm thresholds dynamically, within the changing operating context of the system, and how to utilize sensors selectively, so that nominal operation can be verified reliably without processing a prohibitive amount of sensor data. The approach involves simulation of a causal model of the system, which provides information on expected sensor values, and on dependencies between predicted events, useful in assessing the relative importance of events so that sensor resources can be allocated effectively. The potential applicability of this work to the execution monitoring of robot task plans is briefly discussed.
Micro sensor node for air pollutant monitoring: hardware and software issues.
Choi, Sukwon; Kim, Nakyoung; Cha, Hojung; Ha, Rhan
2009-01-01
Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems.
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.
Taboun, Mohammed S; Brennan, Robert W
2017-09-14
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.
Jun, Jaemoon; Oh, Jungkyun; Shin, Dong Hoon; Kim, Sung Gun; Lee, Jun Seop; Kim, Wooyoung; Jang, Jyongsik
2016-12-07
Due to rapid advances in technology which have contributed to the development of portable equipment, highly sensitive and selective sensor technology is in demand. In particular, many approaches to the modification of wireless sensor systems have been studied. Wireless systems have many advantages, including unobtrusive installation, high nodal densities, low cost, and potential commercial applications. In this study, we fabricated radio frequency identification (RFID)-based wireless sensor systems using carboxyl group functionalized polypyrrole (C-PPy) nanoparticles (NPs). The C-PPy NPs were synthesized via chemical oxidation copolymerization, and then their electrical and chemical properties were characterized by a variety of methods. The sensor system was composed of an RFID reader antenna and a sensor tag made from a commercially available ultrahigh frequency RFID tag coated with C-PPy NPs. The C-PPy NPs were covalently bonded to the tag to form a passive sensor. This type of sensor can be produced at a very low cost and exhibits ultrahigh sensitivity to ammonia, detecting concentrations as low as 0.1 ppm. These sensors operated wirelessly and maintained their sensing performance as they were deformed by bending and twisting. Due to their flexibility, these sensors may be used in wearable technologies for sensing gases.
Analysis of three-dimensionally proliferated sensor architectures for flexible SSA
NASA Astrophysics Data System (ADS)
Cunio, Phillip M.; Flewelling, Brien
2018-05-01
The evolution of space into a congested, contested, and competitive regime drives a commensurate need for awareness of events there. As the number of systems on orbit grows, so will the need for sensing and tracking these systems. One avenue for advanced sensing capability is a widespread network of small but capable Space Situational Awareness (SSA) sensors, proliferated widely in the three-dimensional volume extending from the Earth's surface to the Geosynchronous Earth Orbit (GEO) belt, incorporating multiple different varieties and types of sensors. Due to the freedom of movement afforded by solid surfaces and atmosphere, some of these sensors may have substantial mobility. Accordingly, designing a network for maximum SSA coverage at reasonable cost may entail heterogeneous architectures with common logistics (including modular sensor packages or mobility platforms, which may be flexibly re-assigned). Smaller mobile sensors leveraging Commercial-Off-The-Shelf (COTS) components and software are appealing for their ability to simplify logistics versus large, monolithic, uniquely-exquisite sensor systems. This paper examines concepts for such sensor systems, and analyzes the costs associated with their use, while assessing the benefits (including reduced gap time, weather resilience, and multiple-sensor coverage) that such an architecture enables. Recommendations for preferred modes and mixes of fielding sensors in a heterogeneous architecture are made, and directions for future related research are suggested.
Magnetic Field Response Measurement Acquisition System
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.
2007-01-01
This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.
RF Energy Harvesting Peel-and-Stick Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalau-Keraly, Christopher; Schwartz, David; Daniel, George
PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to the automatically located sensor nodes, and relays data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by a RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and costmore » by eliminating batteries and photovoltaic devices. The sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths when the RF beam is swept allows for sensor localization, further reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with a duty cycle less than a minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna dimensions was less than 5cmx9cm, demonstrating the possibility of small form factor for the sensor nodes.« less
Surface acoustic wave (SAW) vibration sensors.
Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz
2011-01-01
In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.
Lee, Youngbum; Lee, Byungwoo; Lee, Myoungho
2010-03-01
Improvement of the quality and efficiency of health in medicine, both at home and the hospital, calls for improved sensors that might be included in a common carrier such as a wearable sensor device to measure various biosignals and provide healthcare services that use e-health technology. Designed to be user-friendly, smart clothes and gloves respond well to the end users for health monitoring. This study describes a wearable sensor glove that is equipped with an electrodermal activity (EDA) sensor, pulse-wave sensor, conducting fabric, and an embedded system. The EDA sensor utilizes the relationship between drowsiness and the EDA signal. The EDA sensors were made using a conducting fabric instead of silver chloride electrodes, as a more practical and practically wearable device. The pulse-wave sensor measurement system, which is widely applied in oriental medicinal practices, is also a strong element in e-health monitoring systems. The EDA and pulse-wave signal acquisition module was constructed by connecting the sensor to the glove via a conductive fabric. The signal acquisition module is then connected to a personal computer that displays the results of the EDA and pulse-wave signal processing analysis and gives accurate feedback to the user. This system is designed for a number of applications for the e-health services, including drowsiness detection and oriental medicine.
Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.
Kos, Anton; Tomažič, Sašo; Umek, Anton
2016-02-27
This article studies the suitability of smartphones with built-in inertial sensors for biofeedback applications. Biofeedback systems use various sensors to measure body functions and parameters. These sensor data are analyzed, and the results are communicated back to the user, who then tries to act on the feedback signals. Smartphone inertial sensors can be used to capture body movements in biomechanical biofeedback systems. These sensors exhibit various inaccuracies that induce significant angular and positional errors. We studied deterministic and random errors of smartphone accelerometers and gyroscopes, primarily focusing on their biases. Based on extensive measurements, we determined accelerometer and gyroscope noise models and bias variation ranges. Then, we compiled a table of predicted positional and angular errors under various biofeedback system operation conditions. We suggest several bias compensation options that are suitable for various examples of use in real-time biofeedback applications. Measurements within the developed experimental biofeedback application show that under certain conditions, even uncompensated sensors can be used for real-time biofeedback. For general use, especially for more demanding biofeedback applications, sensor biases should be compensated. We are convinced that real-time biofeedback systems based on smartphone inertial sensors are applicable to many similar examples in sports, healthcare, and other areas.
Observability-Based Guidance and Sensor Placement
NASA Astrophysics Data System (ADS)
Hinson, Brian T.
Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.
Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications
Kos, Anton; Tomažič, Sašo; Umek, Anton
2016-01-01
This article studies the suitability of smartphones with built-in inertial sensors for biofeedback applications. Biofeedback systems use various sensors to measure body functions and parameters. These sensor data are analyzed, and the results are communicated back to the user, who then tries to act on the feedback signals. Smartphone inertial sensors can be used to capture body movements in biomechanical biofeedback systems. These sensors exhibit various inaccuracies that induce significant angular and positional errors. We studied deterministic and random errors of smartphone accelerometers and gyroscopes, primarily focusing on their biases. Based on extensive measurements, we determined accelerometer and gyroscope noise models and bias variation ranges. Then, we compiled a table of predicted positional and angular errors under various biofeedback system operation conditions. We suggest several bias compensation options that are suitable for various examples of use in real-time biofeedback applications. Measurements within the developed experimental biofeedback application show that under certain conditions, even uncompensated sensors can be used for real-time biofeedback. For general use, especially for more demanding biofeedback applications, sensor biases should be compensated. We are convinced that real-time biofeedback systems based on smartphone inertial sensors are applicable to many similar examples in sports, healthcare, and other areas. PMID:26927125
NASA Technical Reports Server (NTRS)
Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.
2017-01-01
This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.
Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies
NASA Technical Reports Server (NTRS)
Talabac, Stephen J.
2004-01-01
Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.
Sensor Selection and Data Validation for Reliable Integrated System Health Management
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Melcher, Kevin J.
2008-01-01
For new access to space systems with challenging mission requirements, effective implementation of integrated system health management (ISHM) must be available early in the program to support the design of systems that are safe, reliable, highly autonomous. Early ISHM availability is also needed to promote design for affordable operations; increased knowledge of functional health provided by ISHM supports construction of more efficient operations infrastructure. Lack of early ISHM inclusion in the system design process could result in retrofitting health management systems to augment and expand operational and safety requirements; thereby increasing program cost and risk due to increased instrumentation and computational complexity. Having the right sensors generating the required data to perform condition assessment, such as fault detection and isolation, with a high degree of confidence is critical to reliable operation of ISHM. Also, the data being generated by the sensors needs to be qualified to ensure that the assessments made by the ISHM is not based on faulty data. NASA Glenn Research Center has been developing technologies for sensor selection and data validation as part of the FDDR (Fault Detection, Diagnosis, and Response) element of the Upper Stage project of the Ares 1 launch vehicle development. This presentation will provide an overview of the GRC approach to sensor selection and data quality validation and will present recent results from applications that are representative of the complexity of propulsion systems for access to space vehicles. A brief overview of the sensor selection and data quality validation approaches is provided below. The NASA GRC developed Systematic Sensor Selection Strategy (S4) is a model-based procedure for systematically and quantitatively selecting an optimal sensor suite to provide overall health assessment of a host system. S4 can be logically partitioned into three major subdivisions: the knowledge base, the down-select iteration, and the final selection analysis. The knowledge base required for productive use of S4 consists of system design information and heritage experience together with a focus on components with health implications. The sensor suite down-selection is an iterative process for identifying a group of sensors that provide good fault detection and isolation for targeted fault scenarios. In the final selection analysis, a statistical evaluation algorithm provides the final robustness test for each down-selected sensor suite. NASA GRC has developed an approach to sensor data qualification that applies empirical relationships, threshold detection techniques, and Bayesian belief theory to a network of sensors related by physics (i.e., analytical redundancy) in order to identify the failure of a given sensor within the network. This data quality validation approach extends the state-of-the-art, from red-lines and reasonableness checks that flag a sensor after it fails, to include analytical redundancy-based methods that can identify a sensor in the process of failing. The focus of this effort is on understanding the proper application of analytical redundancy-based data qualification methods for onboard use in monitoring Upper Stage sensors.
Phase discriminating capacitive array sensor system
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor); Rahim, Wadi (Inventor)
1993-01-01
A phase discriminating capacitive sensor array system which provides multiple sensor elements which are maintained at a phase and amplitude based on a frequency reference provided by a single frequency stabilized oscillator. Sensor signals provided by the multiple sensor elements are controlled by multiple phase control units, which correspond to the multiple sensor elements, to adjust the sensor signals from the multiple sensor elements based on the frequency reference. The adjustment made to the sensor signals is indicated by output signals which indicate the proximity of the object. The output signals may also indicate the closing speed of the object based on the rate of change of the adjustment made, and the edges of the object based on a sudden decrease in the adjustment made.
Robust optical sensors for safety critical automotive applications
NASA Astrophysics Data System (ADS)
De Locht, Cliff; De Knibber, Sven; Maddalena, Sam
2008-02-01
Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-4 Automatic fire sensor and warning device systems; installation; minimum requirements. (a) Effective December 31, 2009, automatic fire sensor and warning device...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-4 Automatic fire sensor and warning device systems; installation; minimum requirements. (a) Effective December 31, 2009, automatic fire sensor and warning device...
NASA Astrophysics Data System (ADS)
Forcier, Bob
2003-09-01
This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.
Calibration and characterization of UV sensors for water disinfection
NASA Astrophysics Data System (ADS)
Larason, T.; Ohno, Y.
2006-04-01
The National Institute of Standards and Technology (NIST), USA is participating in a project with the American Water Works Association Research Foundation (AwwaRF) to develop new guidelines for ultraviolet (UV) sensor characteristics to monitor the performance of UV water disinfection plants. The current UV water disinfection standards, ÖNORM M5873-1 and M5873-2 (Austria) and DVGW W294 3 (Germany), on the requirements for UV sensors for low-pressure mercury (LPM) and medium-pressure mercury (MPM) lamp systems have been studied. Additionally, the characteristics of various types of UV sensors from several different commercial vendors have been measured and analysed. This information will aid in the development of new guidelines to address issues such as sensor requirements, calibration methods, uncertainty and traceability. Practical problems were found in the calibration methods and evaluation of spectral responsivity requirements for sensors designed for MPM lamp systems. To solve the problems, NIST is proposing an alternative sensor calibration method for MPM lamp systems. A future calibration service is described for UV sensors intended for low- and medium-pressure mercury lamp systems used in water disinfection applications.
NASA Technical Reports Server (NTRS)
Mckee, James W.
1988-01-01
This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.
Wearable sensors for human health monitoring
NASA Astrophysics Data System (ADS)
Asada, H. Harry; Reisner, Andrew
2006-03-01
Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.
2012-01-01
systems . For some specific sensor requirements in the domains considered here, for example, assessing system behavior and component state in gas turbine ...Cost Objectives. In general , the implication of the suitability and life cycle cost [LCC] driven objectives for integrated instrumentation/sensor system ...section should be considered. In general , the systems engineering approach provided clear benefits in defining user significant IISS system requirements and
Intelligent multi-sensor integrations
NASA Technical Reports Server (NTRS)
Volz, Richard A.; Jain, Ramesh; Weymouth, Terry
1989-01-01
Growth in the intelligence of space systems requires the use and integration of data from multiple sensors. Generic tools are being developed for extracting and integrating information obtained from multiple sources. The full spectrum is addressed for issues ranging from data acquisition, to characterization of sensor data, to adaptive systems for utilizing the data. In particular, there are three major aspects to the project, multisensor processing, an adaptive approach to object recognition, and distributed sensor system integration.
A molecular rotor based ratiometric sensor for basic amino acids
NASA Astrophysics Data System (ADS)
Pettiwala, Aafrin M.; Singh, Prabhat K.
2018-01-01
The inevitable importance of basic amino acids, arginine and lysine, in human health and metabolism demands construction of efficient sensor systems for them. However, there are only limited reports on the 'ratiometric' detection of basic amino acids which is further restricted by the use of chemically complex sensor molecules, which impedes their prospect for practical applications. Herein, we report a ratiometric sensor system build on simple mechanism of disassociation of novel emissive Thioflavin-T H-aggregates from heparin surface, when subjected to interaction with basic amino acids. The strong and selective electrostatic and hydrogen bonding interaction of basic amino acids with heparin leads to large alteration in photophysical attributes of heparin bound Thioflavin-T, which forms a highly sensitive sensor platform for detection of basic amino acids in aqueous solution. These selective interactions between basic amino acids and heparin allow our sensor system to discriminate arginine and lysine from other amino acids. This unique mechanism of dissociation of Thioflavin-T aggregates from heparin surface provides ratiometric response on both fluorimetric and colorimetric outputs for detection of arginine and lysine, and thus it holds a significant advantage over other developed sensor systems which are restricted to single wavelength detection. Apart from the sensitivity and selectivity, our system also provides the advantage of simplicity, dual mode of sensing, and more importantly, it employs an inexpensive commercially available probe molecule, which is a significant advantage over other developed sensor systems that uses tedious synthesis protocol for the employed probe in the detection scheme, an impediment for practical applications. Additionally, our sensor system also shows response in complex biological media of serum samples.
A Solar Position Sensor Based on Image Vision
Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Rosales, Pedro; Suastegui, José
2017-01-01
Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors’ evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays’ direction as well as the tilt and sensor position. The sensor’s characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors. PMID:28758935
Wang, Shengqian; Rao, Changhui; Xian, Hao; Zhang, Jianlin; Wang, Jianxin; Liu, Zheng
2011-04-25
The feasibility and performance of the pyramid wavefront sensor without modulation used in closed-loop adaptive optics system is investigated in this paper. The theory concepts and some simulation results are given to describe the detection trend and the linearity range of such a sensor with the aim to better understand its properties, and then a laboratory setup of the adaptive optics system based on this sensor and the liquid-crystal spatial light modulator is built. The correction results for the individual Zernike aberrations and the Kolmogorov phase screens are presented to demonstrate that the pyramid wavefront sensor without modulation can work as expected for closed-loop adaptive optics system.
Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA
2008-06-10
A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.
WikiSensing: An Online Collaborative Approach for Sensor Data Management
Silva, Dilshan; Ghanem, Moustafa; Guo, Yike
2012-01-01
This paper presents a new methodology for collaborative sensor data management known as WikiSensing. It is a novel approach that incorporates online collaboration with sensor data management. We introduce the work on this research by describing the motivation and challenges of designing and developing an online collaborative sensor data management system. This is followed by a brief survey on popular sensor data management and online collaborative systems. We then present the architecture for WikiSensing highlighting its main components and features. Several example scenarios are described to present the functionality of the system. We evaluate the approach by investigating the performance of aggregate queries and the scalability of the system. PMID:23201997
NASA Technical Reports Server (NTRS)
Tucker, C. J.
1978-01-01
The first four Landsat-D thematic mapper sensors were evaluated and compared to the RBV and MSS sensors from Landsats-1, 2, and 3, Colvocoresses' proposed 'operational Landsat' three band system, and the French SPOT three band system using simulation/integration techniques and in situ collected spectral reflectance data. Sensors were evaluated by their ability to discriminate vegetation biomass, chlorophyll concentration, and leaf water content. The thematic mapper and SPOT bands were superior in a spectral resolution context to the other three sensor systems for vegetational applications. Significant improvements are expected for vegetational analyses from Landsat-D thematic mapper and SPOT imagery over MSS and RBV imagery.
2008-01-01
Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...pallet Airborne EO/IR and radar sensors VNIR through SWIR hyperspectral systems VNIR, MWIR, and LWIR high-resolution sys- tems Wideband SAR systems...meteorological sensors Hyperspectral sensor systems (PHILLS) Mid-wave infrared (MWIR) Indium Antimonide (InSb) imaging system Long-wave infrared ( LWIR
40 CFR 60.482-3a - Standards: Compressors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped... both. (f) If the sensor indicates failure of the seal system, the barrier system, or both based on the...
A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection
D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin
1993-01-01
A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...
Active Sensing System with In Situ Adjustable Sensor Morphology
Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya
2013-01-01
Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094
Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG.
Jin, Wenquan; Kim, Do Hyeun
2018-02-20
Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system.
Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG
Kim, Do Hyeun
2018-01-01
Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system. PMID:29461493
A Prototype Land Information Sensor Web: Design, Implementation and Implication for the SMAP Mission
NASA Astrophysics Data System (ADS)
Su, H.; Houser, P.; Tian, Y.; Geiger, J. K.; Kumar, S. V.; Gates, L.
2009-12-01
Land Surface Model (LSM) predictions are regular in time and space, but these predictions are influenced by errors in model structure, input variables, parameters and inadequate treatment of sub-grid scale spatial variability. Consequently, LSM predictions are significantly improved through observation constraints made in a data assimilation framework. Several multi-sensor satellites are currently operating which provide multiple global observations of the land surface, and its related near-atmospheric properties. However, these observations are not optimal for addressing current and future land surface environmental problems. To meet future earth system science challenges, NASA will develop constellations of smart satellites in sensor web configurations which provide timely on-demand data and analysis to users, and can be reconfigured based on the changing needs of science and available technology. A sensor web is more than a collection of satellite sensors. That means a sensor web is a system composed of multiple platforms interconnected by a communication network for the purpose of performing specific observations and processing data required to support specific science goals. Sensor webs can eclipse the value of disparate sensor components by reducing response time and increasing scientific value, especially when the two-way interaction between the model and the sensor web is enabled. The study of a prototype Land Information Sensor Web (LISW) is sponsored by NASA, trying to integrate the Land Information System (LIS) in a sensor web framework which allows for optimal 2-way information flow that enhances land surface modeling using sensor web observations, and in turn allows sensor web reconfiguration to minimize overall system uncertainty. This prototype is based on a simulated interactive sensor web, which is then used to exercise and optimize the sensor web modeling interfaces. The Land Information Sensor Web Service-Oriented Architecture (LISW-SOA) has been developed and it is the very first sensor web framework developed especially for the land surface studies. Synthetic experiments based on the LISW-SOA and the virtual sensor web provide a controlled environment in which to examine the end-to-end performance of the prototype, the impact of various sensor web design trade-offs and the eventual value of sensor webs for a particular prediction or decision support. In this paper, the design, implementation of the LISW-SOA and the implication for the Soil Moisture Active and Passive (SMAP) mission is presented. Particular attention is focused on examining the relationship between the economic investment on a sensor web (space and air borne, ground based) and the accuracy of the model predicted soil moisture, which can be achieved by using such sensor observations. The Study of Virtual Land Information Sensor Web (LISW) is expected to provide some necessary a priori knowledge for designing and deploying the next generation Global Earth Observing System of systems (GEOSS).
Handheld chemiresistive gas sensor readout system
NASA Astrophysics Data System (ADS)
Joubert, Trudi-Heleen; du Toit, Jurie; Mkwakikunga, Bonex; Bosscha, Peter
2016-02-01
Low-cost and non-invasive diabetes diagnosis is increasingly important [1], and this paper presents a handheld readout system for chemiresistive gas sensors in a breath acetone diagnostic application. The sensor contains reference and detection devices, used for the detection of gas concentration. Fabrication is by dropcasting a metaloxide nanowire solution onto gold interdigitated electrodes, which had been manufactured on silicon. The resulting layer is a wide bandgap n-type semiconductor material sensitive to acetone, producing a change in resistance between the electrode terminals [2]. Chemiresistive sensors typically require temperatures of 300-500 °C, while variation of sensing temperature is also employed for selective gas detection. The nano-structured functional material requires low temperatures due to large surface area, but heating is still required for acceptable recovery kinetics. Furthermore, UV illumination improves the sensor recovery [3], and is implemented in this system. Sensor resistances range from 100 Ω to 50 MΩ, while the sensor response time require a sampling frequency of 10Hz. Sensor resistance depends on temperature, humidity, and barometric pressure. The GE CC2A23 temperature sensor is used over a range of -10°C to 60°C, the Honeywell HIH5031 humidity sensor operates up to 85% over this temperature range, and the LPS331AP barometric pressure sensor measures up to 1.25 bar. Honeywell AWM43300V air flow sensors monitor the flow rate up to 1000 sccm. An LCD screen displays all the sensor data, as well as real time date and time, while all measurements are also logged in CSV-format. The system operates from a rechargeable battery.
One dimensional wavefront distortion sensor comprising a lens array system
Neal, Daniel R.; Michie, Robert B.
1996-01-01
A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems.
One dimensional wavefront distortion sensor comprising a lens array system
Neal, D.R.; Michie, R.B.
1996-02-20
A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems. 8 figs.
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E; Svoboda, John M; West, Phillip B; Heath, Gail L; Scott, Clark L
2015-01-27
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E [Idaho Falls, ID; Svoboda, John M [Idaho Falls, ID; West, Phillip B [Idaho Falls, ID; Heath, Gail L [Iona, ID; Scott, Clark L [Idaho Falls, ID
2010-08-31
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E; Svoboda, John M.; West, Phillip B.; Heath, Gail L.; Scott, Clark L.
2016-07-19
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Sensor fusion V; Proceedings of the Meeting, Boston, MA, Nov. 15-17, 1992
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Topics addressed include 3D object perception, human-machine interface in multisensor systems, sensor fusion architecture, fusion of multiple and distributed sensors, interface and decision models for sensor fusion, computational networks, simple sensing for complex action, multisensor-based control, and metrology and calibration of multisensor systems. Particular attention is given to controlling 3D objects by sketching 2D views, the graphical simulation and animation environment for flexible structure robots, designing robotic systems from sensorimotor modules, cylindrical object reconstruction from a sequence of images, an accurate estimation of surface properties by integrating information using Bayesian networks, an adaptive fusion model for a distributed detection system, multiple concurrent object descriptions in support of autonomous navigation, robot control with multiple sensors and heuristic knowledge, and optical array detectors for image sensors calibration. (No individual items are abstracted in this volume)
Vibration welding system with thin film sensor
Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou
2014-03-18
A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.
A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors.
Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo
2018-03-02
Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K + ) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K + sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.
Qualls, Joseph; Russomanno, David J.
2011-01-01
The lack of knowledge models to represent sensor systems, algorithms, and missions makes opportunistically discovering a synthesis of systems and algorithms that can satisfy high-level mission specifications impractical. A novel ontological problem-solving framework has been designed that leverages knowledge models describing sensors, algorithms, and high-level missions to facilitate automated inference of assigning systems to subtasks that may satisfy a given mission specification. To demonstrate the efficacy of the ontological problem-solving architecture, a family of persistence surveillance sensor systems and algorithms has been instantiated in a prototype environment to demonstrate the assignment of systems to subtasks of high-level missions. PMID:22164081
Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
Choi, Hyundo; Seo, Keehong; Hyung, Seungyong; Shim, Youngbo; Lim, Soo-Chul
2018-02-13
In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors) sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.
A Low-Cost Sensor Buoy System for Monitoring Shallow Marine Environments
Albaladejo, Cristina; Soto, Fulgencio; Torres, Roque; Sánchez, Pedro; López, Juan A.
2012-01-01
Monitoring of marine ecosystems is essential to identify the parameters that determine their condition. The data derived from the sensors used to monitor them are a fundamental source for the development of mathematical models with which to predict the behaviour of conditions of the water, the sea bed and the living creatures inhabiting it. This paper is intended to explain and illustrate a design and implementation for a new multisensor monitoring buoy system. The system design is based on a number of fundamental requirements that set it apart from other recent proposals: low cost of implementation, the possibility of application in coastal shallow-water marine environments, suitable dimensions for deployment and stability of the sensor system in a shifting environment like the sea bed, and total autonomy of power supply and data recording. The buoy system has successfully performed remote monitoring of temperature and marine pressure (SBE 39 sensor), temperature (MCP9700 sensor) and atmospheric pressure (YOUNG 61302L sensor). The above requirements have been satisfactorily validated by operational trials in a marine environment. The proposed buoy sensor system thus seems to offer a broad range of applications. PMID:23012562