Sample records for sensor test facilities

  1. X-Ray Calibration Facility/Advanced Video Guidance Sensor Test

    NASA Technical Reports Server (NTRS)

    Johnston, N. A. S.; Howard, R. T.; Watson, D. W.

    2004-01-01

    The advanced video guidance sensor was tested in the X-Ray Calibration facility at Marshall Space Flight Center to establish performance during vacuum. Two sensors were tested and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.

  2. Boeing infrared sensor (BIRS) calibration facility

    NASA Technical Reports Server (NTRS)

    Hazen, John D.; Scorsone, L. V.

    1990-01-01

    The Boeing Infrared Sensor (BIRS) Calibration Facility represents a major capital investment in optical and infrared technology. The facility was designed and built for the calibration and testing of the new generation large aperture long wave infrared (LWIR) sensors, seekers, and related technologies. Capability exists to perform both radiometric and goniometric calibrations of large infrared sensors under simulated environmental operating conditions. The system is presently configured for endoatmospheric calibrations with a uniform background field which can be set to simulate the expected mission background levels. During calibration, the sensor under test is also exposed to expected mission temperatures and pressures within the test chamber. Capability exists to convert the facility for exoatmospheric testing. The configuration of the system is described along with hardware elements and changes made to date are addressed.

  3. Configurable UUV Sensor Network II

    DTIC Science & Technology

    2017-12-13

    the South Florida Ocean Test Facility (SFOMF). A larger 3”-diameter ball-shaped electric field sensor was developed and fabricated. A pre -amplifier...magnetic field sensors, and tested at the South Florida Ocean Test Facility (SFOMF). A larger 3”-diameter ball-shaped electric field sensor was developed...and fabricated. Testing of the 3”-diameter ball-shaped sensor at UI showed a noise floor of IpV/m RMS in the frequency band 0.02-20 Hz. UUV

  4. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  5. Energy Systems Sensor Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    NREL Sensor Laboratory Energy Systems Sensor Laboratory The Energy Systems Integration Facility's Energy Systems Sensor Laboratory is designed to support research, development, testing, and evaluation of advanced hydrogen sensor technologies to support the needs of the emerging hydrogen

  6. An Architecture for Intelligent Systems Based on Smart Sensors

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2004-01-01

    Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.

  7. The AEDC aerospace chamber 7V: An advanced test capability for infrared surveillance and seeker sensors

    NASA Technical Reports Server (NTRS)

    Simpson, W. R.

    1994-01-01

    An advanced sensor test capability is now operational at the Air Force Arnold Engineering Development Center (AEDC) for calibration and performance characterization of infrared sensors. This facility, known as the 7V, is part of a broad range of test capabilities under development at AEDC to provide complete ground test support to the sensor community for large-aperture surveillance sensors and kinetic kill interceptors. The 7V is a state-of-the-art cryo/vacuum facility providing calibration and mission simulation against space backgrounds. Key features of the facility include high-fidelity scene simulation with precision track accuracy and in-situ target monitoring, diffraction limited optical system, NIST traceable broadband and spectral radiometric calibration, outstanding jitter control, environmental systems for 20 K, high-vacuum, low-background simulation, and an advanced data acquisition system.

  8. Advancing Sensor Technology for Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mercer, Carolyn R.

    2002-01-01

    NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.

  9. A procedure for accurate calibration of the orientation of the three sensors in a vector magnetometer. [at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1977-01-01

    Procedures are described for the calibration of a vector magnetometer of high absolute accuracy. It is assumed that the calibration will be performed in the magnetic test facility of Goddard Space Flight Center (GSFC). The first main section of the report describes the test equipment and facility calibrations required. The second presents procedures for calibrating individual sensors. The third discusses the calibration of the sensor assembly. In a final section recommendations are made to GSFC for modification of the test facility required to carry out the calibration procedures.

  10. Classification of Reactor Facility Operational State Using SPRT Methods with Radiation Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez Aviles, Camila A.; Rao, Nageswara S.

    We consider the problem of inferring the operational state of a reactor facility by using measurements from a radiation sensor network, which is deployed around the facility’s ventilation stack. The radiation emissions from the stack decay with distance, and the corresponding measurements are inherently random with parameters determined by radiation intensity levels at the sensor locations. We fuse measurements from network sensors to estimate the intensity at the stack, and use this estimate in a one-sided Sequential Probability Ratio Test (SPRT) to infer the on/off state of the reactor facility. We demonstrate the superior performance of this method over conventionalmore » majority vote fusers and individual sensors using (i) test measurements from a network of NaI sensors, and (ii) emulated measurements using radioactive effluents collected at a reactor facility stack. We analytically quantify the performance improvements of individual sensors and their networks with adaptive thresholds over those with fixed ones, by using the packing number of the radiation intensity space.« less

  11. Technology evaluation, assessment, modeling, and simulation: the TEAMS capability

    NASA Astrophysics Data System (ADS)

    Holland, Orgal T.; Stiegler, Robert L.

    1998-08-01

    The United States Marine Corps' Technology Evaluation, Assessment, Modeling and Simulation (TEAMS) capability, located at the Naval Surface Warfare Center in Dahlgren Virginia, provides an environment for detailed test, evaluation, and assessment of live and simulated sensor and sensor-to-shooter systems for the joint warfare community. Frequent use of modeling and simulation allows for cost effective testing, bench-marking, and evaluation of various levels of sensors and sensor-to-shooter engagements. Interconnectivity to live, instrumented equipment operating in real battle space environments and to remote modeling and simulation facilities participating in advanced distributed simulations (ADS) exercises is available to support a wide- range of situational assessment requirements. TEAMS provides a valuable resource for a variety of users. Engineers, analysts, and other technology developers can use TEAMS to evaluate, assess and analyze tactical relevant phenomenological data on tactical situations. Expeditionary warfare and USMC concept developers can use the facility to support and execute advanced warfighting experiments (AWE) to better assess operational maneuver from the sea (OMFTS) concepts, doctrines, and technology developments. Developers can use the facility to support sensor system hardware, software and algorithm development as well as combat development, acquisition, and engineering processes. Test and evaluation specialists can use the facility to plan, assess, and augment their processes. This paper presents an overview of the TEAMS capability and focuses specifically on the technical challenges associated with the integration of live sensor hardware into a synthetic environment and how those challenges are being met. Existing sensors, recent experiments and facility specifications are featured.

  12. Hypervelocity impact testing of spacecraft optical sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Hypervelocity tests of spacecraft optical sensors were conducted to determine if the optical signature from an impact inside the optical sensor sunshade resembled signals that have been observed on-orbit. Impact tests were conducted in darkness and with the ejected debris illuminated. The tests were conducted at the Johnson Space Center Hypervelocity Impact Test Facility. The projectile masses and velocities that may be obtained at the facility are most representative of the hypervelocity particles thought to be responsible for a group of anomalous optical sensors responses that have been observed on-orbit. The projectiles are a few micrograms, slightly more massive thanmore » the microgram particles thought to be responsible for the signal source. The test velocities were typically 7.3 km/s, which are somewhat slower than typical space particles.« less

  13. Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

    2003-01-01

    Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

  14. Evaluation of new technologies for the LISA gravitational reference sensor using the UF torsion pendulum

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Aitken, Michael; Ciani, Giacomo; Mueller, Guido

    2016-01-01

    The Laser Interferometer Space Antenna (LISA) is the most mature concept for detecting gravitational waves from space. The LISA design has been studied for more than 20 years as a joint effort between NASA and the European Space Agency. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 1-5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics. A single test mass together with its protective housing and associated components is referred to as a gravitational reference sensor. A drag-free control system is supplied with measurements of the test mass position from these sensors and commands external micronewton thrusters to force the spacecraft to fly in formation with the test masses. Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. We have constructed a new torsion pendulum facility with a force sensitivity in the range of pN/Hz1/2 around 1 mHz for testing new gravitational reference sensor technologies. This experimental facility consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by their electrode housings. With the aid of this facility, we are (a) developing a novel test mass charge control scheme based on ultraviolet LEDs, (b) examining alternate test mass and electrode housing coatings, and (c) evaluating alternate operational modes of the LISA gravitational reference sensor. This presentation will describe this facility and the development status of these new technologies.

  15. Testing of a Wireless Sensor System for Instrumented Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Kummer, Allen T.; Weir, Erik D.; Morris, Trey J.; Friedenberger, Corey W.; Singh, Aseem; Capuro, Robert M.; Bilen, Sven G.; Fu, Johnny; Swanson, Gregory T.; Hash, David B.

    2011-01-01

    Funded by NASA's Constellation Universities Institutes Project (CUIP), we have been developing and testing a system to wirelessly power and collect data from sensors on space platforms in general and, in particular, the harsh environment of spacecraft re-entry. The elimination of wires and associated failures such as chafing, sparking, ageing, and connector issues can increase reliability and design flexibility while reducing costs. These factors present an appealing case for the pursuit of wireless solutions for harsh environments, particularly for their use in space and on spacecraft. We have designed and built a prototype wireless sensor system. The system, with capabilities similar to that of a wired sensor system, was tested in NASA Ames Research Center s Aerodynamic Heating Facility and Interaction Heating Facility. This paper discusses the overall development effort, testing results, as well as future directions.

  16. Optically-based Sensor System for Critical Nuclear Facilities Post-Event Seismic Structural Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, David; Petrone, Floriana; Buckle, Ian

    The U.S. Department of Energy (DOE) has ownership and operational responsibility for a large enterprise of nuclear facilities that provide essential functions to DOE missions ranging from national security to discovery science and energy research. These facilities support a number of DOE programs and offices including the National Nuclear Security Administration, Office of Science, and Office of Environmental Management. With many unique and “one of a kind” functions, these facilities represent a tremendous national investment, and assuring their safety and integrity is fundamental to the success of a breadth of DOE programs. Many DOE critical facilities are located in regionsmore » with significant natural phenomenon hazards including major earthquakes and DOE has been a leader in developing standards for the seismic analysis of nuclear facilities. Attaining and sustaining excellence in nuclear facility design and management must be a core competency of the DOE. An important part of nuclear facility management is the ability to monitor facilities and rapidly assess the response and integrity of the facilities after any major upset event. Experience in the western U.S. has shown that understanding facility integrity after a major earthquake is a significant challenge which, lacking key data, can require extensive effort and significant time. In the work described in the attached report, a transformational approach to earthquake monitoring of facilities is described and demonstrated. An entirely new type of optically-based sensor that can directly and accurately measure the earthquake-induced deformations of a critical facility has been developed and tested. This report summarizes large-scale shake table testing of the sensor concept on a representative steel frame building structure, and provides quantitative data on the accuracy of the sensor measurements.« less

  17. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Maolong; Ryals, Matthew; Ali, Amir

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less

  18. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab

    NASA Technical Reports Server (NTRS)

    Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL) using the FRL's 6-DOF gantry system, called the Dynamic Overhead Target System (DOTS). The target vehicle for "docking" in the laboratory was a mockup that was representative of the proposed CEV docking system, with added retroreflectors for the AVGS.' The multi-sensor test configuration used 35 open-loop test trajectories covering three major objectives: (l) sensor characterization trajectories designed to test a wide range of performance parameters; (2) CEV-specific trajectories designed to test performance during CEV-like approach and departure profiles; and (3) sensor characterization tests designed for evaluating sensor performance under more extreme conditions as might be induced during a spacecraft failure or during contingency situations. This paper describes the test development, test facility, test preparations, test execution, and test results of the multisensor series oftrajectories

  19. Heat flux microsensor measurements

    NASA Technical Reports Server (NTRS)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  20. Neutral atoms facility for space sensors characterization and BepiColombo/ELENA development instrument's progresses.

    NASA Astrophysics Data System (ADS)

    de Angelis, E.; di Lellis, A. M.; Orsini, S.; Zanza, V.; Maggi, M.; Vertolli, N.; D'Amicis, R.; Tilia, B.; Sibio, A.

    2003-04-01

    An Energetic Neutral Atoms facility to test and calibrate Neutral Atoms Analyzers has been developed in the Scientific Technical Unit of Fusion at the ENEA Research Center in Frascati (Rome-Italy). In the last years a collaboration with IFSI (Interplanetary Space and Physics Institute, CNR-Rome-Italy) has allowed to use this facility for space sensors and for characterization of crucial instruments elements. The ENA beam is realized with an ion source and a neutralization cell, and allows to test any instrument in the energy range 300eV-110keV with the available masses of Hydrogen, Deuterium or Helium. At the moment, the critical elements of ELENA (Emitted Low Energy Neutral Atoms) instrument proposed for BepiColombo ESA cornerstone mission to Mercury is under development testing. The facility, its potentiality and the instrument characterization progresses are presented.

  1. Comparison of Cryogenic Temperature Sensor Installation Inside or Outside the Piping

    NASA Astrophysics Data System (ADS)

    Müller, R.; Süßer, M.

    2010-04-01

    Cryogenic thermometers for large cryogenic facilities, like superconducting particle accelerator or fusion devices, must be able to withstand very severe conditions over the lifetime of the facility. In addition to the proper selection of the sensor, the choice of the appropriate installation method plays an important role for satisfying operation. Several characteristics must be taken into account, for instance: large numbers of sensors, different claims of accuracy, qualified preparation methods and at least qualified attachment of the sensor holder on the piping. One remedy to get satisfying results is the development of simple thermometer mounting fixtures, because thermometer mounting often may be realized by personnel with limited experience. This contribution presents two different methods for sensor installations, namely inside or outside installation on the piping. These have been the standard applications in the superconducting coil test facility TOSKA for many years. The characteristics of each of these methods will be discussed and compared.

  2. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Brewster, L.; Johnston, A.; Howard, R.; Mitchell, J.; Cryan, S.

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-loop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of"pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL) using the FRL's 6-DOF gantry system, called the Dynamic Overhead Target System (DOTS). The target vehicle for "docking" in the laboratory was a mockup that was representative of the proposed CEV docking system, with added retroreflectors for the AVGS. The multi-sensor test configuration used 35 open-loop test trajectories covering three major objectives: (1) sensor characterization trajectories designed to test a wide range of performance parameters; (2) CEV-specific trajectories designed to test performance during CEV-like approach and departure profiles; and (3) sensor characterization tests designed for evaluating sensor performance under more extreme conditions as might be induced during a spacecraft failure or during contingency situations. This paper describes the test development, test facility, test preparations, test execution, and test results of the multi-sensor series of trajectories.

  3. Development of a fiber optic compressor blade sensor

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1995-01-01

    A complete working prototype of the fiber optic blade tip sensor was first tested in the laboratory, followed by a thorough evaluation at NASA W8 Single Compressor Stage Facility in Lewis Research Center. Subsequently, a complete system with three parallel channels was fabricated and delivered to Dr. Kurkov. The final system was tested in the Subsonic Wind Tunnel Facility, in parallel with The General Electric Company's light probe system. The results at all operating speeds were comparable. This report provides a brief description of the system and presents a summary of the experimental results.

  4. A hybrid electronically scanned pressure module for cryogenic environments

    NASA Technical Reports Server (NTRS)

    Chapman, J. J.; Hopson, P., Jr.; Kruse, N.

    1995-01-01

    Pressure is one of the most important parameters measured when testing models in wind tunnels. For models tested in the cryogenic environment of the National Transonic Facility at NASA Langley Research Center, the technique of utilizing commercially available multichannel pressure modules inside the models is difficult due to the small internal volume of the models and the requirement of keeping the pressure transducer modules within an acceptable temperature range well above the -173 degrees C tunnel temperature. A prototype multichannel pressure transducer module has been designed and fabricated with stable, repeatable sensors and materials optimized for reliable performance in the cryogenic environment. The module has 16 single crystal silicon piezoresistive pressure sensors electrostatically bonded to a metalized Pyrex substrate for sensing the wind tunnel model pressures. An integral temperature sensor mounted on each silicon micromachined pressure sensor senses real-time temperature fluctuations to within 0.1 degrees C to correct for thermally induced non-random sensor drift. The data presented here are from a prototype sensor module tested in the 0.3 M cryogenic tunnel and thermal equilibrium conditions in an environmental chamber which approximates the thermal environment (-173 degrees C to +60 degrees C) of the National Transonic Facility.

  5. ATR NSUF Instrumentation Enhancement Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joy L. Rempe; Mitchell K. Meyer; Darrell L. Knudson

    A key component of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) effort is to expand instrumentation available to users conducting irradiation tests in this unique facility. In particular, development of sensors capable of providing real-time measurements of key irradiation parameters is emphasized because of their potential to increase data fidelity and reduce posttest examination costs. This paper describes the strategy for identifying new instrumentation needed for ATR irradiations and the program underway to develop and evaluate new sensors to address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users ofmore » the ATR NSUF. In addition, progress is reported on current research efforts to provide improved in-pile instrumentation to users.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Ramirez Aviles, Camila A.

    We consider the problem of inferring the operational status of a reactor facility using measurements from a radiation sensor network deployed around the facility’s ventilation off-gas stack. The intensity of stack emissions decays with distance, and the sensor counts or measurements are inherently random with parameters determined by the intensity at the sensor’s location. We utilize the measurements to estimate the intensity at the stack, and use it in a one-sided Sequential Probability Ratio Test (SPRT) to infer on/off status of the reactor. We demonstrate the superior performance of this method over conventional majority fusers and individual sensors using (i)more » test measurements from a network of 21 NaI detectors, and (ii) effluence measurements collected at the stack of a reactor facility. We also analytically establish the superior detection performance of the network over individual sensors with fixed and adaptive thresholds by utilizing the Poisson distribution of the counts. We quantify the performance improvements of the network detection over individual sensors using the packing number of the intensity space.« less

  7. The National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Holmes, H. K.

    1986-01-01

    The National Transonic Facility, NTF, is a high Reynolds Number facility where the increase in Reynolds Number is obtained by operating at high pressures and low temperatures. Liquid nitrogen is allowed to vaporize, making gaseous nitrogen the test medium with temperatures extending down to approximately 100 degrees Kelvin. These factors have created unique, new challenges to those developing sensors and instrumentation. Pressure vessels, thermal enclosures or elaborate temperature compensations schemes, are needed for environmental protection and special materials are needed for sensors and model fabrication. The need for a new measurement, model deformation, was also created. An extensive program to develop the unique sensors and instrumentation was initiated. The data acquisition system and systems to measure aerodynamic forces and pressures, model attitude, and model deformation, are discussed.

  8. Experimental Setup and Commissioning of a Test Facility for Gain Evaluation of Microchannel-Plate Photomultipliers in High Magnetic Field at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Bringley, Eric; Cao, Tongtong; Ilieva, Yordonka; Nadel-Turonski, Pawel; Park, Kijun; Zorn, Carl

    2014-09-01

    At the Thomas Jefferson National Accelerator Facility (JLab) a research and development project for a Detector of Internally-Reflected Cherenkov light for the upcoming Electron Ion Collider is underway. One goal is the development of a compact readout camera that can operate in high magnetic fields. Small-size photon sensors, such as Microchannel-Plate Photomultipliers (MCP-PMT), are key components of the readout. Here we present our work to set up and commission a dedicated test facility at JLab where MCP-PMT gain is evaluated in magnetic fields of up to 5 T, and to develop a test procedure and analysis software to determine the gain. We operate the setup in a single-photon mode, where a light-emitting diode delivers photons to the sensor's photocathode. The PMT spectrum is measured with a flash Analog-to-Digital converter (fADC). We model the spectrum as a sum of an exponential background and a convolution of Poisson and Gaussian distributions of the pedestal and multiple photoelectron peaks, respectively. We determine the PMT's gain from the position of the single-photoelectron peak obtained by fitting the fADC spectrum to the model. Our gain uncertainty is <10%. The facility is now established and will have a long-lasting value for sensor tests and beyond-nuclear-physics applications.

  9. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  10. LLNL electro-optical mine detection program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.; Aimonetti, W.; Barth, M.

    1994-09-30

    Under funding from the Advanced Research Projects Agency (ARPA) and the US Marine Corps (USMC), Lawrence Livermore National Laboratory (LLNL) has directed a program aimed at improving detection capabilities against buried mines and munitions. The program has provided a national test facility for buried mines in arid environments, compiled and distributed an extensive data base of infrared (IR), ground penetrating radar (GPR), and other measurements made at that site, served as a host for other organizations wishing to make measurements, made considerable progress in the use of ground penetrating radar for mine detection, and worked on the difficult problem ofmore » sensor fusion as applied to buried mine detection. While the majority of our effort has been concentrated on the buried mine problem, LLNL has worked with the U.S.M.C. on surface mine problems as well, providing data and analysis to support the COBRA (Coastal Battlefield Reconnaissance and Analysis) program. The original aim of the experimental aspect of the program was the utilization of multiband infrared approaches for the detection of buried mines. Later the work was extended to a multisensor investigation, including sensors other than infrared imagers. After an early series of measurements, it was determined that further progress would require a larger test facility in a natural environment, so the Buried Object Test Facility (BOTF) was constructed at the Nevada Test Site. After extensive testing, with sensors spanning the electromagnetic spectrum from the near ultraviolet to radio frequencies, possible paths for improvement were: improved spatial resolution providing better ground texture discrimination; analysis which involves more complicated spatial queueing and filtering; additional IR bands using imaging spectroscopy; the use of additional sensors other than IR and the use of data fusion techniques with multi-sensor data; and utilizing time dependent observables like temperature.« less

  11. Development of a Large Scale, High Speed Wheel Test Facility

    NASA Technical Reports Server (NTRS)

    Kondoleon, Anthony; Seltzer, Donald; Thornton, Richard; Thompson, Marc

    1996-01-01

    Draper Laboratory, with its internal research and development budget, has for the past two years been funding a joint effort with the Massachusetts Institute of Technology (MIT) for the development of a large scale, high speed wheel test facility. This facility was developed to perform experiments and carry out evaluations on levitation and propulsion designs for MagLev systems currently under consideration. The facility was developed to rotate a large (2 meter) wheel which could operate with peripheral speeds of greater than 100 meters/second. The rim of the wheel was constructed of a non-magnetic, non-conductive composite material to avoid the generation of errors from spurious forces. A sensor package containing a multi-axis force and torque sensor mounted to the base of the station, provides a signal of the lift and drag forces on the package being tested. Position tables mounted on the station allow for the introduction of errors in real time. A computer controlled data acquisition system was developed around a Macintosh IIfx to record the test data and control the speed of the wheel. This paper describes the development of this test facility. A detailed description of the major components is presented. Recently completed tests carried out on a novel Electrodynamic (EDS) suspension system, developed by MIT as part of this joint effort are described and presented. Adaptation of this facility for linear motor and other propulsion and levitation testing is described.

  12. Measurement of the Nonlinearity of Heat-Flux Sensors Employing a CO_2 laser

    NASA Astrophysics Data System (ADS)

    van der Ham, E. W. M.; Beer, C. M.; Ballico, M. J.

    2018-01-01

    Heat-flux sensors are widely used in industry to test building products and designs for resistance to bushfire, to test the flammability of textiles and in numerous applications such as concentrated solar collectors. In Australia, such detectors are currently calibrated by the National Measurement Institute Australia (NMIA) at low flux levels of 20 W \\cdot m^{-2}. Estimates of the uncertainty arising from nonlinearity at industrial levels (e.g. 50 kW \\cdot m^{-2} for bushfire testing) rely on literature information. NMIA has developed a facility to characterize the linearity response of these heat-flux sensors up to 110 kW \\cdot m^{-2} using a low-power CO_2 laser and a chopped quartz tungsten-halogen lamp. The facility was validated by comparison with the conventional flux-addition method, and used to characterize several Schmidt-Boelter-type sensors. A significant nonlinear response was found, ranging from (3.2 ± 0.9)% at 40 kW \\cdot m^{-2} to more than 8 % at 100 kW \\cdot m^{-2}. Additional measurements confirm that this is not attributable to convection effects, but due to the temperature dependence of the sensor's responsivity.

  13. Thin Film Sensors for Surface Measurements

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.

    2001-01-01

    Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.

  14. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  15. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.

    PubMed

    Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P

    2010-10-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  16. Development of Thermoacoustic Sensors for Sodium-cooled Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heibel, Michael D.; Carvajal, Jorge V.; Ferroni, Paolo

    This Final Report refers to the project “Development of Thermoacoustic Sensors for Sodium-cooled Fast Reactor Systems”, which was led by Westinghouse Electric Company (Westinghouse) and carried out in collaboration with Argonne National Laboratory (ANL) and University of Pittsburgh. Thermo-acoustic Power Sensors (TAPS) are self-powered, wireless sensors envisioned for measuring key parameters, such as local temperature and neutron flux, in a nuclear reactor core. This project was intended to specifically investigate their applicability to Sodium-cooled Fast Reactors (SFR). TAPS are non-invasive (wireless) and passive (self-powered) devices. The passivity derives from their ability to use conditions that “naturally” exist in a nuclearmore » reactor, such as gamma and neutron flux, as power sources. They generate oscillating pressure waves (i.e., sound waves) which, with a frequency and amplitude dependent upon these conditions, can travel through the core and associated structures, and reach the outside of the reactor vessel where a properly designed network of receivers can detect and interpret them. These receivers require a very small amount of power which, during loss of power events, can be provided for example by harvesting gamma radiation energy, thus resulting in a monitoring system that can function both during normal operation and during loss of power events. The project aimed at TAPS development through a series of tasks which are listed and briefly discussed as follows. TASK 1 – Sensor hardware design Subtask 1a: Assessment of sensor applications to SFRs Subtask 1b: Development of sensor functional requirements Subtask 1c: Definition of sensor hardware design specifications Task description: TAPS design was informed by considerations on their application (Subtask 1a), both the ultimate one in an SFR and the actual one in the ANL testing facilities that was intended to be used in support of the project. Considerations were made to identify optimum sensor design features that optimize the sensor size, materials, and output signal, for installation inside an SFR core. These considerations led to the development of Functional Requirements (Subtask 1b) and Design Requirements (Subtask 1c). TASK 2 – Sensor Hardware Manufacture Subtask 2a: Sensor hardware construction drawing development Subtask 2b: Sensor manufacture and assembly Task description: TAPS technical drawings were developed (Subtask 2a) using the Design Requirements established under Task 1. Subsequently, in spite of some problems which ultimately caused the program to be delayed, TAPS manufacturing was completed based on drawings (Subtask 2b). TASK 3 – Development of TAPS Signal Measurement System and TAPS Testing in Water Subtask 3a: Design, assembly and testing of signal measurement system, and TAPS testing in water Subtask 3b: Signal prediction-correction methodology development Task description: An assessment was performed on the techniques that can potentially be used to detect the signals emitted by the TAPS, e.g. a fiber-optic based acoustic signal measurement system, a laser vibrometer system, or an accelerometer-based system. The most suited technology, i.e. the accelerometer-based system, was developed further, and tested in water (Subtask 3a). Moreover, efforts were made to develop the methodology required to determine the actual system temperature and neutron flux distribution using differences between the measured and predicted TAPS responses (Subtask 3b). TASK 4 – Sensor System Testing in Sodium Subtask 4a: Test plan development Subtask 4b: Design, assembly and testing in small-scale sodium facility Subtask 4c: Design, assembly and testing in large-scale sodium and structures facility Task description: Upon proper test plan development (Subtask 4a), the fabricated TAPS was planned to be tested in sodium, by using two sodium facilities at ANL having different size and different purpose. The Under Sodium Viewing (USV) small-scale facility was intended to be used to investigate the effect of sodium on the sensor and its performance (Subtask 4b). The Mechanism Engineering Test Loop (METL) large-scale facility was instead intended to be used to assess the additional effect of prototypical SFR structures, such as fuel assembly mockup or parts of the core restrain structure, on sensor performance (Subtask 4c). As discussed in Section 3.2.2.7, unexpected issues during the TAPS manufacturing process resulted in some activities being delayed, with the TAPS and USV facility developed to the point to be ready for testing in sodium, however without the possibility to actually perform such testing (including the testing in METL) due to the end of the program’s performance period. Overall, through the development and testing (in water only) of two TAPS devices (a First-Generation TAPS followed by an optimized Second-Generation TAPS), the project confirmed the capability of this technology to generate acoustic signals proportional to temperature, which can be detected through a network of accelerometers identified as the best-suited type of receivers for acoustic signal detection. Moreover, the project also developed a computational model to predict the characteristics of the acoustic signals being generated, which combines thermal analysis of the TAPS with Finite Element Modeling (FEM)-aided acoustic characterization of the system. This model was benchmarked against experimental data collected during the project and, although general agreement was obtained, some limitations of the modeling methods were identified, which require additional development. Additional testing is needed in order to assess the effect, on TAPS operation and performance, of environmental changes resulting from the transition from water to liquid sodium. Such testing, which is suggested to be performed in the future, should look specifically at 1) both the effect resulting from the different thermoacoustic behavior of sodium (relative to water) and the effects of higher temperature on TAPS performance, and 2) the performance of the sensor-receiver system when multiple TAPS are used simultaneously and prototypical reactor structures are positioned in the testing environment. The latter testing is needed to assess the effects that potential signal attenuation/ distortion phenomena, as well as potential interference between signals emitted simultaneously, have on the performance of the technology for ultimate application in a nuclear reactor.« less

  17. Use of Data Libraries for IAEA Nuclear Security Assessment Methodologies (NUSAM) [section 5.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shull, D.; Lane, M.

    2015-06-23

    Data libraries are essential for the characterization of the facility and provide the documented input which enables the facility assessment results and subsequent conclusions. Data Libraries are historical, verifiable, quantified, and applicable collections of testing data on different types of barriers, sensors, cameras, procedures, and/or personnel. Data libraries are developed and maintained as part of any assessment program or process. Data is collected during the initial stages of facility characterization to aid in the model and/or simulation development process. Data library values may also be developed through the use of state testing centers and/or site resources by testing different typesmore » of barriers, sensors, cameras, procedures, and/or personnel. If no data exists, subject matter expert opinion and manufacturer's specifications/ testing values can be the basis for initially assigning values, but are generally less reliable and lack appropriate confidence measures. The use of existing data libraries that have been developed by a state testing organization reduces the assessment costs by establishing standard delay, detection and assessment values for use by multiple sites or facilities where common barriers and alarms systems exist.« less

  18. Acoustic emission transducers--development of a facility for traceable out-of-plane displacement calibration.

    PubMed

    Theobald, P D; Esward, T J; Dowson, S P; Preston, R C

    2005-03-01

    Acoustic emission (AE) is a widely used technique that has been employed for the integrity testing of a range of vessels and structures for many years. The last decade has seen advances in signal processing, such that the reliability of AE technology is now being recognised by a wider range of industries. Furthermore, the need for quality control at the manufacturing stage, and requirements of in-service testing, is encouraging the issue of traceable measurements to be addressed. Currently, no independent calibration service for acoustic emission transducers is available within Europe. The UKs National Physical Laboratory (NPL) is undertaking work to develop a measurement facility for the traceable calibration of AE sensors. Such calibrations can contribute to greater acceptance of AE techniques in general, by meeting quality system and other traceability requirements. In this paper the key issues surrounding the development of such a facility are reviewed, including the need to establish repeatable AE sources, select suitable test blocks and to understand the limitations imposed by AE sensors themselves. To provide an absolute measurement of the displacement on the surface of a test block, laser interferometry is employed. In this way the output voltage of an AE sensor can be directly related to the displacement detected at the block surface. A possible calibration methodology is discussed and preliminary calibration results are presented for a commercially available AE sensor, showing its response to longitudinal wave modes.

  19. Clean Room Facility

    NASA Image and Video Library

    2016-09-07

    NASA Glenn technician Ariana Miller prepares an ultrahigh vacuum chamber used to test the materials used in silicon carbide based sensors and electronics that can operate at extremely high temperatures (500 degrees Celsius and higher) for applications such as sensor systems for aircraft engines and Venus exploration.

  20. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    PubMed

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  1. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    PubMed Central

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  2. Design and evaluation of the ReKon : an integrated detection and assessment perimeter system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabling, Jeffrey Glenn; Andersen, Jason Jann; McLaughlin, James O.

    2013-02-01

    Kontek Industries (Kannapolis, NC) and their subsidiary, Stonewater Control Systems (Kannapolis, NC), have entered into a cooperative research and development agreement with Sandia to jointly develop and evaluate an integrated perimeter security system solution, one that couples access delay with detection and assessment. This novel perimeter solution was designed to be configurable for use at facilities ranging from high-security military sites to commercial power plants, to petro/chemical facilities of various kinds. A prototype section of the perimeter has been produced and installed at the Sandia Test and Evaluation Center in Albuquerque, NM. This prototype system integrated fiber optic break sensors,more » active infrared sensors, fence disturbance sensors, video motion detection, and ground sensors. This report documents the design, testing, and performance evaluation of the developed ReKon system. The ability of the system to properly detect pedestrian or vehicle attempts to bypass, breach, or otherwise defeat the system is characterized, as well as the Nuisance Alarm Rate.« less

  3. Thermal (Silicon Diode) Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    Marshall Space Flight Center's X-ray Calibration Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  4. Thermal (Silicon Diode) Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Wright, Ernest; Kegley, Jeff

    2008-01-01

    Marshall Space Flight Center s X-ray Cryogenic Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  5. Integrated gas analyzer for complete monitoring of turbine engine test cells.

    PubMed

    Markham, James R; Bush, Patrick M; Bonzani, Peter J; Scire, James J; Zaccardi, Vincent A; Jalbert, Paul A; Bryant, M Denise; Gardner, Donald G

    2004-01-01

    Fourier transform infrared (FT-IR) spectroscopy is proving to be reliable and economical for the quantification of many gas-phase species during testing and development of gas turbine engines in ground-based facilities such as sea-level test cells and altitude test cells. FT-IR measurement applications include engine-generated exhaust gases, facility air provided as input to engines, and ambient air in and around test cells. Potentially, the traditionally used assembly of many gas-specific single gas analyzers will be eliminated. However, the quest for a single instrument capable of complete gas-phase monitoring at turbine engine test cells has previously suffered since the FT-IR method cannot measure infrared-inactive oxygen molecules, a key operational gas to both air-breathing propulsion systems and test cell personnel. To further the quest, the FT-IR sensor used for the measurements presented in this article was modified by integration of a miniature, solid-state electrochemical oxygen sensor. Embedded in the FT-IR unit at a location near the long-effective-optical-path-length gas sampling cell, the amperometric oxygen sensor provides simultaneous, complementary information to the wealth of spectroscopic data provided by the FT-IR method.

  6. Verification Challenges of Dynamic Testing of Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Winnitoy, Susan

    2010-01-01

    The Six Degree-of-Freedom Dynamic Test System (SDTS) is a test facility at the National Aeronautics and Space Administration (NASA) Johnson Space Center in Houston, Texas for performing dynamic verification of space structures and hardware. Some examples of past and current tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility is able to integrate a dynamic simulation of on-orbit spacecraft mating or demating using flight-like mechanical interface hardware. A force moment sensor is utilized for input to the simulation during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents many unique challenges, one particular area of interest is with respect to the use of external measurement systems to ensure accurate feedback of dynamic contact. There are many commercial off-the-shelf (COTS) measurement systems available on the market, and the test facility measurement systems have evolved over time to include two separate COTS systems. The first system incorporates infra-red sensing cameras, while the second system employs a laser interferometer to determine position and orientation data. The specific technical challenges with the measurement systems in a large dynamic environment include changing thermal and humidity levels, operational area and measurement volume, dynamic tracking, and data synchronization. The facility is located in an expansive high-bay area that is occasionally exposed to outside temperature when large retractable doors at each end of the building are opened. The laser interferometer system, in particular, is vulnerable to the environmental changes in the building. The operational area of the test facility itself is sizeable, ranging from seven meters wide and five meters deep to as much as seven meters high. Both facility measurement systems have desirable measurement volumes and the accuracies vary within the respective volumes. In addition, because this is a dynamic facility with a moving test bed, direct line-of-sight may not be available at all times between the measurement sensors and the tracking targets. Finally, the feedback data from the active test bed along with the two external measurement systems must be synchronized to allow for data correlation. To ensure the desired accuracy and resolution of these systems, calibration of the systems must be performed regularly. New innovations in sensor technology itself are periodically incorporated into the facility s overall measurement scheme. In addressing the challenges of the measurement systems, the facility is able to provide essential position and orientation data to verify the dynamic performance of space flight hardware.

  7. Reagan Test Site Distributed Operations

    DTIC Science & Technology

    2012-01-01

    for missile testing because of its geography and its strategic location in the Pacific [ 1 ]. The atoll’s distance from launch facilities at Vandenberg...research on ballistic missile defense 50 years ago (Figure 1 ). The subsequent development of RTS’s unique instrumentation sensors, including high...control center including hardware, software, networks, and the facility functioned successfully. FIGURE 1 . The map shows the isolated location of the

  8. Uncertainty Analysis of Inertial Model Attitude Sensor Calibration and Application with a Recommended New Calibration Method

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.

  9. Transmittance Measurement of a Heliostat Facility used in the Preflight Radiometric Calibration of Earth-Observing Sensors

    NASA Technical Reports Server (NTRS)

    Czapla-Myers, J.; Thome, K.; Anderson, N.; McCorkel, J.; Leisso, N.; Good, W.; Collins, S.

    2009-01-01

    Ball Aerospace and Technologies Corporation in Boulder, Colorado, has developed a heliostat facility that will be used to determine the preflight radiometric calibration of Earth-observing sensors that operate in the solar-reflective regime. While automatically tracking the Sun, the heliostat directs the solar beam inside a thermal vacuum chamber, where the sensor under test resides. The main advantage to using the Sun as the illumination source for preflight radiometric calibration is because it will also be the source of illumination when the sensor is in flight. This minimizes errors in the pre- and post-launch calibration due to spectral mismatches. It also allows the instrument under test to operate at irradiance values similar to those on orbit. The Remote Sensing Group at the University of Arizona measured the transmittance of the heliostat facility using three methods, the first of which is a relative measurement made using a hyperspectral portable spectroradiometer and well-calibrated reference panel. The second method is also a relative measurement, and uses a 12-channel automated solar radiometer. The final method is an absolute measurement using a hyperspectral spectroradiometer and reference panel combination, where the spectroradiometer is calibrated on site using a solar-radiation-based calibration.

  10. Geodetic Imaging Lidar: Applications for high-accuracy, large area mapping with NASA's upcoming high-altitude waveform-based airborne laser altimetry Facility

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.

    2015-12-01

    Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.

  11. Development of an Implantable Fish Spawning Sensor Tag

    DTIC Science & Technology

    2013-09-24

    Manatee Hatchery Facility, Port Manatee , Florida) using a Millar Instruments pressure catheter inserted a fixed distance (15cm) into the ovary before and...red drum aquaculture facility in Port Manatee , Florida (or similar aquaculture facility where spawning fishes are kept). This facility maintains a...at the Port Manatee hatchery and phase three tests on goliath grouper in the field. RESULTS *Please refer to other sections for more details and

  12. Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment.

    PubMed

    Goiffon, V; Girard, S; Chabane, A; Paillet, P; Magnan, P; Cervantes, P; Martin-Gonthier, P; Baggio, J; Estribeau, M; Bourgade, J-L; Darbon, S; Rousseau, A; Glebov, V Yu; Pien, G; Sangster, T C

    2012-08-27

    CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques.

  13. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibilitymore » of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).« less

  14. Experimental study of temperature sensor for an ocean-going liquid hydrogen (LH2) carrier

    NASA Astrophysics Data System (ADS)

    Nakano, A.; Shimazaki, T.; Sekiya, M.; Shiozawa, H.; Aoyagi, A.; Ohtsuka, K.; Iwakiri, T.; Mikami, Z.; Sato, M.; Kinoshita, K.; Matsuoka, T.; Takayama, Y.; Yamamoto, K.

    2018-04-01

    The prototype temperature sensors for an ocean-going liquid hydrogen (LH2) carrier were manufactured by way of trial. All of the sensors adopted Platinum 1000 (PT-1000) resistance thermometer elements. Various configurations of preproduction temperature sensors were tested in AIST's LH2 test facility. In the experiments, a PT-1000 resistance thermometer, calibrated at the National Metrology Institute of Japan at AIST, was used as the standard thermometer. The temperatures measured by the preproduction sensors were compared with the temperatures measured by the standard thermometer, and the measurement accuracy of the temperature sensors in LH2 was investigated and discussed. It was confirmed that the measurement accuracies of the preproduction temperature sensors were within ±50 mK, which is the required measurement accuracy for a technical demonstration ocean-going LH2 carrier.

  15. Methodology Plan for Minimum Resolvable Temperature Difference (MRTD) Testing of Aircraft Installed Sensors

    DTIC Science & Technology

    2011-03-23

    sensors (e.g., sensor fusion) or use different detector materials to increase spectral bands into the Near IR (NIR). 3. Holst2provides an...a. Detector type: Multi-element MCT SPRITE b. Wavelength: Long wave, 8-12 um c. Cooling system: Integrated Sterling cooler d. Cooldown...A-1 B. COLLIMATOR SYSTEM DESIGN AND EO/ IR TOPICS ................ B-1 C. ATTC FACILITIES AND INSTRUMENTATION

  16. Beam test results of a monolithic pixel sensor in the 0.18 μm tower-jazz technology with high resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    Mattiazzo, S.; Aimo, I.; Baudot, J.; Bedda, C.; La Rocca, P.; Perez, A.; Riggi, F.; Spiriti, E.

    2015-10-01

    The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018-2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV.

  17. New Mexico Tech landmine, UXO, IED detection sensor test facility: measurements in real field soils

    NASA Astrophysics Data System (ADS)

    Hendrickx, Jan M. H.; Alkov, Nicole; Hong, Sung-ho; Van Dam, Remke L.; Kleissl, Jan; Shannon, Heather; Meason, John; Borchers, Brian; Harmon, Russell S.

    2006-05-01

    Modeling studies and experimental work have demonstrated that the dynamic behavior of soil physical properties has a significant effect on most sensors for the detection of buried land mines. An outdoor test site has been constructed allowing full control over soil water content and continuous monitoring of important soil properties and environmental conditions. Time domain reflectometry sensors and thermistors measure soil water1 content and temperature, respectively, at different depths above and below the land mines as well as in homogeneous soil away from the land mines. During the two-year operation of the test-site, the soils have evolved to reflect real field soil conditions. This paper compares visual observations as well as ground-penetrating radar and thermal infrared measurements at this site taken immediately after construction in early 2004 with measurements from early 2006. The visual observations reveal that the 2006 soil surfaces exhibit a much higher spatial variability due to the development of mini-reliefs, "loose" and "connected" soil crusts, cracks in clay soils, and vegetation. Evidence is presented that the increased variability of soil surface characteristics leads to a higher natural spatial variability of soil surface temperatures and, thus, to a lower probability to detect landmines using thermal imagery. No evidence was found that the soil surface changes affect the GPR signatures of landmines under the soil conditions encountered in this study. The New Mexico Tech outdoor Landmine Detection Sensor Test Facility is easily accessible and anyone interested is welcome to use it for sensor testing.

  18. Advanced Video Guidance Sensor (AVGS) Development Testing

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2004-01-01

    NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.

  19. Laboratories | Energy Systems Integration Facility | NREL

    Science.gov Websites

    laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing

  20. A new torsion pendulum for testing enhancements to the LISA Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, A.; Ciani, G.; Mueller, G.; Olatunde, T.; Shelley, R.

    2014-01-01

    The Laser Interferometer Space Antenna (LISA), the most mature concept for observing gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million km-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics in spacetime. A single test mass together with its housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance between these free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3E-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2015. Recently, efforts have begun in the U.S. to design and assemble a new, nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and will consist of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. The GRS technology enhancements under development include a novel TM charge control scheme based on ultraviolet LEDs, simplified capacitive readout electronics, and a six degree-of-freedom, all-optical TM sensor. This presentation will describe the design of the torsion pendulum facility, its expected performance, and the potential technology enhancements.

  1. Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese

    NASA Image and Video Library

    2017-02-15

    Ashley Karp, NASA JPL (Left) and Hunjoo Kim, NASA JPL (Right) attaching heat sensors the Peregrine Hybrid Rocket Engine prior to its test at the Outdoor Aerodynamic Research Facility (OARF, N-249) at NASA's Ames Research Center.

  2. Optical calibration and test of the VLT Deformable Secondary Mirror

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Biasi, Roberto; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2013-12-01

    The Deformable Secondary Mirror (DSM) for the VLT (ESO) represents the state-of-art of the large-format deformable mirror technology with its 1170 voice-coil actuators and its internal metrology based on actuator co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the results of the optical characterization of the mirror unit with the ASSIST facility located at ESO-Garching and executed in a collaborative effort by ESO, INAF-Osservatorio Astrofisico di Arcetri and the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.). The main purposes of the tests are the optical characterization of the shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions. The results are used for the optical acceptance of the DSM and to allow the next test phase coupling the DSM with the wave-front sensor modules of the new Adaptive Optics Facility (AOF) of ESO.

  3. LISA technology development using the UF precision torsion pendulum

    NASA Astrophysics Data System (ADS)

    Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-04-01

    LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the fall of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements that may improve the performance and/or reduce the cost of the LISA GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.

  4. Turbine blade and vane heat flux sensor development, phase 2

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.

  5. Airborne Optical Systems Test Bed (AOSTB)

    DTIC Science & Technology

    2016-07-01

    resident laser radar platform with roll -on/ roll -off sensor capability. The new platform provides The Laboratory with an added capability of leveraging...29 Figure 11 – Finite Element Analysis of Loads on Isolators (9G Forward...This project created a resident sensor suite with roll -on/ roll -off capability, coupled to a resident platform (Twin Otter Aircraft). This facility

  6. Dual-mode capability for hardware-in-the-loop

    NASA Astrophysics Data System (ADS)

    Vamivakas, A. N.; Jackson, Ron L.

    2000-07-01

    This paper details a Hardware-in-the-Loop Facility (HIL) developed for evaluation and verification of a missile system with dual mode capability. The missile has the capability of tracking and intercepting a target using either an RF antenna or an IR sensor. The testing of a dual mode system presents a significant challenge in the development of the HIL facility. An IR and RF target environment must be presented simultaneously to the missile under test. These targets, simulated by IR and RF sources, must be presented to the missile under test without interference from each other. The location of each source is critical in the development of the HIL facility. The requirements for building a HIL facility with dual mode capability and the methodology for testing the dual mode system are defined within this paper. Methods for the verification and validation of the facility are discussed.

  7. Flight testing of a luminescent surface pressure sensor

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  8. Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese

    NASA Image and Video Library

    2017-02-15

    Hunjoo Kim, NASA JPL (Left) and Ashley Karp, NASA JPL (Right) attaching heat sensors the Peregrine Hybrid Rocket Engine prior to its test at the Outdoor Aerodynamic Research Facility (OARF, N-249) at NASA’s Ames Research Center.

  9. Magnetic Test Facility - Sensor and Coil Calibrations

    DTIC Science & Technology

    2013-08-01

    amplitude of signals induced into the sensor. 2.1.1.2 Fluxgate magnetometers Fluxgate sensors consist of a ferromagnetic core, around which drive and sense...kHz range to be measured. Fluxgate magnetometers do not have a lower limit to their fre- quency response, and hence can be used to measure...placed within a larger triaxial coil which is used in conjunction with a fluxgate magnetometer to cancel earth’s field at the cen- tre of the coil. A

  10. Testing new technologies for the LISA Gravitational Reference Senso

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido

    2015-01-01

    LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement of < 3×10-15 m/sec2Hz1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the summer of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.

  11. Diode Laser Sensors for Arc-Jet Characterization

    NASA Technical Reports Server (NTRS)

    Hanson, Ronald K.

    2005-01-01

    The development and application of tunable diode laser (TDL) absorption sensors to monitor the health and operating conditions in the large-scale 60 MW arc-heated- plasma wind-tunnel at NASA Ames Research Center is reported. The interactive heating facility (THF) produces re-entry flow conditions by expanding the gas heated in a constricted plasma arc-heater to flow at high velocity over a model located in a test cabin. This facility provides the conditions needed to test thermal protective systems for spacecraft re-entering the earth s atmosphere. TDL sensors are developed to monitor gas flows in both the high-temperature constricted flow and the supersonic expansion flow into test cabin. These sensors utilize wavelength-tuned diode lasers to measure absorption transitions of atomic oxygen near 777.2 nm, atomic nitrogen near 856.8 nm, and atomic copper near 793.3 nm. The oxygen and nitrogen sensors measure the population density in exited electronic states of these atoms. The measurements combined with the assumption of local thermal and chemical equilibrium yield gas temperature (typically near 7,000K). The nitrogen and oxygen population temperatures are redundant, and their close agreement provides an important test of the local thermal equilibrium assumption. These temperature sensors provide time-resolved monitors of the operating conditions of the arc-heater and can be used to verify and control the test conditions. An additional TDL sensor was developed to monitor the copper concentration in the arc-heater flow yielding values as high as 13 ppm. Measurements of copper in the flow can identify flow conditions with unacceptably rapid electrode erosion, and hence this sensor provides valuable information needed to schedule maintenance to avoid costly arc-heater failure. TDL sensors were also developed for measurements in the test cabin, where absorption measurements of the populations of argon and molecular nitrogen in excited metastable electronic states established that the number density of these excited species is much lower than estimated using frozen-chemistry approximations. This key finding suggests that in the post-expansion region there is not a significant energy sequestration in electronically excited species. Finally, TDL measurements of atomic potassium seeded into the test cabin flow were used to directly measure the static temperature of the test gas. The results of this study illustrate the high potential of time-resolved TDL measurements for routine and economical sensing of arc-heater health (gas temperature and electrode erosion) as well as the time-resolved test-cabin-flow conditions in front of the model.

  12. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    NASA Astrophysics Data System (ADS)

    Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Schiesko, L.; Taliercio, C.; Trevisan, L.

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  13. Electrostatic sensors for SPIDER experiment: design, manufacture of prototypes, and first tests.

    PubMed

    Brombin, M; Spolaore, M; Serianni, G; Barzon, A; Franchin, L; Pasqualotto, R; Pomaro, N; Schiesko, L; Taliercio, C; Trevisan, L

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  14. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Spolaore, M.; Serianni, G.

    2014-02-15

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioningmore » tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.« less

  15. Structural control sensors for the CASES GTF

    NASA Technical Reports Server (NTRS)

    Davis, Hugh W.; Bukley, Angelia P.

    1993-01-01

    CASES (Controls, Astrophysics and Structures Experiment in Space) is a proposed space experiment to collect x-ray images of the galactic center and solar disk with unprecedented resolution. This requires precision pointing and suppression of vibrations in the long flexible structure that comprises the 32-m x-ray telescope optical bench. Two separate electro-optical sensor systems are provided for the ground test facility (GTF). The Boom Motion Tracker (BMT) measures eigenvector data for post-mission use in system identification. The Tip Displacement Sensor (TDS) measures boom tip position and is used as feedback for the closed-loop control system that stabilizes the boom. Both the BMT and the TDS have met acceptance specifications and were delivered to MSFC in February 1992. This paper describes the sensor concept, the sensor configuration as implemented in the GTF, and the results of characterization and performance testing.

  16. Health-Enabled Smart Sensor Fusion Technology

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2012-01-01

    A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.

  17. Improved E-ELT subsystem and component specifications, thanks to M1 test facility

    NASA Astrophysics Data System (ADS)

    Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, Pablo; Sedghi, B.; Kornweibel, N.

    2014-07-01

    During the last 2 years ESO has operated the "M1 Test Facility", a test stand consisting of a representative section of the E-ELT primary mirror equipped with 4 complete prototype segment subunits including sensors, actuators and control system. The purpose of the test facility is twofold: it serves to study and get familiar with component and system aspects like calibration, alignment and handling procedures and suitable control strategies on real hardware long before the primary mirror (hereafter M1) components are commissioned. Secondly, and of major benefit to the project, it offered the possibility to evaluate component and subsystem performance and interface issues in a system context in such detail, that issues could be identified early enough to feed back into the subsystem and component specifications. This considerably reduces risk and cost of the production units and allows refocusing the project team on important issues for the follow-up of the production contracts. Experiences are presented in which areas the results of the M1 Test Facility particularly helped to improve subsystem specifications and areas, where additional tests were adopted independent of the main test facility. Presented are the key experiences of the M1 Test Facility which lead to improved specifications or identified the need for additional testing outside of the M1 Test Facility.

  18. Development of a facility using robotics for testing automation of inertial instruments

    NASA Technical Reports Server (NTRS)

    Greig, Joy Y.; Lamont, Gary B.; Biezad, Daniel J.; Lewantowicz, Zdsislaw H.; Greig, Joy Y.

    1987-01-01

    The Integrated Robotics System Simulation (ROBSIM) was used to evaluate the performance of the PUMA 560 arm as applied to testing of inertial sensors. Results of this effort were used in the design and development of a feasibility test environment using a PUMA 560 arm. The implemented facility demonstrated the ability to perform conventional static inertial instrument tests (rotation and tumble). The facility included an efficient data acquisitions capability along with a precision test servomechanism function resulting in various data presentations which are included in the paper. Analysis of inertial instrument testing accuracy, repeatability and noise characteristics are provided for the PUMA 560 as well as for other possible commercial arm configurations. Another integral aspect of the effort was an in-depth economic analysis and comparison of robot arm testing versus use of contemporary precision test equipment.

  19. Robust, sensitive and facile method for detection of F-, CN- and Ac- anions

    NASA Astrophysics Data System (ADS)

    Madhusudhana Reddy, P.; Hsieh, Shih-Rong; Chen, Jem-Kun; Chang, Chi-Jung; Kang, Jing-Yuan; Chen, Chih-Hsien

    2017-11-01

    Sensing of F-, CN- and Ac- is important from the viewpoint of both medically and environmentally. Particularly, sensing of the anions in 100% water by a colorimetric chemical sensor is a highly difficult task as water molecules interfere the sensing mechanism. In this regard, sensor R1, having azo and nitrophenyl groups as signaling units and thiourea as a binding site was prepared. This sensor exclusively detected CN- ion over other testing anions in 30% aq. DMSO solution by exhibiting distinct spectral and visual color changes. However, in 15% aq. DMSO solution, R1 exhibited obvious spectral and color changes in response to F-, CN- and Ac-. On the other hand, we have also designed sensor, R2, having same signaling units of R1, but a different binding site of urea group. Surprisingly, in contrast to R1, R2 exhibited obvious spectral and color changes in 5% aq. DMSO solution only. Further, economically viable ;test stripes; were prepared in a facile mode to detect the CN- in 100% aqueous solution. Such stripes can serve as a practical colorimetric probe for ;in the field; detection of the ions and thus avoid additional expensive equipment.

  20. Development of HWIL Testing Capabilities for Satellite Target Emulation at AEDC

    NASA Astrophysics Data System (ADS)

    Lowry, H.; Crider, D.; Burns, J.; Thompson, R.; Goldsmith, G., II; Sholes, W.

    Programs involved in Space Situational Awareness (SSA) need the capability to test satellite sensors in a Hardware-in-the-Loop (HWIL) environment. Testing in a ground system avoids the significant cost of on-orbit test targets and the resulting issues such as debris mitigation, and in-space testing implications. The space sensor test facilities at AEDC consist of cryo-vacuum chambers that have been developed to project simulated targets to air-borne, space-borne, and ballistic platforms. The 7V chamber performs calibration and characterization of surveillance and seeker systems, as well as some mission simulation. The 10V chamber is being upgraded to provide real-time target simulation during the detection, acquisition, discrimination, and terminal phases of a seeker mission. The objective of the Satellite Emulation project is to upgrade this existing capability to support the ability to discern and track other satellites and orbital debris in a HWIL capability. It would provide a baseline for realistic testing of satellite surveillance sensors, which would be operated in a controlled environment. Many sensor functions could be tested, including scene recognition and maneuvering control software, using real interceptor hardware and software. Statistically significant and repeatable datasets produced by the satellite emulation system can be acquired during such test and saved for further analysis. In addition, the robustness of the discrimination and tracking algorithms can be investigated by a parametric analysis using slightly different scenarios; this will be used to determine critical points where a sensor system might fail. The radiometric characteristics of satellites are expected to be similar to the targets and decoys that make up a typical interceptor mission scenario, since they are near ambient temperature. Their spectral reflectivity, emissivity, and shape must also be considered, but the projection systems employed in the 7V and 10V chambers should be capable of providing the simulation of satellites as well. There may also be a need for greater radiometric intensity or shorter time response. An appropriate satellite model is integral to the scene generation process to meet the requirements of SSA programs. The Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) facility and the Guided Weapons Evaluation Facility (GWEF), both at Eglin Air Force Base, FL are assisting in developing the scene projection hardware, based on their significant test experience using resistive emitter arrays to test interceptors in a real-time environment. Army Aviation and Missile Research & Development Command (AMRDEC) will develop the Scene Generation System for the real-time mission simulation.

  1. Isotherm Sensor Calibration Program for Mars Science Laboratory Heat Shield Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Santos, Jose A.; Oishi, Tomo; Martinez, Ed R.

    2011-01-01

    Seven instrumented sensor plugs were installed on the Mars Science Laboratory heat shield in December 2008 as part of the Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) project. These sensor plugs contain four in-depth thermocouples and one Hollow aErothermal Ablation and Temperature (HEAT) sensor. The HEAT sensor follows the time progression of a 700 C isotherm through the thickness of a thermal protection system (TPS) material. The data can be used to infer char depth and, when analyzed in conjunction with the thermocouple data, the thermal gradient through the TPS material can also be determined. However, the uncertainty on the isotherm value is not well defined. To address this uncertainty, a team at NASA Ames Research Center is carrying out a HEAT sensor calibration test program. The scope of this test program is described, and initial results from experiments conducted in the laboratory to study the isotherm temperature of the HEAT sensor are presented. Data from the laboratory tests indicate an isotherm temperature of 720 C 60 C. An overview of near term arc jet testing is also given, including preliminary data from 30.48cm 30.48cm PICA panels instrumented with two MEDLI sensor plugs and tested in the NASA Ames Panel Test Facility. Forward work includes analysis of the arc jet test data, including an evaluation of the isotherm value based on the instant in time when it reaches a thermocouple depth.

  2. Vice President Pence Visits SLS Engineering Test Facility

    NASA Image and Video Library

    2017-09-25

    The Vice President toured the SLS engineering facility where the engine section of the rocket’s massive core stage is undergoing a major stress test. The rocket’s four RS-25 engines and the two solid rocket boosters that attach to the SLS engine section will produce more than 8 million pounds of thrust to launch the Orion spacecraft beyond low-Earth orbit. More than 3,000 measurements using sensors installed on the test section will help ensure the core stage for all SLS missions can withstand the extreme forces of flight.

  3. Preparation and Integration of ALHAT Precision Landing Technology for Morpheus Flight Testing

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Robertson, Edward A.; Pierrottet, Diego F.; Roback, Vincent E.; Trawny, Nikolas; Devolites, Jennifer L.; Hart, Jeremy J.; Estes, Jay N.; Gaddis, Gregory S.

    2014-01-01

    The Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project has developed a suite of prototype sensors for enabling autonomous and safe precision land- ing of robotic or crewed vehicles on solid solar bodies under varying terrain lighting condi- tions. The sensors include a Lidar-based Hazard Detection System (HDS), a multipurpose Navigation Doppler Lidar (NDL), and a long-range Laser Altimeter (LAlt). Preparation for terrestrial ight testing of ALHAT onboard the Morpheus free- ying, rocket-propelled ight test vehicle has been in progress since 2012, with ight tests over a lunar-like ter- rain eld occurring in Spring 2014. Signi cant work e orts within both the ALHAT and Morpheus projects has been required in the preparation of the sensors, vehicle, and test facilities for interfacing, integrating and verifying overall system performance to ensure readiness for ight testing. The ALHAT sensors have undergone numerous stand-alone sensor tests, simulations, and calibrations, along with integrated-system tests in special- ized gantries, trucks, helicopters and xed-wing aircraft. A lunar-like terrain environment was constructed for ALHAT system testing during Morpheus ights, and vibration and thermal testing of the ALHAT sensors was performed based on Morpheus ights prior to ALHAT integration. High- delity simulations were implemented to gain insight into integrated ALHAT sensors and Morpheus GN&C system performance, and command and telemetry interfacing and functional testing was conducted once the ALHAT sensors and electronics were integrated onto Morpheus. This paper captures some of the details and lessons learned in the planning, preparation and integration of the individual ALHAT sen- sors, the vehicle, and the test environment that led up to the joint ight tests.

  4. Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors.

    PubMed

    Choudhary, Tripurari; Rajamanickam, G P; Dendukuri, Dhananjaya

    2015-05-07

    We present textile weaving as a new technique for the manufacture of miniature electrochemical sensors with significant advantages over current fabrication techniques. Biocompatible silk yarn is used as the material for fabrication instead of plastics and ceramics used in commercial sensors. Silk yarns are coated with conducting inks and reagents before being handloom-woven as electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut and packaged into individual sensors. Unlike the conventionally used screen-printing, which results in wastage of reagents, yarn coating uses only as much reagent and ink as required. Hydrophilic and hydrophobic yarns are used for patterning so that sample flow is restricted to a small area of the sensor. This simple fluidic control is achieved with readily available materials. We have fabricated and validated individual sensors for glucose and hemoglobin and a multiplexed sensor, which can detect both analytes. Chronoamperometry and differential pulse voltammetry (DPV) were used to detect glucose and hemoglobin, respectively. Industrial quantities of these sensors can be fabricated at distributed locations in the developing world using existing skills and manufacturing facilities. We believe such sensors could find applications in the emerging area of wearable sensors for chemical testing.

  5. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  6. High Speed Operation and Testing of a Fault Tolerant Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Clark, Daniel

    2004-01-01

    Research activities undertaken to upgrade the fault-tolerant facility, continue testing high-speed fault-tolerant operation, and assist in the commission of the high temperature (1000 degrees F) thrust magnetic bearing as described. The fault-tolerant magnetic bearing test facility was upgraded to operate to 40,000 RPM. The necessary upgrades included new state-of-the art position sensors with high frequency modulation and new power edge filtering of amplifier outputs. A comparison study of the new sensors and the previous system was done as well as a noise assessment of the sensor-to-controller signals. Also a comparison study of power edge filtering for amplifier-to-actuator signals was done; this information is valuable for all position sensing and motor actuation applications. After these facility upgrades were completed, the rig is believed to have capabilities for 40,000 RPM operation, though this has yet to be demonstrated. Other upgrades included verification and upgrading of safety shielding, and upgrading control algorithms. The rig will now also be used to demonstrate motoring capabilities and control algorithms are in the process of being created. Recently an extreme temperature thrust magnetic bearing was designed from the ground up. The thrust bearing was designed to fit within the existing high temperature facility. The retrofit began near the end of the summer, 04, and continues currently. Contract staff authored a NASA-TM entitled "An Overview of Magnetic Bearing Technology for Gas Turbine Engines", containing a compilation of bearing data as it pertains to operation in the regime of the gas turbine engine and a presentation of how magnetic bearings can become a viable candidate for use in future engine technology.

  7. Thermal Characterization of a Simulated Fission Engine via Distributed Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Duncan, Roger G.; Fielder, Robert S.; Seeley, Ryan J.; Kozikowski, Carrie L.; Raum, Matthew T.

    2005-02-01

    We report the use of distributed fiber Bragg gratings to monitor thermal conditions within a simulated nuclear reactor core located at the Early Flight Fission Test Facility of the NASA Marshall Space Flight Center. Distributed fiber-optic temperature measurements promise to add significant capability and advance the state-of-the-art in high-temperature sensing. For the work reported herein, seven probes were constructed with ten sensors each for a total of 70 sensor locations throughout the core. These discrete temperature sensors were monitored over a nine hour period while the test article was heated to over 700 °C and cooled to ambient through two operational cycles. The sensor density available permits a significantly elevated understanding of thermal effects within the simulated reactor. Fiber-optic sensor performance is shown to compare very favorably with co-located thermocouples where such co-location was feasible.

  8. Component and Technology Development for Advanced Liquid Metal Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark

    2017-01-30

    The following report details the significant developments to Sodium Fast Reactor (SFR) technologies made throughout the course of this funding. This report will begin with an overview of the sodium loop and the improvements made over the course of this research to make it a more advanced and capable facility. These improvements have much to do with oxygen control and diagnostics. Thus a detailed report of advancements with respect to the cold trap, plugging meter, vanadium equilibration loop, and electrochemical oxygen sensor is included. Further analysis of the university’s moving magnet pump was performed and included in a section ofmore » this report. A continuous electrical resistance based level sensor was built and tested in the sodium with favorable results. Materials testing was done on diffusion bonded samples of metal and the results are presented here as well. A significant portion of this work went into the development of optical fiber temperature sensors which could be deployed in an SFR environment. Thus, a section of this report presents the work done to develop an encapsulation method for these fibers inside of a stainless steel capillary tube. High temperature testing was then done on the optical fiber ex situ in a furnace. Thermal response time was also explored with the optical fiber temperature sensors. Finally these optical fibers were deployed successfully in a sodium environment for data acquisition. As a test of the sodium deployable optical fiber temperature sensors they were installed in a sub-loop of the sodium facility which was constructed to promote the thermal striping effect in sodium. The optical fibers performed exceptionally well, yielding unprecedented 2 dimensional temperature profiles with good temporal resolution. Finally, this thermal striping loop was used to perform cross correlation velocimetry successfully over a wide range of flow rates.« less

  9. The Advanced Monitoring Systems Initiative--Performance Monitoring for DOE Environmental Remediation and Contaminant Containment

    NASA Astrophysics Data System (ADS)

    Haas, W. J.; Venedam, R. J.; Lohrstorfer, C. F.; Weeks, S. J.

    2005-05-01

    The Advanced Monitoring System Initiative (AMSI) is a new approach to accelerate the development and application of advanced sensors and monitoring systems in support of Department of Energy needs in monitoring the performance of environmental remediation and contaminant containment activities. The Nevada Site Office of the National Nuclear Security Administration (NNSA) and Bechtel Nevada manage AMSI, with funding provided by the DOE Office of Environmental Management (DOE EM). AMSI has easy access to unique facilities and capabilities available at the Nevada Test Site (NTS), including the Hazardous Materials (HazMat) Spill Center, a one-of-a-kind facility built and permitted for releases of hazardous materials for training purposes, field-test detection, plume dispersion experimentation, and equipment and materials testing under controlled conditions. AMSI also has easy access to the facilities and considerable capabilities of the DOE and NNSA National Laboratories, the Special Technologies Laboratory, Remote Sensing Laboratory, Desert Research Institute, and Nevada Universities. AMSI provides rapid prototyping, systems integration, and field-testing, including assistance during initial site deployment. The emphasis is on application. Important features of the AMSI approach are: (1) customer investment, involvement and commitment to use - including definition of needs, desired mode of operation, and performance requirements; and (2) employment of a complete systems engineering approach, which allows the developer to focus maximum attention on the essential new sensing element or elements while AMSI assumes principal responsibility for infrastructure support elements such as power, packaging, and general data acquisition, control, communication, visualization and analysis software for support of decisions. This presentation describes: (1) the needs for sensors and performance monitoring for environmental systems as seen by the DOE Long Term Stewardship Science and Technology Roadmap and the Long Term Monitoring Sensors and Analytical Methods Workshop, and (2) AMSI operating characteristics and progress in addressing those needs. Topics addressed will include: vadose zone and groundwater tritium monitoring, a wireless moisture monitoring system, Cr(VI) and CCl4 monitoring using a commercially available "universal sensor platform", strontium-90 and technetium-99 monitoring, and area chemical monitoring using an array of multi-chemical sensors.

  10. Pixel sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    DOE PAGES

    Vernieri, Caterina; Bolla, Gino; Rivera, Ryan; ...

    2016-06-07

    Here, planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC experiments. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2 × 10 15 neq/cm 2 fluence. Preliminary results of the data analysis are presented.

  11. The 2 Degrees of Freedom facility in Firenze for the study of weak forces

    NASA Astrophysics Data System (ADS)

    Marconi, L.; Stanga, R.; Lorenzini, M.; Grimani, C.; Bassan, M.; Pucacco, G.; Di Fiore, L.; De Rosa, R.; Garufi, F.; Milano, L.

    2010-05-01

    The LISA test-mass (TM) is sensitive to weak forces along all 6 Degrees of Freedom (DoFs). Extensi ve ground test ing is required in order to evaluate the influence of cross-talks of read-outs and actuators operating on different DoFs. To best represent the flight conditions, we developed in Firenze a facility with 2 soft DoFs. Using this facility we measure the forces and stiffnesses acting simultaneously along the 2 soft DoFs, and, more specifically, we will be able to de b ug residual couplings between the TM and the capacitive position sensor that reads the TM position, and to measure actuation cross talks with closed feedback loop. The facility is now ready, and here we report on the co mmi ssioning test s, and on the first measurements.

  12. Laboratory evaluation of the Sequoia Scientific LISST-ABS acoustic backscatter sediment sensor

    USGS Publications Warehouse

    Snazelle, Teri T.

    2017-12-18

    Sequoia Scientific’s LISST-ABS is an acoustic backscatter sensor designed to measure suspended-sediment concentration at a point source. Three LISST-ABS were evaluated at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF). Serial numbers 6010, 6039, and 6058 were assessed for accuracy in solutions with varying particle-size distributions and for the effect of temperature on sensor accuracy. Certified sediment samples composed of different ranges of particle size were purchased from Powder Technology Inc. These sediment samples were 30–80-micron (µm) Arizona Test Dust; less than 22-µm ISO 12103-1, A1 Ultrafine Test Dust; and 149-µm MIL-STD 810E Silica Dust. The sensor was able to accurately measure suspended-sediment concentration when calibrated with sediment of the same particle-size distribution as the measured. Overall testing demonstrated that sensors calibrated with finer sized sediments overdetect sediment concentrations with coarser sized sediments, and sensors calibrated with coarser sized sediments do not detect increases in sediment concentrations from small and fine sediments. These test results are not unexpected for an acoustic-backscatter device and stress the need for using accurate site-specific particle-size distributions during sensor calibration. When calibrated for ultrafine dust with a less than 22-µm particle size (silt) and with the Arizona Test Dust with a 30–80-µm range, the data from sensor 6039 were biased high when fractions of the coarser (149-µm) Silica Dust were added. Data from sensor 6058 showed similar results with an elevated response to coarser material when calibrated with a finer particle-size distribution and a lack of detection when subjected to finer particle-size sediment. Sensor 6010 was also tested for the effect of dissimilar particle size during the calibration and showed little effect. Subsequent testing revealed problems with this sensor, including an inadequate temperature compensation, making this data questionable. The sensor was replaced by Sequoia Scientific with serial number 6039. Results from the extended temperature testing showed proper temperature compensation for sensor 6039, and results from the dissimilar calibration/testing particle-size distribution closely corroborated the results from sensor 6058.

  13. Direct sunlight facility for testing and research in HCPV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in severalmore » locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.« less

  14. The Granite Mountain Atmospheric Sciences Testbed (GMAST): A Facility for Long Term Complex Terrain Airflow Studies

    NASA Astrophysics Data System (ADS)

    Zajic, D.; Pace, J. C.; Whiteman, C. D.; Hoch, S.

    2011-12-01

    This presentation describes a new facility at Dugway Proving Ground (DPG), Utah that can be used to study airflow over complex terrain, and to evaluate how airflow over a mountain barrier affects wind patterns over adjacent flatter terrain. DPG's primary mission is to conduct testing, training, and operational assessments of chemical and biological weapon systems. These operations require very precise weather forecasts. Most test operations at DPG are conducted on fairly flat test ranges having uniform surface cover, where airflow patterns are generally well-understood. However, the DPG test ranges are located alongside large, isolated mountains, most notably Granite Mountain, Camelback Mountain, and the Cedar Mountains. Airflows generated over, or influenced by, these mountains can affect wind patterns on the test ranges. The new facility, the Granite Mountain Atmospheric Sciences Testbed, or GMAST, is designed to facilitate studies of airflow interactions with topography. This facility will benefit DPG by improving understanding of how mountain airflows interact with the test range conditions. A core infrastructure of weather sensors around and on Granite Mountain has been developed including instrumented towers and remote sensors, along with automated data collection and archival systems. GMAST is expected to be in operation for a number of years and will provide a reference domain for mountain meteorology studies, with data useful for analysts, modelers and theoreticians. Visiting scientists are encouraged to collaborate with DPG personnel to utilize this valuable scientific resource and to add further equipment and scientific designs for both short-term and long-term atmospheric studies. Several of the upcoming MATERHORN (MountAin TERrain atmospHeric mOdeling and obseRvatioNs) project field tests will be conducted at DPG, giving an example of GMAST utilization and collaboration between DPG and visiting scientists.

  15. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  16. US-Korea collaborative research for bridge monitoring test beds

    NASA Astrophysics Data System (ADS)

    Yun, C. B.; Sohn, H.; Lee, J. J.; Park, S.; Wang, M. L.; Zhang, Y. F.; Lynch, J. P.

    2010-04-01

    This paper presents an interim report on an international collaborative research project between the United States and Korea that fundamentally addresses the challenges associated with integrating structural health monitoring (SHM) system components into a comprehensive system for bridges. The objective of the project is to integrate and validate cutting-edge sensors and SHM methods under development for monitoring the long-term performance and structural integrity of highway bridges. A variety of new sensor and monitoring technologies have been selected for integration including wireless sensors, EM stress sensors and piezoelectric active sensors. Using these sensors as building blocks, the first phase of the study focuses on the design of a comprehensive SHM system that is deployed upon a series of highway bridges in Korea. With permanently installed SHM systems in place, the second phase of the study provides open access to the bridges and response data continuously collected as an internal test-bed for SHM. Currently, basic facilities including Internet lines have been constructed on the test-beds, and the participants carried out tests on bridges on the test road section owned by the Korea Expressway Corporation (KEC) with their own measurement and monitoring systems in the local area network environment. The participants were able to access and control their measurement systems by using Remote Desktop in Windows XP through Internet. Researchers interested in this test-bed are encouraged to join in the collaborative research.

  17. Space simulation facilities providing a stable thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Tellalian, Martin L.

    1990-01-01

    CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.

  18. University of Florida Torsion Pendulum for Testing Key LISA Technology

    NASA Astrophysics Data System (ADS)

    Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo Janet; Hillsberry, Daniel; Parry, Samantha; Ciani, Giacomo; Wass, Peter; Mueller, Guido; Conklin, John

    2018-01-01

    This presentation will describe the design and performance of a new torsion pendulum at the University of Florida used for testing inertial sensors and associated technologies for use in space – based gravitational wave observatories and geodesy missions. In particular this new torsion pendulum facility is testing inertial sensors and associated technology for the upcoming LISA (laser interferometer space antenna) space-based gravitational wave observatory mission. The torsion pendulum apparatus is comprised of a suspended cross bar assembly that has LISA test mass mockups at each of its ends. Two of the test mass mockups are enclosed by capacitive sensors which provide actuation and position sensing. The entire assembly is housed in a vacuum chamber. The pendulum cross-bar converts rotational motion of the test masses about the suspension fiber axis into translational motion. The 22 cm cross bar arm length along with the extremely small torsional spring constant of the suspension fiber results in a near free fall condition in the translational degree-of-freedom orthogonal to both the member and the suspension fiber. The test masses are electrically isolated from the pendulum assembly and their charge is controlled via photoemission using fiber coupled UV LEDS. Position of the test masses is measured using both capacitive and interferometric readout. The broadband sensitivity of the capacitive readout and laser interferometer readout is 30 nm/√Hz and 0.5 nm/√Hz respectively. The performance of the pendulum measured in equivalent acceleration noise acting on a LISA test mass is approximately 3 × 10-13 ms-2/√Hz at 2 mHz. This presentation will also discuss the design and fabrication of a flight-like gravitational reference sensor that will soon be integrated into the torsion pendulum facility. This flight-like GRS will allow for noise performance measurements in a more LISA-like configuration.

  19. Evaluation of SMART sensor displays for multidimensional precision control of Space Shuttle remote manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Brown, J. W.; Lewis, J. L.

    1982-01-01

    An enhanced proximity sensor and display system was developed at the Jet Propulsion Laboratory (JPL) and tested on the full scale Space Shuttle Remote Manipulator at the Johnson Space Center (JSC) Manipulator Development Facility (MDF). The sensor system, integrated with a four-claw end effector, measures range error up to 6 inches, and pitch and yaw alignment errors within + or 15 deg., and displays error data on both graphic and numeric displays. The errors are referenced to the end effector control axes through appropriate data processing by a dedicated microcomputer acting on the sensor data in real time. Both display boxes contain a green lamp which indicates whether the combination of range, pitch and yaw errors will assure a successful grapple. More than 200 test runs were completed in early 1980 by three operators at JSC for grasping static and capturing slowly moving targets. The tests have indicated that the use of graphic/numeric displays of proximity sensor information improves precision control of grasp/capture range by more than a factor of two for both static and dynamic grapple conditions.

  20. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.

  1. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Validation and Verification on National Oceanographic and Atmospheric Administration (NOAA) Lockheed WP-3D Aircraft

    NASA Technical Reports Server (NTRS)

    Tsoucalas, George; Daniels, Taumi S.; Zysko, Jan; Anderson, Mark V.; Mulally, Daniel J.

    2010-01-01

    As part of the National Aeronautics and Space Administration's Aviation Safety and Security Program, the Tropospheric Airborne Meteorological Data Reporting project (TAMDAR) developed a low-cost sensor for aircraft flying in the lower troposphere. This activity was a joint effort with support from Federal Aviation Administration, National Oceanic and Atmospheric Administration, and industry. This paper reports the TAMDAR sensor performance validation and verification, as flown on board NOAA Lockheed WP-3D aircraft. These flight tests were conducted to assess the performance of the TAMDAR sensor for measurements of temperature, relative humidity, and wind parameters. The ultimate goal was to develop a small low-cost sensor, collect useful meteorological data, downlink the data in near real time, and use the data to improve weather forecasts. The envisioned system will initially be used on regional and package carrier aircraft. The ultimate users of the data are National Centers for Environmental Prediction forecast modelers. Other users include air traffic controllers, flight service stations, and airline weather centers. NASA worked with an industry partner to develop the sensor. Prototype sensors were subjected to numerous tests in ground and flight facilities. As a result of these earlier tests, many design improvements were made to the sensor. The results of tests on a final version of the sensor are the subject of this report. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated air speed, true air speed, ice presence, wind speed and direction, and eddy dissipation rate. Summary results from the flight test are presented along with corroborative data from aircraft instruments.

  2. Review of infrared technology in The Netherlands

    NASA Astrophysics Data System (ADS)

    de Jong, Arie N.

    1993-11-01

    The use of infrared sensors in the Netherlands is substantial. Users can be found in a variety of disciplines, military as well as civil. This need for IR sensors implied a long history on IR technology and development. The result was a large technological-capability allowing the realization of IR hardware: specialized measuring equipment, engineering development models, prototype and production sensors for different applications. These applications range from small size, local radiometry up to large space-borne imaging. Large scale production of IR sensors has been realized for army vehicles. IR sensors have been introduced now in all of the armed forces. Facilities have been built to test the performance of these sensors. Models have been developed to predict the performance of a new sensor. A great effort has been spent on atmospheric research, leading to knowledge upon atmospheric- and background limitations of IR sensors.

  3. Initial Back-to-Back Fission Chamber Testing in ATRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin Chase; Troy Unruh; Joy Rempe

    2014-06-01

    Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to providemore » calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.« less

  4. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  5. Deployment of precise and robust sensors on board ISS-for scientific experiments and for operation of the station.

    PubMed

    Stenzel, Christian

    2016-09-01

    The International Space Station (ISS) is the largest technical vehicle ever built by mankind. It provides a living area for six astronauts and also represents a laboratory in which scientific experiments are conducted in an extraordinary environment. The deployed sensor technology contributes significantly to the operational and scientific success of the station. The sensors on board the ISS can be thereby classified into two categories which differ significantly in their key features: (1) sensors related to crew and station health, and (2) sensors to provide specific measurements in research facilities. The operation of the station requires robust, long-term stable and reliable sensors, since they assure the survival of the astronauts and the intactness of the station. Recently, a wireless sensor network for measuring environmental parameters like temperature, pressure, and humidity was established and its function could be successfully verified over several months. Such a network enhances the operational reliability and stability for monitoring these critical parameters compared to single sensors. The sensors which are implemented into the research facilities have to fulfil other objectives. The high performance of the scientific experiments that are conducted in different research facilities on-board demands the perfect embedding of the sensor in the respective instrumental setup which forms the complete measurement chain. It is shown that the performance of the single sensor alone does not determine the success of the measurement task; moreover, the synergy between different sensors and actuators as well as appropriate sample taking, followed by an appropriate sample preparation play an essential role. The application in a space environment adds additional challenges to the sensor technology, for example the necessity for miniaturisation, automation, reliability, and long-term operation. An alternative is the repetitive calibration of the sensors. This approach, however, increases the operational overhead significantly. But meeting especially these requirements offers unique opportunities for testing these sensor technologies in harsh and dedicated environments which are not available on Earth, therefore pushing the related technologies and methodologies to their limits. The scientific objectives for selected experiments, representing a wide range of research fields, are presented, including the instrument setups and the implemented sensor technologies, and where available, the first scientific results are presented.

  6. MCP-PMT studies at the High-B test facility at Jefferson Lab

    DOE PAGES

    Ilieva, Yordanka; Allison, Lee; Cao, Tongtong; ...

    2016-03-30

    Here we present preliminary results for the gain performance of commercially available 3- mum and 6- mum pore-size single-anode microchannel-plate photomultipliers (MCP PMTs) in magnetic fields up to 5 T and for various orientations of the sensor relative to the field direction. The measurements were performed at Thomas Jefferson National Accelerator Facility in Newport News, VA. Our results show that smaller-pore-size PMTs have better gain performance in magnetic fields. At various angles, the shape of the gain dependence on the strength of the magnetic field strongly depends on the type of the sensor. Also, for each sensor, the azimuthal dependencemore » is strongly correlated with the polar angle. Overall, the sensors exhibit a reasonable performance up to 2 T, although that upper limit depends on the sensor, the applied high voltage, and the orientation of the sensor relative to the field. To optimize the operational and design parameters of MCP PMTs for performance in high magnetic fields, further measurements and simulation studies will be pursued. Furthermore, our studies are part of an R&D for development of a Detector of Internally Reflected Cherenkov Light for the central detector of a future U.S. Electron Ion Collider.« less

  7. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  8. Digital sun sensor multi-spot operation.

    PubMed

    Rufino, Giancarlo; Grassi, Michele

    2012-11-28

    The operation and test of a multi-spot digital sun sensor for precise sun-line determination is described. The image forming system consists of an opaque mask with multiple pinhole apertures producing multiple, simultaneous, spot-like images of the sun on the focal plane. The sun-line precision can be improved by averaging multiple simultaneous measures. Nevertheless, the sensor operation on a wide field of view requires acquiring and processing images in which the number of sun spots and the related intensity level are largely variable. To this end, a reliable and robust image acquisition procedure based on a variable shutter time has been considered as well as a calibration function exploiting also the knowledge of the sun-spot array size. Main focus of the present paper is the experimental validation of the wide field of view operation of the sensor by using a sensor prototype and a laboratory test facility. Results demonstrate that it is possible to keep high measurement precision also for large off-boresight angles.

  9. Flight model performances of HISUI hyperspectral sensor onboard ISS (International Space Station)

    NASA Astrophysics Data System (ADS)

    Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira

    2016-10-01

    Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared region. The sensor system is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of an flight model of HISUI hyperspectral sensor is being carried out. Simultaneously, the development of JEM-External Facility (EF) Payload system for the instrument started. The system includes the structure, the thermal control system, the electrical system and the pointing mechanism. The development status and the performances including some of the tests results of Instrument flight model, such as optical performance, optical distortion and radiometric performance are reported.

  10. Flight model of HISUI hyperspectral sensor onboard ISS (International Space Station)

    NASA Astrophysics Data System (ADS)

    Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira

    2017-09-01

    Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared wavelength region. The sensor is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of a Flight Model (FM) of HISUI hyperspectral sensor have been completed in the beginning of 2017. Simultaneously, the development of JEMExternal Facility (EF) Payload system for the instrument is being carried out. The system includes the structure, the thermal control sub-system and the electrical sub-system. The tests results of flight model, such as optical performance, optical distortion and radiometric performance are reported.

  11. Integration and software for thermal test of heat rate sensors. [space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Shrider, K. R.

    1982-01-01

    A minicomputer controlled radiant test facility is described which was developed and calibrated in an effort to verify analytical thermal models of instrumentation islands installed aboard the space shuttle external tank to measure thermal flight parameters during ascent. Software was provided for the facility as well as for development tests on the SRB actuator tail stock. Additional testing was conducted with the test facility to determine the temperature and heat flux rate and loads required to effect a change of color in the ET tank external paint. This requirement resulted from the review of photographs taken of the ET at separation from the orbiter which showed that 75% of the external tank paint coating had not changed color from its original white color. The paint on the remaining 25% of the tank was either brown or black, indicating that it had degraded due to heating or that the spray on form insulation had receded in these areas. The operational capability of the facility as well as the various tests which were conducted and their results are discussed.

  12. Plastic optical fibre sensor for Madeira wine monitoring

    NASA Astrophysics Data System (ADS)

    Novo, C.; Bilro, L.; Alberto, N.; Antunes, P.; Nogueira, R.; Pinto, J. L.

    2014-08-01

    Madeira wine is a fortified wine produced in Madeira Island, Portugal. Its characteristics are strongly influenced by the winemaking method used which includes a typical and unique step called estufagem. This process consists on heating the wine up to 55 ºC for at least 3 months. In this paper, the characterization of the sensor for the pilot scale facility of estufagem installed in Madeira University is presented, being the device an optimization of a previous version. The response of the sensor was tested towards colour and refractive index, showing a good performance. Madeira wine with different estufagem times was also analysed.

  13. Hydrostatic Level Sensors as High Precision Ground Motion Instrumentation for Tevatron and Other Energy Frontier Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volk, James; Hansen, Sten; Johnson, Todd

    2012-01-01

    Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.

  14. Intelligent Engine Systems: Bearing System

    NASA Technical Reports Server (NTRS)

    Singh, Arnant P.

    2008-01-01

    The overall requirements necessary for sensing bearing distress and the related criteria to select a particular rotating sensor were established during the phase I. The current phase II efforts performed studies to evaluate the Robustness and Durability Enhancement of the rotating sensors, and to design, and develop the Built-in Telemetry System concepts for an aircraft engine differential sump. A generic test vehicle that can test the proposed bearing diagnostic system was designed, developed, and built. The Timken Company, who also assisted with testing the GE concept of using rotating sensors for the differential bearing diagnostics during previous phase, was selected as a subcontractor to assist General Electric (GE) for the design, and procurement of the test vehicle. A purchase order was prepared to define the different sub-tasks, and deliverables for this task. The University of Akron was selected to provide the necessary support for installing, and integrating the test vehicle with their newly designed test facility capable of simulating the operating environment for the planned testing. The planned testing with good and damaged bearings will be on hold pending further continuation of this effort during next phase.

  15. Hardware test program for evaluation of baseline range/range rate sensor concept

    NASA Technical Reports Server (NTRS)

    Pernic, E.

    1985-01-01

    The test program Phase II effort provides additional design information in terms of range and range rate (R/R) sensor performance when observing and tracking a typical spacecraft target. The target used in the test program was a one-third scale model of the Hubble Space Telescope (HST) available at the MSFC test site where the tests were performed. A modified Bendix millimeter wave radar served as the R/R sensor test bed for evaluation of range and range rate tracking performance, and generation of radar signature characteristics of the spacecraft target. A summary of program test results and conclusions are presented along with detailed description of the Bendix test bed radar with accompaning instrumentation. The MSFC test site and facilities are described. The test procedures used to establish background levels, and the calibration procedures used in the range accuracy tests and RCS (radar cross section) signature measurements, are presented and a condensed version of the daily log kept during the 5 September through 17 September test period is also presented. The test program results are given starting with the RCS signature measurements, then continuing with range measurement accuracy test results and finally the range and range rate tracking accuracy test results.

  16. Development of an Integrated Data Acquisition System for a Small Flight Probe

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Empey, Daniel M.; Skokova, Kristina A.; Venkatapathy, Ethiraj

    2012-01-01

    In support of the SPRITE concept, an integrated data acquisition system has been developed and fabricated for preliminary testing. The data acquisition system has been designed to condition traditional thermal protection system sensors, store their data to an on-board memory card, and in parallel, telemeter to an external system. In the fall of 2010, this system was integrated into a 14 in. diameter, 45 degree sphere cone probe instrumented with thermal protection system sensors. This system was then tested at the NASA Ames Research Center Aerodynamic Heating Facility's arc jet at approximately 170 W/sq. cm. The first test in December 2010 highlighted hardware design issues that were redesigned and implemented leading to a successful test in February 2011.

  17. Gain Evaluation of Micro-Channel-Plate Photomultipliers in the Upgraded High-B Test Facility at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Barber, Corinne; DIRC at EIC Collaboration

    2015-10-01

    The High-B test facility at Thomas Jefferson National Accelerator Facility allows researchers to evaluate the gain of compact photon sensors, such as Micro-Channel-Plate Photomultipliers (MCP-PMTs), in magnetic fields up to 5 T. These ongoing studies support the development of a Detector of Internally Reflected Cherenkov light (DIRC) to be used in an Electron Ion Collider (EIC). Here, we present our summer 2015 activities to upgrade and improve the facility, and we show results for MCP-PMT gain changes in high B-fields. To monitor the light stability delivered to the MCP-PMTs being tested, we implemented a Silicon Photomultiplier (SiPM) in the setup and calibrated the ADC reading this sensor. A 405-nm Light-Emitting Diode (LED) housed in an optical tube compatible with neutral density filters was also installed. The filters provide an alternative way of reducing the light output of the LED to operate the MCP-PMTs in a single-photon mode. We calibrated a set of filters by means of a photodiode and measured the photon flux at multiple positions relative to the LED. This information helped us to design 3D-printed holders unique to each MCP-PMT so that the photocathode receives the greatest amount of light. The improvements to the setup allow for more precise PMT gain evaluation. This team includes 7 collaborators/co-authors besides myself: Yordanka Ilieva, Kijun Park, Greg Kalicy, Carl Zorn, Pawel Nadel-Turonski, Tongtong Cao, and Lee.

  18. High-Sensitivity and Low-Power Flexible Schottky Hydrogen Sensor Based on Silicon Nanomembrane.

    PubMed

    Cho, Minkyu; Yun, Jeonghoon; Kwon, Donguk; Kim, Kyuyoung; Park, Inkyu

    2018-04-18

    High-performance and low-power flexible Schottky diode-based hydrogen sensor was developed. The sensor was fabricated by releasing Si nanomembrane (SiNM) and transferring onto a plastic substrate. After the transfer, palladium (Pd) and aluminum (Al) were selectively deposited as a sensing material and an electrode, respectively. The top-down fabrication process of flexible Pd/SiNM diode H 2 sensor is facile compared to other existing bottom-up fabricated flexible gas sensors while showing excellent H 2 sensitivity (Δ I/ I 0 > 700-0.5% H 2 concentrations) and fast response time (τ 10-90 = 22 s) at room temperature. In addition, selectivity, humidity, and mechanical tests verify that the sensor has excellent reliability and robustness under various environments. The operating power consumption of the sensor is only in the nanowatt range, which indicates its potential applications in low-power portable and wearable electronics.

  19. Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs.

    PubMed

    Zhang, Hui; Liu, Nishuang; Shi, Yuling; Liu, Weijie; Yue, Yang; Wang, Siliang; Ma, Yanan; Wen, Li; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua

    2016-08-31

    Pressure sensors with high elasticity are in great demand for the realization of intelligent sensing, but there is a need to develope a simple, inexpensive, and scalable method for the manufacture of the sensors. Here, we reported an efficient, simple, facile, and repeatable "dipping and coating" process to manufacture a piezoresistive sensor with high elasticity, based on homogeneous 3D hybrid network of carbon nanotubes@silver nanoparticles (CNTs@Ag NPs) anchored on a skeleton sponge. Highly elastic, sensitive, and wearable sensors are obtained using the porous structure of sponge and the synergy effect of CNTs/Ag NPs. Our sensor was also tested for over 2000 compression-release cycles, exhibiting excellent elasticity and cycling stability. Sensors with high performance and a simple fabrication process are promising devices for commercial production in various electronic devices, for example, sport performance monitoring and man-machine interfaces.

  20. The development of a high sensitivity neutron displacement damage sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonigan, Andrew M.; Parma, Edward J.; Martin, William J.

    Here, the capability to characterize the neutron energy spectrum and fluence received by a test object is crucial to under-standing the damage effects observed in electronic components. For nuclear research reactors and high energy density physics fa-cilities this can pose exceptional challenges, especially with low level neutron fluences. An ASTM test method for characterizing neutron environments utilizes the 2N2222A transistor as a 1-MeV equivalent neutron fluence sensor and is applicable for environ-ments with 1 x 10 12 - 1 x 10 14 1-MeV(Si)-Eqv.-n/cm 2. In this work we seek to extend the range of this test method to lower fluencemore » environments utilizing the 2N1486 transistor. Here, the 2N1486 is shown to be an effective neutron displacement damage sensor as low as 1 x 10 10 1-MeV(Si)-Eqv.-n/cm 2.« less

  1. The development of a high sensitivity neutron displacement damage sensor

    DOE PAGES

    Tonigan, Andrew M.; Parma, Edward J.; Martin, William J.

    2016-11-23

    Here, the capability to characterize the neutron energy spectrum and fluence received by a test object is crucial to under-standing the damage effects observed in electronic components. For nuclear research reactors and high energy density physics fa-cilities this can pose exceptional challenges, especially with low level neutron fluences. An ASTM test method for characterizing neutron environments utilizes the 2N2222A transistor as a 1-MeV equivalent neutron fluence sensor and is applicable for environ-ments with 1 x 10 12 - 1 x 10 14 1-MeV(Si)-Eqv.-n/cm 2. In this work we seek to extend the range of this test method to lower fluencemore » environments utilizing the 2N1486 transistor. Here, the 2N1486 is shown to be an effective neutron displacement damage sensor as low as 1 x 10 10 1-MeV(Si)-Eqv.-n/cm 2.« less

  2. Two-phase flow pattern measurements with a wire mesh sensor in a direct steam generating solar thermal collector

    NASA Astrophysics Data System (ADS)

    Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard

    2017-06-01

    At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.

  3. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, D. D.; Farmer, M. T.; Lomperski, S.

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m 2 tomore » accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.« less

  4. Rapid, ultrasensitive detection of microorganisms based on interferometry and lab-on-a-chip nanotechnology

    NASA Astrophysics Data System (ADS)

    Ymeti, Aurel; Nederkoorn, Paul H. J.; Dudia, Alma; Subramaniam, Vinod; Kanger, Johannes S.

    2009-05-01

    Future viral outbreaks are a major threat to societal and economic development throughout the world. A rapid, sensitive, and easy-to-use test for viral infections is essential to prevent and to control such viral pandemics. Furthermore, a compact, portable device is potentially very useful in remote or developing regions without easy access to sophisticated laboratory facilities. We have developed a rapid, ultrasensitive sensor that could be used in a handheld device to detect various viruses and measure their concentration. The essential innovation in this technique is the combination of an integrated optical interferometric sensor with antibody-antigen recognition approaches to yield a very sensitive, very rapid test for virus detection. The sensor is able to spot the herpes virus at concentrations of just 850 particles per milliliter under physiological conditions. The sensitivity of the sensor approaches detection of a single virus particle, yielding a sensor of unprecedented sensitivity with wide applications for viral diagnostics. The sensor's detection principle can be extended to any biological target such as bacteria, cells and proteins and for which there are specific antibodies. The nature of the sensor enables multiplexed detection of several analytes at the same time.

  5. Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Ariessohn

    2008-06-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology,more » and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations were awarded by the Department of Energy to allow Enertechnix to conduct extended testing of the sensor at the Wabash River facility. In February, 2008 the sensor was installed on the gasifier in preparation for a long-term test. During the initial testing of the sensor a stainless steel tube on the sensor failed and allowed syngas to escape. The syngas self-ignited and the ensuing small fire damaged some of the components on the sensor. There was no damage to the gasifier or other equipment and no injuries resulted from this incident. Two meetings were held to identify the root causes of the incident-one at Wabash River and one at Enertechnix. A list of recommended improvements that would have addressed the causes of the incident was created and presented to the Department of Energy on May 2, 2008. However, the DOE decided not to pursue these improvements and terminated the project. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated into the prototype sensor. This port rodding mechanism operated flawlessly during the field testing, but because these tests were performed in a region of the gasifier that experiences little slagging, the effectiveness of the rodding mechanism in dealing with highly slagging conditions was not fully demonstrated. This report describes the design and operation of the automated Gasifier Acoustic Pyrometer (autoGAP) which was tested at the Wabash River facility. The results of the tests are reported and analyzed in detail. All of the objectives of the initial R&D project were achieved and a field prototype acoustic pyrometer sensor was successfully tested at the Wabash River gasifier plant.« less

  6. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This need involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the Low Earth Orbit test facility. Using a reusable free-flying testbed carried in the Shuttle, as a technology demonstration test flight, can be structured to include a variety of sensors, control schemes, and operational approaches. This testbed and flight demonstration concept will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  7. Offshore multiphase meter nears acceptable accuracy level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaisford, S.; Amdal, J.; Berentsen, H.

    1993-05-17

    Companies worldwide are looking for new production methods for offshore oil fields. In many areas, undeveloped smaller fields cannot bear the cost of dedicated production facilities. Multiphase transportation to existing production facilities can extend the distance over which unseparated oil, water, and gas streams can be transported, from a limit of several kilometers today to perhaps 200 km in the future. An encouraging multiphase meter test was sponsored by Saga Petroleum AS and carried out by Den norske stats oljeselskap AS (Statoil) on the Gullfaks B platform, Norwegian sector of the North Sea. The complete multiphase meter has two separatemore » meters. One is the composition meter for measuring the instantaneous volume or mass fractions of oil, water, and gas in the sensor. The other is a velocity meter for determining the speed of the mixture through the sensor. An instantaneous volume or mass production rate for each component is calculated by combining the outputs from the two meters. The paper describes the multiphase meter; measurements; limitations; the test setup; calibration; test results for the composition meter, velocity meter, and production rates; and future plans.« less

  8. Sensor Network Demonstration for In Situ Decommissioning - 13332

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, L.; Varona, J.; Awwad, A.

    2013-07-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensormore » systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single interface. FIU personnel and DOE Fellows monitored the progress and condition of the sensors for a period of six months. During this time, the sensors recorded data pertaining to strain, compression, temperature, crack detection, moisture presence, fluid mobility, shock resistance, monolith movement, and electrical resistivity. In addition, FIU regularly observed the curing process of the grout and documented the cube condition via the nine racks of sensors. The sensors held up throughout the curing process, withstood the natural elements for six months, and monitored the integrity of the grout. The large scale experiment and demonstration conducted at FIU was the first of its kind to demonstrate the feasibility of state of the art sensors for in situ decommissioning applications. These efforts successfully measured the durability, performance, and precision of the sensors in question as well as monitored and recorded the curing process of the selected grout material under natural environmental conditions. The current energy analysis work is resulting in data on the constraints placed by some of the sensor systems on a power network that requires high reliability and low losses. In addition, a sensor system demonstration has determined that it is feasible to develop an integrated data network where data can be accessed in near real-time from all systems, thereby allowing for larger-scale integrated system testing to be performed. Information collected during the execution of this research project will aid decision makers in the identification of sensors to be used in nuclear facilities selected for in situ decommissioning. (authors)« less

  9. In-vacuum sensors for the beamline components of the ITER neutral beam test facility.

    PubMed

    Dalla Palma, M; Pasqualotto, R; Sartori, E; Spagnolo, S; Spolaore, M; Veltri, P

    2016-11-01

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  10. Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Morgan, Daniel G.; Lee, George

    1986-01-01

    The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.

  11. Low-Cost, Distributed Environmental Monitors for Factory Worker Health

    PubMed Central

    Thomas, Geb W.; Sousan, Sinan; Tatum, Marcus; Liu, Xiaoxing; Zuidema, Christopher; Fitzpatrick, Mitchell; Koehler, Kirsten A.; Peters, Thomas M.

    2018-01-01

    An integrated network of environmental monitors was developed to continuously measure several airborne hazards in a manufacturing facility. The monitors integrated low-cost sensors to measure particulate matter, carbon monoxide, ozone and nitrogen dioxide, noise, temperature and humidity. The monitors were developed and tested in situ for three months in several overlapping deployments, before a full cohort of 40 was deployed in a heavy vehicle manufacturing facility for a year of data collection. The monitors collect data from each sensor and report them to a central database every 5 min. The work includes an experimental validation of the particle, gas and noise monitors. The R2 for the particle sensor ranges between 0.98 and 0.99 for particle mass densities up to 300 μg/m3. The R2 for the carbon monoxide sensor is 0.99 for concentrations up to 15 ppm. The R2 for the oxidizing gas sensor is 0.98 over the sensitive range from 20 to 180 ppb. The noise monitor is precise within 1% between 65 and 95 dBA. This work demonstrates the capability of distributed monitoring as a means to examine exposure variability in both space and time, building an important preliminary step towards a new approach for workplace hazard monitoring. PMID:29751534

  12. State machine analysis of sensor data from dynamic processes

    DOEpatents

    Cook, William R.; Brabson, John M.; Deland, Sharon M.

    2003-12-23

    A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.

  13. Multiple damage identification on a wind turbine blade using a structural neural system

    NASA Astrophysics Data System (ADS)

    Kirikera, Goutham R.; Schulz, Mark J.; Sundaresan, Mannur J.

    2007-04-01

    A large number of sensors are required to perform real-time structural health monitoring (SHM) to detect acoustic emissions (AE) produced by damage growth on large complicated structures. This requires a large number of high sampling rate data acquisition channels to analyze high frequency signals. To overcome the cost and complexity of having such a large data acquisition system, a structural neural system (SNS) was developed. The SNS reduces the required number of data acquisition channels and predicts the location of damage within a sensor grid. The sensor grid uses interconnected sensor nodes to form continuous sensors. The combination of continuous sensors and the biomimetic parallel processing of the SNS tremendously reduce the complexity of SHM. A wave simulation algorithm (WSA) was developed to understand the flexural wave propagation in composite structures and to utilize the code for developing the SNS. Simulation of AE responses in a plate and comparison with experimental results are shown in the paper. The SNS was recently tested by a team of researchers from University of Cincinnati and North Carolina A&T State University during a quasi-static proof test of a 9 meter long wind turbine blade at the National Renewable Energy Laboratory (NREL) test facility in Golden, Colorado. Twelve piezoelectric sensor nodes were used to form four continuous sensors to monitor the condition of the blade during the test. The four continuous sensors are used as inputs to the SNS. There are only two analog output channels of the SNS, and these signals are digitized and analyzed in a computer to detect damage. In the test of the wind turbine blade, multiple damages were identified and later verified by sectioning of the blade. The results of damage identification using the SNS during this proof test will be shown in this paper. Overall, the SNS is very sensitive and can detect damage on complex structures with ribs, joints, and different materials, and the system relatively inexpensive and simple to implement on large structures.

  14. E-ELT M1 test facility

    NASA Astrophysics Data System (ADS)

    Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, P.; Sedghi, B.; Mueller, M.

    2012-09-01

    During the advanced design phase of the European Extremely Large Telescope (E-ELT) several critical components have been prototyped. During the last year some of them have been tested in dedicated test stands. In particular, a representative section of the E-ELT primary mirror has been assembled with 2 active and 2 passive segments. This test stand is equipped with complete prototype segment subunits, i.e. including support mechanisms, glass segments, edge sensors, position actuators as well as additional metrology for monitoring. The purpose is to test various procedures such as calibration, alignment and handling and to study control strategies. In addition the achievable component and subsystem performances are evaluated, and interface issues are identified. In this paper an overview of the activities related to the E-ELT M1 Test Facility will be given. Experiences and test results are presented.

  15. A Testing Platform for Validation of Overhead Conductor Aging Models and Understanding Thermal Limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D

    2014-01-01

    Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess themore » performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.« less

  16. Ion beam plume and efflux characterization flight experiment study. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.

    1977-01-01

    A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.

  17. Water monitor system: Phase 1 test report

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Jeffers, E. L.

    1976-01-01

    Automatic water monitor system was tested with the objectives of assuring high-quality effluent standards and accelerating the practice of reclamation and reuse of water. The NASA water monitor system is described. Various components of the system, including the necessary sensors, the sample collection system, and the data acquisition and display system, are discussed. The test facility and the analysis methods are described. Test results are reviewed, and recommendations for water monitor system design improvement are presented.

  18. Acoustic-sensor-based detection of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Foote, Peter; Martin, Tony; Read, Ian

    2004-03-01

    Acoustic emission detection is a well-established method of locating and monitoring crack development in metal structures. The technique has been adapted to test facilities for non-destructive testing applications. Deployment as an operational or on-line automated damage detection technology in vehicles is posing greater challenges. A clear requirement of potential end-users of such systems is a level of automation capable of delivering low-level diagnosis information. The output from the system is in the form of "go", "no-go" indications of structural integrity or immediate maintenance actions. This level of automation requires significant data reduction and processing. This paper describes recent trials of acoustic emission detection technology for the diagnosis of damage in composite aerospace structures. The technology comprises low profile detection sensors using piezo electric wafers encapsulated in polymer film ad optical sensors. Sensors are bonded to the structure"s surface and enable acoustic events from the loaded structure to be located by triangulation. Instrumentation has been enveloped to capture and parameterise the sensor data in a form suitable for low-bandwidth storage and transmission.

  19. BODIPY-Based Fluorescent Sensor for the Recognization of Phosgene in Solutions and in Gas Phase.

    PubMed

    Xia, Hong-Cheng; Xu, Xiang-Hong; Song, Qin-Hua

    2017-04-04

    As a highly toxic and widely used chemical, phosgene has become a serious threat to humankind and public security because of its potential use by terrorists and unexpected release during industrial accidents. For this reason, it is an urgent need to develop facile, fast, and selective detection methods of phosgene. In this Article, we have constructed a highly selective fluorescent sensor o-Pab for phosgene with a BODIPY unit as a fluorophore and o-phenylenediamine as a reactive site. The sensor o-Pab exhibits rapid response (∼15 s) in both colorimetric and turn-on fluorescence modes, high selectivity for phosgene over nerve agent mimics and various acyl chlorides and a low detection limit (2.7 nM) in solutions. In contrast to most undistinguishable sensors reported, o-Pab can react with phosgene but not with its substitutes, triphosgene and biphosgene. The excellent discrimination of o-Pab has been demonstrated to be due to the difference in highly reactive and bifunctional phosgene relative to its substitutes. Furthermore, a facile testing paper has been fabricated with poly(ethylene oxide) immobilizing o-Pab on a filter paper for real-time selective monitoring of phosgene in gaseous phase.

  20. The INAF/IAPS Plasma Chamber for ionospheric simulation experiment

    NASA Astrophysics Data System (ADS)

    Diego, Piero

    2016-04-01

    The plasma chamber is particularly suitable to perform studies for the following applications: - plasma compatibility and functional tests on payloads envisioned to operate in the ionosphere (e.g. sensors onboard satellites, exposed to the external plasma environment); - calibration/testing of plasma diagnostic sensors; - characterization and compatibility tests on components for space applications (e.g. optical elements, harness, satellite paints, photo-voltaic cells, etc.); - experiments on satellite charging in a space plasma environment; - tests on active experiments which use ion, electron or plasma sources (ion thrusters, hollow cathodes, field effect emitters, plasma contactors, etc.); - possible studies relevant to fundamental space plasma physics. The facility consists of a large volume vacuum tank (a cylinder of length 4.5 m and diameter 1.7 m) equipped with a Kaufman type plasma source, operating with Argon gas, capable to generate a plasma beam with parameters (i.e. density and electron temperature) close to the values encountered in the ionosphere at F layer altitudes. The plasma beam (A+ ions and electrons) is accelerated into the chamber at a velocity that reproduces the relative motion between an orbiting satellite and the ionosphere (≈ 8 km/s). This feature, in particular, allows laboratory simulations of the actual compression and depletion phenomena which take place in the ram and wake regions around satellites moving through the ionosphere. The reproduced plasma environment is monitored using Langmuir Probes (LP) and Retarding Potential Analyzers (RPA). These sensors can be automatically moved within the experimental space using a sled mechanism. Such a feature allows the acquisition of the plasma parameters all around the space payload installed into the chamber for testing. The facility is currently in use to test the payloads of CSES satellite (Chinese Seismic Electromagnetic Satellite) devoted to plasma parameters and electric field measurements in a polar orbit at 500 km altitude.

  1. Towards Autonomous Inspection of Space Systems Using Mobile Robotic Sensor Platforms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Saad, Ashraf; Litt, Jonathan S.

    2007-01-01

    The space transportation systems required to support NASA's Exploration Initiative will demand a high degree of reliability to ensure mission success. This reliability can be realized through autonomous fault/damage detection and repair capabilities. It is crucial that such capabilities are incorporated into these systems since it will be impractical to rely upon Extra-Vehicular Activity (EVA), visual inspection or tele-operation due to the costly, labor-intensive and time-consuming nature of these methods. One approach to achieving this capability is through the use of an autonomous inspection system comprised of miniature mobile sensor platforms that will cooperatively perform high confidence inspection of space vehicles and habitats. This paper will discuss the efforts to develop a small scale demonstration test-bed to investigate the feasibility of using autonomous mobile sensor platforms to perform inspection operations. Progress will be discussed in technology areas including: the hardware implementation and demonstration of robotic sensor platforms, the implementation of a hardware test-bed facility, and the investigation of collaborative control algorithms.

  2. Investigation of Electrostatic Accelerometer in HUST for Space Science Missions

    NASA Astrophysics Data System (ADS)

    Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing

    2014-05-01

    High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.

  3. Pyramidal Wavefront Sensor Demonstrator at INO

    NASA Astrophysics Data System (ADS)

    Martin, Olivier; Véran, Jean-Pierre; Anctil, Geneviève; Bourqui, Pascal; Châteauneuf, François; Gauvin, Jonny; Goyette, Philippe; Lagacé, François; Turbide, Simon; Wang, Min

    2014-08-01

    Wavefront sensing is one of the key elements of an Adaptive Optics System. Although Shack-Hartmann WFS are the most commonly used whether for astronomical or biomedical applications, the high-sensitivity and large dynamic-range of the Pyramid-WFS (P-WFS) technology is promising and needs to be further investigated for proper justification in future Extremely Large Telescopes (ELT) applications. At INO, center for applied research in optics and technology transfer in Quebec City, Canada, we have recently set to develop a Pyramid wavefront sensor (P-WFS), an option for which no other research group in Canada had any experience. A first version had been built and tested in 2013 in collaboration with NRC-HIA Victoria. Here we present a second iteration of demonstrator with an extended spectral range, fast modulation capability and low-noise, fast-acquisition EMCCD sensor. The system has been designed with compactness and robustness in mind to allow on-sky testing at Mont Mégantic facility, in parallel with a Shack- Hartmann sensor so as to compare both options.

  4. International Instrumentation Symposium, 34th, Albuquerque, NM, May 2-6, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on aerospace instrumentation are presented. The general topics addressed include: blast and shock, wind tunnel instrumentations and controls, digital/optical sensors, software design/development, special test facilities, fiber optic techniques, electro/fiber optical measurement systems, measurement uncertainty, real time systems, pressure. Also discussed are: flight test and avionics instrumentation, data acquisition techniques, computer applications, thermal force and displacement, science and government, modeling techniques, reentry vehicle testing, strain and pressure.

  5. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization

    NASA Astrophysics Data System (ADS)

    Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze

    2016-01-01

    A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08618c

  6. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility.

    PubMed

    Fournier, K B; Brown, C G; Yeoman, M F; Fisher, J H; Seiler, S W; Hinshelwood, D; Compton, S; Holdener, F R; Kemp, G E; Newlander, C D; Gilliam, R P; Froula, N; Lilly, M; Davis, J F; Lerch, Maj A; Blue, B E

    2016-11-01

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility's diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed.

  7. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    NASA Astrophysics Data System (ADS)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  8. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity.

    PubMed

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-12-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  9. Sensors and devices containing ultra-small nanowire arrays

    DOEpatents

    Xiao, Zhili

    2014-09-23

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  10. Sensors and devices containing ultra-small nanowire arrays

    DOEpatents

    Xiao, Zhili

    2017-04-11

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  11. Advanced In-Pile Instrumentation for Materials Testing Reactors

    NASA Astrophysics Data System (ADS)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.

    2014-08-01

    The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.

  12. Turbine Windage Torque Tests.

    DTIC Science & Technology

    1981-01-01

    chamber, with a 0-60,000 RPM, 300 HP dynamometer, was selected as the test facility. A rotary transformer ( brushless ) torque sensor, using air /oil... brushless ) of 100 and 500 in-lb torque ranges were selected from Lebow Associates, Inc. of Troy, Michigan. Special air / oil mist lubrication for the...period August 1979 - October 1980 I Approved for public release; distribution unlimited. _ DTIC AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL

  13. SPRITE: A TPS Test Bed for Ground and Flight

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Peterson, Keith; Swanson, Gregory; Skokova, Kristina; Mangini, Nancy; Empey, Daniel M.; Gorbunov, Sergey; Venkatapathy, Ethiraj

    2012-01-01

    Engineers in the Entry Systems and Technology Division at NASA Ames Research Center developed a fully instrumented, small atmospheric entry probe called SPRITE (Small Probe Reentry Investigation for TPS Engineering). SPRITE, conceived as a flight test bed for thermal protection materials, was tested at full scale in an arc-jet facility so that the aerothermal environments the probe experiences over portions of its flight trajectory and in the arc-jet are similar. This ground-to-flight traceability enhances the ability of mission designers to evaluate margins needed in the design of thermal protection systems (TPS) of larger scale atmospheric entry vehicles. SPRITE is a 14-inch diameter, 45 deg. sphere-cone with a conical aftbody and designed for testing in the NASA Ames Aerodynamic Heating Facility (AHF). The probe is a two-part aluminum shell with PICA (phenolic impregnated carbon ablator) bonded on the forebody and LI-2200 (Shuttle tile material) bonded to the aftbody. Plugs with embedded thermocouples, similar to those installed in the heat shield of the Mars Science Laboratory (MSL), and a number of distributed sensors are integrated into the design. The data from these sensors are fed to an innovative, custom-designed data acquisition system also integrated with the test article. Two identical SPRITE models were built and successfully tested in late 2010-early 2011, and the concept is currently being modified to enable testing of conformable and/or flexible materials.

  14. EUSO@TurLab: An experimental replica of ISS orbits

    NASA Astrophysics Data System (ADS)

    Bertaina, M.; Bowaire, A.; Cambursano, S.; Caruso, R.; Contino, G.; Cotto, G.; Crivello, F.; Forza, R.; Guardone, N.; Manfrin, M.; Mignone, M.; Mulas, R.; Suino, G.; Tibaldi, P. S.

    2015-03-01

    The EUSO@TurLab project is an on-going activity aimed to reproduce atmospheric and luminous conditions that JEM-EUSO will encounter on its orbits around the Earth. The use of the TurLab facility, part of the Department of Physics of the University of Torino, allows the simulation of different surface conditions in a very dark and rotating environment in order to test the response of JEM-EUSO's sensors and sensitivity. The experimental setup currently in operation has been used to check the potential of the TurLab facility for the above purposes, and the acquired data will be used to test the concept of JEM-EUSO's trigger system.

  15. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Jensen, R. N.; Knoll, R. H.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  16. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  17. Control Room at the NACA’s Rocket Engine Test Facility

    NASA Image and Video Library

    1957-05-21

    Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.

  18. 33 CFR 154.2102 - Facility requirements for vessel liquid overfill protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... receives cargo vapor from a tank barge that is fitted with an intrinsically safe cargo tank level sensor... tank level sensor system that— (1) Closes the remotely operated cargo vapor shutoff valve required by... sensor system is interrupted; (2) Activates an audible and visible alarm that warns barge and facility...

  19. Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This guide provides federal facility managers with an overview of the energy savings potential of wireless lighting occupancy sensors for various room types, cost considerations, key steps to successful installation of wireless sensors, pros and cons of various technology options, light source considerations, and codes and standards.

  20. Reference earth orbital research and applications investigations (blue book). Volume 4: Earth observations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The earth observations capability of the space station and space shuttle program definition is discussed. The stress in the functional program element has been to update the sensor specifications and to shift some of the emphasis from sensors to experiments to be done aboard the facility. The earth observations facility will include provisions for data acquisition, sensor control and display, data analysis, and maintenance and repair. The facility is research and development in nature with a potential for operational applications.

  1. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.

    2016-11-15

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strainmore » gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.« less

  2. KSC-2010-4679

    NASA Image and Video Library

    2010-07-28

    CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann

  3. KSC-2010-4678

    NASA Image and Video Library

    2010-07-28

    CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann

  4. KSC-2010-4680

    NASA Image and Video Library

    2010-07-28

    CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann

  5. KSC-2010-4681

    NASA Image and Video Library

    2010-07-28

    CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann

  6. KSC-2010-4683

    NASA Image and Video Library

    2010-07-28

    CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann

  7. KSC-2010-4677

    NASA Image and Video Library

    2010-07-28

    CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is prepared for installation while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann

  8. KSC-2010-4682

    NASA Image and Video Library

    2010-07-28

    CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann

  9. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateralmore » wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.« less

  10. Evaluation of the prototype dual-axis wall attitude measurement sensor

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1994-01-01

    A prototype dual-axis electrolytic tilt sensor package for angular position measurements was built and evaluated in a laboratory environment. The objective was to investigate the use of this package for making wind tunnel wall attitude measurements for the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC). The instrumentation may replace an existing, more costly, and less rugged servo accelerometer package (angle-of-attack package) currently in use. The dual-axis electrolytic tilt sensor package contains two commercial electrolytic tilt sensors thermally insulated with NTF foam, all housed within a stainless steel package. The package is actively heated and maintained at 160 F using foil heating elements. The laboratory evaluation consisted of a series of tests to characterize the linearity, repeatability, cross-axis interaction, lead wire effect, step response, thermal time constant, and rectification errors. Tests revealed that the total RMS errors for the x-axis sensor is 0.084 degree, and 0.182 degree for the y-axis sensor. The RMS errors are greater than the 0.01 degree specification required for NTF wall attitude measurements. It is therefore not a viable replacement for the angle-of-attack package in the NTF application. However, with some physical modifications, it can be used as an inexpensive 5-degree range dual-axis inclinometer with overall accuracy approaching 0.01 degree under less harsh environments. Also, the data obtained from the tests can be valuable for wind tunnel applications of most types of electrolytic tilt sensors.

  11. 3D-FBK Pixel Sensors: Recent Beam Tests Results with Irradiated Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micelli, A.; /INFN, Trieste /Udine U.; Helle, K.

    2012-04-30

    The Pixel Detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider, and plays a key role in the reconstruction of the primary vertices from the collisions and secondary vertices produced by short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology ismore » an innovative combination of very-large-scale integration and Micro-Electro-Mechanical-Systems where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradiated 3D devices produced at FBK (Trento, Italy). The performance of these devices, all bump-bonded with the ATLAS pixel FE-I3 read-out chip, is compared to that observed before irradiation in a previous beam test.« less

  12. An automated calibration laboratory - Requirements and design approach

    NASA Technical Reports Server (NTRS)

    O'Neil-Rood, Nora; Glover, Richard D.

    1990-01-01

    NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

  13. KSC-07pd3642

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, technicians monitor readings during a test exposing Time Domain Reflectometry, or TDR, instrumentation to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  14. VLTI-PRIMA fringe tracking testbed

    NASA Astrophysics Data System (ADS)

    Abuter, Roberto; Rabien, Sebastian; Eisenhauer, Frank; Sahlmann, Johannes; Di Lieto, Nicola; Haug, Marcus; Wallander, Anders; Lévêque, Samuel; Ménardi, Serge; Delplancke, Françoise; Schuhler, Nicolas; Kellner, Stefan; Frahm, Robert

    2006-06-01

    One of the key components of the planned VLTI dual feed facility PRIMA is the Fringe Sensor Unit (FSU). Its basic function is the instantaneous measurement of the Optical Path Difference (OPD) between two beams. The FSU acts as the sensor for a complex control system involving optical delay lines and laser metrology with the aim of removing any OPD introduced by the atmosphere and the beam relay. We have initiated a cooperation between ESO and MPE with the purpose of systematically testing this Fringe Tracking Control System in a laboratory environment. This testbed facility is being built at MPE laboratories with the aim to simulate the VLTI and includes FSUs, OPD controller, metrology and in-house built delay lines. In this article we describe this testbed in detail, including the environmental conditions in the laboratory, and present the results of the testbed subsystem characterisation.

  15. The 11th Space Simulation Conference

    NASA Technical Reports Server (NTRS)

    Bond, A. C. (Editor)

    1980-01-01

    Subject areas range from specialized issues dealing with the space and entry environments to the environmental testing of systems and complete spacecraft of present-day vintage. Various papers consider: the test and development of several key systems of the orbiter vehicle; integrated tests of complete satellites; new and unique test facilities developed to meet the demanding requirements of high fidelity simulation of test environments; and contamination species, including the instrumentation for detection and measurement of such. Special topics include improved thermal protection methodologies and approaches, sophisticated sensor developments, and other related testing and development areas.

  16. Infrasound Sensor and Porous-Hose Filter Characterization Results

    NASA Astrophysics Data System (ADS)

    Hart, D. M.; Harris, J. M.

    2008-12-01

    The Ground-Based Nuclear Explosion Monitoring Research and Development (GNEM R&D) program at Sandia National Laboratories (SNL) is regarded as the primary center for unbiased expertise in testing and evaluation of geophysical sensors and instrumentation for nuclear explosion monitoring. Over the past year much of our work has focused in the area of infrasound sensor characterization through the continuing development of an infrasound sensor characterization test-bed. Our main areas of focus have been in new sensor characterization and understanding the effects of porous-hose filters for reducing acoustic background signals. Three infrasound sensors were evaluated for characteristics of instrument response, linearity and self-noise. The sensors tested were Chaparral Physics model 2.5 low-gain, New Mexico Tech All-Sensor and the Inter-Mountain Labs model SS avalanche sensor. For the infrasound sensors tested, the test results allow us to conclude that two of the three sensors had sufficiently quiet noise floor to be at or below the Acoustic low-noise model from 0.1 to 7 Hz, which make those sensors suitable to explosion monitoring. The other area of focus has been to understand the characteristics of porous-hose filters used at some monitoring sites. For this, an experiment was designed in which two infrasound sensors were co- located. One sensor was connected to a typical porous-hose spatial filter consisting of eight individual hoses covering a 30m aperture and the second sensor was left open to unimpeded acoustic input. Data were collected for several days, power spectrum computed for two-hour windows and the relative gain of the porous-hose filters were estimated by dividing the power spectrum. The porous-hose filter appears to attenuate less than 3 dB (rel 1 Pa**2/Hz) below 0.1 Hz and as much as 25 dB at 1 Hz and between 20 to 10 dB above 10 Hz. Several more experiments will be designed to address the effects of different characteristics of the individual porous-hoses, such as length, number and geometric arrangement. This work directly impacts the Ground-Based Nuclear Explosion Monitoring mission by providing a facility, equipment, and personnel to give the operational monitoring agencies confidence in deployed instrumentation and capability for mission success.

  17. Development of a Test Facility for Air Revitalization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick; Curley, Su

    2007-01-01

    Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat of up to eight persons. A multitude of gas analyzers and dew point sensors are used to monitor the chamber atmosphere upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space. A reliable data acquisition and control system is required to connect all the subsystems together. This paper presents the capabilities of the integrated test facility and some of the issues encountered during the integration.

  18. A study of redundancy management strategy for tetrad strap-down inertial systems. [error detection codes

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.; Schmidt, S. F.; Carestia, R. A.

    1979-01-01

    Algorithms were developed that attempt to identify which sensor in a tetrad configuration has experienced a step failure. An algorithm is also described that provides a measure of the confidence with which the correct identification was made. Experimental results are presented from real-time tests conducted on a three-axis motion facility utilizing an ortho-skew tetrad strapdown inertial sensor package. The effects of prediction errors and of quantization on correct failure identification are discussed as well as an algorithm for detecting second failures through prediction.

  19. Characterization of Arcjet Flows Using Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bamford, Douglas J.; O'Keefe, Anthony; Babikian, Dikran S.; Stewart, David A.; Strawa, Anthony W.

    1995-01-01

    A sensor based on laser-induced fluorescence has been installed at the 20-MW NASA Ames Aerodynamic Heating Facility. The sensor has provided new, quantitative, real-time information about properties of the arcjet flow in the highly dissociated, partially ionized, nonequilibrium regime. Number densities of atomic oxygen, flow velocities, heavy particle translational temperatures, and collisional quenching rates have been measured. These results have been used to test and refine computational models of the arcjet flow. The calculated number densities, translational temperatures, and flow velocities are in moderately good agreement with experiment

  20. The deformable secondary mirror of VLT: final electro-mechanical and optical acceptance test results

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Biasi, Roberto; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Angerer, Gerald; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2014-07-01

    The Deformable Secondary Mirror (DSM) for the VLT ended the stand-alone electro-mechanical and optical acceptance process, entering the test phase as part of the Adaptive Optics Facility (AOF) at the ESO Headquarter (Garching). The VLT-DSM currently represents the most advanced already-built large-format deformable mirror with its 1170 voice-coil actuators and its internal metrology based on co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the final results of the electro-mechanical and optical characterization of the DSM executed in a collaborative effort by the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.), INAF-Osservatorio Astrofisico di Arcetri and ESO. The electro-mechanical acceptance tests have been performed in the company premises and their main purpose was the dynamical characterization of the internal control loop response and the calibration of the system data that are needed for its optimization. The optical acceptance tests have been performed at ESO (Garching) using the ASSIST optical test facility. The main purpose of the tests are the characterization of the optical shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions.

  1. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  2. KSC-07pd3643

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  3. KSC-07pd3639

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd3640

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  5. KSC-07pd3641

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  6. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  7. Integration of research infrastructures and ecosystem models toward development of predictive ecology

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.

    2017-12-01

    The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure facilities to model simulation, data assimilation, and ecological forecasting.

  8. Remote inspection with multi-copters, radiological sensors and SLAM techniques

    NASA Astrophysics Data System (ADS)

    Carvalho, Henrique; Vale, Alberto; Marques, Rúben; Ventura, Rodrigo; Brouwer, Yoeri; Gonçalves, Bruno

    2018-01-01

    Activated material can be found in different scenarios, such as in nuclear reactor facilities or medical facilities (e.g. in positron emission tomography commonly known as PET scanning). In addition, there are unexpected scenarios resulting from possible accidents, or where dangerous material is hidden for terrorism attacks using nuclear weapons. Thus, a technological solution is important to cope with fast and reliable remote inspection. The multi-copter is a common type of Unmanned Aerial Vehicle (UAV) that provides the ability to perform a first radiological inspection in the described scenarios. The paper proposes a solution with a multi-copter equipped with on-board sensors to perform a 3D reconstruction and a radiological mapping of the scenario. A depth camera and a Geiger-Müler counter are the used sensors. The inspection is performed in two steps: i) a 3D reconstruction of the environment and ii) radiation activity inference to localise and quantify sources of radiation. Experimental results were achieved with real 3D data and simulated radiation activity. Experimental tests with real sources of radiation are planned in the next iteration of the work.

  9. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.

  10. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied.

  11. Meteorological Instrumentation Support for an Adverse Weather Test Facility

    DTIC Science & Technology

    1991-05-01

    pressure sensor 12 8 Sling psychrometer 12 9 Relative humidity graph 13 10 Relative humidity graph 13 FIGURES (cont) Page 11 Cooled mirror dewpoint...80 -80 -50 -50 -32 .32 WET BULB DRY BULB Figure 8. Sling psychrometer 12 40 -. w 0 ARYBULAI TEMPERATURE Figure 1. Relative humidity graph 3013 L

  12. Estimation of point source fugitive emission rates from a single sensor time series: a conditionally-sampled Gaussian plume reconstruction

    EPA Science Inventory

    This paper presents a technique for determining the trace gas emission rate from a point source. The technique was tested using data from controlled methane release experiments and from measurement downwind of a natural gas production facility in Wyoming. Concentration measuremen...

  13. Heat flux instrumentation for Hyflite thermal protection system

    NASA Technical Reports Server (NTRS)

    Diller, T. E.

    1994-01-01

    Using Thermal Protection Tile core samples supplied by NASA, the surface characteristics of the FRCI, TUFI, and RCG coatings were evaluated. Based on these results, appropriate methods of surface preparation were determined and tested for the required sputtering processes. Sample sensors were fabricated on the RCG coating and adhesion was acceptable. Based on these encouraging results, complete Heat Flux Microsensors were fabricated on the RCG coating. The issue of lead attachment was addressed with the annnealing and welding methods developed at NASA Lewis. Parallel gap welding appears to be the best method of lead attachment with prior heat treatment of the sputtered pads. Sample Heat Flux Microsensors were submitted for testing in the NASA Ames arc jet facility. Details of the project are contained in two attached reports. One additional item of interest is contained in the attached AIAA paper, which gives details of the transient response of a Heat Flux Microsensors in a shock tube facility at Virginia Tech. The response of the heat flux sensor was measured to be faster than 10 micro-s.

  14. High heat flux measurements and experimental calibrations/characterizations

    NASA Technical Reports Server (NTRS)

    Kidd, Carl T.

    1992-01-01

    Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.

  15. Progress in the measurement of SSME turbine heat flux with plug-type sensors

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1991-01-01

    Data reduction was completed for tests of plug-type heat flux sensors (gauges) in a turbine blade thermal cycling tester (TBT) that is located at NASA/Marshall Space Flight Center, and a typical gauge is illustrated. This is the first time that heat flux has been measured in a Space Shuttle Main Engine (SSME) Turbopump Turbine environment. The development of the concept for the gauge was performed in a heat flux measurement facility at Lewis. In this facility, transient and steady state absorbed surface heat flux information was obtained from transient temperature measurements taken at points within the gauge. A schematic of the TBT is presented, and plots of the absorbed surface heat flux measured on the three blades tested in the TBT are presented. High quality heat flux values were measured on all three blades. The experiments demonstrated that reliable and durable gauges can be repeatedly fabricated into the airfoils. The experiment heat flux data are being used for verification of SSME analytical stress, boundary layer, and heat transfer design models. Other experimental results and future plans are also presented.

  16. Studies of uniformity of 50 μm low-gain avalanche detectors at the Fermilab test beam

    NASA Astrophysics Data System (ADS)

    Apresyan, A.; Xie, S.; Pena, C.; Arcidiacono, R.; Cartiglia, N.; Carulla, M.; Derylo, G.; Ferrero, M.; Flores, D.; Freeman, P.; Galloway, Z.; Ghassemi, A.; Al Ghoul, H.; Gray, L.; Hidalgo, S.; Kamada, S.; Los, S.; Mandurrino, M.; Merlos, A.; Minafra, N.; Pellegrini, G.; Quirion, D.; Ronzhin, A.; Royon, C.; Sadrozinski, H.; Seiden, A.; Sola, V.; Spiropulu, M.; Staiano, A.; Uplegger, L.; Yamamoto, K.; Yamamura, K.

    2018-07-01

    In this paper we report measurements of the uniformity of time resolution, signal amplitude, and charged particle detection efficiency across the sensor surface of low-gain avalanche detectors (LGAD). Comparisons of the performance of sensors with different doping concentrations and different active thicknesses are presented, as well as their temperature dependence and radiation tolerance up to 6 × 1014 n/cm2. Results were obtained at the Fermilab test beam facility using 120 GeV proton beams, and a high precision pixel tracking detector. LGAD sensors manufactured by the Centro Nacional de Microelectrónica (CNM) and Hamamatsu Photonics (HPK) were studied. The uniformity of the sensor response in pulse height before irradiation was found to have a 2% spread. The signal detection efficiency and timing resolution in the sensitive areas before irradiation were found to be 100% and 30-40 ps, respectively. A "no-response" area between pads was measured to be about 130 μm for CNM and 170 μm for HPK sensors. After a neutron fluence of 6 × 1014 n/cm2 the CNM sensor exhibits a large gain variation of up to a factor of 2.5 when comparing metalized and non-metalized sensor areas. An irradiated CNM sensor achieved a time resolution of 30 ps for the metalized area and 40 ps for the non-metalized area, while a HPK sensor irradiated to the same fluence achieved a 30 ps time resolution.

  17. A facile fluorescent sensor based on silicon nanowires for dithionite

    NASA Astrophysics Data System (ADS)

    Cao, Xingxing; Mu, Lixuan; Chen, Min; She, Guangwei

    2018-05-01

    A facile and novel fluorescent sensor for dithionite has been constructed by simultaneously immobilizing dansyl group (fluorescence molecule) and dabsyl group (quencher and recognizing group) on the silicon nanowires (SiNWs) and SiNW arrays surface. This sensor for dithionite exhibited high selectivity and a good relationship of linearity between fluorescence intensities and dithionite concentrations from 0.1 to 1 mM. This approach is straightforward and does not require complicated synthesis, which can be extended to develop other sensors with similar rationale.

  18. Survivability Tests on a Nuclear Waste Cask in Simulated Railroad Accident Fires.

    DTIC Science & Technology

    1983-06-01

    Axial Reference Point ( XRP ) .......... 19 4. A View of the Torch Facility with the Nozzle Directed Side-On to the HNPF Cask... XRP and the TIC for Various HNPF Cask Surfaces in Test Number 1 .................... 47 16. The Spatial Distribution of Sensors in a Cross-Sectional...Plane Through the HNPF Cask at 289.6 cm from the XRP as Viewed from the Top End with the TIC Located at 900 for Test Numbers 1 and 2

  19. Formation Mechanism and Gas-Sensing Performance of La/ZnO Nanoplates Synthesized by a Facile Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Li, Yan; Chen, Li-Li; Lian, Xiao-Xue; Li, Jiao

    2018-03-01

    La/ZnO nanoplates were successfully synthesized by a facile hydrothermal method. The structure and morphology of the products were characterized using x-ray diffraction and scanning electron microscopy. The gas-sensing properties of the as-prepared La/ZnO were also tested with a series of target gases, and a possible gas sensing mechanism was discussed. The results show that the as-prepared La/ZnO nanoparticles are mainly composde of a wurtzite ZnO and a little La2O3 phase with face-centered structure, showing a uniform plate-like morphology with a thickness of about 50 nm. The La/ZnO nanoplate-based sensors display a significantly better sensing performance than pure ZnO for the detection of acetone and ethanol. The 3 mol.% La/ZnO sensor shows high sensitivity (127) to 200 ppm acetone at a low working temperature (330°C), and 120-200 ppm ethanol at 300°C. Moreover, its response and recovery time for acetone and ethanol were 3 s and 4 s, 18 s and 11 s, respectively. This work demonstrates that La/ZnO nanoplate-based sensors have potential applications as practical sensors for acetone and ethanol.

  20. Automated baseline change detection -- Phases 1 and 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byler, E.

    1997-10-31

    The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrelmore » and on feature recognition in images. The ABCD image processing software was installed on a robotic vehicle developed under a related DOE/FETC contract DE-AC21-92MC29112 Intelligent Mobile Sensor System (IMSS) and integrated with the electronics and software. This vehicle was designed especially to navigate in DOE Waste Storage Facilities. Initial system testing was performed at Fernald in June 1996. After some further development and more extensive integration the prototype integrated system was installed and tested at the Radioactive Waste Management Facility (RWMC) at INEEL beginning in April 1997 through the present (November 1997). The integrated system, composed of ABCD imaging software and IMSS mobility base, is called MISS EVE (Mobile Intelligent Sensor System--Environmental Validation Expert). Evaluation of the integrated system in RWMC Building 628, containing approximately 10,000 drums, demonstrated an easy to use system with the ability to properly navigate through the facility, image all the defined drums, and process the results into a report delivered to the operator on a GUI interface and on hard copy. Further work is needed to make the brassboard system more operationally robust.« less

  1. Space station analysis study. Part 2, Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Objectives of the space station program requiring the support of man in space, either in the shuttle sortie mode or in extended duration facilities are identified and analyzed. A set of functional requirements was derived to identify specific technology advancement needs, tests to be conducted, and processes to be developed. Program options are summarized for: (1) satellite power system; (2) earth services; (3) space cosmological research and development; (4) space processing and manufacturing; (5) multidiscipline science laboratory; (6) sensor development facility; (7) living and working in space; and (8) orbital depot.

  2. Integration of an open interface PC scene generator using COTS DVI converter hardware

    NASA Astrophysics Data System (ADS)

    Nordland, Todd; Lyles, Patrick; Schultz, Bret

    2006-05-01

    Commercial-Off-The-Shelf (COTS) personal computer (PC) hardware is increasingly capable of computing high dynamic range (HDR) scenes for military sensor testing at high frame rates. New electro-optical and infrared (EO/IR) scene projectors feature electrical interfaces that can accept the DVI output of these PC systems. However, military Hardware-in-the-loop (HWIL) facilities such as those at the US Army Aviation and Missile Research Development and Engineering Center (AMRDEC) utilize a sizeable inventory of existing projection systems that were designed to use the Silicon Graphics Incorporated (SGI) digital video port (DVP, also known as DVP2 or DD02) interface. To mate the new DVI-based scene generation systems to these legacy projection systems, CG2 Inc., a Quantum3D Company (CG2), has developed a DVI-to-DVP converter called Delta DVP. This device takes progressive scan DVI input, converts it to digital parallel data, and combines and routes color components to derive a 16-bit wide luminance channel replicated on a DVP output interface. The HWIL Functional Area of AMRDEC has developed a suite of modular software to perform deterministic real-time, wave band-specific rendering of sensor scenes, leveraging the features of commodity graphics hardware and open source software. Together, these technologies enable sensor simulation and test facilities to integrate scene generation and projection components with diverse pedigrees.

  3. An automated calibration laboratory for flight research instrumentation: Requirements and a proposed design approach

    NASA Technical Reports Server (NTRS)

    Oneill-Rood, Nora; Glover, Richard D.

    1990-01-01

    NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

  4. Hydrodynamic Test Facilities at ARL/PSU.

    DTIC Science & Technology

    1982-02-12

    integral scale of 1.25 cm, by the addition of honey- comb in the settling section; and (4) the development of electro- optical measuring techniques. In...the NASA tunnel and its very high velocity, has been to study the process of cavitation damage [13]. Recent studies at ARL/PSU have confirmed the...at frequencies > 300 Hz. When used in con- junction with other sensors located in the test section, dual- channel signal processing can be used to

  5. High-throughput fabrication and screening improves gold nanoparticle chemiresistor sensor performance.

    PubMed

    Hubble, Lee J; Cooper, James S; Sosa-Pintos, Andrea; Kiiveri, Harri; Chow, Edith; Webster, Melissa S; Wieczorek, Lech; Raguse, Burkhard

    2015-02-09

    Chemiresistor sensor arrays are a promising technology to replace current laboratory-based analysis instrumentation, with the advantage of facile integration into portable, low-cost devices for in-field use. To increase the performance of chemiresistor sensor arrays a high-throughput fabrication and screening methodology was developed to assess different organothiol-functionalized gold nanoparticle chemiresistors. This high-throughput fabrication and testing methodology was implemented to screen a library consisting of 132 different organothiol compounds as capping agents for functionalized gold nanoparticle chemiresistor sensors. The methodology utilized an automated liquid handling workstation for the in situ functionalization of gold nanoparticle films and subsequent automated analyte testing of sensor arrays using a flow-injection analysis system. To test the methodology we focused on the discrimination and quantitation of benzene, toluene, ethylbenzene, p-xylene, and naphthalene (BTEXN) mixtures in water at low microgram per liter concentration levels. The high-throughput methodology identified a sensor array configuration consisting of a subset of organothiol-functionalized chemiresistors which in combination with random forests analysis was able to predict individual analyte concentrations with overall root-mean-square errors ranging between 8-17 μg/L for mixtures of BTEXN in water at the 100 μg/L concentration. The ability to use a simple sensor array system to quantitate BTEXN mixtures in water at the low μg/L concentration range has direct and significant implications to future environmental monitoring and reporting strategies. In addition, these results demonstrate the advantages of high-throughput screening to improve the performance of gold nanoparticle based chemiresistors for both new and existing applications.

  6. Vulnerability Methodology and Protective Measures for Aircraft Fire and Explosion Hazards. Volume 2. Aircraft Engine Nacelle Fire Test Programs. Part 1. Fire Detection, Fire Extinguishment and Surface Ignition Studies

    DTIC Science & Technology

    1986-01-01

    by sensors in the test cell and sampled, digitized, averaged, and calibrated by the facility computer system. The data included flowrates calculated ...before the next test could be started. This required about 2 minutes. 6.4 Combat Damage Testing Appendix C contains calculations and analysis...were comparable (Figure 7-5). Agent quantities required per MIL-E-22285 were again calculated using the equations noted in paragraph 7.1.1. The

  7. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    NASA Astrophysics Data System (ADS)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  8. Air Data Boom System Development for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Cox, Jeff; Bondurant, Robert; Dupont, Ron; ODonnell, Louise; Vellines, Wesley, IV; Johnston, William M.; Cagle, Christopher M.; Schuster, David M.; Elliott, Kenny B.; hide

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale and passively, aerodynamically stabilized MLAS launch abort demonstrator was successfully launched from Wallops Flight Facility following nearly two years of development work on the launch abort concept: from a napkin sketch to a flight demonstration of the full-scale flight test vehicle. The MLAS flight test vehicle was instrumented with a suite of aerodynamic sensors. The purpose was to obtain sufficient data to demonstrate that the vehicle demonstrated the behavior predicted by Computational Fluid Dynamics (CFD) analysis and wind tunnel testing. This paper describes development of the Air Data Boom (ADB) component of the aerodynamic sensor suite.

  9. Calibration of High Heat Flux Sensors at NIST

    PubMed Central

    Murthy, A. V.; Tsai, B. K.; Gibson, C. E.

    1997-01-01

    An ongoing program at the National Institute of Standards and Technology (NIST) is aimed at improving and standardizing heat-flux sensor calibration methods. The current calibration needs of U.S. science and industry exceed the current NIST capability of 40 kW/m2 irradiance. In achieving this goal, as well as meeting lower-level non-radiative heat flux calibration needs of science and industry, three different types of calibration facilities currently are under development at NIST: convection, conduction, and radiation. This paper describes the research activities associated with the NIST Radiation Calibration Facility. Two different techniques, transfer and absolute, are presented. The transfer calibration technique employs a transfer standard calibrated with reference to a radiometric standard for calibrating the sensors using a graphite tube blackbody. Plans for an absolute calibration facility include the use of a spherical blackbody and a cooled aperture and sensor-housing assembly to calibrate the sensors in a low convective environment. PMID:27805156

  10. A Community Network of 100 Black Carbon Sensors

    NASA Astrophysics Data System (ADS)

    Preble, C.; Kirchstetter, T.; Caubel, J.; Cados, T.; Keeling, C.; Chang, S.

    2017-12-01

    We developed a low-cost black carbon sensor, field tested its performance, and then built and deployed a network of 100 sensors in West Oakland, California. We operated the network for 100 days beginning mid-May 2017 to measure spatially resolved black carbon concentrations throughout the community. West Oakland is a San Francisco Bay Area mixed residential and industrial community that is adjacent to regional port and rail yard facilities and surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we deployed the black carbon monitoring network outside of residences and business, along truck routes and arterial streets, and at upwind locations. The sensor employs the filter-based light transmission method to measure black carbon and has good precision and correspondence with current commercial black carbon instruments. Throughout the 100-day period, each of the 100 sensors transmitted data via a cellular network. A MySQL database was built to receive and manage the data in real-time. The database included diagnostic features to monitor each sensor's operational status and facilitate the maintenance of the network. Spatial and temporal patterns in black carbon concentrations will be presented, including patterns around industrial facilities, freeways, and truck routes, as well as the relationship between neighborhood concentrations and the BAAQMD's monitoring site. Lessons learned during this first of its kind black carbon monitoring network will also be shared.

  11. Measurements of the optical performance of bolometers for SPICA/SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Ridder, Marcel; Ferrari, Lorenza; Laauwen, Wouter M.; Ranjan, Manisha; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.

    2012-09-01

    We have measured the optical response of detectors designed for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. To take advantage of SPICA's cooled optics, SAFARI’s three bolometer arrays are populated with extremely sensitive (NEP~2×10-19 W/√Hz) transition edge sensors with a transition temperature close to 100 mK. The extreme sensitivity and low saturation power (~4 fW) of SAFARI’s detectors present challenges to characterizing them. We have therefore built up an ultra-low background test facility with a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion. Our use of a pulse-tube cooler to pre-cool the dilution refrigerator required that the SAFARI Detector System Test Facility provide a high degree electrical, magnetic, and mechanical isolation for the detectors. We have carefully characterized the performance of the test facility in terms of background power loading. The test facility has been designed to be flexible and easily reconfigurable with internal illuminators that allow us to characterize the optical response of the detectors. We describe the test facility and some of the steps we took to create an ultra-low background test environment. We have measured the optical response of two detectors designed for SAFARI’s short-wave wavelength band in combination with a spherical backshort and conical feedhorn. We find an overall optical efficiency of 40% for both, compared with an ideal-case predicted optical efficiency of 66%.

  12. Testing of Streckeisen STS-5A and Nanometrics Trillium 120PH Sensors for the Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Abbasi Baghbadorani, A.; Aderhold, K.; Bloomquist, D.; Frassetto, A.; Miller, P. E.; Busby, R. W.

    2017-12-01

    Starting in 2014, the IRIS Transportable Array facility began to install and operate seismic stations in Alaska and western Canada. By the end of the project, the full deployment of the array will cover a grid of 280 stations spaced about 85 km apart covering all of mainland Alaska and parts of the Yukon, British Columbia, and the Northwest Territories. Approximately 200 stations will be operated directly by IRIS through at least 2019. A key aspect of the Alaska TA is the need for stations to operate autonomously, on account of the high cost of installation and potential subsequent visits to remote field-sites to repair equipment. The TA is using newly developed broadband seismometers Streckeisen STS-5A and Nanometrics Trillium-120PH, designed for installation in shallow posthole emplacements. These new instruments were extensively vetted beforehand, but they are still relatively new to the TA inventory. Here we will assess their performance under deployment conditions and after repeated commercial shipping and travel to the field. Our objective is to provide a thorough accounting of the identified failures of the existing inventory of posthole instruments. We will assess the practices and results of instrument testing by the PASSCAL Instrument Center/Array Operations Facility (PIC/AOF), Alaska Operations Center (AOC), and broadband seismic sensor manufacturers (Streckeisen, Nanometrics) in order to document potential factors in and stages during the process for instrument failures. This will help to quantify the overall reliability of the TA seismic sensors and quality of TA practices and data collection, and identify potential considerations in future TA operations. Our results show that the overall rate of failure of all posthole instruments is <4% out of 260. This is lower than the rates seen for vault sensor failures in the operation of the Lower 48 Transportable Array. For telemetered stations such as these installed in the TA Alaska array, we also show that noise analyses can capture a failed emplaced sensor and reveal improved station performance after sensor replacement, and that these are key elements in assessing whether or not a sensor should be replaced in the field.

  13. Combined Instrumentation Package COMARS+ for the ExoMars Schiaparelli Lander

    NASA Astrophysics Data System (ADS)

    Gülhan, Ali; Thiele, Thomas; Siebe, Frank; Kronen, Rolf

    2018-02-01

    In order to measure aerothermal parameters on the back cover of the ExoMars Schiaparelli lander the instrumentation package COMARS+ was developed by DLR. Consisting of three combined aerothermal sensors, one broadband radiometer sensor and an electronic box the payload provides important data for future missions. The aerothermal sensors called COMARS combine four discrete sensors measuring static pressure, total heat flux, temperature and radiative heat flux at two specific spectral bands. The infrared radiation in a broadband spectral range is measured by the separate broadband radiometer sensor. The electronic box of the payload is used for amplification, conditioning and multiplexing of the sensor signals. The design of the payload was mainly carried out using numerical tools including structural analyses, to simulate the main mechanical loads which occur during launch and stage separation, and thermal analyses to simulate the temperature environment during cruise phase and Mars entry. To validate the design an extensive qualification test campaign was conducted on a set of qualification models. The tests included vibration and shock tests to simulate launch loads and stage separation shocks. Thermal tests under vacuum condition were performed to simulate the thermal environment of the capsule during the different flight phases. Furthermore electromagnetic compatibility tests were conducted to check that the payload is compatible with the electromagnetic environment of the capsule and does not emit electromagnetic energy that could cause electromagnetic interference in other devices. For the sensor heads located on the ExoMars back cover radiation tests were carried out to verify their radiation hardness. Finally the bioburden reduction process was demonstrated on the qualification hardware to show the compliance with the planetary protection requirements. To test the actual heat flux, pressure and infrared radiation measurement under representative conditions, aerothermal tests were performed in an arc-heated wind tunnel facility. After all qualification tests were passed successfully, the acceptance test campaign for the flight hardware at acceptance level included the same tests than the qualification campaign except shock, radiation hardness and aerothermal tests. After passing all acceptance tests, the COMARS+ flight hardware was integrated into the Schiaparelli capsule in January 2015 at the ExoMars integration site at Thales Alenia Space in Turin. Although the landing of Schiaparelli failed, resulting in the loss of most COMARS+ flight data because they were stored on the lander, some data points were directly transmitted to the orbiter at low sampling rate during the entry phase. These data indicate that all COMARS+ sensors delivered useful data until parachute deployment with the exception of the plasma black-out phase. Since measured structure and sensor housing temperatures are far below predicted pre-flight values, a new calibration using COMARS+ spare sensors at temperatures below 0 °C is necessary.

  14. Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers

    NASA Astrophysics Data System (ADS)

    Malki, Abdelrafik; Gafsi, Rachid; Michel, Laurent; Labarrère, Michel; Lecoy, Pierre

    1996-09-01

    An optical fiber sensor based on the intermodal interference principle is integrated in a composite material to detect impacts and vibrations. Six fibers are integrated at the top of a carbon/epoxy composite panel so as to form a grid into the structure. Spectral and temporal responses to impacts and acoustic vibrations of the sensor are compared with a piezoelectric accelerometer. The tests proved the facility of integration and the high sensitivity of the device. The location of impacts is performed with this arrangement by measuring the arrival times of the front waves to the fibers.

  15. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickrell, Gary; Scott, Brian; Wang, Anbo

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, frommore » April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier facility in Terre Haute, Indiana. Due to business conditions at industrial partner and several logistical problems, this field test was not successful. An alternative high-temperature sensing system using sapphire wafer-based extrinsic Fabry-Perot interferometry was then developed as a significant improvement over the BPDI solution. From June 2006 to June 2008, three consecutive field tests were performed with the new sapphire wafer sensors at the TECO coal gasifier in Tampa, Florida. One of the sensors survived in the industrial coal gasifier for 7 months, over which time the existing thermocouples were replaced twice. The outcome of these TECO field tests suggests that the sapphire wafer sensor has very good potential to be commercialized. However packaging and sensor protection issues need additional development. During Phase III, several major improvements in the design and fabrication process of the sensor have been achieved through experiments and theoretical analysis. Studies on the property of the key components in the sensor head, including the sapphire fiber and sapphire wafer, were also conducted, for a better understanding of the sensor behavior. A final design based on all knowledge and experience has been developed, free of any issues encountered during the entire research. Sensors with this design performed well as expected in lab long-term tests, and were deployed in the sensing probe of the final coal-gasifier field test. Sensor packaging and protection was improved through materials engineering through testing of packaging designs in two blank probe packaging tests at Eastman Chemical in Kingsport, TN. Performance analysis of the blank probe packaging resulted in improve package designs culminating in a 3rd generation probe packaging utilized for the full field test of the sapphire optical sensor and materials designed sensor packaging.« less

  16. Earth resources research data facility R and D file. Volume 1: Documentary data

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Cumulative listings of the R and D file data are presented. All Earth Resources Program information available at the Manned Spacecraft Center is in Vol. 1. Sensor data collected during flights over NASA test sites and from missions flown by subcontractors supporting the Earth Resources Survey Program are included in Vol. 2.

  17. Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, Rick; Skow, Miles

    2013-01-01

    This three-year project (FY12-14) will design and demonstrate the ability of new Magnetic Stress Gages for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap. The sensors are being tested at White Sands Testing Facility (WSTF) where the results will be correlated with a known nondestructive technique acoustic emission. The gages will be produced utilizing Meandering Winding Magnetometer (MWM) and/or MWM array eddy current technology. The ultimate goal is to utilize this technology for the health monitoring of Composite Overwrapped Pressure Vessels for all future flight programs. The first full-scale pressurization test was performed at WSTF in June 2012. The goals of this test were to determine adaptations of the magnetic stress gauge instrumentation that would be necessary to allow multiple sensors to monitor the vessel's condition simultaneously and to determine how the sensor response changes with sensor selection and orientation. The second full scale pressurization test was performed at WSTF in August 2012. The goals of this test were to monitor the vessel's condition with multiple sensors simultaneously, to determine the viability of the multiplexing units (MUX) for the application, and to determine if the sensor responses in different orientations are repeatable. For both sets of tests the vessel was pressured up to 6,000 psi to simulate maximum operating pressure. Acoustic events were observed during the first pressurization cycle. This suggested that the extended storage period prior to use of this bottle led to a relaxation of the residual stresses imparted during auto-frettage. The pressurization tests successfully demonstrated the use of multiplexers with multiple MWM arrays to monitor a vessel. It was discovered that depending upon the sensor orientation, the frequencies, and the sense element, the MWM arrays can provide a variety of complementary information about the composite overwrapped pressure vessel load conditions. For example, low frequency measurements can be used to monitor the overwrap thickness and changes associated with pressure level. High frequency data is dominated by the properties of the overwrap, including the fiber orientations and lay-up of the layers.

  18. Aerothermal Assment Of The Expert Flap In The SCIROCCO Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Walpot, L.; Di Clemente, M.; Vos, J.; Etchells, J.; Trifoni, E.; Thoemel, J.; Gavira, J.

    2011-05-01

    In the frame of the “In-Flight Test Measurement Techniques for Aerothermodynamics” activity of the EXPERT Program, the EXPERT Instrumented Open Flap Assembly experiment has the objective to verify the design/sensor integration and validate the CFD tools. Ground based measurements were made in Europe’s largest high enthalpy plasma facility, Scirocco in Italy. Two EXPERT flaps of the flight article, instrumented with 14 thermocouples, 5 pressure ports, a pyrometer and an IR camera mounted in the cavity instrumented flap will collect in-flight data. During the Scirocco experiment, an EXPERT flap model identical to the flight article was mounted at 45 deg on a holder including cavity and was subjected to a hot plasma flow at an enthalpy up to 11MJ/kg at a stagnation pressure of 7 bar. The test model sports the same pressure sensors as the flight article. Hypersonic state-of-the-art codes were then be used to perform code-to-code and wind tunnel-to-code comparisons, including thermal response of the flap as collected during the tests by the sensors and camera.

  19. The Space Operations Simulation Center (SOSC) and Closed-Loop Hardware Testing for Orion Rendezvous System Design

    NASA Technical Reports Server (NTRS)

    Milenkovic, Zoran; DSouza, Christopher; Huish, David; Bendle, John; Kibler, Angela

    2012-01-01

    The exploration goals of Orion / MPCV Project will require a mature Rendezvous, Proximity Operations and Docking (RPOD) capability. Ground testing autonomous docking with a next-generation sensor such as the Vision Navigation Sensor (VNS) is a critical step along the path of ensuring successful execution of autonomous RPOD for Orion. This paper will discuss the testing rationale, the test configuration, the test limitations and the results obtained from tests that have been performed at the Lockheed Martin Space Operations Simulation Center (SOSC) to evaluate and mature the Orion RPOD system. We will show that these tests have greatly increased the confidence in the maturity of the Orion RPOD design, reduced some of the latent risks and in doing so validated the design philosophy of the Orion RPOD system. This paper is organized as follows: first, the objectives of the test are given. Descriptions of the SOSC facility, and the Orion RPOD system and associated components follow. The details of the test configuration of the components in question are presented prior to discussing preliminary results of the tests. The paper concludes with closing comments.

  20. Atmospheric characterization on the Kennedy Space Center Shuttle Landing Facility

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Coffaro, Joseph; Wu, Chensheng; Paulson, Daniel; Davis, Christopher

    2017-08-01

    Large temperature gradients are a known source of strong atmospheric turbulence conditions. Often times these areas of strong turbulence conditions are also accompanied by conditions that make it difficult to conduct long term optical atmospheric tests. The Shuttle Landing Facility (SLF) at the Kennedy Space Center (KSC) provides a prime testing environment that is capable of generating strong atmospheric turbulence yet is also easily accessible for well instrumented testing. The Shuttle Landing Facility features a 5000 m long and 91 m wide concrete runway that provides ample space for measurements of atmospheric turbulence as well as the opportunity for large temperature gradients to form as the sun heats the surface. We present the results of a large aperture LED scintillometer, a triple aperture laser scintillometer, and a thermal probe system that were used to calculate a path averaged and a point calculation of Cn2. In addition, we present the results of the Plenoptic Sensor that was used to calculate a path averaged Cn2 value. These measurements were conducted over a multi-day continuous test with supporting atmospheric and weather data provided by the University of Central Florida.

  1. Tri-axial square Helmholtz coil system at the Alibag Magnetic Observatory: upgraded to a magnetic sensor calibration facility

    NASA Astrophysics Data System (ADS)

    Mahavarkar, Prasanna; John, Jacob; Dhapre, Vijay; Dongre, Varun; Labde, Sachin

    2018-04-01

    A tri-axial square Helmholtz coil system for the study of palaeomagnetic studies, manufactured by GEOFYZIKA (former Czechoslovakia), was successfully commissioned at the Alibag Magnetic Observatory (IAGA code: ABG) in the year 1985. This system was used for a few years, after which the system encountered technical problems with the control unit. Rectification of the unit could not be undertaken, as the information document related to this system was not available, and as a result the system had been lying in an unused state for a long time, until 2015, when the system was recommissioned and upgraded to a test facility for calibrating the magnetometer sensors. We have upgraded the system with a constant current source and a data-logging unit. Both of these units have been designed and developed in the institute laboratory. Also, re-measurements of the existing system have been made thoroughly. The upgraded system is semi-automatic, enabling non-specialists to operate it after a brief period of instruction. This facility is now widely used at the parent institute and external institutions to calibrate magnetometers and it also serves as a national facility. Here the design of this system with the calibration results for the space-borne fluxgate magnetometers is presented.

  2. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  3. Open-Path Hydrocarbon Laser Sensor for Oil and Gas Facility Monitoring

    EPA Science Inventory

    This poster reports on an experimental prototype open-path laser absorption sensor for measurement of unspeciated hydrocarbons for oil and gas production facility fence-line monitoring. Such measurements may be useful to meet certain state regulations, and enable advanced leak d...

  4. At-sea demonstration of RF sensor tasking using XML over a worldwide network

    NASA Astrophysics Data System (ADS)

    Kellogg, Robert L.; Lee, Tom; Dumas, Diane; Raggo, Barbara

    2003-07-01

    As part of an At-Sea Demonstration for Space and Naval Warfare Command (SPAWAR, PMW-189), a prototype RF sensor for signal acquisition and direction finding queried and received tasking via a secure worldwide Automated Data Network System (ADNS). Using extended mark-up language (XML) constructs, both mission and signal tasking were available for push and pull Battlespace management. XML tasking was received by the USS Cape St George (CG-71) during an exercise along the Gulf Coast of the US from a test facility at SPAWAR, San Diego, CA. Although only one ship was used in the demonstration, the intent of the software initiative was to show that a network of different RF sensors on different platforms with different capabilitis could be tasked by a common web agent. A sensor software agent interpreted the XML task to match the sensor's capability. Future improvements will focus on enlarging the domain of mission tasking and incorporate report management.

  5. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization.

    PubMed

    Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze

    2016-02-07

    A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10,000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.

  6. KSC-2014-4826

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15 at. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  7. KSC-2014-4825

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15 at. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  8. KSC-2014-4829

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars overhead during free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  9. KSC-2014-4824

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  10. KSC-2014-4827

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  11. KSC-2014-4828

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars overhead during free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  12. Waterway wide area tactical coverage and homing (WaterWATCH) program overview

    NASA Astrophysics Data System (ADS)

    Driggers, Gerald; Cleveland, Tammy; Araujo, Lisa; Spohr, Robert; Umansky, Mark

    2008-04-01

    The Congressional and Army sponsored WaterWATCH TM Program has developed and demonstrated a fully integrated shallow water port and facility monitoring system. It provides fully automated monitoring of domains above and below the surface of the water using primarily off-the-shelf sensors and software. The system is modular, open architecture and IP based, and elements can be mixed and matched to adapt to specific applications. The sensors integrated into the WaterWATCH TM system include cameras, radar, passive and active sonar, and various motion detectors. The sensors were chosen based on extensive requirements analyses and tradeoffs. Descriptions of the system and individual sensors are provided, along with data from modular and system level testing. Camera test results address capabilities and limitations associated with using "smart" image analysis software with stressing environmental issues such as bugs, darkness, rain and snow. Radar issues addressed include achieving range and resolution requirements. The passive sonar capability to provide near 100% true positives with zero false positives is demonstrated. Testing results are also presented to show that inexpensive active sonar can be effective against divers with or without SCUBA gear and that false alarms due to fish can be minimized. A simple operator interface has also been demonstrated.

  13. Test Bed Doppler Wind Lidar and Intercomparison Facility At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey; Amzajerdian, Farzin; Yu, Ji-Rong; Singh, Upendra N.

    2004-01-01

    State of the art 2-micron lasers and other lidar components under development by NASA are being demonstrated and validated in a mobile test bed Doppler wind lidar. A lidar intercomparison facility has been developed to ensure parallel alignment of up to 4 Doppler lidar systems while measuring wind. Investigations of the new components; their operation in a complete system; systematic and random errors; the hybrid (joint coherent and direct detection) approach to global wind measurement; and atmospheric wind behavior are planned. Future uses of the VALIDAR (VALIDation LIDAR) mobile lidar may include comparison with the data from an airborne Doppler wind lidar in preparation for validation by the airborne system of an earth orbiting Doppler wind lidar sensor.

  14. A Polarized High-Energy Photon Beam for Production of Exotic Mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senderovich, Igor

    2012-01-01

    This work describes design, prototyping and testing of various components of the Jefferson Lab Hall D photon beamline. These include coherent bremsstrahlung radiators to be used in this facility for generating the photon beam, a fine resolution hodoscope for the facility's tagging spectrometer, and a photon beam position sensor for stabilizing the beam on a collimator. The principal instrumentation project was the hodoscope: its design, implementation and beam testing will be thoroughly described. Studies of the coherent bremsstrahlung radiators involved X-ray characterization of diamond crystals to identify the appropriate line of manufactured radiators and the proper techniques for thinning themmore » to the desired specification of the beamline. The photon beam position sensor project involved completion of a designed detector and its beam test. The results of these shorter studies will also be presented. The second part of this work discusses a Monte Carlo study of a possible photo-production and decay channel in the GlueX experiment that will be housed in the Hall D facility. Specifically, the γ p → Xp → b 1 π → ω π +1 π -1 channel was studied including its Amplitude Analysis. This exercise attempted to generate a possible physics signal, complete with internal angular momentum states, and be able to reconstruct the signal in the detector and find the proper set of JPC quantum numbers through an amplitude fit. Derivation of the proper set of amplitudes in the helicity basis is described, followed by a discussion of the implementation, generation of the data sets, reconstruction techniques, the amplitude fit and results of this study.« less

  15. Development of a Control Optimization System for Real Time Monitoring of Managed Aquifer Recharge and Recovery Systems Using Intelligent Sensors

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Drumheller, Z. W.; Lee, J. H.; Illangasekare, T. H.; Regnery, J.; Kitanidis, P. K.

    2015-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. Scientists and engineers have begun to revisit the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. This research seeks to develop and validate a general simulation-based control optimization algorithm that relies on real-time data collected though embedded sensors that can be used to ease the operational challenges of MAR facilities. Experiments to validate the control algorithm were conducted at the laboratory scale in a two-dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. The synthetic aquifer used well characterized technical sands and the electrical conductivity signal of an inorganic conservative tracer as a surrogate measure for water quality. The synthetic aquifer was outfitted with an array of sensors and an autonomous pumping system. Experimental results verified the feasibility of the approach and suggested that the system can improve the operation of MAR facilities. The dynamic parameter inversion reduced the average error between the simulated and observed pressures between 12.5 and 71.4%. The control optimization algorithm ran smoothly and generated optimal control decisions. Overall, results suggest that with some improvements to the inversion and interpolation algorithms, which can be further advanced through testing with laboratory experiments using sensors, the concept can successfully improve the operation of MAR facilities.

  16. 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Da Vià, Cinzia; Boscardil, Maurizio; Dalla Betta, GianFranco

    2013-01-01

    3D silicon sensors, where plasma micromachining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, were successfully manufactured in facilities in Europe and USA. In 2011 the technology underwent a qualification process to establish its maturity for a medium scale production for the construction of a pixel layer for vertex detection, the Insertable B-Layer (IBL) at the CERN-LHC ATLAS experiment. The IBL collaboration, following that recommendation from the review panel, decided to complete the production of planar and 3D sensors and endorsed the proposal to build enough modules for a mixed IBLmore » sensor scenario where 25% of 3D modules populate the forward and backward part of each stave. The production of planar sensors will also allow coverage of 100% of the IBL, in case that option was required. This paper will describe the processing strategy which allowed successful 3D sensor production, some of the Quality Assurance (QA) tests performed during the pre-production phase and the production yield to date.« less

  17. Photo-acoustic sensor for detection of oil contamination in compressed air systems.

    PubMed

    Lassen, Mikael; Harder, David Baslev; Brusch, Anders; Nielsen, Ole Stender; Heikens, Dita; Persijn, Stefan; Petersen, Jan C

    2017-02-06

    We demonstrate an online (in-situ) sensor for continuous detection of oil contamination in compressed air systems complying with the ISO-8573 standard. The sensor is based on the photo-acoustic (PA) effect. The online and real-time PA sensor system has the potential to benefit a wide range of users that require high purity compressed air. Among these are hospitals, pharmaceutical industries, electronics manufacturers, and clean room facilities. The sensor was tested for sensitivity, repeatability, robustness to molecular cross-interference, and stability of calibration. Explicit measurements of hexane (C6H14) and decane (C10H22) vapors via excitation of molecular C-H vibrations at approx. 2950 cm-1 (3.38 μm) were conducted with a custom made interband cascade laser (ICL). For the decane measurements a (1 σ) standard deviation (STD) of 0.3 ppb was demonstrated, which corresponds to a normalized noise equivalent absorption (NNEA) coefficient for the prototype PA sensor of 2.8×10-9 W cm-1 Hz1/2.

  18. Wireless Mid-Infrared Spectroscopy Sensor Network for Automatic Carbon Dioxide Fertilization in a Greenhouse Environment.

    PubMed

    Wang, Jianing; Niu, Xintao; Zheng, Lingjiao; Zheng, Chuantao; Wang, Yiding

    2016-11-18

    In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO₂) sensor based on non-dispersive infrared (NDIR) with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI), to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO₂ control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO₂ concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID) algorithm realized on a LabVIEW platform, the CO₂ concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse.

  19. Cosmic-Ray Moisture Probe on North Slope of Alaska Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desilets, Darin

    2016-06-15

    In September of 2014 a wide-area snow monitoring device was installed at the U.S. Department of Energy (DOE)’s Barrow, Alaska Atmospheric Radiation Measurement (ARM) Climate Research Facility site. The device is special in that it uses measurements of cosmic-ray neutrons as a proxy for snow water equivalent (SWE) depth. A unique characteristic of the technology is that it integrates over a wide area (as much as 40 ha), in contrast to conventional ground-based technologies, which essentially give point samples. Conventional point-scale technologies are problematic in the Arctic, both because extreme weather conditions are taxing on equipment, and because point measurementsmore » can fail to accurately characterize the average SWE over a larger area, even when excellent precision is obtained. The sensor installed in Barrow is, by far, the northernmost of a constellation of sites that makeup the U.S. COsmic ray Soil Moisture Observing System (COSMOS). The sensor is used for SWE measurements in winter and soil moisture measurements in summer. The ability of this type of sensor to operate in the Arctic had not been verified until now. The cosmic-ray sensor was installed on a tripod located approximately 150 m south of the ARM User Facility (Figure 1), and within boundaries of land managed by the ARM Facility. The sensor consists of both “bare” and “moderated” channels, where the moderated channel is the primary output used to calculate SWE. A QDL2100 data logger with pressure sensor was located inside of the User Facility, and a Campbell CS215 temperature and humidity sensor was attached to a rail on the upper deck of the User Facility, to enable near-real-time absolute humidity corrections to the data. The cosmic-ray sensors are connected to the data logger using an armored Cat5e cable that lies on top of the tundra. Data are retrieved hourly via Iridium satellite link.« less

  20. Commercial Applications Multispectral Sensor System

    NASA Technical Reports Server (NTRS)

    Birk, Ronald J.; Spiering, Bruce

    1993-01-01

    NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information. The ATLAS system will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal infrared wavelengths, variable spatial resolution from 2-25 meters; high geometric and geo-location accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight. ATLAS is scheduled to be available in 3rd quarter 1992 for acquisition of data for applications such as environmental monitoring, facilities management, geographic information systems data base development, and mineral exploration.

  1. Design and fabrication of an autonomous rendezvous and docking sensor using off-the-shelf hardware

    NASA Technical Reports Server (NTRS)

    Grimm, Gary E.; Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.

    1991-01-01

    NASA Marshall Space Flight Center (MSFC) has developed and tested an engineering model of an automated rendezvous and docking sensor system composed of a video camera ringed with laser diodes at two wavelengths and a standard remote manipulator system target that has been modified with retro-reflective tape and 830 and 780 mm optical filters. TRW has provided additional engineering analysis, design, and manufacturing support, resulting in a robust, low cost, automated rendezvous and docking sensor design. We have addressed the issue of space qualification using off-the-shelf hardware components. We have also addressed the performance problems of increased signal to noise ratio, increased range, increased frame rate, graceful degradation through component redundancy, and improved range calibration. Next year, we will build a breadboard of this sensor. The phenomenology of the background scene of a target vehicle as viewed against earth and space backgrounds under various lighting conditions will be simulated using the TRW Dynamic Scene Generator Facility (DSGF). Solar illumination angles of the target vehicle and candidate docking target ranging from eclipse to full sun will be explored. The sensor will be transportable for testing at the MSFC Flight Robotics Laboratory (EB24) using the Dynamic Overhead Telerobotic Simulator (DOTS).

  2. Irdis: A Digital Scene Storage And Processing System For Hardware-In-The-Loop Missile Testing

    NASA Astrophysics Data System (ADS)

    Sedlar, Michael F.; Griffith, Jerry A.

    1988-07-01

    This paper describes the implementation of a Seeker Evaluation and Test Simulation (SETS) Facility at Eglin Air Force Base. This facility will be used to evaluate imaging infrared (IIR) guided weapon systems by performing various types of laboratory tests. One such test is termed Hardware-in-the-Loop (HIL) simulation (Figure 1) in which the actual flight of a weapon system is simulated as closely as possible in the laboratory. As shown in the figure, there are four major elements in the HIL test environment; the weapon/sensor combination, an aerodynamic simulator, an imagery controller, and an infrared imagery system. The paper concentrates on the approaches and methodologies used in the imagery controller and infrared imaging system elements for generating scene information. For procurement purposes, these two elements have been combined into an Infrared Digital Injection System (IRDIS) which provides scene storage, processing, and output interface to drive a radiometric display device or to directly inject digital video into the weapon system (bypassing the sensor). The paper describes in detail how standard and custom image processing functions have been combined with off-the-shelf mass storage and computing devices to produce a system which provides high sample rates (greater than 90 Hz), a large terrain database, high weapon rates of change, and multiple independent targets. A photo based approach has been used to maximize terrain and target fidelity, thus providing a rich and complex scene for weapon/tracker evaluation.

  3. Biocompatible enzymatic roller pens for direct writing of biocatalytic materials: "do-it-yourself" electrochemical biosensors.

    PubMed

    Bandodkar, Amay J; Jia, Wenzhao; Ramírez, Julian; Wang, Joseph

    2015-06-03

    The development of enzymatic-ink-based roller pens for direct drawing of biocatalytic sensors, in general, and for realizing renewable glucose sensor strips, in particular, is described. The resulting enzymatic-ink pen allows facile fabrication of high-quality inexpensive electrochemical biosensors of any design by the user on a wide variety of surfaces having complex textures with minimal user training. Unlike prefabricated sensors, this approach empowers the end user with the ability of "on-demand" and "on-site" designing and fabricating of biocatalytic sensors to suit their specific requirement. The resulting devices are thus referred to as "do-it-yourself" sensors. The bio-active pens produce highly reproducible biocatalytic traces with minimal edge roughness. The composition of the new enzymatic inks has been optimized for ensuring good biocatalytic activity, electrical conductivity, biocompati-bility, reproducible writing, and surface adherence. The resulting inks are characterized using spectroscopic, viscometric, electrochemical, thermal and microscopic techniques. Applicability to renewable blood glucose testing, epidermal glucose monitoring, and on-leaf phenol detection are demonstrated in connection to glucose oxidase and tyrosinase-based carbon inks. The "do-it-yourself" renewable glucose sensor strips offer a "fresh," reproducible, low-cost biocatalytic sensor surface for each blood test. The ability to directly draw biocatalytic conducting traces even on unconventional surfaces opens up new avenues in various sensing applications in low-resource settings and holds great promise for diverse healthcare, environmental, and defense domains. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The effect of suspended sediment and color on ultraviolet spectrophotometric nitrate sensors

    USGS Publications Warehouse

    Snazelle, Teri T.

    2016-03-08

    Four commercially available ultraviolet nitrate spectrophotometric sensors were evaluated by the U.S. Geological Survey Hydrologic Instrumentation Facility (HIF) to determine the effects of suspended sediment concentration (SSC) and colored dissolved organic matter (CDOM) on sensor accuracy. The evaluated sensors were: the Hach NITRATAX plus sc (5-millimeters (mm) path length), Hach NITRATAX plus sc (2 mm), S::CAN Spectro::lyser (5 mm), and the Satlantic SUNA V2 (5 mm). A National Institute of Standards and Technology-traceable nitrate-free sediment standard was purchased and used to create the turbid environment, and an easily made filtered tea solution was used for the CDOM test. All four sensors performed well in the test that evaluated the effect of suspended sediment on accuracy. The Hach 5 mm, Hach 2 mm, and the SUNA V2 met their respective manufacturer accuracy specifications up to concentrations of 4,500 milligrams per liter (mg/L) SSC. The S::CAN failed to meet its accuracy specifications when the SSC concentrations exceeded 4,000 mg/L. Test results from the effect of CDOM on accuracy indicated a significant skewing of data from all four sensors and showed an artificial elevation of measured nitrate to varying amounts. Of the four sensors tested, the Satlantic SUNA V2’s accuracy was affected the least in the CDOM test. The nitrate concentration measured by the SUNA V2 was approximately 24 percent higher than the actual concentration when estimated total organic carbon values exceeded 44 mg/L. Measured nitrate concentration falsely increased 49 percent when measured by the Hach 5 mm, and 75 percent when measured by the Hach 2 mm. The S::CAN’s reported nitrate concentration increased 96 percent. Path length plays an important role in the sensor’s ability to compensate measurements for matrix interferences, but does not solely determine how well a sensor can handle all interferences. The sensor’s proprietary algorithms also play a key role in matrix interference compensation. The sensors’ ability to compensate for CDOM varied significantly during the tests, even among the three with 5-mm path lengths. Results of this evaluation suggest that the proprietary algorithms of the nitrate analyzers are more effective compensating for suspended sediment, and less effective compensating for CDOM (color) when sensor path length remains constant.

  5. Investigation of Gear and Bearing Fatigue Damage Using Debris Particle Distributions

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.

    2004-01-01

    A diagnostic tool was developed for detecting fatigue damage to spur gears, spiral bevel gears, and rolling element bearings. This diagnostic tool was developed and evaluated experimentally by collecting oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig, Spiral Bevel Gear Test Facility, and the 500hp Helicopter Transmission Test Stand. During each test, data from an online, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of pitting damage. Results indicate oil debris alone cannot discriminate between bearing and gear fatigue damage.

  6. Fiber Optic Sensors for Health Monitoring of Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Timothy; Wood, Karen; Childers, Brooks; Cano, Roberto; Jensen, Brian; Rogowski, Robert

    2001-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors. These sensors will measure load and vibration signatures that will be used to infer structural integrity. Sine the aircraft morphing program assumes that future aircraft will be aerodynamically reconfigurable there is also a requirement for pressure, flow and shape sensors. In some cases a single fiber may be used for measuring several different parameters. The objective of the current program is to develop techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service structural integrity of the composite structure. Graphite-epoxy panels were fabricated with integrated optical fibers of various types. The panels were mechanically and thermally tested to evaluate composite strength and sensor durability. Finally the performance of the fiber optic sensors was determined. Experimental results are presented evaluating the performance of embedded and surface mounted optical fibers for measuring strain, temperature and chemical composition. The performance of the fiber optic sensors was determined by direct comparison with results from more conventional instrumentation. The facilities for fabricating optical fiber and associated sensors and methods of demodulating Bragg gratings for strain measurement will be described.

  7. Laboratory evaluation of the Design Analysis Associates DAA H-3613i radar water-level sensor—Results of temperature, distance, and SDI-12 tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2016-09-30

    The Design Analysis Associates (DAA) DAA H-3613i radar water-level sensor (DAA H-3613i), manufactured by Xylem Incorporated, was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to manufacturer’s accuracy specifications for measuring a distance throughout the sensor’s operating temperature range, for measuring distances from 3 to 15 feet at ambient temperatures, and for compliance with the SDI-12 serial-to-digital interface at 1200-baud communication standard. The DAA H-3613i is a noncontact water-level sensor that uses pulsed radar to measure the distance between the radar and the water surface from 0.75 to 131 feet over a temperature range of −40 to 60 degrees Celsius (°C). Manufacturer accuracy specifications that were evaluated, the test procedures that followed, and the results obtained are described in this report. The sensor’s accuracy specification of ± 0.01 feet (± 3 millimeters) meets USGS requirements for a primary water-stage sensor used in the operation of a streamgage. The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during temperature testing at a distance of 8 feet from the target over its temperature-compensated operating range of −40 to 60 °C, except at 60 °C. At 60 °C, about half the measurements exceeded the manufacturer’s accuracy specification by not more than 0.005 feet.The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during distance-accuracy testing at the tested distances from 3 to 15 feet above the water surface at the HIF.

  8. KSC-2014-4821

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  9. KSC-2014-4822

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  10. KSC-2014-4831

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is moved into position at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida in preparation for free flight test No. 15. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA/Jim Grossman

  11. KSC-2014-4818

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander rises above a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  12. KSC-2014-4819

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  13. KSC-2014-4823

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander comes to rest after a successful landing, capping free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  14. KSC-2014-4832

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA/Jim Grossman

  15. KSC-2014-4820

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  16. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The APH is the largest plant chamber built for the agency. The unit is being prepared for engineering development tests to see how the science will integrate with the various systems of the plant habitat. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  17. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The APH is the largest plant chamber built for the agency. The base of the APH is being prepared for engineering development tests to see how the science will integrate with the various systems of the plant habitat. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  18. Improved Overpressure Recording and Modeling for Near-Surface Explosion Forensics

    NASA Astrophysics Data System (ADS)

    Kim, K.; Schnurr, J.; Garces, M. A.; Rodgers, A. J.

    2017-12-01

    The accurate recording and analysis of air-blast acoustic waveforms is a key component of the forensic analysis of explosive events. Smartphone apps can enhance traditional technologies by providing scalable, cost-effective ubiquitous sensor solutions for monitoring blasts, undeclared activities, and inaccessible facilities. During a series of near-surface chemical high explosive tests, iPhone 6's running the RedVox infrasound recorder app were co-located with high-fidelity Hyperion overpressure sensors, allowing for direct comparison of the resolution and frequency content of the devices. Data from the traditional sensors is used to characterize blast signatures and to determine relative iPhone microphone amplitude and phase responses. A Wiener filter based source deconvolution method is applied, using a parameterized source function estimated from traditional overpressure sensor data, to estimate system responses. In addition, progress on a new parameterized air-blast model is presented. The model is based on the analysis of a large set of overpressure waveforms from several surface explosion test series. An appropriate functional form with parameters determined empirically from modern air-blast and acoustic data will allow for better parameterization of signals and the improved characterization of explosive sources.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Conrad, Ryan C.; Keller, Daniel T.

    The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor is being performed. This evaluation is assessing the device against the IAEA’s original technical specifications and a broad range of important parameters that included sensor types, cable types, and industrial electromagnetic noise that can degrade signals from remotely located detectors. Testing has been performed in a laboratory and also in environments representative of IAEA deployments. The results are expected to inform the IAEA about where and how FEUM devices might be implemented in the field. Data and preliminary findings from the testing performed to date are presented.« less

  20. Corrosion detector apparatus for universal assessment of pollution in data centers

    DOEpatents

    Hamann, Hendrik F.; Klein, Levente I.

    2015-08-18

    A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.

  1. Groundwater flow velocity measurements in a sinkhole at the Weeks Island Strategic Petroleum Reserve Facility, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, S.; Gibson, J.

    1995-02-01

    In 1992, a sinkhole was discovered above a Strategic Petroleum Reserve storage facility at Weeks Island, Louisiana. The oil is stored in an old salt mine located within a salt dome. In order to assess the hydrologic significance of the sink hole, an In Situ Permeable Flow Sensor was deployed within a sand-filled conduit in the salt dome directly beneath the sinkhole. The flow sensor is a recently developed instrument which uses a thermal perturbation technique to measure the magnitude and direction of the full 3-dimensional groundwater flow velocity vector in saturated, permeable materials. The flow sensor measured substantial groundwatermore » flow directed vertically downward into the salt dome. The data obtained with the flow sensor provided critical evidence which was instrumental in assessing the significance of the sinkhole in terms of the integrity of the oil storage facility.« less

  2. The Design of Optical Sensor for the Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Greene, Michael E.

    1990-01-01

    Three optical sight sensor systems were designed, built and tested. Two optical lines of sight sensor system are capable of measuring the absolute pointing angle to the sun. The system is for use with the Pinhole/Occulter Facility (P/OF), a solar hard x ray experiment to be flown from Space Shuttle or Space Station. The sensor consists of a pinhole camera with two pairs of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the pinhole, track and hold circuitry for data reduction, an analog to digital converter, and a microcomputer. The deflection of the image center is calculated from these data using an approximation for the solar image. A second system consists of a pinhole camera with a pair of perpendicularly mounted linear photodiode arrays, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed. A third optical sensor system is capable of measuring the internal vibration of the P/OF between the mask and base. The system consists of a white light source, a mirror and a pair of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the mirror, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image and hence the vibration of the structure is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed.

  3. Skin friction measurements in high temperature high speed flows

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

    1992-01-01

    An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

  4. Hydrogen Field Test Standard: Laboratory and Field Performance

    PubMed Central

    Pope, Jodie G.; Wright, John D.

    2015-01-01

    The National Institute of Standards and Technology (NIST) developed a prototype field test standard (FTS) that incorporates three test methods that could be used by state weights and measures inspectors to periodically verify the accuracy of retail hydrogen dispensers, much as gasoline dispensers are tested today. The three field test methods are: 1) gravimetric, 2) Pressure, Volume, Temperature (PVT), and 3) master meter. The FTS was tested in NIST's Transient Flow Facility with helium gas and in the field at a hydrogen dispenser location. All three methods agree within 0.57 % and 1.53 % for all test drafts of helium gas in the laboratory setting and of hydrogen gas in the field, respectively. The time required to perform six test drafts is similar for all three methods, ranging from 6 h for the gravimetric and master meter methods to 8 h for the PVT method. The laboratory tests show that 1) it is critical to wait for thermal equilibrium to achieve density measurements in the FTS that meet the desired uncertainty requirements for the PVT and master meter methods; in general, we found a wait time of 20 minutes introduces errors < 0.1 % and < 0.04 % in the PVT and master meter methods, respectively and 2) buoyancy corrections are important for the lowest uncertainty gravimetric measurements. The field tests show that sensor drift can become a largest component of uncertainty that is not present in the laboratory setting. The scale was calibrated after it was set up at the field location. Checks of the calibration throughout testing showed drift of 0.031 %. Calibration of the master meter and the pressure sensors prior to travel to the field location and upon return showed significant drifts in their calibrations; 0.14 % and up to 1.7 %, respectively. This highlights the need for better sensor selection and/or more robust sensor testing prior to putting into field service. All three test methods are capable of being successfully performed in the field and give equivalent answers if proper sensors without drift are used. PMID:26722192

  5. Assessing community exposure to hazardous air pollutants by combining optical remote sensing and "low-cost" sensor technologies

    NASA Astrophysics Data System (ADS)

    Pikelnaya, O.; Polidori, A.; Wimmer, R.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Andersson, P.; Brohede, S.; Izos, O.

    2017-12-01

    Industrial facilities such as refineries and oil processing facilities can be sources of chemicals adversely affecting human health, for example aromatic hydrocarbons and formaldehyde. In an urban setting, such as the South Coast Air Basin (SCAB), exposure to harmful air pollutants (HAP's) for residents of communities neighboring such facilities is of serious concern. Traditionally, exposure assessments are performed by modeling a community exposure using emission inventories and data collected at fixed air monitoring sites. However, recent field measurements found that emission inventories may underestimate HAP emissions from refineries; and HAP measurements data from fixed sites is lacking spatial resolution; as a result, the impact of HAP emissions on communities is highly uncertain. The next generation air monitoring technologies can help address these challenges. For example, dense "low-cost" sensors allow continuous monitoring of concentrations of pollutants within communities with high temporal- and spatial- resolution, and optical remote sensing (ORS) technologies offer measurements of emission fluxes and real-time ground-concentration mapping of HAPs. South Coast Air Quality Management District (SCAQMD) is currently conducting a multi-year study using ORS methods and "low-cost" Volatile Organic Compounds (VOCs) sensors to monitor HAP emissions from selected industrial facilities in the SCAB and their ambient concentrations in neighboring communities. For this purpose, quarterly mobile ORS surveys are conducted to quantify facility-wide emissions for VOCs, aromatic hydrocarbons and HCHO, and to collect ground-concentration profiles of these pollutants inside neighboring communities. Additionally, "low-cost" sensor nodes for deployment in neighborhood(s) downwind of the facilities have been developed in order to obtain long-term, granular data on neighborhood VOC concentrations, During this presentation we will discuss initial results of quarterly ORS surveys and pilot "low-cost" sensor deployments. We will also outline benefits of using a combination of mobile ORS surveys and "low-cost" sensor networks for community exposure monitoring.

  6. High throughput field plant phenotyping facility at University of Nebraska-Lincoln and the first year experience

    NASA Astrophysics Data System (ADS)

    Ge, Y.; Bai, G.; Irmak, S.; Awada, T.; Stoerger, V.; Graef, G.; Scoby, D.; Schnable, J.

    2017-12-01

    University of Nebraska - Lincoln's high throughput field plant phenotyping facility is a cable robot based system built on a 1-ac field. The sensor platform is tethered with eight cables via four poles at the corners of the field for its precise control and positioning. The sensor modules on the platform include a 4-band RGB-NIR camera, a thermal infrared camera, a 3D LiDAR, VNIR spectrometers, and environmental sensors. These sensors are used to collect multifaceted physiological, structural and chemical properties of plants from the field plots. A subsurface drip irrigation system is established in this field which allows a controlled amount of water and fertilizers to be delivered to individual plots. An extensive soil moisture sensor network is also established to monitor soil water status, and serve as a feedback loop for irrigation scheduling. In the first year of operation, the field is planted maize and soybean. Weekly ground truth data were collected from the plots to validate image and sensor data from the phenotyping system. This presentation will provide an overview of this state-of-the-art field plant phenotyping facility, and present preliminary data from the first year operation of the system.

  7. Full Scale Drinking Water System Decontamination at the Water Security Test Bed.

    PubMed

    Szabo, Jeffrey; Hall, John; Reese, Steve; Goodrich, Jim; Panguluri, Sri; Meiners, Greg; Ernst, Hiba

    2018-03-20

    The EPA's Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National Laboratory (INL), EPA designed the WSTB facility to support full-scale evaluations of water infrastructure decontamination, real-time sensors, mobile water treatment systems, and decontamination of premise plumbing and appliances. The EPA research focused on decontamination of 1) Bacillus globigii (BG) spores, a non-pathogenic surrogate for Bacillus anthracis and 2) Bakken crude oil. Flushing and chlorination effectively removed most BG spores from the bulk water but BG spores still remained on the pipe wall coupons. Soluble oil components of Bakken crude oil were removed by flushing although oil components persisted in the dishwasher and refrigerator water dispenser. Using this full-scale distribution system allows EPA to 1) test contaminants without any human health or ecological risk and 2) inform water systems on effective methodologies responding to possible contamination incidents.

  8. Morpheus Campaign 2A Tether Test

    NASA Image and Video Library

    2014-03-27

    CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is positioned near a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida for a tethered test. The test will be performed to verify the lander's recently installed autonomous landing and hazard avoidance technology, or ALHAT, sensors and integration system. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Glenn Benson

  9. Facility Monitoring: A Qualitative Theory for Sensor Fusion

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2001-01-01

    Data fusion and sensor management approaches have largely been implemented with centralized and hierarchical architectures. Numerical and statistical methods are the most common data fusion methods found in these systems. Given the proliferation and low cost of processing power, there is now an emphasis on designing distributed and decentralized systems. These systems use analytical/quantitative techniques or qualitative reasoning methods for date fusion.Based on other work by the author, a sensor may be treated as a highly autonomous (decentralized) unit. Each highly autonomous sensor (HAS) is capable of extracting qualitative behaviours from its data. For example, it detects spikes, disturbances, noise levels, off-limit excursions, step changes, drift, and other typical measured trends. In this context, this paper describes a distributed sensor fusion paradigm and theory where each sensor in the system is a HAS. Hence, given the reach qualitative information from each HAS, a paradigm and formal definitions are given so that sensors and processes can reason and make decisions at the qualitative level. This approach to sensor fusion makes it possible the implementation of intuitive (effective) methods to monitor, diagnose, and compensate processes/systems and their sensors. This paradigm facilitates a balanced distribution of intelligence (code and/or hardware) to the sensor level, the process/system level, and a higher controller level. The primary application of interest is in intelligent health management of rocket engine test stands.

  10. Parametric Investigation of Laser Doppler Microphones

    NASA Astrophysics Data System (ADS)

    Daoud, M.; Naguib, A.

    2002-11-01

    The concept of a Laser Doppler Microphone (LDM) is based on utilizing the Doppler frequency shift of a focused laser beam to measure the unsteady velocity of the center point of a flexible polymer diaphragm that is mounted on top of a hole and subjected to the unsteady pressure. Time integration of the velocity signal yields a time series of the diaphragm displacement, which can be converted to pressure from knowledge of the sensor's deflection sensitivity. In our APS/DFD presentation last year, the stringent frequency resolution requirement of these new sensors and methods to meet this requirement were discussed. Here, the dependence of the sensor characteristics (sensitivity, bandwidth, and noise floor) on various significant parameters is investigated in detail by calibrating the sensor in a plane wave tube in the frequency range of 50 - 5000 Hz. Parameters investigated include sensor diaphragm material and thickness, sensor size, damping of the diaphragm motion and laser beam spot size. The results shed light on the operating limits of the new sensor and demonstrate its ability to conduct high-spatial-resolution measurements in typical high-Reynolds-number test facilities. Moreover, calibrated LDM sensors were used to conduct measurements in a separating/reattaching flow and the results are compared to classical electret-type microphones with a similar sensing diameter.

  11. Evaluation of the Eureka Manta2 Water-Quality Multiprobe Sonde

    USGS Publications Warehouse

    Tillman, Evan F.

    2017-11-08

    Two Eureka Manta2 3.5 water-quality multiprobe sondes by Eureka Water Probes were tested at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) against known standards over the sonde operating temperatures to verify the manufacturer’s stated accuracy specifications for pH, specific conductance (SC) at 25 degrees Celsius (°C), dissolved oxygen (DO), and turbidity. The Manta2 sondes were evaluated for compliance with the USGS National Field Manual for the Collection of Water-Quality Data (NFM) criteria for continuous water-quality monitors, and for compliance with the manufacturer’s technical specifications. The Manta2 was also evaluated for its compliance to Serial Digital Interface at 1200 baud (SDI-12) version 1.3.The Manta2 met the NFM recommendations and manufacturer’s accuracy specifications for DO and turbidity at all values tested. The Manta2 pH sensors met the NFM recommendations and manufacturer’s accuracy specification for nominal pH values of 10 and lower. One of the two sensors was out of compliance by 1.2 units for pH 11.16 at 15 °C and by 0.25 unit for pH 10.78 at 40 °C. The Manta2 sensors were within the NFM recommendations for SC, except at 100 microsiemens (μS/cm) at 40 °C, where the SC sensor exceeded the test standard value by as much as 25 percent. One of two sensors was within manufacturer’s accuracy specifications at 25 °C for all the tested SC values, while the other SC sensor was outside the manufacturer’s accuracy specifications at 100 μS/cm, exceeding the test standard value by 9 percent. One of two sensors was outside the manufacturer’s accuracy specifications at 10,000 μS/cm at 15°C, exceeding the test standard value by 3 percent. One Manta2 passed SDI-12 compliance testing with a NR Systems SDI-12 Verifier. One Manta2 was field tested for 6 weeks at USGS station 02492620, National Space Technology Laboratories (NSTL) Station, Mississippi, on the Pearl River and showed overall good agreement with a well-maintained Hydrolab Datasonde 5X site sonde for water temperature, pH, and DO. Differences in SC values between the Manta2 and the site sonde were most likely due to differences in the deployment depth of the sondes.

  12. Methods and Best Practice to Intercompare Dissolved Oxygen Sensors and Fluorometers/Turbidimeters for Oceanographic Applications.

    PubMed

    Pensieri, Sara; Bozzano, Roberto; Schiano, M Elisabetta; Ntoumas, Manolis; Potiris, Emmanouil; Frangoulis, Constantin; Podaras, Dimitrios; Petihakis, George

    2016-05-17

    In European seas, ocean monitoring strategies in terms of key parameters, space and time scale vary widely for a range of technical and economic reasons. Nonetheless, the growing interest in the ocean interior promotes the investigation of processes such as oxygen consumption, primary productivity and ocean acidity requiring that close attention is paid to the instruments in terms of measurement setup, configuration, calibration, maintenance procedures and quality assessment. To this aim, two separate hardware and software tools were developed in order to test and simultaneously intercompare several oxygen probes and fluorometers/turbidimeters, respectively in the same environmental conditions, with a configuration as close as possible to real in-situ deployment. The chamber designed to perform chlorophyll-a and turbidity tests allowed for the simultaneous acquisition of analogue and digital signals of several sensors at the same time, so it was sufficiently compact to be used in both laboratory and onboard vessels. Methodologies and best practice committed to the intercomparison of dissolved oxygen sensors and fluorometers/turbidimeters have been used, which aid in the promotion of interoperability to access key infrastructures, such as ocean observatories and calibration facilities. Results from laboratory tests as well as field tests in the Mediterranean Sea are presented.

  13. Methods and Best Practice to Intercompare Dissolved Oxygen Sensors and Fluorometers/Turbidimeters for Oceanographic Applications

    PubMed Central

    Pensieri, Sara; Bozzano, Roberto; Schiano, M. Elisabetta; Ntoumas, Manolis; Potiris, Emmanouil; Frangoulis, Constantin; Podaras, Dimitrios; Petihakis, George

    2016-01-01

    In European seas, ocean monitoring strategies in terms of key parameters, space and time scale vary widely for a range of technical and economic reasons. Nonetheless, the growing interest in the ocean interior promotes the investigation of processes such as oxygen consumption, primary productivity and ocean acidity requiring that close attention is paid to the instruments in terms of measurement setup, configuration, calibration, maintenance procedures and quality assessment. To this aim, two separate hardware and software tools were developed in order to test and simultaneously intercompare several oxygen probes and fluorometers/turbidimeters, respectively in the same environmental conditions, with a configuration as close as possible to real in-situ deployment. The chamber designed to perform chlorophyll-a and turbidity tests allowed for the simultaneous acquisition of analogue and digital signals of several sensors at the same time, so it was sufficiently compact to be used in both laboratory and onboard vessels. Methodologies and best practice committed to the intercomparison of dissolved oxygen sensors and fluorometers/turbidimeters have been used, which aid in the promotion of interoperability to access key infrastructures, such as ocean observatories and calibration facilities. Results from laboratory tests as well as field tests in the Mediterranean Sea are presented. PMID:27196908

  14. An on-line monitoring system for oil-film, pressure and temperature distributions in large-scale hydro-generator bearings

    NASA Astrophysics Data System (ADS)

    Höbel, M.; Haffner, K.

    1999-05-01

    Instrumentation that allows the behaviour of a hydro-generator thrust bearing to be monitored during operation is described. The measurement system was developed at the Asea Brown Boveri corporate research centre in Switzerland and was tested under realistic operating conditions at the Harbin Electric Machinery Company bearing-testing facility in the People's Republic of China. Newly developed fibre-optical proximity probes were used for the on-line monitoring of the thin oil film between the static and rotating parts of the bearing. These sensors are based on a back-reflection technique and can be used for various target materials such as Babbitt and Teflon. The monitoring system comprises about 120 temperature sensors, four pressure sensors and five optical oil-film thickness sensors. Temperature sensors are installed at specific static locations, whereas pressure and oil-film sensors are positioned in the runner and generate data during rotation. A special feature of the monitoring equipment is its on-line processing capability. Digital signal processors operating in parallel handle pressure and oil-film thickness data. Important measurement parameters such as the maximum pressure, maximum temperature and minimum oil-film thickness are displayed on-line. Detailed three-dimensional temperature information on one of the load segments can be obtained from subsequent off-line data analysis. The system also calculates two-dimensional plots of the oil-film thickness and pressure for most of the 12 load segments.

  15. Flight Test Evaluation of Situation Awareness Benefits of Integrated Synthetic Vision System Technology f or Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III

    2005-01-01

    Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft.

  16. SPHERES Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Andres; Benavides, Jose Victor; Ormsby, Steve L.; GuarnerosLuna, Ali

    2014-01-01

    Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized satellites that provide a test bed for development and research into multi-body formation flying, multi-spacecraft control algorithms, and free-flying physical and material science investigations. Up to three self-contained free-flying satellites can fly within the cabin of the International Space Station (ISS), performing flight formations, testing of control algorithms or as a platform for investigations requiring this unique free-flying test environment. Each satellite is a self-contained unit with power, propulsion, computers, navigation equipment, and provides physical and electrical connections (via standardized expansion ports) for Principal Investigator (PI) provided hardware and sensors.

  17. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  18. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  19. ATRC Neutron Detector Testing Quick Look Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe

    2013-08-01

    As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activationmore » spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and two for detecting thermal flux) with associated electronics for assessment. In addition, Prof. Imel, ISU, has access to an inventory of Self-Powered Neutron Detectors (SPNDs) with a range of response times as well as Back-to-Back (BTB) fission chambers from prior research he conducted at the Transient REActor Test Facility (TREAT) facility and Neutron RADiography (NRAD) reactors. Finally, SPNDs from the National Atomic Energy Commission of Argentina (CNEA) were provided in connection with the INL effort to upgrade ATR computational methods and V&V protocols that are underway as part of the ATR LEP. Work during fiscal year 2010 (FY10) focussed on design and construction of Experiment Guide Tubes (EGTs) for positioning the flux detectors in the ATRC N-16 locations as well as obtaining ATRC staff concurrence for the detector evaluations. Initial evaluations with CEA researchers were also started in FY10 but were cut short due to reactor reliability issues. Reactor availability issues caused experimental work to be delayed during FY11/12. In FY13, work resumed; and evaluations were completed. The objective of this "Quick Look" report is to summarize experimental activities performed from April 4, 2013 through May 16, 2013.« less

  20. Hydrothermally grown α-MnO2 interlocked mesoporous micro-cubes of several nanocrystals as selective and sensitive nitrogen dioxide chemoresistive gas sensors

    NASA Astrophysics Data System (ADS)

    Shinde, Pritamkumar V.; Xia, Qi Xun; Ghule, Balaji G.; Shinde, Nanasaheb M.; Seonghee, Jeong; Kim, Kwang Ho; Mane, Rajaram S.

    2018-06-01

    The interesting and multifunctional properties of alpha-manganese dioxide (α-MnO2) are considered to be highly sensitive and selective to nitrogen dioxide (NO2) chemresistive gas sensors. The α-MnO2 mesoporous interlocked micro-cubes composed of several interconnected nanocrystals synthesized by a facile and low-cost hydrothermal method on soda-lime glass substrate are envisaged as selective and sensitive NO2 gas sensors. Phase-purity and surface area with pore-size distribution are initially screened. The three-dimensional α-MnO2 mesoporous-cube-based gas sensors tested for NO2 gas from room-temperature (27 °C) to 250 °C have demonstrated 33% response for 100 ppm NO2 levels at 150 °C. The response and recovery time values of the α-MnO2 sensor are found to be 26 s and recovery 91 s, respectively, with high selectivity, good sensitivity, and considerable chemical and environmental stabilities, confirming the gas sensor applications potentiality of α-MnO2 morphology which is a combination of interlocked mesoporous micro-cubes and well-connected nanocrystals.

  1. Wireless Mid-Infrared Spectroscopy Sensor Network for Automatic Carbon Dioxide Fertilization in a Greenhouse Environment

    PubMed Central

    Wang, Jianing; Niu, Xintao; Zheng, Lingjiao; Zheng, Chuantao; Wang, Yiding

    2016-01-01

    In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO2) sensor based on non-dispersive infrared (NDIR) with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI), to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO2 control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO2 concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID) algorithm realized on a LabVIEW platform, the CO2 concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse. PMID:27869725

  2. Full-scale hot cell test of an acoustic sensor dedicated to measurement of the internal gas pressure and composition of a LWR nuclear fuel rod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrandis, J. Y.; Rosenkrantz, E.; Leveque, G.

    2011-07-01

    A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was carried on successfully between 2008 and 2010 on irradiated fuel rods in the LECA-STAR facility at Cadarache Centre. The acoustic sensor has been specially designed in order to provide a nondestructive technique to easily carry out the measurement of the internal gas pressure and gas composition of a LWR nuclear fuel rod. This sensor has been achieved in 2007 and is now covered by an international patent. The first positive result, concerning the device behaviour, is that the sensor-operating characteristics have notmore » been altered by a two-year exposure in the hot cell ambient. We performed the gas characterisation contained in irradiated fuel rods. The acoustic method accuracy is now {+-}5 bars on the pressure measurement result and {+-}0.3% on the evaluated gas composition. The results of the acoustic method were compared to puncture results. Another significant conclusion is that the efficiency of the acoustic method is not altered by the irradiation time, and possible modification of the cladding properties. These results make it possible to demonstrate the feasibility of the technique on irradiated fuel rods. The transducer and the associated methodology are now operational. (authors)« less

  3. Assessment of Sensor Technologies for Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, Kofi; Kisner, R. A.; Britton Jr., C. L.

    This paper provides an assessment of sensor technologies and a determination of measurement needs for advanced reactors (AdvRx). It is a summary of a study performed to provide the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program. The study covered two broad reactor technology categories: High Temperature Reactors and Fast Reactors. The scope of “High temperature reactors” included Gen IV reactors whose coolant exit temperatures exceed ≈650 °C and are moderated (as opposed to fast reactors). To bound the scope formore » fast reactors, this report reviewed relevant operating experience from US-operated Sodium Fast Reactor (SFR) and relevant test experience from the Fast Flux Test Facility (FFTF). For high temperature reactors the study showed that in many cases instrumentation have performed reasonably well in research and demonstration reactors. However, even in cases where the technology is “mature” (such as thermocouples), HTGRs can benefit from improved technologies. Current HTGR instrumentation is generally based on decades-old technology and adapting newer technologies could provide significant advantages. For sodium fast reactors, the study found that several key research needs arise around (1) radiation-tolerant sensor design for in-vessel or in-core applications, where possible non-invasive sensing approaches for key parameters that minimize the need to deploy sensors in-vessel, (2) approaches to exfiltrating data from in-vessel sensors while minimizing penetrations, (3) calibration of sensors in-situ, and (4) optimizing sensor placements to maximize the information content while minimizing the number of sensors needed.« less

  4. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.

    PubMed

    Zhao, Xiangwei; Xue, Jiangyang; Mu, Zhongde; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-10-15

    Novel transducers are needed for point of care testing (POCT) devices which aim at facile, sensitive and quick acquisition of health related information. Recent advances in optofluidics offer tremendous opportunities for biological/chemical analysis using extremely small sample volumes. This paper demonstrates nanostructured capillary tubes for surface enhanced Raman spectroscopy (SERS) analysis in a flow-through fashion. The capillary tube integrates the SERS sensor and the nanofluidic structure to synergistically offer sample delivery and analysis functions. Inside the capillary tube, inverse opal photonic crystal (IO PhC) was fabricated using the co-assembly approach to form nanoscale liquid pathways. In the nano-voids of the IO PhC, gold nanoparticles were in situ synthesized and functioned as the SERS hotspots. The advantages of the flow-through SERS sensor are multifold. The capillary effect facilities the sample delivery process, the nanofluidic channels boosts the interaction of analyte and gold nanoparticles, and the PhC structure strengthens the optical field near the SERS hotspots and results in enhanced SERS signals from analytes. As an exemplary demonstration, the sensor was used to measure creatinein spiked in artificial urine samples with detection limit of 0.9 mg/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. KSC-2009-1090

    NASA Image and Video Library

    2009-01-09

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lowers the ICS Exposed Facility, or ICS-EF, onto the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES, for installation. The ICS-EF is composed of several components, including an antenna, pointing mechanism, frequency converters, high-power amplifier and various sensors including the Earth sensor, Sun sensor and inertial reference unit. The ICS-EF is part of space shuttle Endeavour's payload on the STS-127 mission, targeted for launch on May 15. Photo credit: NASA/Jim Grossmann

  6. KSC-2009-1085

    NASA Image and Video Library

    2009-01-09

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers prepare the ICS Exposed Facility, ICS-EF, to be lifted and installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ICS-EF is composed of several components, including an antenna, pointing mechanism, frequency converters, high-power amplifier and various sensors including the Earth sensor, Sun sensor and inertial reference unit. The ICS-EF is part of space shuttle Endeavour's payload on the STS-127 mission, targeted for launch on May 15. Photo credit: NASA/Jim Grossmann

  7. 75 FR 63810 - Grant of Authority for Subzone Status; SICK, Inc. (Photo-Electronic Industrial Sensors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Status; SICK, Inc. (Photo- Electronic Industrial Sensors); Bloomington, MN Pursuant to its authority... to establish a special- purpose subzone at the photo-electronic industrial sensor manufacturing and... manufacturing and distribution of photo-electronic industrial sensors at the SICK, Inc., facility located in...

  8. Locating sources within a dense sensor array using graph clustering

    NASA Astrophysics Data System (ADS)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  9. A calibration loop to test hot-wire response under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Radulović, Ivana; Vukoslavčević, P. V.; Wallace, J. M.

    2004-11-01

    A calibration facility to test the response of hot-wires in CO2 flow under supercritical conditions has been designed and constructed. It is capable of inducing variable speeds at different temperatures and pressures in the ranges of 0.15 - 2 m/s, 15 - 70 deg. C and 1 - 100 bar. The facility is designed as a closed loop with a test section, pump, electrical heater, DC motor and different regulating and measuring devices. The test section is a small tunnel, with a diffuser, honeycomb, screens and a nozzle to provide a uniform flow with a low turbulence level. The speed variation is created by a sealed, magnetic driven gear pump, with a variable rpm DC motor. Using the electrical heater and regulating the amount of CO2 in the facility, the desired temperature and pressure can be reached. The dimensions of the instalation are minimized to reduce the heat, pump power required, and CO2 consumption and to optimize safety. Preliminary testing of a single hot-wire velocity sensor at constant pressure (80 bar) and variable speed and temperature will be briefly described. The hot-wire probes calibrated in this loop will be used to measure turbulence properties in supercritical CO2 in support of improved designs of nuclear reactors to be cooled by supercritical fluids.

  10. Modeling and analysis of pinhole occulter experiment: Initial study phase

    NASA Technical Reports Server (NTRS)

    Vandervoort, R. J.

    1985-01-01

    The feasibility of using a generic simulation, TREETOPS, to simulate the Pinhole/Occulter Facility (P/OF) to be tested on the space shuttle was demonstrated. The baseline control system was used to determine the pointing performance of the P/OF. The task included modeling the structure as a three body problem (shuttle-instrument pointing system- P/OP) including the flexibility of the 32 meter P/OF boom. Modeling of sensors, actuators, and control algorithms was also required. Detailed mathematical models for the structure, sensors, and actuators are presented, as well as the control algorithm and corresponding design procedure. Closed loop performance using this controller and computer listings for the simulator are also given.

  11. KSC-2009-5042

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers begin center of gravity testing, weighing and balancing on the SV1-SV2 spacecraft. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  12. Noninterference Systems Developed for Measuring and Monitoring Rotor Blade Vibrations

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    2003-01-01

    In the noninterference measurement of blade vibrations, a laser light beam is transmitted to the rotor blade tips through a single optical fiber, and the reflected light from the blade tips is collected by a receiving fiber-optic bundle and conducted to a photodetector. Transmitting and receiving fibers are integrated in an optical probe that is enclosed in a metal tube which also houses a miniature lens that focuses light on the blade tips. Vibratory blade amplitudes can be deduced from the measurement of the instantaneous time of arrival of the blades and the knowledge of the rotor speed. The in-house noninterference blade-vibration measurement system was developed in response to requirements to monitor blade vibrations in several tests where conventional strain gauges could not be installed or where there was a need to back up strain gauges should critical gauges fail during the test. These types of measurements are also performed in the aircraft engine industry using proprietary in-house technology. Two methods of measurement were developed for vibrations that are synchronous with a rotor shaft. One method requires only one sensor; however, it is necessary to continuously record the data while the rotor is being swept through the resonance. In the other method, typically four sensors are employed and the vibratory amplitude is deduced from the data by performing a least square fit to a harmonic function. This method does not require continuous recording of data through the resonance and, therefore, is better suited for monitoring. The single-probe method was tested in the Carl facility at the Wright- Patterson Air Force Base, and the multiple-probe method was tested in NASA Glenn Research Center's Spin Rig facility, which uses permanent magnets to excite synchronous vibrations. Representative results from this test are illustrated in the bar chart. Nonsynchronous vibrations were measured online during testing of the Quiet High Speed Fan in Glenn s 9- by 15-Foot Low-Speed Wind Tunnel. Three sensors were employed, enabling a reconstruction of the vibratory patterns at the leading and trailing edges at the tip span, as well as a determination of vibratory amplitudes for every blade.

  13. Design and Theoretical Analysis of a Resonant Sensor for Liquid Density Measurement

    PubMed Central

    Zheng, Dezhi; Shi, Jiying; Fan, Shangchun

    2012-01-01

    In order to increase the accuracy of on-line liquid density measurements, a sensor equipped with a tuning fork as the resonant sensitive component is designed in this paper. It is a quasi-digital sensor with simple structure and high precision. The sensor is based on resonance theory and composed of a sensitive unit and a closed-loop control unit, where the sensitive unit consists of the actuator, the resonant tuning fork and the detector and the closed-loop control unit comprises precondition circuit, digital signal processing and control unit, analog-to-digital converter and digital-to-analog converter. An approximate parameters model of the tuning fork is established and the impact of liquid density, position of the tuning fork, temperature and structural parameters on the natural frequency of the tuning fork are also analyzed. On this basis, a tuning fork liquid density measurement sensor is developed. In addition, experimental testing on the sensor has been carried out on standard calibration facilities under constant 20 °C, and the sensor coefficients are calibrated. The experimental results show that the repeatability error is about 0.03% and the accuracy is about 0.4 kg/m3. The results also confirm that the method to increase the accuracy of liquid density measurement is feasible. PMID:22969378

  14. Design and theoretical analysis of a resonant sensor for liquid density measurement.

    PubMed

    Zheng, Dezhi; Shi, Jiying; Fan, Shangchun

    2012-01-01

    In order to increase the accuracy of on-line liquid density measurements, a sensor equipped with a tuning fork as the resonant sensitive component is designed in this paper. It is a quasi-digital sensor with simple structure and high precision. The sensor is based on resonance theory and composed of a sensitive unit and a closed-loop control unit, where the sensitive unit consists of the actuator, the resonant tuning fork and the detector and the closed-loop control unit comprises precondition circuit, digital signal processing and control unit, analog-to-digital converter and digital-to-analog converter. An approximate parameters model of the tuning fork is established and the impact of liquid density, position of the tuning fork, temperature and structural parameters on the natural frequency of the tuning fork are also analyzed. On this basis, a tuning fork liquid density measurement sensor is developed. In addition, experimental testing on the sensor has been carried out on standard calibration facilities under constant 20 °C, and the sensor coefficients are calibrated. The experimental results show that the repeatability error is about 0.03% and the accuracy is about 0.4 kg/m(3). The results also confirm that the method to increase the accuracy of liquid density measurement is feasible.

  15. A dynamic motion simulator for future European docking systems

    NASA Technical Reports Server (NTRS)

    Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.

    1990-01-01

    Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.

  16. Continuous Non-Destructive Monitoring of Cell Health Using Impedance Based Interdigitated Electrode Structured Sensors

    NASA Astrophysics Data System (ADS)

    Paschero, Anna; McLoughlin, Eve; Moore, Eric

    2011-06-01

    This article examines some preliminary tests which were performed in order to evaluate the best electrode configuration (width and spacing) for cell culture analyses. Biochips packaged with indium tin oxide (ITO) interdigitated electrodes (IDEs) were used to perform impedance measurements on A549 cells cultured on the surface of the biochip. Several tests were carried out using a 10 mM solution of Sodium Chloride (NaCl), cell medium and the cell culture itself to characterize some of the configurations already fabricated in the facilities at Tyndall National Institute.

  17. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The APH is the largest plant chamber built for the agency. Oscar Monje, a scientist on the Engineering Services Contract, prepares the base of the APH for engineering development tests to see how the science will integrate with the various systems of the plant habitat. The APH will have about 180 sensors and fourt times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  18. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. Inside a laboratory, Engineering Services Contract engineers set up test parameters on computers. From left, are Glenn Washington, ESC quality engineer; Claton Grosse, ESC mechanical engineer; and Jeff Richards, ESC project scientist. The APH is the largest plant chamber built for the agency. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  19. Diode Laser Diagnostics of High Speed Flows (Postprint)

    DTIC Science & Technology

    2006-10-01

    Tests were conducted in the Research Cell 18 direct connect wind tunnel facility at WPAFB. TDLAS was used to detect water and oxygen at...the measurements and provide, in essence, an internal standard for the development of the oxygen sensor . American Institute of Aeronautics and...definitely improves SNR if fast flow noise dominates as in this case. The improved optical and electronic TDLAS system detected water and oxygen at

  20. Development of 1-D Shake Table Testing Facility for Liquefaction Studies

    NASA Astrophysics Data System (ADS)

    Unni, Kartha G.; Beena, K. S.; Mahesh, C.

    2018-04-01

    One of the major challenges researchers face in the field of earthquake geotechnical engineering in India is the high cost of laboratory infrastructure. Developing a reliable and low cost experimental set up is attempted in this research. The paper details the design and development of a uniaxial shake table and the data acquisition system with accelerometers and pore water pressure sensors which can be used for liquefaction studies.

  1. Body-Worn Sensors in Parkinson's Disease: Evaluating Their Acceptability to Patients.

    PubMed

    Fisher, James M; Hammerla, Nils Y; Rochester, Lynn; Andras, Peter; Walker, Richard W

    2016-01-01

    Remote monitoring of symptoms in Parkinson's disease (PD) using body-worn sensors would assist treatment decisions and evaluation of new treatments. To date, a rigorous, systematic evaluation of the acceptability of body-worn sensors in PD has not been undertaken. Thirty-four participants wore bilateral wrist-worn sensors for 4 h in a research facility and then for 1 week at home. Participants' experiences of wearing the sensors were evaluated using a Likert-style questionnaire after each phase. Qualitative data were collected through free-text responses. Differences in responses between phases were assessed by using the Wilcoxon rank-sum test. Content analysis of qualitative data was undertaken. "Non-wear time" was estimated via analysis of accelerometer data for periods when sensors were stationary. After prolonged wearing there was a negative shift in participants' views on the comfort of the sensor; problems with the sensor's strap were highlighted. However, accelerometer data demonstrated high patient concordance with wearing of the sensors. There was no evidence that participants were less likely to wear the sensors in public. Most participants preferred wearing the sensors to completing symptom diaries. The finding that participants were not less likely to wear the sensors in public provides reassurance regarding the ecological validity of the data captured. The validity of our findings was strengthened by "triangulation" of data sources, enabling patients to express their agenda and repeated assessment after prolonged wearing. Long-term monitoring with wrist-worn sensors is acceptable to this cohort of PD patients. Evaluation of the wearer's experience is critical to the development of remote monitoring technology.

  2. Screen-printed back-to-back electroanalytical sensors.

    PubMed

    Metters, Jonathan P; Randviir, Edward P; Banks, Craig E

    2014-11-07

    We introduce the concept of screen-printed back-to-back electroanalytical sensors where in this facile and generic approach, screen-printed electrodes are printed back-to-back with a common electrical connection to the two working electrodes with the counter and reference electrodes for each connected in the same manner as a normal "traditional" screen-printed sensor would be. This approach utilises the usually redundant back of the screen-printed sensor, converting this "dead-space" into a further electrochemical sensor which results in improvements in the analytical performance. In the use of the back-to-back design, the electrode area is consequently doubled with improvements in the analytical performance observed with the analytical sensitivity (gradient of a plot of peak height/analytical signal against concentration) doubling and the corresponding limit-of-detection being reduced. We also demonstrate that through intelligent electrode design, a quadruple in the observed analytical sensitivity can also be realised when double microband electrodes are used in the back-to-back configuration as long as they are placed sufficiently apart such that no diffusional interaction occurs. Such work is generic in nature and can be facilely applied to a plethora of screen-printed (and related) sensors utilising the commonly overlooked redundant back of the electrode providing facile improvements in the electroanalytical performance.

  3. The test facility requirements for the thermal vacuum thermal balance test of the Cosmic Background Explorer Observatory

    NASA Technical Reports Server (NTRS)

    Milam, Laura J.

    1990-01-01

    The Cosmic Background Explorer Observatory (COBE) underwent a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.

  4. Test facility requirements for the thermal vacuum thermal balance test of the Cosmic Background Explorer Observatory

    NASA Technical Reports Server (NTRS)

    Milam, Laura J.

    1991-01-01

    The Cosmic Background Explorer Observatory (COBE) underwant a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.

  5. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K. B., E-mail: fournier2@llnl.gov; Brown, C. G.; Yeoman, M. F.

    2016-11-15

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines ofmore » sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed.« less

  6. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility

    DOE PAGES

    Fournier, K. B.; Brown, Jr., C. G.; Yeoman, M. F.; ...

    2016-08-10

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the NIF’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight.more » We discuss the measured accuracy of sample responses, as well as planned modifications to the XTRRA cassette.« less

  7. Exploring forward physics with the PHENIX MPC-EX upgrade

    NASA Astrophysics Data System (ADS)

    Novitzky, Norbert; Phenix Collaboration

    2014-09-01

    The MPC-EX detector is a Si-W preshower extension to the existing Muon Piston Calorimeter (MPC) at PHENIX. Located at forward rapidity, 3 . 1 < | η | < 3 . 8 , the MPC-EX consists of eight layers of alternating W absorber and Si minipad sensors. Covering a large range at forward rapidity makes the MPC-EX and MPC ideal to access low-x partons in the A nucleus of p + A collisions. The neutral pion and direct photon are excellent probes to separate between the initial and final state effects of the pA collisions. Isolating the direct photon signal requires the MPC-EX to be able to distinguish single showers from double showers. The single versus double shower separation was tested with an electron beam at the SLAC test beam facility. Results from the test beam data will be presented in this talk. The MPC-EX detector is a Si-W preshower extension to the existing Muon Piston Calorimeter (MPC) at PHENIX. Located at forward rapidity, 3 . 1 < | η | < 3 . 8 , the MPC-EX consists of eight layers of alternating W absorber and Si minipad sensors. Covering a large range at forward rapidity makes the MPC-EX and MPC ideal to access low-x partons in the A nucleus of p + A collisions. The neutral pion and direct photon are excellent probes to separate between the initial and final state effects of the pA collisions. Isolating the direct photon signal requires the MPC-EX to be able to distinguish single showers from double showers. The single versus double shower separation was tested with an electron beam at the SLAC test beam facility. Results from the test beam data will be presented in this talk. Norbert Novitzky for PHENIX collaboration.

  8. Data Homogenization of the NOAA Long-Term Ozonesonde Records

    NASA Astrophysics Data System (ADS)

    Johnson, B.; Cullis, P.; Sterling, C. W.; Jordan, A. F.; Hall, E. G.; Petropavlovskikh, I. V.; Oltmans, S. J.; Mcconville, G.

    2015-12-01

    The NOAA long term balloon-borne ozonesonde sites at Boulder, Colorado; Hilo, Hawaii; and South Pole Station, Antarctica have measured weekly ozone profiles for more than 3 decades. The ozonesonde consists of an electrochemical concentration cell (ECC) sensor interfaced with a weather radiosonde which transmits high resolution ozone and meteorological data during ascent from the surface to 30-35 km altitude. During this 30 year time period there have been several model changes in the commercially available ECC ozonesondes and radiosondes as well as three adjustments in the ozone sensor solution composition at NOAA. These changes were aimed at optimizing the ozonesonde performance. Organized intercomparison campaigns conducted at the environmental simulation facility at the Research Centre Juelich, Germany and international field site testing have been the primary process for assessing new designs, instruments, or sensor solution changes and developing standard operating procedures. NOAA has also performed in-house laboratory tests and launched 28 dual ozonesondes at various sites since 1994 to provide further comparison data to determine the optimum homogenized data set. The final homogenization effort involved reviewing and editing several thousand individual ozonesonde profiles followed by applying the optimum correction algorithms for changes in type of sensor solution composition. The results of improved data sets will be shown with long term trends and uncertainties at various altitude levels.

  9. Ripeness sensor development. Final report of a Phase 2 study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroshine, R.

    This is a final report for the Phase II study entitled ``Ripeness Sensor Development.`` The overall objective of the study was the development of a prototype device capable of testing whole fruits for sugar content. Although ripeness and sugar content are not synonymous, they are closely related. Furthermore, the consumer`s acceptance of or preference for fruits is strongly influenced by sugar content. Therefore, the device was called a ripeness sensor. The principle behind the measurement is proton magnetic resonance ({sup 1}H-MR). For several decades, chemists, pharmacists and other scientists have been using {sup 1}H-MR to investigate chemical structure and composition.more » More recently, the technique has been used in laboratories of the food industry for quality control. This effort represents one of the first attempts to adapt {sup 1}H-MR to use in a commercial facility. 28 refs., 36 figs., 7 tabs.« less

  10. Developments towards the LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Cid Vidal, Xabier

    2016-09-01

    The Vertex Locator (VELO) is a silicon strip detector surrounding the interaction region of the LHCb experiment. The upgrade of the VELO is planned to be installed in 2019-2020, and the current detector will be replaced by a hybrid pixel system equipped with electronics capable of reading out at a rate of 40 MHz. The new detector is designed to withstand the radiation dose expected at an integrated luminosity of 50 fb-1. The detector will be composed of silicon pixel sensors, read out by the VeloPix ASIC that is being developed based on the TimePix/MediPix family. The prototype sensors for the VELO upgrade are being irradiated in five different facilities and the post-irradiation performance is being measured with testbeams, and in the lab. These proceedings present the VELO upgrade and briefly discuss the results of the sensor testing campaign.

  11. Final design of thermal diagnostic system in SPIDER ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Dalla Palma, M.; Pasqualotto, R.

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H{sup −} production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements.more » This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.« less

  12. Final design of thermal diagnostic system in SPIDER ion source

    NASA Astrophysics Data System (ADS)

    Brombin, M.; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.

    2016-11-01

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H- production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  13. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun

    1994-01-01

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  14. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    NASA Astrophysics Data System (ADS)

    Liu, Chung-Chiun

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  15. Operational considerations in monitoring oxygen levels at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.

    1985-01-01

    Laboratory monitoring of the level of oxygen in sample gas mixtures is a process which can be performed with accurate and repeatable results. Operations at the National Transonic Facility require the storage and pumping of large volumes of liquid nitrogen. To protect against the possibility of a fault resulting in a localized oxygen deficient atmosphere, the facility is equipped with a monitoring system with an array of sensors. During the early operational stages, the system produced recurrent alarms, none of which could be traced to a true oxygen deficiency. A thorough analysis of the system was undertaken with primary emphasis placed on the sensor units. These units sense the partial pressure of oxygen which, after signal conditioning, is presented as a % by volume indication at the system output. It was determined that many of the problems experienced were due to a lack of proper accounting for the partial pressure/% by volume relationship, with a secondary cause being premature sensor failure. Procedures were established to consider atmospherically induced partial pressure variations. Sensor rebuilding techniques were examined, and those elements contributing to premature sensor failure were identified. The system now operates with a high degree of confidence and reliability.

  16. KSC-2009-1086

    NASA Image and Video Library

    2009-01-09

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ICS Exposed Facility, or ICS-EF, is lifted from its stand. It will be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ICS-EF is composed of several components, including an antenna, pointing mechanism, frequency converters, high-power amplifier and various sensors including the Earth sensor, Sun sensor and inertial reference unit. The ICS-EF is part of space shuttle Endeavour's payload on the STS-127 mission, targeted for launch on May 15. Photo credit: NASA/Jim Grossmann

  17. KSC-2009-1087

    NASA Image and Video Library

    2009-01-09

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers examine the ICS Exposed Facility, or ICS-EF, after it is lifted from its stand. It will be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ICS-EF is composed of several components, including an antenna, pointing mechanism, frequency converters, high-power amplifier and various sensors including the Earth sensor, Sun sensor and inertial reference unit. The ICS-EF is part of space shuttle Endeavour's payload on the STS-127 mission, targeted for launch on May 15. Photo credit: NASA/Jim Grossmann

  18. Mobile Carbon Monoxide Monitoring System Based on Arduino-Matlab for Environmental Monitoring Application

    NASA Astrophysics Data System (ADS)

    Azieda Mohd Bakri, Nur; Junid, Syed Abdul Mutalib Al; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2015-11-01

    Nowadays, the increasing level of carbon monoxide globally has become a serious environmental issue which has been highlighted in most of the country globally. The monitoring of carbon monoxide content is one of the approaches to identify the level of carbon monoxide pollution towards providing the solution for control the level of carbon monoxide produced. Thus, this paper proposed a mobile carbon monoxide monitoring system for measuring the carbon monoxide content based on Arduino-Matlab General User Interface (GUI). The objective of this project is to design, develop and implement the real-time mobile carbon monoxide sensor system and interfacing for measuring the level of carbon monoxide contamination in real environment. Four phases or stages of work have been carried out for the accomplishment of the project, which classified as sensor development, controlling and integrating sensor, data collection and data analysis. As a result, a complete design and developed system has been verified with the handheld industrial standard carbon monoxide sensor for calibrating the sensor sensitivity and measurement in the laboratory. Moreover, the system has been tested in real environments by measuring the level of carbon monoxide in three different lands used location; industrial area; residential area and main road (commercial area). In this real environment test, the industrial area recorded the highest reading with 71.23 ppm and 82.59 ppm for sensor 1 and sensor 2 respectively. As a conclusion, the mobile realtime carbon monoxide system based on the Arduino-Matlab is the best approach to measure the carbon monoxide concentration in different land-used since it does not require a manual data collection and reduce the complexity of the existing carbon monoxide level concentration measurement practise at the same time with a complete data analysis facilities.

  19. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    NASA Technical Reports Server (NTRS)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  20. Autonomous docking ground demonstration (category 3)

    NASA Technical Reports Server (NTRS)

    Lamkin, Steve L.; Eick, Richard E.; Baxter, James M.; Boyd, M. G.; Clark, Fred D.; Lee, Thomas Q.; Othon, L. T.; Prather, Joseph L.; Spehar, Peter T.; Teders, Rebecca J.

    1991-01-01

    The NASA Johnson Space Center (JSC) is involved in the development of an autonomous docking ground demonstration. The demonstration combines the technologies, expertise and facilities of the JSC Tracking and Communications Division (EE), Structures and Mechanics Division (ES), and the Navigation, Guidance and Control Division (EG) and their supporting contractors. The autonomous docking ground demonstration is an evaluation of the capabilities of the laser sensor system to support the docking phase (12ft to contact) when operated in conjunction with the Guidance, Navigation and Control Software. The docking mechanism being used was developed for the Apollo Soyuz Test Program. This demonstration will be conducted using the Six-Degrees of Freedom (6-DOF) Dynamic Test System (DTS). The DTS environment simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration the laser sensor will be mounted on the target vehicle and the retroreflectors on the chase vehicle. This arrangement was used to prevent potential damage to the laser. The sensor system. GN&C and 6-DOF DTS will be operated closed-loop. Initial condition to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved. Detailed description of each of the demonstration components (e.g., Sensor System, GN&C, 6-DOF DTS and supporting computer configuration) including their capabilities and limitations will be discussed. A demonstration architecture drawing and photographs of the test configuration will be presented.

  1. Autonomous docking ground demonstration (category 3)

    NASA Astrophysics Data System (ADS)

    Lamkin, Steve L.; Eick, Richard E.; Baxter, James M.; Boyd, M. G.; Clark, Fred D.; Lee, Thomas Q.; Othon, L. T.; Prather, Joseph L.; Spehar, Peter T.; Teders, Rebecca J.

    The NASA Johnson Space Center (JSC) is involved in the development of an autonomous docking ground demonstration. The demonstration combines the technologies, expertise and facilities of the JSC Tracking and Communications Division (EE), Structures and Mechanics Division (ES), and the Navigation, Guidance and Control Division (EG) and their supporting contractors. The autonomous docking ground demonstration is an evaluation of the capabilities of the laser sensor system to support the docking phase (12ft to contact) when operated in conjunction with the Guidance, Navigation and Control Software. The docking mechanism being used was developed for the Apollo Soyuz Test Program. This demonstration will be conducted using the Six-Degrees of Freedom (6-DOF) Dynamic Test System (DTS). The DTS environment simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration the laser sensor will be mounted on the target vehicle and the retroreflectors on the chase vehicle. This arrangement was used to prevent potential damage to the laser. The sensor system. GN&C and 6-DOF DTS will be operated closed-loop. Initial condition to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved. Detailed description of each of the demonstration components (e.g., Sensor System, GN&C, 6-DOF DTS and supporting computer configuration) including their capabilities and limitations will be discussed. A demonstration architecture drawing and photographs of the test configuration will be presented.

  2. Tethered Balloon Operations at ARM AMF3 Site at Oliktok Point, AK

    NASA Astrophysics Data System (ADS)

    Dexheimer, D.; Lucero, D. A.; Helsel, F.; Hardesty, J.; Ivey, M.

    2015-12-01

    Oliktok Point has been the home of the Atmospheric Radiation Measurement Program's (ARM) third ARM Mobile Facility, or AMF3, since October 2013. The AMF3 is operated through Sandia National Laboratories and hosts instrumentation collecting continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. The Arctic region is warming more quickly than any other region due to climate change and Arctic sea ice is declining to record lows. Sparsity of atmospheric data from the Arctic leads to uncertainty in process comprehension, and atmospheric general circulation models (AGCM) are understood to underestimate low cloud presence in the Arctic. Increased vertical resolution of meteorological properties and cloud measurements will improve process understanding and help AGCMs better characterize Arctic clouds. SNL is developing a tethered balloon system capable of regular operation at AMF3 in order to provide increased vertical resolution atmospheric data. The tethered balloon can be operated within clouds at altitudes up to 7,000' AGL within DOE's R-2204 restricted area. Pressure, relative humidity, temperature, wind speed, and wind direction are recorded at multiple altitudes along the tether. These data were validated against stationary met tower data in Albuquerque, NM. The altitudes of the sensors were determined by GPS and calculated using a line counter and clinometer and compared. Wireless wetness sensors and supercooled liquid water content sensors have also been deployed and their data has been compared with other sensors. This presentation will provide an overview of the balloons, sensors, and test flights flown, and will provide a preliminary look at data from sensor validation campaigns and test flights.

  3. Optimization of Emissions Sensor Networks Incorporating Tradeoffs Between Different Sensor Technologies

    NASA Astrophysics Data System (ADS)

    Nicholson, B.; Klise, K. A.; Laird, C. D.; Ravikumar, A. P.; Brandt, A. R.

    2017-12-01

    In order to comply with current and future methane emissions regulations, natural gas producers must develop emissions monitoring strategies for their facilities. In addition, regulators must develop air monitoring strategies over wide areas incorporating multiple facilities. However, in both of these cases, only a limited number of sensors can be deployed. With a wide variety of sensors to choose from in terms of cost, precision, accuracy, spatial coverage, location, orientation, and sampling frequency, it is difficult to design robust monitoring strategies for different scenarios while systematically considering the tradeoffs between different sensor technologies. In addition, the geography, weather, and other site specific conditions can have a large impact on the performance of a sensor network. In this work, we demonstrate methods for calculating optimal sensor networks. Our approach can incorporate tradeoffs between vastly different sensor technologies, optimize over typical wind conditions for a particular area, and consider different objectives such as time to detection or geographic coverage. We do this by pre-computing site specific scenarios and using them as input to a mixed-integer, stochastic programming problem that solves for a sensor network that maximizes the effectiveness of the detection program. Our methods and approach have been incorporated within an open source Python package called Chama with the goal of providing facility operators and regulators with tools for designing more effective and efficient monitoring systems. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

  4. The Space Operations Simulation Center (SOSC) and Closed-loop Hardware Testing for Orion Rendezvous System Design

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Milenkovich, Zoran; Wilson, Zachary; Huich, David; Bendle, John; Kibler, Angela

    2011-01-01

    The Space Operations Simulation Center (SOSC) at the Lockheed Martin (LM) Waterton Campus in Littleton, Colorado is a dynamic test environment focused on Autonomous Rendezvous and Docking (AR&D) development testing and risk reduction activities. The SOSC supports multiple program pursuits and accommodates testing Guidance, Navigation, and Control (GN&C) algorithms for relative navigation, hardware testing and characterization, as well as software and test process development. The SOSC consists of a high bay (60 meters long by 15.2 meters wide by 15.2 meters tall) with dual six degree-of-freedom (6DOF) motion simulators and a single fixed base 6DOF robot. The large testing area (maximum sensor-to-target effective range of 60 meters) allows for large-scale, flight-like simulations of proximity maneuvers and docking events. The facility also has two apertures for access to external extended-range outdoor target test operations. In addition, the facility contains four Mission Operations Centers (MOCs) with connectivity to dual high bay control rooms and a data/video interface room. The high bay is rated at Class 300,000 (. 0.5 m maximum particles/m3) cleanliness and includes orbital lighting simulation capabilities.

  5. Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.

    2017-01-01

    In support of a facility characterization test, the Integrated Cryogenic Propulsion Test Article (ICPTA) was hotfire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). The ICPTA utilizes liquid oxygen and liquid methane propellants for its main engine and four reaction control engines, and uses a cold helium system for tank pressurization. The hotfire test series included high altitude, high vacuum, ambient temperature, and deep cryogenic environments, and several hundred sensors on the vehicle collected a range of system level data useful to characterize the operation of an integrated LOX/Methane spacecraft in the space environment - a unique data set for this propellant combination.

  6. International Instrumentation Symposium, 32nd, Seattle, WA, May 5-8, 1986, Proceedings

    NASA Astrophysics Data System (ADS)

    The conference presents papers on blast, shock, and vibration instrumentation; wind tunnel instrumentation and controls; electrooptic and fiber optic instrumentation; special test facilities; reentry vehicle testing; and nondestructive test and acoustic test instrumentation. Other topic include real time systems, flight test and avionics instrumentation, data aquisition and analysis systems, thermal measurements, and advances in measurement technology. Particular attention is given to an automated fringe counting laser interferometer for low frequency vibration measurements, dynamic pressure measurements in pneumatic lines, optically interfaced sensor system for aerospace applications, the picobalance for single microparticle measurements, ellipsometric film thickness, nanometer wear measurement by ultrathin surface layer activation, a rugged electronic scanner designed for turbine test, failure mechanism characterization of platinum alloy, and the thick film strain gage.

  7. An assessment of clinical chemical sensing technology for potential use in space station health maintenance facility

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A Health Maintenance Facility is currently under development for space station application which will provide capabilities equivalent to those found on Earth. This final report addresses the study of alternate means of diagnosis and evaluation of impaired tissue perfusion in a microgravity environment. Chemical data variables related to the dysfunction and the sensors required to measure these variables are reviewed. A technology survey outlines the ability of existing systems to meet these requirements. How the candidate sensing system was subjected to rigorous testing is explored to determine its suitability. Recommendations for follow-on activities are included that would make the commercial system more appropriate for space station applications.

  8. A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties

    NASA Astrophysics Data System (ADS)

    Li, Yanqiong

    2018-02-01

    Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.

  9. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE will be unpacked for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  10. A prototype sensor system for the early detection of microbially linked spoilage in stored wheat grain

    NASA Astrophysics Data System (ADS)

    de Lacy Costello, B. P. J.; Ewen, R. J.; Gunson, H.; Ratcliffe, N. M.; Sivanand, P. S.; Spencer-Phillips, P. T. N.

    2003-04-01

    Sensors based on composites of metal oxides were fabricated and tested extensively under high-humidity and high-flow conditions with exposure to vapours reported to increase in the headspace of wheat grain (Triticum aestivum cv Hereward) colonized by fungi. The sensors that exhibited high sensitivity to target vapours combined with high stability were selected for inclusion into a four-sensor array prototype system. A sampling protocol aligned to parallel gas chromatography-mass spectrometry and human olfactory assessment studies was established for use with the sensor system. The sensor system was utilized to assess irradiated wheat samples that had been conditioned to 25% moisture content and inoculated with pathogens known to cause spoilage of grain in storage. These included the fungi Penicillium aurantiogriseum, Penicillium vulpinum, Penicillium verrucosum, Fusarium culmorum, Aspergillus niger, and Aspergillus flavus and the actinomycete, Streptomyces griseus. The sensor system successfully tracked the progress of the infections from a very early stage and the results were compared with human olfactory assessment panels run concurrently. A series of dilution studies were undertaken using previously infected grain mixed with sound grain, to improve the sensitivity and maximize the differentiation of the sensor system. An optimum set of conditions including incubation temperature, incubation time, sampling time, and flow rate were ascertained utilizing this method. The sensor system differentiated samples of sound grain from samples of sound grain with 1% (w/w) fungus infected grain added. Following laboratory trials, the prototype sensor system was evaluated in a commercial wheat grain intake facility. Thresholds calculated from laboratory tests were used to differentiate between sound and infected samples (classified by intake laboratory technicians) collected routinely from trucks delivering grain for use in food manufacture. All samples identified as having an odour-related problem by the intake laboratory gave a total system output above the set threshold and were therefore rejected by the prototype system. A number of samples passed by the intake laboratory were rejected by the prototype system, resulting in what appeared to be false positive results. However, the thresholds were selected on the basis of a limited number of samples and may need to be adjusted to minimize false positives. The output from the sensor system was also compared with moisture content values for the wheat (where available) to demonstrate that the system was not simply measuring differences in moisture. A separate study (carried out at the intake facility) assessed 37 newly harvested wheat samples of different varieties and from different geographic locations within the UK. These samples were analysed by the sensor system, using the same thresholds as before. Six samples rejected by the system were then assessed by the wheat intake laboratory, where only one sample was rejected. This rejected sample had given the highest output when exposed to the sensor system. The commercial trial highlighted the promise of this prototype for the detection of spoilage in wheat grain and a larger trial should ascertain the reliability and long-term stability of the device and therefore confirm its usefulness to the industry.

  11. Advanced application flight experiments precision attitude determination system. Volume 2: System tests

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The performance capability of each of two precision attitude determination systems (PADS), one using a strapdown star tracker, and the other using a single-axis gimbal star tracker was measured in the laboratory under simulated orbit conditions. The primary focus of the evaluation was on the contribution to the total system accuracy by the star trackers, and the effectiveness of the software algorithms in functioning with actual sensor signals. A brief description of PADS, the laboratory test configuration and the test facility, is given along with a discussion of the data handling and display, laboratory computer programs, PADS performance evaluation programs, and the strapdown and gimbal system tests. Results are presented and discussed.

  12. GEOScan: A GEOScience Facility From Space

    NASA Astrophysics Data System (ADS)

    Dyrud, L. P.; Fentzke, J. T.; Anderson, B. J.; Bishop, R. L.; Bust, G. S.; Cahoy, K.; Erlandson, R. E.; Fish, C. S.; Gunter, B. C.; Hall, F. G.; Hilker, T.; Lorentz, S. R.; Mazur, J. E.; Murphy, S. D.; Mustard, J. F.; O'Brien, P. P.; Slagowski, S.; Trenberth, K. E.; Wiscombe, W. J.

    2012-12-01

    GEOScan is a proposed globally networked orbiting facility that will provide revolutionary, massively dense global geosciences observations. Major scientific research projects are typically conducted using two approaches: community facilities, or investigator led focused missions. GEOScan is a new concept in space science, blending the PI mission and community facility models: it is PI-led, but it carries sensors that are the result of a grass-roots competition, and, uniquely, it preserves open slots for sensors which are purposely not yet decided. The goal is threefold: first, to select sensors that maximize science value for the greatest number of scientific disciplines, second, to target science questions that cannot be answered without simultaneous global space-based measurements, and third to reap the cost advantages of scale manufacturing for space instrumentation. The relatively small size, mass, and power requirements of the GEOScan sensor suite would make it an ideal hosted payload aboard a global constellation of communication satellites, such as Iridium NEXT's 66-satellite constellation or as hosted small-sat payload. Each GEOScan sensor suite consists of 6 instruments: a Radiometer to measure Earth's total outgoing radiation; a GPS Compact Total Electron Content Sensor to image Earth's plasma environment and gravity field; a MicroCam Multispectral Imager to provide the first uniform, instantaneous image of Earth and measure global cloud cover, vegetation, land use, and bright aurora; a Radiation Belt Mapping System (dosimeter) to measure energetic electron and proton distributions; a Compact Earth Observing Spectrometer to measure aerosol-atmospheric composition and vegetation; and MEMS Accelerometers to deduce non-conservative forces aiding gravity and neutral drag studies. These instruments, employed in a constellation, can provide major breakthroughs in Earth and Geospace science, as well as offering a low-cost technology demonstration for operational weather, climate, and land-imaging.

  13. Towards development of a fiber optic-based transmission monitoring system

    NASA Astrophysics Data System (ADS)

    Baldwin, Chris S.; Kiddy, Jason S.; Samuel, Paul D.

    2011-06-01

    There is interest in the rotorcraft community to develop health monitoring technologies. Among these technologies is the ability to monitor the transmission planetary gear system. The gearbox environment does not lend itself to traditional sensing technologies due to the harsh environment and crowed space. Traditional vibration-based diagnostics are based on the output from externally mounted sensors, usually accelerometers fixed to the gearbox exterior. This type of system relies on the ability of the vibration signal to travel from the gears through the gearbox housing. These sensors are also susceptible to other interference including electrical magnetic interference (EMI). For these reasons, the development of a fiber optic-based transmission monitoring system represents an appealing alternative to the accelerometer due to their resistance to EMI and other signal corrupting influences. Aither Engineering has been working on integrating the fiber optic sensors into the gearbox environment to measure strain on the ring gear of the planetary gear system. This application utilizes a serial array of wavelength division multiplexed fiber Bragg grating (FBG) sensors. Work in this area has been conducted at both the University of Maryland, College Park and more recently at the NASA Glenn Research Center (NGRC) OH-58 transmission test rig facility. This paper discusses some of the testing results collected from the fiber optic ring gear sensor array. Based on these results, recommendations for system requirements are addressed in terms of the capabilities of the FBG instrumentation.

  14. An operation manual for a time-series, storm-activated suspended sediment sampler deployed in the coastal ocean: function, maintenance, and testing procedures

    USGS Publications Warehouse

    Rendigs, Richard R.; Bothner, Michael H.

    2004-01-01

    This manual describes the operation and testing procedures for two models of a multi-port suspended sediment sampler that are moored in the coastal ocean and that collect samples on a programmable time schedule that can be interrupted to collect during a storm. The ability to sense and collect samples before, during, and after the height of a storm is a unique feature of these instruments because it provides samples during conditions when it is difficult or impossible to sample from a surface ship. The sensors used to trigger storm sampling are a transmissometer or a pressure sensor. The purpose of such samples is to assess composition and concentration of sediment resuspended from the seafloor during storms and subsequently transported within the coastal system. Both light transmission and the standard deviation of pressure from surface waves correlate with the passage of major storms. The instruments successfully identified the onset of storms and collected samples before, during, and after the storm maximum as programmed. The accuracy of determining suspended matter concentrations collected by the sediment sampler has not been fully evaluated. Preliminary laboratory tests using a suspension of muddy sediment collected in a near-bottom sediment trap yielded excellent results. However in laboratory tests with different sediment types, the suspended matter concentrations determined with these samplers became less accurate with increasing average grain size. Future calibration work is necessary and should be conducted in a facility that ideally has a water depth of at least 30 feet to prevent cavitation of the pump that draws sea water through the filters. The test facility should also have the capability for adding suspended matter of known composition and concentration to a fixed volume of seawater that is well mixed.

  15. Path planning in GPS-denied environments via collective intelligence of distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Jha, Devesh K.; Chattopadhyay, Pritthi; Sarkar, Soumik; Ray, Asok

    2016-05-01

    This paper proposes a framework for reactive goal-directed navigation without global positioning facilities in unknown dynamic environments. A mobile sensor network is used for localising regions of interest for path planning of an autonomous mobile robot. The underlying theory is an extension of a generalised gossip algorithm that has been recently developed in a language-measure-theoretic setting. The algorithm has been used to propagate local decisions of target detection over a mobile sensor network and thus, it generates a belief map for the detected target over the network. In this setting, an autonomous mobile robot may communicate only with a few mobile sensing nodes in its own neighbourhood and localise itself relative to the communicating nodes with bounded uncertainties. The robot makes use of the knowledge based on the belief of the mobile sensors to generate a sequence of way-points, leading to a possible goal. The estimated way-points are used by a sampling-based motion planning algorithm to generate feasible trajectories for the robot. The proposed concept has been validated by numerical simulation on a mobile sensor network test-bed and a Dubin's car-like robot.

  16. KSC-2009-5032

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers remove a cover from around the mated SV1 and SV2 spacecraft before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  17. KSC-2009-5033

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are largely uncovered before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  18. KSC-2009-5028

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers remove covers around the mated SV1 and SV2 spacecraft before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  19. KSC-2009-5039

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are on a rotation stand for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  20. KSC-2009-5041

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers check the SV1-SV2 spacecraft that will undergo center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  1. KSC-2009-5030

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers remove covers around the mated SV1 and SV2 spacecraft before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  2. KSC-2009-5027

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. –At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are being prepared for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  3. KSC-2009-5036

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are being prepared for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  4. KSC-2009-5026

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are being prepared for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  5. KSC-2009-5038

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are placed on a rotation stand for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  6. KSC-2009-5031

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers remove covers around the mated SV1 and SV2 spacecraft before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  7. KSC-2009-5029

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers remove covers around the mated SV1 and SV2 spacecraft before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  8. KSC-2014-2642

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – Jon Olansen, Morpheus project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Olansen is the Project Morpheus prototype lander. Project Morpheus tests NASA’s autonomous landing and hazard avoidance technology, or ALHAT, sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  9. KSC-2014-2641

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – Jon Olansen, Morpheus project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Olansen is the Project Morpheus prototype lander. Project Morpheus tests NASA’s autonomous landing and hazard avoidance technology, or ALHAT, sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  10. KSC-2014-2643

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – Chirold Epp, the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Epp is the Project Morpheus prototype lander. Project Morpheus tests NASA’s ALHAT sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  11. Characterization monitoring & sensor technology crosscutting program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  12. Mini-mast CSI testbed user's guide

    NASA Technical Reports Server (NTRS)

    Tanner, Sharon E.; Pappa, Richard S.; Sulla, Jeffrey L.; Elliott, Kenny B.; Miserentino, Robert; Bailey, James P.; Cooper, Paul A.; Williams, Boyd L., Jr.; Bruner, Anne M.

    1992-01-01

    The Mini-Mast testbed is a 20 m generic truss highly representative of future deployable trusses for space applications. It is fully instrumented for system identification and active vibrations control experiments and is used as a ground testbed at NASA-Langley. The facility has actuators and feedback sensors linked via fiber optic cables to the Advanced Real Time Simulation (ARTS) system, where user defined control laws are incorporated into generic controls software. The object of the facility is to conduct comprehensive active vibration control experiments on a dynamically realistic large space structure. A primary goal is to understand the practical effects of simplifying theoretical assumptions. This User's Guide describes the hardware and its primary components, the dynamic characteristics of the test article, the control law implementation process, and the necessary safeguards employed to protect the test article. Suggestions for a strawman controls experiment are also included.

  13. A facile electrochemical sensor for nonylphenol determination based on the enhancement effect of cetyltrimethylammonium bromide.

    PubMed

    Lu, Qing; Zhang, Weina; Wang, Zhihui; Yu, Guangxia; Yuan, Yuan; Zhou, Yikai

    2013-01-07

    A facile electrochemical sensor for the determination of nonylphenol (NP) was fabricated in this work. Cetyltrimethylammonium bromide (CTAB), which formed a bilayer on the surface of the carbon paste (CP) electrode, displayed a remarkable enhancement effect for the electrochemical oxidation of NP. Moreover, the oxidation peak current of NP at the CTAB/CP electrode demonstrated a linear relationship with NP concentration, which could be applied in the direct determination of NP. Some experimental parameters were investigated, such as external solution pH, mode and time of accumulation, concentration and modification time of CTAB and so on. Under optimized conditions, a wide linear range from 1.0 × 10(-7) mol·L(-1) to 2.5 × 10(-5) mol·L(-1) was obtained for the sensor, with a low limit of detection at 1.0 × 10(-8) mol·L(-1). Several distinguishing advantages of the as-prepared sensor, including facile fabrication, easy operation, low cost and so on, suggest a great potential for its practical applications.

  14. Switch on or switch off: an optical DNA sensor based on poly(p-phenylenevinylene) grafted magnetic beads.

    PubMed

    Srinivas, Anupama R Gulur; Peng, Hui; Barker, David; Travas-Sejdic, Jadranka

    2012-05-15

    There has been an enormous demand for commercial label-free DNA sensors in a diverse range of fields including pre-emptive medicine, diagnostics, environmental monitoring, and food industry. Addressing the need for sensitive, selective and facile DNA sensors, we demonstrate a novel switch on/off sensor design that utilizes sandwich hybridization between photoluminescent anionic conjugated polyelectrolyte (CPE) bound captureprobe coated onto magnetic beads, target and the signaling probe. The hybridization-readout in our sensor was monitored by either fluorescence resonance energy transfer (FRET, switch-on) or superquenching (switch-off) depending on the type of signaling probe used. Moreover recent designs that utilize beads for sensing DNA have been limited towards using electrostatic interactions or intercalation of dyes to observe FRET. To our knowledge this is the first report of a switch on/off sensor utilizing either FRET or superquenching thus providing flexibility for future development of such rapid, facile and sensitive DNA sensors. The FRET-based sensor was investigated by optimizing the reaction parameters and selectivity. A low detection limit of 240 fmol in 2 mL of SSC buffer was achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Design of Force Sensor Leg for a Rocket Thrust Detector

    NASA Astrophysics Data System (ADS)

    Woten, Douglas; McGehee, Tripp; Wright, Anne

    2005-03-01

    A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spacial dimensions. The detector design uses six force sensor legs. Each leg utilizes strain gauges and a Wheatstone bridge to produce a voltage propotional to the force on the leg. The leg was designed using the CAD software ProEngineer and ProMechanica. Computer models of the strains on the single leg will be presented. A prototype leg was built and was tested in an INSTRON and results will be presented.

  16. Front-end Electronics for Unattended Measurement (FEUM). Results of Prototype Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, Ryan C.; Keller, Daniel T.; Morris, Scott J.

    2015-07-01

    The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor has been performed. This evaluation assessed the device against the IAEA’s original technical specifications and a broad range of important parameters that include sensor types, cable lengths and types, industrial electromagnetic noise that can degrade signals from remotely located detectors, and high radiation fields. Testing data, interpretation, findings and recommendations are provided.« less

  17. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  18. Evaluation of Xylem EXO water-quality sondes and sensors

    USGS Publications Warehouse

    Snazelle, Teri T.

    2015-01-01

    Two models of multiparameter sondes manufactured by Xylem, parent company of Yellow Springs Incorporated (YSI)—EXO1 and EXO2—equipped with EXO conductivity/temperature (C/T), pH, dissolved oxygen (DO), and turbidity sensors, were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility. The sondes and sensors were evaluated in two phases for compliance with the manufacturer’s specifications and the USGS acceptance criteria for continuous water-quality monitors. Phase one tested the accuracy of the water-quality sondes equipped: (a) with a C/T, pH, DO, and turbidity sensor by comparing the EXO sensors’ measured values to those of an equivalently configured YSI 6920 V2-2 sensor, and (b) with multiple sensors of the same parameter type (such as three pH sensors and a C/T sensor) on a single sonde at room temperature and at an extended temperature range. In addition to accuracy, the communication protocols and the manufacturing specifications for range of detection and operating temperature were also tested during this phase. Phase two evaluated the sondes’ performance in a surface-water environment by deploying an EXO1 and an EXO2 equipped with pH, C/T, DO, and turbidity sensors at USGS site 02492620 located at East Pearl River near Bay Saint Louis, Mississippi. The EXO sondes’ temperature deviations from a certified YSI 4600 digital thermometer were within the ±0.2 degree Celsius (°C) USGS criteria, but were greater than the ±0.01 °C manufacturing specification. The conductivity sensors met the ±3 percent USGS criteria for specific conductance greater than 100 microsiemens per centimeter. The sensors met the more stringent ±0.5 percent manufacturing specification only at room temperature in the 250 microsiemens per centimeter (µS/cm) standard. The manufacturing and USGS criteria (±0.2 pH unit) were met in pH standards 4, 9.2, 10, and 12.45, but were not met in pH 1.68 standard. The DO sensors met both the ±0.3 milligram per liter (mg/L) USGS criteria and the ±1 percent manufacturing specification. The ±5 percent USGS criteria for turbidity in waters not exceeding 2,000 formazin nephelometric units (FNU) were met by the five turbidity sensors tested; however, all five sensors failed to meet these requirements at turbidities exceeding 2,000 FNU. The more stringent ±2 percent manufacturing turbidity specification for water with less than 1,000 FNU was met by only one of the five sensors tested. The results from the field deployment indicated acceptable agreement in temperature, specific conductance, pH, and DO between the EXO sondes, the site sonde, and the reference sonde. The EXO1 and EXO2 turbidity measurements differed from the site sonde by approximately 23 and 25 percent, respectively.

  19. GRAAL on the mountaintop

    NASA Astrophysics Data System (ADS)

    Paufique, Jérôme; Madec, Pierre-Yves; Kolb, Johann; Kuntschner, Harald; Argomedo, Javier; Kiekebusch, Mario J.; Donaldson, Robert H.; Arsenault, Robin; Siebenmorgen, Ralf; Soenke, Christian; Tordo, Sebastien; Conzelmann, Ralf D.; Jost, Andreas; Reyes-Moreno, Javier; Downing, Mark; Hibon, Pascale; Valenzuela, Jose Javier; Haguenauer, Pierre

    2016-07-01

    GRAAL is the adaptive optics module feeding the wide-field IR imager HAWK-I at the VLT observatory. As part of the adaptive optics facility, GRAAL is equipped with 4 Laser-guide star wave-front sensors and provides a large field-of-view, ground layer correction system to HAWK-I. After a successful testing in Europe, the module has been re-assembled in Chile and installed at the Nasmyth-A platform of Yepun, the fourth Unit telescope of the observatory. We report on the installation of GRAAL on the mountain and on its first testing in stand-alone and on-sky.

  20. SCI 236 AGARDograph. Part Two; National Aeronautics and Space Administration Armstrong Flight Research Center Annex

    NASA Technical Reports Server (NTRS)

    Neal, Bradford A.; Stoliker, Patrick C.

    2018-01-01

    NASA AFRC is a United States government entity that conducts the integration and operation of new and unproven technologies into proven flight vehicles as well as the flight test of one-of-a-kind experimental aircraft. AFRC also maintains and operates several platform aircraft that allow the integration of a wide range of sensors to conduct airborne remote sensing, science observations and airborne infrared astronomy. To support these types of operations AFRC has the organization, facilities and tools to support the experimental flight test of unique vehicles and conduct airborne sensing/observing.

  1. Project Morpheus: Lessons Learned in Lander Technology Development

    NASA Technical Reports Server (NTRS)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.

    2013-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.

  2. Low-Cost, Robust, Threat-Aware Wireless Sensor Network for Assuring the Nation's Energy Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carols H. Rentel

    2007-03-31

    Eaton, in partnership with Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) has completed a project that applies a combination of wireless sensor network (WSN) technology, anticipatory theory, and a near-term value proposition based on diagnostics and process uptime to ensure the security and reliability of critical electrical power infrastructure. Representatives of several Eaton business units have been engaged to ensure a viable commercialization plan. Tennessee Valley Authority (TVA), American Electric Power (AEP), PEPCO, and Commonwealth Edison were recruited as partners to confirm and refine the requirements definition from the perspective of the utilities that actually operatemore » the facilities to be protected. Those utilities have cooperated with on-site field tests as the project proceeds. Accomplishments of this project included: (1) the design, modeling, and simulation of the anticipatory wireless sensor network (A-WSN) that will be used to gather field information for the anticipatory application, (2) the design and implementation of hardware and software prototypes for laboratory and field experimentation, (3) stack and application integration, (4) develop installation and test plan, and (5) refinement of the commercialization plan.« less

  3. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira da Cunha, Mauricio

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures upmore » to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless, battery-free, maintenance-free operation, and operation in the harsh-environment of power plant equipment up to about 1100 oC. Their small size and configuration allows flexible sensor placement and embedding of multiple sensor arrays into a variety of components within power systems that can be interrogated by a single RF unit. The outcomes of this project and technological transfer respond to a DOE analysis need, which indicated that if one percent efficiency in coal burning is achieved, an additional 2 gigawatt-hours of energy per year is generated and the resulting coal cost savings is $300 million per year, also accompanied by a reduction of more than 10 million metric tons of CO2 per year emitted into the atmosphere. Therefore, the developed harsh environment wireless microwave acoustic sensor technology and the technological transfer achievements that resulted from the execution of this project have significant impact for power plant equipment and systems and are well-positioned to contribute to the cost reduction in power generation, the increase in power plant efficiency, the improvement in maintenance, the reduction in down-time, and the decrease in environmental pollution. The technology is also in a position to be extended to address other types of high-temperature harsh-environment power plant and energy sector sensing needs.« less

  4. Embry-Riddle Aeronautical University multispectral sensor and data fusion laboratory: a model for distributed research and education

    NASA Astrophysics Data System (ADS)

    McMullen, Sonya A. H.; Henderson, Troy; Ison, David

    2017-05-01

    The miniaturization of unmanned systems and spacecraft, as well as computing and sensor technologies, has opened new opportunities in the areas of remote sensing and multi-sensor data fusion for a variety of applications. Remote sensing and data fusion historically have been the purview of large government organizations, such as the Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and National Geospatial-Intelligence Agency (NGA) due to the high cost and complexity of developing, fielding, and operating such systems. However, miniaturized computers with high capacity processing capabilities, small and affordable sensors, and emerging, commercially available platforms such as UAS and CubeSats to carry such sensors, have allowed for a vast range of novel applications. In order to leverage these developments, Embry-Riddle Aeronautical University (ERAU) has developed an advanced sensor and data fusion laboratory to research component capabilities and their employment on a wide-range of autonomous, robotic, and transportation systems. This lab is unique in several ways, for example, it provides a traditional campus laboratory for students and faculty to model and test sensors in a range of scenarios, process multi-sensor data sets (both simulated and experimental), and analyze results. Moreover, such allows for "virtual" modeling, testing, and teaching capability reaching beyond the physical confines of the facility for use among ERAU Worldwide students and faculty located around the globe. Although other institutions such as Georgia Institute of Technology, Lockheed Martin, University of Dayton, and University of Central Florida have optical sensor laboratories, the ERAU virtual concept is the first such lab to expand to multispectral sensors and data fusion, while focusing on the data collection and data products and not on the manufacturing aspect. Further, the initiative is a unique effort among Embry-Riddle faculty to develop multi-disciplinary, cross-campus research to facilitate faculty- and student-driven research. Specifically, the ERAU Worldwide Campus, with locations across the globe and delivering curricula online, will be leveraged to provide novel approaches to remote sensor experimentation and simulation. The purpose of this paper and presentation is to present this new laboratory, research, education, and collaboration process.

  5. Analysis of the Parameters Required for Performance Monitoring and Assessment of Military Communications Systems by Military Technical Controller

    DTIC Science & Technology

    1975-12-01

    139 APPENDIX A* BASIC CONCEPT OF MILITARY TECHNICAL CONTROL.142 6 APIENDIX Es TEST EQUIPMENI REQUIRED FOR lEASURF.4ENr OF 1AF’AMETE RS...Control ( SATEC ) Automatic Facilities heport Army Automated Quality Monitoring Reporting System (AQMPS) Army Autcmated Technical Control-Semi (ATC-Semi...technical control then beco.. es equipment status monitoring. All the major equipment in a system wculd have internal sensors with properly selected parameters

  6. A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes.

    PubMed

    Vogl, Gregory W; Weiss, Brian A; Donmez, M Alkan

    2015-01-01

    A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a 'sensor box' to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality.

  7. A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes

    PubMed Central

    Vogl, Gregory W.; Weiss, Brian A.; Donmez, M. Alkan

    2017-01-01

    A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a ‘sensor box’ to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality. PMID:28691039

  8. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  9. Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugate, David L.; Liu, Xiaobing; Gehl, Anthony C.

    This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need formore » new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.« less

  10. 33 CFR 127.205 - Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...

  11. 33 CFR 127.205 - Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...

  12. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight, complex shapes, large structure dimension, large current, and low frequency capabilities are important considerations.

  13. Assessment of online monitoring strategies for measuring N2O emissions from full-scale wastewater treatment systems.

    PubMed

    Marques, Ricardo; Rodriguez-Caballero, A; Oehmen, Adrian; Pijuan, Maite

    2016-08-01

    Clark-Type nitrous oxide (N2O) sensors are routinely used to measure dissolved N2O concentrations in wastewater treatment plants (WWTPs), but have never before been applied to assess gas-phase N2O emissions in full-scale WWTPs. In this study, a full-scale N2O gas sensor was tested and validated for online gas measurements, and assessed with respect to its linearity, temperature dependence, signal saturation and drift prior to full-scale application. The sensor was linear at the concentrations tested (0-422.3, 0-50 and 0-10 ppmv N2O) and had a linear response up to 2750 ppmv N2O. An exponential correlation between temperature and sensor signal was described and predicted using a double exponential equation while the drift did not have a significant influence on the signal. The N2O gas sensor was used for online N2O monitoring in a full-scale sequencing batch reactor (SBR) treating domestic wastewater and results were compared with those obtained by a commercial online gas analyser. Emissions were successfully described by the sensor, being even more accurate than the values given by the commercial analyser at N2O concentrations above 500 ppmv. Data from this gas N2O sensor was also used to validate two models to predict N2O emissions from dissolved N2O measurements, one based on oxygen transfer rate and the other based on superficial velocity of the gas bubble. Using the first model, predictions for N2O emissions agreed by 98.7% with the measured by the gas sensor, while 87.0% similarity was obtained with the second model. This is the first study showing a reliable estimation of gas emissions based on dissolved N2O online data in a full-scale wastewater treatment facility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Testing of the LISA pathfinder GRS

    NASA Astrophysics Data System (ADS)

    Antonucci, Federica; Cavalleri, Antonella; Ciani, Giacomo; Congedo, Giuseppe; Dolesi, Rita; de Marchi, Fabrizio; Ferraioli, Luigi; Hueller, Mauro; Nicolodi, Daniele; Tombolato, David; Vitale, Stefano; Wass, Peter J.; Weber, William J.

    The ESA/NASA mission,LISA (Laser Interferometric Space Antenna), will measure gravita-tional waves emitted by astronomical sources, galactic and extra-galactic, at frequencies 10-4 to 10-1 Hz. LISA is a 5-million-km arm-length interferometer whose mirrors are test masses which must be nominally free-falling to a level which does not exceed 3 · 10-15 ms-2 Hz -1/2 in acceleration. LISA Pathfinder is a technology demonstration mission which will show that the relative parasitic acceleration between two masses on one spacecraft can be lower than 3 · 10-14 ms-2 Hz -1/2 , at frequencies around 1 mHz -one order of magnitude larger than LISA's goal. At the core of the LISA Pathfinder experiment is the GRS (gravitational reference sensor), a capacitive sensor with mm gaps used to measure the position of the test mass and actuate its position in 6-degrees-of-freedom. Testing the purity of free-fall for LISA Pathfinder on-ground is achieved using a torsion pendulum which allows us to measure force disturbances at a level relevant to LISA Pathfinder. We will present the latest campaign of tests of the LISA Pathfinder GRS using the 4-test-mass torsion pendulum facility aimed at measuring force-noise sources (responsible for the parasitic acceleration) for LISA Pathfinder in its frequency band. Our GRS , is the LISA Pathfinder flight-model replica, and its testing is crucial in verifying the design and performance of the flight instrument and measuring many of the unwanted disturbances which can limit the performance of LISA and LISA pathfinder. The measurements concern the dependence of the force on the test mass position in the sensor and their electrostatic coupling, electrostatic fields due to surface-potential variations and thermal gradients.

  15. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A description of the sensor, ground data processing facility, laboratory calibration, and first results

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1987-01-01

    The papers in this document were presented at the Imaging Spectroscopy 2 Conference of the 31st International Symposium on Optical and Optoelectronic Applied Science and Engineering, in San Diego, California, on 20 and 21 August 1987. They describe the design and performance of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and its subsystems, the ground data processing facility, laboratory calibration, and first results.

  16. Results from Solar Reflective Band End-to-End Testing for VIIRS F1 Sensor Using T-SIRCUS

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Moyer, David; McCarthy, James K.; DeLuccia, Frank; Xiong, Xiaoxiong; Butler, James J.; Guenther, Bruce

    2011-01-01

    Verification of the Visible Infrared Imager Radiometer Suite (VIIRS) End-to-End (E2E) sensor calibration is highly recommended before launch, to identify any anomalies and to improve our understanding of the sensor on-orbit calibration performance. E2E testing of the Reflective Solar Bands (RSB) calibration cycle was performed pre-launch for the VIIRS Fight 1 (F1) sensor at the Ball Aerospace facility in Boulder CO in March 2010. VIIRS reflective band calibration cycle is very similar to heritage sensor MODIS in that solar illumination, via a diffuser, is used to correct for temporal variations in the instrument responsivity. Monochromatic light from the NIST T-SIRCUS was used to illuminate both the Earth View (EV), via an integrating sphere, and the Solar Diffuser (SD) view, through a collimator. The collimator illumination was cycled through a series of angles intended to simulate the range of possible angles for which solar radiation will be incident on the solar attenuation screen on-orbit. Ideally, the measured instrument responsivity (defined here as the ratio of the detector response to the at-sensor radiance) should be the same whether the EV or SD view is illuminated. The ratio of the measured responsivities was determined at each collimator angle and wavelength. In addition, the Solar Diffuser Stability Monitor (SDSM), a ratioing radiometer designed to track the temporal variation in the SD BRF by direct comparison to solar radiation, was illuminated by the collimator. The measured SDSM ratio was compared to the predicted ratio. An uncertainty analysis was also performed on both the SD and SDSM calibrations.

  17. Acoustic sensor array extracts physiology during movement

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2001-08-01

    An acoustic sensor attached to a person's neck can extract heart and breath sounds, as well as voice and other physiology related to their health and performance. Soldiers, firefighters, law enforcement, and rescue personnel, as well as people at home or in health care facilities, can benefit form being remotely monitored. ARLs acoustic sensor, when worn around a person's neck, picks up the carotid artery and breath sounds very well by matching the sensor's acoustic impedance to that of the body via a gel pad, while airborne noise is minimized by an impedance mismatch. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that obscure the meaningful physiology. To exacerbate signal extraction, these interfering signals are usually covariant with the heart sounds, in that as a person walks faster the heart tends to beat faster, and motion noises tend to contain low frequency component similar to the heart sounds. A noise-canceling configuration developed by ARL uses two acoustic sensor on the front sides of the neck as physiology sensors, and two additional acoustic sensor on the back sides of the neck as noise references. Breath and heart sounds, which occur with near symmetry and simultaneously at the two front sensor, will correlate well. The motion noise present on all four sensor will be used to cancel the noise on the two physiology sensors. This report will compare heart rate variability derived from both the acoustic array and from ECG data taken simultaneously on a treadmill test. Acoustically derived breath rate and volume approximations will be introduced as well. A miniature 3- axis accelerometer on the same neckband provides additional noise references to validate footfall and motion activity.

  18. Wireless remote monitoring of critical facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hanchung; Anderson, John T.; Liu, Yung Y.

    A method, apparatus, and system are provided for monitoring environment parameters of critical facilities. A Remote Area Modular Monitoring (RAMM) apparatus is provided for monitoring environment parameters of critical facilities. The RAMM apparatus includes a battery power supply and a central processor. The RAMM apparatus includes a plurality of sensors monitoring the associated environment parameters and at least one communication module for transmitting one or more monitored environment parameters. The RAMM apparatus is powered by the battery power supply, controlled by the central processor operating a wireless sensor network (WSN) platform when the facility condition is disrupted. The RAMM apparatusmore » includes a housing prepositioned at a strategic location, for example, where a dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance.« less

  19. Assessment of air velocity sensors for use in animal produciton facilities

    USDA-ARS?s Scientific Manuscript database

    Ventilation is an integral part of thermal environment control in animal production facilities. Accurately measuring the air velocity distribution within these facilities is cumbersome using the traverse method and a distributed velocity measurement system would reduce the time necessary to perform ...

  20. KSC-20171002-MH-CSH01_0001-MISSE_Arrival_Integration_H265-3170951

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE is unpacked and moved for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  1. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered and secured onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  2. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as MISSE is lifted by crane from its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  3. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  4. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as a crane is used to lift MISSE out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  5. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians work to attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  6. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  7. Predicting Functional Independence Measure Scores During Rehabilitation with Wearable Inertial Sensors

    PubMed Central

    Sprint, Gina; Cook, Diane J.; Weeks, Douglas L.; Borisov, Vladimir

    2016-01-01

    Evaluating patient progress and making discharge decisions regarding inpatient medical rehabilitation rely upon standard clinical assessments administered by trained clinicians. Wearable inertial sensors can offer more objective measures of patient movement and progress. We undertook a study to investigate the contribution of wearable sensor data to predict discharge functional independence measure (FIM) scores for 20 patients at an inpatient rehabilitation facility. The FIM utilizes a 7-point ordinal scale to measure patient independence while performing several activities of daily living, such as walking, grooming, and bathing. Wearable inertial sensor data were collected from ecological ambulatory tasks at two time points mid-stay during inpatient rehabilitation. Machine learning algorithms were trained with sensor-derived features and clinical information obtained from medical records at admission to the inpatient facility. While models trained only with clinical features predicted discharge scores well, we were able to achieve an even higher level of prediction accuracy when also including the wearable sensor-derived features. Correlations as high as 0.97 for leave-one-out cross validation predicting discharge FIM motor scores are reported. PMID:27054054

  8. The Gemini Planet Imager: integration and status

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce A.; Anthony, Andre; Atwood, Jennifer; Barriga, Nicolas; Bauman, Brian; Caputa, Kris; Chilcote, Jeffery; Dillon, Daren; Doyon, René; Dunn, Jennifer; Gavel, Donald T.; Galvez, Ramon; Goodsell, Stephen J.; Graham, James R.; Hartung, Markus; Isaacs, Joshua; Kerley, Dan; Konopacky, Quinn; Labrie, Kathleen; Larkin, James E.; Maire, Jerome; Marois, Christian; Millar-Blanchaer, Max; Nunez, Arturo; Oppenheimer, Ben R.; Palmer, David W.; Pazder, John; Perrin, Marshall; Poyneer, Lisa A.; Quirez, Carlos; Rantakyro, Frederik; Reshtov, Vlad; Saddlemyer, Leslie; Sadakuni, Naru; Savransky, Dmitry; Sivaramakrishnan, Anand; Smith, Malcolm; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Weiss, Jason; Wiktorowicz, Sloane

    2012-09-01

    The Gemini Planet Imager is a next-generation instrument for the direct detection and characterization of young warm exoplanets, designed to be an order of magnitude more sensitive than existing facilities. It combines a 1700-actuator adaptive optics system, an apodized-pupil Lyot coronagraph, a precision interferometric infrared wavefront sensor, and a integral field spectrograph. All hardware and software subsystems are now complete and undergoing integration and test at UC Santa Cruz. We will present test results on each subsystem and the results of end-to-end testing. In laboratory testing, GPI has achieved a raw contrast (without post-processing) of 10-6 5σ at 0.4", and with multiwavelength speckle suppression, 2x10-7 at the same separation.

  9. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    NASA Astrophysics Data System (ADS)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, very encouraging results have been attained as several transducers have continued to operate under irradiation. The irradiation is ongoing and will continue to approximately mid-2015.

  10. NO PLIF Visualizations of the Orion Capsule in LENS-I

    NASA Technical Reports Server (NTRS)

    Combs, C.; Clemens, N.; Danehy, P. M.; Bathel, B.; Parker, R.; Wadhams, T.; Holden, M.; Kirk, B.

    2013-01-01

    Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the interaction of reaction-control-system (RCS) jet flows in the wake of a hypersonic capsule reentry vehicle. The tests were performed at the Calspan University at Buffalo Research Center's (CUBRC) LENS-I reflected shock tunnel facility. This was the first application of PLIF to study RCS jets in a large-scale pulsed hypersonic facility. The LENS-I facility allowed RCS jet flows to be studied while varying the flow enthalpy, Reynolds number, angle of attack and jet configuration. The interaction of pitch and roll jets with the flowfield was investigated. Additionally, thin film sensors were used to monitor heat transfer on the surface of the model to detect any localized heating resulting from the firing of the RCS jets. Tests were conducted with the model held at angles of attack of 18deg and 22deg. The nominal Mach number in all tests was 8, while Reynolds number based on model diameter ranged from 2.2x10(exp 6) - 1.5x10(exp 7). Images were processed using the Virtual Diagnostics Interface (ViDI) system developed at NASA Langley Research Center to provide a three-dimensional display of the experimental data.

  11. A microprocessor-based position control system for a telescope secondary mirror

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Barrows, W. F.; Clappier, R. R.; Lee, G. K.

    1983-01-01

    The pointing requirements for the Shuttle IR Telescope Facility (SIRTF), which consists of an 0.85-m cryogenically cooled IR telescope, call for an image stability of 0.25 arcsec. Attention is presently given to a microprocessor-based position control system developed for the control of the SIRTF secondary mirror, employing a special control law (to minimize energy dissipation), a precision capacitive position sensor, and a specially designed power amplifier/actuator combination. The microprocessor generates the command angular position and rate waveforms in order to maintain a 90 percent dwell time/10 percent transition time ratio independently of chop frequency or amplitude. Performance and test results of a prototype system designed for use with a demonstration model of the SIRTF focal plane fine guidance sensor are presented.

  12. Real-Time Implementation of Intelligent Actuator Control with a Transducer Health Monitoring Capability

    NASA Technical Reports Server (NTRS)

    Jethwa, Dipan; Selmic, Rastko R.; Figueroa, Fernando

    2008-01-01

    This paper presents a concept of feedback control for smart actuators that are compatible with smart sensors, communication protocols, and a hierarchical Integrated System Health Management (ISHM) architecture developed by NASA s Stennis Space Center. Smart sensors and actuators typically provide functionalities such as automatic configuration, system condition awareness and self-diagnosis. Spacecraft and rocket test facilities are in the early stages of adopting these concepts. The paper presents a concept combining the IEEE 1451-based ISHM architecture with a transducer health monitoring capability to enhance the control process. A control system testbed for intelligent actuator control, with on-board ISHM capabilities, has been developed and implemented. Overviews of the IEEE 1451 standard, the smart actuator architecture, and control based on this architecture are presented.

  13. KSC-2009-5035

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the top of the mated SV1 and SV2 remains covered. The spacecraft are being prepared for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  14. KSC-2009-5034

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft retain the covers on the top which are being removed before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  15. KSC-2009-5037

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., this closeup shows part of the mated SV1 and SV2 spacecraft, which is being prepared for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  16. 33 CFR 127.201 - Sensing and alarm systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vapor or gas may accumulate; and (2) Meet Section 9-4 of NFPA 59A. (c) Fixed sensors that continuously... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.201 Sensing and alarm...

  17. 33 CFR 127.1205 - Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...

  18. 33 CFR 127.1205 - Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...

  19. 33 CFR 127.201 - Sensing and alarm systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vapor or gas may accumulate; and (2) Meet Section 9-4 of NFPA 59A. (c) Fixed sensors that continuously... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.201 Sensing and alarm...

  20. Recoil polarization measurements

    NASA Astrophysics Data System (ADS)

    Brinkmann, Kai-Thomas

    2017-01-01

    Polarization observables in photon-induced meson production off nucleons have long been recognized to hold the promise of a detailed understanding of the excited states in the excitation spectrum of the nucleon. Photon beam and proton target polarization are routinely used at the ELSA facility in the Crystal Barrel/TAPS experiment and have yielded a wealth of data on contributing partial waves and nucleon resonances. A detector study on how to complement these ongoing studies by recoil polarization measurements that offer an orthogonal approach with otherwise unmeasurable observables in the field of non-strange meson photoproduction has been performed. Building on experience with silicon detectors operated in the photon beamline environment, first possible layouts of Si detector telescopes for recoil protons were developed. Various geometries, e.g. Archimedean spiral design of annular sensors, sector shapes and rectangular sensors were studied and have been used during test measurements. A prototype for the recoil polarimeter was built and subjected to performance tests in protonproton scattering at the COSY-accelerator in Jülich.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel Riza

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement datamore » using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.« less

  2. Active vibration absorber for CSI evolutionary model: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstration to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility was developed to study practical implementation of new control technologies under realistic conditions. The design is discussed of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. The primary performance objective considered is damping augmentation of the first nine structural modes. Comparison of experimental and predicted closed loop damping is presented, including test and simulation time histories for open and closed loop cases. Although the simulation and test results are not in full agreement, robustness of this design under model uncertainty is demonstrated. The basic advantage of this second order controller design is that the stability of the controller is model independent.

  3. Development of an Acoustic Sensor for On-Line Gas Temperature Measurement in Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Ariessohn; Hans Hornung

    2006-01-15

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2-Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. Since 1989 the U.S. Department of Energy has supported development of advanced coal gasification technology. The Wabash River and TECO IGCC demonstration projects supported by the DOE have demonstrated the ability of these plantsmore » to achieve high levels of energy efficiency and extremely low emissions of hazardous pollutants. However, a continuing challenge for this technology is the tradeoff between high carbon conversion which requires operation with high internal gas temperatures, and limited refractory life which is exacerbated by those high operating temperatures. Attempts to control internal gas temperature so as to operate these gasifiers at the optimum temperature have been hampered by the lack of a reliable technology for measuring internal gas temperatures. Thermocouples have serious survival problems and provide useful temperature information for only a few days or weeks after startup before burning out. For this reason, the Department of Energy has funded several research projects to develop more robust and reliable temperature measurement approaches for use in coal gasifiers. Enertechnix has developed a line of acoustic gas temperature sensors for use in coal-fired electric utility boilers, kraft recovery boilers, cement kilns and petrochemical process heaters. Acoustic pyrometry provides several significant advantages for gas temperature measurement in hostile process environments. First, it is non-intrusive so survival of the measurement components is not a serious problem. Second, it provides a line-of-sight average temperature rather than a point measurement, so the measured temperature is more representative of the process conditions than those provided by thermocouples. Unlike radiation pyrometers, the measured temperature is a linear average over the full path rather than a complicated function of gas temperature and the exponential Beer's law. For this reason, acoustic pyrometry is well suited to tomography allowing detailed temperature maps to be created through the use of multiple path measurements in a plane. Therefore, acoustic pyrometry is an attractive choice for measuring gas temperature inside a coal gasifier. The objective of this project is to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project is organized in three phases, each of approximately one year duration. The first phase consists of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that can be tested on an operating gasifier. The second phase consists of designing and fabricating a series of prototype sensors, testing them in the lab and at a gasifier facility, and developing a conceptual design for an engineering prototype sensor. The third phase consists of designing and fabricating the engineering prototype, testing it in the lab and in a commercial gasifier, and conducting extended field trials to demonstrate sensor performance and investigate the ability to improve gasifier performance through the use of the sensor.« less

  4. Development of a turbojet engine gearbox test rig for prognostics and health management

    NASA Astrophysics Data System (ADS)

    Rezaei, Aida; Dadouche, Azzedine

    2012-11-01

    Aircraft engine gearboxes represent one of the many critical systems/elements that require special attention for longer and safer operation. Reactive maintenance strategies are unsuitable as they usually imply higher repair costs when compared to condition based maintenance. This paper discusses the main prognostics and health management (PHM) approaches, describes a newly designed gearbox experimental facility and analyses preliminary data for gear prognosis. The test rig is designed to provide full capabilities of performing controlled experiments suitable for developing a reliable diagnostic and prognostic system. The rig is based on the accessory gearbox of the GE J85 turbojet engine, which has been slightly modified and reconfigured to replicate real operating conditions such as speeds and loads. Defect to failure tests (DTFT) have been run to evaluate the performance of the rig as well as to assess prognostic metrics extracted from sensors installed on the gearbox casing (vibration and acoustic). The paper also details the main components of the rig and describes the various challenges encountered. Successful DTFT results were obtained during an idle engine performance test and prognostic metrics associated with the sensor suite were evaluated and discussed.

  5. Return to Flight Resource Reel 1 of 2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A video presentation detailing the tests performed on the Space Shuttle Discovery in preparation for its return to flight is shown. The tests include: 1) Reinforced Carbon-Carbon (RCC) Impact Test Article; 2) RCC Foam Impact Testing; 3) Thermal Protection System (TPS) Ice Impact Testing featuring Justin Kerr, Project Engineer; 4) Wing Leading Edge Wireless Sensors featuring Karl Kiefer, President and CEO of Invocon, and Kevin Champaigne of Invocon; 5) TPS Repair Testing KC-135 Zero-G Environment featuring Soichi Noguchi, Mission Specialist; 6) TPS Extravehicular Activity Tool Demonstration; 7) TPS Repair Testing Vacuum Glove box; 8) TPS Repair Testing Human Thermal Vacuum Chamber; 9) TPS Reentry Testing Atmospheric Reentry Materials and Structures Evaluation Facility; 10) TPS Alternative Repair Concept; 11) Lora Bailey Lead Engineer for EVA Tools; 12) Reinforced Carbon-Carbon ATK Thiokol Plug Repair Animation; 13) 3-Percent Model Build-Up; and 14) Wind Tunnel Testing RCC Aging Research Ballistic Testing.

  6. DEMONSTRATION AND TESTING OF AN EER OPTIMIZER SYSTEM FOR DX AIR-CONDITIONERS

    DTIC Science & Technology

    2017-10-07

    Performance-Based Maintenance PCS Power Current Sensor PLC Programmable Logic Controller ppm Parts Per Million PSIG Pounds per Square Inch Gauge PVS Power...all utilities and facilities at Patrick AFB, Cape Canaveral AFS, Jonathan Dickinson Military Tracking Annex, Malabar Annex, Ramey Solar Observatory...Cost 8,057 0 Annual O&M Cost 453 1191 Annual FD&D Monitoring 880 ‐ BLCC LIFE CYCLE RESULTS Energy Savings $12,317 O&M Net Savings $493 PV  Life Cycle

  7. Vector magnetometer design study: Analysis of a triaxial fluxgate sensor design demonstrates that all MAGSAT Vector Magnetometer specifications can be met

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Hartmann, U. G.; Lazarow, L. L.; Maloy, J. O.; Mohler, G. W.

    1976-01-01

    The design of the vector magnetometer selected for analysis is capable of exceeding the required accuracy of 5 gamma per vector field component. The principal elements that assure this performance level are very low power dissipation triaxial feedback coils surrounding ring core flux-gates and temperature control of the critical components of two-loop feedback electronics. An analysis of the calibration problem points to the need for improved test facilities.

  8. A Generalized Machine Fault Detection Method Using Unified Change Detection

    DTIC Science & Technology

    2014-10-02

    SOCIETY 2014 11 of the extension shaft. It can be induced by a lack of tightening torque of the end-nut and consequently causes a load...Test Facility (HTTF). The objective of the study was to provide HUMS systems with the capability to detect the loss of tightening torque of the end...from pinion SSA (at Ring-Front sensor & cruise power) change signal with cross-over at 75th shaft order Ten end-nut tightening torques were used in

  9. Status and Construction of the Belle II DEPFET pixel system

    NASA Astrophysics Data System (ADS)

    Lütticke, Florian

    2014-06-01

    DEpleted P-channel Field Effect Transistor (DEPFET) active pixel detectors combine detection with a first amplification stage in a fully depleted detector, resulting in an superb signal-to-noise ratio even for thin sensors. Two layers of thin (75 micron) silicon DEPFET pixels will be used as the innermost vertex system, very close to the beam pipe in the Belle II detector at the SuperKEKB facility. The status of the 8 million DEPFET pixels detector, latest developments and current system tests will be discussed.

  10. Community Seismic Network

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.; Kohler, M. D.; Massari, A.; Heaton, T. H.; Guy, R.; Chandy, M.; Bunn, J.; Strand, L.

    2014-12-01

    The CSN is now in its 3rdyear of operation and has expanded to 400 stations in the Los Angeles region. The goal of the network is to produce a map of strong shaking immediately following a major earthquake as a proxy for damage and a guide for first responders. We have also instrumented a number of buildings with the goal of determining the state of health of these structures before and after they have been shaken. In one 15-story structure, our sensors distributed two per floor, and show body waves propagating in the structure after a moderate local earthquake (M4.4 in Encino, CA). Sensors in a 52-story structure, which we plan to instrument with two sensors per floor as well, show the modes of the building (see Figure) down to the fundamental mode at 5 sec due to a M5.1 earthquake in La Habra, CA. The CSN utilizes a number of technologies that will likely be important in building robust low-cost networks. These include: Distributed computing - the sensors themselves are smart-sensors that perform the basic detection and size estimation in the onboard computers and send the results immediately (without packetization latency) to the central facility. Cloud computing - the central facility is housed in the cloud, which means it is more robust than a local site, and has expandable computing resources available so that it can operate with minimal resources during quiet times but still be able to exploit an very large computing facility during an earthquake. Low-cost/low-maintenance sensors - the MEM sensors are capable of staying onscale to +/- 2g, and can measure events in the Los Angeles Basin a low as magnitude 3.

  11. SVM-based multimodal classification of activities of daily living in Health Smart Homes: sensors, algorithms, and first experimental results.

    PubMed

    Fleury, Anthony; Vacher, Michel; Noury, Norbert

    2010-03-01

    By 2050, about one third of the French population will be over 65. Our laboratory's current research focuses on the monitoring of elderly people at home, to detect a loss of autonomy as early as possible. Our aim is to quantify criteria such as the international activities of daily living (ADL) or the French Autonomie Gerontologie Groupes Iso-Ressources (AGGIR) scales, by automatically classifying the different ADL performed by the subject during the day. A Health Smart Home is used for this. Our Health Smart Home includes, in a real flat, infrared presence sensors (location), door contacts (to control the use of some facilities), temperature and hygrometry sensor in the bathroom, and microphones (sound classification and speech recognition). A wearable kinematic sensor also informs postural transitions (using pattern recognition) and walk periods (frequency analysis). This data collected from the various sensors are then used to classify each temporal frame into one of the ADL that was previously acquired (seven activities: hygiene, toilet use, eating, resting, sleeping, communication, and dressing/undressing). This is done using support vector machines. We performed a 1-h experimentation with 13 young and healthy subjects to determine the models of the different activities, and then we tested the classification algorithm (cross validation) with real data.

  12. Automated Health Alerts Using In-Home Sensor Data for Embedded Health Assessment

    PubMed Central

    Guevara, Rainer Dane; Rantz, Marilyn

    2015-01-01

    We present an example of unobtrusive, continuous monitoring in the home for the purpose of assessing early health changes. Sensors embedded in the environment capture behavior and activity patterns. Changes in patterns are detected as potential signs of changing health. We first present results of a preliminary study investigating 22 features extracted from in-home sensor data. A 1-D alert algorithm was then implemented to generate health alerts to clinicians in a senior housing facility. Clinicians analyze each alert and provide a rating on the clinical relevance. These ratings are then used as ground truth for training and testing classifiers. Here, we present the methodology for four classification approaches that fuse multisensor data. Results are shown using embedded sensor data and health alert ratings collected on 21 seniors over nine months. The best results show similar performance for two techniques, where one approach uses only domain knowledge and the second uses supervised learning for training. Finally, we propose a health change detection model based on these results and clinical expertise. The system of in-home sensors and algorithms for automated health alerts provides a method for detecting health problems very early so that early treatment is possible. This method of passive in-home sensing alleviates compliance issues. PMID:27170900

  13. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean roommore » facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.« less

  14. Tire footprint studies

    NASA Technical Reports Server (NTRS)

    Chawla, Mangal; Medzorian, John

    1995-01-01

    This presentation covers the results of tire footprint studies conducted in the Landing Gear Development Facility of the USAF Wright Laboratory at the Wright Patterson Air force Base, OH. Tire footprint studies are essential in understanding tire wear mechanisms and computing tire tread wear rates. The power input into the tread is the driving force for tread wear. Variables needed for power input calculations include the footprint pressure and slip velocity distributions. Studies were performed on the effects of power input distributions due to vertical load, camber, yaw, inflation pressure, and tire construction. For the present study, two tire constructions, one radial and the other bias, were selected. These tires were for the F-16 Block 30 fighter aircraft, both of which were previously worn. The present study was limited to steady straight roll with a 14,000 lb vertical load, a 310 psi inflation pressure, and zero yaw and camber. All tests were conducted on the Tire Force Machine (TFM) with a specialized sensor plate with embedded pressure sensors (X, Y, and Z) and slip sensors (X and Y). All tests were conducted for a table speed of 1 in/s. Tests on the TFM show that the power intensity distributions and total power for both tire constructions are quite similar for straight roll. Later on, tests were also conducted on a modified dynamometer which was overlaid with a grit wear surface. The tire speed was maintained at 40 miles per hour and yaw was set to four degrees. Dynamometer tests showed that radial tires have more tread wear than the bias tire; however, in the field, radial tires have longer life.

  15. Evaluation of Application Space Expansion for the Sensor Fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRolph, Christopher R.; Bevelhimer, Mark S.

    The Pacific Northwest National Laboratory has developed an instrument known as the sensor fish that can be released into downstream passage routes at hydropower facilities to collect data on the physical conditions that a fish might be exposed to during passage through a turbine. The US Department of Energy Wind and Water Power Program sees value in expanding the sensor fish application space beyond large Kaplan turbines in the northwest United States to evaluate conditions to which a greater variety of fish species are exposed. Development of fish-friendly turbines requires an understanding of both physical passage conditions and biological responsesmore » to those conditions. Expanding the use of sensor fish into other application spaces will add to the knowledge base of physical passage conditions and could also enhance the use of sensor fish as a site-specific tool in mitigating potential impacts to fish populations from hydropower. The Oak Ridge National Laboratory (ORNL) National Hydropower Assessment Program (NHAAP) database contains hydropower facility characteristics that, along with national fish distribution data, were used to evaluate potential interactions between fish species and project characteristics related to downstream passage issues. ORNL developed rankings for the turbine types in the NHAAP database in terms of their potential to impact fish through injury or mortality during downstream turbine passage. National-scale fish distributions for 31 key migratory species were spatially intersected with hydropower plant locations to identify facilities where turbines with a high threat to fish injury or mortality overlap with the potential range of a sensitive fish species. A dataset was produced that identifies hydropower facilities where deployment of the sensor fish technology might be beneficial in addressing issues related to downstream fish passage. The dataset can be queried to target specific geographic regions, fish species, license expiration dates, generation capacity levels, ownership characteristics, turbine characteristics, or any combination of these metrics.« less

  16. Virtual sensors for robust on-line monitoring (OLM) and Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipireddy, Ramakrishna; Lerchen, Megan E.; Ramuhalli, Pradeep

    Unscheduled shutdown of nuclear power facilities for recalibration and replacement of faulty sensors can be expensive and disruptive to grid management. In this work, we present virtual (software) sensors that can replace a faulty physical sensor for a short duration thus allowing recalibration to be safely deferred to a later time. The virtual sensor model uses a Gaussian process model to process input data from redundant and other nearby sensors. Predicted data includes uncertainty bounds including spatial association uncertainty and measurement noise and error. Using data from an instrumented cooling water flow loop testbed, the virtual sensor model has predictedmore » correct sensor measurements and the associated error corresponding to a faulty sensor.« less

  17. Progress toward a cosmic dust collection facility on space station

    NASA Technical Reports Server (NTRS)

    Mackinnon, Ian D. R. (Editor); Carey, William C. (Editor)

    1987-01-01

    Scientific and programmatic progress toward the development of a cosmic dust collection facility (CDCF) for the proposed space station is documented. Topics addressed include: trajectory sensor concepts; trajectory accuracy and orbital evolution; CDCF pointing direction; development of capture devices; analytical techniques; programmatic progress; flight opportunities; and facility development.

  18. 33 CFR 154.812 - Facility requirements for vessel liquid overfill protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... intrinsically safe cargo tank level sensor system complying with 46 CFR 39.20-9(b) as its only means of overfill... shutdown signal from the cargo tank level sensor system that: (1) Closes the remotely operated cargo vapor...) Electrical continuity of the cargo tank level sensor system is lost; (2) Activates an alarm which is audible...

  19. 33 CFR 154.812 - Facility requirements for vessel liquid overfill protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... intrinsically safe cargo tank level sensor system complying with 46 CFR 39.20-9(b) as its only means of overfill... shutdown signal from the cargo tank level sensor system that: (1) Closes the remotely operated cargo vapor...) Electrical continuity of the cargo tank level sensor system is lost; (2) Activates an alarm which is audible...

  20. 33 CFR 154.812 - Facility requirements for vessel liquid overfill protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... intrinsically safe cargo tank level sensor system complying with 46 CFR 39.20-9(b) as its only means of overfill... shutdown signal from the cargo tank level sensor system that: (1) Closes the remotely operated cargo vapor...) Electrical continuity of the cargo tank level sensor system is lost; (2) Activates an alarm which is audible...

  1. Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of Cystic Fibrosis.

    PubMed

    Kim, Jimin P; Xie, Zhiwei; Creer, Michael; Liu, Zhiwen; Yang, Jian

    2017-01-01

    Chloride is an essential electrolyte that maintains homeostasis within the body, where abnormal chloride levels in biological fluids may indicate various diseases such as Cystic Fibrosis. However, current analytical solutions for chloride detection fail to meet the clinical needs of both high performance and low material or labor costs, hindering translation into clinical settings. Here we present a new class of fluorescence chloride sensors derived from a facile citrate -based synthesis platform that utilize dynamic quenching mechanisms. Based on this low-cost platform, we demonstrate for the first time a selective sensing strategy that uses a single fluorophore to detect multiple halides simultaneously, promising both selectivity and automation to improve performance and reduce labor costs. We also demonstrate the clinical utility of citrate-based sensors as a new sweat chloride test method for the diagnosis of Cystic Fibrosis by performing analytical validation with sweat controls and clinical validation with sweat from individuals with or without Cystic Fibrosis. Lastly, molecular modeling studies reveal the structural mechanism behind chloride sensing, serving to expand this class of fluorescence sensors with improved chloride sensitivities. Thus citrate-based fluorescent materials may enable low-cost, automated multi-analysis systems for simpler, yet accurate, point-of-care diagnostics that can be readily translated into clinical settings. More broadly, a wide range of medical, industrial, and environmental applications can be achieved with such a facile synthesis platform, demonstrated in our citrate-based biodegradable polymers with intrinsic fluorescence sensing.

  2. Influence of the magnetic field profile on ITER conductor testing

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.; Ilyin, Y.; ten Kate, H. H. J.

    2006-08-01

    We performed simulations with the numerical CUDI-CICC code on a typical short ITER (International Thermonuclear Experimental Reactor) conductor test sample of dual leg configuration, as usually tested in the SULTAN test facility, and made a comparison with the new EFDA-Dipole test facility offering a larger applied DC field region. The new EFDA-Dipole test facility, designed for short sample testing of conductors for ITER, has a homogeneous high field region of 1.2 m, while in the SULTAN facility this region is three times shorter. The inevitable non-uniformity of the current distribution in the cable, introduced by the joints at both ends, has a degrading effect on voltage-current (VI) and voltage-temperature (VT) characteristics, particularly for these short samples. This can easily result in an underestimation or overestimation of the actual conductor performance. A longer applied DC high field region along a conductor suppresses the current non-uniformity by increasing the overall longitudinal cable electric field when reaching the current sharing mode. The numerical interpretation study presented here gives a quantitative analysis for a relevant practical case of a test of a short sample poloidal field coil insert (PFCI) conductor in SULTAN. The simulation includes the results of current distribution analysis from self-field measurements with Hall sensor arrays, current sharing measurements and inter-petal resistance measurements. The outcome of the simulations confirms that the current uniformity improves with a longer high field region but the 'measured' VI transition is barely affected, though the local peak voltages become somewhat suppressed. It appears that the location of the high field region and voltage taps has practically no influence on the VI curve as long as the transverse voltage components are adequately cancelled. In particular, for a thin conduit wall, the voltage taps should be connected to the conduit in the form of an (open) azimuthally soldered wire, averaging the transverse conduit surface potentials initiated in the joints.

  3. Acoustic sensors for fission gas characterization: R and D skills devoted to innovative instrumentation in MTR, non-destructive devices in hot lab facilities and specific transducers for measurements of LWR rods in nuclear plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrandis, J.Y.; Leveque, G.; Rosenkrantz, E.

    2015-07-01

    First of all, we will present the main principle of the method. A piezoelectric transducer, driven by a pulse generator, generates the acoustic waves in a cavity that may be the fuel rod or a chamber connected to an instrumented rod. The composition determination consists in measuring the time of flight of the acoustic signal emitted. The pressure can be estimated by a calibration process, above the measurement of the amplitude of the signal. Two projects will then be detailed. The first project consists in the development of advanced instrumentation for in-pile experiments in Material Testing Reactor. It constitutes amore » main goal for the improvement of the nuclear fuel behavior knowledge. This acoustic method was tested with success during a first experiment called REMORA 3, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). As a first step of the development program, we performed in-pile tests on the most sensitive component, i.e., the piezoelectric transducer. For this purpose, the active part of this sensor has been qualified on gamma and neutron radiations and at high temperature. Various industrial piezo-ceramics were exposed to a high activity Cobalt source for few days. The cumulated dose was ranged from 50 kGy up to 2 MGy. Next, these devices were placed inside a Material Test Reactor to investigate their reliability towards neutron fluence. The final fluence after 150 days of irradiation was up to 1.6.10{sup 21}n/cm{sup 2} (for thermal neutron). Irreversible variations have been measured. Next, a specific sensor has been implemented on an instrumented fuel rod and tested in the frame of a REMORA 3 Irradiation test. It was the first experiment under high mixed, temperature neutron and gamma flux. A first irradiation phase took place in March 2010 in the OSIRIS reactor and in November 2010 for the second step of the irradiation. The instrumented fuel rod incorporating the ultrasonic gas composition sensor was finally irradiated during 2 weeks in nominal conditions. Neutronics calculation will be performed in order to calculate the thermal and fast neutron fluence and the gamma dose absorbed by acoustic sensor. A first evaluation gives a thermal fluence about 4,5.10{sup 19} n/cm{sup 2}, a fast neutrons fluence about 4,5.1018 n/cm{sup 2} and a total gamma dose up to 0,25 MGy The maximal temperature during the irradiation test was about 150 C. Although the ultrasonic sensor appears to be damaged, the optimization of the electrical attack parameters and the development of a new signal processing maintain the measurement feasibility up the end of the irradiation campaign. It was the first time that the composition of fission gas has been monitored all along an irradiation experiment in a MTR, giving access to the gas release kinetics. New researches involve thick film transducers produced by screen-printing process in order to propose piezoelectric structures for harsh temperature and irradiation measurements. The second project consists in the development of a non-destructive device that can be directly applied on a LWR fuel rod. The problem to be solved relates to the measurement of the fission gas pressure and composition in a fuel rod using a non-destructive method. Fuel rod internal pressure is one of the safety criteria applied in nuclear power analyses. This criterion must be verified in order to avoid any fuel-cladding gap reopening risk and therefore any local clad ballooning. Apart from the safety implications, this parameter is also a fuel behaviour indicator and reflects the overall fuel performance in operation, but also during shipping and long-term storage. Rod internal pressure is one criterion amongst others, like cladding corrosion, against which the acceptable fuel burn-up limit is set. A sensor has been achieved in 2007. A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was conducted successfully between 2008 and 2010 on 5 high burn-up MOX fuel rods and 2 very high burn-up UO{sub 2} fuel rods in LECA Facility at Cadarache Centre. An improvement of this sensor has been proposed, allowing us to divide by two the uncertainty on the pressure measurement. In the case of hot-cell measurements, viscous liquid can be used to couple the sensor with the rod. For gas content with a pressure exceeding 15 bars and a 10% Xe/Kr ratio, such coupling may reduce relative acoustic method accuracy by ±7% for pressure measurement result and ±0.25 % for the assessment of gas composition. These results make it possible to demonstrate the feasibility of the technique on LWR fuel rods. The transducer and the associated methodology are now operational for non-destructive measurements in hot lab facilities and allow characterising the fission gas without puncturing the fuel rods. Up to now, any other non-destructive method can be proposed. A next step will be the development of an industrial application in a fuel storage pool in order to perform a large number of measurements on a fuel assembly in nuclear plants.« less

  4. Model validation using CFD-grade experimental database for NGNP Reactor Cavity Cooling Systems with water and air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manera, Annalisa; Corradini, Michael; Petrov, Victor

    This project has been focused on the experimental and numerical investigations of the water-cooled and air-cooled Reactor Cavity Cooling System (RCCS) designs. At this aim, we have leveraged an existing experimental facility at the University of Wisconsin-Madison (UW), and we have designed and built a separate effect test facility at the University of Michigan. The experimental facility at UW has underwent several upgrades, including the installation of advanced instrumentation (i.e. wire-mesh sensors) built at the University of Michigan. These provides highresolution time-resolved measurements of the void-fraction distribution in the risers of the water-cooled RCCS facility. A phenomenological model has beenmore » developed to assess the water cooled RCCS system stability and determine the root cause behind the oscillatory behavior that occurs under normal two-phase operation. Testing under various perturbations to the water-cooled RCCS facility have resulted in changes in the stability of the integral system. In particular, the effects on stability of inlet orifices, water tank volume have and system pressure been investigated. MELCOR was used as a predictive tool when performing inlet orificing tests and was able to capture the Density Wave Oscillations (DWOs) that occurred upon reaching saturation in the risers. The experimental and numerical results have then been used to provide RCCS design recommendations. The experimental facility built at the University of Michigan was aimed at the investigation of mixing in the upper plenum of the air-cooled RCCS design. The facility has been equipped with state-of-theart high-resolution instrumentation to achieve so-called CFD grade experiments, that can be used for the validation of Computational Fluid Dynanmics (CFD) models, both RANS (Reynold-Averaged) and LES (Large Eddy Simulations). The effect of risers penetration in the upper plenum has been investigated as well.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hanchung; Liu, Yung Y.; Shuler, James

    The ability to monitor critical environment parameters of nuclear plants at all times, particularly during and after a disruptive accident, is vital for the safety of plant personnel, rescue and recovery crews, and the surrounding communities. Conventional hard-wired assets that depend on supplied power may be decimated as a result of such events, as witnessed in the Japanese Fukushima nuclear power plant in March 2011. Self-powered monitoring devices operating on a wireless platform, on the other hand, may survive such calamity and remain functional. The devices would be pre-positioned at strategic locations, particularly where the dangerous build-up of contamination andmore » radiation may preclude subsequent manned entrance and surveillance. Equipped with sensors for β-γ radiation, neutrons, hydrogen gas, temperature, humidity, pressure, and water level, as well as with criticality alarms and imaging equipment for heat, video, and other capabilities, these devices can provide vital surveillance information for assessing the extent of plant damage, mandating responses (e.g., evacuation before impending hydrogen explosion), and enabling overall safe and efficient recovery in a disaster. A radio frequency identification (RFID)-based system - called ARG-US - may be modified and adapted for this task. Developed by Argonne for DOE, ARG-US (meaning 'watchful guardian') has been used successfully to monitor and track sensitive nuclear materials packages at DOE sites. It utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users when any of the preset sensor thresholds is violated. By adding plant-specific monitoring sensors to the already strong sensor suite and adopting modular hardware, firmware, and software subsystems that are tailored for specific subsystems of a plant, a Remote Area Modular Monitoring (RAMM) system, built on a wireless sensor network (WSN) platform, is being developed by Argonne National Laboratory. ARG-US RAMM, powered by on-board battery, can sustain extended autonomous surveillance operation during and following an incident. The benefits could be invaluable to such critical facilities as nuclear power plants, research and test reactors, fuel cycle manufacturing centers, spent-fuel dry-cask storage facilities, and other nuclear installations. (authors)« less

  6. KSC-2009-1088

    NASA Image and Video Library

    2009-01-09

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ICS Exposed Facility, or ICS-EF, is moved across the floor to the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES, where it will be installed alongside two other payloads, the SEDA-AP (Space Environment Data Acquisition Equipment-Attached Payload) and MAXI (Monitor of All-sky X-ray Image), already installed. The ICS-EF is composed of several components, including an antenna, pointing mechanism, frequency converters, high-power amplifier and various sensors including the Earth sensor, Sun sensor and inertial reference unit. The ICS-EF is part of space shuttle Endeavour's payload on the STS-127 mission, targeted for launch on May 15. Photo credit: NASA/Jim Grossmann

  7. KSC-2009-1089

    NASA Image and Video Library

    2009-01-09

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lowers the ICS Exposed Facility, or ICS-EF, onto the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES, where it will be installed alongside two other payloads, the SEDA-AP (Space Environment Data Acquisition Equipment-Attached Payload) and MAXI (Monitor of All-sky X-ray Image). The ICS-EF is composed of several components, including an antenna, pointing mechanism, frequency converters, high-power amplifier and various sensors including the Earth sensor, Sun sensor and inertial reference unit. The ICS-EF is part of space shuttle Endeavour's payload on the STS-127 mission, targeted for launch on May 15. Photo credit: NASA/Jim Grossmann

  8. Porous Si nanowires for highly selective room-temperature NO2 gas sensing

    NASA Astrophysics Data System (ADS)

    Kwon, Yong Jung; Mirzaei, Ali; Gil Na, Han; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Oum, Wansik; Kim, Sang Sub; Kim, Hyoun Woo

    2018-07-01

    We report the room-temperature sensing characteristics of Si nanowires (NWs) fabricated from p-Si wafers by a metal-assisted chemical etching method, which is a facile and low-cost method. X-ray diffraction was used to the the study crystallinity and phase formation of Si NWs, and product morphology was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After confirmation of Si NW formation via the SEM and TEM micrographs, sensing tests were carried out at room temperature, and it was found that the Si NW sensor prepared from Si wafers with a resistivity of 0.001–0.003 Ω.cm had the highest response to NO2 gas (Rg/Ra = 1.86 for 50 ppm NO2), with a fast response (15 s) and recovery (30 s) time. Furthermore, the sensor responses to SO2, toluene, benzene, H2, and ethanol were nearly negligible, demonstrating the excellent selectivity to NO2 gas. The gas-sensing mechanism is discussed in detail. The present sensor can operate at room temperature, and is compatible with the microelectronic fabrication process, demonstrating its promise for next-generation Si-based electronics fused with functional chemical sensors.

  9. Electrical characterization of FBK small-pitch 3D sensors after γ-ray, neutron and proton irradiations

    NASA Astrophysics Data System (ADS)

    Dalla Betta, G.-F.; Boscardin, M.; Hoeferkamp, M.; Mendicino, R.; Seidel, S.; Sultan, D. M. S.

    2017-11-01

    In view of applications in the tracking detectors at the High Luminosity LHC (HL-LHC), we have developed a new generation of 3D pixel sensors featuring small-pitch (50 × 50 or 25 × 100 μ m2) and thin active layer (~ 100 μ m). Owing to the very short inter-electrode distance (~ 30 μ m), charge trapping effects can be strongly mitigated, making these sensors extremely radiation hard. However, the downscaled sensor structure also lends itself to high electric fields as the bias voltage is increased, motivating investigation of leakage current increase in order to prevent premature electrical breakdown due to impact ionization. In order to assess the characteristics of heavily irradiated samples, using 3D diodes as test devices, we have carried out a dedicated campaign that included several irradiations (γ -rays, neutrons, and protons) at different facilities. In this paper, we report on the electrical characterization of a subset of the irradiated samples, also in comparison to their pre-irradiation properties. Results demonstrate that hadron irradiated devices can be safely operated at a voltage high enough to allow for full depletion (hence high efficiency) also at the maximum fluence foreseen at the HL-LHC.

  10. Porous Si nanowires for highly selective room-temperature NO2 gas sensing.

    PubMed

    Kwon, Yong Jung; Mirzaei, Ali; Na, Han Gil; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Oum, Wansik; Kim, Sang Sub; Kim, Hyoun Woo

    2018-07-20

    We report the room-temperature sensing characteristics of Si nanowires (NWs) fabricated from p-Si wafers by a metal-assisted chemical etching method, which is a facile and low-cost method. X-ray diffraction was used to the the study crystallinity and phase formation of Si NWs, and product morphology was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After confirmation of Si NW formation via the SEM and TEM micrographs, sensing tests were carried out at room temperature, and it was found that the Si NW sensor prepared from Si wafers with a resistivity of 0.001-0.003 Ω.cm had the highest response to NO 2 gas (R g /R a  = 1.86 for 50 ppm NO 2 ), with a fast response (15 s) and recovery (30 s) time. Furthermore, the sensor responses to SO 2 , toluene, benzene, H 2 , and ethanol were nearly negligible, demonstrating the excellent selectivity to NO 2 gas. The gas-sensing mechanism is discussed in detail. The present sensor can operate at room temperature, and is compatible with the microelectronic fabrication process, demonstrating its promise for next-generation Si-based electronics fused with functional chemical sensors.

  11. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation.

    PubMed

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-03-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.

  12. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    PubMed Central

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-01-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures. PMID:29494545

  13. Expanding Hardware-in-the-Loop Formation Navigation and Control with Radio Frequency Crosslink Ranging

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Barbee, Brent W.; Baldwin, Philip J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility continues to evolve as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation, and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, are reviewed with a focus on recent improvements. With the most recent improvement, in support of Technology Readiness Level (TRL) 6 testing of the Inter-spacecraft Ranging and Alarm System (IRAS) for the Magnetospheric Multiscale (MMS) mission, the FFTB has significantly expanded its ability to perform realistic simulations that require Radio Frequency (RF) ranging sensors for relative navigation with the Path Emulator for RF Signals (PERFS). The PERFS, currently under development at NASA GSFC, modulates RF signals exchanged between spacecraft. The RF signals are modified to accurately reflect the dynamic environment through which they travel, including the effects of medium, moving platforms, and radiated power.

  14. Irradiation Testing of Ultrasonic Transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphologymore » changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.« less

  15. Plum Brook Reactor Facility Control Room during Facility Startup

    NASA Image and Video Library

    1961-02-21

    Operators test the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility systems in the months leading up to its actual operation. The “Reactor On” signs are illuminated but the reactor core was not yet ready for chain reactions. Just a couple weeks after this photograph, Plum Brook Station held a media open house to unveil the 60-megawatt test reactor near Sandusky, Ohio. More than 60 members of the print media and radio and television news services met at the site to talk with community leaders and representatives from NASA and Atomic Energy Commission. The Plum Brook reactor went critical for the first time on the evening of June 14, 1961. It was not until April 1963 that the reactor reached its full potential of 60 megawatts. The reactor control room, located on the second floor of the facility, was run by licensed operators. The operators manually operated the shim rods which adjusted the chain reaction in the reactor core. The regulating rods could partially or completely shut down the reactor. The control room also housed remote area monitoring panels and other monitoring equipment that allowed operators to monitor radiation sensors located throughout the facility and to scram the reactor instantly if necessary. The color of the indicator lights corresponded with the elevation of the detectors in the various buildings. The reactor could also shut itself down automatically if the monitors detected any sudden irregularities.

  16. Unattended wireless proximity sensor networks for counterterrorism, force protection, littoral environments, PHM, and tamper monitoring ground applications

    NASA Astrophysics Data System (ADS)

    Forcier, Bob

    2003-09-01

    This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.

  17. Analysis of a commercial small unmanned airborne system (sUAS) in support of the Radiometric Calibration Test Site (RadCaTS) at Railroad Valley

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, Jeffrey S.; Anderson, Nikolaus J.

    2017-09-01

    The Radiometric Calibration Test Site (RadCaTS) is an automated facility developed by the Remote Sensing Group (RSG) at the University of Arizona to provide radiometric calibration data for airborne and satellite sensors. RadCaTS uses stationary ground-viewing radiometers (GVRs) to spatially sample the surface reflectance of the site. The number and location of the GVRs is based on previous spatial, spectral, and temporal analyses of Railroad Valley. With the increase in high-resolution satellite sensors, there is renewed interest in examining the spatial uniformity the 1-km2 RadCaTS area at scales smaller than a typical 30-m sensor. RadCaTS is one of the four instrumented sites currently in the CEOS WGCV Radiometric Calibration Network (RadCalNet), which aims to harmonize the post-launch radiometric calibration of satellite sensors through the use of a global network of automated calibration sites. A better understanding of the RadCaTS spatial uniformity as a function of pixel size will also benefit the RadCalNet work. RSG has recently acquired a commercially-available small unmanned airborne system (sUAS) system, with which preliminary spatial homogeneity measurements of the 1-km2 RadCaTS area were made. This work describes an initial assessment of the airborne platform and integrated camera for spatial studies of RadCaTS using data that were collected in 2016 and 2017.

  18. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight. The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe systems. Research in the area of advanced piezoelectrics includes optimizing the efficiency, force output, use temperature, and energy transfer between the structure and device for both ceramic and polymeric materials. For structural health monitoring, advanced non-destructive techniques including fiber optics are being developed for detection of delaminations, cracks and environmental deterioration in aircraft structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe system. Innovative fabrication techniques processing structural composites with sensor and actuator integration are being developed.

  19. Mass flow meter using the triboelectric effect for measurement in cryogenics

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Henry; Cunningham, Jock; Wolff, Steve

    1987-01-01

    The use of triboelectric charge to measure the mass flow rate of cryogens for the Space Shuttle Main Engine was investigated. Cross correlation of the triboelectric charge signals was used to determine the transit time of the cryogen between two sensor locations in a .75-in tube. The ring electrode sensors were mounted in a removable spool piece. Three spool pieces were constructed for delivery, each with a different design. One set of electronics for implementation of the cross correlation and flow calculation was constructed for delivery. Tests were made using a laboratory flow loop using liquid freon and transformer oil. The measured flow precision was 1 percent and the response was linear. The natural frequency distribution of the triboelectric signal was approximately 1/f. The sensor electrodes should have an axial length less than approximately one/tenth pipe diameter. The electrode spacing should be less than approximately one pipe diameter. Tests using liquid nitrogen demonstrated poor tribo-signal to noise ratio. Most of the noise was microphonic and common to both electrode systems. The common noise rejection facility of the correlator was successful in compensating for this noise but the signal was too small to enable reliable demonstration of the technique in liquid nitrogen.

  20. Satellite angular velocity estimation based on star images and optical flow techniques.

    PubMed

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-09-25

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  1. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    PubMed Central

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-01-01

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023

  2. Skin inspired fractal strain sensors using a copper nanowire and graphite microflake hybrid conductive network.

    PubMed

    Jason, Naveen N; Wang, Stephen J; Bhanushali, Sushrut; Cheng, Wenlong

    2016-09-22

    This work demonstrates a facile "paint-on" approach to fabricate highly stretchable and highly sensitive strain sensors by combining one-dimensional copper nanowire networks with two-dimensional graphite microflakes. This paint-on approach allows for the fabrication of electronic skin (e-skin) patches which can directly replicate with high fidelity the human skin surface they are on, regardless of the topological complexity. This leads to high accuracy for detecting biometric signals for applications in personalised wearable sensors. The copper nanowires contribute to high stretchability and the graphite flakes offer high sensitivity, and their hybrid coating offers the advantages of both. To understand the topological effects on the sensing performance, we utilized fractal shaped elastomeric substrates and systematically compared their stretchability and sensitivity. We could achieve a high stretchability of up to 600% and a maximum gauge factor of 3000. Our simple yet efficient paint-on approach enabled facile fine-tuning of sensitivity/stretchability simply by adjusting ratios of 1D vs. 2D materials in the hybrid coating, and the topological structural designs. This capability leads to a wide range of biomedical sensors demonstrated here, including pulse sensors, prosthetic hands, and a wireless ankle motion sensor.

  3. Real-time weigh-in-motion measurement using fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Palek, Leonard; Strommen, Robert; Worel, Ben; Chen, Genda

    2014-03-01

    Overloading truck loads have long been one of the key reasons for accelerating road damage, especially in rural regions where the design loads are expected to be small and in the cold regions where the wet-and-dry cycle places a significant role. To control the designed traffic loads and further guide the road design in future, periodical weight stations have been implemented for double check of the truck loads. The weight stations give chances for missing measurement of overloaded vehicles, slow down the traffic, and require additional labors. Infrastructure weight-in-motion sensors, on the other hand, keep consistent traffic flow and monitor all types of vehicles on roads. However, traditional electrical weight-in-motion sensors showed high electromagnetic interference (EMI), high dependence on environmental conditions such as moisture, and relatively short life cycle, which are unreliable for long-term weigh-inmotion measurements. Fiber Bragg grating (FBG) sensors, with unique advantages of compactness, immune to EMI and moisture, capability of quasi-distributed sensing, and long life cycle, will be a perfect candidate for long-term weigh-in-motion measurements. However, the FBG sensors also surfer from their frangible nature of glass materials for a good survive rate during sensor installation. In this study, the FBG based weight-in-motion sensors were packaged by fiber reinforced polymer (FRP) materials and further validated at MnROAD facility, Minnesota DOT (MnDOT). The design and layout of the FRP-FBG weight-in-motion sensors, their field test setup, data acquisition, and data analysis will be presented. Upon validation, the FRP-FBG sensors can be applied weigh-in-motion measurement to assistant road managements.

  4. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  5. Characterization of a Prototype Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  6. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  7. The Dartmouth Elephant plasma facility

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.

    2017-12-01

    The Elephant facility in the Dartmouth Dept of Physics and Astronomyis a 1m by 2m chamber with a microwave-resonant plasma source togetherwith a higher energy electron/ion electrostatic gun. In this chamber weaim to re-create features of the auroral ionosphere including both thethermal plasma background, and the precipitating energetic auroral beam.We can manipulate the position and attitude of various sensors withinthe chamber and monitor their response to the various sources. Recentefforts have focussed on the sheath environment near and around thermalion RPA sensors and the small payloads which carry them into theionosphere.

  8. Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) calibration of the Upper Atmosphere Research Satellite (UARS) sensors

    NASA Technical Reports Server (NTRS)

    Hashmall, J.; Garrick, J.

    1993-01-01

    Flight Dynamics Facility (FDF) responsibilities for calibration of Upper Atmosphere Research Satellite (UARS) sensors included alignment calibration of the fixed-head star trackers (FHST's) and the fine Sun sensor (FSS), determination of misalignments and scale factors for the inertial reference units (IRU's), determination of biases for the three-axis magnetometers (TAM's) and Earth sensor assemblies (ESA's), determination of gimbal misalignments of the Solar/Stellar Pointing Platform (SSPP), and field-of-view calibration for the FSS's mounted both on the Modular Attitude Control System (MACS) and on the SSPP. The calibrations, which used a combination of new and established algorithms, gave excellent results. Alignment calibration results markedly improved the accuracy of both ground and onboard Computer (OBC) attitude determination. SSPP calibration results allowed UARS to identify stars in the period immediately after yaw maneuvers, removing the delay required for the OBC to reacquire its fine pointing attitude mode. SSPP calibration considerably improved the pointing accuracy of the attached science instrument package. This paper presents a summary of the methods used and the results of all FDF UARS sensor calibration.

  9. Facile fabrication of a well-ordered porous Cu-doped SnO2 thin film for H2S sensing.

    PubMed

    Zhang, Shumin; Zhang, Pingping; Wang, Yun; Ma, Yanyun; Zhong, Jun; Sun, Xuhui

    2014-09-10

    Well-ordered Cu-doped and undoped SnO2 porous thin films with large specific surface areas have been fabricated on a desired substrate using a self-assembled soft template combined with simple physical cosputtering deposition. The Cu-doped SnO2 porous film gas sensor shows a significant enhancement in its sensing performance, including a high sensitivity, selectivity, and a fast response and recovery time. The sensitivity of the Cu-doped SnO2 porous sensor is 1 order of magnitude higher than that of the undoped SnO2 sensor, with average response and recovery times to 100 ppm of H2S of ∼ 10.1 and ∼ 42.4 s, respectively, at the optimal operating temperature of 180 °C. The well-defined porous sensors fabricated by the method also exhibit high reproducibility because of the accurately controlled fabrication process. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors with easy doping and multilayer porous nanostructure for practical sensing applications.

  10. Testing and use of radar water level sensors by the U.S. Geological Survey

    USGS Publications Warehouse

    Fulford, Janice M.

    2016-01-01

    The United States Geological Survey uses water-level (or stage) measurements to compute streamflow at over 8000 stream gaging stations located throughout the United States (waterwatch.usgs.gov, 2016). Streamflow (or discharge) is computed at five minute to hourly intervals from a relationship between water level and discharge that is uniquely determined for each station. The discharges are posted hourly to WaterWatch (waterwatch. usgs.gov) and are used by water managers to issue flood warnings and manage water supply and by other users of water information to make decisions. The accuracy of the water-level measurement is vital to the accuracy of the computed discharge. Because of the importance of water-level measurements, USGS has an accuracy policy of 0.02 ft or 0.2 percent of reading (whichever is larger) (Sauer and Turnipseed, 2010). Older technologies, such as float and shaft-encoder systems, bubbler systems and submersible pressure sensors, provide the needed accuracy but often require extensive construction to install and are prone to malfunctioning and damage from floating debris and sediment. No stilling wells or orifice lines need to be constructed for radar installations. During the last decade testing by the USGS Hydrologic Instrumentation Facility(HIF) found that radar water-level sensors can provide the needed accuracy for water-level measurements and because the sensor can be easily attached to bridges, reduce the construction required for installation. Additionally, the non-contact sensing of water level minimizes or eliminates damage and fouling from floating debris and sediment. This article is a brief summary of the testing efforts by the USGS HIF and field experiences with models of radar water-level sensors in streamflow measurement applications. Any use of trade names in this article is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  11. Exploring Operational Safeguards, Safety, and Security by Design to Address Real Time Threats in Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schanfein, Mark J.; Mladineo, Stephen V.

    2015-07-07

    Over the last few years, significant attention has been paid to both encourage application and provide domestic and international guidance for designing in safeguards and security in new facilities.1,2,3 However, once a facility is operational, safeguards, security, and safety often operate as separate entities that support facility operations. This separation is potentially a serious weakness should insider or outsider threats become a reality.Situations may arise where safeguards detects a possible loss of material in a facility. Will they notify security so they can, for example, check perimeter doors for tampering? Not doing so might give the advantage to an insidermore » who has already, or is about to, move nuclear material outside the facility building. If outsiders break into a facility, the availability of any information to coordinate the facility’s response through segregated alarm stations or a failure to include all available radiation sensors, such as safety’s criticality monitors can give the advantage to the adversary who might know to disable camera systems, but would most likely be unaware of other highly relevant sensors in a nuclear facility.This paper will briefly explore operational safeguards, safety, and security by design (3S) at a high level for domestic and State facilities, identify possible weaknesses, and propose future administrative and technical methods, to strengthen the facility system’s response to threats.« less

  12. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.

    2014-12-01

    The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce costs below ship based methods of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for one of the University of Hawaii Wave Gliders which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of pressure and temperature data. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the design of the Wave Glider payload and seafloor geodetic monument, as well as a discussion of nearshore and offshore field tests and operational procedures. An assessment of our ability to determine cm-scale vertical seafloor motions will be made by integrating the seafloor pressure measurements recovered during field testing with independent measurements of sea surface pressure and sea surface height made by the sea surface payload.

  13. Poster Presentation: Optical Test of NGST Developmental Mirrors

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Geary, Joseph; Reardon, Patrick; Peters, Bruce; Keidel, John; Chavers, Greg

    2000-01-01

    An Optical Testing System (OTS) has been developed to measure the figure and radius of curvature of NGST developmental mirrors in the vacuum, cryogenic environment of the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The OTS consists of a WaveScope Shack-Hartmann sensor from Adaptive Optics Associates as the main instrument, a Point Diffraction Interferometer (PDI), a Point Spread Function (PSF) imager, an alignment system, a Leica Disto Pro distance measurement instrument, and a laser source palette (632.8 nm wavelength) that is fiber-coupled to the sensor instruments. All of the instruments except the laser source palette are located on a single breadboard known as the Wavefront Sensor Pallet (WSP). The WSP is located on top of a 5-DOF motion system located at the center of curvature of the test mirror. Two PC's are used to control the OTS. The error in the figure measurement is dominated by the WaveScope's measurement error. An analysis using the absolute wavefront gradient error of 1/50 wave P-V (at 0.6328 microns) provided by the manufacturer leads to a total surface figure measurement error of approximately 1/100 wave rms. This easily meets the requirement of 1/10 wave P-V. The error in radius of curvature is dominated by the Leica's absolute measurement error of VI.5 mm and the focus setting error of Vi.4 mm, giving an overall error of V2 mm. The OTS is currently being used to test the NGST Mirror System Demonstrators (NMSD's) and the Subscale Beryllium Mirror Demonstrator (SBNM).

  14. Attachment of Free Filament Thermocouples for Temperature Measurements on CMC

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Cuy, Michael D.; Wnuk, Stephen P.

    1997-01-01

    Ceramic Matrix Composites (CMC) are being developed for use as enabling materials for advanced aeropropulsion engine and high speed civil transport applications. The characterization and testing of these advanced materials in hostile, high-temperature environments require accurate measurement of the material temperatures. Commonly used wire Thermo-Couples (TC) can not be attached to this ceramic based material via conventional spot-welding techniques. Attachment of wire TC's with commercially available ceramic cements fail to provide sufficient adhesion at high temperatures. While advanced thin film TC technology provides minimally intrusive surface temperature measurement and has good adhesion on the CMC, its fabrication requires sophisticated and expensive facilities and is very time consuming. In addition, the durability of lead wire attachments to both thin film TC's and the substrate materials requires further improvement. This paper presents a newly developed attachment technique for installation of free filament wire TC's with a unique convoluted design on ceramic based materials such as CMC's. Three CMC's (SiC/SiC CMC and alumina/alumina CMC) instrumented with type IC, R or S wire TC's were tested in a Mach 0.3 burner rig. The CMC temperatures measured from these wire TC's were compared to that from the facility pyrometer and thin film TC's. There was no sign of TC delamination even after several hours exposure to 1200 C. The test results proved that this new technique can successfully attach wire TC's on CMC's and provide temperature data in hostile environments. The sensor fabrication process is less expensive and requires very little time compared to that of the thin film TC's. The same installation technique/process can also be applied to attach lead wires for thin film sensor systems.

  15. A Generic System-Level Framework for Self-Serve Health Monitoring System through Internet of Things (IoT).

    PubMed

    Ahmed, Mobyen Uddin; Björkman, Mats; Lindén, Maria

    2015-01-01

    Sensor data are traveling from sensors to a remote server, data is analyzed remotely in a distributed manner, and health status of a user is presented in real-time. This paper presents a generic system-level framework for a self-served health monitoring system through the Internet of Things (IoT) to facilities an efficient sensor data management.

  16. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    NASA Astrophysics Data System (ADS)

    Sharaf, S.; Da Silva, M.; Hampel, U.; Zippe, C.; Beyer, M.; Azzopardi, B.

    2011-10-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas-liquid and liquid-liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas-liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air-deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s-1 and 1.4 m s-1 at two liquid velocities of 0.2 and 0.7 m s-1. The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe.

  17. Suppression of sun interference in the star sensor baffling stray light by total internal reflection

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Shimoji, Haruhiko; Yoshikawa, Shoji; Miyatake, Katsumasa; Hama, Kazumori; Nakamura, Shuji

    2005-09-01

    We have developed a star sensor as an experimental device onboard the SERVIS-1 satellite launched in October 2003. The in-orbit data have verified its fundamental performance. One of the advantages of our star sensor is that the baffle has a small length of 120 mm instead of 182 mm in the conventional two-stage baffle design. The key concepts for light shielding are total internal reflection phenomena inside a nearly half sphere (NHS) lens and scattering light control by gloss black paint. However, undesirable background noise by the sun outside of the field of view (FOV) was observed in the corner of the FOV in the orbital experiment. Ray trace simulations revealed that slight scattering light on the specular baffle wall entered the NHS lens and reached the corner of the image sensor through the multi-reflection path inside the lens. It was found that the stray light path can be shielded effectively if the diameter of the aperture under the NHS lens was reduced. We redesigned the baffle and evaluated the light shielding ability with our sun interference test facility on the ground, and confirmed that the stray light was reduced below the acceptable level. As a result, the light shielding technique which we have proposed was proved to be effective for a small-size baffle. The redesigned star sensor is planned to be installed as a main attitude sensor for the SERVIS-2 satellite scheduled to be launched in February 2008.

  18. Sensor for performance monitoring of advanced gas turbines

    NASA Astrophysics Data System (ADS)

    Latvakoski, Harri M.; Markham, James R.; Harrington, James A.; Haan, David J.

    1999-01-01

    Advanced thermal coating materials are being developed for use in the combustor section of high performance turbine engines to allow for higher combustion temperatures. To optimize the use of these thermal barrier coatings (TBC), accurate surface temperature measurements are required to understand their response to changes in the combustion environment. Present temperature sensors, which are based on the measurement of emitted radiation, are not well studied for coated turbine blades since their operational wavelengths are not optimized for the radiative properties of the TBC. This work is concerned with developing an instrument to provide accurate, real-time measurements of the temperature of TBC blades in an advanced turbine engine. The instrument will determine the temperature form a measurement of the radiation emitted at the optimum wavelength, where the TBC radiates as a near-blackbody. The operational wavelength minimizes interference from the high temperature and pressure environment. A hollow waveguide is used to transfer the radiation from the engine cavity to a high-speed detector and data acquisition system. A prototype of this system was successfully tested at an atmospheric burner test facility, and an on-engine version is undergoing testing for installation on a high-pressure rig.

  19. NGST/XRCF Design and Build Wavescope System Pallet

    NASA Technical Reports Server (NTRS)

    Geary, Joe

    1999-01-01

    Based on the successful Wavescope demonstration at MSFC at the end of March, the decision was made by the optical testing team to purchase an upgraded Wavescope from AOA. The MSFC version would include: a higher resolution camera (1000 x 1000 pixels); a higher density lenslet array (150 x 150); updated software; and longer cables (to accommodate the remote operation of the Wavescope optical head which was resident in the Beam Guide Tube). The AOA proposal for the new instrument was received in mid-April, and delivered to MSFC in mid-July. A considerable amount of effort was expended to provide the infrastructure needed for Wavescope operation, and to incorporate it into the overall test system. This was provided by the Wavescope System Pallet (WSP) built by UAH. The WSP is illustrated. Several instruments are incorporated on this pallet. These include the: Wavescope optical head; a PDI wavefront sensor; a point spread function sensor; a Leica light-based distance measuring sensor. In addition there is a single mode fiber point source (fed from a separate source pallet) which serves both as a reference for the Wavescope and as a source point for the test mirror. There is a dual function lens which both collimates the beam from the test image point, and images the test mirror onto the lenslet array. There is a high quality Collimator which can provide a flat input wavefront directly into the Wavescope. There are also various aids such as an alignment laser, an alignment telescope, alignment sticks and apertures. The WSP was delivered to MSFC on 7/28/99. An picture shows the WSP installed in the Guide Tube at the X-Ray Calibration Facility (XRCF).

  20. Development of phonon-mediated cryogenic particle detectors with electron and nuclear recoil discrimination

    NASA Astrophysics Data System (ADS)

    Nam, Sae Woo

    1999-10-01

    Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and nuclear recoil discrimination. Furthermore, early results from running the 100g detector in the Stanford Underground Facility (SUF) indicate that competitive dark matter results are achievable with the current detector design. Much of the design and testing of the experimental apparatus and instrumentation is described as well.

  1. Maintaining High Quality Network Performance at the GSN: Sensor Installation Methods, New VBB Borehole Sensors and Data Quality Assessment from MUSTANG

    NASA Astrophysics Data System (ADS)

    Hafner, Katrin

    2017-04-01

    The goal of the Global Seismographic Network (GSN) is to provide the highest possible data quality and dynamic recording range in support of scientific needs. Considerable effort is made at each GSN seismic station site to achieve the lowest noise performance possible under local conditions. We continue to strive for higher data quality with a combination of new sensors and improved installation techniques. Most seismometers are installed either in 100 m deep steel-cased boreholes or in vaults tunneled underground. A few vaults are built at the surface or on the foundation of a building. All vault installations have a concrete pier, mechanically isolated from the floor, upon which the seismometers are placed. Many sites are now nearly 30 years old, and the GSN is investing in civil works at several stations to keep them in good condition or make critical repairs. Using GSN data from inception to the present, we will present analyses that demonstrate how successful these sensor installation strategies have been and describe ongoing experiments at GSN testing facilities to evaluate the best, most cost effective strategy to modernize existing GSN facilities. To improve sensor performance at some vault sites, we will employ new sensor installation strategies. Years of experience operating the GSN and the USArray Transportable Array, along with focused testing of emplacement strategies, show that the vulnerability of a sensor's horizontal components to tilt can be mitigated if the sensor package is buried at even shallow depth. At selected vault installations, shallow boreholes will be drilled to accommodate recently developed borehole VBB sensor models. The incremental cost of modern VBB instruments over standard BB models is small, and we expect to be able to preserve the GSN's crucial very broad bandwidth while improving noise performance and reliability using this strategy. A crucial link in making GSN station data available to the scientific community is the IRIS Data Management Center, which not only maintains the data archive, but also provides easy, rapid, and open access to data recorded from seconds to decades ago. All data flow to the IRIS DMC through the UCSD or ASL Data Collection Centers (DCCs). The DCCs focus on delivering data to the DMC, maintaining correct metadata for GSN stations, reviewing data quality from the stations that ASL and UCSD operate, and addressing circumstances that require special data handling, such as back filling following telemetry outages. Key to the high quality of the GSN data is the direct feedback on data quality problems identified by the DCC analysts to the network operations staff and field engineers. Aging of GSN equipment and station infrastructure has resulted in renewed emphasis on using data quality control tools such as MUSTANG. These tools allow the network operators to routinely monitor and analyze waveform data to detect and track problems and develop short and longer term action plans for improving network data quality. We will present summary data quality metrics for the GSN as obtained via these quality assurance tools.

  2. Automatic 3D virtual scenes modeling for multisensors simulation

    NASA Astrophysics Data System (ADS)

    Latger, Jean; Le Goff, Alain; Cathala, Thierry; Larive, Mathieu

    2006-05-01

    SEDRIS that stands for Synthetic Environment Data Representation and Interchange Specification is a DoD/DMSO initiative in order to federate and make interoperable 3D mocks up in the frame of virtual reality and simulation. This paper shows an original application of SEDRIS concept for research physical multi sensors simulation, when SEDRIS is more classically known for training simulation. CHORALE (simulated Optronic Acoustic Radar battlefield) is used by the French DGA/DCE (Directorate for Test and Evaluation of the French Ministry of Defense) to perform multi-sensors simulations. CHORALE enables the user to create virtual and realistic multi spectral 3D scenes, and generate the physical signal received by a sensor, typically an IR sensor. In the scope of this CHORALE workshop, French DGA has decided to introduce a SEDRIS based new 3D terrain modeling tool that enables to create automatically 3D databases, directly usable by the physical sensor simulation CHORALE renderers. This AGETIM tool turns geographical source data (including GIS facilities) into meshed geometry enhanced with the sensor physical extensions, fitted to the ray tracing rendering of CHORALE, both for the infrared, electromagnetic and acoustic spectrum. The basic idea is to enhance directly the 2D source level with the physical data, rather than enhancing the 3D meshed level, which is more efficient (rapid database generation) and more reliable (can be generated many times, changing some parameters only). The paper concludes with the last current evolution of AGETIM in the scope mission rehearsal for urban war using sensors. This evolution includes indoor modeling for automatic generation of inner parts of buildings.

  3. Technology development for the LISA using the UF Torsion Pendulu

    NASA Astrophysics Data System (ADS)

    Conklin, John W.; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido

    2015-08-01

    Space-based gravitational wave observatories like LISA measure picometer changes in the distances between free falling test masses separated by millions of kilometers caused by gravitational waves. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). LISA will observe gravitational wave sources ranging from super-massive black hole mergers to compact galactic binaries in the millihertz region, and LISA science has consistently been ranked in the top two for future large space missions in the last two NASA astrophysics decadal reviews. With the 2015 launch of LISA Pathfinder (LPF) and the expected detection of gravitational waves by aLIGO and/or Pulsar Timing Arrays within in the next several years, this can arguably be called the decade of gravitational waves. Following a successful demonstration of the baseline LISA GRS by LPF, the measurement principle will be carried forward, but improvements in several GRS components are possible over the next ten years that will lead to cost savings and potential noise reductions. The UF LISA group has constructed the UF Torsion Pendulum to increase U.S. competency in this critical area and to have a facility where new technologies can be developed and evaluated. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. This presentation will describe this facility, focusing on its mechanical design, capacitive sensing and electrostatic actuation systems, and overall acceleration noise performance

  4. The International Remote Monitoring Project: Results of the Swedish Nuclear Power Facility field trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.S.; af Ekenstam, G.; Sallstrom, M.

    1995-07-01

    The Swedish Nuclear Power Inspectorate (SKI) and the US Department of Energy (DOE) sponsored work on a Remote Monitoring System (RMS) that was installed in August 1994 at the Barseback Works north of Malmo, Sweden. The RMS was designed to test the front end detection concept that would be used for unattended remote monitoring activities. Front end detection reduces the number of video images recorded and provides additional sensor verification of facility operations. The function of any safeguards Containment and Surveillance (C/S) system is to collect information which primarily is images that verify the operations at a nuclear facility. Barsebackmore » is ideal to test the concept of front end detection since most activities of safeguards interest is movement of spent fuel which occurs once a year. The RMS at Barseback uses a network of nodes to collect data from microwave motion detectors placed to detect the entrance and exit of spent fuel casks through a hatch. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Stockholm, Sweden and Albuquerque, NM, USA. These remote monitoring stations operated by SKI and SNL respectively, can retrieve data and images from the RMS computer at the Barseback Facility. The data and images are encrypted before transmission. This paper presents details of the RMS and test results of this approach to front end detection of safeguard activities.« less

  5. Ground Based Investigation of Electrostatic Accelerometer in HUST

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L Cai, and J Luo, Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum, Class Quantum. Grav. 27 (2010) 205016.

  6. F-8C adaptive control law refinement and software development

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.

    1981-01-01

    An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.

  7. Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene)-Based Sensor Arrays for Detecting Acetone and Ethanol.

    PubMed

    Daneshkhah, Ali; Shrestha, Sudhir; Siegel, Amanda; Varahramyan, Kody; Agarwal, Mangilal

    2017-03-15

    Two methods for cross-selectivity enhancement of porous poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/carbon black (CB) composite-based resistive sensors are provided. The sensors are tested with acetone and ethanol in the presence of humid air. Cross-selectivity is enhanced using two different methods to modify the basic response of the PVDF-HFP/CB sensing platform. In method I, the adsorption properties of PVDF-HFP/CB are altered by adding a polyethylene oxide (PEO) layer or by treating with infrared (IR). In method II, the effects of the interaction of acetone and ethanol are enhanced by adding diethylene carbonate (DEC) or PEO dispersed in DEC (PEO/DEC) to the film. The results suggest the approaches used in method I alter the composite ability to adsorb acetone and ethanol, while in method II, they alter the transduction characteristics of the composite. Using these approaches, sensor relative response to acetone was increased by 89% compared with the PVDF-HFP/CB untreated film, whereas sensor relative response to ethanol could be decreased by 57% or increased by 197%. Not only do these results demonstrate facile methods for increasing sensitivity of PVDF-HFP/CB film, used in parallel they demonstrate a roadmap for enhancing system cross-selectivity that can be applied to separate units on an array. Fabrication methods, experimental procedures and results are presented and discussed.

  8. Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene)-Based Sensor Arrays for Detecting Acetone and Ethanol

    PubMed Central

    Daneshkhah, Ali; Shrestha, Sudhir; Siegel, Amanda; Varahramyan, Kody; Agarwal, Mangilal

    2017-01-01

    Two methods for cross-selectivity enhancement of porous poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/carbon black (CB) composite-based resistive sensors are provided. The sensors are tested with acetone and ethanol in the presence of humid air. Cross-selectivity is enhanced using two different methods to modify the basic response of the PVDF-HFP/CB sensing platform. In method I, the adsorption properties of PVDF-HFP/CB are altered by adding a polyethylene oxide (PEO) layer or by treating with infrared (IR). In method II, the effects of the interaction of acetone and ethanol are enhanced by adding diethylene carbonate (DEC) or PEO dispersed in DEC (PEO/DEC) to the film. The results suggest the approaches used in method I alter the composite ability to adsorb acetone and ethanol, while in method II, they alter the transduction characteristics of the composite. Using these approaches, sensor relative response to acetone was increased by 89% compared with the PVDF-HFP/CB untreated film, whereas sensor relative response to ethanol could be decreased by 57% or increased by 197%. Not only do these results demonstrate facile methods for increasing sensitivity of PVDF-HFP/CB film, used in parallel they demonstrate a roadmap for enhancing system cross-selectivity that can be applied to separate units on an array. Fabrication methods, experimental procedures and results are presented and discussed. PMID:28294961

  9. Vacuum Radiance-Temperature Standard Facility for Infrared Remote Sensing at NIM

    NASA Astrophysics Data System (ADS)

    Hao, X. P.; Song, J.; Xu, M.; Sun, J. P.; Gong, L. Y.; Yuan, Z. D.; Lu, X. F.

    2018-06-01

    As infrared remote sensors are very important parts of Earth observation satellites, they must be calibrated based on the radiance temperature of a blackbody in a vacuum chamber prior to launch. The uncertainty of such temperature is thus an essential component of the sensors' uncertainty. This paper describes the vacuum radiance-temperature standard facility (VRTSF) at the National Institute of Metrology of China, which will serve to calibrate infrared remote sensors on Chinese meteorological satellites. The VRTSF can be used to calibrate vacuum blackbody radiance temperature, including those used to calibrate infrared remote sensors. The components of the VRTSF are described in this paper, including the VMTBB, the LNBB, the FTIR spectrometer, the reduced-background optical system, the vacuum chamber used to calibrate customers' blackbody, the vacuum-pumping system and the liquid-nitrogen-support system. The experimental methods and results are expounded. The uncertainty of the radiance temperature of VMTBB is 0.026 °C at 30 °C over 10 μm.

  10. Investigation of Various Surface Acoustic Wave Design Configurations for Improved Sensitivity

    NASA Astrophysics Data System (ADS)

    Manohar, Greeshma

    Surface acoustic wave sensors have been a focus of active research for many years. Its ability to respond for surface perturbation is a basic principle for its sensing capability. Sensitivity to surface perturbation changes with every inter-digital transducer (IDT) design parameters, substrate selection, metallization choice and technique, delay line length and working environment. In this thesis, surface acoustic wave (SAW) sensors are designed and characterized to improve sensitivity and reduce loss. To quantify the improvements with a specific design configuration, the sensors are employed to measure temperature. Four SAW sensors design configurations, namely bi-directional, split electrode, single phase unidirectional transducer (SPUDT) and metal grating on delay line (shear transvers wave sensors) are designed and then fabricated in Nanotechnology Research and Education Center (NREC) facility using traditional MEMS fabrication processes Additionally, sensors are then coated with guiding layer SU8-2035 of 40µm using spin coating and SiO 2 of 6µm using plasma enhanced chemical vapor deposition (PECVD) process. Sensors are later diced and tested for every 5°C increment using network analyzer for temperature ranging from 30°C±0.5°C to 80°C±0.5°C. Data acquired from network analyzer is analyzed using plot of logarithmic magnitude, phase and frequency shift. Furthermore, to investigate the effect of metallization technique on the sensor performance, sensors are also fabricated on substrates that were metallized at a commercial MEMS foundry. All in-house and outside sputtered sensor configurations are compared to investigate quality of sputtered metal on wafer. One with better quality sputtered metal is chosen for further study. Later sensors coated with SU8 and SiO2 as guiding layer are compared to investigate effect of each waveguide on sensors and determine which waveguide offers better performance. The results showed that company sputtered sensors have higher sensitivity compared to in-house sputtered wafers. Furthermore after comparing SU8 and SiO2 coated sensors in the same instrumental and environmental condition, it was observed that SU8 coated di-directional and single phase unidirectional transducer (SPUDT) sensors showed best response.

  11. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  12. Prototype software model for designing intruder detection systems with simulation

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey S.; Peters, Brett A.; Curry, James C.; Gupta, Dinesh

    1998-08-01

    This article explores using discrete-event simulation for the design and control of defence oriented fixed-sensor- based detection system in a facility housing items of significant interest to enemy forces. The key issues discussed include software development, simulation-based optimization within a modeling framework, and the expansion of the framework to create real-time control tools and training simulations. The software discussed in this article is a flexible simulation environment where the data for the simulation are stored in an external database and the simulation logic is being implemented using a commercial simulation package. The simulation assesses the overall security level of a building against various intruder scenarios. A series of simulation runs with different inputs can determine the change in security level with changes in the sensor configuration, building layout, and intruder/guard strategies. In addition, the simulation model developed for the design stage of the project can be modified to produce a control tool for the testing, training, and real-time control of systems with humans and sensor hardware in the loop.

  13. Development of a pMOSFET sensor with a Gd converter for low energy neutron dosimetry.

    PubMed

    Lee, N H; Kim, S H; Youk, G U; Park, I J; Kim, Y M

    2004-01-01

    A pMOSFET having a 10 microm thick Gadolinium (Gd) layer has been invented as a slow neutron sensor. When slow neutrons are incident to the Gd layer, conversion electrons, which generate electron-hole pairs in the SiO2 layer of the pMOSFET, are generated by a neutron capture process. The holes are easily trapped in the oxide and act as positive-charge centres in the oxide. Due to the induced charges, the threshold turn-on voltage of the pMOSFET is changed. The developed sensors were tested at a neutron beam port of the HANARO research reactor and a 60Co irradiation facility to investigate slow neutron response and gamma ray contamination, respectively. The resultant voltage change was proportional to the accumulated neutron dose and it was very sensitive to slow neutrons. Moreover, ionising radiation contamination was negligible. It can also be used in a mixed radiation field by subtracting the voltage change of a pMOSFET without Gd from that of the Gd-pMOSFET.

  14. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  15. Optical ablation/temperature gage (COTA)

    NASA Astrophysics Data System (ADS)

    Cassaing, J.; Balageas, D.

    ONERA has ground and flight tested for heat-shield recession a novel technique, different from current radiation and acoustic measurement methods. It uses a combined ablation/temperature gage that views the radiation optically from a cavity embedded within the heat shield. Flight measurements, both of temperature and of passage of the ablation front, are compared with data generated by a predictive numerical code. The ablation and heat diffusion into the instrumented ablator can be simulated numerically to evaluate accurately the errors due to the presence of the gage. This technology was established in 1978 and finally adopted after ground tests in arc heater facilities. After four years of flight evaluations, it is possible to evaluate and criticize the sensor reliability.

  16. A Novel Sensor Platform Matching the Improved Version of IPMVP Option C for Measuring Energy Savings

    PubMed Central

    Tseng, Yen-Chieh; Lee, Da-Sheng; Lin, Cheng-Fang; Chang, Ching-Yuan

    2013-01-01

    It is easy to measure energy consumption with a power meter. However, energy savings cannot be directly computed by the powers measured using existing power meter technologies, since the power consumption only reflects parts of the real energy flows. The International Performance Measurement and Verification Protocol (IPMVP) was proposed by the Efficiency Valuation Organization (EVO) to quantify energy savings using four different methodologies of A, B, C and D. Although energy savings can be estimated following the IPMVP, there are limitations on its practical implementation. Moreover, the data processing methods of the four IPMVP alternatives use multiple sensors (thermometer, hygrometer, Occupant information) and power meter readings to simulate all facilities, in order to determine an energy usage benchmark and the energy savings. This study proposes a simple sensor platform to measure energy savings. Using usually the Electronic Product Code (EPC) global standard, an architecture framework for an information system is constructed that integrates sensors data, power meter readings and occupancy conditions. The proposed sensor platform is used to monitor a building with a newly built vertical garden system (VGS). A VGS shields solar radiation and saves on energy that would be expended on air-conditioning. With this platform, the amount of energy saved in the whole facility is measured and reported in real-time. The data are compared with those obtained from detailed measurement and verification (M&V) processes. The discrepancy is less than 1.565%. Using measurements from the proposed sensor platform, the energy savings for the entire facility are quantified, with a resolution of ±1.2%. The VGS gives an 8.483% daily electricity saving for the building. Thus, the results show that the simple sensor platform proposed by this study is more widely applicable than the four complicated IPMVP alternatives and the VGS is an effective tool in reducing the carbon footprint of a building. PMID:23698273

  17. Quantification of wind flow in the European Mars Simulation Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Merrison, J. P.; Iversen, J. J.; Nornberg, P.

    2012-04-01

    We present the European Mars Simulation Wind Tunnel facility, a unique prototype facility capable of simulating a wide range of environmental conditions, such as those which can be found at the surface of Earth or Mars. The chamber complements several other large-scale simulation facilities at Aarhus University, Denmark. The facility consists of a 50 m3 environmental chamber capable of operating at low pressure (0.02 - 1000 mbar) and cryogenic temperatures (-130 °C up to +60 °C). This chamber houses a re-circulating wind tunnel capable of generating wind speeds up to 25 m/s and has a dust injection system that can produce suspended particulates (aerosols). It employs a unique LED based optical illumination system (solar simulator) and an advanced network based control system. Laser based optoelectronic instrumentation is used to quantify and monitor wind flow, dust suspension and deposition. This involves a commercial Laser Doppler Anemometer (LDA) and a Particle Dynamics Analysis receiver (PDA), which are small laser based instruments specifically designed for measuring wind speed and sizes of particles situated in a wind flow. Wind flow calibrations will be performed with the LDA system and presented. Pressure and temperature calibrations will follow in order to enable the facility to be used for the testing, development, calibration and comparison of e.g. meteorological sensors under a wide range of environmental conditions as well as multi-disciplinary scientific studies. The wind tunnel is accessible to international collaborators and space agencies for instrument testing, calibration and qualification. It has been financed by the European Space Agency (ESA) as well as the Aarhus University Science Faculty and the Villum Kann Rasmussen Foundation.

  18. LYSO crystal testing for an EDM polarimeter

    NASA Astrophysics Data System (ADS)

    Müller, F.; Keshelashvili, I.; Mchedlishvili, D.; JEDI Collaboration

    2017-11-01

    Four detector modules, built from three different LYSO crystals and two different types of light sensors (PMTs and SiPM arrays), have been tested with a deuteron beam from 100 MeV - 270 MeV at the COSY accelerator facility for the srEDM project at the Forschungszentrum Jülich in Germany. The detector modules were arranged in a cluster hand mounted on a positioning table. The deuteron beam was targeted at the center of each individual crystal for data analysis. The signals were digitized using a 14 bit, 250 MS/s flash ADC. Further, the energy spectra were calibrated using the known beam energies from the accelerator. From the calibrated spectra, the energy resolution was calculated. A resolution of 3% for the low energies and down to 1% for the high energy of 270 MeV was achieved. A deuteron reconstruction efficiency of almost 100% for low energies and around 70% for high energies was achieved. The SiPM light sensor showed a very good performance and will be used for the next generation of detector modules.

  19. Development Of An Acoustice Sensor For On-Line Gas Temperature Measurement In Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Ariessohn; Hans Hornung

    2006-10-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology,more » and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated into the prototype sensor. This port rodding mechanism operated flawlessly during the field testing, but because these tests were performed in a region of the gasifier that experiences little slagging, the effectiveness of the rodding mechanism in dealing with highly slagging conditions was not fully demonstrated. This report describes the design and operation of the automated Gasifier Acoustic Pyrometer (autoGAP) which was tested at the Wabash River facility. The results of the tests are reported and analyzed in detail. All of the objectives of the project have been achieved. A field prototype acoustic pyrometer sensor has been successfully tested at the Wabash River gasifier plant. Acoustic signals were propagated through the gases inside the gasifier and were detected by the receiver unit, the times of flight of these sound pulses were measured and these propagation times were converted into temperatures which agreed very well with thermocouple measurements made in the same location as the acoustic measurements. The acoustic pyrometer system was operated under computer control and was shown to be capable of making measurements every 10 minutes (or more frequently) for an extended period. Some minor mechanical issues remain. During testing on the gasifier, one of the pressure seals failed after two days of operation, but this can easily be corrected by the use of a different seal design. Also, the testing performed so far was conducted in a region of the gasifier where conditions are somewhat less harsh than in other parts of the gasifier where thermocouples will not survive. Therefore, additional testing should be performed in those harsher locations to demonstrate the ability of this new measurement technology to provide temperature measurements that cannot be obtained by any other means.« less

  20. The Sense-City equipment project: insight into the prototyping and validation of environmental micro- and nanosensors for a sustainable urbanization

    NASA Astrophysics Data System (ADS)

    Lebental, Bérengère; Angelescu, Dan; Bourouina, Tarik; Bourquin, Frédéric; Cojocaru, Costel-Sorin; Derkx, François; Dumoulin, Jean; Ha, Thi-Lan; Robine, Enric; Van Damme, Henri

    2013-04-01

    While today's galloping urbanization weighs heavily on both People and Environment, the massive instrumentation of urban spaces appears a landmark toward sustainability. Collecting massively distributed information requires the use of high-performance communication systems as well as sensors with very small ecological footprint. Because of their high sensitivity, the wide range of their observables, their energetic self-sufficiency and their low cost, micro- and nano- sensors are particularly well suited to urban metrology. A 8 years, 9 M€ equipment project funded by the French "Programme d'Investissement d'Avenir" starting in 2012, the Sense-City project will offer a suite of high-quality facilities for the design, prototyping and performance assessment of micro- and nanosensors devoted to sustainable urbanization. The scientific program of Sense-City is built around four programs, environmental monitoring, structural health monitoring, energy performances monitoring and people health and exposure monitoring. We present the activities of the consortium partners, IFSTTAR, ESIEE-Paris, CSTB, LPICM, and the prospects brought by Sense-City equipment in terms of sensor prototyping, benchmarking and operation validation. We discuss how the various sensors developed by LPICM and ESIEE (for instance conformable chemical and gas microsensors using nanomaterials at LPICM, miniaturized gas chromatographs or microfluidic lab-on-chip for particles analysis at ESIEE-Paris) can be integrated by IFSTTAR into sensors networks tested by IFSTTAR and CSTB in both lab and urban settings. The massively distributed data are interpreted using advanced physical models and inverse methods in order to monitor water, air or soil quality, infrastructure and network safety, building energy performances as well as people health and exposure. We discuss the shortcomings of evaluating the performances of sensors only in lab conditions or directly in real, urban conditions. As a solution, Sense-City will provide an environment of intermediate complexity for the testing of environmental sensors, a realistic urban test space in climatic conditions, both far more complex than clean rooms and far more controllable than actual cities. References: [1] Joblin Y et al., International Biodeterioration & Biodegradation 2010, 64, 210-217 [2] Lee C S et al., Nanotechnology 2012, accepted [3] Nachef K et al., IEEE/ASME Journal of Microelectromechanical Systems 2102, 21

  1. Performance Evaluation of Five Turbidity Sensors in Three Primary Standards

    USGS Publications Warehouse

    Snazelle, Teri T.

    2015-10-28

    Open-File Report 2015-1172 is temporarily unavailable.Five commercially available turbidity sensors were evaluated by the U.S. Geological Survey, Hydrologic Instrumentation Facility (HIF) for accuracy and precision in three types of turbidity standards; formazin, StablCal, and AMCO Clear (AMCO–AEPA). The U.S. Environmental Protection Agency (EPA) recognizes all three turbidity standards as primary standards, meaning they are acceptable for reporting purposes. The Forrest Technology Systems (FTS) DTS-12, the Hach SOLITAX sc, the Xylem EXO turbidity sensor, the Yellow Springs Instrument (YSI) 6136 turbidity sensor, and the Hydrolab Series 5 self-cleaning turbidity sensor were evaluated to determine if turbidity measurements in the three primary standards are comparable to each other, and to ascertain if the primary standards are truly interchangeable. A formazin 4000 nephelometric turbidity unit (NTU) stock was purchased and dilutions of 40, 100, 400, 800, and 1000 NTU were made fresh the day of testing. StablCal and AMCO Clear (for Hach 2100N) standards with corresponding concentrations were also purchased for the evaluation. Sensor performance was not evaluated in turbidity levels less than 40 NTU due to the unavailability of polymer-bead turbidity standards rated for general use. The percent error was calculated as the true (not absolute) difference between the measured turbidity and the standard value, divided by the standard value.The sensors that demonstrated the best overall performance in the evaluation were the Hach SOLITAX and the Hydrolab Series 5 turbidity sensor when the operating range (0.001–4000 NTU for the SOLITAX and 0.1–3000 NTU for the Hydrolab) was considered in addition to sensor accuracy and precision. The average percent error in the three standards was 3.80 percent for the SOLITAX and -4.46 percent for the Hydrolab. The DTS-12 also demonstrated good accuracy with an average percent error of 2.02 percent and a maximum relative standard deviation of 0.51 percent for the operating range, which was limited to 0.01–1600 NTU at the time of this report. Test results indicated an average percent error of 19.81 percent in the three standards for the EXO turbidity sensor and 9.66 percent for the YSI 6136. The significant variability in sensor performance in the three primary standards suggests that although all three types are accepted as primary calibration standards, they are not interchangeable, and sensor results in the three types of standards are not directly comparable.

  2. Surface Energy Balance System (SEBS) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, DR

    2011-02-14

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  3. DARHT Multi-intelligence Seismic and Acoustic Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Garrison Nicole; Van Buren, Kendra Lu; Hemez, Francois M.

    The purpose of this report is to document the analysis of seismic and acoustic data collected at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory for robust, multi-intelligence decision making. The data utilized herein is obtained from two tri-axial seismic sensors and three acoustic sensors, resulting in a total of nine data channels. The goal of this analysis is to develop a generalized, automated framework to determine internal operations at DARHT using informative features extracted from measurements collected external of the facility. Our framework involves four components: (1) feature extraction, (2) data fusion, (3) classification, andmore » finally (4) robustness analysis. Two approaches are taken for extracting features from the data. The first of these, generic feature extraction, involves extraction of statistical features from the nine data channels. The second approach, event detection, identifies specific events relevant to traffic entering and leaving the facility as well as explosive activities at DARHT and nearby explosive testing sites. Event detection is completed using a two stage method, first utilizing signatures in the frequency domain to identify outliers and second extracting short duration events of interest among these outliers by evaluating residuals of an autoregressive exogenous time series model. Features extracted from each data set are then fused to perform analysis with a multi-intelligence paradigm, where information from multiple data sets are combined to generate more information than available through analysis of each independently. The fused feature set is used to train a statistical classifier and predict the state of operations to inform a decision maker. We demonstrate this classification using both generic statistical features and event detection and provide a comparison of the two methods. Finally, the concept of decision robustness is presented through a preliminary analysis where uncertainty is added to the system through noise in the measurements.« less

  4. Biotelemetry

    NASA Technical Reports Server (NTRS)

    Mundt, C.

    1999-01-01

    Sensors 2000! is developing pill-shaped biotelemeters for measuring physiological parameters during space flight life sciences experiments using rodents aboard the ISS Gravitational Biology Facility, with the additional capability for monitoring the health of astronauts in the Human Research Facility. The first "pill transmitter" is capable of measuring pressure and temperature for up to 10 months. The NASA objective is to utilize these devices. The pill-transmitters can also be used by non-NASA users for medical applications. One application is fetal surgery. The 44pill" is small enough to be endoscopically placed into the womb through a tube used during surgeries to correct fetal defects before birth. After surgery, the pill-transmitter will continue to monitor body temperature, pressure and other vital signs in the womb, radioing results to physicians. It will help them to detect preterm-labor, a serious problem after fetal surgery. The pill is about one-third-of-an-inch across and one-and-one-third-inches long. Future pill-versions will include pH, heartrate, and ECG. A pH-pill prototype is currently being tested. Sensors 2000! has also designed and built a 2-channel biotelemetry receiver and has developed data acquisition software to display and record the measured physiological parameters. A DSP-base hand-held receiver (trisponder) is currently under development.

  5. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending.

    PubMed

    Kim, Yeon Hoo; Kim, Sang Jin; Kim, Yong-Jin; Shim, Yeong-Seok; Kim, Soo Young; Hong, Byung Hee; Jang, Ho Won

    2015-10-27

    Graphene is considered as one of leading candidates for gas sensor applications in the Internet of Things owing to its unique properties such as high sensitivity to gas adsorption, transparency, and flexibility. We present self-activated operation of all graphene gas sensors with high transparency and flexibility. The all-graphene gas sensors which consist of graphene for both sensor electrodes and active sensing area exhibit highly sensitive, selective, and reversible responses to NO2 without external heating. The sensors show reliable operation under high humidity conditions and bending strain. In addition to these remarkable device performances, the significantly facile fabrication process enlarges the potential of the all-graphene gas sensors for use in the Internet of Things and wearable electronics.

  6. User Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  7. Utilisation of the magnetic sensor in a smartphone for facile magnetostatics experiment: magnetic field due to electrical current in straight and loop wires

    NASA Astrophysics Data System (ADS)

    Septianto, R. D.; Suhendra, D.; Iskandar, F.

    2017-01-01

    This paper reports on the result of a research into the utilisation of a smartphone for the study of magnetostatics on the basis of experiments. The use of such a device gives great measurement result and thus it can replace magnetic sensor tools that are relatively expensive. For the best experimental result, firstly the position of the magnetic sensor in the smartphone has to be considered by way of value mapping of a magnetic field due to permanent magnet. The magnetostatics experiment investigated in this research was the measurement of magnetic field due to electrical currents in two shapes of wire, straight and looped. The current flow, the distance between the observation point and the wire, and the diameter of the loop were the variable parameters investigated to test the smartphone’s capabilities as a measurement tool. To evaluate the experimental results, the measured data were compared with theoretical values that were calculated by using both an analytical and a numerical approach. According to the experiment results, the measured data had good agreement with the results from the analytical and the numerical approach. This means that the use of the magnetic sensor in a smartphone in physics experiments is viable, especially for magnetic field measurement.

  8. Eglin virtual range database for hardware-in-the-loop testing

    NASA Astrophysics Data System (ADS)

    Talele, Sunjay E.; Pickard, J. W., Jr.; Owens, Monte A.; Foster, Joseph; Watson, John S.; Amick, Mary Amenda; Anthony, Kenneth

    1998-07-01

    Realistic backgrounds are necessary to support high fidelity hardware-in-the-loop testing. Advanced avionics and weapon system sensors are driving the requirement for higher resolution imagery. The model-test-model philosophy being promoted by the T&E community is resulting in the need for backgrounds that are realistic or virtual representations of actual test areas. Combined, these requirements led to a major upgrade of the terrain database used for hardware-in-the-loop testing at the Guided Weapons Evaluation Facility (GWEF) at Eglin Air Force Base, Florida. This paper will describe the process used to generate the high-resolution (1-foot) database of ten sites totaling over 20 square kilometers of the Eglin range. this process involved generating digital elevation maps from stereo aerial imagery and classifying ground cover material using the spectral content. These databases were then optimized for real-time operation at 90 Hz.

  9. Advances in radiometry for ocean color

    USGS Publications Warehouse

    Brown, S.W.; Clark, D.K.; Johnson, B.C.; Yoon, H.; Lykke, K.R.; Flora, S.J.; Feinholz, M.E.; Souaidia, N.; Pietras, C.; Stone, T.C.; Yarbrough, M.A.; Kim, Y.S.; Barnes, R.A.; Mueller, J.L.

    2004-01-01

    We have presented a number of recent developments in radiometry that directly impact the uncertainties achievable in ocean-color research. Specifically, a new (2000) U. S. national irradiance scale, a new LASER-based facility for irradiance and radiance responsivity calibrations, and applications of the LASER facility for the calibration of sun photometers and characterization of spectrographs were discussed. For meaningful long-time-series global chlorophyll-a measurements, all instruments involved in radiometric measurements, including satellite sensors, vicarious calibration sensors, sensors used in the development of bio-optical algorithms and atmospheric characterization need to be fully characterized and corrected for systematic errors, including, but not limited to, stray light. A unique, solid-state calibration source is under development to reduce the radiometric uncertainties in ocean color instruments, in particular below 400 nm. Lunar measurements for trending of on-orbit sensor channel degradation were described. Unprecedented assessments, within 0.1 %, of temporal stability and drift in a satellite sensor's radiance responsivity are achievable with this approach. These developments advance the field of ocean color closer to the desired goal of reducing the uncertainty in the fundamental radiometry to a small component of the overall uncertainty in the derivation of remotely sensed ocean-color data products such as chlorophyll a.

  10. KSC-04pd2122

    NASA Image and Video Library

    2004-10-12

    KENNEDY SPACE CENTER, FLA. - In an installation demonstration in the Orbiter Processing Facility, a sensor is placed on the wing leading edge of orbiter Discovery. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.

  11. KSC-04pd2123

    NASA Image and Video Library

    2004-10-12

    KENNEDY SPACE CENTER, FLA. - In an installation demonstration the Orbiter Processing Facility, a sensor is placed on the wing leading edge of orbiter Discovery. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.

  12. Flight test evaluation of the E-systems Differential GPS category 3 automatic landing system

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.; Mcnally, B. David

    1995-01-01

    Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) III precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT III precision approach and landing applications. An IAI Westwind 1124 aircraft (N24RH) was equipped with DGPS receiving equipment and additional computing capability provided by E-Systems. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and landings. The navigation sensor error accuracy requirements were based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and landings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and landings shows that the E-Systems DGPS system met the navigation sensor error requirements for a successful approach and landing 98 out of 100 approaches and landings, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan. In addition, the E-Systems DGPS system met the integrity requirements for a successful approach and landing or stationary trial for all 100 approaches and landings and all ten stationary trials, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan.

  13. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  14. Alaska SAR Facility mass storage, current system

    NASA Technical Reports Server (NTRS)

    Cuddy, David; Chu, Eugene; Bicknell, Tom

    1993-01-01

    This paper examines the mass storage systems that are currently in place at the Alaska SAR Facility (SAF). The architecture of the facility will be presented including specifications of the mass storage media that are currently used and the performances that we have realized from the various media. The distribution formats and media are also discussed. Because the facility is expected to service future sensors, the new requirements and possible solutions to these requirements are also discussed.

  15. Materials Combustion Testing and Combustion Product Sensor Evaluations in FY12

    NASA Technical Reports Server (NTRS)

    Meyer, Marit Elisabeth; Mudgett, Paul D.; Hornung, Steven D.; McClure, Mark B.; Pilgrim, Jeffrey S.; Bryg, Victoria; Makel, Darby; Ruff, Gary A.; Hunter, Gary

    2013-01-01

    NASA Centers continue to collaborate to characterize the chemical species and smoke particles generated by the combustion of current space-rated non-metallic materials including fluoropolymers. This paper describes the results of tests conducted February through September 2012 to identify optimal chemical markers both for augmenting particle-based fire detection methods and for monitoring the post-fire cleanup phase in human spacecraft. These studies follow up on testing conducted in August 2010 and reported at ICES 2011. The tests were conducted at the NASA White Sands Test Facility in a custom glove box designed for burning fractional gram quantities of materials under varying heating profiles. The 623 L chamber was heavily instrumented to quantify organics (gas chromatography/mass spectrometry), inorganics by water extraction followed by ion chromatography, and select species by various individual commercially-available sensors. Evaluating new technologies for measuring carbon monoxide, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and other species of interest was a key objective of the test. Some of these sensors were located inside the glovebox near the fire source to avoid losses through the sampling lines; the rest were located just outside the glovebox. Instruments for smoke particle characterization included a Tapered Element Oscillating Microbalance Personal Dust Monitor (TEOM PDM) and a TSI Dust Trak DRX to measure particle mass concentration, a TSI PTrak for number concentration and a thermal precipitator for collection of particles for microscopic analysis. Materials studied included Nomex®, M22759 wire insulation, granulated circuit board, polyvinyl chloride (PVC), Polytetrafluoroethylene (PTFE), Kapton®, and mixtures of PTFE and Kapton®. Furnace temperatures ranged from 340o to 640o C, focusing on the smoldering regime. Of particular interest in these tests was confirming burn repeatability and production of acid gases with different fuel mixture compositions, as well as the dependence of aerosol concentrations on temperature.

  16. Materials Combustion Testing and Combustion Product Sensor Evaluations in FY12

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.; Hunter, Gary; Ruff, Gary; Mudgett, Paul D.; Hornung, Steven D.; McClure, Mark B.; Pilgrim, Jeffrey S.; Bryg, Victoria; Makel, Darby

    2013-01-01

    NASA Centers continue to collaborate to characterize the chemical species and smoke particles generated by the combustion of current space-rated non-metallic materials including fluoropolymers. This paper describes the results of tests conducted February through September 2012 to identify optimal chemical markers both for augmenting particle-based fire detection methods and for monitoring the post-fire cleanup phase in human spacecraft. These studies follow up on testing conducted in August 2010 and reported at ICES 2011. The tests were conducted at the NASA White Sands Test Facility in a custom glove box designed for burning fractional gram quantities of materials under varying heating profiles. The 623 L chamber was heavily instrumented to quantify organics (gas chromatography/mass spectrometry), inorganics by water extraction followed by ion chromatography, and select species by various individual commercially-available sensors. Evaluating new technologies for measuring carbon monoxide, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and other species of interest was a key objective of the test. Some of these sensors were located inside the glovebox near the fire source to avoid losses through the sampling lines; the rest were located just outside the glovebox. Instruments for smoke particle characterization included a Tapered Element Oscillating Microbalance Personal Dust Monitor (TEOM PDM) and a TSI Dust Trak DRX to measure particle mass concentration, a TSI PTrak for number concentration and a thermal precipitator for collection of particles for microscopic analysis. Materials studied included Nomex(R), M22759 wire insulation, granulated circuit board, polyvinyl chloride (PVC), Polytetrafluoroethylene (PTFE), Kapton(R), and mixtures of PTFE and Kapton(R). Furnace temperatures ranged from 340 to 640 C, focusing on the smoldering regime. Of particular interest in these tests was confirming burn repeatability and production of acid gases with different fuel mixture compositions, as well as the dependence of aerosol concentrations on temperature.

  17. Los Alamos Science Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  18. The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Alexander, N.; Allegrini, F.; Bagenal, F.; Beebe, C.; Clark, G.; Crary, F.; Desai, M. I.; De Los Santos, A.; Demkee, D.; Dickinson, J.; Everett, D.; Finley, T.; Gribanova, A.; Hill, R.; Johnson, J.; Kofoed, C.; Loeffler, C.; Louarn, P.; Maple, M.; Mills, W.; Pollock, C.; Reno, M.; Rodriguez, B.; Rouzaud, J.; Santos-Costa, D.; Valek, P.; Weidner, S.; Wilson, P.; Wilson, R. J.; White, D.

    2017-11-01

    The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120∘ apart around the Juno spacecraft to measure complete electron distributions from ˜0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ˜5 eV to ˜50 keV over an instantaneous field of view of 270∘×90∘ in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with m/Δ m˜2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.

  19. Electromagnetic sensors for general lightning application

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.

    1980-01-01

    Electromagnetic sensors for general lightning applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to lightning measurements, but there are some special cases of lightning measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on lightning at South Baldy peak in central New Mexico during the 1978 and 1979 lightning seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.

  20. Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, M. D.; de Lange, G.; Ranjan, M.; Gao, J.-R.; Khosropanah, P.; Ridder, M. L.; Mauskopf, P. D.; Morozov, D.; Doherty, S.; Trappe, N.; Withington, S.

    2014-09-01

    We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2'×2' field of view with spectral information over the wavelength range 34-210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors ( NEP˜2×10-19 W/), with correspondingly low saturation powers (˜5 fW), to take advantage of SPICA's cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3-30 K) and hot (˜300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.

Top