Sample records for sensorless speed estimation

  1. Speed Sensorless Induction Motor Drives for Electrical Actuators: Schemes, Trends and Tradeoffs

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Kankam, M. David

    1997-01-01

    For a decade, induction motor drive-based electrical actuators have been under investigation as potential replacement for the conventional hydraulic and pneumatic actuators in aircraft. Advantages of electric actuator include lower weight and size, reduced maintenance and operating costs, improved safety due to the elimination of hazardous fluids and high pressure hydraulic and pneumatic actuators, and increased efficiency. Recently, the emphasis of research on induction motor drives has been on sensorless vector control which eliminates flux and speed sensors mounted on the motor. Also, the development of effective speed and flux estimators has allowed good rotor flux-oriented (RFO) performance at all speeds except those close to zero. Sensorless control has improved the motor performance, compared to the Volts/Hertz (or constant flux) controls. This report evaluates documented schemes for speed sensorless drives, and discusses the trends and tradeoffs involved in selecting a particular scheme. These schemes combine the attributes of the direct and indirect field-oriented control (FOC) or use model adaptive reference systems (MRAS) with a speed-dependent current model for flux estimation which tracks the voltage model-based flux estimator. Many factors are important in comparing the effectiveness of a speed sensorless scheme. Among them are the wide speed range capability, motor parameter insensitivity and noise reduction. Although a number of schemes have been proposed for solving the speed estimation, zero-speed FOC with robustness against parameter variations still remains an area of research for speed sensorless control.

  2. Implementation of a sliding-mode-based position sensorless drive for high-speed micro permanent-magnet synchronous motors.

    PubMed

    Chi, Wen-Chun; Cheng, Ming-Yang

    2014-03-01

    Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  3. MRAS state estimator for speed sensorless ISFOC induction motor drives with Luenberger load torque estimation.

    PubMed

    Zorgani, Youssef Agrebi; Koubaa, Yassine; Boussak, Mohamed

    2016-03-01

    This paper presents a novel method for estimating the load torque of a sensorless indirect stator flux oriented controlled (ISFOC) induction motor drive based on the model reference adaptive system (MRAS) scheme. As a matter of fact, this method is meant to inter-connect a speed estimator with the load torque observer. For this purpose, a MRAS has been applied to estimate the rotor speed with tuned load torque in order to obtain a high performance ISFOC induction motor drive. The reference and adjustable models, developed in the stationary stator reference frame, are used in the MRAS scheme in an attempt to estimate the speed of the measured terminal voltages and currents. The load torque is estimated by means of a Luenberger observer defined throughout the mechanical equation. Every observer state matrix depends on the mechanical characteristics of the machine taking into account the vicious friction coefficient and inertia moment. Accordingly, some simulation results are presented to validate the proposed method and to highlight the influence of the variation of the inertia moment and the friction coefficient on the speed and the estimated load torque. The experimental results, concerning to the sensorless speed with a load torque estimation, are elaborated in order to validate the effectiveness of the proposed method. The complete sensorless ISFOC with load torque estimation is successfully implemented in real time using a digital signal processor board DSpace DS1104 for a laboratory 3 kW induction motor. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid

    2018-05-01

    The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.

  5. Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Ara, Takahiro

    Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.

  6. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

    PubMed

    Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

    2015-07-01

    In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Sensorless Load Torque Estimation and Passivity Based Control of Buck Converter Fed DC Motor

    PubMed Central

    Kumar, S. Ganesh; Thilagar, S. Hosimin

    2015-01-01

    Passivity based control of DC motor in sensorless configuration is proposed in this paper. Exact tracking error dynamics passive output feedback control is used for stabilizing the speed of Buck converter fed DC motor under various load torques such as constant type, fan type, propeller type, and unknown load torques. Under load conditions, sensorless online algebraic approach is proposed, and it is compared with sensorless reduced order observer approach. The former produces better response in estimating the load torque. Sensitivity analysis is also performed to select the appropriate control variables. Simulation and experimental results fully confirm the superiority of the proposed approach suggested in this paper. PMID:25893208

  8. Position and speed control of brushless DC motors using sensorless techniques and application trends.

    PubMed

    Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime

    2010-01-01

    This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks.

  9. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors

    PubMed Central

    Marko, Matthew David; Shevach, Glenn

    2017-01-01

    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418

  10. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.

    PubMed

    Marko, Matthew David; Shevach, Glenn

    2017-01-01

    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.

  11. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    NASA Astrophysics Data System (ADS)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  12. Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa

    2012-04-01

    The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.

  13. Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends

    PubMed Central

    Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime

    2010-01-01

    This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks. PMID:22163582

  14. Electric propulsion using the permanent magnet synchronous motor without rotor position transducers

    NASA Astrophysics Data System (ADS)

    Batzel, Todd Douglas

    The permanent magnet synchronous motor (PMSM) is increasingly playing an important role in electric propulsion systems due to its many advantages over competing technologies. For successful operation of the PMSM, rotor position and speed information is required. A resolver or encoder attached to the shaft of the machine usually provides this information. Many applications, however, cannot tolerate the use of the position sensor because of space and weight limitations, reliability concerns, or packaging issues. Thus, there has been an intense interest in the development of a so-called position sensorless drive, where the PMSM stator itself is used as the rotor position sensor. In this work, a sensorless electric drive is developed for various undersea propulsion applications, where the rotor position sensor is often undesirable due to the harsh operating environment as well as space and weight limitations. In this work, an observer is developed which enables sensorless operation of the PMSM over a wide speed range. In addition, a method is presented for estimating the standstill rotor angle, an operating condition at which the rotor position observers are typically ill conditioned. In this work two design methodologies are applied to the sensorless electric drive application, including a model-based and a neural network-based approach. Implementation issues for the sensorless electric drive are discussed, and experimental results are presented in order to demonstrate the effectiveness of the proposed techniques to the sensorless PMSM.

  15. Sensorless Control of Permanent Magnet Machine for NASA Flywheel Technology Development

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.

    2002-01-01

    This paper describes the position sensorless algorithms presently used in the motor control for the NASA "in-house" development work of the flywheel energy storage system. At zero and low speeds a signal injection technique, the self-sensing method, is used to determine rotor position. At higher speeds, an open loop estimate of the back EMF of the machine is made to determine the rotor position. At start up, the rotor is set to a known position by commanding dc into one of the phase windings. Experimental results up to 52,000 rpm are presented.

  16. Analysis of sensorless control of brushless DC motor using unknown input observer with different gains

    NASA Astrophysics Data System (ADS)

    Astik, Mitesh B.; Bhatt, Praghnesh; Bhalja, Bhavesh R.

    2017-03-01

    A sensorless control scheme based on an unknown input observer is presented in this paper in which back EMF of the Brushless DC Motor (BLDC) is continuously estimated from available line voltages and currents. During negative rotation of motor, actual and estimated speed fail to track the reference speed and if the corrective action is not taken by the observer, the motor goes into saturation. To overcome this problem, the speed estimation algorithm has been implemented in this paper to control the dynamic behavior of the motor during negative rotation. The Ackermans method was used to calculate the gains of an unknown input observer which is based on the appropriate choice of the eigenvalues in advance. The criteria to choose eigenvalue is to obtain a balance between faster convergence rate and the least noise level. Simulations have been carried out for different disturbances such as step changes in motor reference speed and load torque. The comparative simulation results clearly depict that the disturbance effects in actual and estimated responses minimizes as observer gain setting increases.

  17. Sensorless Estimation and Nonlinear Control of a Rotational Energy Harvester

    NASA Astrophysics Data System (ADS)

    Nunna, Kameswarie; Toh, Tzern T.; Mitcheson, Paul D.; Astolfi, Alessandro

    2013-12-01

    It is important to perform sensorless monitoring of parameters in energy harvesting devices in order to determine the operating states of the system. However, physical measurements of these parameters is often a challenging task due to the unavailability of access points. This paper presents, as an example application, the design of a nonlinear observer and a nonlinear feedback controller for a rotational energy harvester. A dynamic model of a rotational energy harvester with its power electronic interface is derived and validated. This model is then used to design a nonlinear observer and a nonlinear feedback controller which yield a sensorless closed-loop system. The observer estimates the mechancial quantities from the measured electrical quantities while the control law sustains power generation across a range of source rotation speeds. The proposed scheme is assessed through simulations and experiments.

  18. Rotor Position Sensorless Control and Its Parameter Sensitivity of Permanent Magnet Motor Based on Model Reference Adaptive System

    NASA Astrophysics Data System (ADS)

    Ohara, Masaki; Noguchi, Toshihiko

    This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.

  19. The Technique of Changing the Drive Method of Micro Step Drive and Sensorless Drive for Hybrid Stepping Motor

    NASA Astrophysics Data System (ADS)

    Yoneda, Makoto; Dohmeki, Hideo

    The position control system with the advantage large torque, low vibration, and high resolution can be obtained by the constant current micro step drive applied to hybrid stepping motor. However loss is large, in order not to be concerned with load torque but to control current uniformly. As the one technique of a position control system in which high efficiency is realizable, the same sensorless control as a permanent magnet motor is effective. But, it was the purpose that the control method proposed until now controls speed. Then, this paper proposed changing the drive method of micro step drive and sensorless drive. The change of the drive method was verified from the simulation and the experiment. On no load, it was checked not producing change of a large speed at the time of a change by making electrical angle and carrying out zero reset of the integrator. On load, it was checked that a large speed change arose. The proposed system could change drive method by setting up the initial value of an integrator using the estimated result, without producing speed change. With this technique, the low loss position control system, which employed the advantage of the hybrid stepping motor, has been built.

  20. Full-order Luenberger observer based on fuzzy-logic control for sensorless field-oriented control of a single-sided linear induction motor.

    PubMed

    Holakooie, Mohammad Hosein; Ojaghi, Mansour; Taheri, Asghar

    2016-01-01

    This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Sensorless H∞ speed-tracking synthesis for surface-mount permanent magnet synchronous motor.

    PubMed

    Ramírez-Villalobos, Ramón; Aguilar, Luis T; Coria, Luis N

    2017-03-01

    In this paper, a sensorless speed tracking control is proposed for a surface-mount permanent magnet synchronous motor by using a nonlinear H ∞ -controller via stator currents measurements for feedback. An output feedback nonlinear H ∞ -controller was designed such that the undisturbed system is uniformly asymptotically stable around the desired speed reference, while also the effects of external vanishing and non-vanishing disturbances, noise, and input backlash were attenuated locally. The rotor position was calculated from the causal dynamic output feedback compensator and from the desired speed reference. The existence of the proper solutions of the perturbed differential Riccati equations ensures stabilizability and detectability of the control system. The efficiency of the proposed sensorless controller was supported by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. A Flywheel Energy Storage System Demonstration for Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy

    2003-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented.

  3. Fast Fourier and discrete wavelet transforms applied to sensorless vector control induction motor for rotor bar faults diagnosis.

    PubMed

    Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha

    2014-09-01

    This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. New Technique of High-Performance Torque Control Developed for Induction Machines

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2003-01-01

    Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a method to clearly visualize the solution. The graphical technique allows a more insightful understanding of the operation of the machine under various conditions.

  5. Control of a High Speed Flywheel System for Energy Storage in Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy; Santiago, Walter

    2004-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented demonstrating the successful operation of the flywheel control up to the rated speed of 60,000 rpm.

  6. Sensorless speed detection of squirrel-cage induction machines using stator neutral point voltage harmonics

    NASA Astrophysics Data System (ADS)

    Petrovic, Goran; Kilic, Tomislav; Terzic, Bozo

    2009-04-01

    In this paper a sensorless speed detection method of induction squirrel-cage machines is presented. This method is based on frequency determination of the stator neutral point voltage primary slot harmonic, which is dependent on rotor speed. In order to prove method in steady state and dynamic conditions the simulation and experimental study was carried out. For theoretical investigation the mathematical model of squirrel cage induction machines, which takes into consideration actual geometry and windings layout, is used. Speed-related harmonics that arise from rotor slotting are analyzed using digital signal processing and DFT algorithm with Hanning window. The performance of the method is demonstrated over a wide range of load conditions.

  7. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive

    PubMed Central

    Gutierrez-Villalobos, Jose M.; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A.; Martínez-Hernández, Moisés A.

    2015-01-01

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677

  8. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive.

    PubMed

    Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A

    2015-06-29

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.

  9. Study on Stability of High Speed Traction Drive CVT for Aircraft Generator

    NASA Astrophysics Data System (ADS)

    Goi, Tatsuhiko; Tanaka, Hirohisa; Nakashima, Kenichi; Watanabe, Koji

    A half-toroidal traction drive CVT has a feature of small spin at traction pitch in whole speed ratio range of 1:4, which suits to transmit high rotational speed with minimum temperature increase of traction surface. Research activity on traction drive CVT has commenced in 1996 for applying it to an aircraft 24,000rpm constant-speed generator instead of a hydro-static transmission. This paper shows fundamental design of 90kW traction drive integrated drive generator, ``T-IDG", and stability analysis on a sensor-less electro-hydraulic speed control servo-mechanism by bond graphs. The performance test of T-IDG mounted on a test bench and an actual jet engine proved that the control system using sensor-less servomechanism can keep the generator speed within MIL-STD-704E allowable limit against steep changes of speed and load.

  10. Novel Observer Scheme of Fuzzy-MRAS Sensorless Speed Control of Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Chekroun, S.; Zerikat, M.; Mechernene, A.; Benharir, N.

    2017-01-01

    This paper presents a novel approach Fuzzy-MRAS conception for robust accurate tracking of induction motor drive operating in a high-performance drives environment. Of the different methods for sensorless control of induction motor drive the model reference adaptive system (MRAS) finds lot of attention due to its good performance. The analysis of the sensorless vector control system using MRAS is presented and the resistance parameters variations and speed observer using new Fuzzy Self-Tuning adaptive IP Controller is proposed. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The present approach helps to achieve a good dynamic response, disturbance rejection and low to plant parameter variations of the induction motor. In order to verify the performances of the proposed observer and control algorithms and to test behaviour of the controlled system, numerical simulation is achieved. Simulation results are presented and discussed to shown the validity and the performance of the proposed observer.

  11. Modified artificial fish school algorithm for free space optical communication with sensor-less adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cao, Jingtai; Zhao, Xiaohui; Li, Zhaokun; Liu, Wei; Gu, Haijun

    2017-11-01

    The performance of free space optical (FSO) communication system is limited by atmospheric turbulent extremely. Adaptive optics (AO) is the significant method to overcome the atmosphere disturbance. Especially, for the strong scintillation effect, the sensor-less AO system plays a major role for compensation. In this paper, a modified artificial fish school (MAFS) algorithm is proposed to compensate the aberrations in the sensor-less AO system. Both the static and dynamic aberrations compensations are analyzed and the performance of FSO communication before and after aberrations compensations is compared. In addition, MAFS algorithm is compared with artificial fish school (AFS) algorithm, stochastic parallel gradient descent (SPGD) algorithm and simulated annealing (SA) algorithm. It is shown that the MAFS algorithm has a higher convergence speed than SPGD algorithm and SA algorithm, and reaches the better convergence value than AFS algorithm, SPGD algorithm and SA algorithm. The sensor-less AO system with MAFS algorithm effectively increases the coupling efficiency at the receiving terminal with fewer numbers of iterations. In conclusion, the MAFS algorithm has great significance for sensor-less AO system to compensate atmospheric turbulence in FSO communication system.

  12. Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Lorenz, Robert D.

    2001-01-01

    A new, deadbeat type of direct torque control is proposed, analyzed, and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.

  13. Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Lorenz, Robert D.

    2003-01-01

    A new, deadbeat type of direct torque control is proposed, analyzed and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.

  14. Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines. Revision 1

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Lorenz, Robert D.

    2002-01-01

    A new, deadbeat type of direct torque control is proposed, analyzed, and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.

  15. Implementation of a MFAC based position sensorless drive for high speed BLDC motors with nonideal back EMF.

    PubMed

    Li, Haitao; Ning, Xin; Li, Wenzhuo

    2017-03-01

    In order to improve the reliability and reduce power consumption of the high speed BLDC motor system, this paper presents a model free adaptive control (MFAC) based position sensorless drive with only a dc-link current sensor. The initial commutation points are obtained by detecting the phase of EMF zero-crossing point and then delaying 30 electrical degrees. According to the commutation error caused by the low pass filter (LPF) and other factors, the relationship between commutation error angle and dc-link current is analyzed, a corresponding MFAC based control method is proposed, and the commutation error can be corrected by the controller in real time. Both the simulation and experimental results show that the proposed correction method can achieve ideal commutation effect within the entire operating speed range. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. EFFICIENCY OPTIMIZATIN CONTROL OF AC INDUCTION MOTORS: INITIAL LABORATORY RESULTS

    EPA Science Inventory

    The report discusses the development of a fuzzy logic, energy-optimizing controller to improve the efficiency of motor/drive combinations that operate at varying loads and speeds. This energy optimizer is complemented by a sensorless speed controller that maintains motor shaft re...

  17. Sensorless control for permanent magnet synchronous motor using a neural network based adaptive estimator

    NASA Astrophysics Data System (ADS)

    Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung

    2005-12-01

    The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.

  18. A Drive Method of Permanent Magnet Synchronous Motor Using Torque Angle Estimation without Position Sensor

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuro; Takahashi, Hisashi

    In some motor applications, it is very difficult to attach a position sensor to the motor in housing. One of the examples of such applications is the dental handpiece-motor. In those designs, it is necessary to drive highly efficiency at low speed and variable load condition without a position sensor. We developed a method to control a motor high-efficient and smoothly at low speed without a position sensor. In this paper, the method in which permanent magnet synchronous motor is controlled smoothly and high-efficient by using torque angle control in synchronized operation is shown. The usefulness is confirmed by experimental results. In conclusion, the proposed sensor-less control method has been achieved to be very efficiently and smoothly.

  19. Sensorless control of ship propulsion interior permanent magnet synchronous motor based on a new sliding mode observer.

    PubMed

    Ren, Jun-Jie; Liu, Yan-Cheng; Wang, Ning; Liu, Si-Yuan

    2015-01-01

    This paper proposes a sensorless speed control strategy for ship propulsion interior permanent magnet synchronous motor (IPMSM) based on a new sliding-mode observer (SMO). In the SMO the low-pass filter and the method of arc-tangent calculation of extended electromotive force (EMF) or phase-locked loop (PLL) technique are not used. The calculation of the rotor speed is deduced from the Lyapunov function stability analysis. In order to reduce system chattering, sigmoid functions with switching gains being adaptively updated by fuzzy logic systems are innovatively incorporated into the SMO. Finally, simulation results for a 4.088 MW ship propulsion IPMSM and experimental results from a 7.5 kW IPMSM drive are provided to verify the effectiveness of the proposed SMO method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes.

    PubMed

    Arun Dominic, D; Chelliah, Thanga Raj

    2014-09-01

    To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    NASA Astrophysics Data System (ADS)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  2. A new technique to control brushless motor for blood pump application.

    PubMed

    Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Legendre, Daniel; Bock, Eduardo; Lucchi, Júlio César

    2008-04-01

    This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.

  3. Adjustable Speed Drive Project for Teaching a Servo Systems Course Laboratory

    ERIC Educational Resources Information Center

    Rodriguez-Resendiz, J.; Herrera-Ruiz, G.; Rivas-Araiza, E. A.

    2011-01-01

    This paper describes an adjustable speed drive for a three-phase motor, which has been implemented as a design for a servo system laboratory course in an engineering curriculum. The platform is controlled and analyzed in a LabVIEW environment and run on a PC. Theory is introduced in order to show the sensorless algorithms. These are computed by…

  4. Sensorless position estimator applied to nonlinear IPMC model

    NASA Astrophysics Data System (ADS)

    Bernat, Jakub; Kolota, Jakub

    2016-11-01

    This paper addresses the issue of estimating position for an ionic polymer metal composite (IPMC) known as electro active polymer (EAP). The key step is the construction of a sensorless mode considering only current feedback. This work takes into account nonlinearities caused by electrochemical effects in the material. Owing to the recent observer design technique, the authors obtained both Lyapunov function based estimation law as well as sliding mode observer. To accomplish the observer design, the IPMC model was identified through a series of experiments. The research comprises time domain measurements. The identification process was completed by means of geometric scaling of three test samples. In the proposed design, the estimated position accurately tracks the polymer position, which is illustrated by the experiments.

  5. Real time optimization algorithm for wavefront sensorless adaptive optics OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Sarunic, Marinko V.; Verhaegen, Michel; Jian, Yifan

    2017-02-01

    Optical Coherence Tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. A limitation of the performance and utilization of the OCT systems has been the lateral resolution. Through the combination of wavefront sensorless adaptive optics with dual variable optical elements, we present a compact lens based OCT system that is capable of imaging the photoreceptor mosaic. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient eyes, and a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators for aberration correction to obtain near diffraction limited imaging at the retina. A parallel processing computational platform permitted real-time image acquisition and display. The Data-based Online Nonlinear Extremum seeker (DONE) algorithm was used for real time optimization of the wavefront sensorless adaptive optics OCT, and the performance was compared with a coordinate search algorithm. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented. Applying the DONE algorithm in vivo for wavefront sensorless AO-OCT demonstrates that the DONE algorithm succeeds in drastically improving the signal while achieving a computational time of 1 ms per iteration, making it applicable for high speed real time applications.

  6. Automating the Transition Between Sensorless Motor Control Methods for the NASA Glenn Research Center Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Fehrmann, Elizabeth A.; Kenny, Barbara H.

    2004-01-01

    The NASA Glenn Research Center (GRC) has been working to advance the technology necessary for a flywheel energy storage system for the past several years. Flywheels offer high efficiency, durability, and near-complete discharge capabilities not produced by typical chemical batteries. These characteristics show flywheels to be an attractive alternative to the more typical energy storage solutions. Flywheels also offer the possibility of combining what are now two separate systems in space applications into one: energy storage, which is currently provided by batteries, and attitude control, which is currently provided by control moment gyroscopes (CMGs) or reaction wheels. To date, NASA Glenn research effort has produced the control algorithms necessary to demonstrate flywheel operation up to a rated speed of 60,000 RPM and the combined operation of two flywheel machines to simultaneously provide energy storage and single axis attitude control. Two position-sensorless algorithms are used to control the motor/generator, one for low (0 to 1200 RPM) speeds and one for high speeds. The algorithm allows the transition from the low speed method to the high speed method, but the transition from the high to low speed method was not originally included. This leads to a limitation in the existing motor/generator control code that does not allow the flywheels to be commanded to zero speed (and back in the negative speed direction) after the initial startup. In a multi-flywheel system providing both energy storage and attitude control to a spacecraft, speed reversal may be necessary.

  7. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    PubMed

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  8. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    PubMed Central

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  9. An adaptive supervisory sliding fuzzy cerebellar model articulation controller for sensorless vector-controlled induction motor drive systems.

    PubMed

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-03-25

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes--the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC--were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  10. An Approach to Sensorless Detection of Human Input Torque and Its Application to Power Assist Motion in Electric Wheelchair

    NASA Astrophysics Data System (ADS)

    Kaida, Yukiko; Murakami, Toshiyuki

    A wheelchair is an important apparatus of mobility for people with disability. Power-assist motion in an electric wheelchair is to expand the operator's field of activities. This paper describes force sensorless detection of human input torque. Reaction torque estimation observer calculates the total disturbance torque first. Then, the human input torque is extracted from the estimated disturbance. In power-assist motion, assist torque is synthesized according to the product of assist gain and the average torque of the right and left input torque. Finally, the proposed method is verified through the experiments of power-assist motion.

  11. Design and parameter estimation of hybrid magnetic bearings for blood pump applications

    NASA Astrophysics Data System (ADS)

    Lim, Tau Meng; Zhang, Dongsheng; Yang, Juanjuan; Cheng, Shanbao; Low, Sze Hsien; Chua, Leok Poh; Wu, Xiaowei

    2009-10-01

    This paper discusses the design and parameter estimation of the dynamics characteristics of a high-speed hybrid magnetic bearings (HMBs) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet (PM) brushless and sensorless DC motor. It is levitated by two HMBs at both ends in five-degree-of-freedom with proportional-integral-derivative (PID) controllers; among which four radial directions are actively controlled and one axial direction is passively controlled. Test results show that the rotor can be stably supported to speeds of 14,000 rpm. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMBs system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air—in both the radial and axial directions. The radial stiffness of the HMBs is compared to the Ansoft's Maxwell 2D/3D finite element magnetostatic results. Experimental estimation showed that the dynamics characteristics of the HMBs system are dominated by the frequency-dependent stiffness coefficients. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamics properties under normal operating conditions with fluid.

  12. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  13. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part II

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji

    This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.

  14. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part I

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji; Sano, Kousuke

    This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.

  15. A high speed model-based approach for wavefront sensorless adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Lianghua, Wen; Yang, Ping; Shuai, Wang; Wenjing, Liu; Shanqiu, Chen; Xu, Bing

    2018-02-01

    To improve temporal-frequency property of wavefront sensorless adaptive optics (AO) systems, a fast general model-based aberration correction algorithm is presented. The fast general model-based approach is based on the approximately linear relation between the mean square of the aberration gradients and the second moment of far-field intensity distribution. The presented model-based method is capable of completing a mode aberration effective correction just applying one disturbing onto the deformable mirror(one correction by one disturbing), which is reconstructed by the singular value decomposing the correlation matrix of the Zernike functions' gradients. Numerical simulations of AO corrections under the various random and dynamic aberrations are implemented. The simulation results indicate that the equivalent control bandwidth is 2-3 times than that of the previous method with one aberration correction after applying N times disturbing onto the deformable mirror (one correction by N disturbing).

  16. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited

    PubMed Central

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Jian, Yifan; Verhaegen, Michel; Sarunic, Marinko V.

    2017-01-01

    In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented. PMID:28736670

  17. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited].

    PubMed

    Verstraete, Hans R G W; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Jian, Yifan; Verhaegen, Michel; Sarunic, Marinko V

    2017-04-01

    In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented.

  18. A sensorless method for measuring the point mobility of mechanical structures

    NASA Astrophysics Data System (ADS)

    Boulandet, R.; Michau, M.; Herzog, P.; Micheau, P.; Berry, A.

    2016-09-01

    This paper presents a convenient and cost-effective experimental tool for measuring the mobility characteristics of a mechanical structure. The objective is to demonstrate that the point mobility measurement can be performed using only an electrodynamic inertial exciter. Unlike previous work based on voice coil actuators, no load cell or accelerometer is needed. Instead, it is theoretically shown that the mobility characteristics of the structure can be estimated from variations in the electrical input impedance of the actuator fixed onto it, provided that the electromechanical parameters of the actuator are known. The proof of concept is made experimentally using a cheap commercially available actuator on a simply supported plate, leading to a good dynamic range from 100 Hz to 1 kHz. The methodology to assess the basic parameters of the actuator is also given. Measured data are compared to a standard shaker testing and the strengths and weaknesses of the sensorless mobility measuring device are discussed. It is believed that this sensorless mobility measuring device can be a convenient experimental tool to determine the dynamic characteristics of a wide range of mechanical structures.

  19. Sensorless position estimation and control of permanent-magnet synchronous motors using a saturation model

    NASA Astrophysics Data System (ADS)

    Kassem Jebai, Al; Malrait, François; Martin, Philippe; Rouchon, Pierre

    2016-03-01

    Sensorless control of permanent-magnet synchronous motors at low velocity remains a challenging task. A now well-established method consists of injecting a high-frequency signal and using the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also proposes a simple parametric model of the saturated motor, based on an energy function which simply encompasses saturation and cross-saturation effects. Experimental results on a surface-mounted motor and an interior magnet motor illustrate the relevance of the approach.

  20. New sensorless, efficient optimized and stabilized v/f control for pmsm machines

    NASA Astrophysics Data System (ADS)

    Jafari, Seyed Hesam

    With the rapid advances in power electronics and motor drive technologies in recent decades, permanent magnet synchronous machines (PMSM) have found extensive applications in a variety of industrial systems due to its many desirable features such as high power density, high efficiency, and high torque to current ratio, low noise, and robustness. In low dynamic applications like pumps, fans and compressors where the motor speed is nearly constant, usage of a simple control algorithm that can be implemented with least number of the costly external hardware can be highly desirable for industry. In recent published works, for low power PMSMs, a new sensorless volts-per-hertz (V/f) controlling method has been proposed which can be used for PMSM drive applications where the motor speed is constant. Moreover, to minimize the cost of motor implementation, the expensive rotor damper winding was eliminated. By removing the damper winding, however, instability problems normally occur inside of the motor which in some cases can be harmful for a PMSM drive. As a result, to address the instability issue, a stabilizing loop was developed and added to the conventional V/f. By further studying the proposed sensorless stabilized V/f, and calculating power loss, it became known that overall motor efficiency still is needed to be improved and optimized. This thesis suggests a new V/f control method for PMSMs, where both efficiency and stability problems are addressed. Also, although in nearly all recent related research, methods have been applied to low power PMSM, for the first time, in this thesis, the suggested method is implemented for a medium power 15 kW PMSM. A C2000 F2833x Digital Signal Processor (DSP) is used as controller part for the student custom built PMSM drive, but instead of programming the DSP in Assembly or C, the main control algorithm was developed in a rapid prototype software environment which here Matlab Simulink embedded code library is used.

  1. Enhanced visualization of peripheral retinal vasculature with wavefront sensorless adaptive optics OCT angiography in diabetic patients

    PubMed Central

    Polans, James; Cunefare, David; Cole, Eli; Keller, Brenton; Mettu, Priyatham S.; Cousins, Scott W.; Allingham, Michael J.; Izatt, Joseph A.; Farsiu, Sina

    2017-01-01

    Optical coherence tomography angiography (OCTA) is a promising technique for non-invasive visualization of vessel networks in the human eye. We debut a system capable of acquiring wide field-of-view (>70°) OCT angiograms without mosaicking. Additionally, we report on enhancing the visualization of peripheral microvasculature using wavefront sensorless adaptive optics (WSAO). We employed a fast WSAO algorithm that enabled wavefront correction in <2 seconds by iterating the mirror shape at the speed of OCT B-scans rather than volumes. Also, we contrasted ~7° field-of-view OCTA angiograms acquired in the periphery with and without WSAO correction. On average, WSAO improved the sharpness of microvasculature by 65% in healthy and 38% in diseased eyes. Preliminary observations demonstrated that the location of 7° images could be identified directly from the wide field-of-view angiogram. A pilot study on a normal subject and patients with diabetic retinopathy showed the impact of utilizing WSAO for OCTA when visualizing peripheral vasculature pathologies. PMID:28059209

  2. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters.

    PubMed

    Wang, Yu; Koenig, Steven C; Slaughter, Mark S; Giridharan, Guruprasad A

    2015-01-01

    The risk for left ventricular (LV) suction during left ventricular assist devices (LVAD) support has been a clinical concern. Current development efforts suggest LVAD suction prevention and physiologic control algorithms may require chronic implantation of pressure or flow sensors, which can be unreliable because of baseline drift and short lifespan. To overcome this limitation, we designed a sensorless suction prevention and physiologic control (eSPPC) algorithm that only requires LVAD intrinsic parameters (pump speed and power). Two gain-scheduled, proportional-integral controllers maintain a differential pump speed (ΔRPM) above a user-defined threshold to prevent LV suction while maintaining an average reference differential pressure (ΔP) between the LV and aorta. ΔRPM is calculated from noisy pump speed measurements that are low-pass filtered, and ΔP is estimated using an extended Kalman filter. Efficacy and robustness of the eSPPC algorithm were evaluated in silico during simulated rest and exercise test conditions for 1) excessive ΔP setpoint (ES); 2) rapid eightfold increase in pulmonary vascular resistance (PVR); and 3) ES and PVR. Simulated hemodynamic waveforms (LV pressure and volume; aortic pressure and flow) using only intrinsic pump parameters showed the feasibility of our proposed eSPPC algorithm in preventing LV suction for all test conditions.

  3. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  4. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  5. DSP-based adaptive backstepping using the tracking errors for high-performance sensorless speed control of induction motor drive.

    PubMed

    Zaafouri, Abderrahmen; Regaya, Chiheb Ben; Azza, Hechmi Ben; Châari, Abdelkader

    2016-01-01

    This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Smart sensorless prediction diagnosis of electric drives

    NASA Astrophysics Data System (ADS)

    Kruglova, TN; Glebov, NA; Shoshiashvili, ME

    2017-10-01

    In this paper, the discuss diagnostic method and prediction of the technical condition of an electrical motor using artificial intelligent method, based on the combination of fuzzy logic and neural networks, are discussed. The fuzzy sub-model determines the degree of development of each fault. The neural network determines the state of the object as a whole and the number of serviceable work periods for motors actuator. The combination of advanced techniques reduces the learning time and increases the forecasting accuracy. The experimental implementation of the method for electric drive diagnosis and associated equipment is carried out at different speeds. As a result, it was found that this method allows troubleshooting the drive at any given speed.

  7. MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.

    PubMed

    Najjar-Khodabakhsh, Abbas; Soltani, Jafar

    2016-03-01

    In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Fault tolerant operation of switched reluctance machine

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and experiments. With the proposed optimal waveform, torque production is greatly improved under the same Root Mean Square (RMS) current constraint. Additionally, position sensorless operation methods under phase faults are investigated to account for the combination of physical position sensor and phase winding faults. A comprehensive solution for position sensorless operation under single and multiple phases fault are proposed and validated through experiments. Continuous position sensorless operation with seamless transition between various numbers of phase fault is achieved.

  9. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics

    PubMed Central

    Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  10. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    PubMed Central

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779

  11. Position Estimation for Switched Reluctance Motor Based on the Single Threshold Angle

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Pang; Yu, Yue

    2017-05-01

    This paper presents a position estimate model of switched reluctance motor based on the single threshold angle. In view of the relationship of between the inductance and rotor position, the position is estimated by comparing the real-time dynamic flux linkage with the threshold angle position flux linkage (7.5° threshold angle, 12/8SRM). The sensorless model is built by Maltab/Simulink, the simulation are implemented under the steady state and transient state different condition, and verified its validity and feasibility of the method..

  12. Motor Control and Regulation for a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  13. Method and apparatus for sensorless operation of brushless permanent magnet motors

    DOEpatents

    Sriram, Tillasthanam V.

    1998-01-01

    A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle.

  14. Method and apparatus for sensorless operation of brushless permanent magnet motors

    DOEpatents

    Sriram, T.V.

    1998-04-14

    A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle. 23 figs.

  15. Fuel sensor-less control of a liquid feed fuel cell system under steady load for portable applications

    NASA Astrophysics Data System (ADS)

    Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.

    This study presents a novel fuel sensor-less control scheme for a liquid feed fuel cell system that does not rely on a fuel concentration sensor. The proposed approach simplifies the design and reduces the cost and complexity of a liquid feed fuel cell system, and is especially suited to portable power sources, of which the volume and weight are important. During the reaction of a fuel cell, the cell's operating characteristics, such as potential, current and power are measured to control the supply of fuel and regulate its concentration to optimize performance. Experiments were conducted to verify that the fuel sensor-less control algorithm is effective in the liquid feed fuel cell system.

  16. Field-programmable analogue arrays for the sensorless control of DC motors

    NASA Astrophysics Data System (ADS)

    Rivera, J.; Dueñas, I.; Ortega, S.; Del Valle, J. L.

    2018-02-01

    This work presents the analogue implementation of a sensorless controller for direct current motors based on the super-twisting (ST) sliding mode technique, by means of field programmable analogue arrays (FPAA). The novelty of this work is twofold, first is the use of the ST algorithm in a sensorless scheme for DC motors, and the implementation method of this type of sliding mode controllers in FPAAs. The ST algorithm reduces the chattering problem produced with the deliberate use of the sign function in classical sliding mode approaches. On the other hand, the advantages of the implementation method over a digital one are that the controller is not digitally approximated, the controller gains are not fine tuned and the implementation does not require the use of analogue-to-digital and digital-to-analogue converter circuits. In addition to this, the FPAA is a reconfigurable, lower cost and power consumption technology. Simulation and experimentation results were registered, where a more accurate transient response and lower power consumption were obtained by the proposed implementation method when compared to a digital implementation. Also, a more accurate performance by the DC motor is obtained with proposed sensorless ST technique when compared with a classical sliding mode approach.

  17. Portable DMFC system with methanol sensor-less control

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Liu, D. H.; Huang, C. L.; Chang, C. L.

    This work develops a prototype 20 W portable DMFC by system integration of stack, condenser, methanol sensor-less control and start-up characteristics. The effects of these key components and control schemes on the performance are also discussed. To expedite the use of portable DMFC in electronic applications, the system utilizes a novel methanol sensor-less control method, providing improved fuel efficiency, durability, miniaturization and cost reduction. The operating characteristics of the DMFC stack are applied to control the fuel ejection time and period, enabling the system to continue operating even when the MEAs of the stack are deteriorated. The portable system is also designed with several features including water balance and quick start-up (in 5 min). Notably, the proposed system using methanol sensor-less control with injection of pure methanol can power the DVD player and notebook PC. The system specific energy and energy density following three days of operation are 362 Wh kg -1 and 335 Wh L -1, respectively, which are better than those of lithium batteries (∼150 Wh kg -1 and ∼250 Wh L -). This good energy storage feature demonstrates that the portable DMFC is likely to be valuable in computer, communication and consumer electronic (3C) markets.

  18. BP artificial neural network based wave front correction for sensor-less free space optics communication

    NASA Astrophysics Data System (ADS)

    Li, Zhaokun; Zhao, Xiaohui

    2017-02-01

    The sensor-less adaptive optics (AO) is one of the most promising methods to compensate strong wave front disturbance in free space optics communication (FSO). The back propagation (BP) artificial neural network is applied for the sensor-less AO system to design a distortion correction scheme in this study. This method only needs one or a few online measurements to correct the wave front distortion compared with other model-based approaches, by which the real-time capacity of the system is enhanced and the Strehl Ratio (SR) is largely improved. Necessary comparisons in numerical simulation with other model-based and model-free correction methods proposed in Refs. [6,8,9,10] are given to show the validity and advantage of the proposed method.

  19. Simulink-aided Design and Implementation of Sensorless BLDC Motor Digital Control System

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A. A.; Tsvetkov, Y. N.; Chistov, V. B.; Nyrkov, A. P.; Sokolov, S. S.

    2017-07-01

    The paper describes the process of creating of brushless direct current motor’s digital control system. The target motor has no speed sensor, so back-EMF method is used for commutation control. Authors show how to model the control system in MatLab/Simulink and to test it onboard STM32F4 microcontroller.This technology allows to create the most flexible system, which will control possible with a personal computer by communication lines. It is possible to examine the signals in the circuit of the actuator without any external measuring instruments - testers, oscilloscopes, etc. - and output waveforms and measured values of signals directly on the host PC.

  20. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.

    PubMed

    Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel

    2016-09-01

    Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Feasibility Study of Jupiter Icy Moons Orbiter Permanent Magnet Alternator Start Sequence

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Tokars, Roger P.

    2006-01-01

    The Jupiter Icy Moons Orbiter (JIMO) mission was a proposed, (recently cancelled) long duration science mission to study three moons of Jupiter: Callisto, Ganymede, and Europa. One design of the JIMO spacecraft used a nuclear heat source in conjunction with a Brayton rotating machine to generate electrical power for the electric thrusters and the spacecraft bus. The basic operation of the closed cycle Brayton system was as follows. The working fluid, a heliumxenon gas mixture, first entered a compressor, then went through a recuperator and hot-side heat exchanger, then expanded across a turbine that drove an alternator, then entered the cold-side of the recuperator and heat exchanger and finally returned to the compressor. The spacecraft was to be launched with the Brayton system off-line and the nuclear reactor shut down. Once the system was started, the helium-xenon gas would be circulated into the heat exchangers as the nuclear reactors were activated. Initially, the alternator unit would operate as a motor so as to drive the turbine and compressor to get the cycle started. This report investigated the feasibility of the start up sequence of a permanent magnet (PM) machine, similar in operation to the alternator unit, without any position or speed feedback sensors ("sensorless") and with a variable load torque. It is found that the permanent magnet machine can start with sensorless control and a load torque of up to 30 percent of the rated value.

  2. Prosthetic design directives: Low-cost hands within reach.

    PubMed

    Jones, G K; Rosendo, A; Stopforth, R

    2017-07-01

    Although three million people around the world suffer from the lack of one or both upper limbs 80% of this number is located within developing countries. While prosthetic prices soar with technology 3D printing and low cost electronics present a sensible solution for those that cannot afford expensive prosthetics. The electronic and control design of a low-cost prosthetic hand, the Touch Hand II, is discussed. This paper shows that sensorless techniques can be used to reduce design complexities, costs, and provide easier access to the electronics. A closing and opening finite state machine (COFSM) was developed to handle the actuated digit joint control state and a supervisory switching control scheme, used for speed and grip strength control. Three torque and speed settings were created to be preset for specific grasps. The hand was able to replicate ten frequently used grasps and grip some common objects. Future work is necessary to enable a user to control it with myoelectric signals (MESs) and to solve operational problems related to electromagnetic interference (EMI).

  3. A Sensorless Predictive Current Controlled Boost Converter by Using an EKF with Load Variation Effect Elimination Function

    PubMed Central

    Tong, Qiaoling; Chen, Chen; Zhang, Qiao; Zou, Xuecheng

    2015-01-01

    To realize accurate current control for a boost converter, a precise measurement of the inductor current is required to achieve high resolution current regulating. Current sensors are widely used to measure the inductor current. However, the current sensors and their processing circuits significantly contribute extra hardware cost, delay and noise to the system. They can also harm the system reliability. Therefore, current sensorless control techniques can bring cost effective and reliable solutions for various boost converter applications. According to the derived accurate model, which contains a number of parasitics, the boost converter is a nonlinear system. An Extended Kalman Filter (EKF) is proposed for inductor current estimation and output voltage filtering. With this approach, the system can have the same advantages as sensored current control mode. To implement EKF, the load value is necessary. However, the load may vary from time to time. This can lead to errors of current estimation and filtered output voltage. To solve this issue, a load variation elimination effect elimination (LVEE) module is added. In addition, a predictive average current controller is used to regulate the current. Compared with conventional voltage controlled system, the transient response is greatly improved since it only takes two switching cycles for the current to reach its reference. Finally, experimental results are presented to verify the stable operation and output tracking capability for large-signal transients of the proposed algorithm. PMID:25928061

  4. Proposition for sensorless self-excitation by a piezoelectric device

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Kokubun, Y.; Yabuno, H.

    2018-04-01

    In this paper, we propose a method to realize self-excitation in an oscillator actuated by a piezoelectric device without a sensor. In general, the positive feedback associated with the oscillator velocity causes the self-excitation. Instead of measuring the velocity with a sensor, we utilize the electro-mechanical coupling effect in the oscillator and piezoelectric device. We drive the piezoelectric device with a current proportional to the linear combination of the voltage across the terminals of the piezoelectric device and its differential voltage signal. Then, the oscillator with the piezoelectric device behaves like a third-order system, which has three eigenvalues. The self-excitation can be realized because appropriate feedback gains can set two of the eigenvalues to be conjugate complex roots with a positive real part and the other eigenvalue to be a negative real root. To confirm the validity of the proposed method, we experimentally demonstrated the sensorless self-excitation and, as an application example, carried out mass sensing in a sensorless self-excited macrocantilever.

  5. Indirect rotor position sensing in real time for brushless permanent magnet motor drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ertugrul, N.; Acarnley, P.P.

    1998-07-01

    This paper describes a modern solution to real-time rotor position estimation of brushless permanent magnet (PM) motor drives. The position estimation scheme, based on flux linkage and line-current estimation, is implemented in real time by using the abc reference frame, and it is tested dynamically. The position estimation model of the test motor, development of hardware, and basic operation of the digital signal processor (DSP) are discussed. The overall position estimation strategy is accomplished with a fast DSP (TMS320C30). The method is a shaft position sensorless method that is applicable to a wide range of excitation types in brushless PMmore » motors without any restriction on the motor model and the current excitation. Both rectangular and sinewave-excited brushless PM motor drives are examined, and the results are given to demonstrate the effectiveness of the method with dynamic loads in closed estimated position loop.« less

  6. Optimal model-based sensorless adaptive optics for epifluorescence microscopy.

    PubMed

    Pozzi, Paolo; Soloviev, Oleg; Wilding, Dean; Vdovin, Gleb; Verhaegen, Michel

    2018-01-01

    We report on a universal sample-independent sensorless adaptive optics method, based on modal optimization of the second moment of the fluorescence emission from a point-like excitation. Our method employs a sample-independent precalibration, performed only once for the particular system, to establish the direct relation between the image quality and the aberration. The method is potentially applicable to any form of microscopy with epifluorescence detection, including the practically important case of incoherent fluorescence emission from a three dimensional object, through minor hardware modifications. We have applied the technique successfully to a widefield epifluorescence microscope and to a multiaperture confocal microscope.

  7. A Novelty Design Of Minimization Of Electrical Losses In A Vector Controlled Induction Machine Drive

    NASA Astrophysics Data System (ADS)

    Aryza, Solly; Irwanto, M.; Lubis, Zulkarnain; Putera Utama Siahaan, Andysah; Rahim, Robbi; Furqan, Mhd.

    2018-01-01

    The induction motor has in the industry . More attention has been a focus to develop and design of induction motor drive. With the method of vector control novelty prove the efficiency of induction motor over their entire speed range. In this paper desirable to design a loss minimization controller which can improve the efficiency. Also, this research described Modeling of an induction motor with core loss included. Realization of methods vector control for an induction motor drive with loss element included. The case of the loss minimization condition. The procedure was successful to calculate the gains of a PI controller. Though the problem of obtaining a robust and sensorless induction motor drive is by no means completely solved, the results obtained as part of this work point in a promising direction.

  8. Sensorless sliding mode observer for a five-phase permanent magnet synchronous motor drive.

    PubMed

    Hosseyni, Anissa; Trabelsi, Ramzi; Mimouni, Med Faouzi; Iqbal, Atif; Alammari, Rashid

    2015-09-01

    This paper deals with the sensorless vector controlled five-phase permanent magnet synchronous motor (PMSM) drive based on a sliding mode observer (SMO). The observer is designed considering the back electromotive force (EMF) of five-phase permanent magnet synchronous motor. The SMO structure and design are illustrated. Stability of the proposed observer is demonstrated using Lyapunov stability criteria. The proposed strategy is asymptotically stable in the context of Lyapunov theory. Simulated results on a five-phase PMSM drive are displayed to validate the feasibility and the effectiveness of the proposed control strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Use of digital micromirror devices as dynamic pinhole arrays for adaptive confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, Paolo; Wilding, Dean; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel

    2018-02-01

    In this work, we present a new confocal laser scanning microscope capable to perform sensorless wavefront optimization in real time. The device is a parallelized laser scanning microscope in which the excitation light is structured in a lattice of spots by a spatial light modulator, while a deformable mirror provides aberration correction and scanning. A binary DMD is positioned in an image plane of the detection optical path, acting as a dynamic array of reflective confocal pinholes, images by a high performance cmos camera. A second camera detects images of the light rejected by the pinholes for sensorless aberration correction.

  10. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions.

    PubMed

    Polans, James; Keller, Brenton; Carrasco-Zevallos, Oscar M; LaRocca, Francesco; Cole, Elijah; Whitson, Heather E; Lad, Eleonora M; Farsiu, Sina; Izatt, Joseph A

    2017-01-01

    The peripheral retina of the human eye offers a unique opportunity for assessment and monitoring of ocular diseases. We have developed a novel wide-field (>70°) optical coherence tomography system (WF-OCT) equipped with wavefront sensorless adaptive optics (WSAO) for enhancing the visualization of smaller (<25°) targeted regions in the peripheral retina. We iterated the WSAO algorithm at the speed of individual OCT B-scans (~20 ms) by using raw spectral interferograms to calculate the optimization metric. Our WSAO approach with a 3 mm beam diameter permitted primarily low- but also high- order peripheral wavefront correction in less than 10 seconds. In preliminary imaging studies in five normal human subjects, we quantified statistically significant changes with WSAO correction, corresponding to a 10.4% improvement in average pixel brightness (signal) and 7.0% improvement in high frequency content (resolution) when visualizing 1 mm (~3.5°) B-scans of the peripheral (>23°) retina. We demonstrated the ability of our WF-OCT system to acquire non wavefront-corrected wide-field images rapidly, which could then be used to locate regions of interest, zoom into targeted features, and visualize the same region at different time points. A pilot clinical study was conducted on seven healthy volunteers and two subjects with prodromal Alzheimer's disease which illustrated the capability to image Drusen-like pathologies as far as 32.5° from the fovea in un-averaged volume scans. This work suggests that the proposed combination of WF-OCT and WSAO may find applications in the diagnosis and treatment of ocular, and potentially neurodegenerative, diseases of the peripheral retina, including diabetes and Alzheimer's disease.

  11. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions

    PubMed Central

    Polans, James; Keller, Brenton; Carrasco-Zevallos, Oscar M.; LaRocca, Francesco; Cole, Elijah; Whitson, Heather E.; Lad, Eleonora M.; Farsiu, Sina; Izatt, Joseph A.

    2016-01-01

    The peripheral retina of the human eye offers a unique opportunity for assessment and monitoring of ocular diseases. We have developed a novel wide-field (>70°) optical coherence tomography system (WF-OCT) equipped with wavefront sensorless adaptive optics (WSAO) for enhancing the visualization of smaller (<25°) targeted regions in the peripheral retina. We iterated the WSAO algorithm at the speed of individual OCT B-scans (~20 ms) by using raw spectral interferograms to calculate the optimization metric. Our WSAO approach with a 3 mm beam diameter permitted primarily low- but also high- order peripheral wavefront correction in less than 10 seconds. In preliminary imaging studies in five normal human subjects, we quantified statistically significant changes with WSAO correction, corresponding to a 10.4% improvement in average pixel brightness (signal) and 7.0% improvement in high frequency content (resolution) when visualizing 1 mm (~3.5°) B-scans of the peripheral (>23°) retina. We demonstrated the ability of our WF-OCT system to acquire non wavefront-corrected wide-field images rapidly, which could then be used to locate regions of interest, zoom into targeted features, and visualize the same region at different time points. A pilot clinical study was conducted on seven healthy volunteers and two subjects with prodromal Alzheimer’s disease which illustrated the capability to image Drusen-like pathologies as far as 32.5° from the fovea in un-averaged volume scans. This work suggests that the proposed combination of WF-OCT and WSAO may find applications in the diagnosis and treatment of ocular, and potentially neurodegenerative, diseases of the peripheral retina, including diabetes and Alzheimer’s disease. PMID:28101398

  12. Sensor-less force-reflecting macro-micro telemanipulation systems by piezoelectric actuators.

    PubMed

    Amini, H; Farzaneh, B; Azimifar, F; Sarhan, A A D

    2016-09-01

    This paper establishes a novel control strategy for a nonlinear bilateral macro-micro teleoperation system with time delay. Besides position and velocity signals, force signals are additionally utilized in the control scheme. This modification significantly improves the poor transparency during contact with the environment. To eliminate external force measurement, a force estimation algorithm is proposed for the master and slave robots. The closed loop stability of the nonlinear micro-micro teleoperation system with the proposed control scheme is investigated employing the Lyapunov theory. Consequently, the experimental results verify the efficiency of the new control scheme in free motion and during collision between the slave robot and the environment of slave robot with environment, and the efficiency of the force estimation algorithm. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Design, implementation, and application of 150-degree commutation VSI to improve speed range of sensored BLDC motor

    NASA Astrophysics Data System (ADS)

    Ozgenel, Mehmet Cihat

    2017-09-01

    Permanent magnet brushless dc (BLDC) motors are very convenient for many applications such as industrial, medical, robotic, aerospace, small electric vehicles, and home applications because of their inherent satisfying dynamic characteristics. There are numerous studies about these motors and their control schemes such as sensorless control and different speed and torque control schemes. All electric motors need commutation in order to produce speed and torque. Commutation in brushed DC motors is performed by means of a brush and collector. In BLDC motors, commutation is provided electronically in contrast to the brushed dc motors. In BLDC motors, motor phase windings are energized according to the information of the rotor position by inverter transistors. Rotor position information is used for commutation. Therefore, rotor position information is required to produce speed and torque for BLDC motors. The easiest and cheapest way to obtain rotor position information is to use Hall-effect or optical sensors. BLDC motor manufacturers generally produce BLDC motors equipped with three Hall-effect position sensors. Having three position sensors on BLDC motors provides six-step commutation which ensures two phase windings are energized in each moment. The third phase is empty. In this study, all phase windings are energized in the same time. This commutation method is twelve-step or 150 degrees commutation. So that more speed can be achieved from the same BLDC motor by comparison with six-step commutation. In this paper, both six-step and twelve-step commutation methods applied to the same BLDC motor and obtained experimental results from this study were presented, examined, and discussed.

  14. Design, implementation, and application of 150-degree commutation VSI to improve speed range of sensored BLDC motor.

    PubMed

    Ozgenel, Mehmet Cihat

    2017-09-01

    Permanent magnet brushless dc (BLDC) motors are very convenient for many applications such as industrial, medical, robotic, aerospace, small electric vehicles, and home applications because of their inherent satisfying dynamic characteristics. There are numerous studies about these motors and their control schemes such as sensorless control and different speed and torque control schemes. All electric motors need commutation in order to produce speed and torque. Commutation in brushed DC motors is performed by means of a brush and collector. In BLDC motors, commutation is provided electronically in contrast to the brushed dc motors. In BLDC motors, motor phase windings are energized according to the information of the rotor position by inverter transistors. Rotor position information is used for commutation. Therefore, rotor position information is required to produce speed and torque for BLDC motors. The easiest and cheapest way to obtain rotor position information is to use Hall-effect or optical sensors. BLDC motor manufacturers generally produce BLDC motors equipped with three Hall-effect position sensors. Having three position sensors on BLDC motors provides six-step commutation which ensures two phase windings are energized in each moment. The third phase is empty. In this study, all phase windings are energized in the same time. This commutation method is twelve-step or 150 degrees commutation. So that more speed can be achieved from the same BLDC motor by comparison with six-step commutation. In this paper, both six-step and twelve-step commutation methods applied to the same BLDC motor and obtained experimental results from this study were presented, examined, and discussed.

  15. Model-based sensor-less wavefront aberration correction in optical coherence tomography.

    PubMed

    Verstraete, Hans R G W; Wahls, Sander; Kalkman, Jeroen; Verhaegen, Michel

    2015-12-15

    Several sensor-less wavefront aberration correction methods that correct nonlinear wavefront aberrations by maximizing the optical coherence tomography (OCT) signal are tested on an OCT setup. A conventional coordinate search method is compared to two model-based optimization methods. The first model-based method takes advantage of the well-known optimization algorithm (NEWUOA) and utilizes a quadratic model. The second model-based method (DONE) is new and utilizes a random multidimensional Fourier-basis expansion. The model-based algorithms achieve lower wavefront errors with up to ten times fewer measurements. Furthermore, the newly proposed DONE method outperforms the NEWUOA method significantly. The DONE algorithm is tested on OCT images and shows a significantly improved image quality.

  16. Contrast-based sensorless adaptive optics for retinal imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  17. Signal injection as a fault detection technique.

    PubMed

    Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi

    2011-01-01

    Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies.

  18. Signal Injection as a Fault Detection Technique

    PubMed Central

    Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi

    2011-01-01

    Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies. PMID:22163801

  19. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  20. Contrast-based sensorless adaptive optics for retinal imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T.O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  1. High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy.

    PubMed

    Pozzi, P; Wilding, D; Soloviev, O; Verstraete, H; Bliek, L; Vdovin, G; Verhaegen, M

    2017-01-23

    The quality of fluorescence microscopy images is often impaired by the presence of sample induced optical aberrations. Adaptive optical elements such as deformable mirrors or spatial light modulators can be used to correct aberrations. However, previously reported techniques either require special sample preparation, or time consuming optimization procedures for the correction of static aberrations. This paper reports a technique for optical sectioning fluorescence microscopy capable of correcting dynamic aberrations in any fluorescent sample during the acquisition. This is achieved by implementing adaptive optics in a non conventional confocal microscopy setup, with multiple programmable confocal apertures, in which out of focus light can be separately detected, and used to optimize the correction performance with a sampling frequency an order of magnitude faster than the imaging rate of the system. The paper reports results comparing the correction performances to traditional image optimization algorithms, and demonstrates how the system can compensate for dynamic changes in the aberrations, such as those introduced during a focal stack acquisition though a thick sample.

  2. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-01-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved. PMID:24940539

  3. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  4. Design and realization of adaptive optical principle system without wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobin; Niu, Chaojun; Guo, Yaxing; Han, Xiang'e.

    2018-02-01

    In this paper, we focus on the performance improvement of the free space optical communication system and carry out the research on wavefront-sensorless adaptive optics. We use a phase only liquid crystal spatial light modulator (SLM) as the wavefront corrector. The optical intensity distribution of the distorted wavefront is detected by a CCD. We develop a wavefront controller based on ARM and a software based on the Linux operating system. The wavefront controller can control the CCD camera and the wavefront corrector. There being two SLMs in the experimental system, one simulates atmospheric turbulence and the other is used to compensate the wavefront distortion. The experimental results show that the performance quality metric (the total gray value of 25 pixels) increases from 3037 to 4863 after 200 iterations. Besides, it is demonstrated that our wavefront-sensorless adaptive optics system based on SPGD algorithm has a good performance in compensating wavefront distortion.

  5. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  6. A self-sensing active magnetic bearing based on a direct current measurement approach.

    PubMed

    Niemann, Andries C; van Schoor, George; du Rand, Carel P

    2013-09-11

    Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.

  7. Improved artificial bee colony algorithm for wavefront sensor-less system in free space optical communication

    NASA Astrophysics Data System (ADS)

    Niu, Chaojun; Han, Xiang'e.

    2015-10-01

    Adaptive optics (AO) technology is an effective way to alleviate the effect of turbulence on free space optical communication (FSO). A new adaptive compensation method can be used without a wave-front sensor. Artificial bee colony algorithm (ABC) is a population-based heuristic evolutionary algorithm inspired by the intelligent foraging behaviour of the honeybee swarm with the advantage of simple, good convergence rate, robust and less parameter setting. In this paper, we simulate the application of the improved ABC to correct the distorted wavefront and proved its effectiveness. Then we simulate the application of ABC algorithm, differential evolution (DE) algorithm and stochastic parallel gradient descent (SPGD) algorithm to the FSO system and analyze the wavefront correction capabilities by comparison of the coupling efficiency, the error rate and the intensity fluctuation in different turbulence before and after the correction. The results show that the ABC algorithm has much faster correction speed than DE algorithm and better correct ability for strong turbulence than SPGD algorithm. Intensity fluctuation can be effectively reduced in strong turbulence, but not so effective in week turbulence.

  8. Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control

    NASA Astrophysics Data System (ADS)

    Kiuchi, Mitsuyuki; Ohnishi, Tokuo

    This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.

  9. Fast correction approach for wavefront sensorless adaptive optics based on a linear phase diversity technique.

    PubMed

    Yue, Dan; Nie, Haitao; Li, Ye; Ying, Changsheng

    2018-03-01

    Wavefront sensorless (WFSless) adaptive optics (AO) systems have been widely studied in recent years. To reach optimum results, such systems require an efficient correction method. This paper presents a fast wavefront correction approach for a WFSless AO system mainly based on the linear phase diversity (PD) technique. The fast closed-loop control algorithm is set up based on the linear relationship between the drive voltage of the deformable mirror (DM) and the far-field images of the system, which is obtained through the linear PD algorithm combined with the influence function of the DM. A large number of phase screens under different turbulence strengths are simulated to test the performance of the proposed method. The numerical simulation results show that the method has fast convergence rate and strong correction ability, a few correction times can achieve good correction results, and can effectively improve the imaging quality of the system while needing fewer measurements of CCD data.

  10. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.

    PubMed

    Yang, Huizhen; Soloviev, Oleg; Verhaegen, Michel

    2015-09-21

    A model-based wavefront sensorless (WFSless) adaptive optics (AO) system with a 61-element deformable mirror is simulated to correct the imaging of a turbulence-degraded extended object. A fast closed-loop control algorithm, which is based on the linear relation between the mean square of the aberration gradients and the second moment of the image intensity distribution, is used to generate the control signals for the actuators of the deformable mirror (DM). The restoration capability and the convergence rate of the AO system are investigated with different turbulence strength wave-front aberrations. Simulation results show the model-based WFSless AO system can restore those images degraded by different turbulence strengths successfully and obtain the correction very close to the achievable capability of the given DM. Compared with the ideal correction of 61-element DM, the averaged relative error of RMS value is 6%. The convergence rate of AO system is independent of the turbulence strength and only depends on the number of actuators of DM.

  11. A sensor-less LED dimming system based on daylight harvesting with BIPV systems.

    PubMed

    Yoo, Seunghwan; Kim, Jonghun; Jang, Cheol-Yong; Jeong, Hakgeun

    2014-01-13

    Artificial lighting in office buildings typically requires 30% of the total energy consumption of the building, providing a substantial opportunity for energy savings. To reduce the energy consumed by indoor lighting, we propose a sensor-less light-emitting diode (LED) dimming system using daylight harvesting. In this study, we used light simulation software to quantify and visualize daylight, and analyzed the correlation between photovoltaic (PV) power generation and indoor illumination in an office with an integrated PV system. In addition, we calculated the distribution of daylight illumination into the office and dimming ratios for the individual control of LED lights. Also, we were able directly to use the electric power generated by PV system. As a result, power consumption for electric lighting was reduced by 40 - 70% depending on the season and the weather conditions. Thus, the dimming system proposed in this study can be used to control electric lighting to reduce energy use cost-effectively and simply.

  12. Fuzzy crane control with sensorless payload deflection feedback for vibration reduction

    NASA Astrophysics Data System (ADS)

    Smoczek, Jaroslaw

    2014-05-01

    Different types of cranes are widely used for shifting cargoes in building sites, shipping yards, container terminals and many manufacturing segments where the problem of fast and precise transferring a payload suspended on the ropes with oscillations reduction is frequently important to enhance the productivity, efficiency and safety. The paper presents the fuzzy logic-based robust feedback anti-sway control system which can be applicable either with or without a sensor of sway angle of a payload. The discrete-time control approach is based on the fuzzy interpolation of the controllers and crane dynamic model's parameters with respect to the varying rope length and mass of a payload. The iterative procedure combining a pole placement method and interval analysis of closed-loop characteristic polynomial coefficients is proposed to design the robust control scheme. The sensorless anti-sway control application developed with using PAC system with RX3i controller was verified on the laboratory scaled overhead crane.

  13. Estimating Tool–Tissue Forces Using a 3-Degree-of-Freedom Robotic Surgical Tool

    PubMed Central

    Zhao, Baoliang; Nelson, Carl A.

    2016-01-01

    Robot-assisted minimally invasive surgery (MIS) has gained popularity due to its high dexterity and reduced invasiveness to the patient; however, due to the loss of direct touch of the surgical site, surgeons may be prone to exert larger forces and cause tissue damage. To quantify tool–tissue interaction forces, researchers have tried to attach different kinds of sensors on the surgical tools. This sensor attachment generally makes the tools bulky and/or unduly expensive and may hinder the normal function of the tools; it is also unlikely that these sensors can survive harsh sterilization processes. This paper investigates an alternative method by estimating tool–tissue interaction forces using driving motors' current, and validates this sensorless force estimation method on a 3-degree-of-freedom (DOF) robotic surgical grasper prototype. The results show that the performance of this method is acceptable with regard to latency and accuracy. With this tool–tissue interaction force estimation method, it is possible to implement force feedback on existing robotic surgical systems without any sensors. This may allow a haptic surgical robot which is compatible with existing sterilization methods and surgical procedures, so that the surgeon can obtain tool–tissue interaction forces in real time, thereby increasing surgical efficiency and safety. PMID:27303591

  14. Estimating Tool-Tissue Forces Using a 3-Degree-of-Freedom Robotic Surgical Tool.

    PubMed

    Zhao, Baoliang; Nelson, Carl A

    2016-10-01

    Robot-assisted minimally invasive surgery (MIS) has gained popularity due to its high dexterity and reduced invasiveness to the patient; however, due to the loss of direct touch of the surgical site, surgeons may be prone to exert larger forces and cause tissue damage. To quantify tool-tissue interaction forces, researchers have tried to attach different kinds of sensors on the surgical tools. This sensor attachment generally makes the tools bulky and/or unduly expensive and may hinder the normal function of the tools; it is also unlikely that these sensors can survive harsh sterilization processes. This paper investigates an alternative method by estimating tool-tissue interaction forces using driving motors' current, and validates this sensorless force estimation method on a 3-degree-of-freedom (DOF) robotic surgical grasper prototype. The results show that the performance of this method is acceptable with regard to latency and accuracy. With this tool-tissue interaction force estimation method, it is possible to implement force feedback on existing robotic surgical systems without any sensors. This may allow a haptic surgical robot which is compatible with existing sterilization methods and surgical procedures, so that the surgeon can obtain tool-tissue interaction forces in real time, thereby increasing surgical efficiency and safety.

  15. Fuel sensor-less control of a liquid feed fuel cell under dynamic loading conditions for portable power sources (II)

    NASA Astrophysics Data System (ADS)

    Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.

    This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.

  16. Contributions a l'etude et a l'application industrielle de la machine asynchrone

    NASA Astrophysics Data System (ADS)

    Ouhrouche, Mohand-Ameziane

    The work presented in this thesis, done in the Electrical Drives Laboratory of Electrical and Computer Engineering Department, deals with the industrial applications of a three-phase induction machine (electrical drives and electricity generation). This thesis, characterized by its multidisciplinary content, has two major parts. The first one deals with the on-line and off-line parametric identification of the induction machine model necessary to achieve accurate vector control strategy. The second part, which is a resume of a research work sponsored by Hydro-Quebec, deals with the application of an induction machine in Asynchronous Non Utility Generators units (ANUG). As it is shown in the following, major scientific contributions are made in both two parts. In the first part of our research work, we propose a new speed sensorless vector control strategy for an induction machine, which is adaptive to the rotor resistance variations. The proposed control strategy is based on the Extended Kalman Filter approach and a decoupling controller which takes into account the rotor resistance variations. The consideration of coupled electrical and mechanical modes leads to a fifth order nonlinear model of the induction machine. The load torque is taken as a function of the rotor angular speed. The Extended Kalman Filter, based on the process's nonlinear (bilinear) model, estimate simultaneously the rotor resistance, angular speed and the flux vector from the startup to the steady state equilibrium point. The machine-converter-control system is implemented in MATLAB/SIMULINK environment and the obtained results confirm the robustness of the proposed scheme. As in the electrical drives erea, the induction machine is now widely used by small to medium power Non Utility Generator units (NUG) to produce electricity. In Quebec, these NUGs units are integrated into the Hydro-Quebec 25 kV distribution system via transformer which exhibit nonlinear characteristics. We have shown by using the ElectroMagnetic Program (EMTP) that, in some islanding scenarios, i.e. that the NUG unit is disconnected from the power grid, in addition to frequency variations, appearence of high an abnormal overvoltages, ferroresonance should occur. As a consequence, normal protective devices could fail to securely operate, which could cause serious damages to the equipment and the maintenance staff. This result, established for the first time , can be useful to improve the reliability of the NUGs units and is considered important by the power engineering community. This has led to a publication in the John Wiley & Sons Encyclopedia of Electrical and Electronics Engineering which will be available in February 1999 ( http://www.engr.wisc.edu/ ece/ece).

  17. Passive control of a biventricular assist device with compliant inflow cannulae.

    PubMed

    Gregory, Shaun David; Pearcy, Mark John; Timms, Daniel

    2012-08-01

    Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow balancing Starling response is diminished in both ventricles. The reliability of sensor and sensorless-based control systems which aim to control VAD flow based on preload has limitations, and, thus, an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a CIC could potentially be used as a passive control system to prevent suction events in rotary left, right, and biventricular support. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  19. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  20. Control algorithms and applications of the wavefront sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  1. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration Themore » technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.« less

  2. Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications.

    PubMed

    Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh

    2009-07-01

    Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.

  3. Maintenance free gas bearing helium blower for nuclear plant

    NASA Astrophysics Data System (ADS)

    Molyneaux, A., Dr; Harris, M., Prof; Sharkh, S., Prof; Hill, S.; de Graaff, T.

    2017-08-01

    This paper describes the design, testing and operation of novel helium blowers used to recirculate the helium blanketing gas in the nuclear reactor used as a neutron source at the Institut Laue Langevan, Grenoble, France. The laser sintered shrouded centrifugal wheel operates at speeds up to 45000 rpm supported on helium lubricated hydrodynamic spiral groove bearings, and is driven by a sensorless permanent magnet motor. The entire machine is designed to keep the helium gas (polluted by a small amount of D2O) out of contact with any iron or copper materials which would contribute to the corrosion of parts of the circuit. It is designed to have zero maintenance during a lifetime of 40,000 hours of continuous operation. This paper will describe the spiral groove journal and thrust bearings. Design and manufacture of the 1 kW motor and centrifugal wheel will be explained including their CFD and FEA analyses. Measurements of rotor displacement will be presented showing the behaviour under factory testing as well as details of the measured centrifugal wheel and motor performances. Two machines are incorporated into the circuit to provide redundancy and the first blower has been in continuous operation since Jan 2015. The blower was designed, manufactured, assembled and tested in the UK using predominantly UK suppliers.

  4. A compliant, banded outflow cannula for decreased afterload sensitivity of rotary right ventricular assist devices.

    PubMed

    Gregory, Shaun D; Schummy, Emma; Pearcy, Mark; Pauls, Jo P; Tansley, Geoff; Fraser, John F; Timms, Daniel

    2015-02-01

    Biventricular support with dual rotary ventricular assist devices (VADs) has been implemented clinically with restriction of the right VAD (RVAD) outflow cannula to artificially increase afterload and, therefore, operate within recommended design speed ranges. However, the low preload and high afterload sensitivity of these devices increase the susceptibility of suction events. Active control systems are prone to sensor drift or inaccurate inferred (sensor-less) data, therefore an alternative solution may be of benefit. This study presents the in vitro evaluation of a compliant outflow cannula designed to passively decrease the afterload sensitivity of rotary RVADs and minimize left-sided suction events. A one-way fluid-structure interaction model was initially used to produce a design with suitable flow dynamics and radial deformation. The resultant geometry was cast with different initial cross-sectional restrictions and concentrations of a softening diluent before evaluation in a mock circulation loop. Pulmonary vascular resistance (PVR) was increased from 50 dyne s/cm(5) until left-sided suction events occurred with each compliant cannula and a rigid, 4.5 mm diameter outflow cannula for comparison. Early suction events (PVR ∼ 300 dyne s/cm(5) ) were observed with the rigid outflow cannula. Addition of the compliant section with an initial 3 mm diameter restriction and 10% diluent expanded the outflow restriction as PVR increased, thus increasing RVAD flow rate and preventing left-sided suction events at PVR levels beyond 1000 dyne s/cm(5) . Therefore, the compliant, restricted outflow cannula provided a passive control system to assist in the prevention of suction events with rotary biventricular support while maintaining pump speeds within normal ranges of operation. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network

    PubMed Central

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis. PMID:24404074

  6. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    PubMed

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis.

  7. Optical coherence tomography with a 2.8-mm beam diameter and sensorless defocus and astigmatism correction

    NASA Astrophysics Data System (ADS)

    Reddikumar, Maddipatla; Tanabe, Ayano; Hashimoto, Nobuyuki; Cense, Barry

    2017-02-01

    An optical coherence tomography (OCT) system with a 2.8-mm beam diameter is presented. Sensorless defocus correction can be performed with a Badal optometer and astigmatism correction with a liquid crystal device. OCT B-scans were used in an image-based optimization algorithm for aberration correction. Defocus can be corrected from -4.3 D to +4.3 D and vertical and oblique astigmatism from -2.5 D to +2.5 D. A contrast gain of 6.9 times was measured after aberration correction. In comparison with a 1.3-mm beam diameter OCT system, this concept achieved a 3.7-dB gain in dynamic range on a model retina. Both systems were used to image the retina of a human subject. As the correction of the liquid crystal device can take more than 60 s, the subject's spectacle prescription was adopted instead. This resulted in a 2.5 times smaller speckle size compared with the standard OCT system. The liquid crystal device for astigmatism correction does not need a high-voltage amplifier and can be operated at 5 V. The correction device is small (9 mm×30 mm×38 mm) and can easily be implemented in existing designs for OCT.

  8. Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging.

    PubMed

    Ju, Myeong Jin; Heisler, Morgan; Wahl, Daniel; Jian, Yifan; Sarunic, Marinko V

    2017-11-01

    We present a multiscale sensorless adaptive optics (SAO) OCT system capable of imaging retinal structure and vasculature with various fields-of-view (FOV) and resolutions. Using a single deformable mirror and exploiting the polarization properties of light, the SAO-OCT-A was implemented in a compact and easy to operate system. With the ability to adjust the beam diameter at the pupil, retinal imaging was demonstrated at two different numerical apertures with the same system. The general morphological structure and retinal vasculature could be observed with a few tens of micrometer-scale lateral resolution with conventional OCT and OCT-A scanning protocols with a 1.7-mm-diameter beam incident at the pupil and a large FOV (15 deg× 15 deg). Changing the system to a higher numerical aperture with a 5.0-mm-diameter beam incident at the pupil and the SAO aberration correction, the FOV was reduced to 3 deg× 3 deg for fine detailed imaging of morphological structure and microvasculature such as the photoreceptor mosaic and capillaries. Multiscale functional SAO-OCT imaging was performed on four healthy subjects, demonstrating its functionality and potential for clinical utility. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. The use of uncalibrated roadside CCTV cameras to estimate mean traffic speed

    DOT National Transportation Integrated Search

    2001-12-01

    In this report, we present a novel approach for estimating traffic speed using a sequence of images from an un-calibrated camera. We assert that exact calibration is not necessary to estimate speed. Instead, to estimate speed, we use: (1) geometric r...

  10. Alert management for home healthcare based on home automation analysis.

    PubMed

    Truong, T T; de Lamotte, F; Diguet, J-Ph; Said-Hocine, F

    2010-01-01

    Rising healthcare for elder and disabled people can be controlled by offering people autonomy at home by means of information technology. In this paper, we present an original and sensorless alert management solution which performs multimedia and home automation service discrimination and extracts highly regular home activities as sensors for alert management. The results of simulation data, based on real context, allow us to evaluate our approach before application to real data.

  11. Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Myung; Park, Hyun-Jong; Lee, Ju

    2016-10-01

    This paper proposes an advanced simulation model of driving system for Interior Permanent Magnet (IPM) BrushLess Direct Current (BLDC) motors driven by 120-degree conduction method (two-phase conduction method, TPCM) that is widely used for sensorless control of BLDC motors. BLDC motors can be classified as SPM (Surface mounted Permanent Magnet) and IPM motors. Simulation model of driving system with SPM motors is simple due to the constant stator inductance regardless of the rotor position. Simulation models of SPM motor driving system have been proposed in many researches. On the other hand, simulation models for IPM driving system by graphic-based simulation tool such as Matlab/Simulink have not been proposed. Simulation study about driving system of IPMs with TPCM is complex because stator inductances of IPM vary with the rotor position, as permanent magnets are embedded in the rotor. To develop sensorless scheme or improve control performance, development of control algorithm through simulation study is essential, and the simulation model that accurately reflects the characteristic of IPM is required. Therefore, this paper presents the advanced simulation model of IPM driving system, which takes into account the unique characteristic of IPM due to the position-dependent inductances. The validity of the proposed simulation model is validated by comparison to experimental and simulation results using IPM with TPCM control scheme.

  12. Sensorless adaptive optics for isoSTED nanoscopy

    NASA Astrophysics Data System (ADS)

    Antonello, Jacopo; Hao, Xiang; Allgeyer, Edward S.; Bewersdorf, Joerg; Rittscher, Jens; Booth, Martin J.

    2018-02-01

    The presence of aberrations is a major concern when using fluorescence microscopy to image deep inside tissue. Aberrations due to refractive index mismatch and heterogeneity of the specimen under investigation cause severe reduction in the amount of fluorescence emission that is collected by the microscope. Furthermore, aberrations adversely affect the resolution, leading to loss of fine detail in the acquired images. These phenomena are particularly troublesome for super-resolution microscopy techniques such as isotropic stimulated-emission-depletion microscopy (isoSTED), which relies on accurate control of the shape and co-alignment of multiple excitation and depletion foci to operate as expected and to achieve the super-resolution effect. Aberrations can be suppressed by implementing sensorless adaptive optics techniques, whereby aberration correction is achieved by maximising a certain image quality metric. In confocal microscopy for example, one can employ the total image brightness as an image quality metric. Aberration correction is subsequently achieved by iteratively changing the settings of a wavefront corrector device until the metric is maximised. This simplistic approach has limited applicability to isoSTED microscopy where, due to the complex interplay between the excitation and depletion foci, maximising the total image brightness can lead to introducing aberrations in the depletion foci. In this work we first consider the effects that different aberration modes have on isoSTED microscopes. We then propose an iterative, wavelet-based aberration correction algorithm and evaluate its benefits.

  13. Ensemble machine learning and forecasting can achieve 99% uptime for rural handpumps

    PubMed Central

    Thomas, Evan A.

    2017-01-01

    Broken water pumps continue to impede efforts to deliver clean and economically-viable water to the global poor. The literature has demonstrated that customers’ health benefits and willingness to pay for clean water are best realized when clean water infrastructure performs extremely well (>99% uptime). In this paper, we used sensor data from 42 Afridev-brand handpumps observed for 14 months in western Kenya to demonstrate how sensors and supervised ensemble machine learning could be used to increase total fleet uptime from a best-practices baseline of about 70% to >99%. We accomplish this increase in uptime by forecasting pump failures and identifying existing failures very quickly. Comparing the costs of operating the pump per functional year over a lifetime of 10 years, we estimate that implementing this algorithm would save 7% on the levelized cost of water relative to a sensor-less scheduled maintenance program. Combined with a rigorous system for dispatching maintenance personnel, implementing this algorithm in a real-world program could significantly improve health outcomes and customers’ willingness to pay for water services. PMID:29182673

  14. Bearingless Flywheel Systems, Winding and Control Schemes, and Sensorless Control

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E (Inventor); Jansen, Ralph H (Inventor); Trase, Larry M (Inventor); Dever, Timothy P (Inventor); Kraft, Thomas G (Inventor)

    2016-01-01

    Flywheel systems are disclosed that provide increased energy density and operational effectiveness. A first bearingless motor and a second bearingless motor may be configured to simultaneously suspend the central rotor in a radial direction and to rotate the central rotor. However, certain implementations may have one motor or more than two motors, depending on the design. A plurality of the flywheel systems may be collectively controlled to perform community energy storage with higher storage capacities than individual flywheel systems.

  15. Estimation of effective wind speed

    NASA Astrophysics Data System (ADS)

    Østergaard, K. Z.; Brath, P.; Stoustrup, J.

    2007-07-01

    The wind speed has a huge impact on the dynamic response of wind turbine. Because of this, many control algorithms use a measure of the wind speed to increase performance, e.g. by gain scheduling and feed forward. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper a new method is presented for the estimation of the effective wind speed. First, the rotor speed and aerodynamic torque are estimated by a combined state and input observer. These two variables combined with the measured pitch angle is then used to calculate the effective wind speed by an inversion of a static aerodynamic model.

  16. Investigation of speed estimation using single loop detectors.

    DOT National Transportation Integrated Search

    2008-05-15

    The ability to collect or estimate accurate speed information is of great importance to a large number of : Intelligent Transportation Systems (ITS) applications. Estimating speeds from the widely used single : inductive loop sensor has been a diffic...

  17. Speed Profiles for Improvement of Maritime Emission Estimation.

    PubMed

    Yau, Pui Shan; Lee, Shun-Cheng; Ho, Kin Fai

    2012-12-01

    Maritime emissions play an important role in anthropogenic emissions, particularly for cities with busy ports such as Hong Kong. Ship emissions are strongly dependent on vessel speed, and thus accurate vessel speed is essential for maritime emission studies. In this study, we determined minute-by-minute high-resolution speed profiles of container ships on four major routes in Hong Kong waters using Automatic Identification System (AIS). The activity-based ship emissions of NO(x), CO, HC, CO(2), SO(2), and PM(10) were estimated using derived vessel speed profiles, and results were compared with those using the speed limits of control zones. Estimation using speed limits resulted in up to twofold overestimation of ship emissions. Compared with emissions estimated using the speed limits of control zones, emissions estimated using vessel speed profiles could provide results with up to 88% higher accuracy. Uncertainty analysis and sensitivity analysis of the model demonstrated the significance of improvement of vessel speed resolution. From spatial analysis, it is revealed that SO(2) and PM(10) emissions during maneuvering within 1 nautical mile from port were the highest. They contributed 7%-22% of SO(2) emissions and 8%-17% of PM(10) emissions of the entire voyage in Hong Kong.

  18. Estimating Burst Swim Speeds and Jumping Characteristics of Silver Carp (Hypophthalmichthys molitrix) Using Video Analyses and Principles of Projectile Physics

    DTIC Science & Technology

    2016-09-01

    Characteristics of Silver Carp (Hypophthalmichthys molitrix) Using Video Analyses and Principles of Projectile Physics by Glenn R. Parsons, Ehlana Stell...2002) estimated maximum swim speeds of videotaped, captive, and free-ranging dolphins, Delphinidae, by timed sequential analyses of video frames... videos to estimate the swim speeds and leap characteristics of carp as they exit the waters’ surface. We used both direct estimates of swim speeds as

  19. Traffic Tech: National Traffic Speeds Survey III: 2015

    DOT National Transportation Integrated Search

    2018-03-01

    Vehicle speeds are an important factor in traffic safety. NHTSAs most recent data estimates that approximately 27 percent of all fatal motor vehicle crashes are speeding-related (NCSA, 2018). NHTSA estimated the economic cost of speeding-related c...

  20. Speed Profiles for Improvement of Maritime Emission Estimation

    PubMed Central

    Yau, Pui Shan; Lee, Shun-Cheng; Ho, Kin Fai

    2012-01-01

    Abstract Maritime emissions play an important role in anthropogenic emissions, particularly for cities with busy ports such as Hong Kong. Ship emissions are strongly dependent on vessel speed, and thus accurate vessel speed is essential for maritime emission studies. In this study, we determined minute-by-minute high-resolution speed profiles of container ships on four major routes in Hong Kong waters using Automatic Identification System (AIS). The activity-based ship emissions of NOx, CO, HC, CO2, SO2, and PM10 were estimated using derived vessel speed profiles, and results were compared with those using the speed limits of control zones. Estimation using speed limits resulted in up to twofold overestimation of ship emissions. Compared with emissions estimated using the speed limits of control zones, emissions estimated using vessel speed profiles could provide results with up to 88% higher accuracy. Uncertainty analysis and sensitivity analysis of the model demonstrated the significance of improvement of vessel speed resolution. From spatial analysis, it is revealed that SO2 and PM10 emissions during maneuvering within 1 nautical mile from port were the highest. They contributed 7%–22% of SO2 emissions and 8%–17% of PM10 emissions of the entire voyage in Hong Kong. PMID:23236250

  1. INTEGRATED SPEED ESTIMATION MODEL FOR MULTILANE EXPREESSWAYS

    NASA Astrophysics Data System (ADS)

    Hong, Sungjoon; Oguchi, Takashi

    In this paper, an integrated speed-estimation model is developed based on empirical analyses for the basic sections of intercity multilane expressway un der the uncongested condition. This model enables a speed estimation for each lane at any site under arb itrary highway-alignment, traffic (traffic flow and truck percentage), and rainfall conditions. By combin ing this model and a lane-use model which estimates traffic distribution on the lanes by each vehicle type, it is also possible to es timate an average speed across all the lanes of one direction from a traffic demand by vehicle type under specific highway-alignment and rainfall conditions. This model is exp ected to be a tool for the evaluation of traffic performance for expressways when the performance me asure is travel speed, which is necessary for Performance-Oriented Highway Planning and Design. Regarding the highway-alignment condition, two new estimators, called effective horizo ntal curvature and effective vertical grade, are proposed in this paper which take into account the influence of upstream and downstream alignment conditions. They are applied to the speed-estimation model, and it shows increased accuracy of the estimation.

  2. Fidelity of the ensemble code for visual motion in primate retina.

    PubMed

    Frechette, E S; Sher, A; Grivich, M I; Petrusca, D; Litke, A M; Chichilnisky, E J

    2005-07-01

    Sensory experience typically depends on the ensemble activity of hundreds or thousands of neurons, but little is known about how populations of neurons faithfully encode behaviorally important sensory information. We examined how precisely speed of movement is encoded in the population activity of magnocellular-projecting parasol retinal ganglion cells (RGCs) in macaque monkey retina. Multi-electrode recordings were used to measure the activity of approximately 100 parasol RGCs simultaneously in isolated retinas stimulated with moving bars. To examine how faithfully the retina signals motion, stimulus speed was estimated directly from recorded RGC responses using an optimized algorithm that resembles models of motion sensing in the brain. RGC population activity encoded speed with a precision of approximately 1%. The elementary motion signal was conveyed in approximately 10 ms, comparable to the interspike interval. Temporal structure in spike trains provided more precise speed estimates than time-varying firing rates. Correlated activity between RGCs had little effect on speed estimates. The spatial dispersion of RGC receptive fields along the axis of motion influenced speed estimates more strongly than along the orthogonal direction, as predicted by a simple model based on RGC response time variability and optimal pooling. on and off cells encoded speed with similar and statistically independent variability. Simulation of downstream speed estimation using populations of speed-tuned units showed that peak (winner take all) readout provided more precise speed estimates than centroid (vector average) readout. These findings reveal how faithfully the retinal population code conveys information about stimulus speed and the consequences for motion sensing in the brain.

  3. Evaluation of the Scottsdale Loop 101 automated speed enforcement demonstration program.

    PubMed

    Shin, Kangwon; Washington, Simon P; van Schalkwyk, Ida

    2009-05-01

    Speeding is recognized as a major contributing factor in traffic crashes. In order to reduce speed-related crashes, the city of Scottsdale, Arizona implemented the first fixed-camera photo speed enforcement program (SEP) on a limited access freeway in the US. The 9-month demonstration program spanning from January 2006 to October 2006 was implemented on a 6.5 mile urban freeway segment of Arizona State Route 101 running through Scottsdale. This paper presents the results of a comprehensive analysis of the impact of the SEP on speeding behavior, crashes, and the economic impact of crashes. The impact on speeding behavior was estimated using generalized least square estimation, in which the observed speeds and the speeding frequencies during the program period were compared to those during other periods. The impact of the SEP on crashes was estimated using 3 evaluation methods: a before-and-after (BA) analysis using a comparison group, a BA analysis with traffic flow correction, and an empirical Bayes BA analysis with time-variant safety. The analysis results reveal that speeding detection frequencies (speeds> or =76 mph) increased by a factor of 10.5 after the SEP was (temporarily) terminated. Average speeds in the enforcement zone were reduced by about 9 mph when the SEP was implemented, after accounting for the influence of traffic flow. All crash types were reduced except rear-end crashes, although the estimated magnitude of impact varies across estimation methods (and their corresponding assumptions). When considering Arizona-specific crash related injury costs, the SEP is estimated to yield about $17 million in annual safety benefits.

  4. Ways to estimate speeds for the purposes of air quality conformity analyses.

    DOT National Transportation Integrated Search

    2002-01-01

    A speed post-processor refers to equations or lookup tables that can determine vehicle speeds on a particular roadway link using only the limited information available in a long-range planning model. An estimated link speed is usually based on volume...

  5. Estimators of wheel slip for electric vehicles using torque and encoder measurements

    NASA Astrophysics Data System (ADS)

    Boisvert, M.; Micheau, P.

    2016-08-01

    For the purpose of regenerative braking control in hybrid and electrical vehicles, recent studies have suggested controlling the slip ratio of the electric-powered wheel. A slip tracking controller requires an accurate slip estimation in the overall range of the slip ratio (from 0 to 1), contrary to the conventional slip limiter (ABS) which calls for an accurate slip estimation in the critical slip area, estimated at around 0.15 in several applications. Considering that it is not possible to directly measure the slip ratio of a wheel, the problem is to estimate the latter from available online data. To estimate the slip of a wheel, both wheel speed and vehicle speed must be known. Several studies provide algorithms that allow obtaining a good estimation of vehicle speed. On the other hand, there is no proposed algorithm for the conditioning of the wheel speed measurement. Indeed, the noise included in the wheel speed measurement reduces the accuracy of the slip estimation, a disturbance increasingly significant at low speed and low torque. Herein, two different extended Kalman observers of slip ratio were developed. The first calculates the slip ratio with data provided by an observer of vehicle speed and of propeller wheel speed. The second observer uses an original nonlinear model of the slip ratio as a function of the electric motor. A sinus tracking algorithm is included in the two observers, in order to reject harmonic disturbances of wheel speed measurement. Moreover, mass and road uncertainties can be compensated with a coefficient adapted online by an RLS. The algorithms were implemented and tested with a three-wheel recreational hybrid vehicle. Experimental results show the efficiency of both methods.

  6. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  7. Assessment of duration of the drive operation in the mode of kinetic energy recovery under power supply voltage sags in electrical grids of mechanical engineering enterprises

    NASA Astrophysics Data System (ADS)

    Shonin, O. B.; Novozhilov, N. G.

    2017-02-01

    Voltage sags in electric grids of mechanical engineering enterprises may lead to disconnection of important power consumers with variable frequency drives from the power grid and further interruption of the production process. The paper considers a sensorless V/f control system of еру induction motor drive under normal conditions and under voltage sags on the basis of a computer model of the drive and derivation of a formula for assessment of possible duration of the drive operation in the mode of controlled recovery of kinetic energy accumulated in rotating mass of the drive. Results of simulations have been used to validate results of calculations of the rotor velocity deceleration made in a closed form obtained from the equation reflecting the balance of torques. It is shown that results of calculations practically coincide with results of simulations in the range up to 5% of the velocity initial value. The proposed formula may be useful for estimation of the duration of the drive operation in the mode of recovery of kinetic energy depending on parameters of the motor and driven mechanisms.

  8. Variation of ultrasound image lateral spectrum with assumed speed of sound and true scatterer density.

    PubMed

    Gyöngy, Miklós; Kollár, Sára

    2015-02-01

    One method of estimating sound speed in diagnostic ultrasound imaging consists of choosing the speed of sound that generates the sharpest image, as evaluated by the lateral frequency spectrum of the squared B-mode image. In the current work, simulated and experimental data on a typical (47 mm aperture, 3.3-10.0 MHz response) linear array transducer are used to investigate the accuracy of this method. A range of candidate speeds of sound (1240-1740 m/s) was used, with a true speed of sound of 1490 m/s in simulations and 1488 m/s in experiments. Simulations of single point scatterers and two interfering point scatterers at various locations with respect to each other gave estimate errors of 0.0-2.0%. Simulations and experiments of scatterer distributions with a mean scatterer spacing of at least 0.5 mm gave estimate errors of 0.1-4.0%. In the case of lower scatterer spacing, the speed of sound estimates become unreliable due to a decrease in contrast of the sharpness measure between different candidate speeds of sound. This suggests that in estimating speed of sound in tissue, the region of interest should be dominated by a few, sparsely spaced scatterers. Conversely, the decreasing sensitivity of the sharpness measure to speed of sound errors for higher scatterer concentrations suggests a potential method for estimating mean scatterer spacing. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    NASA Astrophysics Data System (ADS)

    Veronesi, F.; Grassi, S.

    2016-09-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners.

  10. speed-ne: Software to simulate and estimate genetic effective population size (Ne ) from linkage disequilibrium observed in single samples.

    PubMed

    Hamilton, Matthew B; Tartakovsky, Maria; Battocletti, Amy

    2018-05-01

    The genetic effective population size, N e , can be estimated from the average gametic disequilibrium (r2^) between pairs of loci, but such estimates require evaluation of assumptions and currently have few methods to estimate confidence intervals. speed-ne is a suite of matlab computer code functions to estimate Ne^ from r2^ with a graphical user interface and a rich set of outputs that aid in understanding data patterns and comparing multiple estimators. speed-ne includes functions to either generate or input simulated genotype data to facilitate comparative studies of Ne^ estimators under various population genetic scenarios. speed-ne was validated with data simulated under both time-forward and time-backward coalescent models of genetic drift. Three classes of estimators were compared with simulated data to examine several general questions: what are the impacts of microsatellite null alleles on Ne^, how should missing data be treated, and does disequilibrium contributed by reduced recombination among some loci in a sample impact Ne^. Estimators differed greatly in precision in the scenarios examined, and a widely employed Ne^ estimator exhibited the largest variances among replicate data sets. speed-ne implements several jackknife approaches to estimate confidence intervals, and simulated data showed that jackknifing over loci and jackknifing over individuals provided ~95% confidence interval coverage for some estimators and should be useful for empirical studies. speed-ne provides an open-source extensible tool for estimation of Ne^ from empirical genotype data and to conduct simulations of both microsatellite and single nucleotide polymorphism (SNP) data types to develop expectations and to compare Ne^ estimators. © 2018 John Wiley & Sons Ltd.

  11. Vibration-based angular speed estimation for multi-stage wind turbine gearboxes

    NASA Astrophysics Data System (ADS)

    Peeters, Cédric; Leclère, Quentin; Antoni, Jérôme; Guillaume, Patrick; Helsen, Jan

    2017-05-01

    Most processing tools based on frequency analysis of vibration signals are only applicable for stationary speed regimes. Speed variation causes the spectral content to smear, which encumbers most conventional fault detection techniques. To solve the problem of non-stationary speed conditions, the instantaneous angular speed (IAS) is estimated. Wind turbine gearboxes however are typically multi-stage gearboxes, consisting of multiple shafts, rotating at different speeds. Fitting a sensor (e.g. a tachometer) to every single stage is not always feasible. As such there is a need to estimate the IAS of every single shaft based on the vibration signals measured by the accelerometers. This paper investigates the performance of the multi-order probabilistic approach for IAS estimation on experimental case studies of wind turbines. This method takes into account the meshing orders of the gears present in the system and has the advantage that a priori it is not necessary to associate harmonics with a certain periodic mechanical event, which increases the robustness of the method. It is found that the MOPA has the potential to easily outperform standard band-pass filtering techniques for speed estimation. More knowledge of the gearbox kinematics is beneficial for the MOPA performance, but even with very little knowledge about the meshing orders, the MOPA still performs sufficiently well to compete with the standard speed estimation techniques. This observation is proven on two different data sets, both originating from vibration measurements on the gearbox housing of a wind turbine.

  12. Design of BLDCM emulator for transmission control units

    NASA Astrophysics Data System (ADS)

    Liu, Chang; He, Yongyi; Zhang, Bodong

    2018-04-01

    According to the testing requirements of the transmission control unit, a brushless DC motor emulating system is designed based on motor simulation and power hardware-in-the-loop. The discrete motor model is established and a real-time numerical method is designed to solve the motor states. The motor emulator directly interacts with power stage of the transmission control unit using a power-efficient circuit topology and is compatible with sensor-less control. Experiments on a laboratory prototype help to verify that the system can emulate the real motor currents and voltages whenever the motor is starting up or suddenly loaded.

  13. "Flash" dance: how speed modulates percieved duration in dancers and non-dancers.

    PubMed

    Sgouramani, Helena; Vatakis, Argiro

    2014-03-01

    Speed has been proposed as a modulating factor on duration estimation. However, the different measurement methodologies and experimental designs used have led to inconsistent results across studies, and, thus, the issue of how speed modulates time estimation remains unresolved. Additionally, no studies have looked into the role of expertise on spatiotemporal tasks (tasks requiring high temporal and spatial acuity; e.g., dancing) and susceptibility to modulations of speed in timing judgments. In the present study, therefore, using naturalistic, dynamic dance stimuli, we aimed at defining the role of speed and the interaction of speed and experience on time estimation. We presented videos of a dancer performing identical ballet steps in fast and slow versions, while controlling for the number of changes present. Professional dancers and non-dancers performed duration judgments through a production and a reproduction task. Analysis revealed a significantly larger underestimation of fast videos as compared to slow ones during reproduction. The exact opposite result was true for the production task. Dancers were significantly less variable in their time estimations as compared to non-dancers. Speed and experience, therefore, affect the participants' estimates of time. Results are discussed in association to the theoretical framework of current models by focusing on the role of attention. © 2013 Elsevier B.V. All rights reserved.

  14. Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation.

    PubMed

    Engel, Aaron J; Bashford, Gregory R

    2015-08-01

    Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.

  15. Estimation of the remote-sensing reflectance from above-surface measurements.

    PubMed

    Mobley, C D

    1999-12-20

    The remote-sensing reflectance R(rs) is not directly measurable, and various methodologies have been employed in its estimation. I review the radiative transfer foundations of several commonly used methods for estimating R(rs), and errors associated with estimating R(rs) by removal of surface-reflected sky radiance are evaluated using the Hydrolight radiative transfer numerical model. The dependence of the sea surface reflectance factor rho, which is not an inherent optical property of the surface, on sky conditions, wind speed, solar zenith angle, and viewing geometry is examined. If rho is not estimated accurately, significant errors can occur in the estimated R(rs) for near-zenith Sun positions and for high wind speeds, both of which can give considerable Sun glitter effects. The numerical simulations suggest that a viewing direction of 40 deg from the nadir and 135 deg from the Sun is a reasonable compromise among conflicting requirements. For this viewing direction, a value of rho approximately 0.028 is acceptable only for wind speeds less than 5 m s(-1). For higher wind speeds, curves are presented for the determination of rho as a function of solar zenith angle and wind speed. If the sky is overcast, a value of rho approximately 0.028 is used at all wind speeds.

  16. Vehicle speed affects both pre-skid braking kinematics and average tire/roadway friction.

    PubMed

    Heinrichs, Bradley E; Allin, Boyd D; Bowler, James J; Siegmund, Gunter P

    2004-09-01

    Vehicles decelerate between brake application and skid onset. To better estimate a vehicle's speed and position at brake application, we investigated how vehicle deceleration varied with initial speed during both the pre-skid and skidding intervals on dry asphalt. Skid-to-stop tests were performed from four initial speeds (20, 40, 60, and 80 km/h) using three different grades of tire (economy, touring, and performance) on a single vehicle and a single road surface. Average skidding friction was found to vary with initial speed and tire type. The post-brake/pre-skid speed loss, elapsed time, distance travelled, and effective friction were found to vary with initial speed. Based on these data, a method using skid mark length to predict vehicle speed and position at brake application rather than skid onset was shown to improve estimates of initial vehicle speed by up to 10 km/h and estimates of vehicle position at brake application by up to 8 m compared to conventional methods that ignore the post-brake/pre-skid interval. Copyright 2003 Elsevier Ltd.

  17. Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles

    NASA Astrophysics Data System (ADS)

    Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong

    2018-02-01

    Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.

  18. Inertial sensor-based methods in walking speed estimation: a systematic review.

    PubMed

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  19. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review

    PubMed Central

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm. PMID:22778632

  20. Field Validation of the Stability Limit of a Multi MW Turbine

    NASA Astrophysics Data System (ADS)

    Kallesøe, Bjarne S.; Kragh, Knud A.

    2016-09-01

    Long slender blades of modern multi-megawatt turbines exhibit a flutter like instability at rotor speeds above a critical rotor speed. Knowing the critical rotor speed is crucial to a safe turbine design. The flutter like instability can only be estimated using geometrically non-linear aeroelastic codes. In this study, the estimated rotor speed stability limit of a 7 MW state of the art wind turbine is validated experimentally. The stability limit is estimated using Siemens Wind Powers in-house aeroelastic code, and the results show that the predicted stability limit is within 5% of the experimentally observed limit.

  1. Effective wind speed estimation: Comparison between Kalman Filter and Takagi-Sugeno observer techniques.

    PubMed

    Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst

    2016-05-01

    Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Mixture distributions of wind speed in the UAE

    NASA Astrophysics Data System (ADS)

    Shin, J.; Ouarda, T.; Lee, T. S.

    2013-12-01

    Wind speed probability distribution is commonly used to estimate potential wind energy. The 2-parameter Weibull distribution has been most widely used to characterize the distribution of wind speed. However, it is unable to properly model wind speed regimes when wind speed distribution presents bimodal and kurtotic shapes. Several studies have concluded that the Weibull distribution should not be used for frequency analysis of wind speed without investigation of wind speed distribution. Due to these mixture distributional characteristics of wind speed data, the application of mixture distributions should be further investigated in the frequency analysis of wind speed. A number of studies have investigated the potential wind energy in different parts of the Arabian Peninsula. Mixture distributional characteristics of wind speed were detected from some of these studies. Nevertheless, mixture distributions have not been employed for wind speed modeling in the Arabian Peninsula. In order to improve our understanding of wind energy potential in Arabian Peninsula, mixture distributions should be tested for the frequency analysis of wind speed. The aim of the current study is to assess the suitability of mixture distributions for the frequency analysis of wind speed in the UAE. Hourly mean wind speed data at 10-m height from 7 stations were used in the current study. The Weibull and Kappa distributions were employed as representatives of the conventional non-mixture distributions. 10 mixture distributions are used and constructed by mixing four probability distributions such as Normal, Gamma, Weibull and Extreme value type-one (EV-1) distributions. Three parameter estimation methods such as Expectation Maximization algorithm, Least Squares method and Meta-Heuristic Maximum Likelihood (MHML) method were employed to estimate the parameters of the mixture distributions. In order to compare the goodness-of-fit of tested distributions and parameter estimation methods for sample wind data, the adjusted coefficient of determination, Bayesian Information Criterion (BIC) and Chi-squared statistics were computed. Results indicate that MHML presents the best performance of parameter estimation for the used mixture distributions. In most of the employed 7 stations, mixture distributions give the best fit. When the wind speed regime shows mixture distributional characteristics, most of these regimes present the kurtotic statistical characteristic. Particularly, applications of mixture distributions for these stations show a significant improvement in explaining the whole wind speed regime. In addition, the Weibull-Weibull mixture distribution presents the best fit for the wind speed data in the UAE.

  3. Wavefront sensorless adaptive optics versus sensor-based adaptive optics for in vivo fluorescence retinal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wahl, Daniel J.; Zhang, Pengfei; Jian, Yifan; Bonora, Stefano; Sarunic, Marinko V.; Zawadzki, Robert J.

    2017-02-01

    Adaptive optics (AO) is essential for achieving diffraction limited resolution in large numerical aperture (NA) in-vivo retinal imaging in small animals. Cellular-resolution in-vivo imaging of fluorescently labeled cells is highly desirable for studying pathophysiology in animal models of retina diseases in pre-clinical vision research. Currently, wavefront sensor-based (WFS-based) AO is widely used for retinal imaging and has demonstrated great success. However, the performance can be limited by several factors including common path errors, wavefront reconstruction errors and an ill-defined reference plane on the retina. Wavefront sensorless (WFS-less) AO has the advantage of avoiding these issues at the cost of algorithmic execution time. We have investigated WFS-less AO on a fluorescence scanning laser ophthalmoscopy (fSLO) system that was originally designed for WFS-based AO. The WFS-based AO uses a Shack-Hartmann WFS and a continuous surface deformable mirror in a closed-loop control system to measure and correct for aberrations induced by the mouse eye. The WFS-less AO performs an open-loop modal optimization with an image quality metric. After WFS-less AO aberration correction, the WFS was used as a control of the closed-loop WFS-less AO operation. We can easily switch between WFS-based and WFS-less control of the deformable mirror multiple times within an imaging session for the same mouse. This allows for a direct comparison between these two types of AO correction for fSLO. Our results demonstrate volumetric AO-fSLO imaging of mouse retinal cells labeled with GFP. Most significantly, we have analyzed and compared the aberration correction results for WFS-based and WFS-less AO imaging.

  4. Estimating the circuit delay of FPGA with a transfer learning method

    NASA Astrophysics Data System (ADS)

    Cui, Xiuhai; Liu, Datong; Peng, Yu; Peng, Xiyuan

    2017-10-01

    With the increase of FPGA (Field Programmable Gate Array, FPGA) functionality, FPGA has become an on-chip system platform. Due to increase the complexity of FPGA, estimating the delay of FPGA is a very challenge work. To solve the problems, we propose a transfer learning estimation delay (TLED) method to simplify the delay estimation of different speed grade FPGA. In fact, the same style different speed grade FPGA comes from the same process and layout. The delay has some correlation among different speed grade FPGA. Therefore, one kind of speed grade FPGA is chosen as a basic training sample in this paper. Other training samples of different speed grade can get from the basic training samples through of transfer learning. At the same time, we also select a few target FPGA samples as training samples. A general predictive model is trained by these samples. Thus one kind of estimation model is used to estimate different speed grade FPGA circuit delay. The framework of TRED includes three phases: 1) Building a basic circuit delay library which includes multipliers, adders, shifters, and so on. These circuits are used to train and build the predictive model. 2) By contrasting experiments among different algorithms, the forest random algorithm is selected to train predictive model. 3) The target circuit delay is predicted by the predictive model. The Artix-7, Kintex-7, and Virtex-7 are selected to do experiments. Each of them includes -1, -2, -2l, and -3 different speed grade. The experiments show the delay estimation accuracy score is more than 92% with the TLED method. This result shows that the TLED method is a feasible delay assessment method, especially in the high-level synthesis stage of FPGA tool, which is an efficient and effective delay assessment method.

  5. A novel application of artificial neural network for wind speed estimation

    NASA Astrophysics Data System (ADS)

    Fang, Da; Wang, Jianzhou

    2017-05-01

    Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation.

  6. Validating precision estimates in horizontal wind measurements from a Doppler lidar

    DOE PAGES

    Newsom, Rob K.; Brewer, W. Alan; Wilczak, James M.; ...

    2017-03-30

    Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating themore » precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.« less

  7. A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to individuals with multiple sclerosis.

    PubMed

    McGinnis, Ryan S; Mahadevan, Nikhil; Moon, Yaejin; Seagers, Kirsten; Sheth, Nirav; Wright, John A; DiCristofaro, Steven; Silva, Ikaro; Jortberg, Elise; Ceruolo, Melissa; Pindado, Jesus A; Sosnoff, Jacob; Ghaffari, Roozbeh; Patel, Shyamal

    2017-01-01

    Gait speed is a powerful clinical marker for mobility impairment in patients suffering from neurological disorders. However, assessment of gait speed in coordination with delivery of comprehensive care is usually constrained to clinical environments and is often limited due to mounting demands on the availability of trained clinical staff. These limitations in assessment design could give rise to poor ecological validity and limited ability to tailor interventions to individual patients. Recent advances in wearable sensor technologies have fostered the development of new methods for monitoring parameters that characterize mobility impairment, such as gait speed, outside the clinic, and therefore address many of the limitations associated with clinical assessments. However, these methods are often validated using normal gait patterns; and extending their utility to subjects with gait impairments continues to be a challenge. In this paper, we present a machine learning method for estimating gait speed using a configurable array of skin-mounted, conformal accelerometers. We establish the accuracy of this technique on treadmill walking data from subjects with normal gait patterns and subjects with multiple sclerosis-induced gait impairments. For subjects with normal gait, the best performing model systematically overestimates speed by only 0.01 m/s, detects changes in speed to within less than 1%, and achieves a root-mean-square-error of 0.12 m/s. Extending these models trained on normal gait to subjects with gait impairments yields only minor changes in model performance. For example, for subjects with gait impairments, the best performing model systematically overestimates speed by 0.01 m/s, quantifies changes in speed to within 1%, and achieves a root-mean-square-error of 0.14 m/s. Additional analyses demonstrate that there is no correlation between gait speed estimation error and impairment severity, and that the estimated speeds maintain the clinical significance of ground truth speed in this population. These results support the use of wearable accelerometer arrays for estimating walking speed in normal subjects and their extension to MS patient cohorts with gait impairment.

  8. Generalized predictive control for a coupled four tank MIMO system using a continuous-discrete time observer.

    PubMed

    Gouta, Houssemeddine; Hadj Saïd, Salim; Barhoumi, Nabil; M'Sahli, Faouzi

    2017-03-01

    This paper deals with the problem of the observer based control design for a coupled four-tank liquid level system. For this MIMO system's dynamics, motivated by a desire to provide precise and sensorless liquid level control, a nonlinear predictive controller based on a continuous-discrete observer is presented. First, an analytical solution from the model predictive control (MPC) technique is developed for a particular class of nonlinear MIMO systems and its corresponding exponential stability is proven. Then, a high gain observer that runs in continuous-time with an output error correction time that is updated in a mixed continuous-discrete fashion is designed in order to estimate the liquid levels in the two upper tanks. The effectiveness of the designed control schemes are validated by two tests; The first one is maintaining a constant level in the first bottom tank while making the level in the second bottom tank to follow a sinusoidal reference signal. The second test is more difficult and it is made using two trapezoidal reference signals in order to see the decoupling performance of the system's outputs. Simulation and experimental results validate the objective of the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Comparison of several methods for estimating low speed stability derivatives

    NASA Technical Reports Server (NTRS)

    Fletcher, H. S.

    1971-01-01

    Methods presented in five different publications have been used to estimate the low-speed stability derivatives of two unpowered airplane configurations. One configuration had unswept lifting surfaces, the other configuration was the D-558-II swept-wing research airplane. The results of the computations were compared with each other, with existing wind-tunnel data, and with flight-test data for the D-558-II configuration to assess the relative merits of the methods for estimating derivatives. The results of the study indicated that, in general, for low subsonic speeds, no one text appeared consistently better for estimating all derivatives.

  10. Raising the speed limit from 75 to 80mph on Utah rural interstates: Effects on vehicle speeds and speed variance.

    PubMed

    Hu, Wen

    2017-06-01

    In November 2010 and October 2013, Utah increased speed limits on sections of rural interstates from 75 to 80mph. Effects on vehicle speeds and speed variance were examined. Speeds were measured in May 2010 and May 2014 within the new 80mph zones, and at a nearby spillover site and at more distant control sites where speed limits remained 75mph. Log-linear regression models estimated percentage changes in speed variance and mean speeds for passenger vehicles and large trucks associated with the speed limit increase. Logistic regression models estimated effects on the probability of passenger vehicles exceeding 80, 85, or 90mph and large trucks exceeding 80mph. Within the 80mph zones and at the spillover location in 2014, mean passenger vehicle speeds were significantly higher (4.1% and 3.5%, respectively), as were the probabilities that passenger vehicles exceeded 80mph (122.3% and 88.5%, respectively), than would have been expected without the speed limit increase. Probabilities that passenger vehicles exceeded 85 and 90mph were non-significantly higher than expected within the 80mph zones. For large trucks, the mean speed and probability of exceeding 80mph were higher than expected within the 80mph zones. Only the increase in mean speed was significant. Raising the speed limit was associated with non-significant increases in speed variance. The study adds to the wealth of evidence that increasing speed limits leads to higher travel speeds and an increased probability of exceeding the new speed limit. Results moreover contradict the claim that increasing speed limits reduces speed variance. Although the estimated increases in mean vehicle speeds may appear modest, prior research suggests such increases would be associated with substantial increases in fatal or injury crashes. This should be considered by lawmakers considering increasing speed limits. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  11. Determining Level of Service for Multilane Median Opening Zone

    NASA Astrophysics Data System (ADS)

    Ali, Paydar; Johnnie, Ben-Edigbe

    2017-08-01

    The road system is a capital-intensive investment, requiring thorough schematic framework and funding. Roads are built to provide an intrinsic quality of service which satisfies the road users. Roads that provide good services are expected to deliver operational performance that is consistent with their design specifications. Level of service and cumulative percentile speed distribution methods have been used in previous studies to estimate the quality of multilane highway service. Whilst the level of service approach relies on speed/flow curve, the cumulative percentile speed distribution is based solely speed. These estimation methods were used in studies carried out in Johor Malaysia. The aim of the studies is to ascertain the extent of speed reduction caused by midblock U-turn facilities as well as verify which estimation method is more reliable. At selected sites, road segments for both directional flows were divided into free-flow and midblock zones. Traffic volume, speed and vehicle type data for each zone were collected continuously for six weeks. Both estimation methods confirmed that speed reduction would be caused by midblock u-turn facilities. However level of service methods suggested that the quality of service would improve from level F to E or D at midblock zone in spite of speed reduction. Level of service was responding to traffic volume reduction at midblock u-turn facility not travel speed reduction. The studies concluded that since level of service was more responsive to traffic volume reduction than travel speed, it cannot be solely relied upon when assessing the quality of multilane highway service.

  12. Adaptive optics plug-and-play setup for high-resolution microscopes with multi-actuator adaptive lens

    NASA Astrophysics Data System (ADS)

    Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.

    2018-02-01

    Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.

  13. The development of an estimation model for energy expenditure during water walking by acceleration and walking speed.

    PubMed

    Kaneda, Koichi; Ohgi, Yuji; Tanaka, Chiaki; Burkett, Brendan

    2014-01-01

    The aim of this study was to develop an estimation equation for energy expenditure during water walking based on the acceleration and walking speed. Cross-validation study. Fifty participants, males (n=29, age: 27-73) and females (n=21, age: 33-70) volunteered for this study. Based on their physical condition water walking was conducted at three self-selected walking speeds from a range of: 20, 25, 30, 35 and 40 m/min. Energy expenditure during each trial was calculated. During water walking, an accelerometer was attached to the occipital region and recorded three-dimensional accelerations at 100 Hz. A stopwatch was used for timing the participant's walking speed. The estimation model for energy expenditure included three components; (i) resting metabolic rate, (ii) internal energy expenditure for moving participants' body, and (iii) external energy expenditure due to water drag force. When comparing the measured and estimated energy expenditure with the acceleration data being the third component of the estimation model, high correlation coefficients were found in both male (r=0.73) and female (r=0.77) groups. When walking speeds were applied to the third component of the model, higher correlation coefficients were found (r=0.82 in male and r=0.88 in female). Good agreements of the developed estimation model were found in both methods, regardless of gender. This study developed a valid estimation model for energy expenditure during water walking by using head acceleration and walking speed. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Asynchronous machine rotor speed estimation using a tabulated numerical approach

    NASA Astrophysics Data System (ADS)

    Nguyen, Huu Phuc; De Miras, Jérôme; Charara, Ali; Eltabach, Mario; Bonnet, Stéphane

    2017-12-01

    This paper proposes a new method to estimate the rotor speed of the asynchronous machine by looking at the estimation problem as a nonlinear optimal control problem. The behavior of the nonlinear plant model is approximated off-line as a prediction map using a numerical one-step time discretization obtained from simulations. At each time-step, the speed of the induction machine is selected satisfying the dynamic fitting problem between the plant output and the predicted output, leading the system to adopt its dynamical behavior. Thanks to the limitation of the prediction horizon to a single time-step, the execution time of the algorithm can be completely bounded. It can thus easily be implemented and embedded into a real-time system to observe the speed of the real induction motor. Simulation results show the performance and robustness of the proposed estimator.

  15. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior

    Treesearch

    W. J. Massman; J. M. Forthofer; M. A. Finney

    2017-01-01

    The ability to rapidly estimate wind speed beneath a forest canopy or near the ground surface in any vegetation is critical to practical wildland fire behavior models. The common metric of this wind speed is the "mid-flame" wind speed, UMF. However, the existing approach for estimating UMF has some significant shortcomings. These include the assumptions that...

  16. Meaningful improvement in gait speed in hip fracture recovery.

    PubMed

    Alley, Dawn E; Hicks, Gregory E; Shardell, Michelle; Hawkes, William; Miller, Ram; Craik, Rebecca L; Mangione, Kathleen K; Orwig, Denise; Hochberg, Marc; Resnick, Barbara; Magaziner, Jay

    2011-09-01

    To estimate meaningful improvements in gait speed observed during recovery from hip fracture and to evaluate the sensitivity and specificity of gait speed changes in detecting change in self-reported mobility. Secondary longitudinal data analysis from two randomized controlled trials Twelve hospitals in the Baltimore, Maryland, area. Two hundred seventeen women admitted with hip fracture. Usual gait speed and self-reported mobility (ability to walk 1 block and climb 1 flight of stairs) measured 2 and 12 months after fracture. Effect size-based estimates of meaningful differences were 0.03 for small differences and 0.09 for substantial differences. Depending on the anchor (stairs vs walking) and method (mean difference vs regression), anchor-based estimates ranged from 0.10 to 0.17 m/s for small meaningful improvements and 0.17 to 0.26 m/s for substantial meaningful improvement. Optimal gait speed cutpoints yielded low sensitivity (0.39-0.62) and specificity (0.57-0.76) for improvements in self-reported mobility. Results from this sample of women recovering from hip fracture provide only limited support for the 0.10-m/s cut point for substantial meaningful change previously identified in community-dwelling older adults experiencing declines in walking abilities. Anchor-based estimates and cut points derived from receiver operating characteristic curve analysis suggest that greater improvements in gait speed may be required for substantial perceived mobility improvement in female hip fracture patients. Furthermore, gait speed change performed poorly in discriminating change in self-reported mobility. Estimates of meaningful change in gait speed may differ based on the direction of change (improvement vs decline) or between patient populations. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.

  17. Meaningful Improvement in Gait Speed in Hip Fracture Recovery

    PubMed Central

    Alley, Dawn E.; Hicks, Gregory E.; Shardell, Michelle; Hawkes, William; Miller, Ram; Craik, Rebecca L.; Mangione, Kathleen K.; Orwig, Denise; Hochberg, Marc; Resnick, Barbara; Magaziner, Jay

    2011-01-01

    OBJECTIVES To estimate meaningful improvements in gait speed observed during recovery from hip fracture and to evaluate the sensitivity and specificity of gait speed changes in detecting change in self-reported mobility. DESIGN Secondary longitudinal data analysis from two randomized controlled trials SETTING Twelve hospitals in the Baltimore, Maryland, area. PARTICIPANTS Two hundred seventeen women admitted with hip fracture. MEASUREMENTS Usual gait speed and self-reported mobility (ability to walk 1 block and climb 1 flight of stairs) measured 2 and 12 months after fracture. RESULTS Effect size–based estimates of meaningful differences were 0.03 for small differences and 0.09 for substantial differences. Depending on the anchor (stairs vs walking) and method (mean difference vs regression), anchor-based estimates ranged from 0.10 to 0.17 m/s for small meaningful improvements and 0.17 to 0.26 m/s for substantial meaningful improvement. Optimal gait speed cut-points yielded low sensitivity (0.39–0.62) and specificity (0.57–0.76) for improvements in self-reported mobility. CONCLUSION Results from this sample of women recovering from hip fracture provide only limited support for the 0.10-m/s cut point for substantial meaningful change previously identified in community-dwelling older adults experiencing declines in walking abilities. Anchor-based estimates and cut points derived from receiver operating characteristic curve analysis suggest that greater improvements in gait speed may be required for substantial perceived mobility improvement in female hip fracture patients. Furthermore, gait speed change performed poorly in discriminating change in self-reported mobility. Estimates of meaningful change in gait speed may differ based on the direction of change (improvement vs decline) or between patient populations. PMID:21883109

  18. Traffic safety facts 1998 : speeding

    DOT National Transportation Integrated Search

    1998-01-01

    Speeding exceeding the posted speed limit or driving too fast for : The economic cost : of speeding-related : crashes is estimated : to be $27.7 billion : each year. : conditions is one of the most prevalent factors contributing to traf...

  19. Validity of the Nike+ device during walking and running.

    PubMed

    Kane, N A; Simmons, M C; John, D; Thompson, D L; Bassett, D R; Basset, D R

    2010-02-01

    We determined the validity of the Nike+ device for estimating speed, distance, and energy expenditure (EE) during walking and running. Twenty trained individuals performed a maximal oxygen uptake test and underwent anthropometric and body composition testing. Each participant was outfitted with a Nike+ sensor inserted into the shoe and an Apple iPod nano. They performed eight 6-min stages on the treadmill, including level walking at 55, 82, and 107 m x min(-1), inclined walking (82 m x min(-1)) at 5 and 10% grades, and level running at 134, 161, and 188 m x min(-1). Speed was measured using a tachometer and EE was measured by indirect calorimetry. Results showed that the Nike+ device overestimated the speed of level walking at 55 m x min(-1) by 20%, underestimated the speed of level walking at 107 m x min(-1) by 12%, but closely estimated the speed of level walking at 82 m x min(-1), and level running at all speeds (p<0.05). Similar results were found for distance. The Nike+ device overestimated the EE of level walking by 18-37%, but closely estimated the EE of level running (p<0.05). In conclusion the Nike+ in-shoe device provided reasonable estimates of speed and distance during level running at the three speeds tested in this study. However, it overestimated EE during level walking and it did not detect the increased cost of inclined locomotion.

  20. Determination of longitudinal aerodynamic derivatives using flight data from an icing research aircraft

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Batterson, J. G.; Reehorst, A. L.; Bond, T. H.; Omara, T. M.

    1989-01-01

    A flight test was performed with the NASA Lewis Research Center's DH-6 icing research aircraft. The purpose was to employ a flight test procedure and data analysis method, to determine the accuracy with which the effects of ice on aircraft stability and control could be measured. For simplicity, flight testing was restricted to the short period longitudinal mode. Two flights were flown in a clean (baseline) configuration, and two flights were flown with simulated horizontal tail ice. Forty-five repeat doublet maneuvers were performed in each of four test configurations, at a given trim speed, to determine the ensemble variation of the estimated stability and control derivatives. Additional maneuvers were also performed in each configuration, to determine the variation in the longitudinal derivative estimates over a wide range of trim speeds. Stability and control derivatives were estimated by a Modified Stepwise Regression (MSR) technique. A measure of the confidence in the derivative estimates was obtained by comparing the standard error for the ensemble of repeat maneuvers, to the average of the estimated standard errors predicted by the MSR program. A multiplicative relationship was determined between the ensemble standard error, and the averaged program standard errors. In addition, a 95 percent confidence interval analysis was performed for the elevator effectiveness estimates, C sub m sub delta e. This analysis identified the speed range where changes in C sub m sub delta e could be attributed to icing effects. The magnitude of icing effects on the derivative estimates were strongly dependent on flight speed and aircraft wing flap configuration. With wing flaps up, the estimated derivatives were degraded most at lower speeds corresponding to that configuration. With wing flaps extended to 10 degrees, the estimated derivatives were degraded most at the higher corresponding speeds. The effects of icing on the changes in longitudinal stability and control derivatives were adequately determined by the flight test procedure and the MSR analysis method discussed herein.

  1. Speed estimation for air quality analysis.

    DOT National Transportation Integrated Search

    2005-05-01

    Average speed is an essential input to the air quality analysis model MOBILE6 for emission factor calculation. Traditionally, speed is obtained from travel demand models. However, such models are not usually calibrated to speeds. Furthermore, for rur...

  2. Speed-dependent collision effects on radar back-scattering from the ionosphere

    NASA Technical Reports Server (NTRS)

    Theimer, O.

    1981-01-01

    A computer code to accurately compute the fluctuation spectrum for linearly speed dependent collision frequencies was developed. The effect of ignoring the speed dependence on the estimates of ionospheric parameters was determined. It is shown that disagreements between the rocket and the incoherent scatter estimates could be partially resolved if the correct speed dependence of the i-n collision frequency is not ignored. This problem is also relevant to the study of ionospheric irregularities in the auroral E-region and their effects on the radio communication with satellites.

  3. Methodology of automated ionosphere front velocity estimation for ground-based augmentation of GNSS

    NASA Astrophysics Data System (ADS)

    Bang, Eugene; Lee, Jiyun

    2013-11-01

    ionospheric anomalies occurring during severe ionospheric storms can pose integrity threats to Global Navigation Satellite System (GNSS) Ground-Based Augmentation Systems (GBAS). Ionospheric anomaly threat models for each region of operation need to be developed to analyze the potential impact of these anomalies on GBAS users and develop mitigation strategies. Along with the magnitude of ionospheric gradients, the speed of the ionosphere "fronts" in which these gradients are embedded is an important parameter for simulation-based GBAS integrity analysis. This paper presents a methodology for automated ionosphere front velocity estimation which will be used to analyze a vast amount of ionospheric data, build ionospheric anomaly threat models for different regions, and monitor ionospheric anomalies continuously going forward. This procedure automatically selects stations that show a similar trend of ionospheric delays, computes the orientation of detected fronts using a three-station-based trigonometric method, and estimates speeds for the front using a two-station-based method. It also includes fine-tuning methods to improve the estimation to be robust against faulty measurements and modeling errors. It demonstrates the performance of the algorithm by comparing the results of automated speed estimation to those manually computed previously. All speed estimates from the automated algorithm fall within error bars of ± 30% of the manually computed speeds. In addition, this algorithm is used to populate the current threat space with newly generated threat points. A larger number of velocity estimates helps us to better understand the behavior of ionospheric gradients under geomagnetic storm conditions.

  4. Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.

    PubMed

    Zheng, Enhao; Manca, Silvia; Yan, Tingfang; Parri, Andrea; Vitiello, Nicola; Wang, Qining

    2017-10-01

    This paper presents a novel strategy aiming to acquire an accurate and walking-speed-adaptive estimation of the gait phase through noncontact capacitive sensing and adaptive oscillators (AOs). The capacitive sensing system is designed with two sensing cuffs that can measure the leg muscle shape changes during walking. The system can be dressed above the clothes and free human skin from contacting to electrodes. In order to track the capacitance signals, the gait phase estimator is designed based on the AO dynamic system due to its ability of synchronizing with quasi-periodic signals. After the implementation of the whole system, we first evaluated the offline estimation performance by experiments with 12 healthy subjects walking on a treadmill with changing speeds. The strategy achieved an accurate and consistent gait phase estimation with only one channel of capacitance signal. The average root-mean-square errors in one stride were 0.19 rad (3.0% of one gait cycle) for constant walking speeds and 0.31 rad (4.9% of one gait cycle) for speed transitions even after the subjects rewore the sensing cuffs. We then validated our strategy in a real-time gait phase estimation task with three subjects walking with changing speeds. Our study indicates that the strategy based on capacitive sensing and AOs is a promising alternative for the control of exoskeleton/orthosis.

  5. National traffic speeds survey II: 2009 : traffic tech.

    DOT National Transportation Integrated Search

    2012-08-01

    Vehicle speeds are a crucial factor in traffic safety. : NHTSA estimates that speeding is involved in approximately : 31% of fatal motor vehicle crashes, costing society : over $40 billion per year. : Since speeding is such a : pervasive traffic safe...

  6. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates.

    PubMed

    Seethapathi, Nidhi; Srinivasan, Manoj

    2015-09-01

    Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6-20% cost increase for ±0.13-0.27 m s(-1) speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4-8% of daily walking energy budget. © 2015 The Author(s).

  7. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates

    PubMed Central

    Seethapathi, Nidhi; Srinivasan, Manoj

    2015-01-01

    Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6–20% cost increase for ±0.13–0.27 m s−1 speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4–8% of daily walking energy budget. PMID:26382072

  8. Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: a myth revisited

    PubMed Central

    Svendsen, Morten B. S.; Domenici, Paolo; Marras, Stefano; Krause, Jens; Boswell, Kevin M.; Rodriguez-Pinto, Ivan; Wilson, Alexander D. M.; Kurvers, Ralf H. J. M.; Viblanc, Paul E.; Finger, Jean S.; Steffensen, John F.

    2016-01-01

    ABSTRACT Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s−1 but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s−1), followed by barracuda (6.2±1.0 m s−1), little tunny (5.6±0.2 m s−1) and dorado (4.0±0.9 m s−1); although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s−1, which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues. PMID:27543056

  9. Adaptive Disturbance Tracking Theory with State Estimation and State Feedback for Region II Control of Large Wind Turbines

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.

    2013-01-01

    A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.

  10. Pulse-echo sound speed estimation using second order speckle statistics

    NASA Astrophysics Data System (ADS)

    Rosado-Mendez, Ivan M.; Nam, Kibo; Madsen, Ernest L.; Hall, Timothy J.; Zagzebski, James A.

    2012-10-01

    This work presents a phantom-based evaluation of a method for estimating soft-tissue speeds of sound using pulse-echo data. The method is based on the improvement of image sharpness as the sound speed value assumed during beamforming is systematically matched to the tissue sound speed. The novelty of this work is the quantitative assessment of image sharpness by measuring the resolution cell size from the autocovariance matrix for echo signals from a random distribution of scatterers thus eliminating the need of strong reflectors. Envelope data were obtained from a fatty-tissue mimicking (FTM) phantom (sound speed = 1452 m/s) and a nonfatty-tissue mimicking (NFTM) phantom (1544 m/s) scanned with a linear array transducer on a clinical ultrasound system. Dependence on pulse characteristics was tested by varying the pulse frequency and amplitude. On average, sound speed estimation errors were -0.7% for the FTM phantom and -1.1% for the NFTM phantom. In general, no significant difference was found among errors from different pulse frequencies and amplitudes. The method is currently being optimized for the differentiation of diffuse liver diseases.

  11. Cost-benefit analysis of the 55-mph speed limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forester, T.H.; McNown, R.F.; Singell, L.D.

    1984-01-01

    This article presents the results of an empirical study which estimates the number of reduced fatalities as a result of the imposed 55-mph speed limit. Time series data for the US from 1952 to 1979 is employed in a regression model capturing the relation between fatalities, average speed, variability of speed, and the speed limit. Also discussed are the alternative approaches to valuing human life and the value of time. Provided is a series of benefit-cost ratios based on alternative measures of the benefits and costs from life saving. The paper concludes that the 55-mph speed limit is not costmore » efficient unless additional time on the highway is valued significantly below levels estimated in the best reasearch on the value of time. 12 references, 1 table.« less

  12. A novel approach to estimate emissions from large transportation networks: Hierarchical clustering-based link-driving-schedules for EPA-MOVES using dynamic time warping measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Ukkusuri, Satish V.

    We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less

  13. A novel approach to estimate emissions from large transportation networks: Hierarchical clustering-based link-driving-schedules for EPA-MOVES using dynamic time warping measures

    DOE PAGES

    Aziz, H. M. Abdul; Ukkusuri, Satish V.

    2017-06-29

    We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less

  14. A new version of Stochastic-parallel-gradient-descent algorithm (SPGD) for phase correction of a distorted orbital angular momentum (OAM) beam

    NASA Astrophysics Data System (ADS)

    Jiao Ling, LIn; Xiaoli, Yin; Huan, Chang; Xiaozhou, Cui; Yi-Lin, Guo; Huan-Yu, Liao; Chun-YU, Gao; Guohua, Wu; Guang-Yao, Liu; Jin-KUn, Jiang; Qing-Hua, Tian

    2018-02-01

    Atmospheric turbulence limits the performance of orbital angular momentum-based free-space optical communication (FSO-OAM) system. In order to compensate phase distortion induced by atmospheric turbulence, wavefront sensorless adaptive optics (WSAO) has been proposed and studied in recent years. In this paper a new version of SPGD called MZ-SPGD, which combines the Z-SPGD based on the deformable mirror influence function and the M-SPGD based on the Zernike polynomials, is proposed. Numerical simulations show that the hybrid method decreases convergence times markedly but can achieve the same compensated effect compared to Z-SPGD and M-SPGD.

  15. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    NASA Astrophysics Data System (ADS)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  16. Field validation of speed estimation techniques for air quality conformity analysis.

    DOT National Transportation Integrated Search

    2004-01-01

    The air quality conformity analysis process requires the estimation of speeds for a horizon year on a link-by-link basis where only a few future roadway characteristics, such as forecast volume and capacity, are known. Accordingly, the Virginia Depar...

  17. Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea.

    PubMed

    Rideout, Brendan P; Dosso, Stan E; Hannay, David E

    2013-09-01

    This paper develops and applies a linearized Bayesian localization algorithm based on acoustic arrival times of marine mammal vocalizations at spatially-separated receivers which provides three-dimensional (3D) location estimates with rigorous uncertainty analysis. To properly account for uncertainty in receiver parameters (3D hydrophone locations and synchronization times) and environmental parameters (water depth and sound-speed correction), these quantities are treated as unknowns constrained by prior estimates and prior uncertainties. Unknown scaling factors on both the prior and arrival-time uncertainties are estimated by minimizing Akaike's Bayesian information criterion (a maximum entropy condition). Maximum a posteriori estimates for sound source locations and times, receiver parameters, and environmental parameters are calculated simultaneously using measurements of arrival times for direct and interface-reflected acoustic paths. Posterior uncertainties for all unknowns incorporate both arrival time and prior uncertainties. Monte Carlo simulation results demonstrate that, for the cases considered here, linearization errors are small and the lack of an accurate sound-speed profile does not cause significant biases in the estimated locations. A sequence of Pacific walrus vocalizations, recorded in the Chukchi Sea northwest of Alaska, is localized using this technique, yielding a track estimate and uncertainties with an estimated speed comparable to normal walrus swim speeds.

  18. Calculation of wind speeds required to damage or destroy buildings

    NASA Astrophysics Data System (ADS)

    Liu, Henry

    Determination of wind speeds required to damage or destroy a building is important not only for the improvement of building design and construction but also for the estimation of wind speeds in tornadoes and other damaging storms. For instance, since 1973 the U.S. National Weather Service has been using the well-known Fujita scale (F scale) to estimate the maximum wind speeds of tornadoes [Fujita, 1981]. The F scale classifies tornadoes into 13 numbers, F-0 through F-12. The wind speed (maximum gust speed) associated with each F number is given in Table 1. Note that F-6 through F-12 are for wind speeds between 319 mi/hr (mph) and the sonic velocity (approximately 760 mph; 1 mph = 1.6 km/kr). However, since no tornadoes have been classified to exceed F-5, the F-6 through F-12 categories have no practical meaning [Fujita, 1981].

  19. Averaged Propulsive Body Acceleration (APBA) Can Be Calculated from Biologging Tags That Incorporate Gyroscopes and Accelerometers to Estimate Swimming Speed, Hydrodynamic Drag and Energy Expenditure for Steller Sea Lions

    PubMed Central

    Trites, Andrew W.; Rosen, David A. S.; Potvin, Jean

    2016-01-01

    Forces due to propulsion should approximate forces due to hydrodynamic drag for animals horizontally swimming at a constant speed with negligible buoyancy forces. Propulsive forces should also correlate with energy expenditures associated with locomotion—an important cost of foraging. As such, biologging tags containing accelerometers are being used to generate proxies for animal energy expenditures despite being unable to distinguish rotational movements from linear movements. However, recent miniaturizations of gyroscopes offer the possibility of resolving this shortcoming and obtaining better estimates of body accelerations of swimming animals. We derived accelerations using gyroscope data for swimming Steller sea lions (Eumetopias jubatus), and determined how well the measured accelerations correlated with actual swimming speeds and with theoretical drag. We also compared dive averaged dynamic body acceleration estimates that incorporate gyroscope data, with the widely used Overall Dynamic Body Acceleration (ODBA) metric, which does not use gyroscope data. Four Steller sea lions equipped with biologging tags were trained to swim alongside a boat cruising at steady speeds in the range of 4 to 10 kph. At each speed, and for each dive, we computed a measure called Gyro-Informed Dynamic Acceleration (GIDA) using a method incorporating gyroscope data with accelerometer data. We derived a new metric—Averaged Propulsive Body Acceleration (APBA), which is the average gain in speed per flipper stroke divided by mean stroke cycle duration. Our results show that the gyro-based measure (APBA) is a better predictor of speed than ODBA. We also found that APBA can estimate average thrust production during a single stroke-glide cycle, and can be used to estimate energy expended during swimming. The gyroscope-derived methods we describe should be generally applicable in swimming animals where propulsive accelerations can be clearly identified in the signal—and they should also prove useful for dead-reckoning and improving estimates of energy expenditures from locomotion. PMID:27285467

  20. The radial speed-expansion speed relation for Earth-directed CMEs

    NASA Astrophysics Data System (ADS)

    Mäkelä, P.; Gopalswamy, N.; Yashiro, S.

    2016-05-01

    Earth-directed coronal mass ejections (CMEs) are the main drivers of major geomagnetic storms. Therefore, a good estimate of the disturbance arrival time at Earth is required for space weather predictions. The STEREO and SOHO spacecraft were viewing the Sun in near quadrature during January 2010 to September 2012, providing a unique opportunity to study the radial speed (Vrad)-expansion speed (Vexp) relationship of Earth-directed CMEs. This relationship is useful in estimating the Vrad of Earth-directed CMEs, when they are observed from Earth view only. We selected 19 Earth-directed CMEs observed by the Large Angle and Spectrometric Coronagraph (LASCO)/C3 coronagraph on SOHO and the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/COR2 coronagraph on STEREO during January 2010 to September 2012. We found that of the three tested geometric CME models the full ice-cream cone model of the CME describes best the Vrad-Vexp relationship, as suggested by earlier investigations. We also tested the prediction accuracy of the empirical shock arrival (ESA) model proposed by Gopalswamy et al. (2005a), while estimating the CME propagation speeds from the CME expansion speeds. If we use STEREO observations to estimate the CME width required to calculate the Vrad from the Vexp measurements, the mean absolute error (MAE) of the shock arrival times of the ESA model is 8.4 h. If the LASCO measurements are used to estimate the CME width, the MAE still remains below 17 h. Therefore, by using the simple Vrad-Vexp relationship to estimate the Vrad of the Earth-directed CMEs, the ESA model is able to predict the shock arrival times with accuracy comparable to most other more complex models.

  1. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Yu, Hang; Ji, Yuanyuan; Li, Nan; Thakor, Nitish V.

    2015-07-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia.

  2. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  3. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  4. Running Speed Can Be Predicted from Foot Contact Time during Outdoor over Ground Running.

    PubMed

    de Ruiter, Cornelis J; van Oeveren, Ben; Francke, Agnieta; Zijlstra, Patrick; van Dieen, Jaap H

    2016-01-01

    The number of validation studies of commercially available foot pods that provide estimates of running speed is limited and these studies have been conducted under laboratory conditions. Moreover, internal data handling and algorithms used to derive speed from these pods are proprietary and thereby unclear. The present study investigates the use of foot contact time (CT) for running speed estimations, which potentially can be used in addition to the global positioning system (GPS) in situations where GPS performance is limited. CT was measured with tri axial inertial sensors attached to the feet of 14 runners, during natural over ground outdoor running, under optimized conditions for GPS. The individual relationships between running speed and CT were established during short runs at different speeds on two days. These relations were subsequently used to predict instantaneous speed during a straight line 4 km run with a single turning point halfway. Stopwatch derived speed, measured for each of 32 consecutive 125m intervals during the 4 km runs, was used as reference. Individual speed-CT relations were strong (r2 >0.96 for all trials) and consistent between days. During the 4km runs, median error (ranges) in predicted speed from CT 2.5% (5.2) was higher (P<0.05) than for GPS 1.6% (0.8). However, around the turning point and during the first and last 125m interval, error for GPS-speed increased to 5.0% (4.5) and became greater (P<0.05) than the error predicted from CT: 2.7% (4.4). Small speed fluctuations during 4km runs were adequately monitored with both methods: CT and GPS respectively explained 85% and 73% of the total speed variance during 4km runs. In conclusion, running speed estimates bases on speed-CT relations, have acceptable accuracy and could serve to backup or substitute for GPS during tarmac running on flat terrain whenever GPS performance is limited.

  5. Tornado Intensity Estimated from Damage Path Dimensions

    PubMed Central

    Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  6. Tornado intensity estimated from damage path dimensions.

    PubMed

    Elsner, James B; Jagger, Thomas H; Elsner, Ian J

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.

  7. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  8. Measuring automatic retrieval: a comparison of implicit memory, process dissociation, and speeded response procedures.

    PubMed

    Horton, Keith D; Wilson, Daryl E; Vonk, Jennifer; Kirby, Sarah L; Nielsen, Tina

    2005-07-01

    Using the stem completion task, we compared estimates of automatic retrieval from an implicit memory task, the process dissociation procedure, and the speeded response procedure. Two standard manipulations were employed. In Experiment 1, a depth of processing effect was found on automatic retrieval using the speeded response procedure although this effect was substantially reduced in Experiment 2 when lexical processing was required of all words. In Experiment 3, the speeded response procedure showed an advantage of full versus divided attention at study on automatic retrieval. An implicit condition showed parallel effects in each study, suggesting that implicit stem completion may normally provide a good estimate of automatic retrieval. Also, we replicated earlier findings from the process dissociation procedure, but estimates of automatic retrieval from this procedure were consistently lower than those from the speeded response procedure, except when conscious retrieval was relatively low. We discuss several factors that may contribute to the conflicting outcomes, including the evidence for theoretical assumptions and criterial task differences between implicit and explicit tests.

  9. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7-by 10-Foot Tunnel: TED No. DE308. Part 6; Estimated High-Speed Flying Qualities

    NASA Technical Reports Server (NTRS)

    Donlan, Charles J.; Kuhn, Richard E.

    1948-01-01

    An analysis of the estimated high-speed flying qualities of the Chance Vought XF7U-1 airplane in the Mach number range from 0.40 to 0.91 has been made, based on tests of an 0.08-scale model of this airplane in the Langley high-speed 7- by 10-foot wind tunnel. The analysis indicates longitudinal control-position instability at transonic speeds, but the accompanying trim changes are not large. Control-position maneuvering stability, however, is present for all speeds. Longitudinal lateral control appear adequate, but the damping of the short-period longitudinal and lateral oscillations at high altitudes is poor and may require artificial damping.

  10. The Role of Personality in a Regular Cognitive Monitoring Program.

    PubMed

    Sadeq, Nasreen A; Valdes, Elise G; Harrison Bush, Aryn L; Andel, Ross

    2018-02-20

    This study examines the role of personality in cognitive performance, adherence, and satisfaction with regular cognitive self-monitoring. One hundred fifty-seven cognitively healthy older adults, age 55+, completed the 44-item Big-Five Inventory and were subsequently engaged in online monthly cognitive monitoring using the Cogstate Brief Battery for up to 35 months (M=14 mo, SD=7 mo). The test measures speed and accuracy in reaction time, visual learning, and working memory tasks. Neuroticism, although not related to cognitive performance overall (P>0.05), was related to a greater increase in accuracy (estimate=0.07, P=0.04) and speed (estimate=-0.09, P=0.03) on One Card Learning. Greater conscientiousness was related to faster overall speed on Detection (estimate=-1.62, P=0.02) and a significant rate of improvement in speed on One Card Learning (estimate=-0.10, P<0.03). No differences in satisfaction or adherence to monthly monitoring as a function of neuroticism or conscientiousness were observed. Participants volunteering for regular cognitive monitoring may be quite uniform in terms of personality traits, with personality traits playing a relatively minor role in adherence and satisfaction. The more neurotic may exhibit better accuracy and improve in speed with time, whereas the more conscientious may perform faster overall and improve in speed on some tasks, but the effects appear small.

  11. Determinants of the reliability of ultrasound tomography sound speed estimates as a surrogate for volumetric breast density

    PubMed Central

    Khodr, Zeina G.; Sak, Mark A.; Pfeiffer, Ruth M.; Duric, Nebojsa; Littrup, Peter; Bey-Knight, Lisa; Ali, Haythem; Vallieres, Patricia; Sherman, Mark E.; Gierach, Gretchen L.

    2015-01-01

    Purpose: High breast density, as measured by mammography, is associated with increased breast cancer risk, but standard methods of assessment have limitations including 2D representation of breast tissue, distortion due to breast compression, and use of ionizing radiation. Ultrasound tomography (UST) is a novel imaging method that averts these limitations and uses sound speed measures rather than x-ray imaging to estimate breast density. The authors evaluated the reproducibility of measures of speed of sound and changes in this parameter using UST. Methods: One experienced and five newly trained raters measured sound speed in serial UST scans for 22 women (two scans per person) to assess inter-rater reliability. Intrarater reliability was assessed for four raters. A random effects model was used to calculate the percent variation in sound speed and change in sound speed attributable to subject, scan, rater, and repeat reads. The authors estimated the intraclass correlation coefficients (ICCs) for these measures based on data from the authors’ experienced rater. Results: Median (range) time between baseline and follow-up UST scans was five (1–13) months. Contributions of factors to sound speed variance were differences between subjects (86.0%), baseline versus follow-up scans (7.5%), inter-rater evaluations (1.1%), and intrarater reproducibility (∼0%). When evaluating change in sound speed between scans, 2.7% and ∼0% of variation were attributed to inter- and intrarater variation, respectively. For the experienced rater’s repeat reads, agreement for sound speed was excellent (ICC = 93.4%) and for change in sound speed substantial (ICC = 70.4%), indicating very good reproducibility of these measures. Conclusions: UST provided highly reproducible sound speed measurements, which reflect breast density, suggesting that UST has utility in sensitively assessing change in density. PMID:26429241

  12. Determinants of the reliability of ultrasound tomography sound speed estimates as a surrogate for volumetric breast density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodr, Zeina G.; Pfeiffer, Ruth M.; Gierach, Gretchen L., E-mail: GierachG@mail.nih.gov

    Purpose: High breast density, as measured by mammography, is associated with increased breast cancer risk, but standard methods of assessment have limitations including 2D representation of breast tissue, distortion due to breast compression, and use of ionizing radiation. Ultrasound tomography (UST) is a novel imaging method that averts these limitations and uses sound speed measures rather than x-ray imaging to estimate breast density. The authors evaluated the reproducibility of measures of speed of sound and changes in this parameter using UST. Methods: One experienced and five newly trained raters measured sound speed in serial UST scans for 22 women (twomore » scans per person) to assess inter-rater reliability. Intrarater reliability was assessed for four raters. A random effects model was used to calculate the percent variation in sound speed and change in sound speed attributable to subject, scan, rater, and repeat reads. The authors estimated the intraclass correlation coefficients (ICCs) for these measures based on data from the authors’ experienced rater. Results: Median (range) time between baseline and follow-up UST scans was five (1–13) months. Contributions of factors to sound speed variance were differences between subjects (86.0%), baseline versus follow-up scans (7.5%), inter-rater evaluations (1.1%), and intrarater reproducibility (∼0%). When evaluating change in sound speed between scans, 2.7% and ∼0% of variation were attributed to inter- and intrarater variation, respectively. For the experienced rater’s repeat reads, agreement for sound speed was excellent (ICC = 93.4%) and for change in sound speed substantial (ICC = 70.4%), indicating very good reproducibility of these measures. Conclusions: UST provided highly reproducible sound speed measurements, which reflect breast density, suggesting that UST has utility in sensitively assessing change in density.« less

  13. National Traffic Speeds Survey I : 2007

    DOT National Transportation Integrated Search

    2012-08-01

    A field survey was conducted during spring and summer 2007 to measure travel speeds and prepare nationallyrepresentative : speed estimates for all types of motor vehicles on freeways, arterial highways, and collector roads : across the United States....

  14. Estimated time of arrival and debiasing the time saving bias.

    PubMed

    Eriksson, Gabriella; Patten, Christopher J D; Svenson, Ola; Eriksson, Lars

    2015-01-01

    The time saving bias predicts that the time saved when increasing speed from a high speed is overestimated, and underestimated when increasing speed from a slow speed. In a questionnaire, time saving judgements were investigated when information of estimated time to arrival was provided. In an active driving task, an alternative meter indicating the inverted speed was used to debias judgements. The simulated task was to first drive a distance at a given speed, and then drive the same distance again at the speed the driver judged was required to gain exactly 3 min in travel time compared with the first drive. A control group performed the same task with a speedometer and saved less than the targeted 3 min when increasing speed from a high speed, and more than 3 min when increasing from a low speed. Participants in the alternative meter condition were closer to the target. The two studies corroborate a time saving bias and show that biased intuitive judgements can be debiased by displaying the inverted speed. Practitioner Summary: Previous studies have shown a cognitive bias in judgements of the time saved by increasing speed. This simulator study aims to improve driver judgements by introducing a speedometer indicating the inverted speed in active driving. The results show that the bias can be reduced by presenting the inverted speed and this finding can be used when designing in-car information systems.

  15. Flux or speed? Examining speckle contrast imaging of vascular flows

    PubMed Central

    Kazmi, S. M. Shams; Faraji, Ehssan; Davis, Mitchell A.; Huang, Yu-Yen; Zhang, Xiaojing J.; Dunn, Andrew K.

    2015-01-01

    Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking. PMID:26203384

  16. Flux or speed? Examining speckle contrast imaging of vascular flows.

    PubMed

    Kazmi, S M Shams; Faraji, Ehssan; Davis, Mitchell A; Huang, Yu-Yen; Zhang, Xiaojing J; Dunn, Andrew K

    2015-07-01

    Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking.

  17. Comparison Between Sea Surface Wind Speed Estimates From Reflected GPS Signals and Buoy Measurements

    NASA Technical Reports Server (NTRS)

    Garrison, James L.; Katzberg, Steven J.; Zavorotny, Valery U.

    2000-01-01

    Reflected signals from the Global Positioning System (GPS) have been collected from an aircraft at approximately 3.7 km altitude on 5 different days. Estimation of surface wind speed by matching the shape of the reflected signal correlation function against analytical models was demonstrated. Wind speed obtained from this method agreed with that recorded from buoys to with a bias of less than 0.1 m/s, and with a standard derivation of 1.3 meters per second.

  18. Wind speed perception and risk.

    PubMed

    Agdas, Duzgun; Webster, Gregory D; Masters, Forrest J

    2012-01-01

    How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human-wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual-perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters.

  19. Reverberant shear wave fields and estimation of tissue properties

    NASA Astrophysics Data System (ADS)

    Parker, Kevin J.; Ormachea, Juvenal; Zvietcovich, Fernando; Castaneda, Benjamin

    2017-02-01

    The determination of shear wave speed is an important subject in the field of elastography, since elevated shear wave speeds can be directly linked to increased stiffness of tissues. MRI and ultrasound scanners are frequently used to detect shear waves and a variety of estimators are applied to calculate the underlying shear wave speed. The estimators can be relatively simple if plane wave behavior is assumed with a known direction of propagation. However, multiple reflections from organ boundaries and internal inhomogeneities and mode conversions can create a complicated field in time and space. Thus, we explore the mathematics of multiple component shear wave fields and derive the basic properties, from which efficient estimators can be obtained. We approach this problem from the historic perspective of reverberant fields, a conceptual framework used in architectural acoustics and related fields. The framework can be recast for the alternative case of shear waves in a bounded elastic media, and the expected value of displacement patterns in shear reverberant fields are derived, along with some practical estimators of shear wave speed. These are applied to finite element models and phantoms to illustrate the characteristics of reverberant fields and provide preliminary confirmation of the overall framework.

  20. Modeling vehicle operating speed on urban roads in Montreal: a panel mixed ordered probit fractional split model.

    PubMed

    Eluru, Naveen; Chakour, Vincent; Chamberlain, Morgan; Miranda-Moreno, Luis F

    2013-10-01

    Vehicle operating speed measured on roadways is a critical component for a host of analysis in the transportation field including transportation safety, traffic flow modeling, roadway geometric design, vehicle emissions modeling, and road user route decisions. The current research effort contributes to the literature on examining vehicle speed on urban roads methodologically and substantively. In terms of methodology, we formulate a new econometric model framework for examining speed profiles. The proposed model is an ordered response formulation of a fractional split model. The ordered nature of the speed variable allows us to propose an ordered variant of the fractional split model in the literature. The proposed formulation allows us to model the proportion of vehicles traveling in each speed interval for the entire segment of roadway. We extend the model to allow the influence of exogenous variables to vary across the population. Further, we develop a panel mixed version of the fractional split model to account for the influence of site-specific unobserved effects. The paper contributes substantively by estimating the proposed model using a unique dataset from Montreal consisting of weekly speed data (collected in hourly intervals) for about 50 local roads and 70 arterial roads. We estimate separate models for local roads and arterial roads. The model estimation exercise considers a whole host of variables including geometric design attributes, roadway attributes, traffic characteristics and environmental factors. The model results highlight the role of various street characteristics including number of lanes, presence of parking, presence of sidewalks, vertical grade, and bicycle route on vehicle speed proportions. The results also highlight the presence of site-specific unobserved effects influencing the speed distribution. The parameters from the modeling exercise are validated using a hold-out sample not considered for model estimation. The results indicate that the proposed panel mixed ordered probit fractional split model offers promise for modeling such proportional ordinal variables. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Methodologies for estimating advisory curve speeds on Oregon highways.

    DOT National Transportation Integrated Search

    2008-01-01

    This report reviews an Oregon research effort to evaluate the identification and marking of advisory speeds on Oregon : highways. In particular, this research effort focused on the implications of modified advisory speed thresholds and : identificati...

  2. Accuracy of visual estimates of joint angle and angular velocity using criterion movements.

    PubMed

    Morrison, Craig S; Knudson, Duane; Clayburn, Colby; Haywood, Philip

    2005-06-01

    A descriptive study to document undergraduate physical education majors' (22.8 +/- 2.4 yr. old) estimates of sagittal plane elbow angle and angular velocity of elbow flexion visually was performed. 42 subjects rated videotape replays of 30 movements organized into three speeds of movement and two criterion elbow angles. Video images of the movements were analyzed with Peak Motus to measure actual values of elbow angles and peak angular velocity. Of the subjects 85.7% had speed ratings significantly correlated with true peak elbow angular velocity in all three angular velocity conditions. Few (16.7%) subjects' ratings of elbow angle correlated significantly with actual angles. Analysis of the subjects with good ratings showed the accuracy of visual ratings was significantly related to speed, with decreasing accuracy for slower speeds of movement. The use of criterion movements did not improve the small percentage of novice observers who could accurately estimate body angles during movement.

  3. A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations

    NASA Astrophysics Data System (ADS)

    Cooper, Steven J.; Wood, Norman B.; L'Ecuyer, Tristan S.

    2017-07-01

    Estimates of snowfall rate as derived from radar reflectivities alone are non-unique. Different combinations of snowflake microphysical properties and particle fall speeds can conspire to produce nearly identical snowfall rates for given radar reflectivity signatures. Such ambiguities can result in retrieval uncertainties on the order of 100-200 % for individual events. Here, we use observations of particle size distribution (PSD), fall speed, and snowflake habit from the Multi-Angle Snowflake Camera (MASC) to constrain estimates of snowfall derived from Ka-band ARM zenith radar (KAZR) measurements at the Atmospheric Radiation Measurement (ARM) North Slope Alaska (NSA) Climate Research Facility site at Barrow. MASC measurements of microphysical properties with uncertainties are introduced into a modified form of the optimal-estimation CloudSat snowfall algorithm (2C-SNOW-PROFILE) via the a priori guess and variance terms. Use of the MASC fall speed, MASC PSD, and CloudSat snow particle model as base assumptions resulted in retrieved total accumulations with a -18 % difference relative to nearby National Weather Service (NWS) observations over five snow events. The average error was 36 % for the individual events. Use of different but reasonable combinations of retrieval assumptions resulted in estimated snowfall accumulations with differences ranging from -64 to +122 % for the same storm events. Retrieved snowfall rates were particularly sensitive to assumed fall speed and habit, suggesting that in situ measurements can help to constrain key snowfall retrieval uncertainties. More accurate knowledge of these properties dependent upon location and meteorological conditions should help refine and improve ground- and space-based radar estimates of snowfall.

  4. Oral and Hand Movement Speeds are Associated with Expressive Language Ability in Children with Speech Sound Disorder

    PubMed Central

    Peter, Beate

    2013-01-01

    This study tested the hypothesis that children with speech sound disorder have generalized slowed motor speeds. It evaluated associations among oral and hand motor speeds and measures of speech (articulation and phonology) and language (receptive vocabulary, sentence comprehension, sentence imitation), in 11 children with moderate to severe SSD and 11 controls. Syllable durations from a syllable repetition task served as an estimate of maximal oral movement speed. In two imitation tasks, nonwords and clapped rhythms, unstressed vowel durations and quarter-note clap intervals served as estimates of oral and hand movement speed, respectively. Syllable durations were significantly correlated with vowel durations and hand clap intervals. Sentence imitation was correlated with all three timed movement measures. Clustering on syllable repetition durations produced three clusters that also differed in sentence imitation scores. Results are consistent with limited movement speeds across motor systems and SSD subtypes defined by motor speeds as a corollary of expressive language abilities. PMID:22411590

  5. Psychophysical estimation of speed discrimination. II. Aging effects

    NASA Astrophysics Data System (ADS)

    Raghuram, Aparna; Lakshminarayanan, Vasudevan; Khanna, Ritu

    2005-10-01

    We studied the effects of aging on a speed discrimination task using a pair of first-order drifting luminance gratings. Two reference speeds of 2 and 8 deg/s were presented at stimulus durations of 500 ms and 1000 ms. The choice of stimulus parameters, etc., was determined in preliminary experiments and described in Part I. Thresholds were estimated using a two-alternative-forced-choice staircase methodology. Data were collected from 16 younger subjects (mean age 24 years) and 17 older subjects (mean age 71 years). Results showed that thresholds for speed discrimination were higher for the older age group. This was especially true at stimulus duration of 500 ms for both slower and faster speeds. This could be attributed to differences in temporal integration of speed with age. Visual acuity and contrast sensitivity were not statistically observed to mediate age differences in the speed discrimination thresholds. Gender differences were observed in the older age group, with older women having higher thresholds.

  6. Oral and hand movement speeds are associated with expressive language ability in children with speech sound disorder.

    PubMed

    Peter, Beate

    2012-12-01

    This study tested the hypothesis that children with speech sound disorder have generalized slowed motor speeds. It evaluated associations among oral and hand motor speeds and measures of speech (articulation and phonology) and language (receptive vocabulary, sentence comprehension, sentence imitation), in 11 children with moderate to severe SSD and 11 controls. Syllable durations from a syllable repetition task served as an estimate of maximal oral movement speed. In two imitation tasks, nonwords and clapped rhythms, unstressed vowel durations and quarter-note clap intervals served as estimates of oral and hand movement speed, respectively. Syllable durations were significantly correlated with vowel durations and hand clap intervals. Sentence imitation was correlated with all three timed movement measures. Clustering on syllable repetition durations produced three clusters that also differed in sentence imitation scores. Results are consistent with limited movement speeds across motor systems and SSD subtypes defined by motor speeds as a corollary of expressive language abilities.

  7. The Effects of Walking Speed on Tibiofemoral Loading Estimated Via Musculoskeletal Modeling

    PubMed Central

    Lerner, Zachary F.; Haight, Derek J.; DeMers, Matthew S.; Board, Wayne J.; Browning, Raymond C.

    2015-01-01

    Net muscle moments (NMMs) have been used as proxy measures of joint loading, but musculoskeletal models can estimate contact forces within joints. The purpose of this study was to use a musculoskeletal model to estimate tibiofemoral forces and to examine the relationship between NMMs and tibiofemoral forces across walking speeds. We collected kinematic, kinetic, and electromyographic data as ten adult participants walked on a dual-belt force-measuring treadmill at 0.75, 1.25, and 1.50 m/s. We scaled a musculoskeletal model to each participant and used OpenSim to calculate the NMMs and muscle forces through inverse dynamics and weighted static optimization, respectively. We determined tibiofemoral forces from the vector sum of intersegmental and muscle forces crossing the knee. Estimated tibiofemoral forces increased with walking speed. Peak early-stance compressive tibiofemoral forces increased 52% as walking speed increased from 0.75 to 1.50 m/s, whereas peak knee extension NMMs increased by 168%. During late stance, peak compressive tibiofemoral forces increased by 18% as speed increased. Although compressive loads at the knee did not increase in direct proportion to NMMs, faster walking resulted in greater compressive forces during weight acceptance and increased compressive and anterior/posterior tibiofemoral loading rates in addition to a greater abduction NMM. PMID:23878264

  8. A Real-Time Method to Estimate Speed of Object Based on Object Detection and Optical Flow Calculation

    NASA Astrophysics Data System (ADS)

    Liu, Kaizhan; Ye, Yunming; Li, Xutao; Li, Yan

    2018-04-01

    In recent years Convolutional Neural Network (CNN) has been widely used in computer vision field and makes great progress in lots of contents like object detection and classification. Even so, combining Convolutional Neural Network, which means making multiple CNN frameworks working synchronously and sharing their output information, could figure out useful message that each of them cannot provide singly. Here we introduce a method to real-time estimate speed of object by combining two CNN: YOLOv2 and FlowNet. In every frame, YOLOv2 provides object size; object location and object type while FlowNet providing the optical flow of whole image. On one hand, object size and object location help to select out the object part of optical flow image thus calculating out the average optical flow of every object. On the other hand, object type and object size help to figure out the relationship between optical flow and true speed by means of optics theory and priori knowledge. Therefore, with these two key information, speed of object can be estimated. This method manages to estimate multiple objects at real-time speed by only using a normal camera even in moving status, whose error is acceptable in most application fields like manless driving or robot vision.

  9. Speed Biases With Real-Life Video Clips

    PubMed Central

    Rossi, Federica; Montanaro, Elisa; de’Sperati, Claudio

    2018-01-01

    We live almost literally immersed in an artificial visual world, especially motion pictures. In this exploratory study, we asked whether the best speed for reproducing a video is its original, shooting speed. By using adjustment and double staircase methods, we examined speed biases in viewing real-life video clips in three experiments, and assessed their robustness by manipulating visual and auditory factors. With the tested stimuli (short clips of human motion, mixed human-physical motion, physical motion and ego-motion), speed underestimation was the rule rather than the exception, although it depended largely on clip content, ranging on average from 2% (ego-motion) to 32% (physical motion). Manipulating display size or adding arbitrary soundtracks did not modify these speed biases. Estimated speed was not correlated with estimated duration of these same video clips. These results indicate that the sense of speed for real-life video clips can be systematically biased, independently of the impression of elapsed time. Measuring subjective visual tempo may integrate traditional methods that assess time perception: speed biases may be exploited to develop a simple, objective test of reality flow, to be used for example in clinical and developmental contexts. From the perspective of video media, measuring speed biases may help to optimize video reproduction speed and validate “natural” video compression techniques based on sub-threshold temporal squeezing. PMID:29615875

  10. Speed Biases With Real-Life Video Clips.

    PubMed

    Rossi, Federica; Montanaro, Elisa; de'Sperati, Claudio

    2018-01-01

    We live almost literally immersed in an artificial visual world, especially motion pictures. In this exploratory study, we asked whether the best speed for reproducing a video is its original, shooting speed. By using adjustment and double staircase methods, we examined speed biases in viewing real-life video clips in three experiments, and assessed their robustness by manipulating visual and auditory factors. With the tested stimuli (short clips of human motion, mixed human-physical motion, physical motion and ego-motion), speed underestimation was the rule rather than the exception, although it depended largely on clip content, ranging on average from 2% (ego-motion) to 32% (physical motion). Manipulating display size or adding arbitrary soundtracks did not modify these speed biases. Estimated speed was not correlated with estimated duration of these same video clips. These results indicate that the sense of speed for real-life video clips can be systematically biased, independently of the impression of elapsed time. Measuring subjective visual tempo may integrate traditional methods that assess time perception: speed biases may be exploited to develop a simple, objective test of reality flow, to be used for example in clinical and developmental contexts. From the perspective of video media, measuring speed biases may help to optimize video reproduction speed and validate "natural" video compression techniques based on sub-threshold temporal squeezing.

  11. Estimation of wing nonlinear aerodynamic characteristics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Mack, R. J.

    1980-01-01

    A computational system for estimation of nonlinear aerodynamic characteristics of wings at supersonic speeds was developed and was incorporated in a computer program. This corrected linearized theory method accounts for nonlinearities in the variation of basic pressure loadings with local surface slopes, predicts the degree of attainment of theoretical leading edge thrust, and provides an estimate of detached leading edge vortex loadings that result when the theoretical thrust forces are not fully realized.

  12. Development of a speeding-related crash typology

    DOT National Transportation Integrated Search

    2010-04-01

    Speeding, the driver behavior of exceeding the posted speed limit or driving too fast for conditions, has consistently been estimated to be a contributing factor to a significant percentage of fatal and nonfatal crashes. The U.S. Department of Transp...

  13. National Traffic Speeds Survey II : 2009

    DOT National Transportation Integrated Search

    2012-07-01

    A field survey was conducted during spring and summer 2009 as a longitudinal repetition to a similar effort undertaken : in 2007. The goal was to measure travel speeds and prepare nationally representative speed estimates for all types of : motor veh...

  14. National Traffic Speeds Survey III: 2015

    DOT National Transportation Integrated Search

    2018-03-01

    A field survey was conducted during the summer of 2015 as a longitudinal repetition to similar efforts undertaken in 2007 and 2009. The goal was to measure travel speeds and prepare nationally representative speed estimates for all types of motor veh...

  15. Development of Neuromorphic Sift Operator with Application to High Speed Image Matching

    NASA Astrophysics Data System (ADS)

    Shankayi, M.; Saadatseresht, M.; Bitetto, M. A. V.

    2015-12-01

    There was always a speed/accuracy challenge in photogrammetric mapping process, including feature detection and matching. Most of the researches have improved algorithm's speed with simplifications or software modifications which increase the accuracy of the image matching process. This research tries to improve speed without enhancing the accuracy of the same algorithm using Neuromorphic techniques. In this research we have developed a general design of a Neuromorphic ASIC to handle algorithms such as SIFT. We also have investigated neural assignment in each step of the SIFT algorithm. With a rough estimation based on delay of the used elements including MAC and comparator, we have estimated the resulting chip's performance for 3 scenarios, Full HD movie (Videogrammetry), 24 MP (UAV photogrammetry), and 88 MP image sequence. Our estimations led to approximate 3000 fps for Full HD movie, 250 fps for 24 MP image sequence and 68 fps for 88MP Ultracam image sequence which can be a huge improvement for current photogrammetric processing systems. We also estimated the power consumption of less than10 watts which is not comparable to current workflows.

  16. The Radial Speed-Expansion Speed Relation for Earth-Directed CMEs

    NASA Technical Reports Server (NTRS)

    Makela, P.; Gopalswamy, N.; Yashiro, S.

    2016-01-01

    Earth-directed coronal mass ejections (CMEs) are the main drivers of major geomagnetic storms. Therefore, a good estimate of the disturbance arrival time at Earth is required for space weather predictions. The STEREO and SOHO spacecraft were viewing the Sun in near quadrature during January 2010 to September 2012, providing a unique opportunity to study the radial speed (V (sub rad)) to expansion speed(V (sub exp)) relationship of Earth-directed CMEs. This relationship is useful in estimating the V (sub rad) of Earth-directed CMEs, when they are observed from Earth view only. We selected 19 Earth-directed CMEs observed by the Large Angle and Spectrometric Coronagraph (LASCO)/C3 coronagraph on SOHO and the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/COR2 coronagraph on STEREO during January 2010 to September 2012. We found that of the three tested geometric CME models the full ice-cream cone model of the CME describes best the V (sub rad) to V (sub exp) relationship, as suggested by earlier investigations. We also tested the prediction accuracy of the empirical shock arrival (ESA) model proposed by Gopalswamy et al.(2005a), while estimating the CME propagation speeds from the CME expansion speeds. If we use STEREO observations to estimate the CME width required to calculate the V (sub rad) from the V (sub exp) measurements, the mean absolute error (MAE) of the shock arrival times of the ESA model is 8.4 hours. If the LASCO measurements are used to estimate the CME width, the MAE still remains below 17 hours. Therefore, by using the simple V (sub rad) to V (sub exp) relationship to estimate the V (sub rad) of the Earth-directed CMEs, the ESA model is able to predict the shock arrival times with accuracy comparable to most other more complex models.

  17. Deterministic-random separation in nonstationary regime

    NASA Astrophysics Data System (ADS)

    Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.

    2016-02-01

    In rotating machinery vibration analysis, the synchronous average is perhaps the most widely used technique for extracting periodic components. Periodic components are typically related to gear vibrations, misalignments, unbalances, blade rotations, reciprocating forces, etc. Their separation from other random components is essential in vibration-based diagnosis in order to discriminate useful information from masking noise. However, synchronous averaging theoretically requires the machine to operate under stationary regime (i.e. the related vibration signals are cyclostationary) and is otherwise jeopardized by the presence of amplitude and phase modulations. A first object of this paper is to investigate the nature of the nonstationarity induced by the response of a linear time-invariant system subjected to speed varying excitation. For this purpose, the concept of a cyclo-non-stationary signal is introduced, which extends the class of cyclostationary signals to speed-varying regimes. Next, a "generalized synchronous average'' is designed to extract the deterministic part of a cyclo-non-stationary vibration signal-i.e. the analog of the periodic part of a cyclostationary signal. Two estimators of the GSA have been proposed. The first one returns the synchronous average of the signal at predefined discrete operating speeds. A brief statistical study of it is performed, aiming to provide the user with confidence intervals that reflect the "quality" of the estimator according to the SNR and the estimated speed. The second estimator returns a smoothed version of the former by enforcing continuity over the speed axis. It helps to reconstruct the deterministic component by tracking a specific trajectory dictated by the speed profile (assumed to be known a priori).The proposed method is validated first on synthetic signals and then on actual industrial signals. The usefulness of the approach is demonstrated on envelope-based diagnosis of bearings in variable-speed operation.

  18. Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies.

    PubMed

    Ormachea, Juvenal; Castaneda, Benjamin; Parker, Kevin J

    2018-05-01

    Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  19. Methods and apparatus for reducing peak wind turbine loads

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2007-02-13

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  20. Wind Speed Perception and Risk

    PubMed Central

    Agdas, Duzgun; Webster, Gregory D.; Masters, Forrest J.

    2012-01-01

    Background How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human–wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. Method We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Results Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual–perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. Conclusion These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters. PMID:23226230

  1. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.

  2. A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations

    DOE PAGES

    Cooper, Steven J.; Wood, Norman B.; L'Ecuyer, Tristan S.

    2017-07-20

    Estimates of snowfall rate as derived from radar reflectivities alone are non-unique. Different combinations of snowflake microphysical properties and particle fall speeds can conspire to produce nearly identical snowfall rates for given radar reflectivity signatures. Such ambiguities can result in retrieval uncertainties on the order of 100–200% for individual events. Here, we use observations of particle size distribution (PSD), fall speed, and snowflake habit from the Multi-Angle Snowflake Camera (MASC) to constrain estimates of snowfall derived from Ka-band ARM zenith radar (KAZR) measurements at the Atmospheric Radiation Measurement (ARM) North Slope Alaska (NSA) Climate Research Facility site at Barrow. MASCmore » measurements of microphysical properties with uncertainties are introduced into a modified form of the optimal-estimation CloudSat snowfall algorithm (2C-SNOW-PROFILE) via the a priori guess and variance terms. Use of the MASC fall speed, MASC PSD, and CloudSat snow particle model as base assumptions resulted in retrieved total accumulations with a -18% difference relative to nearby National Weather Service (NWS) observations over five snow events. The average error was 36% for the individual events. The use of different but reasonable combinations of retrieval assumptions resulted in estimated snowfall accumulations with differences ranging from -64 to +122% for the same storm events. Retrieved snowfall rates were particularly sensitive to assumed fall speed and habit, suggesting that in situ measurements can help to constrain key snowfall retrieval uncertainties. Furthermore, accurate knowledge of these properties dependent upon location and meteorological conditions should help refine and improve ground- and space-based radar estimates of snowfall.« less

  3. A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Steven J.; Wood, Norman B.; L'Ecuyer, Tristan S.

    Estimates of snowfall rate as derived from radar reflectivities alone are non-unique. Different combinations of snowflake microphysical properties and particle fall speeds can conspire to produce nearly identical snowfall rates for given radar reflectivity signatures. Such ambiguities can result in retrieval uncertainties on the order of 100–200% for individual events. Here, we use observations of particle size distribution (PSD), fall speed, and snowflake habit from the Multi-Angle Snowflake Camera (MASC) to constrain estimates of snowfall derived from Ka-band ARM zenith radar (KAZR) measurements at the Atmospheric Radiation Measurement (ARM) North Slope Alaska (NSA) Climate Research Facility site at Barrow. MASCmore » measurements of microphysical properties with uncertainties are introduced into a modified form of the optimal-estimation CloudSat snowfall algorithm (2C-SNOW-PROFILE) via the a priori guess and variance terms. Use of the MASC fall speed, MASC PSD, and CloudSat snow particle model as base assumptions resulted in retrieved total accumulations with a -18% difference relative to nearby National Weather Service (NWS) observations over five snow events. The average error was 36% for the individual events. The use of different but reasonable combinations of retrieval assumptions resulted in estimated snowfall accumulations with differences ranging from -64 to +122% for the same storm events. Retrieved snowfall rates were particularly sensitive to assumed fall speed and habit, suggesting that in situ measurements can help to constrain key snowfall retrieval uncertainties. Furthermore, accurate knowledge of these properties dependent upon location and meteorological conditions should help refine and improve ground- and space-based radar estimates of snowfall.« less

  4. Evaluation of the variability of wind speed at different heights and its impact on the receiver efficiency of central receiver systems

    NASA Astrophysics Data System (ADS)

    Delgado, A.; Gertig, C.; Blesa, E.; Loza, A.; Hidalgo, C.; Ron, R.

    2016-05-01

    Typical plant configurations for Central Receiver Systems (CRS) are comprised of a large field of heliostats which concentrate solar irradiation onto the receiver, which is elevated hundreds of meters above the ground. Wind speed changes with altitude above ground, impacting on the receiver thermal efficiency due to variations of the convective heat losses. In addition, the physical properties of air vary at high altitudes to a significant degree, which should be considered in the thermal losses calculation. DNV GL has long-reaching experience in wind energy assessment with reliable methodologies to reduce the uncertainty of the determination of the wind regime. As a part of this study, DNV GL estimates the wind speed at high altitude for different sites using two methods, a detailed estimation applying the best practices used in the wind energy sector based on measurements from various wind sensors and a simplified estimation applying the power law (1, 2) using only one wind measurement and a representative value for the surface roughness. As a result of the study, a comparison of the wind speed estimation considering both methods is presented and the impact on the receiver performance for the evaluated case is estimated.

  5. Estimation of locomotion speed and directions changes to control a vehicle using neural signals from the motor cortex of rat.

    PubMed

    Fukayama, Osamu; Taniguchi, Noriyuki; Suzuki, Takafumi; Mabuchi, Kunihiko

    2006-01-01

    We have developed a brain-machine interface (BMI) in the form of a small vehicle, which we call the RatCar. In this system, we implanted wire electrodes in the motor cortices of rat's brain to continuously record neural signals. We applied a linear model to estimate the locomotion state (e.g., speed and directions) of a rat using a weighted summation model for the neural firing rates. With this information, we then determined the approximate movement of a rat. Although the estimation is still imprecise, results suggest that our model is able to control the system to some degree. In this paper, we give an overview of our system and describe the methods used, which include continuous neural recording, spike detection and a discrimination algorithm, and a locomotion estimation model minimizes the square error of the locomotion speed and changes in direction.

  6. Importance sampling variance reduction for the Fokker–Planck rarefied gas particle method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collyer, B.S., E-mail: benjamin.collyer@gmail.com; London Mathematical Laboratory, 14 Buckingham Street, London WC2N 6DF; Connaughton, C.

    The Fokker–Planck approximation to the Boltzmann equation, solved numerically by stochastic particle schemes, is used to provide estimates for rarefied gas flows. This paper presents a variance reduction technique for a stochastic particle method that is able to greatly reduce the uncertainty of the estimated flow fields when the characteristic speed of the flow is small in comparison to the thermal velocity of the gas. The method relies on importance sampling, requiring minimal changes to the basic stochastic particle scheme. We test the importance sampling scheme on a homogeneous relaxation, planar Couette flow and a lid-driven-cavity flow, and find thatmore » our method is able to greatly reduce the noise of estimated quantities. Significantly, we find that as the characteristic speed of the flow decreases, the variance of the noisy estimators becomes independent of the characteristic speed.« less

  7. Adaptive sound speed correction for abdominal ultrasonography: preliminary results

    NASA Astrophysics Data System (ADS)

    Jin, Sungmin; Kang, Jeeun; Song, Tai-Kyung; Yoo, Yangmo

    2013-03-01

    Ultrasonography has been conducting a critical role in assessing abdominal disorders due to its noninvasive, real-time, low cost, and deep penetrating capabilities. However, for imaging obese patients with a thick fat layer, it is challenging to achieve appropriate image quality with a conventional beamforming (CON) method due to phase aberration caused by the difference between sound speeds (e.g., 1580 and 1450m/s for liver and fat, respectively). For this, various sound speed correction (SSC) methods that estimate the accumulated sound speed for a region-of interest (ROI) have been previously proposed. However, with the SSC methods, the improvement in image quality was limited only for a specific depth of ROI. In this paper, we present the adaptive sound speed correction (ASSC) method, which can enhance the image quality for whole depths by using estimated sound speeds from two different depths in the lower layer. Since these accumulated sound speeds contain the respective contributions of layers, an optimal sound speed for each depth can be estimated by solving contribution equations. To evaluate the proposed method, the phantom study was conducted with pre-beamformed radio-frequency (RF) data acquired with a SonixTouch research package (Ultrasonix Corp., Canada) with linear and convex probes from the gel pad-stacked tissue mimicking phantom (Parker Lab. Inc., USA and Model539, ATS, USA) whose sound speeds are 1610 and 1450m/s, respectively. From the study, compared to the CON and SSC methods, the ASSC method showed the improved spatial resolution and information entropy contrast (IEC) for convex and linear array transducers, respectively. These results indicate that the ASSC method can be applied for enhancing image quality when imaging obese patients in abdominal ultrasonography.

  8. Size speed bias or size arrival effect-How judgments of vehicles' approach speed and time to arrival are influenced by the vehicles' size.

    PubMed

    Petzoldt, Tibor

    2016-10-01

    Crashes at railway level crossings are a key problem for railway operations. It has been suggested that a potential explanation for such crashes might lie in a so-called size speed bias, which describes the phenomenon that observers underestimate the speed of larger objects, such as aircraft or trains. While there is some evidence that this size speed bias indeed exists, it is somewhat at odds with another well researched phenomenon, the size arrival effect. When asked to judge the time it takes an approaching object to arrive at a predefined position (time to arrival, TTA), observers tend to provide lower estimates for larger objects. In that case, road users' crossing decisions when confronted with larger vehicles should be rather conservative, which has been confirmed in multiple studies on gap acceptance. The aim of the experiment reported in this paper was to clarify the relationship between size speed bias and size arrival effect. Employing a relative judgment task, both speed and TTA estimates were assessed for virtual depictions of a train and a truck, using a car as a reference to compare against. The results confirmed the size speed bias for the speed judgments, with both train and truck being perceived as travelling slower than the car. A comparable bias was also present in the TTA estimates for the truck. In contrast, no size arrival effect could be found for the train or the truck, neither in the speed nor the TTA judgments. This finding is inconsistent with the fact that crossing behaviour when confronted with larger vehicles appears to be consistently more conservative. This discrepancy might be interpreted as an indication that factors other than perceived speed or TTA play an important role for the differences in gap acceptance between different types of vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Crespo, J.; Posselt, D. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.

  10. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson's disease?

    PubMed

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-03-01

    Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.

  11. Speed of sound estimation for thermal monitoring using an active ultrasound element during liver ablation therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Audigier, Chloé; Dillow, Austin; Cheng, Alexis; Boctor, Emad M.

    2017-03-01

    Thermal monitoring for ablation therapy has high demands for preserving healthy tissues while removing malignant ones completely. Various methods have been investigated. However, exposure to radiation, cost-effectiveness, and inconvenience hinder the use of X-ray or MRI methods. Due to the non-invasiveness and real-time capabilities of ultrasound, it is widely used in intraoperative procedures. Ultrasound thermal monitoring methods have been developed for affordable monitoring in real-time. We propose a new method for thermal monitoring using an ultrasound element. By inserting a Lead-zirconate-titanate (PZT) element to generate the ultrasound signal in the liver tissues, the single travel time of flight is recorded from the PZT element to the ultrasound transducer. We detect the speed of sound change caused by the increase in temperature during ablation therapy. We performed an ex vivo experiment with liver tissues to verify the feasibility of our speed of sound estimation technique. The time of flight information is used in an optimization method to recover the speed of sound maps during the ablation, which are then converted into temperature maps. The result shows that the trend of temperature changes matches with the temperature measured at a single point. The estimation error can be decreased by using a proper curve linking the speed of sound to the temperature. The average error over time was less than 3 degrees Celsius for a bovine liver. The speed of sound estimation using a single PZT element can be used for thermal monitoring.

  12. Are estimates of wind characteristics based on measurements with Pitot tubes and GNSS receivers mounted on consumer-grade unmanned aerial vehicles applicable in meteorological studies?

    PubMed

    Niedzielski, Tomasz; Skjøth, Carsten; Werner, Małgorzata; Spallek, Waldemar; Witek, Matylda; Sawiński, Tymoteusz; Drzeniecka-Osiadacz, Anetta; Korzystka-Muskała, Magdalena; Muskała, Piotr; Modzel, Piotr; Guzikowski, Jakub; Kryza, Maciej

    2017-09-01

    The objective of this paper is to empirically show that estimates of wind speed and wind direction based on measurements carried out using the Pitot tubes and GNSS receivers, mounted on consumer-grade unmanned aerial vehicles (UAVs), may accurately approximate true wind parameters. The motivation for the study is that a growing number of commercial and scientific UAV operations may soon become a new source of data on wind speed and wind direction, with unprecedented spatial and temporal resolution. The feasibility study was carried out within an isolated mountain meadow of Polana Izerska located in the Izera Mountains (SW Poland) during an experiment which aimed to compare wind characteristics measured by several instruments: three UAVs (swinglet CAM, eBee, Maja) equipped with the Pitot tubes and GNSS receivers, wind speed and direction meters mounted at 2.5 and 10 m (mast), conventional weather station and vertical sodar. The three UAVs performed seven missions along spiral-like trajectories, most reaching 130 m above take-off location. The estimates of wind speed and wind direction were found to agree between UAVs. The time series of wind speed measured at 10 m were extrapolated to flight altitudes recorded at a given time so that a comparison was made feasible. It was found that the wind speed estimates provided by the UAVs on a basis of the Pitot tube/GNSS data are in agreement with measurements carried out using dedicated meteorological instruments. The discrepancies were recorded in the first and last phases of UAV flights.

  13. Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2011-01-01

    A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 % in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -.14 %.

  14. Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 percent in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady aerodynamic model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -0.14 percent.

  15. Executive functioning and processing speed in age-related differences in time estimation: a comparison of young, old, and very old adults.

    PubMed

    Baudouin, Alexia; Isingrini, Michel; Vanneste, Sandrine

    2018-01-25

    Age-related differences in time estimation were examined by comparing the temporal performance of young, young-old, and old-old adults, in relation to two major theories of cognitive aging: executive decline and cognitive slowing. We tested the hypothesis that processing speed and executive function are differentially involved in timing depending on the temporal task used. We also tested the assumption of greater age-related effects in time estimation in old-old participants. Participants performed two standard temporal tasks: duration production and duration reproduction. They also completed tests measuring executive function and processing speed. Findings supported the view that executive function is the best mediator of reproduction performance and inversely that processing speed is the best mediator of production performance. They also showed that young-old participants provide relatively accurate temporal judgments compared to old-old participants. These findings are discussed in terms of compensation mechanisms in aging.

  16. A System And Method To Determine Thermophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure

    DOEpatents

    Morrow, Thomas E.; Behring, II, Kendricks A.

    2004-03-09

    A method to determine thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

  17. Device For Determining Therophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2005-02-01

    A computer product for determining thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

  18. The measurement of bacterial translation by photon correlation spectroscopy.

    PubMed Central

    Stock, G B; Jenkins, T C

    1978-01-01

    Photon correlation spectroscopy is shown to be a practical technique for the accurate determination of translational speeds of bacteria. Though other attempts have been made to use light scattering as a probe of various aspects of bacterial motility, no other comprehensive studies to establish firmly the basic capabilities and limitations of the technique have been published. The intrinsic accuracy of the assay of translational speeds by photon correlation spectroscopy is investigated by analysis of synthetic autocorrelation data; consistently accurate estimates of the mean and second moment of the speed distribution can be calculated. Extensive analyses of experimental preparations of Salmonella typhimurium examine the possible sources of experimental difficulty with the assay. Cinematography confirms the bacterial speed estimates obtained by photon correlation techniques. PMID:346073

  19. Distributed and self-adaptive vehicle speed estimation in the composite braking case for four-wheel drive hybrid electric car

    NASA Astrophysics Data System (ADS)

    Zhao, Z.-G.; Zhou, L.-J.; Zhang, J.-T.; Zhu, Q.; Hedrick, J.-K.

    2017-05-01

    Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case.

  20. Instantaneous power control of a high speed permanent magnet synchronous generator based on a sliding mode observer and a phase locked loop

    NASA Astrophysics Data System (ADS)

    Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin

    2018-06-01

    This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.

  1. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    PubMed

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  2. Hurricane Harvey's Rapid Wind Intensification seen by NASA's SMAP

    NASA Image and Video Library

    2017-08-28

    The rapid intensification of Hurricane Harvey is seen in this pair of images of ocean surface wind speeds as observed by the radiometer instrument aboard NASA's Soil Moisture Active Passive (SMAP) satellite at 7:29 a.m. CDT Aug. 24th, 2017 (left) and at 7 p.m. CDT Aug. 26th (right). Color indicates wind speed, with red being highest and blue lowest. The images show Harvey's maximum wind speeds increased from approximately 56 miles per hour (25 meters per second) to about 107 miles per hour (47.8 meters per second) in the 36 hours just before landfall. The higher wind speeds estimated near the mouth of the Mississippi River are erroneous and are due to errors in the ancillary sea-surface-salinity data product used by SMAP to estimate extreme wind speeds. https://photojournal.jpl.nasa.gov/catalog/PIA21884

  3. Toll facilities in the United States : bridges, roads, tunnels, ferries

    DOT National Transportation Integrated Search

    2000-09-01

    Speeding is one of the most prevalent factors related to traffic crashes. The economic cost to society of speeding-related crashes is estimated to be $27.7 billion annually. In 1998, speeding was a factor in about one-third of all fatal crashes. Pres...

  4. Wavelet Analysis for Wind Fields Estimation

    PubMed Central

    Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699

  5. Influence of tire dynamics on slip ratio estimation of independent driving wheel system

    NASA Astrophysics Data System (ADS)

    Li, Jianqiu; Song, Ziyou; Wei, Yintao; Ouyang, Minggao

    2014-11-01

    The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn't equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.

  6. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits.

    PubMed

    Miller, Lee M; Kleidon, Axel

    2016-11-29

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 W e m -2 ) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 W e m -2 ) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 W e m -2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  7. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits

    PubMed Central

    Miller, Lee M.; Kleidon, Axel

    2016-01-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m−2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m−2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m−2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power. PMID:27849587

  8. Development of High Temperature Electro-Magnetic Actuators (HTEMA) for Aircraft Propulsion Systems (Preprint)

    DTIC Science & Technology

    2013-05-01

    an 18 inch gap diameter has roughly a 2 foot outer diameter                                                              2 “ Brushless  Permanent...require PMs include wound rotor DC (brush and brushless ), Variable or Switched reluctance (VR or SR) machines and squirrel cage induction motors...Trades have identified Brushless DC PM and SR machines are of primary interest. Both motors can use sensorless commutation methods. A VR resolver can

  9. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun

    2017-12-01

    Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.

  10. Intraindividual Variability in Executive Functions but Not Speed of Processing or Conflict Resolution Predicts Performance Differences in Gait Speed in Older Adults

    PubMed Central

    Mahoney, Jeannette; Verghese, Joe

    2014-01-01

    Background. The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Methods. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19–38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = −.606; 95% CI = −1.11 to −.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = −.901; 95% CI = −1.557 to −.245). Conclusion. Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. PMID:24285744

  11. Allometric associations between body size, shape, and 100-m butterfly speed performance.

    PubMed

    Sammoud, Senda; Nevill, Alan M; Negra, Yassine; Bouguezzi, Raja; Chaabene, Helmi; Hachana, Younés

    2018-05-01

    This study aimed to estimate the optimal body size, limb-segment length, and girth or breadth ratios associated with 100-m butterfly speed performance in swimmers. One-hundred-sixty-seven swimmers as subjects (male: N.=103; female: N.=64). Anthropometric measurements comprised height, body-mass, skinfolds, arm-span, upper-limb-length, upper-arm, forearm, hand-lengths, lower-limb-length, thigh-length, leg-length, foot-length, arm-relaxed-girth, forearm-girth, wrist-girth, thigh-girth, calf-girth, ankle-girth, biacromial and biiliocristal-breadths. To estimate the optimal body size and body composition components associated with 100-m butterfly speed performance, we adopted a multiplicative allometric log-linear regression model, which was refined using backward elimination. Fat-mass was the singularly most important whole-body characteristic. Height and body-mass did not contribute to the model. The allometric model identified that having greater limb segment length-ratio (arm-ratio = [arm-span]/[forearm]) and limb girth-ratio (girth-ratio = [calf-girth]/[ankle-girth]) were key to butterfly speed performance. A greater arm-span to forearm-length ratio and a greater calf to ankle-girth-ratio suggest that a combination of larger arm-span and shorter forearm-length and the combination of larger calves and smaller ankles-girth may benefit butterfly swim speed performance. In addition having greater biacromial and biliocristal breadths is also a major advantage in butterfly swimming speed performance. Finally, the estimation of these ratios was made possible by adopting a multiplicative allometric model that was able to confirm, theoretically, that swim speeds are nearly independent of total body size. The 100-m butterfly speed performance was strongly negatively associated with fat mass and positively associated with the segment length ratio (arm-span/forearm-length) and girth ratio (calf-girth)/(ankle-girth), having controlled for the developmental changes in age.

  12. Screw withdrawal : a means to evaluate densities of in-situ wood members

    Treesearch

    Zhiyong Cai; Michael O. Hunt; Robert J. Ross; Lawrence A. Soltis

    2003-01-01

    Dynamic modulus of elasticity (MOE) of a wood member is defined as the product of its density and square of stress wave speed. The dynamic MOE, which is highly correlated to the static MOE, is commonly used to estimate the load carrying capacity and serviceability of in-situ wood members. The stress wave speed can be estimated using ultrasonic, impact, or vibration...

  13. Maximum safe speed estimation using planar quintic Bezier curve with C2 continuity

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamad Fakharuddin; Misro, Md Yushalify; Ramli, Ahmad; Ali, Jamaludin Md

    2017-08-01

    This paper describes an alternative way in estimating design speed or the maximum speed allowed for a vehicle to drive safely on a road using curvature information from Bezier curve fitting on a map. We had tested on some route in Tun Sardon Road, Balik Pulau, Penang, Malaysia. We had proposed to use piecewise planar quintic Bezier curve while satisfying the curvature continuity between joined curves in the process of mapping the road. By finding the derivatives of quintic Bezier curve, the value of curvature was calculated and design speed was derived. In this paper, a higher order of Bezier Curve had been used. A higher degree of curve will give more freedom for users to control the shape of the curve compared to curve in lower degree.

  14. Reliability verification of vehicle speed estimate method in forensic videos.

    PubMed

    Kim, Jong-Hyuk; Oh, Won-Taek; Choi, Ji-Hun; Park, Jong-Chan

    2018-06-01

    In various types of traffic accidents, including car-to-car crash, vehicle-pedestrian collision, and hit-and-run accident, driver overspeed is one of the critical issues of traffic accident analysis. Hence, analysis of vehicle speed at the moment of accident is necessary. The present article proposes a vehicle speed estimate method (VSEM) applying a virtual plane and a virtual reference line to a forensic video. The reliability of the VSEM was verified by comparing the results obtained by applying the VSEM to videos from a test vehicle driving with a global positioning system (GPS)-based Vbox speed. The VSEM verified by these procedures was applied to real traffic accident examples to evaluate the usability of the VSEM. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Estimation of wind stress using dual-frequency TOPEX data

    NASA Astrophysics Data System (ADS)

    Elfouhaily, Tanos; Vandemark, Douglas; Gourrion, Jéro‸me; Chapron, Bertrand

    1998-10-01

    The TOPEX/POSEIDON satellite carries the first dual-frequency radar altimeter. Monofrequency (Ku-band) algorithms are presently used to retrieve surface wind speed from the altimeter's radar cross-section measurement (σ0Ku). These algorithms work reasonably well, but it is also known that altimeter wind estimates can be contaminated by residual effects, such as sea state, embedded in the σ0Ku measurement. Investigating the potential benefit of using two frequencies for wind retrieval, it is shown that a simple evaluation of TOPEX data yields previously unavailable information, particularly for high and low wind speeds. As the wind speed increases, the dual-frequency data provides a measurement more directly linked to the short-scale surface roughness, which in turn is associated with the local surface wind stress. Using a global TOPEX σ0° data set and TOPEX's significant wave height (Hs) estimate as a surrogate for the sea state's degree of development, it is also shown that differences between the two TOPEX σ0 measurements strongly evidence nonlocal sea state signature. A composite scattering theory is used to show how the dual-frequency data can provide an improved friction velocity model, especially for winds above 7 m/s. A wind speed conversion is included using a sea state dependent drag coefficient fed with TOPEX Hs data. Two colocated TOPEX-buoy data sets (from the National Data Buoy Center (NDBC) and the Structure des Echanges Mer-Atmosphre, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) campaign) are employed to test the new wind speed algorithm. A measurable improvement in wind speed estimation is obtained when compared to the monofrequency Witter and Chelton [1991] model.

  16. Determination of the geophysical model function of NSCAT and its corresponding variance by the use of neural networks

    NASA Astrophysics Data System (ADS)

    Mejia, C.; Badran, F.; Bentamy, A.; Crepon, M.; Thiria, S.; Tran, N.

    1999-05-01

    We have computed two geophysical model functions (one for the vertical and one for the horizontal polarization) for the NASA scatterometer (NSCAT) by using neural networks. These neural network geophysical model functions (NNGMFs) were estimated with NSCAT scatterometer σO measurements collocated with European Centre for Medium-Range Weather Forecasts analyzed wind vectors during the period January 15 to April 15, 1997. We performed a student t test showing that the NNGMFs estimate the NSCAT σO with a confidence level of 95%. Analysis of the results shows that the mean NSCAT signal depends on the incidence angle and the wind speed and presents the classical biharmonic modulation with respect to the wind azimuth. NSCAT σO increases with respect to the wind speed and presents a well-marked change at around 7 m s-1. The upwind-downwind amplitude is higher for the horizontal polarization signal than for vertical polarization, indicating that the use of horizontal polarization can give additional information for wind retrieval. Comparison of the σO computed by the NNGMFs against the NSCAT-measured σO show a quite low rms, except at low wind speeds. We also computed two specific neural networks for estimating the variance associated to these GMFs. The variances are analyzed with respect to geophysical parameters. This led us to compute the geophysical signal-to-noise ratio, i.e., Kp. The Kp values are quite high at low wind speed and decrease at high wind speed. At constant wind speed the highest Kp are at crosswind directions, showing that the crosswind values are the most difficult to estimate. These neural networks can be expressed as analytical functions, and FORTRAN subroutines can be provided.

  17. Meaningful change and responsiveness in common physical performance measures in older adults.

    PubMed

    Perera, Subashan; Mody, Samir H; Woodman, Richard C; Studenski, Stephanie A

    2006-05-01

    To estimate the magnitude of small meaningful and substantial individual change in physical performance measures and evaluate their responsiveness. Secondary data analyses using distribution- and anchor-based methods to determine meaningful change. Secondary analysis of data from an observational study and clinical trials of community-dwelling older people and subacute stroke survivors. Older adults with mobility disabilities in a strength training trial (n=100), subacute stroke survivors in an intervention trial (n=100), and a prospective cohort of community-dwelling older people (n=492). Gait speed, Short Physical Performance Battery (SPPB), 6-minute-walk distance (6MWD), and self-reported mobility. Most small meaningful change estimates ranged from 0.04 to 0.06 m/s for gait speed, 0.27 to 0.55 points for SPPB, and 19 to 22 m for 6MWD. Most substantial change estimates ranged from 0.08 to 0.14 m/s for gait speed, 0.99 to 1.34 points for SPPB, and 47 to 49 m for 6MWD. Based on responsiveness indices, per-group sample sizes for clinical trials ranged from 13 to 42 for substantial change and 71 to 161 for small meaningful change. Best initial estimates of small meaningful change are near 0.05 m/s for gait speed, 0.5 points for SPPB, and 20 m for 6MWD and of substantial change are near 0.10 m/s for gait speed, 1.0 point for SPPB, and 50 m for 6MWD. For clinical use, substantial change in these measures and small change in gait speed and 6MWD, but not SPPB, are detectable. For research use, these measures yield feasible sample sizes for detecting meaningful change.

  18. The Radial Speed - Expansion Speed Relation for Earth-Directed CMEs

    NASA Astrophysics Data System (ADS)

    Makela, P. A.; Gopalswamy, N.; Yashiro, S.

    2013-12-01

    The propagation speed of Earth-directed coronal mass ejections (CMEs) is an essential parameter needed in space weather forecasting. However, the true propagation speed of Earth-directed CMEs cannot be measured accurately from coronagraph images taken from Earth's view. In order to circumvent the inaccuracies of speed measurements due to the projection effects, empirical relations expressing the radial speed (Vrad) of the CME as a function of the CME expansion speed (Vexp) have been suggested. Vexp is defined as the apparent speed the CME is spreading in the coronagraph's field of view. During 2010-2012 STEREO spacecraft provided a side view of Earth-directed CMEs, allowing measurements of true CME speeds and widths. In a case study of the 2011 February 15 CME Gopalswamy et al. (2012) compared three Vrad-Vexp relations (flat cone, full or shallow ice cream cone - Gopalswamy et al., 2009) and found the closest match with the observations for the (full ice cream cone) relation Vrad = 1/2(1 + cot w)Vexp, where w is the half width of the CME. Using the STEREO/SECCHI and SOHO/LASCO observations during this opportune period, we expand this analysis to a larger set of Earth-directed CMEs. We compare the computed CME speed estimates with the measured true speeds and estimate the accuracy of the Vrad-Vexp relations. References: Gopalswamy, N. et al. (2009), The expansion and radial speeds of coronal mass ejections, Cent. Eur. Astrophys. Bull., 33, 115. Gopalswamy, N. et al. (2012), The relationship between the expansion speed and radial speed of CMEs confirmed using quadrature observations of the 2011 February 15 CME, Sun and Geosphere, 7(1), 7.

  19. Computer ray tracing speeds.

    PubMed

    Robb, P; Pawlowski, B

    1990-05-01

    The results of measuring the ray trace speed and compilation speed of thirty-nine computers in fifty-seven configurations, ranging from personal computers to super computers, are described. A correlation of ray trace speed has been made with the LINPACK benchmark which allows the ray trace speed to be estimated using LINPACK performance data. The results indicate that the latest generation of workstations, using CPUs based on RISC (Reduced Instruction Set Computer) technology, are as fast or faster than mainframe computers in compute-bound situations.

  20. Are Tornadoes Getting Stronger?

    NASA Astrophysics Data System (ADS)

    Elsner, J.; Jagger, T.

    2013-12-01

    A cumulative logistic model for tornado damage category is developed and examined. Damage path length and width are significantly correlated to the odds of a tornado receiving the next highest damage category. Given values for the cube root of path length and square root of path width, the model predicts a probability for each category. The length and width coefficients are insensitive to the switch to the Enhanced Fujita (EF) scale and to distance from nearest city although these variables are statistically significant in the model. The width coefficient is sensitive to whether or not the tornado caused at least one fatality. This is likely due to the fact that the dimensions and characteristics of the damage path for such events are always based on ground surveys. The model predicted probabilities across the categories are then multiplied by the center wind speed from the categorical EF scale to obtain an estimate of the highest tornado wind speed on a continuous scale in units of meters per second. The estimated wind speeds correlate at a level of .82 (.46, .95) [95% confidence interval] to wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. More work needs to be done to understand the upward trends in path length and width. The increases lead to an apparent increase in tornado intensity across all EF categories.

  1. Sea spray contributions to the air-sea fluxes at moderate and hurricane wind speeds

    NASA Astrophysics Data System (ADS)

    Mueller, J. A.; Veron, F.

    2009-12-01

    At sufficiently high wind speed conditions, the surface of the ocean separates to form a substantial number of sea spray drops, which can account for a significant fraction of the total air-sea surface area and thus make important contributions to the aggregate air-sea momentum, heat and mass fluxes. Although consensus around the qualitative impacts of these drops has been building in recent years, the quantification of their impacts has remained elusive. Ultimately, the spray-mediated fluxes depend on three controlling factors: the number and size of drops formed at the surface, the duration of suspension within the atmospheric marine boundary layer, and the rate of momentum, heat and mass transfer between the drops and the atmosphere. While the latter factor can be estimated from an established, physically-based theory, the estimates for the former two are not well established. Using a recent, physically-based model of the sea spray source function along with the results from Lagrangian stochastic simulations of individual drops, we estimate the aggregate spray-mediated fluxes, finding reasonable agreement with existing models and estimates within the empirical range of wind speed conditions. At high wind speed conditions that are outside the empirical range, however, we find somewhat lower spray-mediated fluxes than previously reported in the literature, raising new questions about the relative air-sea fluxes at high wind speeds as well as the development and sustainment of hurricanes.

  2. How well does wind speed predict air-sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.

    2017-05-01

    We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.

  3. Gas transfer velocities measured at low wind speed over a lake

    USGS Publications Warehouse

    Crusius, John; Wanninkhof, R.

    2003-01-01

    The relationship between gas transfer velocity and wind speed was evaluated at low wind speeds by quantifying the rate of evasion of the deliberate tracer, SF6, from a small oligotrophic lake. Several possible relationships between gas transfer velocity and low wind speed were evaluated by using 1-min-averaged wind speeds as a measure of the instantaneous wind speed values. Gas transfer velocities in this data set can be estimated virtually equally well by assuming any of three widely used relationships between k600 and winds referenced to 10-m height, U10: (1) a bilinear dependence with a break in the slope at ???3.7 m s-1, which resulted in the best fit; (2) a power dependence; and (3) a constant transfer velocity for U10 3.7 m s-1 which, coupled with the typical variability in instantaneous wind speeds observed in the field, leads to average transfer velocity estimates that are higher than those predicted for steady wind trends. The transfer velocities predicted by the bilinear steady wind relationship for U10 < ???3.7 m s-1 are virtually identical to the theoretical predictions for transfer across a smooth surface.

  4. Measuring attention using flash-lag effect.

    PubMed

    Shioiri, Satoshi; Yamamoto, Ken; Oshida, Hiroki; Matsubara, Kazuya; Yaguchi, Hirohisa

    2010-08-13

    We investigated the effect of attention on the flash-lag effect (FLE) in order to determine whether the FLE can be used to estimate the effect of visual attention. The FLE is the effect that a flash aligned with a moving object is perceived to lag the moving object, and several studies have shown that attention reduces its magnitude. We measured the FLE as a function of the number or speed of moving objects. The results showed that the effect of cueing, which we attributed the effect of attention, on the FLE increased monotonically with the number or the speed of the objects. This suggests that the amount of attention can be estimated by measuring the FLE, assuming that more amount of attention is required for a larger number or faster speed of objects to attend. On the basis of this presumption, we attempted to measure the spatial spread of visual attention by FLE measurements. The estimated spatial spreads were similar to those estimated by other experimental methods.

  5. The duration perception of loading applications in smartphone: Effects of different loading types.

    PubMed

    Zhao, Wenguo; Ge, Yan; Qu, Weina; Zhang, Kan; Sun, Xianghong

    2017-11-01

    The loading time of a smartphone application is an important issue, which affects the satisfaction of phone users. This study evaluated the effects of black loading screen (BLS) and animation loading screen (ALS) during application loading on users' duration perception and satisfaction. A total of 43 volunteers were enrolled. They were asked to complete several tasks by clicking the icons of each application, such as camera or message. The duration of loading time for each application was manipulated. The participants were asked to estimate the duration, evaluate the loading speed and their satisfaction. The results showed that the estimated duration increased and the satisfaction for loading period declined along with the loading time increased. Compared with the BLS, the ALS prolonged the estimated duration, and lowered the evaluation of speed and satisfaction. We also discussed the tendency and key inflection points of the curves involving the estimated duration, speed evaluation and satisfaction with the loading time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO

    PubMed Central

    Zhang, Chaozhu; Han, Jinan; Li, Ke

    2014-01-01

    The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750

  7. Method for estimating infection route and speed of influenza.

    PubMed

    Ijuin, Kazushige; Matsuda, Rieko; Hayashi, Yuzuru

    2006-03-01

    This paper puts forward a method for estimating the infection route and speed of influenza from the daily variations in the amount of influenza formulations supplied at distant city pharmacies. The cross-correlation function between the time variations at the pharmacies indicates as for the drug sales, how many days a pharmacy lags behind another pharmacy. The comparison of the time lags between the pharmacies can lead to the estimation of the infection route of influenza. Taking into account the distance between the locations of the pharmacies, we can calculate the infection speed of influenza. Three pharmacies located in Tokyo and its vicinity (Saitama and Kanagawa) are taken as an example. The thrust of this paper is to introduce the new strategy that can take full advantage of the information every pharmacy has in possession.

  8. Wind Retrievals under Rain for Passive Satellite Microwave Radiometers and its Applications to Hurricane Tracking

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.

    2008-01-01

    We have developed an algorithm that retrieves wind speed under rain using C-hand and X-band channels of passive microwave satellite radiometers. The spectral difference of the brightness temperature signals due to wind or rain allows to find channel combinations that are sufficiently sensitive to wind speed but little or not sensitive to rain. We &ve trained a statistical algorithm that applies under hurricane conditions and is able to measure wind speeds in hurricanes to an estimated accuracy of about 2 m/s. We have also developed a global algorithm, that is less accurate but can be applied under all conditions. Its estimated accuracy is between 2 and 5 mls, depending on wind speed and rain rate. We also extend the wind speed region in our model for the wind induced sea surface emissivity from currently 20 m/s to 40 mls. The data indicate that the signal starts to saturate above 30 mls. Finally, we make an assessment of the performance of wind direction retrievals from polarimetric radiometers as function of wind speed and rain rate

  9. Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed

    NASA Astrophysics Data System (ADS)

    Gessner, Manuel; Smerzi, Augusto

    2018-02-01

    We analyze families of measures for the quantum statistical speed which include as special cases the quantum Fisher information, the trace speed, i.e., the quantum statistical speed obtained from the trace distance, and more general quantifiers obtained from the family of Schatten norms. These measures quantify the statistical speed under generic quantum evolutions and are obtained by maximizing classical measures over all possible quantum measurements. We discuss general properties, optimal measurements, and upper bounds on the speed of separable states. We further provide a physical interpretation for the trace speed by linking it to an analog of the quantum Cramér-Rao bound for median-unbiased quantum phase estimation.

  10. Nonparametric Stochastic Model for Uncertainty Quantifi cation of Short-term Wind Speed Forecasts

    NASA Astrophysics Data System (ADS)

    AL-Shehhi, A. M.; Chaouch, M.; Ouarda, T.

    2014-12-01

    Wind energy is increasing in importance as a renewable energy source due to its potential role in reducing carbon emissions. It is a safe, clean, and inexhaustible source of energy. The amount of wind energy generated by wind turbines is closely related to the wind speed. Wind speed forecasting plays a vital role in the wind energy sector in terms of wind turbine optimal operation, wind energy dispatch and scheduling, efficient energy harvesting etc. It is also considered during planning, design, and assessment of any proposed wind project. Therefore, accurate prediction of wind speed carries a particular importance and plays significant roles in the wind industry. Many methods have been proposed in the literature for short-term wind speed forecasting. These methods are usually based on modeling historical fixed time intervals of the wind speed data and using it for future prediction. The methods mainly include statistical models such as ARMA, ARIMA model, physical models for instance numerical weather prediction and artificial Intelligence techniques for example support vector machine and neural networks. In this paper, we are interested in estimating hourly wind speed measures in United Arab Emirates (UAE). More precisely, we predict hourly wind speed using a nonparametric kernel estimation of the regression and volatility functions pertaining to nonlinear autoregressive model with ARCH model, which includes unknown nonlinear regression function and volatility function already discussed in the literature. The unknown nonlinear regression function describe the dependence between the value of the wind speed at time t and its historical data at time t -1, t - 2, … , t - d. This function plays a key role to predict hourly wind speed process. The volatility function, i.e., the conditional variance given the past, measures the risk associated to this prediction. Since the regression and the volatility functions are supposed to be unknown, they are estimated using nonparametric kernel methods. In addition, to the pointwise hourly wind speed forecasts, a confidence interval is also provided which allows to quantify the uncertainty around the forecasts.

  11. Not So Fast: Swimming Behavior of Sailfish during Predator-Prey Interactions using High-Speed Video and Accelerometry.

    PubMed

    Marras, Stefano; Noda, Takuji; Steffensen, John F; Svendsen, Morten B S; Krause, Jens; Wilson, Alexander D M; Kurvers, Ralf H J M; Herbert-Read, James; Boswell, Kevin M; Domenici, Paolo

    2015-10-01

    Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting to top speeds when hunting evasive prey. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Using data from an encounter sampler to model fish dispersal

    USGS Publications Warehouse

    Obaza, A.; DeAngelis, D.L.; Trexler, J.C.

    2011-01-01

    A method to estimate speed of free-ranging fishes using a passive sampling device is described and illustrated with data from the Everglades, U.S.A. Catch per unit effort (CPUE) from minnow traps embedded in drift fences was treated as an encounter rate and used to estimate speed, when combined with an independent estimate of density obtained by use of throw traps that enclose 1 m2 of marsh habitat. Underwater video was used to evaluate capture efficiency and species-specific bias of minnow traps and two sampling studies were used to estimate trap saturation and diel-movement patterns; these results were used to optimize sampling and derive correction factors to adjust species-specific encounter rates for bias and capture efficiency. Sailfin mollies Poecilia latipinna displayed a high frequency of escape from traps, whereas eastern mosquitofish Gambusia holbrooki were most likely to avoid a trap once they encountered it; dollar sunfish Lepomis marginatus were least likely to avoid the trap once they encountered it or to escape once they were captured. Length of sampling and time of day affected CPUE; fishes generally had a very low retention rate over a 24 h sample time and only the Everglades pygmy sunfish Elassoma evergladei were commonly captured at night. Dispersal speed of fishes in the Florida Everglades, U.S.A., was shown to vary seasonally and among species, ranging from 0.05 to 0.15 m s-1 for small poeciliids and fundulids to 0.1 to 1.8 m s-1 for L. marginatus. Speed was generally highest late in the wet season and lowest in the dry season, possibly tied to dispersal behaviours linked to finding and remaining in dry-season refuges. These speed estimates can be used to estimate the diffusive movement rate, which is commonly employed in spatial ecological models.

  13. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects

    PubMed Central

    Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement. PMID:27872898

  14. Smooth Approximation l 0-Norm Constrained Affine Projection Algorithm and Its Applications in Sparse Channel Estimation

    PubMed Central

    2014-01-01

    We propose a smooth approximation l 0-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l 0-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases. PMID:24790588

  15. Indirect Validation of Probe Speed Data on Arterial Corridors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eshragh, Sepideh; Young, Stanley E.; Sharifi, Elham

    This study aimed to estimate the accuracy of probe speed data on arterial corridors on the basis of roadway geometric attributes and functional classification. It was assumed that functional class (medium and low) along with other road characteristics (such as weighted average of the annual average daily traffic, average signal density, average access point density, and average speed) were available as correlation factors to estimate the accuracy of probe traffic data. This study tested these factors as predictors of the fidelity of probe traffic data by using the results of an extensive validation exercise. This study showed strong correlations betweenmore » these geometric attributes and the accuracy of probe data when they were assessed by using average absolute speed error. Linear models were regressed to existing data to estimate appropriate models for medium- and low-type arterial corridors. The proposed models for medium- and low-type arterials were validated further on the basis of the results of a slowdown analysis. These models can be used to predict the accuracy of probe data indirectly in medium and low types of arterial corridors.« less

  16. A video-based speed estimation technique for localizing the wireless capsule endoscope inside gastrointestinal tract.

    PubMed

    Bao, Guanqun; Mi, Liang; Geng, Yishuang; Zhou, Mingda; Pahlavan, Kaveh

    2014-01-01

    Wireless Capsule Endoscopy (WCE) is progressively emerging as one of the most popular non-invasive imaging tools for gastrointestinal (GI) tract inspection. As a critical component of capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of intestinal disease. For the WCE, the position of the capsule is defined as the linear distance it is away from certain fixed anatomical landmarks. In order to measure the distance the capsule has traveled, a precise knowledge of how fast the capsule moves is urgently needed. In this paper, we present a novel computer vision based speed estimation technique that is able to extract the speed of the endoscopic capsule by analyzing the displacements between consecutive frames. The proposed approach is validated using a virtual testbed as well as the real endoscopic images. Results show that the proposed method is able to precisely estimate the speed of the endoscopic capsule with 93% accuracy on average, which enhances the localization accuracy of the WCE to less than 2.49 cm.

  17. Modeling and simulation of soft sensor design for real-time speed and position estimation of PMSM.

    PubMed

    Omrane, Ines; Etien, Erik; Dib, Wissam; Bachelier, Olivier

    2015-07-01

    This paper deals with the design of a speed soft sensor for permanent magnet synchronous motor. At high speed, model-based soft sensor is used and it gives excellent results. However, it fails to deliver satisfactory performance at zero or very low speed. High-frequency soft sensor is used at low speed. We suggest to use a model-based soft sensor together with the high-frequency soft sensor to overcome the limitations of the first one at low speed range. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Pedestrian headform testing: inferring performance at impact speeds and for headform masses not tested, and estimating average performance in a range of real-world conditions.

    PubMed

    Hutchinson, T Paul; Anderson, Robert W G; Searson, Daniel J

    2012-01-01

    Tests are routinely conducted where instrumented headforms are projected at the fronts of cars to assess pedestrian safety. Better information would be obtained by accounting for performance over the range of expected impact conditions in the field. Moreover, methods will be required to integrate the assessment of secondary safety performance with primary safety systems that reduce the speeds of impacts. Thus, we discuss how to estimate performance over a range of impact conditions from performance in one test and how this information can be combined with information on the probability of different impact speeds to provide a balanced assessment of pedestrian safety. Theoretical consideration is given to 2 distinct aspects to impact safety performance: the test impact severity (measured by the head injury criterion, HIC) at a speed at which a structure does not bottom out and the speed at which bottoming out occurs. Further considerations are given to an injury risk function, the distribution of impact speeds likely in the field, and the effect of primary safety systems on impact speeds. These are used to calculate curves that estimate injuriousness for combinations of test HIC, bottoming out speed, and alternative distributions of impact speeds. The injuriousness of a structure that may be struck by the head of a pedestrian depends not only on the result of the impact test but also the bottoming out speed and the distribution of impact speeds. Example calculations indicate that the relationship between the test HIC and injuriousness extends over a larger range than is presently used by the European New Car Assessment Programme (Euro NCAP), that bottoming out at speeds only slightly higher than the test speed can significantly increase the injuriousness of an impact location and that effective primary safety systems that reduce impact speeds significantly modify the relationship between the test HIC and injuriousness. Present testing regimes do not take fully into account the relationship between impact severity and variations in impact conditions. Instead, they assess injury risk at a single impact speed. Hence, they may fail to differentiate risks due to the effects of bottoming out under different impact conditions. Because the level of injuriousness changes across a wide range of HIC values, even slight improvements to very stiff structures need to be encouraged through testing. Indications are that the potential of autonomous braking systems is substantial and needs to be weighted highly in vehicle safety assessments.

  19. Wind power in Jamaica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.A.; Daniel, A.R.; Daniel, S.T.

    1990-01-01

    Parameters to evaluate the potential for using wind energy to generate electricity in Jamaica were obtained. These include the average wind power scaled to a height of 20 m at existing weather stations and temporary anemometer sites, the variation in annual and monthly wind power, and the frequency distribution of wind speed and wind energy available. Four small commercial turbines were assumed to be operating at some of the sites, and the estimated energy captured by them, the time they operated above their cut-in speed and their capacity factors were also determined. Diurnal variations of wind speed and prevailing windmore » directions are discussed and a map showing wind power at various sites was produced. Two stations with long-term averages, Manley and Morant Point, gave results which warranted further investigation. Results from some temporary stations are also encouraging. Mean wind speeds at two other sites in the Caribbean are given for comparison. A method for estimating the power exponent for scaling the wind speed from climatic data is described in Appendix 2.« less

  20. Estimating Variances of Horizontal Wind Fluctuations in Stable Conditions

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.

    2010-05-01

    Information concerning the average wind speed and the variances of lateral and longitudinal wind velocity fluctuations is required by dispersion models to characterise turbulence in the atmospheric boundary layer. When the winds are weak, the scalar average wind speed and the vector average wind speed need to be clearly distinguished and both lateral and longitudinal wind velocity fluctuations assume equal importance in dispersion calculations. We examine commonly-used methods of estimating these variances from wind-speed and wind-direction statistics measured separately, for example, by a cup anemometer and a wind vane, and evaluate the implied relationship between the scalar and vector wind speeds, using measurements taken under low-wind stable conditions. We highlight several inconsistencies inherent in the existing formulations and show that the widely-used assumption that the lateral velocity variance is equal to the longitudinal velocity variance is not necessarily true. We derive improved relations for the two variances, and although data under stable stratification are considered for comparison, our analysis is applicable more generally.

  1. Swimming performance of a biomimetic compliant fish-like robot

    NASA Astrophysics Data System (ADS)

    Epps, Brenden P.; Valdivia Y Alvarado, Pablo; Youcef-Toumi, Kamal; Techet, Alexandra H.

    2009-12-01

    Digital particle image velocimetry and fluorescent dye visualization are used to characterize the performance of fish-like swimming robots. During nominal swimming, these robots produce a ‘V’-shaped double wake, with two reverse-Kármán streets in the far wake. The Reynolds number based on swimming speed and body length is approximately 7500, and the Strouhal number based on flapping frequency, flapping amplitude, and swimming speed is 0.86. It is found that swimming speed scales with the strength and geometry of a composite wake, which is constructed by freezing each vortex at the location of its centroid at the time of shedding. Specifically, we find that swimming speed scales linearly with vortex circulation. Also, swimming speed scales linearly with flapping frequency and the width of the composite wake. The thrust produced by the swimming robot is estimated using a simple vortex dynamics model, and we find satisfactory agreement between this estimate and measurements made during static load tests.

  2. Intraindividual variability in executive functions but not speed of processing or conflict resolution predicts performance differences in gait speed in older adults.

    PubMed

    Holtzer, Roee; Mahoney, Jeannette; Verghese, Joe

    2014-08-01

    The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19-38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = -.606; 95% CI = -1.11 to -.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = -.901; 95% CI = -1.557 to -.245). Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Speed and Delay Prediction Models for Planning Applications

    DOT National Transportation Integrated Search

    1999-01-01

    Estimation of vehicle speed and delay is fundamental to many forms of : transportation planning analyses including air quality, long-range travel : forecasting, major investment studies, and congestion management systems. : However, existing planning...

  4. Global Acceleration of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Lara, Alejandro; Lepping, Ronald; Kaiser, Michael; Berdichevsky, Daniel; St. Cyr, O. Chris; Lazarus, Al

    1999-01-01

    Using the observed relation between speeds of coronal mass ejections (CMEs) near the Sun and in the solar wind, we estimate a global acceleration acting on the CMEs. Our study quantifies the qualitative results of Gosling [1997] and numerical simulations that CMEs at 1 AU with speeds closer to the solar wind. We found a linear relation between the global acceleration and the initial speed of the CMEs and the absolute value of the acceleration is similar to the slow solar wind acceleration. Our study naturally divides CMEs into fast and slow ones, the dividing line being the solar wind speed. Our results have important implications to space weather prediction models which need to incorporate this effect in estimating the CME arrival time at 1 AU. We show that the arrival times of CMEs at 1 AU are drastically different from the zero acceleration case.

  5. System and method for motor speed estimation of an electric motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN

    2012-06-19

    A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

  6. Summary of methods for calculating dynamic lateral stability and response and for estimating aerodynamic stability derivatives

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Mckinney, Marion O

    1952-01-01

    A summary of methods for making dynamic lateral stability and response calculations and for estimating the aerodynamic stability derivatives required for use in these calculations is presented. The processes of performing calculations of the time histories of lateral motions, of the period and damping of these motions, and of the lateral stability boundaries are presented as a series of simple straightforward steps. Existing methods for estimating the stability derivatives are summarized and, in some cases, simple new empirical formulas are presented. Detailed estimation methods are presented for low-subsonic-speed conditions but only a brief discussion and a list of references are given for transonic and supersonic speed conditions.

  7. Validation of Computer Aided Operations Research Facility (CAORF).

    DTIC Science & Technology

    1979-01-01

    favorable comparison is that of the slow- down effect in performing a turn. From Figure 2.4 it is estimated that ship’s speed was reduced from an...initial speed of 17 knots to 6.6 knots. The data shown in Figure 2.3 for the CAORF ship indicate a reduction from an initial speed of 15 knots to 5.1 knots...follows: The ship is on a steady course at full sea speed . (Exact sea speed is optional.) At time zero, the rudder is put over 20 0 right. This is

  8. On the estimation of sound speed in two-dimensional Yukawa fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, I. L., E-mail: Igor.Semenov@dlr.de; Thomas, H. M.; Khrapak, S. A.

    2015-11-15

    The longitudinal sound speed in two-dimensional Yukawa fluids is estimated using the conventional hydrodynamic expression supplemented by appropriate thermodynamic functions proposed recently by Khrapak et al. [Phys. Plasmas 22, 083706 (2015)]. In contrast to the existing approaches, such as quasi-localized charge approximation (QLCA) and molecular dynamics simulations, our model provides a relatively simple estimate for the sound speed over a wide range of parameters of interest. At strong coupling, our results are shown to be in good agreement with the results obtained using the QLCA approach and those derived from the phonon spectrum for the triangular lattice. On the othermore » hand, our model is also expected to remain accurate at moderate values of the coupling strength. In addition, the obtained results are used to discuss the influence of the strong coupling effects on the adiabatic index of two-dimensional Yukawa fluids.« less

  9. Machine Learning Estimates of Natural Product Conformational Energies

    PubMed Central

    Rupp, Matthias; Bauer, Matthias R.; Wilcken, Rainer; Lange, Andreas; Reutlinger, Michael; Boeckler, Frank M.; Schneider, Gisbert

    2014-01-01

    Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures. PMID:24453952

  10. Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy

    PubMed Central

    Wong, Yau; Chao, Jerry; Lin, Zhiping; Ober, Raimund J.

    2014-01-01

    In fluorescence microscopy, high-speed imaging is often necessary for the proper visualization and analysis of fast subcellular dynamics. Here, we examine how the speed of image acquisition affects the accuracy with which parameters such as the starting position and speed of a microscopic non-stationary fluorescent object can be estimated from the resulting image sequence. Specifically, we use a Fisher information-based performance bound to investigate the detector-dependent effect of frame rate on the accuracy of parameter estimation. We demonstrate that when a charge-coupled device detector is used, the estimation accuracy deteriorates as the frame rate increases beyond a point where the detector’s readout noise begins to overwhelm the low number of photons detected in each frame. In contrast, we show that when an electron-multiplying charge-coupled device (EMCCD) detector is used, the estimation accuracy improves with increasing frame rate. In fact, at high frame rates where the low number of photons detected in each frame renders the fluorescent object difficult to detect visually, imaging with an EMCCD detector represents a natural implementation of the Ultrahigh Accuracy Imaging Modality, and enables estimation with an accuracy approaching that which is attainable only when a hypothetical noiseless detector is used. PMID:25321248

  11. Structure and Utility of Blind Speed Intervals Associated with Doppler Measurements of Range Rate

    DTIC Science & Technology

    1993-02-01

    computer programming concepts of speed, memory , and data structures that can be exploited to fabricate efficient software realizations of two phase range...to the effect that it is possible to derive a reasonable unambiguous estimate of range rate from the measurement of the pulse-to-pulse phase shift in...the properties of the blind speed intervals generated by the base speeds involved in two measurement equations. Sections 12 through 18 make up the

  12. PIG's Speed Estimated with Pressure Transducers and Hall Effect Sensor: An Industrial Application of Sensors to Validate a Testing Laboratory.

    PubMed

    Lima, Gustavo F; Freitas, Victor C G; Araújo, Renan P; Maitelli, André L; Salazar, Andrés O

    2017-09-15

    The pipeline inspection using a device called Pipeline Inspection Gauge (PIG) is safe and reliable when the PIG is at low speeds during inspection. We built a Testing Laboratory, containing a testing loop and supervisory system to study speed control techniques for PIGs. The objective of this work is to present and validate the Testing Laboratory, which will allow development of a speed controller for PIGs and solve an existing problem in the oil industry. The experimental methodology used throughout the project is also presented. We installed pressure transducers on pipeline outer walls to detect the PIG's movement and, with data from supervisory, calculated an average speed of 0.43 m/s. At the same time, the electronic board inside the PIG received data from odometer and calculated an average speed of 0.45 m/s. We found an error of 4.44%, which is experimentally acceptable. The results showed that it is possible to successfully build a Testing Laboratory to detect the PIG's passage and estimate its speed. The validation of the Testing Laboratory using data from the odometer and its auxiliary electronic was very successful. Lastly, we hope to develop more research in the oil industry area using this Testing Laboratory.

  13. The prediction of speed and incline in outdoor running in humans using accelerometry.

    PubMed

    Herren, R; Sparti, A; Aminian, K; Schutz, Y

    1999-07-01

    To explore whether triaxial accelerometric measurements can be utilized to accurately assess speed and incline of running in free-living conditions. Body accelerations during running were recorded at the lower back and at the heel by a portable data logger in 20 human subjects, 10 men, and 10 women. After parameterizing body accelerations, two neural networks were designed to recognize each running pattern and calculate speed and incline. Each subject ran 18 times on outdoor roads at various speeds and inclines; 12 runs were used to calibrate the neural networks whereas the 6 other runs were used to validate the model. A small difference between the estimated and the actual values was observed: the square root of the mean square error (RMSE) was 0.12 m x s(-1) for speed and 0.014 radiant (rad) (or 1.4% in absolute value) for incline. Multiple regression analysis allowed accurate prediction of speed (RMSE = 0.14 m x s(-1)) but not of incline (RMSE = 0.026 rad or 2.6% slope). Triaxial accelerometric measurements allows an accurate estimation of speed of running and incline of terrain (the latter with more uncertainty). This will permit the validation of the energetic results generated on the treadmill as applied to more physiological unconstrained running conditions.

  14. PIG’s Speed Estimated with Pressure Transducers and Hall Effect Sensor: An Industrial Application of Sensors to Validate a Testing Laboratory

    PubMed Central

    Freitas, Victor C. G.; Araújo, Renan P.; Maitelli, André L.; Salazar, Andrés O.

    2017-01-01

    The pipeline inspection using a device called Pipeline Inspection Gauge (PIG) is safe and reliable when the PIG is at low speeds during inspection. We built a Testing Laboratory, containing a testing loop and supervisory system to study speed control techniques for PIGs. The objective of this work is to present and validate the Testing Laboratory, which will allow development of a speed controller for PIGs and solve an existing problem in the oil industry. The experimental methodology used throughout the project is also presented. We installed pressure transducers on pipeline outer walls to detect the PIG’s movement and, with data from supervisory, calculated an average speed of 0.43 m/s. At the same time, the electronic board inside the PIG received data from odometer and calculated an average speed of 0.45 m/s. We found an error of 4.44%, which is experimentally acceptable. The results showed that it is possible to successfully build a Testing Laboratory to detect the PIG’s passage and estimate its speed. The validation of the Testing Laboratory using data from the odometer and its auxiliary electronic was very successful. Lastly, we hope to develop more research in the oil industry area using this Testing Laboratory. PMID:28914757

  15. Estimation of wind speeds inside Super Typhoon Nepartak from AMSR2 low-frequency brightness temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yin, Xiaobin; Shi, Hanqing; Wang, Zhenzhan; Xu, Qing

    2018-04-01

    Accurate estimations of typhoon-level winds are highly desired over the western Pacific Ocean. A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016) using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-W1) satellite. The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak. A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product. The mean bias is 0.51 m/s, and the root-mean-square difference is 1.93 m/s between them. The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6. The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center. In addition, Feng-Yun 2G (FY-2G) satellite infrared images, Feng-Yun 3C (FY-3C) microwave atmospheric sounder data, and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.

  16. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Edrei, Eitan; Scarcelli, Giuliano

    2018-04-01

    Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.

  17. Modeling the effect of varying swim speeds on fish passage through velocity barriers

    USGS Publications Warehouse

    Castro-Santos, T.

    2006-01-01

    The distance fish can swim through zones of high-velocity flow is an important factor limiting the distribution and conservation of riverine and diadromous fishes. Often, these barriers are characterized by nonuniform flow conditions, and it is likely that fish will swim at varying speeds to traverse them. Existing models used to predict passage success, however, typically include the unrealistic assumption that fish swim at a constant speed regardless of the speed of flow. This paper demonstrates how the maximum distance of ascent through velocity barriers can be estimated from the swim speed-fatigue time relationship, allowing for variation in both swim speed and water velocity.

  18. Hydroplaning on multi lane facilities.

    DOT National Transportation Integrated Search

    2012-11-01

    The primary findings of this research can be highlighted as follows. Models that provide estimates of wet weather speed reduction, as well as analytical and empirical methods for the prediction of hydroplaning speeds of trailers and heavy trucks, wer...

  19. Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.

    PubMed

    Markowitz, Jared; Krishnaswamy, Pavitra; Eilenberg, Michael F; Endo, Ken; Barnhart, Chris; Herr, Hugh

    2011-05-27

    Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.

  20. New geometric design consistency model based on operating speed profiles for road safety evaluation.

    PubMed

    Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo

    2013-12-01

    To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Children's mathematical performance: five cognitive tasks across five grades.

    PubMed

    Moore, Alex M; Ashcraft, Mark H

    2015-07-01

    Children in elementary school, along with college adults, were tested on a battery of basic mathematical tasks, including digit naming, number comparison, dot enumeration, and simple addition or subtraction. Beyond cataloguing performance to these standard tasks in Grades 1 to 5, we also examined relationships among the tasks, including previously reported results on a number line estimation task. Accuracy and latency improved across grades for all tasks, and classic interaction patterns were found, for example, a speed-up of subitizing and counting, increasingly shallow slopes in number comparison, and progressive speeding of responses especially to larger addition and subtraction problems. Surprisingly, digit naming was faster than subitizing at all ages, arguing against a pre-attentive processing explanation for subitizing. Estimation accuracy and speed were strong predictors of children's addition and subtraction performance. Children who gave exponential responses on the number line estimation task were slower at counting in the dot enumeration task and had longer latencies on addition and subtraction problems. The results provided further support for the importance of estimation as an indicator of children's current and future mathematical expertise. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed.

    PubMed

    Tsukahara, Atsushi; Hasegawa, Yasuhisa; Eguchi, Kiyoshi; Sankai, Yoshiyuki

    2015-03-01

    This paper proposes a novel gait intention estimator for an exoskeleton-wearer who needs gait support owing to walking impairment. The gait intention estimator not only detects the intention related to the start of the swing leg based on the behavior of the center of ground reaction force (CoGRF), but also infers the swing speed depending on the walking velocity. The preliminary experiments categorized into two stages were performed on a mannequin equipped with the exoskeleton robot [Hybrid Assistive Limb: (HAL)] including the proposed estimator. The first experiment verified that the gait support system allowed the mannequin to walk properly and safely. In the second experiment, we confirmed the differences in gait characteristics attributed to the presence or absence of the proposed swing speed profile. As a feasibility study, we evaluated the walking capability of a severe spinal cord injury patient supported by the system during a 10-m walk test. The results showed that the system enabled the patient to accomplish a symmetrical walk from both spatial and temporal standpoints while adjusting the speed of the swing leg. Furthermore, the critical differences of gait between our system and a knee-ankle-foot orthosis were obtained from the CoGRF distribution and the walking time. Through the tests, we demonstrated the effectiveness and practical feasibility of the gait support algorithms.

  3. Joint reconstruction of the initial pressure and speed of sound distributions from combined photoacoustic and ultrasound tomography measurements

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas P.; Anastasio, Mark A.

    2017-12-01

    The initial pressure and speed of sound (SOS) distributions cannot both be stably recovered from photoacoustic computed tomography (PACT) measurements alone. Adjunct ultrasound computed tomography (USCT) measurements can be employed to estimate the SOS distribution. Under the conventional image reconstruction approach for combined PACT/USCT systems, the SOS is estimated from the USCT measurements alone and the initial pressure is estimated from the PACT measurements by use of the previously estimated SOS. This approach ignores the acoustic information in the PACT measurements and may require many USCT measurements to accurately reconstruct the SOS. In this work, a joint reconstruction method where the SOS and initial pressure distributions are simultaneously estimated from combined PACT/USCT measurements is proposed. This approach allows accurate estimation of both the initial pressure distribution and the SOS distribution while requiring few USCT measurements.

  4. Speed skills: measuring the visual speed analyzing properties of primate MT neurons.

    PubMed

    Perrone, J A; Thiele, A

    2001-05-01

    Knowing the direction and speed of moving objects is often critical for survival. However, it is poorly understood how cortical neurons process the speed of image movement. Here we tested MT neurons using moving sine-wave gratings of different spatial and temporal frequencies, and mapped out the neurons' spatiotemporal frequency response profiles. The maps typically had oriented ridges of peak sensitivity as expected for speed-tuned neurons. The preferred speed estimate, derived from the orientation of the maps, corresponded well to the preferred speed when moving bars were presented. Thus, our data demonstrate that MT neurons are truly sensitive to the object speed. These findings indicate that MT is not only a key structure in the analysis of direction of motion and depth perception, but also in the analysis of object speed.

  5. Changes in speed distribution: Applying aggregated safety effect models to individual vehicle speeds.

    PubMed

    Vadeby, Anna; Forsman, Åsa

    2017-06-01

    This study investigated the effect of applying two aggregated models (the Power model and the Exponential model) to individual vehicle speeds instead of mean speeds. This is of particular interest when the measure introduced affects different parts of the speed distribution differently. The aim was to examine how the estimated overall risk was affected when assuming the models are valid on an individual vehicle level. Speed data from two applications of speed measurements were used in the study: an evaluation of movable speed cameras and a national evaluation of new speed limits in Sweden. The results showed that when applied on individual vehicle speed level compared with aggregated level, there was essentially no difference between these for the Power model in the case of injury accidents. However, for fatalities the difference was greater, especially for roads with new cameras where those driving fastest reduced their speed the most. For the case with new speed limits, the individual approach estimated a somewhat smaller effect, reflecting that changes in the 15th percentile (P15) were somewhat larger than changes in P85 in this case. For the Exponential model there was also a clear, although small, difference between applying the model to mean speed changes and individual vehicle speed changes when speed cameras were used. This applied both for injury accidents and fatalities. There were also larger effects for the Exponential model than for the Power model, especially for injury accidents. In conclusion, applying the Power or Exponential model to individual vehicle speeds is an alternative that provides reasonable results in relation to the original Power and Exponential models, but more research is needed to clarify the shape of the individual risk curve. It is not surprising that the impact on severe traffic crashes was larger in situations where those driving fastest reduced their speed the most. Further investigations on use of the Power and/or the Exponential model at individual vehicle level would require more data on the individual level from a range of international studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria).

    PubMed

    Hedrick, Tyson L; Tobalske, Bret W; Biewener, Andrew A

    2002-05-01

    Birds and bats are known to employ two different gaits in flapping flight, a vortex-ring gait in slow flight and a continuous-vortex gait in fast flight. We studied the use of these gaits over a wide range of speeds (1-17 ms(-1)) and transitions between gaits in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria) trained to fly in a recently built, variable-speed wind tunnel. Gait use was investigated via a combination of three-dimensional kinematics and quasi-steady aerodynamic modeling of bound circulation on the distal and proximal portions of the wing. Estimates of lift from our circulation model were sufficient to support body weight at all but the slowest speeds (1 and 3 ms(-1)). From comparisons of aerodynamic impulse derived from our circulation analysis with the impulse estimated from whole-body acceleration, it appeared that our quasi-steady aerodynamic analysis was most accurate at intermediate speeds (5-11 ms(-1)). Despite differences in wing shape and wing loading, both species shifted from a vortex-ring to a continuous-vortex gait at 7 ms(-1). We found that the shift from a vortex-ring to a continuous-vortex gait (i) was associated with a phase delay in the peak angle of attack of the proximal wing section from downstroke into upstroke and (ii) depended on sufficient forward velocity to provide airflow over the wing during the upstroke similar to that during the downstroke. Our kinematic estimates indicated significant variation in the magnitude of circulation over the course the wingbeat cycle when either species used a continuous-vortex gait. This variation was great enough to suggest that both species shifted to a ladder-wake gait as they approached the maximum flight speed (cockatiels 15 ms(-1), doves 17 ms(-1)) that they would sustain in the wind tunnel. This shift in flight gait appeared to reflect the need to minimize drag and produce forward thrust in order to fly at high speed. The ladder-wake gait was also employed in forward and vertical acceleration at medium and fast flight speeds.

  7. Shear wave speed estimation by adaptive random sample consensus method.

    PubMed

    Lin, Haoming; Wang, Tianfu; Chen, Siping

    2014-01-01

    This paper describes a new method for shear wave velocity estimation that is capable of extruding outliers automatically without preset threshold. The proposed method is an adaptive random sample consensus (ARANDSAC) and the metric used here is finding the certain percentage of inliers according to the closest distance criterion. To evaluate the method, the simulation and phantom experiment results were compared using linear regression with all points (LRWAP) and radon sum transform (RS) method. The assessment reveals that the relative biases of mean estimation are 20.00%, 4.67% and 5.33% for LRWAP, ARANDSAC and RS respectively for simulation, 23.53%, 4.08% and 1.08% for phantom experiment. The results suggested that the proposed ARANDSAC algorithm is accurate in shear wave speed estimation.

  8. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  9. Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation

    NASA Astrophysics Data System (ADS)

    Morris, M.; Ruf, C. S.

    2016-12-01

    A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.

  10. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-09

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.

  11. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    PubMed Central

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-01-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  12. The effects of environmental variability and spatial sampling on the three-dimensional inversion problem.

    PubMed

    Bender, Christopher M; Ballard, Megan S; Wilson, Preston S

    2014-06-01

    The overall goal of this work is to quantify the effects of environmental variability and spatial sampling on the accuracy and uncertainty of estimates of the three-dimensional ocean sound-speed field. In this work, ocean sound speed estimates are obtained with acoustic data measured by a sparse autonomous observing system using a perturbative inversion scheme [Rajan, Lynch, and Frisk, J. Acoust. Soc. Am. 82, 998-1017 (1987)]. The vertical and horizontal resolution of the solution depends on the bandwidth of acoustic data and on the quantity of sources and receivers, respectively. Thus, for a simple, range-independent ocean sound speed profile, a single source-receiver pair is sufficient to estimate the water-column sound-speed field. On the other hand, an environment with significant variability may not be fully characterized by a large number of sources and receivers, resulting in uncertainty in the solution. This work explores the interrelated effects of environmental variability and spatial sampling on the accuracy and uncertainty of the inversion solution though a set of case studies. Synthetic data representative of the ocean variability on the New Jersey shelf are used.

  13. Influence of wind-speed on short-duration NO2 measurements using Palmes and Ogawa passive diffusion samplers

    NASA Astrophysics Data System (ADS)

    Masey, Nicola; Gillespie, Jonathan; Heal, Mathew R.; Hamilton, Scott; Beverland, Iain J.

    2017-07-01

    We assessed the precision and accuracy of nitrogen dioxide (NO2) concentrations over 2-day, 3-day and 7-day exposure periods measured with the following types of passive diffusion samplers: standard (open) Palmes tubes; standard Ogawa samplers with commercially-prepared Ogawa absorbent pads (Ogawa[S]); and modified Ogawa samplers with absorbent-impregnated stainless steel meshes normally used in Palmes tubes (Ogawa[P]). We deployed these passive samplers close to the inlet of a chemiluminescence NO2 analyser at an urban background site in Glasgow, UK over 32 discrete measurement periods. Duplicate relative standard deviation was <7% for all passive samplers. The Ogawa[P], Ogawa[S] and Palmes samplers explained 93%, 87% and 58% of temporal variation in analyser concentrations respectively. Uptake rates for Palmes and Ogawa[S] samplers were positively and linearly associated with wind-speed (P < 0.01 and P < 0.05 respectively). Computation of adjusted uptake rates using average wind-speed observed during each sampling period increased the variation in analyser concentrations explained by Palmes and Ogawa[S] estimates to 90% and 92% respectively, suggesting that measurements can be corrected for shortening of diffusion path lengths due to wind-speed to improve the accuracy of estimates of short-term NO2 exposure. Monitoring situations where it is difficult to reliably estimate wind-speed variations, e.g. across multiple sites with different unknown exposures to local winds, and personal exposure monitoring, are likely to benefit from protection of these sampling devices from the effects of wind, for example by use of a mesh or membrane across the open end. The uptake rate of Ogawa[P] samplers was not associated with wind-speed resulting in a high correlation between estimated concentrations and observed analyser concentrations. The use of Palmes meshes in Ogawa[P] samplers reduced the cost of sampler preparation and removed uncertainty associated with the unknown manufacturing process for the commercially-prepared collection pads.

  14. P- and S-Wave Speeds of the Very Upper Crust Estimated by a New Technique Based Upon Body-Wave Polarization

    NASA Astrophysics Data System (ADS)

    Park, S.; Ishii, M.

    2017-12-01

    Various seismic imaging methods have been developed, such as traveltime, waveform, and noise tomography, improving our knowledge of the subsurface structure and evolution. Near-surface structure, in particular, is crucial in understanding earthquake and volcano hazards. Seismic speed is directly related to the level of ground shaking, and monitoring its temporal change is valuable in volcanic hazard assessment. Here, we introduce a novel technique to constrain seismic wave speed of the very upper crust based upon the polarization measurements of teleseismic body-wave arrivals. The technique relates the orientation of recorded body waves to the wave speed immediately beneath a seismic instrument. We develop a counter-intuitive relationship that the P-wave polarization direction is only sensitive to subsurface shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. This approach is applied to the High-Sensitivity Seismograph Network in Japan, where the results are benchmarked against the borehole well data available at most stations. There is a good agreement between polarization-based estimates and the well measurements at as shallow as 100 m, confirming the efficacy of the new method in resolving the shallow structure. The lateral variation of wave speeds shows that sedimentary basins and mountainous regions are characterized by low and high wave speeds, respectively. It also correlates with volcano locations and geological units of different ages. Moreover, the analysis is expanded into 3D by examining the frequency dependence, where some preliminary results using broadband data are presented. These 2D and 3D wave speed estimates can be used to identify zones of high seismic risk by comparison with population distribution. This technique requires minimal computation resources and can be applied to any single three-component seismograph. It opens a new path to a reliable, non-invasive, and inexpensive earthquake hazard assessment in any environment where a drilling or a field experiment using vibro-trucks or explosives is not a practical option for measuring the near-surface seismic wave speeds. It can also provide means of monitoring changes that occur within the very upper crust such as from volcanic or hydrological phenomena.

  15. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.

    PubMed

    Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum

    2016-03-01

    Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Solar Wind Speed Structure in the Inner Corona at 3-12R(sub)O

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1995-01-01

    Estimates of solar wind speed obtained by Armstrong et al. [1986] based on 1983 VLA multiple-station intensity scintillation measurements inside 12 R(sub)O have been compared with white light coronagraph measurements.

  17. Reconstruction of Automobile Destruction: An Example of the Interaction between Language and Memory

    ERIC Educational Resources Information Center

    Loftus, Elizabeth F.; Palmer, John C.

    1974-01-01

    Two experiments are reported in which subjects viewed films of automobile accidents and then answered questions about events occurring in the films. Wording of questions regarding speed influenced subjects' estimates of speed. (Author/RM)

  18. An innovative localisation algorithm for railway vehicles

    NASA Astrophysics Data System (ADS)

    Allotta, B.; D'Adamio, P.; Malvezzi, M.; Pugi, L.; Ridolfi, A.; Rindi, A.; Vettori, G.

    2014-11-01

    In modern railway automatic train protection and automatic train control systems, odometry is a safety relevant on-board subsystem which estimates the instantaneous speed and the travelled distance of the train; a high reliability of the odometry estimate is fundamental, since an error on the train position may lead to a potentially dangerous overestimation of the distance available for braking. To improve the odometry estimate accuracy, data fusion of different inputs coming from a redundant sensor layout may be used. The aim of this work has been developing an innovative localisation algorithm for railway vehicles able to enhance the performances, in terms of speed and position estimation accuracy, of the classical odometry algorithms, such as the Italian Sistema Controllo Marcia Treno (SCMT). The proposed strategy consists of a sensor fusion between the information coming from a tachometer and an Inertial Measurements Unit (IMU). The sensor outputs have been simulated through a 3D multibody model of a railway vehicle. The work has provided the development of a custom IMU, designed by ECM S.p.a, in order to meet their industrial and business requirements. The industrial requirements have to be compliant with the European Train Control System (ETCS) standards: the European Rail Traffic Management System (ERTMS), a project developed by the European Union to improve the interoperability among different countries, in particular as regards the train control and command systems, fixes some standard values for the odometric (ODO) performance, in terms of speed and travelled distance estimation. The reliability of the ODO estimation has to be taken into account basing on the allowed speed profiles. The results of the currently used ODO algorithms can be improved, especially in case of degraded adhesion conditions; it has been verified in the simulation environment that the results of the proposed localisation algorithm are always compliant with the ERTMS requirements. The estimation strategy has good performance also under degraded adhesion conditions and could be put on board of high-speed railway vehicles; it represents an accurate and reliable solution. The IMU board is tested via a dedicated Hardware in the Loop (HIL) test rig: it includes an industrial robot able to replicate the motion of the railway vehicle. Through the generated experimental outputs the performances of the innovative localisation algorithm have been evaluated: the HIL test rig permitted to test the proposed algorithm, avoiding expensive (in terms of time and cost) on-track tests, obtaining encouraging results. In fact, the preliminary results show a significant improvement of the position and speed estimation performances compared to those obtained with SCMT algorithms, currently in use on the Italian railway network.

  19. Helicopter rotor and engine sizing for preliminary performance estimation

    NASA Technical Reports Server (NTRS)

    Talbot, P. D.; Bowles, J. V.; Lee, H. C.

    1986-01-01

    Methods are presented for estimating some of the more fundamental design variables of single-rotor helicopters (tip speed, blade area, disk loading, and installed power) based on design requirements (speed, weight, fuselage drag, and design hover ceiling). The well-known constraints of advancing-blade compressibility and retreating-blade stall are incorporated into the estimation process, based on an empirical interpretation of rotor performance data from large-scale wind-tunnel tests. Engine performance data are presented and correlated with a simple model usable for preliminary design. When approximate results are required quickly, these methods may be more convenient to use and provide more insight than large digital computer programs.

  20. Effects of vehicle power on passenger vehicle speeds.

    PubMed

    McCartt, Anne T; Hu, Wen

    2017-07-04

    During the past 2 decades, there have been large increases in mean horsepower and the mean horsepower-to-vehicle weight ratio for all types of new passenger vehicles in the United States. This study examined the relationship between travel speeds and vehicle power, defined as horsepower per 100 pounds of vehicle weight. Speed cameras measured travel speeds and photographed license plates and drivers of passenger vehicles traveling on roadways in Northern Virginia during daytime off-peak hours in spring 2013. The driver licensing agencies in the District of Columbia, Maryland, and Virginia provided vehicle information numbers (VINs) by matching license plate numbers with vehicle registration records and provided the age, gender, and ZIP code of the registered owner(s). VINs were decoded to obtain the curb weight and horsepower of vehicles. The study focused on 26,659 observed vehicles for which information on horsepower was available and the observed age and gender of drivers matched vehicle registration records. Log-linear regression estimated the effects of vehicle power on mean travel speeds, and logistic regression estimated the effects of vehicle power on the likelihood of a vehicle traveling over the speed limit and more than 10 mph over the limit. After controlling for driver characteristics, speed limit, vehicle type, and traffic volume, a 1-unit increase in vehicle power was associated with a 0.7% increase in mean speed, a 2.7% increase in the likelihood of a vehicle exceeding the speed limit by any amount, and an 11.6% increase in the likelihood of a vehicle exceeding the limit by 10 mph. All of these increases were highly significant. Speeding persists as a major factor in crashes in the United States. There are indications that travel speeds have increased in recent years. The current findings suggest the trend toward substantially more powerful vehicles may be contributing to higher speeds. Given the strong association between travel speed and crash risk and crash severity, this is cause for concern.

  1. Dependence of Radar Backscatter on the Energetics of the Air-Sea Interface

    DTIC Science & Technology

    1990-07-01

    14 3 Figure 41a. Shematic Spectrum of Wind Speed Near the Ground Estimated from a Study of Van der Hoven (1957...O.O0 Figure 41a. Schematic Spectrum of Wind Speed Near the Ground Estimated from a Study of Van der Hoven (1957) (from Lumley and Panofsky, 1964) The...resolved is 0.6 to 8.0s. Following Der (1976), the sensors are capacitance transduction devices which produce output voltage signals proportional to surface

  2. Effect of present technology on airship capabilities

    NASA Technical Reports Server (NTRS)

    Madden, R. T.

    1975-01-01

    The effect is presented of updating past airship designs using current materials and propulsion systems to determine new airship performance and productivity capabilities. New materials and power plants permit reductions in the empty weights and increases in the useful load capabilities of past airship designs. The increased useful load capability results in increased productivity for a given range, i.e., either increased payload at the same operating speed or increased operating speed for the same payload weight or combinations of both. Estimated investment costs and operating costs are presented to indicate the significant cost parameters in estimating transportation costs of payloads in cents per ton mile. Investment costs are presented considering production lots of 1, 10 and 100 units. Operating costs are presented considering flight speeds and ranges.

  3. Inferential determination of various properties of a gas mixture

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2007-03-27

    Methods for inferentially determining various properties of a gas mixture, when the speed of sound in the gas is known at an arbitrary temperature and pressure. The method can be applied to natural gas mixtures, where the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for heating value calculations. The method may also be applied to inferentially determine density and molecular weight for gas mixtures other than natural gases.

  4. Estimating workforce development needs for high-speed rail in California : [research brief].

    DOT National Transportation Integrated Search

    2012-03-01

    It is critical to understand the emergent workforce characteristics for the California High-Speed Rail (HSR) network. Knowledge about the size and characteristics of this workforce, including its training and education needs, is required to guide the...

  5. Swimming Performance and Metabolism of Golden Shiners

    USDA-ARS?s Scientific Manuscript database

    The swimming ability and metabolism of golden shiners, Notemigonus crysoleucas, was examined using swim tunnel respirometery. The oxygen consumption and tail beat frequencies at various swimming speeds, an estimation of the standard metabolic rate, and the critical swimming speed (Ucrit) was determ...

  6. Estimating workforce development needs for high-speed rail in California.

    DOT National Transportation Integrated Search

    2012-03-01

    This study provides an assessment of the job creation and attendant education and training needs associated with the creation of the California High-Speed Rail (CHSR) network, scheduled to begin construction in September 2012. Given the high profile ...

  7. Aerodynamics of gliding flight in common swifts.

    PubMed

    Henningsson, P; Hedenström, A

    2011-02-01

    Gliding flight performance and wake topology of a common swift (Apus apus L.) were examined in a wind tunnel at speeds between 7 and 11 m s(-1). The tunnel was tilted to simulate descending flight at different sink speeds. The swift varied its wingspan, wing area and tail span over the speed range. Wingspan decreased linearly with speed, whereas tail span decreased in a nonlinear manner. For each airspeed, the minimum glide angle was found. The corresponding sink speeds showed a curvilinear relationship with airspeed, with a minimum sink speed at 8.1 m s(-1) and a speed of best glide at 9.4 m s(-1). Lift-to-drag ratio was calculated for each airspeed and tilt angle combinations and the maximum for each speed showed a curvilinear relationship with airspeed, with a maximum of 12.5 at an airspeed of 9.5 m s(-1). Wake was sampled in the transverse plane using stereo digital particle image velocimetry (DPIV). The main structures of the wake were a pair of trailing wingtip vortices and a pair of trailing tail vortices. Circulation of these was measured and a model was constructed that showed good weight support. Parasite drag was estimated from the wake defect measured in the wake behind the body. Parasite drag coefficient ranged from 0.30 to 0.22 over the range of airspeeds. Induced drag was calculated and used to estimate profile drag coefficient, which was found to be in the same range as that previously measured on a Harris' hawk.

  8. Facial convective heat exchange coefficients in cold and windy environments estimated from human experiments

    NASA Astrophysics Data System (ADS)

    Ben Shabat, Yael; Shitzer, Avraham

    2012-07-01

    Facial heat exchange convection coefficients were estimated from experimental data in cold and windy ambient conditions applicable to wind chill calculations. Measured facial temperature datasets, that were made available to this study, originated from 3 separate studies involving 18 male and 6 female subjects. Most of these data were for a -10°C ambient environment and wind speeds in the range of 0.2 to 6 m s-1. Additional single experiments were for -5°C, 0°C and 10°C environments and wind speeds in the same range. Convection coefficients were estimated for all these conditions by means of a numerical facial heat exchange model, applying properties of biological tissues and a typical facial diameter of 0.18 m. Estimation was performed by adjusting the guessed convection coefficients in the computed facial temperatures, while comparing them to measured data, to obtain a satisfactory fit ( r 2 > 0.98, in most cases). In one of the studies, heat flux meters were additionally used. Convection coefficients derived from these meters closely approached the estimated values for only the male subjects. They differed significantly, by about 50%, when compared to the estimated female subjects' data. Regression analysis was performed for just the -10°C ambient temperature, and the range of experimental wind speeds, due to the limited availability of data for other ambient temperatures. The regressed equation was assumed in the form of the equation underlying the "new" wind chill chart. Regressed convection coefficients, which closely duplicated the measured data, were consistently higher than those calculated by this equation, except for one single case. The estimated and currently used convection coefficients are shown to diverge exponentially from each other, as wind speed increases. This finding casts considerable doubts on the validity of the convection coefficients that are used in the computation of the "new" wind chill chart and their applicability to humans in cold and windy environments.

  9. Facial convective heat exchange coefficients in cold and windy environments estimated from human experiments.

    PubMed

    Ben Shabat, Yael; Shitzer, Avraham

    2012-07-01

    Facial heat exchange convection coefficients were estimated from experimental data in cold and windy ambient conditions applicable to wind chill calculations. Measured facial temperature datasets, that were made available to this study, originated from 3 separate studies involving 18 male and 6 female subjects. Most of these data were for a -10°C ambient environment and wind speeds in the range of 0.2 to 6 m s(-1). Additional single experiments were for -5°C, 0°C and 10°C environments and wind speeds in the same range. Convection coefficients were estimated for all these conditions by means of a numerical facial heat exchange model, applying properties of biological tissues and a typical facial diameter of 0.18 m. Estimation was performed by adjusting the guessed convection coefficients in the computed facial temperatures, while comparing them to measured data, to obtain a satisfactory fit (r(2) > 0.98, in most cases). In one of the studies, heat flux meters were additionally used. Convection coefficients derived from these meters closely approached the estimated values for only the male subjects. They differed significantly, by about 50%, when compared to the estimated female subjects' data. Regression analysis was performed for just the -10°C ambient temperature, and the range of experimental wind speeds, due to the limited availability of data for other ambient temperatures. The regressed equation was assumed in the form of the equation underlying the "new" wind chill chart. Regressed convection coefficients, which closely duplicated the measured data, were consistently higher than those calculated by this equation, except for one single case. The estimated and currently used convection coefficients are shown to diverge exponentially from each other, as wind speed increases. This finding casts considerable doubts on the validity of the convection coefficients that are used in the computation of the "new" wind chill chart and their applicability to humans in cold and windy environments.

  10. The Role of Visual Processing Speed in Reading Speed Development

    PubMed Central

    Lobier, Muriel; Dubois, Matthieu; Valdois, Sylviane

    2013-01-01

    A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children's reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span), predicts single-word reading speed in both normal reading and dyslexic children. However, the exact processes that account for the relationship between the visual attention span and reading speed remain to be specified. We used the Theory of Visual Attention to estimate visual processing speed and visual short-term memory capacity from a multiple letter report task in eight and nine year old children. The visual attention span and text reading speed were also assessed. Results showed that visual processing speed and visual short term memory capacity predicted the visual attention span. Furthermore, visual processing speed predicted reading speed, but visual short term memory capacity did not. Finally, the visual attention span mediated the effect of visual processing speed on reading speed. These results suggest that visual attention capacity could constrain reading speed in elementary school children. PMID:23593117

  11. The role of visual processing speed in reading speed development.

    PubMed

    Lobier, Muriel; Dubois, Matthieu; Valdois, Sylviane

    2013-01-01

    A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children's reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span), predicts single-word reading speed in both normal reading and dyslexic children. However, the exact processes that account for the relationship between the visual attention span and reading speed remain to be specified. We used the Theory of Visual Attention to estimate visual processing speed and visual short-term memory capacity from a multiple letter report task in eight and nine year old children. The visual attention span and text reading speed were also assessed. Results showed that visual processing speed and visual short term memory capacity predicted the visual attention span. Furthermore, visual processing speed predicted reading speed, but visual short term memory capacity did not. Finally, the visual attention span mediated the effect of visual processing speed on reading speed. These results suggest that visual attention capacity could constrain reading speed in elementary school children.

  12. Determination of combustion parameters using engine crankshaft speed

    NASA Astrophysics Data System (ADS)

    Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.

    2013-07-01

    Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.

  13. Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals.

    PubMed

    Latorre, Jorge; Llorens, Roberto; Colomer, Carolina; Alcañiz, Mariano

    2018-04-27

    Different studies have analyzed the potential of the off-the-shelf Microsoft Kinect, in its different versions, to estimate spatiotemporal gait parameters as a portable markerless low-cost alternative to laboratory grade systems. However, variability in populations, measures, and methodologies prevents accurate comparison of the results. The objective of this study was to determine and compare the reliability of the existing Kinect-based methods to estimate spatiotemporal gait parameters in healthy and post-stroke adults. Forty-five healthy individuals and thirty-eight stroke survivors participated in this study. Participants walked five meters at a comfortable speed and their spatiotemporal gait parameters were estimated from the data retrieved by a Kinect v2, using the most common methods in the literature, and by visual inspection of the videotaped performance. Errors between both estimations were computed. For both healthy and post-stroke participants, highest accuracy was obtained when using the speed of the ankles to estimate gait speed (3.6-5.5 cm/s), stride length (2.5-5.5 cm), and stride time (about 45 ms), and when using the distance between the sacrum and the ankles and toes to estimate double support time (about 65 ms) and swing time (60-90 ms). Although the accuracy of these methods is limited, these measures could occasionally complement traditional tools. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Estimating fish swimming metrics and metabolic rates with accelerometers: the influence of sampling frequency.

    PubMed

    Brownscombe, J W; Lennox, R J; Danylchuk, A J; Cooke, S J

    2018-06-21

    Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1-25 Hz) with tri-axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail-beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim-tunnel respirometer and free-swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free-swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail-beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail-beat frequency and swimming style, this study provides a reference point with a medium body-sized sub-carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. A shock surface geometry - The February 15-16, 1967, event. [solar flare associated interplanetary shock

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Chao, J. K.

    1976-01-01

    An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.

  16. Modeling Speed-Accuracy Tradeoff in Adaptive System for Practicing Estimation

    ERIC Educational Resources Information Center

    Nižnan, Juraj

    2015-01-01

    Estimation is useful in situations where an exact answer is not as important as a quick answer that is good enough. A web-based adaptive system for practicing estimates is currently being developed. We propose a simple model for estimating student's latent skill of estimation. This model combines a continuous measure of correctness and response…

  17. Pedestrian fatality and impact speed squared: Cloglog modeling from French national data.

    PubMed

    Martin, Jean-Louis; Wu, Dan

    2018-01-02

    The present study estimates pedestrians' risk of death according to impact speed when hit by a passenger car in a frontal collision. Data were coded for all fatal crashes in France in 2011 and for a random sample of 1/20th of all road injuries for the same year and weighted to take into account police underreporting of mild injury. A cloglog model was used to optimize risk adjustment for high collision speeds. The fit of the model on the data was also improved by using the square of the impact speed, which best matches the energy dissipated in the collision. Modeling clearly demonstrated that the risk of death was very close to 1 when impact speeds exceeded 80 km/h. For speeds less than 40 km/h, because data representative of all crashes resulting in injury were used, the estimated risk of death was fairly low. However, although the curve seemed deceptively flat below 50 km/h, the risk of death in fact rose 2-fold between 30 and 40 km/h and 6-fold between 30 and 50 km/h. For any given speed, the risk of death was much higher for more elderly subjects, especially those over 75 years of age. These results concern frontal crashes involving a passenger car. Collisions involving trucks are far less frequent, but half result in the pedestrian being run over, incurring greater mortality. For impact speeds below 60 km/h, the shape of the curve relating probability of death to impact speed was very similar to those reported in recent rigorous studies. For higher impact speeds, the present model allows the curve to rise ever more steeply, giving a much better fit to observed data. The present results confirm that, when a pedestrian is struck by a car, impact speed is a major risk factor, thus providing a supplementary argument for strict speed limits in areas where pedestrians are highly exposed.

  18. The Oregon DOT Slow-Speed Weigh-in-Motion (SWIM) Project : final report

    DOT National Transportation Integrated Search

    1998-12-01

    Weigh-in-motion (WIM) systems have been increasingly used to screen potentially overweight vehicles. However, under slow speed conditions (less than 10 mph), WIM scales appear to be capable of estimating static gross vehicle weight to within 110% wit...

  19. Generic Vehicle Speed Models Based On Traffic Simulation: Development and Application (Revision #1)

    DOT National Transportation Integrated Search

    1994-12-15

    The findings of a research project to develop new methods of estimating speeds for inclusion in the Highway Performance Monitoring System (HPMS) Analytical Process are summarized. The paper focuses on the effects of traffic conditions excluding incid...

  20. Protective Effectiveness of Porous Shields Under the Influence of High-Speed Impact Loading

    NASA Astrophysics Data System (ADS)

    Kramshonkov, E. N.; Krainov, A. V.; Shorohov, P. V.

    2016-02-01

    The results of numerical simulations of a compact steel impactor with the aluminum porous shields under high-speed shock loading are presented. The porosity of barrier varies in wide range provided that its mass stays the same, but the impactor has always equal (identical) mass. Here presented the final assessment of the barrier perforation speed depending on its porosity and initial shock speed. The range of initial impact speed varies from 1 to 10 km/s. Physical phenomena such as: destruction, melting, vaporization of a interacting objects are taken into account. The analysis of a shield porosity estimation disclosed that the protection effectiveness of porous shield reveals at the initial impact speed grater then 1.5 km/s, and it increases when initial impact speed growth.

  1. Dynamic Speed Adaptation for Path Tracking Based on Curvature Information and Speed Limits.

    PubMed

    Gámez Serna, Citlalli; Ruichek, Yassine

    2017-06-14

    A critical concern of autonomous vehicles is safety. Different approaches have tried to enhance driving safety to reduce the number of fatal crashes and severe injuries. As an example, Intelligent Speed Adaptation (ISA) systems warn the driver when the vehicle exceeds the recommended speed limit. However, these systems only take into account fixed speed limits without considering factors like road geometry. In this paper, we consider road curvature with speed limits to automatically adjust vehicle's speed with the ideal one through our proposed Dynamic Speed Adaptation (DSA) method. Furthermore, 'curve analysis extraction' and 'speed limits database creation' are also part of our contribution. An algorithm that analyzes GPS information off-line identifies high curvature segments and estimates the speed for each curve. The speed limit database contains information about the different speed limit zones for each traveled path. Our DSA senses speed limits and curves of the road using GPS information and ensures smooth speed transitions between current and ideal speeds. Through experimental simulations with different control algorithms on real and simulated datasets, we prove that our method is able to significantly reduce lateral errors on sharp curves, to respect speed limits and consequently increase safety and comfort for the passenger.

  2. Freeway travel speed calculation model based on ETC transaction data.

    PubMed

    Weng, Jiancheng; Yuan, Rongliang; Wang, Ru; Wang, Chang

    2014-01-01

    Real-time traffic flow operation condition of freeway gradually becomes the critical information for the freeway users and managers. In fact, electronic toll collection (ETC) transaction data effectively records operational information of vehicles on freeway, which provides a new method to estimate the travel speed of freeway. First, the paper analyzed the structure of ETC transaction data and presented the data preprocess procedure. Then, a dual-level travel speed calculation model was established under different levels of sample sizes. In order to ensure a sufficient sample size, ETC data of different enter-leave toll plazas pairs which contain more than one road segment were used to calculate the travel speed of every road segment. The reduction coefficient α and reliable weight θ for sample vehicle speed were introduced in the model. Finally, the model was verified by the special designed field experiments which were conducted on several freeways in Beijing at different time periods. The experiments results demonstrated that the average relative error was about 6.5% which means that the freeway travel speed could be estimated by the proposed model accurately. The proposed model is helpful to promote the level of the freeway operation monitoring and the freeway management, as well as to provide useful information for the freeway travelers.

  3. The sea state bias in altimeter estimates of sea level from collinear analysis of TOPEX data

    NASA Technical Reports Server (NTRS)

    Chelton, Dudley B.

    1994-01-01

    The wind speed and significant wave height (H(sub 1/3)) dependencies of the sea state bias in altimeter estimates of sea level, expressed in the form (Delta)h(sub SSB) = bH(sub 1/3), are examined from least squares analysis of 21 cycles of collinear TOPEX data. The bias coefficient b is found to increase in magnitude with increasing wind speed up to about 12 m/s and decrease monotonically in magnitude with increasing H(sub 1/3). A parameterization of b as a quadratic function of wind speed only, as in the formation used to produce the TOPEX geophysical data records (GDRs), is significantly better than a parameterization purely in terms of H(sub 1/3). However, a four-parameter combined wind speed and wave height formulation for b (quadratic in wind speed plus linear in H(sub 1/3)) significantly improves the accuracy of the sea state bias correction. The GDR formulation in terms of wind speed only should therefore be expanded to account for a wave height dependence of b. An attempt to quantify the accuracy of the sea state bias correction (Delta)h(sub SSB) concludes that the uncertainty is a disconcertingly large 1% of H(sub 1/3).

  4. Visual motion direction is represented in population-level neural response as measured by magnetoencephalography.

    PubMed

    Kaneoke, Y; Urakawa, T; Kakigi, R

    2009-05-19

    We investigated whether direction information is represented in the population-level neural response evoked by the visual motion stimulus, as measured by magnetoencephalography. Coherent motions with varied speed, varied direction, and different coherence level were presented using random dot kinematography. Peak latency of responses to motion onset was inversely related to speed in all directions, as previously reported, but no significant effect of direction on latency changes was identified. Mutual information entropy (IE) calculated using four-direction response data increased significantly (>2.14) after motion onset in 41.3% of response data and maximum IE was distributed at approximately 20 ms after peak response latency. When response waveforms showing significant differences (by multivariate discriminant analysis) in distribution of the three waveform parameters (peak amplitude, peak latency, and 75% waveform width) with stimulus directions were analyzed, 87 waveform stimulus directions (80.6%) were correctly estimated using these parameters. Correct estimation rate was unaffected by stimulus speed, but was affected by coherence level, even though both speed and coherence affected response amplitude similarly. Our results indicate that speed and direction of stimulus motion are represented in the distinct properties of a response waveform, suggesting that the human brain processes speed and direction separately, at least in part.

  5. A two-dimensional analysis of the sensitivity of a pulse first break to wave speed contrast on a scale below the resolution length of ray tomography.

    PubMed

    Willey, Carson L; Simonetti, Francesco

    2016-06-01

    Mapping the speed of mechanical waves traveling inside a medium is a topic of great interest across many fields from geoscience to medical diagnostics. Much work has been done to characterize the fidelity with which the geometrical features of the medium can be reconstructed and multiple resolution criteria have been proposed depending on the wave-matter interaction model used to decode the wave speed map from scattering measurements. However, these criteria do not define the accuracy with which the wave speed values can be reconstructed. Using two-dimensional simulations, it is shown that the first-arrival traveltime predicted by ray theory can be an accurate representation of the arrival of a pulse first break even in the presence of diffraction and other phenomena that are not accounted for by ray theory. As a result, ray-based tomographic inversions can yield accurate wave speed estimations also when the size of a sound speed anomaly is smaller than the resolution length of the inversion method provided that traveltimes are estimated from the signal first break. This increased sensitivity however renders the inversion more susceptible to noise since the amplitude of the signal around the first break is typically low especially when three-dimensional anomalies are considered.

  6. Self-calibrated correlation imaging with k-space variant correlation functions.

    PubMed

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. One- to two-month oscillations in SSMI surface wind speed in western tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Collins, Michael L.; Stanford, John L.; Halpern, David

    1994-01-01

    The 10-m wind speed over the ocean can be estimated from microwave brightness temperature measurements recorded by the Special Sensor Microwave Imager (SSMI) instrument mounted on a polar-orbiting spacecraft. Four-year (1988-1991) time series of average daily 1 deg x 1 deg SSMI wind speeds were analyzed at selected sites in the western tropical Pacific Ocean. One- to two-month period wind speed oscillations with amplitudes statistically significant at the 95% confidence level were observed near Kanton, Eniwetok, Guam, and Truk. This is the first report of such an oscillation in SSMI wind speeds.

  8. Satellite-based estimation of cloud-base updrafts for convective clouds and stratocumulus

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Rosenfeld, D.; Li, Z.

    2017-12-01

    Updraft speeds of thermals have always been notoriously difficult to measure, despite significant roles they play in transporting pollutants and in cloud formation and precipitation. To our knowledge, no attempt to date has been made to estimate updraft speed from satellite information. In this study, we introduce three methods of retrieving updraft speeds at cloud base () for convective clouds and marine stratocumulus with VIIRS onboard Suomi-NPP satellite. The first method uses ground-air temperature difference to characterize the surface sensible heat flux, which is found to be correlated with updraft speeds measured by the Doppler lidar over the Southern Great Plains (SGP). Based on the relationship, we use the satellite-retrieved surface skin temperature and reanalysis surface air temperature to estimate the updrafts. The second method is based on a good linear correlation between cloud base height and updrafts, which was found over the SGP, the central Amazon, and on board a ship sailing between Honolulu and Los Angeles. We found a universal relationship for both land and ocean. The third method is for marine stratocumulus. A statistically significant relationship between Wb and cloud-top radiative cooling rate (CTRC) is found from measurements over northeastern Pacific and Atlantic. Based on this relation, satellite- and reanalysis-derived CTRC is utilized to infer the Wb of stratocumulus clouds. Evaluations against ground-based Doppler lidar measurements show estimation errors of 24%, 21% and 22% for the three methods, respectively.

  9. Do we need 3D tube current modulation information for accurate organ dosimetry in chest CT? Protocols dose comparisons.

    PubMed

    Lopez-Rendon, Xochitl; Zhang, Guozhi; Coudyzer, Walter; Develter, Wim; Bosmans, Hilde; Zanca, Federica

    2017-11-01

    To compare the lung and breast dose associated with three chest protocols: standard, organ-based tube current modulation (OBTCM) and fast-speed scanning; and to estimate the error associated with organ dose when modelling the longitudinal (z-) TCM versus the 3D-TCM in Monte Carlo simulations (MC) for these three protocols. Five adult and three paediatric cadavers with different BMI were scanned. The CTDI vol of the OBTCM and the fast-speed protocols were matched to the patient-specific CTDI vol of the standard protocol. Lung and breast doses were estimated using MC with both z- and 3D-TCM simulated and compared between protocols. The fast-speed scanning protocol delivered the highest doses. A slight reduction for breast dose (up to 5.1%) was observed for two of the three female cadavers with the OBTCM in comparison to the standard. For both adult and paediatric, the implementation of the z-TCM data only for organ dose estimation resulted in 10.0% accuracy for the standard and fast-speed protocols, while relative dose differences were up to 15.3% for the OBTCM protocol. At identical CTDI vol values, the standard protocol delivered the lowest overall doses. Only for the OBTCM protocol is the 3D-TCM needed if an accurate (<10.0%) organ dosimetry is desired. • The z-TCM information is sufficient for accurate dosimetry for standard protocols. • The z-TCM information is sufficient for accurate dosimetry for fast-speed scanning protocols. • For organ-based TCM schemes, the 3D-TCM information is necessary for accurate dosimetry. • At identical CTDI vol , the fast-speed scanning protocol delivered the highest doses. • Lung dose was higher in XCare than standard protocol at identical CTDI vol .

  10. Wind and wave extremes over the world oceans from very large ensembles

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Aarnes, Ole Johan; Abdalla, Saleh; Bidlot, Jean-Raymond; Janssen, Peter A. E. M.

    2014-07-01

    Global return values of marine wind speed and significant wave height are estimated from very large aggregates of archived ensemble forecasts at +240 h lead time. Long lead time ensures that the forecasts represent independent draws from the model climate. Compared with ERA-Interim, a reanalysis, the ensemble yields higher return estimates for both wind speed and significant wave height. Confidence intervals are much tighter due to the large size of the data set. The period (9 years) is short enough to be considered stationary even with climate change. Furthermore, the ensemble is large enough for nonparametric 100 year return estimates to be made from order statistics. These direct return estimates compare well with extreme value estimates outside areas with tropical cyclones. Like any method employing modeled fields, it is sensitive to tail biases in the numerical model, but we find that the biases are moderate outside areas with tropical cyclones.

  11. Stochastic sediment property inversion in Shallow Water 06.

    PubMed

    Michalopoulou, Zoi-Heleni

    2017-11-01

    Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.

  12. A Markerless 3D Computerized Motion Capture System Incorporating a Skeleton Model for Monkeys.

    PubMed

    Nakamura, Tomoya; Matsumoto, Jumpei; Nishimaru, Hiroshi; Bretas, Rafael Vieira; Takamura, Yusaku; Hori, Etsuro; Ono, Taketoshi; Nishijo, Hisao

    2016-01-01

    In this study, we propose a novel markerless motion capture system (MCS) for monkeys, in which 3D surface images of monkeys were reconstructed by integrating data from four depth cameras, and a skeleton model of the monkey was fitted onto 3D images of monkeys in each frame of the video. To validate the MCS, first, estimated 3D positions of body parts were compared between the 3D MCS-assisted estimation and manual estimation based on visual inspection when a monkey performed a shuttling behavior in which it had to avoid obstacles in various positions. The mean estimation error of the positions of body parts (3-14 cm) and of head rotation (35-43°) between the 3D MCS-assisted and manual estimation were comparable to the errors between two different experimenters performing manual estimation. Furthermore, the MCS could identify specific monkey actions, and there was no false positive nor false negative detection of actions compared with those in manual estimation. Second, to check the reproducibility of MCS-assisted estimation, the same analyses of the above experiments were repeated by a different user. The estimation errors of positions of most body parts between the two experimenters were significantly smaller in the MCS-assisted estimation than in the manual estimation. Third, effects of methamphetamine (MAP) administration on the spontaneous behaviors of four monkeys were analyzed using the MCS. MAP significantly increased head movements, tended to decrease locomotion speed, and had no significant effect on total path length. The results were comparable to previous human clinical data. Furthermore, estimated data following MAP injection (total path length, walking speed, and speed of head rotation) correlated significantly between the two experimenters in the MCS-assisted estimation (r = 0.863 to 0.999). The results suggest that the presented MCS in monkeys is useful in investigating neural mechanisms underlying various psychiatric disorders and developing pharmacological interventions.

  13. A Novel Design of an Automatic Lighting Control System for a Wireless Sensor Network with Increased Sensor Lifetime and Reduced Sensor Numbers

    PubMed Central

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114

  14. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers.

    PubMed

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.

  15. Estimating Uncertainties of Ship Course and Speed in Early Navigations using ICOADS3.0

    NASA Astrophysics Data System (ADS)

    Chan, D.; Huybers, P. J.

    2017-12-01

    Information on ship position and its uncertainty is potentially important for mapping out climatologists and changes in SSTs. Using the 2-hourly ship reports from the International Comprehensive Ocean Atmosphere Dataset 3.0 (ICOADS 3.0), we estimate the uncertainties of ship course, ship speed, and latitude/longitude corrections during 1870-1900. After reviewing the techniques used in early navigations, we build forward navigation model that uses dead reckoning technique, celestial latitude corrections, and chronometer longitude corrections. The modeled ship tracks exhibit jumps in longitude and latitude, when a position correction is applied. These jumps are also seen in ICOADS3.0 observations. In this model, position error at the end of each day increases following a 2D random walk; the latitudinal/longitude errors are reset when a latitude/longitude correction is applied.We fit the variance of the magnitude of latitude/longitude corrections in the observation against model outputs, and estimate that the standard deviation of uncertainty is 5.5 degree for ship course, 32% for ship speed, 22km for latitude correction, and 27km for longitude correction. The estimates here are informative priors for Bayesian methods that quantify position errors of individual tracks.

  16. An atlas of monthly mean distributions of GEOSAT sea surface height, SSMI surface wind speed, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1988

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.

    1991-01-01

    Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  17. Use of wind data for estimating horizontal dilution potential of atmosphere.

    PubMed

    George, K V; Verma, P; Devotta, S

    2007-04-01

    In this study, a new methodology is suggested for estimating horizontal dilution potential of an area using wind data. The mean wind speed and wind direction variation are used as a measure of linear and angular spread of pollutants in the atmosphere. A formula is developed for estimating the potential of horizontal spread of pollutants in an area wherein only the wind speed and direction are used. The methodology is further applied to monitor wind data of one year. It is found that there is a very smooth variation of horizontal dilution potential over a year with limited dilution during post monsoon period and a high dilution in pre monsoon period.

  18. Three-Minute All-Out Test in Swimming.

    PubMed

    Tsai, Ming-Chang; Thomas, Scott G

    2017-01-01

    To validate the 3-minute all-out exercise test (3MT) protocol against the traditional critical-speed (CS) model (CSM) in front-crawl swimming. Ten healthy swimmers or triathletes (mean ± SD age 35.2 ± 10.5 y, height 176.5 ± 5.4 cm, body mass 69.6 ± 8.2 kg) completed 5 tests (3MT, 100m, 200m, 400m, 800m) over 2 wk on separate days. Traditional CS and anaerobic distance capacity (D') were determined for each of the 3 traditional CSMs (linear distance-time, LIN; linear speed/time, INV; nonlinear time-speed, NLIN) from the 4 set-distance time trials. For the 3MT, CS was determined as the mean speed during the final 30 s of the test and D' was estimated as the power-time integral above the CS. Our results indicated no significant difference between the CS estimates determined from the traditional CSM and 3MT except for the INV model (P = .0311). Correlations between traditional CSMs and 3MT were high (r = .95, P < .01) However, D' differed and post hoc analysis indicated that D' estimated from 3MT was significantly lower than LIN (P = .0052) and NLIN (P < .0001). Correlations were weak (r < .55, P > .1). In addition, Bland-Altman plots between the traditional CSMs and 3MT CS estimates showed scattered points above and below the zero line, suggesting there is no consistent bias of one approach versus the other. The 3MT is a valid protocol for swimming to estimate CS. The demonstrated concurrent validity of the 3MT may allow more widespread use of CSMs to evaluate participants and responses to training.

  19. Robust Diagnosis Method Based on Parameter Estimation for an Interturn Short-Circuit Fault in Multipole PMSM under High-Speed Operation.

    PubMed

    Lee, Jewon; Moon, Seokbae; Jeong, Hyeyun; Kim, Sang Woo

    2015-11-20

    This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM) under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (Lq) of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and Lq. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The Lq estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and Lq besides exhibiting robustness against parameter uncertainties.

  20. Forest impact estimated with NOAA AVHRR and landsat TM data related to an empirical hurricane wind-field distribution

    USGS Publications Warehouse

    Ramsey, Elijah W.; Hodgson, M.E.; Sapkota, S.K.; Nelson, G.A.

    2001-01-01

    An empirical model was used to relate forest type and hurricane-impact distribution with wind speed and duration to explain the variation of hurricane damage among forest types along the Atchafalaya River basin of coastal Louisiana. Forest-type distribution was derived from Landsat Thematic Mapper image data, hurricane-impact distribution from a suite of transformed advanced very high resolution radiometer images, and wind speed and duration from a wind-field model. The empirical model explained 73%, 84%, and 87% of the impact variances for open, hardwood, and cypress-tupelo forests, respectively. These results showed that the estimated impact for each forest type was highly related to the duration and speed of extreme winds associated with Hurricane Andrew in 1992. The wind-field model projected that the highest wind speeds were in the southern basin, dominated by cypress-tupelo and open forests, while lower wind speeds were in the northern basin, dominated by hardwood forests. This evidence could explain why, on average, the impact to cypress-tupelos was more severe than to hardwoods, even though cypress-tupelos are less susceptible to wind damage. Further, examination of the relative importance of wind speed in explaining the impact severity to each forest type showed that the impact to hardwood forests was mainly related to tropical-depression to tropical-storm force wind speeds. Impacts to cypress-tupelo and open forests (a mixture of willows and cypress-tupelo) were broadly related to tropical-storm force wind speeds and by wind speeds near and somewhat in excess of hurricane force. Decoupling the importance of duration from speed in explaining the impact severity to the forests could not be fully realized. Most evidence, however, hinted that impact severity was positively related to higher durations at critical wind speeds. Wind-speed intervals, which were important in explaining the impact severity on hardwoods, showed that higher durations, but not the highest wind speeds, were concentrated in the northern basin, dominated by hardwoods. The extreme impacts associated with the cypress-tupelo forests in the southeast corner of the basin intersected the highest durations as well as the highest wind speeds. ?? 2001 Published by Elsevier Science Inc.

  1. Maximum-Likelihood Estimation With a Contracting-Grid Search Algorithm

    PubMed Central

    Hesterman, Jacob Y.; Caucci, Luca; Kupinski, Matthew A.; Barrett, Harrison H.; Furenlid, Lars R.

    2010-01-01

    A fast search algorithm capable of operating in multi-dimensional spaces is introduced. As a sample application, we demonstrate its utility in the 2D and 3D maximum-likelihood position-estimation problem that arises in the processing of PMT signals to derive interaction locations in compact gamma cameras. We demonstrate that the algorithm can be parallelized in pipelines, and thereby efficiently implemented in specialized hardware, such as field-programmable gate arrays (FPGAs). A 2D implementation of the algorithm is achieved in Cell/BE processors, resulting in processing speeds above one million events per second, which is a 20× increase in speed over a conventional desktop machine. Graphics processing units (GPUs) are used for a 3D application of the algorithm, resulting in processing speeds of nearly 250,000 events per second which is a 250× increase in speed over a conventional desktop machine. These implementations indicate the viability of the algorithm for use in real-time imaging applications. PMID:20824155

  2. An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction

    PubMed Central

    Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo

    2018-01-01

    The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods. PMID:29342857

  3. An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction.

    PubMed

    Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo

    2018-01-13

    The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods.

  4. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  5. Prediction of Flutter Boundary Using Flutter Margin for The Discrete-Time System

    NASA Astrophysics Data System (ADS)

    Dwi Saputra, Angga; Wibawa Purabaya, R.

    2018-04-01

    Flutter testing in a wind tunnel is generally conducted at subcritical speeds to avoid damages. Hence, The flutter speed has to be predicted from the behavior some of its stability criteria estimated against the dynamic pressure or flight speed. Therefore, it is quite important for a reliable flutter prediction method to estimates flutter boundary. This paper summarizes the flutter testing of a wing cantilever model in a wind tunnel. The model has two degree of freedom; they are bending and torsion modes. The flutter test was conducted in a subsonic wind tunnel. The dynamic data responses was measured by two accelerometers that were mounted on leading edge and center of wing tip. The measurement was repeated while the wind speed increased. The dynamic responses were used to determine the parameter flutter margin for the discrete-time system. The flutter boundary of the model was estimated using extrapolation of the parameter flutter margin against the dynamic pressure. The parameter flutter margin for the discrete-time system has a better performance for flutter prediction than the modal parameters. A model with two degree freedom and experiencing classical flutter, the parameter flutter margin for the discrete-time system gives a satisfying result in prediction of flutter boundary on subsonic wind tunnel test.

  6. RADIAL FLOW PATTERN OF A SLOW CORONAL MASS EJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Li; Gan, Weiqun, E-mail: lfeng@pmo.ac.cn; Inhester, Bernd

    2015-06-01

    Height–time plots of the leading edge of coronal mass ejections (CMEs) have often been used to study CME kinematics. We propose a new method to analyze the CME kinematics in more detail by determining the radial mass transport process throughout the entire CME. Thus, our method is able to estimate not only the speed of the CME front but also the radial flow speed inside the CME. We have applied this method to a slow CME with an average leading edge speed of about 480 km s{sup −1}. In the Lagrangian frame, the speeds of the individual CME mass elementsmore » stay almost constant within 2 and 15 R{sub S}, the range over which we analyzed the CME. Hence, we have no evidence of net radial forces acting on parts of the CME in this range or of a pile up of mass ahead of the CME. We find evidence that the leading edge trajectory obtained by tie-pointing may gradually lag behind the Lagrangian front-side trajectories derived from our analysis. Our results also allow a much more precise estimate of the CME energy. Compared with conventional estimates using the CME total mass and leading edge motion, we find that the latter may overestimate the kinetic energy and the gravitational potential energy.« less

  7. Influence of the optimization methods on neural state estimation quality of the drive system with elasticity.

    PubMed

    Orlowska-Kowalska, Teresa; Kaminski, Marcin

    2014-01-01

    The paper deals with the implementation of optimized neural networks (NNs) for state variable estimation of the drive system with an elastic joint. The signals estimated by NNs are used in the control structure with a state-space controller and additional feedbacks from the shaft torque and the load speed. High estimation quality is very important for the correct operation of a closed-loop system. The precision of state variables estimation depends on the generalization properties of NNs. A short review of optimization methods of the NN is presented. Two techniques typical for regularization and pruning methods are described and tested in detail: the Bayesian regularization and the Optimal Brain Damage methods. Simulation results show good precision of both optimized neural estimators for a wide range of changes of the load speed and the load torque, not only for nominal but also changed parameters of the drive system. The simulation results are verified in a laboratory setup.

  8. Hardware design and implementation of fast DOA estimation method based on multicore DSP

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhao, Yingxiao; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-10-01

    In this paper, we present a high-speed real-time signal processing hardware platform based on multicore digital signal processor (DSP). The real-time signal processing platform shows several excellent characteristics including high performance computing, low power consumption, large-capacity data storage and high speed data transmission, which make it able to meet the constraint of real-time direction of arrival (DOA) estimation. To reduce the high computational complexity of DOA estimation algorithm, a novel real-valued MUSIC estimator is used. The algorithm is decomposed into several independent steps and the time consumption of each step is counted. Based on the statistics of the time consumption, we present a new parallel processing strategy to distribute the task of DOA estimation to different cores of the real-time signal processing hardware platform. Experimental results demonstrate that the high processing capability of the signal processing platform meets the constraint of real-time direction of arrival (DOA) estimation.

  9. Groundspeed filtering for CTAS

    NASA Technical Reports Server (NTRS)

    Slater, Gary L.

    1994-01-01

    Ground speed is one of the radar observables which is obtained along with position and heading from NASA Ames Center radar. Within the Center TRACON Automation System (CTAS), groundspeed is converted into airspeed using the wind speeds which CTAS obtains from the NOAA weather grid. This airspeed is then used in the trajectory synthesis logic which computes the trajectory for each individual aircraft. The time history of the typical radar groundspeed data is generally quite noisy, with high frequency variations on the order of five knots, and occasional 'outliers' which can be significantly different from the probable true speed. To try to smooth out these speeds and make the ETA estimate less erratic, filtering of the ground speed is done within CTAS. In its base form, the CTAS filter is a 'moving average' filter which averages the last ten radar values. In addition, there is separate logic to detect and correct for 'outliers', and acceleration logic which limits the groundspeed change in adjacent time samples. As will be shown, these additional modifications do cause significant changes in the actual groundspeed filter output. The conclusion is that the current ground speed filter logic is unable to track accurately the speed variations observed on many aircraft. The Kalman filter logic however, appears to be an improvement to the current algorithm used to smooth ground speed variations, while being simpler and more efficient to implement. Additional logic which can test for true 'outliers' can easily be added by looking at the difference in the a priori and post priori Kalman estimates, and not updating if the difference in these quantities is too large.

  10. Nilsson's Power Model connecting speed and road trauma: applicability by road type and alternative models for urban roads.

    PubMed

    Cameron, M H; Elvik, R

    2010-11-01

    Nilsson (1981) proposed power relationships connecting changes in traffic speeds with changes in road crashes at various levels of injury severity. Increases in fatal crashes are related to the 4(th) power of the increase in mean speed, increases in serious casualty crashes (those involving death or serious injury) according to the 3(rd) power, and increases in casualty crashes (those involving death or any injury) according to the 2(nd) power. Increases in numbers of crash victims at cumulative levels of injury severity are related to the crash increases plus higher powers predicting the number of victims per crash. These relationships are frequently applied in OECD countries to estimate road trauma reductions resulting from expected speed reductions. The relationships were empirically derived based on speed changes resulting from a large number of rural speed limit changes in Sweden during 1967-1972. Nilsson (2004) noted that there had been very few urban speed limit changes studied to test his power model. This paper aims to test the assumption that the model is equally applicable in all road environments. It was found that the road environment is an important moderator of Nilsson's power model. While Nilsson's model appears satisfactory for rural highways and freeways, the model does not appear to be directly applicable to traffic speed changes on urban arterial roads. The evidence of monotonically increasing powers applicable to changes in road trauma at increasing injury severity levels with changes in mean speed is weak. The estimated power applicable to serious casualties on urban arterial roads was significantly less than that on rural highways, which was also significantly less than that on freeways. Alternative models linking the parameters of speed distributions with road trauma are reviewed and some conclusions reached for their use on urban roads instead of Nilsson's model. Further research is needed on the relationships between serious road trauma and urban speeds. 2010 Elsevier Ltd. All rights reserved.

  11. Multi-epoch VLBA Imaging of 20 New TeV Blazars: Apparent Jet Speeds

    NASA Astrophysics Data System (ADS)

    Piner, B. Glenn; Edwards, Philip G.

    2018-01-01

    We present 88 multi-epoch Very Long Baseline Array (VLBA) images (most at an observing frequency of 8 GHz) of 20 TeV blazars, all of the high-frequency-peaked BL Lac (HBL) class, that have not been previously studied at multiple epochs on the parsec scale. From these 20 sources, we analyze the apparent speeds of 43 jet components that are all detected at four or more epochs. As has been found for other TeV HBLs, the apparent speeds of these components are relatively slow. About two-thirds of the components have an apparent speed that is consistent (within 2σ) with no motion, and some of these components may be stationary patterns whose apparent speed does not relate to the underlying bulk flow speed. In addition, a superluminal tail to the apparent speed distribution of the TeV HBLs is detected for the first time, with eight components in seven sources having a 2σ lower limit on the apparent speed exceeding 1c. We combine the data from these 20 sources with an additional 18 sources from the literature to analyze the complete apparent speed distribution of all 38 TeV HBLs that have been studied with very long baseline interferometry at multiple epochs. The highest 2σ apparent speed lower limit considering all sources is 3.6c. This suggests that bulk Lorentz factors of up to about 4, but probably not much higher, exist in the parsec-scale radio-emitting regions of these sources, consistent with estimates obtained in the radio by other means such as brightness temperatures. This can be reconciled with the high Lorentz factors estimated from the high-energy data if the jet has velocity structures consisting of different emission regions with different Lorentz factors. In particular, we analyze the current apparent speed data for the TeV HBLs in the context of a model with a fast central spine and a slower outer layer.

  12. CO2 exchange coefficients from remotely-sensed wind speed measurements: SSM/I versus QuikSCAT in 2000

    NASA Technical Reports Server (NTRS)

    Carr, M.; Tang, W.; Liu, W. T.

    2002-01-01

    We compare here the air-sea exchange coefficient for C02 estimated with monthly mean wind speed measured by the Special Sensing Microwave Imager (SSM/I), Ks , and by the scatterometer QuikSCAT, Kq, for the year 2000.

  13. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    USDA-ARS?s Scientific Manuscript database

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  14. Hourly Wind Speed Interval Prediction in Arid Regions

    NASA Astrophysics Data System (ADS)

    Chaouch, M.; Ouarda, T.

    2013-12-01

    The long and extended warm and dry summers, the low rate of rain and humidity are the main factors that explain the increase of electricity consumption in hot arid regions. In such regions, the ventilating and air-conditioning installations, that are typically the most energy-intensive among energy consumption activities, are essential for securing healthy, safe and suitable indoor thermal conditions for building occupants and stored materials. The use of renewable energy resources such as solar and wind represents one of the most relevant solutions to overcome the increase of the electricity demand challenge. In the recent years, wind energy is gaining more importance among the researchers worldwide. Wind energy is intermittent in nature and hence the power system scheduling and dynamic control of wind turbine requires an estimate of wind energy. Accurate forecast of wind speed is a challenging task for the wind energy research field. In fact, due to the large variability of wind speed caused by the unpredictable and dynamic nature of the earth's atmosphere, there are many fluctuations in wind power production. This inherent variability of wind speed is the main cause of the uncertainty observed in wind power generation. Furthermore, producing wind power forecasts might be obtained indirectly by modeling the wind speed series and then transforming the forecasts through a power curve. Wind speed forecasting techniques have received substantial attention recently and several models have been developed. Basically two main approaches have been proposed in the literature: (1) physical models such as Numerical Weather Forecast and (2) statistical models such as Autoregressive integrated moving average (ARIMA) models, Neural Networks. While the initial focus in the literature has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. In short term context, probabilistic forecasts might be more relevant than point forecasts for the planner to build scenarios In this paper, we are interested in estimating predictive intervals of the hourly wind speed measures in few cities in United Arab emirates (UAE). More precisely, given a wind speed time series, our target is to forecast the wind speed at any specific hour during the day and provide in addition an interval with the coverage probability 0

  15. Allometric multilevel modelling of agility and dribbling speed by skeletal age and playing position in youth soccer players.

    PubMed

    Valente-dos-Santos, J; Coelho-e-Silva, M J; Duarte, J; Pereira, J; Rebelo-Gonçalves, R; Figueiredo, A; Mazzuco, M A; Sherar, L B; Elferink-Gemser, M T; Malina, R M

    2014-08-01

    This study evaluates the contributions of age, skeletal maturation, body size and composition, training and playing position to the development of agility and dribbling speed in young male soccer players (10-18 years) followed longitudinally. 83 players [defenders (n=35), midfielders (n=27), forwards (n=21)] were followed annually over 5 years (average: 4.4 observations per player). Skeletal age (SA), stature, body mass, triceps and subscapular skinfolds, agility and dribbling speed were measured annually. Body composition was estimated from the 2 skinfolds. Annual training volume was estimated from weekly participation forms completed by coaches. The multiplicative allometric models with the best statistical fit showed that statural growth of 1 cm predicts 1.334 s and 1.927 s of improvement in agility and dribbling speed, respectively. Significant independent effects of fat-free mass and annual volume training were found for agility and dribbling speed, respectively (P<0.05). Predicted agility (from 12 to 18 years of SA) and dribbling speed (from 13 to 18 years of SA) differed significantly among players by playing positions (midfielders>forwards>defenders). The present results provide developmental models for the interpretation of intra- and inter-individual variability in agility and dribbling speed among youth soccer players across adolescence, and may provide a framework for trainers and coaches to develop and evaluate individualized training protocols. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Dynamic Speed Adaptation for Path Tracking Based on Curvature Information and Speed Limits †

    PubMed Central

    Gámez Serna, Citlalli; Ruichek, Yassine

    2017-01-01

    A critical concern of autonomous vehicles is safety. Different approaches have tried to enhance driving safety to reduce the number of fatal crashes and severe injuries. As an example, Intelligent Speed Adaptation (ISA) systems warn the driver when the vehicle exceeds the recommended speed limit. However, these systems only take into account fixed speed limits without considering factors like road geometry. In this paper, we consider road curvature with speed limits to automatically adjust vehicle’s speed with the ideal one through our proposed Dynamic Speed Adaptation (DSA) method. Furthermore, ‘curve analysis extraction’ and ‘speed limits database creation’ are also part of our contribution. An algorithm that analyzes GPS information off-line identifies high curvature segments and estimates the speed for each curve. The speed limit database contains information about the different speed limit zones for each traveled path. Our DSA senses speed limits and curves of the road using GPS information and ensures smooth speed transitions between current and ideal speeds. Through experimental simulations with different control algorithms on real and simulated datasets, we prove that our method is able to significantly reduce lateral errors on sharp curves, to respect speed limits and consequently increase safety and comfort for the passenger. PMID:28613251

  17. Relationship Between Speed of Sound in and Density of Normal and Diseased Rat Livers

    NASA Astrophysics Data System (ADS)

    Hachiya, Hiroyuki; Ohtsuki, Shigeo; Tanaka, Motonao

    1994-05-01

    Speed of sound is an important acoustic parameter for quantitative characterization of living tissues. In this paper, the relationship between speed of sound in and density of rat liver tissues are investigated. The speed of sound was measured by the nondeformable technique based on frequency-time analysis of a 3.5 MHz pulse response. The speed of sound in normal livers varied minimally between individuals and was not related to body weight or age. In liver tissues which were administered CCl4, the speed of sound was lower than the speed of sound in normal tissues. The relationship between speed of sound and density in normal, fatty and cirrhotic livers can be fitted well on the line which is estimated using the immiscible liquid model assuming a mixture of normal liver and fat tissues. For 3.5 MHz ultrasound, it is considered that the speed of sound in fresh liver with fatty degeneration is responsible for the fat content and is not strongly dependent on the degree of fibrosis.

  18. Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam

    NASA Astrophysics Data System (ADS)

    Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.

    2017-03-01

    The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.

  19. Contrast affects flicker and speed perception differently

    NASA Technical Reports Server (NTRS)

    Thompson, P.; Stone, L. S.

    1997-01-01

    We have previously shown that contrast affects speed perception, with lower-contrast, drifting gratings perceived as moving slower. In a recent study, we examined the implications of this result on models of speed perception that use the amplitude of the response of linear spatio-temporal filters to determine speed. In this study, we investigate whether the contrast dependence of speed can be understood within the context of models in which speed estimation is made using the temporal frequency of the response of linear spatio-temporal filters. We measured the effect of contrast on flicker perception and found that contrast manipulations produce opposite effects on perceived drift rate and perceived flicker rate, i.e., reducing contrast increases the apparent temporal frequency of counterphase modulated gratings. This finding argues that, if a temporal frequency-based algorithm underlies speed perception, either flicker and speed perception must not be based on the output of the same mechanism or contrast effects on perceived spatial frequency reconcile the disparate effects observed for perceived temporal frequency and speed.

  20. Nonlinear Statistical Estimation with Numerical Maximum Likelihood

    DTIC Science & Technology

    1974-10-01

    probably most directly attributable to the speed, precision and compactness of the linear programming algorithm exercised ; the mutual primal-dual...discriminant analysis is to classify the individual as a member of T# or IT, 1 2 according to the relative...Introduction to the Dissertation 1 Introduction to Statistical Estimation Theory 3 Choice of Estimator.. .Density Functions 12 Choice of Estimator

  1. Perception of Visual Speed While Moving

    ERIC Educational Resources Information Center

    Durgin, Frank H.; Gigone, Krista; Scott, Rebecca

    2005-01-01

    During self-motion, the world normally appears stationary. In part, this may be due to reductions in visual motion signals during self-motion. In 8 experiments, the authors used magnitude estimation to characterize changes in visual speed perception as a result of biomechanical self-motion alone (treadmill walking), physical translation alone…

  2. An Agitation Experiment with Multiple Aspects

    ERIC Educational Resources Information Center

    Spencer, Jordan L.

    2006-01-01

    This paper describes a multifaceted agitation and mixing experiment. The relatively inexpensive apparatus includes a variable-speed stirrer motor, two polycarbonate tanks, and an instrumented torque table. Students measure torque as a function of stirrer speed, and use conductive tracer data to estimate two parameters of a flow model. The effect…

  3. Improvement of determinating seafloor benchmark position with large-scale horizontal heterogeneity in the ocean area

    NASA Astrophysics Data System (ADS)

    Uemura, Y.; Tadokoro, K.; Matsuhiro, K.; Ikuta, R.

    2015-12-01

    The most critical issue in reducing the accuracy of seafloor positioning system, GPS/Acoustic technique, is large-scale thermal gradient of sound-speed structure [Muto et al., 2008] due to the ocean current. For example, Kuroshio Current, near our observation station, forms this structure. To improve the accuracy of seafloor benchmark position (SBP), we need to directly measure the structure frequently, or estimate it from travel time residual. The former, we repeatedly measure the sound-speed at Kuroshio axis using Underway CTD and try to apply analysis method of seafloor positioning [Yasuda et al., 2015 AGU meeting]. The latter, however, we cannot estimate the structure using travel time residual until now. Accordingly, in this study, we focus on azimuthal dependence of Estimated Mean Sound-Speed (EMSS). EMSS is defined as distance between vessel position and estimated SBP divided by travel time. If thermal gradient exists and SBP is true, EMSS should have azimuthal dependence with the assumption of horizontal layered sound-speed structure in our previous analysis method. We use the data at KMC located on the central part of Nankai Trough, Japan on Jan. 28, 2015, because on that day KMC was on the north edge of Kuroshio, where we expect that thermal gradient exists. In our analysis method, the hyper parameter (μ value) weights travel time residual and rate of change of sound speed structure. However, EMSS derived from μ value determined by Ikuta et al. [2008] does not have azimuthal dependence, that is, we cannot estimate thermal gradient. Thus, we expect SBP has a large bias. Therefore, in this study, we use another μ value and examine whether EMSS has azimuthal dependence or not. With the μ value of this study, which is 1 order of magnitude smaller than the previous value, EMSS has azimuthal dependence that is consistent with observation day's thermal gradient. This result shows that we can estimate the thermal gradient adequately. This SBP displaces 25.6 cm to the north and 11.8 cm to the east compared to previous SBP. This displacement reduces the bias of SBP and RMS of horizontal component in time series to 1/3. Therefore, determination of SBP is suitable when the thermal gradient exists on observation day and EMSS has azimuthal dependence for redetermination of μ value.

  4. Objective classification of historical tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Chenoweth, Michael

    2007-03-01

    Preinstrumental records of historical tropical cyclone activity require objective methods for accurately categorizing tropical cyclone intensity. Here wind force terms and damage reports from newspaper accounts in the Lesser Antilles and Jamaica for the period 1795-1879 are compared with wind speed estimates calculated from barometric pressure data. A total of 95 separate barometric pressure readings and colocated simultaneous wind force descriptors and wind-induced damage reports are compared. The wind speed estimates from barometric pressure data are taken as the most reliable and serve as a standard to compare against other data. Wind-induced damage reports are used to produce an estimated wind speed range using a modified Fujita scale. Wind force terms are compared with the barometric pressure data to determine if a gale, as used in the contemporary newspapers, is consistent with the modern definition of a gale. Results indicate that the modern definition of a gale (the threshold point separating the classification of a tropical depression from a tropical storm) is equivalent to that in contemporary newspaper accounts. Barometric pressure values are consistent with both reported wind force terms and wind damage on land when the location, speed and direction of movement of the tropical cyclone are determined. Damage reports and derived wind force estimates are consistent with other published results. Biases in ships' logbooks are confirmed and wind force terms of gale strength or greater are identified. These results offer a bridge between the earlier noninstrumental records of tropical cyclones and modern records thereby offering a method of consistently classifying storms in the Caribbean region into tropical depressions, tropical storms, nonmajor and major hurricanes.

  5. Tornado damage risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhold, T.A.; Ellingwood, B.

    1982-09-01

    Several proposed models were evaluated for predicting tornado wind speed probabilities at nuclear plant sites as part of a program to develop statistical data on tornadoes needed for probability-based load combination analysis. A unified model was developed which synthesized the desired aspects of tornado occurrence and damage potential. The sensitivity of wind speed probability estimates to various tornado modeling assumptions are examined, and the probability distributions of tornado wind speed that are needed for load combination studies are presented.

  6. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    NASA Astrophysics Data System (ADS)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-06-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  7. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    NASA Astrophysics Data System (ADS)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-04-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  8. Target-depth estimation in active sonar: Cramer-Rao bounds for a bilinear sound-speed profile.

    PubMed

    Mours, Alexis; Ioana, Cornel; Mars, Jérôme I; Josso, Nicolas F; Doisy, Yves

    2016-09-01

    This paper develops a localization method to estimate the depth of a target in the context of active sonar, at long ranges. The target depth is tactical information for both strategy and classification purposes. The Cramer-Rao lower bounds for the target position as range and depth are derived for a bilinear profile. The influence of sonar parameters on the standard deviations of the target range and depth are studied. A localization method based on ray back-propagation with a probabilistic approach is then investigated. Monte-Carlo simulations applied to a summer Mediterranean sound-speed profile are performed to evaluate the efficiency of the estimator. This method is finally validated on data in an experimental tank.

  9. Ultrasonic Shear Wave Elasticity Imaging (SWEI) Sequencing and Data Processing Using a Verasonics Research Scanner

    PubMed Central

    Deng, Yufeng; Rouze, Ned C.; Palmeri, Mark L.; Nightingale, Kathryn R.

    2017-01-01

    Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage. PMID:28092508

  10. Three-Dimensional ISAR Imaging Method for High-Speed Targets in Short-Range Using Impulse Radar Based on SIMO Array.

    PubMed

    Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei

    2016-03-11

    This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile's rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm.

  11. Estimating exercise capacity from walking tests in elderly individuals with stable coronary artery disease.

    PubMed

    Mandic, Sandra; Walker, Robert; Stevens, Emily; Nye, Edwin R; Body, Dianne; Barclay, Leanne; Williams, Michael J A

    2013-01-01

    Compared with symptom-limited cardiopulmonary exercise test (CPET), timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in coronary artery disease (CAD) patients. We developed multivariate models for predicting peak oxygen consumption (VO2peak) from 6-minute walk test (6MWT) distance and peak shuttle walk speed for elderly stable CAD patients. Fifty-eight CAD patients (72 SD 6 years, 66% men) completed: (1) CPET with expired gas analysis on a cycle ergometer, (2) incremental 10-meter shuttle walk test, (3) two 6MWTs, (4) anthropometric assessment and (5) 30-second chair stands. Linear regression models were developed for estimating VO2peak from 6MWT distance and peak shuttle walk speed as well as demographic, anthropometric and functional variables. Measured VO2peak was significantly related to 6MWT distance (r = 0.719, p < 0.001) and peak shuttle walk speed (r = 0.717, p < 0.001). The addition of demographic (age, gender), anthropometric (height, weight, body mass index, body composition) and functional characteristics (30-second chair stands) increased the accuracy of predicting VO2peak from both 6MWT distance and peak shuttle walk speed (from 51% to 73% of VO2peak variance explained). Addition of demographic, anthropometric and functional characteristics improves the accuracy of VO2peak estimate based on walking tests in elderly individuals with stable CAD. Implications for Rehabilitation Timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in cardiac patients. Walking tests could be used to assess individual's functional capacity and response to therapeutic interventions when symptom-limited cardiopulmonary exercise testing is not practical or not necessary for clinical reasons. Addition of demographic, anthropometric and functional characteristics improves the accuracy of peak oxygen consumption estimate based on 6-minute walk test distance and peak shuttle walk speed in elderly patients with coronary artery disease.

  12. Allostatic Load and Health in the Older Population of England: A Crossed-Lagged Analysis

    PubMed Central

    Read, Sanna; Grundy, Emily

    2014-01-01

    Objective Allostatic load, a composite measure of accumulated physical wear and tear, has been proposed as an early sign of physiological dysregulation predictive of health problems, functional limitation, and disability. However, much previous research has been cross sectional and few studies consider repeated measures. We investigate the directionality of associations between allostatic load, self-rated health, and a measure of physical function (walking speed). Methods The sample included men and women 60 and older who participated in Wave 2 (2004) and Wave 4 (2008) of the English Longitudinal Study of Ageing (n = 6132 in Wave 2). Allostatic load was measured with nine biomarkers using a multisystem summary approach. Self-rated health was measured using a global 5 point summary indicator. Time to walk 8 ft was used as a measure of function. We fitted and tested autoregressive cross-lagged models between the allostatic load measure, self-rated health, and walking speed in Waves 2 and 4. Models were adjusted for age, sex, educational level, and smoking status at Wave 2 and for time-varying indicators of marital status, wealth, physical activity, and social support. Results Allostatic load predicted slower walking speed (standardized estimate = −0.08, 95% confidence interval [CI] = −0.10 to −0.05). Better self-rated health predicted faster walking speed (standardized estimate = 0.11, 95% CI = 0.08-0.13) as well as lower allostatic load (standardized estimate = −0.15, 95% CI = −0.22 to −0.09), whereas paths from allostatic load and walking speed to self-rated health were weaker (standardized estimates = −0.05 [95% CI = −0.07 to −0.02] and 0.06 [95% CI = 0.04–0.08]). Conclusions Allostatic load can be a useful risk indicator of subsequent poor health or function. PMID:25153937

  13. Pulsed photoacoustic flow imaging with a handheld system

    NASA Astrophysics Data System (ADS)

    van den Berg, Pim J.; Daoudi, Khalid; Steenbergen, Wiendelt

    2016-02-01

    Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging-ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75 mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ˜7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole blood.

  14. A Novel Speed Compensation Method for ISAR Imaging with Low SNR

    PubMed Central

    Liu, Yongxiang; Zhang, Shuanghui; Zhu, Dekang; Li, Xiang

    2015-01-01

    In this paper, two novel speed compensation algorithms for ISAR imaging under a low signal-to-noise ratio (SNR) condition have been proposed, which are based on the cubic phase function (CPF) and the integrated cubic phase function (ICPF), respectively. These two algorithms can estimate the speed of the target from the wideband radar echo directly, which breaks the limitation of speed measuring in a radar system. With the utilization of non-coherent accumulation, the ICPF-based speed compensation algorithm is robust to noise and can meet the requirement of speed compensation for ISAR imaging under a low SNR condition. Moreover, a fast searching implementation strategy, which consists of coarse search and precise search, has been introduced to decrease the computational burden of speed compensation based on CPF and ICPF. Experimental results based on radar data validate the effectiveness of the proposed algorithms. PMID:26225980

  15. Vibration signal correction of unbalanced rotor due to angular speed fluctuation

    NASA Astrophysics Data System (ADS)

    Cao, Hongrui; He, Dong; Xi, Songtao; Chen, Xuefeng

    2018-07-01

    The rotating speed of a rotor is hardly constant in practice due to angular speed fluctuation, which affects the balancing accuracy of the rotor. In this paper, the effect of angular speed fluctuation on vibration responses of the unbalanced rotor is analyzed quantitatively. Then, a vibration signal correction method based on zoom synchrosqueezing transform (ZST) and tacholess order tracking is proposed. The instantaneous angular speed (IAS) of the rotor is extracted by the ZST firstly and then used to calculate the instantaneous phase. The vibration signal is further resampled in angular domain to reduce the effect of angular speed fluctuation. The signal obtained in angular domain is transformed into order domain using discrete Fourier transform (DFT) to estimate the amplitude and phase of the vibration signal. Simulated and experimental results show that the proposed method can successfully correct the amplitude and phase of the vibration signal due to angular speed fluctuation.

  16. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    NASA Astrophysics Data System (ADS)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  17. Perils of using speed zone data to assess real-world compliance to speed limits.

    PubMed

    Chevalier, Anna; Clarke, Elizabeth; Chevalier, Aran John; Brown, Julie; Coxon, Kristy; Ivers, Rebecca; Keay, Lisa

    2017-11-17

    Real-world driving studies, including those involving speeding alert devices and autonomous vehicles, can gauge an individual vehicle's speeding behavior by comparing measured speed with mapped speed zone data. However, there are complexities with developing and maintaining a database of mapped speed zones over a large geographic area that may lead to inaccuracies within the data set. When this approach is applied to large-scale real-world driving data or speeding alert device data to determine speeding behavior, these inaccuracies may result in invalid identification of speeding. We investigated speeding events based on service provider speed zone data. We compared service provider speed zone data (Speed Alert by Smart Car Technologies Pty Ltd., Ultimo, NSW, Australia) against a second set of speed zone data (Google Maps Application Programming Interface [API] mapped speed zones). We found a systematic error in the zones where speed limits of 50-60 km/h, typical of local roads, were allocated to high-speed motorways, which produced false speed limits in the speed zone database. The result was detection of false-positive high-range speeding. Through comparison of the service provider speed zone data against a second set of speed zone data, we were able to identify and eliminate data most affected by this systematic error, thereby establishing a data set of speeding events with a high level of sensitivity (a true positive rate of 92% or 6,412/6,960). Mapped speed zones can be a source of error in real-world driving when examining vehicle speed. We explored the types of inaccuracies found within speed zone data and recommend that a second set of speed zone data be utilized when investigating speeding behavior or developing mapped speed zone data to minimize inaccuracy in estimates of speeding.

  18. Trajectories of Lower Extremity Physical Performance: Effects on Fractures and Mortality in Older Women.

    PubMed

    Barbour, Kamil E; Lui, Li-Yung; McCulloch, Charles E; Ensrud, Kristine E; Cawthon, Peggy M; Yaffe, Kristine; Barnes, Deborah E; Fredman, Lisa; Newman, Anne B; Cummings, Steven R; Cauley, Jane A

    2016-12-01

    Prior studies have only considered one measurement of physical performance in its relationship to fractures and mortality. A single measurement is susceptible to large within-person changes over time, and thus, may not capture the true association between physical performance and the outcomes of interest. Using data from the Study of Osteoporotic Fractures, we followed 7,015 women enrolled prior to age 80 years who had outcome information beyond this age. Trajectories of walking speed (m/s) and chair stand speed (stands/s) were estimated up to the last visit prior to age 80 years using mixed-effects linear regression. Physical performance at age 80 (PF_age80) was assessed at the last visit prior to age 80 years. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards regression and multivariate models adjusted for all other covariates. Greatest walking speed decline and chair stand speed decline were both associated with higher risk of hip fracture (HR: 1.28; 95% CI: 1.03, 1.58 and HR: 1.26; 95% CI: 1.03, 1.54, respectively), but not nonspine fractures. Greatest walking speed decline and chair stand speed decline were both associated with a significant 29% (95% CI: 17-42%) and 27% (95% CI: 15-39%) increased risk of mortality, respectively. Greatest declines in walking speed and chair stand speed were both associated with an increased risk of hip fracture and mortality independent of PF_age80 and other important confounders. Both physical performance change and the single physical performance measurement should be considered in the etiology of hip fracture and mortality. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    PubMed Central

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524

  20. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.

    PubMed

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

  1. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild

    PubMed Central

    Broell, Franziska; Taggart, Christopher T.

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777

  2. Keystroke-Level Analysis to Estimate Time to Process Pages in Online Learning Environments

    ERIC Educational Resources Information Center

    Bälter, Olle; Zimmaro, Dawn

    2018-01-01

    It is challenging for students to plan their work sessions in online environments, as it is very difficult to make estimates on how much material there is to cover. In order to simplify this estimation, we have extended the Keystroke-level analysis model with individual reading speed of text, figures, and questions. This was used to estimate how…

  3. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    PubMed Central

    Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%–18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment. PMID:24771566

  4. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    PubMed

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  5. Using speeding detections and numbers of fatalities to estimate relative risk of a fatality for motorcyclists and car drivers.

    PubMed

    Huggins, Richard

    2013-10-01

    Precise estimation of the relative risk of motorcyclists being involved in a fatal accident compared to car drivers is difficult. Simple estimates based on the proportions of licenced drivers or riders that are killed in a fatal accident are biased as they do not take into account the exposure to risk. However, exposure is difficult to quantify. Here we adapt the ideas behind the well known induced exposure methods and use available summary data on speeding detections and fatalities for motorcycle riders and car drivers to estimate the relative risk of a fatality for motorcyclists compared to car drivers under mild assumptions. The method is applied to data on motorcycle riders and car drivers in Victoria, Australia in 2010 and a small simulation study is conducted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dexin; Yang, Liuqing; Florita, Anthony

    The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the helpmore » of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.« less

  7. Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dexin; Yang, Liuqing; Florita, Anthony

    The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the helpmore » of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.« less

  8. Estimation of scattering object characteristics for image reconstruction using a nonzero background.

    PubMed

    Jin, Jing; Astheimer, Jeffrey; Waag, Robert

    2010-06-01

    Two methods are described to estimate the boundary of a 2-D penetrable object and the average sound speed in the object. One method is for circular objects centered in the coordinate system of the scattering observation. This method uses an orthogonal function expansion for the scattering. The other method is for noncircular, essentially convex objects. This method uses cross correlation to obtain time differences that determine a family of parabolas whose envelope is the boundary of the object. A curve-fitting method and a phase-based method are described to estimate and correct the offset of an uncentered radial or elliptical object. A method based on the extinction theorem is described to estimate absorption in the object. The methods are applied to calculated scattering from a circular object with an offset and to measured scattering from an offset noncircular object. The results show that the estimated boundaries, sound speeds, and absorption slopes agree very well with independently measured or true values when the assumptions of the methods are reasonably satisfied.

  9. Longitudinal curvature and displacement speed effects on incompressible laminar boundary layers.

    NASA Technical Reports Server (NTRS)

    Werle, M. J.; Wornom, S. F.

    1972-01-01

    The title problem is considered for the case of flow past a circular cylinder placed normal to a uniform mainstream with Reynolds numbers from 40 to 200. Implicit finite difference numerical solutions are obtained for a set of boundary-layer equations that account for the second order effects associated with surface curvature and displacement speed. It was found that both of these contributors have a significant influence on the internal structure of the viscous region and that an accurate estimate of the surface pressure distribution is essential for estimating the surface shear stress.

  10. Research on natural frequency based on modal test for high speed vehicles

    NASA Astrophysics Data System (ADS)

    Ma, Guangsong; He, Guanglin; Guo, Yachao

    2018-04-01

    High speed vehicle as a vibration system, resonance generated in flight may be harmful to high speed vehicles. It is possible to solve the resonance problem by acquiring the natural frequency of the high-speed aircraft and then taking some measures to avoid the natural frequency of the high speed vehicle. Therefore, In this paper, the modal test of the high speed vehicle was carried out by using the running hammer method and the PolyMAX modal parameter identification method. Firstly, the total frequency response function, coherence function of the high speed vehicle are obtained by the running hammer stimulation test, and through the modal assurance criterion (MAC) to determine the accuracy of the estimated parameters. Secondly, the first three order frequencies, the pole steady state diagram of the high speed vehicles is obtained by the PolyMAX modal parameter identification method. At last, the natural frequency of the vibration system was accurately obtained by the running hammer method.

  11. High-speed machining of Space Shuttle External Tank (ET) panels

    NASA Technical Reports Server (NTRS)

    Miller, J. A.

    1983-01-01

    Potential production rates and project cost savings achieved by converting the conventional machining process in manufacturing shuttle external tank panels to high speed machining (HSM) techniques were studied. Savings were projected from the comparison of current production rates with HSM rates and with rates attainable on new conventional machines. The HSM estimates were also based on rates attainable by retrofitting existing conventional equipment with high speed spindle motors and rates attainable using new state of the art machines designed and built for HSM.

  12. Engineering Design Handbook. Helicopter Engineering. Part Two. Detail Design

    DTIC Science & Technology

    1976-01-01

    rates are sp-ed for a given amount of power available, involved in both symmetrical and turning maneu- Normally•, the high - speed performance problem...safe mnain rotor specls. cessive oiling should be avoided. Good estimations of The power losses of a typical high - speed twin- gear windage losses F...rotor gearbox and consise.d of two hy- gearbox is pitting or spa,:,iig of the gears and draulic pumps and a high - speed generator. bearinbs (par. 4-2.1

  13. Method and system for determining induction motor speed

    DOEpatents

    Parlos, Alexander G.; Bharadwaj, Raj M.

    2004-03-30

    A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.

  14. Maneuverability Estimation of High-Speed Craft

    DTIC Science & Technology

    2015-06-01

    derived based on equations by Lewandowski and Denny- Hubble in order to find the fundamental maneuvering characteristics. The model is developed in...characteristic of high- speed craft. A mathematical model is derived based on equations by Lewandowski and Denny- Hubble in order to find the fundamental...33 C. EQUATIONS BY DENNY AND HUBBLE ................................................43 D. NOMOTO

  15. Stochastic Quantitative Reasoning for Autonomous Mission Planning

    DTIC Science & Technology

    2014-04-09

    points. Figure 4: Linear interpolation Table 1: Wind speed prediction information (ID:0-2 for Albany, ID:3-5 for Pittston, and ID:6-8 for JFK Airport ID...Pittston, and JFK Airport in Table 1, how can we estimate a reasonable wind speed for the current location at the current time? Figure 5: Example

  16. Smartphone-aided measurements of the speed of sound in different gaseous mixtures

    NASA Astrophysics Data System (ADS)

    Parolin, Sara Orsola; Pezzi, Giovanni

    2013-11-01

    Here we describe classroom-based procedures aiming at the estimation of the speed of sound in different gas mixtures with the help of a plastic drain pipe and two iPhones or iPod touches. The procedures were conceived to be performed with simple and readily available tools.

  17. Smartphone-Aided Measurements of the Speed of Sound in Different Gaseous Mixtures

    ERIC Educational Resources Information Center

    Parolin, Sara Orsola; Pezzi, Giovanni

    2013-01-01

    Here we describe classroom-based procedures aiming at the estimation of the speed of sound in different gas mixtures with the help of a plastic drain pipe and two iPhones or iPod touches. The procedures were conceived to be performed with simple and readily available tools.

  18. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight

    NASA Astrophysics Data System (ADS)

    Hiryu, Shizuko; Katsura, Koji; Lin, Liang-Kong; Riquimaroux, Hiroshi; Watanabe, Yoshiaki

    2005-12-01

    Biosonar behavior was examined in Taiwanese leaf-nosed bats (Hipposideros terasensis; CF-FM bats) during flight. Echolocation sounds were recorded using a telemetry microphone mounted on the bat's head. Flight speed and three-dimensional trajectory of the bat were reconstructed from images taken with a dual high-speed video camera system. Bats were observed to change the intensity and emission rate of pulses depending on the distance from the landing site. Frequencies of the dominant second harmonic constant frequency component (CF2) of calls estimated from the bats' flight speed agreed strongly with observed values. Taiwanese leaf-nosed bats changed CF2 frequencies depending on flight speed, which caused the CF2 frequencies of the Doppler-shifted echoes to remain constant. Pulse frequencies were also estimated using echoes returning directly ahead of the bat and from its sides for two different flight conditions: landing and U-turn. Bats in flight may periodically alter their attended angles from the front to the side when emitting echolocation pulses.

  19. Validity of the iPhone M7 motion co-processor as a pedometer for able-bodied ambulation.

    PubMed

    Major, Matthew J; Alford, Micah

    2016-12-01

    Physical activity benefits for disease prevention are well-established. Smartphones offer a convenient platform for community-based step count estimation to monitor and encourage physical activity. Accuracy is dependent on hardware-software platforms, creating a recurring challenge for validation, but the Apple iPhone® M7 motion co-processor provides a standardised method that helps address this issue. Validity of the M7 to record step count for level-ground, able-bodied walking at three self-selected speeds, and agreement with the StepWatch TM was assessed. Steps were measured concurrently with the iPhone® (custom application to extract step count), StepWatch TM and manual count. Agreement between iPhone® and manual/StepWatch TM count was estimated through Pearson correlation and Bland-Altman analyses. Data from 20 participants suggested that iPhone® step count correlations with manual and StepWatch TM were strong for customary (1.3 ± 0.1 m/s) and fast (1.8 ± 0.2 m/s) speeds, but weak for the slow (1.0 ± 0.1 m/s) speed. Mean absolute error (manual-iPhone®) was 21%, 8% and 4% for the slow, customary and fast speeds, respectively. The M7 accurately records step count during customary and fast walking speeds, but is prone to considerable inaccuracies at slow speeds which has important implications for certain patient groups. The iPhone® may be a suitable alternative to the StepWatch TM for only faster walking speeds.

  20. Daily reference crop evapotranspiration with reduced data sets in the humid environments of Azores islands using estimates of actual vapor pressure, solar radiation, and wind speed

    NASA Astrophysics Data System (ADS)

    Paredes, P.; Fontes, J. C.; Azevedo, E. B.; Pereira, L. S.

    2017-11-01

    Reference crop evapotranspiration (ETo) estimations using the FAO Penman-Monteith equation (PM-ETo) require a set of weather data including maximum and minimum air temperatures (T max, T min), actual vapor pressure (e a), solar radiation (R s), and wind speed (u 2). However, those data are often not available, or data sets are incomplete due to missing values. A set of procedures were proposed in FAO56 (Allen et al. 1998) to overcome these limitations, and which accuracy for estimating daily ETo in the humid climate of Azores islands is assessed in this study. Results show that after locally and seasonally calibrating the temperature adjustment factor a d used for dew point temperature (T dew) computation from mean temperature, ETo estimations shown small bias and small RMSE ranging from 0.15 to 0.53 mm day-1. When R s data are missing, their estimation from the temperature difference (T max-T min), using a locally and seasonal calibrated radiation adjustment coefficient (k Rs), yielded highly accurate ETo estimates, with RMSE averaging 0.41 mm day-1 and ranging from 0.33 to 0.58 mm day-1. If wind speed observations are missing, the use of the default u 2 = 2 m s-1, or 3 m s-1 in case of weather measurements over clipped grass in airports, revealed appropriated even for the windy locations (u 2 > 4 m s-1), with RMSE < 0.36 mm day-1. The appropriateness of procedure to estimating the missing values of e a, R s, and u 2 was confirmed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Ivan; Verdun, Francis R.; Bochud, François O., E-mail: francois.bochud@chuv.ch

    Purpose: Signal detection on 3D medical images depends on many factors, such as foveal and peripheral vision, the type of signal, and background complexity, and the speed at which the frames are displayed. In this paper, the authors focus on the speed with which radiologists and naïve observers search through medical images. Prior to the study, the authors asked the radiologists to estimate the speed at which they scrolled through CT sets. They gave a subjective estimate of 5 frames per second (fps). The aim of this paper is to measure and analyze the speed with which humans scroll throughmore » image stacks, showing a method to visually display the behavior of observers as the search is made as well as measuring the accuracy of the decisions. This information will be useful in the development of model observers, mathematical algorithms that can be used to evaluate diagnostic imaging systems. Methods: The authors performed a series of 3D 4-alternative forced-choice lung nodule detection tasks on volumetric stacks of chest CT images iteratively reconstructed in lung algorithm. The strategy used by three radiologists and three naïve observers was assessed using an eye-tracker in order to establish where their gaze was fixed during the experiment and to verify that when a decision was made, a correct answer was not due only to chance. In a first set of experiments, the observers were restricted to read the images at three fixed speeds of image scrolling and were allowed to see each alternative once. In the second set of experiments, the subjects were allowed to scroll through the image stacks at will with no time or gaze limits. In both static-speed and free-scrolling conditions, the four image stacks were displayed simultaneously. All trials were shown at two different image contrasts. Results: The authors were able to determine a histogram of scrolling speeds in frames per second. The scrolling speed of the naïve observers and the radiologists at the moment the signal was detected was measured at 25–30 fps. For the task chosen, the performance of the observers was not affected by the contrast or experience of the observer. However, the naïve observers exhibited a different pattern of scrolling than the radiologists, which included a tendency toward higher number of direction changes and number of slices viewed. Conclusions: The authors have determined a distribution of speeds for volumetric detection tasks. The speed at detection was higher than that subjectively estimated by the radiologists before the experiment. The speed information that was measured will be useful in the development of 3D model observers, especially anthropomorphic model observers which try to mimic human behavior.« less

  2. Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †.

    PubMed

    Seo, Sang-Woo; Kim, Myunggyu; Kim, Yejin

    2018-04-25

    Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR) scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS) microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.

  3. Adaptive estimation of nonlinear parameters of a nonholonomic spherical robot using a modified fuzzy-based speed gradient algorithm

    NASA Astrophysics Data System (ADS)

    Roozegar, Mehdi; Mahjoob, Mohammad J.; Ayati, Moosa

    2017-05-01

    This paper deals with adaptive estimation of the unknown parameters and states of a pendulum-driven spherical robot (PDSR), which is a nonlinear in parameters (NLP) chaotic system with parametric uncertainties. Firstly, the mathematical model of the robot is deduced by applying the Newton-Euler methodology for a system of rigid bodies. Then, based on the speed gradient (SG) algorithm, the states and unknown parameters of the robot are estimated online for different step length gains and initial conditions. The estimated parameters are updated adaptively according to the error between estimated and true state values. Since the errors of the estimated states and parameters as well as the convergence rates depend significantly on the value of step length gain, this gain should be chosen optimally. Hence, a heuristic fuzzy logic controller is employed to adjust the gain adaptively. Simulation results indicate that the proposed approach is highly encouraging for identification of this NLP chaotic system even if the initial conditions change and the uncertainties increase; therefore, it is reliable to be implemented on a real robot.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Jain, Rishabh; Hodge, Bri-Mathias

    A data-driven methodology is developed to analyze how ambient and wake turbulence affect the power generation of wind turbine(s). Using supervisory control and data acquisition (SCADA) data from a wind plant, we select two sets of wind velocity and power data for turbines on the edge of the plant that resemble (i) an out-of-wake scenario and (ii) an in-wake scenario. For each set of data, two surrogate models are developed to represent the turbine(s) power generation as a function of (i) the wind speed and (ii) the wind speed and turbulence intensity. Three types of uncertainties in turbine(s) power generationmore » are investigated: (i) the uncertainty in power generation with respect to the reported power curve; (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) the turbine(s) generally produce more power under the in-wake scenario than under the out-of-wake scenario with the same wind speed; and (ii) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  5. Estimation of bubble-mediated air-sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate-high wind speeds

    NASA Astrophysics Data System (ADS)

    Bell, Thomas G.; Landwehr, Sebastian; Miller, Scott D.; de Bruyn, Warren J.; Callaghan, Adrian H.; Scanlon, Brian; Ward, Brian; Yang, Mingxi; Saltzman, Eric S.

    2017-07-01

    Simultaneous air-sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2) were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Δkw) over a range of wind speeds up to 21 m s-1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange.

  6. Observations of sound-speed fluctuations in the western Philippine Sea in the spring of 2009.

    PubMed

    Colosi, John A; Van Uffelen, Lora J; Cornuelle, Bruce D; Dzieciuch, Matthew A; Worcester, Peter F; Dushaw, Brian D; Ramp, Steven R

    2013-10-01

    As an aid to understanding long-range acoustic propagation in the Philippine Sea, statistical and phenomenological descriptions of sound-speed variations were developed. Two moorings of oceanographic sensors located in the western Philippine Sea in the spring of 2009 were used to track constant potential-density surfaces (isopycnals) and constant potential-temperature surfaces (isotherms) in the depth range 120-2000 m. The vertical displacements of these surfaces are used to estimate sound-speed fluctuations from internal waves, while temperature/salinity variability along isopycnals are used to estimate sound-speed fluctuations from intrusive structure often termed spice. Frequency spectra and vertical covariance functions are used to describe the space-time scales of the displacements and spiciness. Internal-wave contributions from diurnal and semi-diurnal internal tides and the diffuse internal-wave field [related to the Garrett-Munk (GM) spectrum] are found to dominate the sound-speed variability. Spice fluctuations are weak in comparison. The internal wave and spice frequency spectra have similar form in the upper ocean but are markedly different below 170-m depth. Diffuse internal-wave mode spectra show a form similar to the GM model, while internal-tide mode spectra scale as mode number to the minus two power. Spice decorrelates rapidly with depth, with a typical correlation scale of tens of meters.

  7. Accelerometer-derived activity correlates with volitional swimming speed in lake sturgeon (Acipenser fulvescens)

    USGS Publications Warehouse

    Thiem, J.D.; Dawson, J.W.; Gleiss, A.C.; Martins, E.G.; Haro, Alexander J.; Castro-Santos, Theodore R.; Danylchuk, A.J.; Wilson, R.P.; Cooke, S.J.

    2015-01-01

    Quantifying fine-scale locomotor behaviours associated with different activities is challenging for free-swimming fish.Biologging and biotelemetry tools can help address this problem. An open channel flume was used to generate volitionalswimming speed (Us) estimates of cultured lake sturgeon (Acipenser fulvescens Rafinesque, 1817) and these were paired withsimultaneously recorded accelerometer-derived metrics of activity obtained from three types of data-storage tags. This studyexamined whether a predictive relationship could be established between four different activity metrics (tail-beat frequency(TBF), tail-beat acceleration amplitude (TBAA), overall dynamic body acceleration (ODBA), and vectorial dynamic body acceleration(VeDBA)) and the swimming speed of A. fulvescens. Volitional Us of sturgeon ranged from 0.48 to 2.70 m·s−1 (0.51–3.18 bodylengths (BL) · s−1). Swimming speed increased linearly with all accelerometer-derived metrics, and when all tag types werecombined, Us increased 0.46 BL·s−1 for every 1 Hz increase in TBF, and 0.94, 0.61, and 0.94 BL·s−1 for every 1g increase in TBAA,ODBA, and VeDBA, respectively. Predictive relationships varied among tag types and tag-specific parameter estimates of Us arepresented for all metrics. This use of acceleration data-storage tags demonstrated their applicability for the field quantificationof sturgeon swimming speed.

  8. Lowering thresholds for speed limit enforcement impairs peripheral object detection and increases driver subjective workload.

    PubMed

    Bowden, Vanessa K; Loft, Shayne; Tatasciore, Monica; Visser, Troy A W

    2017-01-01

    Speed enforcement reduces incidences of speeding, thus reducing traffic accidents. Accordingly, it has been argued that stricter speed enforcement thresholds could further improve road safety. Effective speed monitoring however requires driver attention and effort, and human information-processing capacity is limited. Emphasizing speed monitoring may therefore reduce resource availability for other aspects of safe vehicle operation. We investigated whether lowering enforcement thresholds in a simulator setting would introduce further competition for limited cognitive and visual resources. Eighty-four young adult participants drove under conditions where they could be fined for travelling 1, 6, or 11km/h over a 50km/h speed-limit. Stricter speed enforcement led to greater subjective workload and significant decrements in peripheral object detection. These data indicate that the benefits of reduced speeding with stricter enforcement may be at least partially offset by greater mental demands on drivers, reducing their responses to safety-critical stimuli on the road. It is likely these results under-estimate the impact of stricter speed enforcement on real-world drivers who experience significantly greater pressures to drive at or above the speed limit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The impact of vessel speed reduction on port accidents.

    PubMed

    Chang, Young-Tae; Park, Hyosoo

    2016-03-19

    Reduced-speed zones (RSZs) have been designated across the world to control emissions from ships and prevent mammal strikes. While some studies have examined the effectiveness of speed reduction on emissions and mammal preservation, few have analyzed the effects of reduced ship speed on vessel safety. Those few studies have not yet measured the relationship between vessel speed and accidents by using real accident data. To fill this gap in the literature, this study estimates the impact of vessel speed reduction on vessel damages, casualties and frequency of vessel accidents. Accidents in RSZ ports were compared to non-RSZ ports by using U.S. Coast Guard data to capture the speed reduction effects. The results show that speed reduction influenced accident frequency as a result of two factors, the fuel price and the RSZ designation. Every $10 increase in the fuel price led to a 10.3% decrease in the number of accidents, and the RSZ designation reduced vessel accidents by 47.9%. However, the results do not clarify the exact impact of speed reduction on accident casualty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Sowers, T. Shane

    2006-01-01

    The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.

  11. Adjusting for car occupant injury liability in relation to age, speed limit, and gender-specific driver crash involvement risk.

    PubMed

    Keall, Michael; Frith, William

    2004-12-01

    It is well established that older drivers' fragility is an important factor associated with higher levels of fatal crash involvement for older drivers. There has been less research on age-related fragility with respect to the sort of minor injuries that are more common in injury crashes. This study estimates a quantity that is related to injury fragility: the probability that a driver or a passenger of that driver will be injured in crashes involving two cars. The effects of other factors apart from drivers' fragility are included in this measure, including the fragility of the passengers, the crashworthiness of cars driven, seatbelt use by the occupants, and characteristics of crashes (including configuration and impact speed). The car occupant injury liability estimates appropriately includes these factors to adjust risk curves by age, gender, and speed limit accounting for overrepresentation in crashes associated with fragility and these other factors.

  12. Three-Dimensional ISAR Imaging Method for High-Speed Targets in Short-Range Using Impulse Radar Based on SIMO Array

    PubMed Central

    Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei

    2016-01-01

    This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile’s rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm. PMID:26978372

  13. Field estimates of body drag coefficient on the basis of dives in passerine birds.

    PubMed

    Hedenström, A; Liechti, F

    2001-03-01

    During forward flight, a bird's body generates drag that tends to decelerate its speed. By flapping its wings, or by converting potential energy into work if gliding, the bird produces both lift and thrust to balance the pull of gravity and drag. In flight mechanics, a dimensionless number, the body drag coefficient (C(D,par)), describes the magnitude of the drag caused by the body. The drag coefficient depends on the shape (or streamlining), the surface texture of the body and the Reynolds number. It is an important variable when using flight mechanical models to estimate the potential migratory flight range and characteristic flight speeds of birds. Previous wind tunnel measurements on dead, frozen bird bodies indicated that C(D,par) is 0.4 for small birds, while large birds should have lower values of approximately 0.2. More recent studies of a few birds flying in a wind tunnel suggested that previous values probably overestimated C(D,par). We measured maximum dive speeds of passerine birds during the spring migration across the western Mediterranean. When the birds reach their top speed, the pull of gravity should balance the drag of the body (and wings), giving us an opportunity to estimate C(D,par). Our results indicate that C(D,par) decreases with increasing Reynolds number within the range 0.17-0.77, with a mean C(D,par) of 0.37 for small passerines. A somewhat lower mean value could not be excluded because diving birds may control their speed below the theoretical maximum. Our measurements therefore support the notion that 0.4 (the 'old' default value) is a realistic value of C(D,par) for small passerines.

  14. Simultaneous biologging of heart rate and acceleration, and their relationships with energy expenditure in free-swimming sockeye salmon (Oncorhynchus nerka).

    PubMed

    Clark, Timothy Darren; Sandblom, E; Hinch, S G; Patterson, D A; Frappell, P B; Farrell, A P

    2010-06-01

    Monitoring the physiological status and behaviour of free-swimming fishes remains a challenging task, although great promise stems from techniques such as biologging and biotelemetry. Here, implanted data loggers were used to simultaneously measure heart rate (f (H)), visceral temperature, and a derivation of acceleration in two groups of wild adult sockeye salmon (Oncorhynchus nerka) held at two different water speeds (slow and fast). Calibration experiments performed with individual fish in a swim tunnel respirometer generated strong relationships between acceleration, f (H), tail beat frequency and energy expenditure over a wide range of swimming velocities. The regression equations were then used to estimate the overall energy expenditure of the groups of fish held at different water speeds. As expected, fish held at faster water speeds exhibited greater f (H) and acceleration, and correspondingly a higher estimated energy expenditure than fish held at slower water speeds. These estimates were consistent with gross somatic energy density of fish at death, as determined using proximate analyses of a dorsal tissue sample. Heart rate alone and in combination with acceleration, rather than acceleration alone, provided the most accurate proxies for energy expenditure in these studies. Even so, acceleration provided useful information on the behaviour of fish and may itself prove to be a valuable proxy for energy expenditure under different environmental conditions, using a different derivation of the acceleration data, and/or with further calibration experiments. These results strengthen the possibility that biologging or biotelemetry of f (H) and acceleration may be usefully applied to migrating sockeye salmon to monitor physiology and behaviour, and to estimate energy use in the natural environment.

  15. Age-Related Imbalance Is Associated With Slower Walking Speed: An Analysis From the National Health and Nutrition Examination Survey.

    PubMed

    Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri

    Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P < .01). In the multivariable regression analysis, inability to perform the balance task was significantly associated with 0.06 m/s slower walking speed (95% confidence interval: -0.09 to -0.03; P < .01), an effect size equivalent to 12 years of age. The structural equation model estimated that age-related imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and motor functions.

  16. Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate

    NASA Astrophysics Data System (ADS)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-05-01

    Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1

  17. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Biswas, Sayak K.

    2018-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.

  18. Influence of Wind Speed on RGB-D Images in Tree Plantations

    PubMed Central

    Andújar, Dionisio; Dorado, José; Bengochea-Guevara, José María; Conesa-Muñoz, Jesús; Fernández-Quintanilla, César; Ribeiro, Ángela

    2017-01-01

    Weather conditions can affect sensors’ readings when sampling outdoors. Although sensors are usually set up covering a wide range of conditions, their operational range must be established. In recent years, depth cameras have been shown as a promising tool for plant phenotyping and other related uses. However, the use of these devices is still challenged by prevailing field conditions. Although the influence of lighting conditions on the performance of these cameras has already been established, the effect of wind is still unknown. This study establishes the associated errors when modeling some tree characteristics at different wind speeds. A system using a Kinect v2 sensor and a custom software was tested from null wind speed up to 10 m·s−1. Two tree species with contrasting architecture, poplars and plums, were used as model plants. The results showed different responses depending on tree species and wind speed. Estimations of Leaf Area (LA) and tree volume were generally more consistent at high wind speeds in plum trees. Poplars were particularly affected by wind speeds higher than 5 m·s−1. On the contrary, height measurements were more consistent for poplars than for plum trees. These results show that the use of depth cameras for tree characterization must take into consideration wind conditions in the field. In general, 5 m·s−1 (18 km·h−1) could be established as a conservative limit for good estimations. PMID:28430119

  19. Metabolic energy demand and optimal walking speed in post-polio subjects with lower limb afflictions.

    PubMed

    Ghosh, A K; Ganguli, S; Bose, K S

    1982-12-01

    The metabolic demand, using the relationship between speed and energy cost, and the optimal speed of walking, estimated by means of speed and energy cost per unit distance travelled, were studied in 16 post-polio subjects with lower limb affliction and 20 normal subjects with sedentary habits. It was observed that the post-polio subjects consumed higher energy than the normal persons at each walking speed between 0.28 and 1.26 m/s. The optimal speed of walking in post-polio subjects was lower than that of the normal persons and was associated with a higher energy demand per unit distance travelled. It was deduced that the post-polio subjects. not having used any assistive devices for a long time, have acquired severe degrees of disability which not only hindered their normal gait but also demanded extra energy from them.

  20. Estimation of Return Values of Wave Height: Consequences of Missing Observations

    ERIC Educational Resources Information Center

    Ryden, Jesper

    2008-01-01

    Extreme-value statistics is often used to estimate so-called return values (actually related to quantiles) for environmental quantities like wind speed or wave height. A basic method for estimation is the method of block maxima which consists in partitioning observations in blocks, where maxima from each block could be considered independent.…

  1. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Treesearch

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  2. Economy of flight at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    Prandtl's theory is used to determine the airflow over bodies and wings adapted to supersonic flight. By making use of these results, and by incorporating in them an allowance for the probable skin friction, some estimates of expected lift-drag ratios are made for various flight speeds with the best configuration. At each speed a slender body and wings having the best angle of sweepback are considered. For the range of supersonic speeds shown an airplane of normal density and loading would be required to operate at an altitude of the order of 60,000 feet. The limiting value of 1-1/2 times the speed of sound corresponds to a flight speed of 1000 miles per hour. At this speed about 1.5 miles per gallon of fuel are expected. It is interesting to note that this value corresponds to a value of more than 15 miles per gallon when the weight is reduced to correspond to that of an ordinary automobile.

  3. Visual processing speed in old age.

    PubMed

    Habekost, Thomas; Vogel, Asmus; Rostrup, Egill; Bundesen, Claus; Kyllingsbaek, Søren; Garde, Ellen; Ryberg, Charlotte; Waldemar, Gunhild

    2013-04-01

    Mental speed is a common concept in theories of cognitive aging, but it is difficult to get measures of the speed of a particular psychological process that are not confounded by the speed of other processes. We used Bundesen's (1990) Theory of Visual Attention (TVA) to obtain specific estimates of processing speed in the visual system controlled for the influence of response latency and individual variations of the perception threshold. A total of 33 non-demented old people (69-87 years) were tested for the ability to recognize briefly presented letters. Performance was analyzed by the TVA model. Visual processing speed decreased approximately linearly with age and was on average halved from 70 to 85 years. Less dramatic aging effects were found for the perception threshold and the visual apprehension span. In the visual domain, cognitive aging seems to be most clearly related to reductions in processing speed. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.

  4. As time passes by: Observed motion-speed and psychological time during video playback.

    PubMed

    Nyman, Thomas Jonathan; Karlsson, Eric Per Anders; Antfolk, Jan

    2017-01-01

    Research shows that psychological time (i.e., the subjective experience and assessment of the passage of time) is malleable and that the central nervous system re-calibrates temporal information in accordance with situational factors so that psychological time flows slower or faster. Observed motion-speed (e.g., the visual perception of a rolling ball) is an important situational factor which influences the production of time estimates. The present study examines previous findings showing that observed slow and fast motion-speed during video playback respectively results in over- and underproductions of intervals of time. Here, we investigated through three separate experiments: a) the main effect of observed motion-speed during video playback on a time production task and b) the interactive effect of the frame rate (frames per second; fps) and motion-speed during video playback on a time production task. No main effect of video playback-speed or interactive effect between video playback-speed and frame rate was found on time production.

  5. As time passes by: Observed motion-speed and psychological time during video playback

    PubMed Central

    Karlsson, Eric Per Anders; Antfolk, Jan

    2017-01-01

    Research shows that psychological time (i.e., the subjective experience and assessment of the passage of time) is malleable and that the central nervous system re-calibrates temporal information in accordance with situational factors so that psychological time flows slower or faster. Observed motion-speed (e.g., the visual perception of a rolling ball) is an important situational factor which influences the production of time estimates. The present study examines previous findings showing that observed slow and fast motion-speed during video playback respectively results in over- and underproductions of intervals of time. Here, we investigated through three separate experiments: a) the main effect of observed motion-speed during video playback on a time production task and b) the interactive effect of the frame rate (frames per second; fps) and motion-speed during video playback on a time production task. No main effect of video playback-speed or interactive effect between video playback-speed and frame rate was found on time production. PMID:28614353

  6. Image acquisition optimization of a limited-angle intrafraction verification (LIVE) system for lung radiotherapy.

    PubMed

    Zhang, Yawei; Deng, Xinchen; Yin, Fang-Fang; Ren, Lei

    2018-01-01

    Limited-angle intrafraction verification (LIVE) has been previously developed for four-dimensional (4D) intrafraction target verification either during arc delivery or between three-dimensional (3D)/IMRT beams. Preliminary studies showed that LIVE can accurately estimate the target volume using kV/MV projections acquired over orthogonal view 30° scan angles. Currently, the LIVE imaging acquisition requires slow gantry rotation and is not clinically optimized. The goal of this study is to optimize the image acquisition parameters of LIVE for different patient respiratory periods and gantry rotation speeds for the effective clinical implementation of the system. Limited-angle intrafraction verification imaging acquisition was optimized using a digital anthropomorphic phantom (XCAT) with simulated respiratory periods varying from 3 s to 6 s and gantry rotation speeds varying from 1°/s to 6°/s. LIVE scanning time was optimized by minimizing the number of respiratory cycles needed for the four-dimensional scan, and imaging dose was optimized by minimizing the number of kV and MV projections needed for four-dimensional estimation. The estimation accuracy was evaluated by calculating both the center-of-mass-shift (COMS) and three-dimensional volume-percentage-difference (VPD) between the tumor in estimated images and the ground truth images. The robustness of LIVE was evaluated with varied respiratory patterns, tumor sizes, and tumor locations in XCAT simulation. A dynamic thoracic phantom (CIRS) was used to further validate the optimized imaging schemes from XCAT study with changes of respiratory patterns, tumor sizes, and imaging scanning directions. Respiratory periods, gantry rotation speeds, number of respiratory cycles scanned and number of kV/MV projections acquired were all positively correlated with the estimation accuracy of LIVE. Faster gantry rotation speed or longer respiratory period allowed less respiratory cycles to be scanned and less kV/MV projections to be acquired to estimate the target volume accurately. Regarding the scanning time minimization, for patient respiratory periods of 3-4 s, gantry rotation speeds of 1°/s, 2°/s, 3-6°/s required scanning of five, four, and three respiratory cycles, respectively. For patient respiratory periods of 5-6 s, the corresponding respiratory cycles required in the scan changed to four, three, and two cycles, respectively. Regarding the imaging dose minimization, for patient respiratory periods of 3-4 s, gantry rotation speeds of 1°/s, 2-4°/s, 5-6°/s required acquiring of 7, 5, 4 kV and MV projections, respectively. For patient respiratory periods of 5-6 s, 5 kV and 5 MV projections are sufficient for all gantry rotation speeds. The optimized LIVE system was robust against breathing pattern, tumor size and tumor location changes. In the CIRS study, the optimized LIVE system achieved the average center-of-mass-shift (COMS)/volume-percentage-difference (VPD) of 0.3 ± 0.1 mm/7.7 ± 2.0% for the scanning time priority case, 0.2 ± 0.1 mm/6.1 ± 1.2% for the imaging dose priority case, respectively, among all gantry rotation speeds tested. LIVE was robust against different scanning directions investigated. The LIVE system has been preliminarily optimized for different patient respiratory periods and treatment gantry rotation speeds using digital and physical phantoms. The optimized imaging parameters, including number of respiratory cycles scanned and kV/MV projection numbers acquired, provide guidelines for optimizing the scanning time and imaging dose of the LIVE system for its future evaluations and clinical implementations through patient studies. © 2017 American Association of Physicists in Medicine.

  7. High-speed autofocusing of a cell using diffraction pattern

    NASA Astrophysics Data System (ADS)

    Oku, Hiromasa; Ishikawa, Masatoshi; Theodorus; Hashimoto, Koichi

    2006-05-01

    This paper proposes a new autofocusing method for observing cells under a transmission illumination. The focusing method uses a quick and simple focus estimation technique termed “depth from diffraction,” which is based on a diffraction pattern in a defocused image of a biological specimen. Since this method can estimate the focal position of the specimen from only a single defocused image, it can easily realize high-speed autofocusing. To demonstrate the method, it was applied to continuous focus tracking of a swimming paramecium, in combination with two-dimensional position tracking. Three-dimensional tracking of the paramecium for 70 s was successfully demonstrated.

  8. Striking Distance Determined From High-Speed Videos and Measured Currents in Negative Cloud-to-Ground Lightning

    NASA Astrophysics Data System (ADS)

    Visacro, Silverio; Guimaraes, Miguel; Murta Vale, Maria Helena

    2017-12-01

    First and subsequent return strokes' striking distances (SDs) were determined for negative cloud-to-ground flashes from high-speed videos exhibiting the development of positive and negative leaders and the pre-return stroke phase of currents measured along a short tower. In order to improve the results, a new criterion was used for the initiation and propagation of the sustained upward connecting leader, consisting of a 4 A continuous current threshold. An advanced approach developed from the combined use of this criterion and a reverse propagation procedure, which considers the calculated propagation speeds of the leaders, was applied and revealed that SDs determined solely from the first video frame showing the upward leader can be significantly underestimated. An original approach was proposed for a rough estimate of first strokes' SD using solely records of current. This approach combines the 4 A criterion and a representative composite three-dimensional propagation speed of 0.34 × 106 m/s for the leaders in the last 300 m propagated distance. SDs determined under this approach showed to be consistent with those of the advanced procedure. This approach was applied to determine the SD of 17 first return strokes of negative flashes measured at MCS, covering a wide peak-current range, from 18 to 153 kA. The estimated SDs exhibit very high dispersion and reveal great differences in relation to the SDs estimated for subsequent return strokes and strokes in triggered lightning.

  9. Crash cost estimates by maximum police-reported injury severity within selected crash geometrics

    DOT National Transportation Integrated Search

    2005-10-01

    This paper presents estimates for the economic (human capital) and comprehensive costs per crash for six KABCO groupings within 22 selected crash types and within two speed limit categories (=80 km/h (>= 50 mi/h)). The comp...

  10. Stride lengths, speed and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors

    PubMed Central

    Sellers, William I; Cain, Gemma M; Wang, Weijie; Crompton, Robin H

    2005-01-01

    This paper uses techniques from evolutionary robotics to predict the most energy-efficient upright walking gait for the early human relative Australopithecus afarensis, based on the proportions of the 3.2 million year old AL 288-1 ‘Lucy’ skeleton, and matches predictions against the nearly contemporaneous (3.5–3.6 million year old) Laetoli fossil footprint trails. The technique creates gaits de novo and uses genetic algorithm optimization to search for the most efficient patterns of simulated muscular contraction at a variety of speeds. The model was first verified by predicting gaits for living human subjects, and comparing costs, stride lengths and speeds to experimentally determined values for the same subjects. Subsequent simulations for A. afarensis yield estimates of the range of walking speeds from 0.6 to 1.3 m s−1 at a cost of 7.0 J kg−1 m−1 for the lowest speeds, falling to 5.8 J kg−1 m−1 at 1.0 m s−1, and rising to 6.2 J kg−1 m−1 at the maximum speed achieved. Speeds previously estimated for the makers of the Laetoli footprint trails (0.56 or 0.64 m s−1 for Trail 1, 0.72 or 0.75 m s−1 for Trail 2/3) may have been underestimated, substantially so for Trail 2/3, with true values in excess of 0.7 and 1.0 m s−1, respectively. The predictions conflict with suggestions that A. afarensis used a ‘shuffling’ gait, indicating rather that the species was a fully competent biped. PMID:16849203

  11. The Relationship between Power Generated by Thrust and Power to Overcome Drag in Elite Short Distance Swimmers.

    PubMed

    Gatta, Giorgio; Cortesi, Matteo; Zamparo, Paola

    At constant average speed (v), a balance between thrust force (Ft) and drag force (Fd) should occur: Ft-Fd = 0; hence the power generated by thrust forces (Pt = Ft·v) should be equal to the power needed to overcome drag forces at that speed (Pd = Fd·v); the aim of this study was to measure Pt (tethered swims), to estimate Pd in active conditions (at sprint speed) and to compare these values. 10 front crawl male elite swimmers (expertise: 93.1 ± 2.4% of 50 m world record) participated to the study; their sprint speed was measured during a 30 m maximal trial. Ft was assessed during a 15 s tethered effort; passive towing measurement were performed to determine speed specific drag in passive conditions (kP = passive drag force/v2); drag force in active conditions (Fd = kA·v2) was calculated assuming that kA = 1.5·kP. Average sprint speed was 2.20 ± 0.07 m·s-1; kA, at this speed, was 37.2 ± 2.7 N·s2·m-2. No significant differences (paired t-test: p > 0.8) were observed between Pt (399 ± 56 W) and Pd (400 ± 57 W) and a strong correlation (R = 0.95, p < 0.001) was observed between these two parameters. The Bland-Altman plot indicated a good agreement and a small, acceptable, error (bias: -0.89 W, limits of agreement: -25.5 and 23.7 W). Power thrust experiments can thus be suggested as a valid tool for estimating a swimmer's power propulsion.

  12. A fast estimator for the bispectrum and beyond - a practical method for measuring non-Gaussianity in 21-cm maps

    NASA Astrophysics Data System (ADS)

    Watkinson, Catherine A.; Majumdar, Suman; Pritchard, Jonathan R.; Mondal, Rajesh

    2017-12-01

    In this paper, we establish the accuracy and robustness of a fast estimator for the bispectrum - the 'FFT-bispectrum estimator'. The implementation of the estimator presented here offers speed and simplicity benefits over a direct-measurement approach. We also generalize the derivation so it may be easily be applied to any order polyspectra, such as the trispectrum, with the cost of only a handful of Fast-Fourier Transforms (FFTs). All lower order statistics can also be calculated simultaneously for little extra cost. To test the estimator, we make use of a non-linear density field, and for a more strongly non-Gaussian test case, we use a toy-model of reionization in which ionized bubbles at a given redshift are all of equal size and are randomly distributed. Our tests find that the FFT-estimator remains accurate over a wide range of k, and so should be extremely useful for analysis of 21-cm observations. The speed of the FFT-bispectrum estimator makes it suitable for sampling applications, such as Bayesian inference. The algorithm we describe should prove valuable in the analysis of simulations and observations, and whilst, we apply it within the field of cosmology, this estimator is useful in any field that deals with non-Gaussian data.

  13. Estimating the path-average rainwater content and updraft speed along a microwave link

    NASA Technical Reports Server (NTRS)

    Jameson, Arthur R.

    1993-01-01

    There is a scarcity of methods for accurately estimating the mass of rainwater rather than its flux. A recently proposed technique uses the difference between the observed rates of attenuation A with increasing distance at 38 and 25 GHz, A(38-25), to estimate the rainwater content W. Unfortunately, this approach is still somewhat sensitive to the form of the drop-size distribution. An alternative proposed here uses the ratio A38/A25 to estimate the mass-weighted average raindrop size Dm. Rainwater content is then estimated from measurements of polarization propagation differential phase shift (Phi-DP) divided by (1-R), where R is the mass-weighted mean axis ratio of the raindrops computed from Dm. This paper investigates these two water-content estimators using results from a numerical simulation of observations along a microwave link. From these calculations, it appears that the combination (R, Phi-DP) produces more accurate estimates of W than does A38-25. In addition, by combining microwave estimates of W and the rate of rainfall in still air with the mass-weighted mean terminal fall speed derived using A38/A25, it is possible to detect the potential influence of vertical air motion on the raingage-microwave rainfall comparisons.

  14. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  15. Effect of forward speed on the roll damping of three small fishing vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddara, M.R.; Zhang, S.

    1994-05-01

    An extensive experimental program has been carried out to estimate roll damping parameters for three models of fishing vessels having different hull shapes and moving with forward speed. Roll damping parameters are determined using a novel method. This method combines the energy method and the modulating function method. The effect of forward speed, initial heel angle and the natural frequency on damping is discussed. A modification of Ikeda's formula for lift damping prediction is suggested. The modified formula produces results which are in good agreement with the experiments.

  16. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  17. Ten-Year Climatology of Summertime Diurnal Rainfall Rate Over the Conterminous U.S.

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Mocko, David; Lee, Myong-In; Tao, Wei-Kuo; Suarez, Max J.; Pielke, Roger A., Sr.

    2010-01-01

    Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Zonal phase speeds of rainfall in three different small domains are estimated, and rainfall propagation speeds are compared with background zonal wind speeds. Unique rainfall propagation speeds in three different regions can be explained by the evolution of latent-heat theory linked to the convective available potential energy, than by gust-front induced or gravity wave propagation mechanisms.

  18. Validity of Treadmill-Derived Critical Speed on Predicting 5000-Meter Track-Running Performance.

    PubMed

    Nimmerichter, Alfred; Novak, Nina; Triska, Christoph; Prinz, Bernhard; Breese, Brynmor C

    2017-03-01

    Nimmerichter, A, Novak, N, Triska, C, Prinz, B, and Breese, BC. Validity of treadmill-derived critical speed on predicting 5,000-meter track-running performance. J Strength Cond Res 31(3): 706-714, 2017-To evaluate 3 models of critical speed (CS) for the prediction of 5,000-m running performance, 16 trained athletes completed an incremental test on a treadmill to determine maximal aerobic speed (MAS) and 3 randomly ordered runs to exhaustion at the [INCREMENT]70% intensity, at 110% and 98% of MAS. Critical speed and the distance covered above CS (D') were calculated using the hyperbolic speed-time (HYP), the linear distance-time (LIN), and the linear speed inverse-time model (INV). Five thousand meter performance was determined on a 400-m running track. Individual predictions of 5,000-m running time (t = [5,000-D']/CS) and speed (s = D'/t + CS) were calculated across the 3 models in addition to multiple regression analyses. Prediction accuracy was assessed with the standard error of estimate (SEE) from linear regression analysis and the mean difference expressed in units of measurement and coefficient of variation (%). Five thousand meter running performance (speed: 4.29 ± 0.39 m·s; time: 1,176 ± 117 seconds) was significantly better than the predictions from all 3 models (p < 0.0001). The mean difference was 65-105 seconds (5.7-9.4%) for time and -0.22 to -0.34 m·s (-5.0 to -7.5%) for speed. Predictions from multiple regression analyses with CS and D' as predictor variables were not significantly different from actual running performance (-1.0 to 1.1%). The SEE across all models and predictions was approximately 65 seconds or 0.20 m·s and is therefore considered as moderate. The results of this study have shown the importance of aerobic and anaerobic energy system contribution to predict 5,000-m running performance. Using estimates of CS and D' is valuable for predicting performance over race distances of 5,000 m.

  19. European shags optimize their flight behavior according to wind conditions.

    PubMed

    Kogure, Yukihisa; Sato, Katsufumi; Watanuki, Yutaka; Wanless, Sarah; Daunt, Francis

    2016-02-01

    Aerodynamics results in two characteristic speeds of flying birds: the minimum power speed and the maximum range speed. The minimum power speed requires the lowest rate of energy expenditure per unit time to stay airborne and the maximum range speed maximizes air distance traveled per unit of energy consumed. Therefore, if birds aim to minimize the cost of transport under a range of wind conditions, they are predicted to fly at the maximum range speed. Furthermore, take-off is predicted to be strongly affected by wind speed and direction. To investigate the effect of wind conditions on take-off and cruising flight behavior, we equipped 14 European shags Phalacrocorax aristotelis with a back-mounted GPS logger to measure position and hence ground speed, and a neck-mounted accelerometer to record wing beat frequency and strength. Local wind conditions were recorded during the deployment period. Shags always took off into the wind regardless of their intended destination and take-off duration was correlated negatively with wind speed. We combined ground speed and direction during the cruising phase with wind speed and direction to estimate air speed and direction. Whilst ground speed was highly variable, air speed was comparatively stable, although it increased significantly during strong head winds, because of stronger wing beats. The increased air speeds in head winds suggest that birds fly at the maximum range speed, not at the minimum power speed. Our study demonstrates that European shags actively adjust their flight behavior to utilize wind power to minimize the costs of take-off and cruising flight. © 2016. Published by The Company of Biologists Ltd.

  20. 500  Gb/s free-space optical transmission over strong atmospheric turbulence channels.

    PubMed

    Qu, Zhen; Djordjevic, Ivan B

    2016-07-15

    We experimentally demonstrate a high-spectral-efficiency, large-capacity, featured free-space-optical (FSO) transmission system by using low-density, parity-check (LDPC) coded quadrature phase shift keying (QPSK) combined with orbital angular momentum (OAM) multiplexing. The strong atmospheric turbulence channel is emulated by two spatial light modulators on which four randomly generated azimuthal phase patterns yielding the Andrews spectrum are recorded. The validity of such an approach is verified by reproducing the intensity distribution and irradiance correlation function (ICF) from the full-scale simulator. Excellent agreement of experimental, numerical, and analytical results is found. To reduce the phase distortion induced by the turbulence emulator, the inexpensive wavefront sensorless adaptive optics (AO) is used. To deal with remaining channel impairments, a large-girth LDPC code is used. To further improve the aggregate data rate, the OAM multiplexing is combined with WDM, and 500 Gb/s optical transmission over the strong atmospheric turbulence channels is demonstrated.

  1. Model for Sucker-Rod Pumping Unit Operating Modes Analysis Based on SimMechanics Library

    NASA Astrophysics Data System (ADS)

    Zyuzev, A. M.; Bubnov, M. V.

    2018-01-01

    The article provides basic information about the process of a sucker-rod pumping unit (SRPU) model developing by means of SimMechanics library in the MATLAB Simulink environment. The model is designed for the development of a pump productivity optimal management algorithms, sensorless diagnostics of the plunger pump and pumpjack, acquisition of the dynamometer card and determination of a dynamic fluid level in the well, normalization of the faulty unit operation before troubleshooting is performed by staff as well as equilibrium ratio determining by energy indicators and outputting of manual balancing recommendations to achieve optimal power consumption efficiency. Particular attention is given to the application of various blocks from SimMechanics library to take into account the pumpjack construction principal characteristic and to obtain an adequate model. The article explains in depth the developed tools features for collecting and analysis of simulated mechanism data. The conclusions were drawn about practical implementation possibility of the SRPU modelling results and areas for further development of investigation.

  2. 78 FR 73726 - Endangered Fish and Wildlife; Final Rule To Remove the Sunset Provision of the Final Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... expanded speed/risk models, one study estimated that the 2008 vessel speed rule reduced the risk of lethal... are completely absent there or that the risk of strikes does not exist. One recent study concluded... the world's most critically endangered large whale species and one of the world's most endangered...

  3. Measure the Earth's Radius and the Speed of Light with Simple and Inexpensive Computer-Based Experiments

    ERIC Educational Resources Information Center

    Martin, Michael J.

    2004-01-01

    With new and inexpensive computer-based methods, measuring the speed of light and the Earth's radius--historically difficult endeavors--can be simple enough to be tackled by high school and college students working in labs that have limited budgets. In this article, the author describes two methods of estimating the Earth's radius using two…

  4. Analysis of javelin throwing by high-speed photography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshitaka; Matsuoka, Rutsu; Ishida, Yoshihisa; Seki, Kazuichi

    1999-06-01

    A xenon multiple exposure light source device was manufactured to record the trajectory of a flying javelin, and a wind tunnel experiment was performed with some javelin models to analyze the flying characteristics of the javelin. Furthermore, form of javelin throwing by athletes was recorded to estimate the characteristics in the form of each athlete using a high speed cameras.

  5. Effective ion speeds at ˜200-250 km from comet 67P/Churyumov-Gerasimenko near perihelion

    NASA Astrophysics Data System (ADS)

    Vigren, E.; André, M.; Edberg, N. J. T.; Engelhardt, I. A. D.; Eriksson, A. I.; Galand, M.; Goetz, C.; Henri, P.; Heritier, K.; Johansson, F. L.; Nilsson, H.; Odelstad, E.; Rubin, M.; Stenberg-Wieser, G.; Tzou, C.-Y.; Vallières, X.

    2017-07-01

    In 2015 August, comet 67P/Churyumov-Gerasimenko, the target comet of the ESA Rosetta mission, reached its perihelion at ˜1.24 au. Here, we estimate for a three-day period near perihelion, effective ion speeds at distances ˜200-250 km from the nucleus. We utilize two different methods combining measurements from the Rosetta Plasma Consortium (RPC)/Mutual Impedance Probe with measurements either from the RPC/Langmuir Probe or from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Comet Pressure Sensor (COPS) (the latter method can only be applied to estimate the effective ion drift speed). The obtained ion speeds, typically in the range 2-8 km s-1, are markedly higher than the expected neutral outflow velocity of ˜1 km s-1. This indicates that the ions were de-coupled from the neutrals before reaching the spacecraft location and that they had undergone acceleration along electric fields, not necessarily limited to acceleration along ambipolar electric fields in the radial direction. For the limited time period studied, we see indications that at increasing distances from the nucleus, the fraction of the ions' kinetic energy associated with radial drift motion is decreasing.

  6. Ship collision risk assessment for the Singapore Strait.

    PubMed

    Qu, Xiaobo; Meng, Qiang; Suyi, Li

    2011-11-01

    The Singapore Strait is considered as the bottleneck and chokepoint of the shipping routes connecting the Indian and the Pacific Ocean. Therefore, the ship collision risk assessment is of significant importance for ships passing through the narrow, shallow, and busy waterway. In this paper, three ship collision risk indices are initially proposed to quantitatively assess the ship collision risks in the Strait: index of speed dispersion, degree of acceleration and deceleration, and number of fuzzy ship domain overlaps. These three risk indices for the Singapore Strait are estimated by using the real-time ship locations and sailing speeds provide by Lloyd's MIU automatic identification system (AIS). Based on estimation of these three risk indices, it can be concluded that Legs 4W, 5W, 11E, and 12E are the most risky legs in the Strait. Therefore, the ship collision risk reduction solutions should be prioritized being implemented in these four legs. This study also finds that around 25% of the vessels sail with a speed in excess of the speed limit, which results in higher potentials of ship collision. Analysis indicates that the safety level would be significantly improved if all the vessels follow the passage guidelines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. HEAVY DUTY DIESEL VEHICLE LOAD ESTIMATION: DEVELOPMENT OF VEHICLE ACTIVITY OPTIMIZATION ALGORITHM

    EPA Science Inventory

    The Heavy-Duty Vehicle Modal Emission Model (HDDV-MEM) developed by the Georgia Institute of Technology(Georgia Tech) has a capability to model link-specific second-by-second emissions using speed/accleration matrices. To estimate emissions, engine power demand calculated usin...

  8. Performances estimation of a rotary traveling wave ultrasonic motor based on two-dimension analytical model.

    PubMed

    Ming, Y; Peiwen, Q

    2001-03-01

    The understanding of ultrasonic motor performances as a function of input parameters, such as the voltage amplitude, driving frequency, the preload on the rotor, is a key to many applications and control of ultrasonic motor. This paper presents performances estimation of the piezoelectric rotary traveling wave ultrasonic motor as a function of input voltage amplitude and driving frequency and preload. The Love equation is used to derive the traveling wave amplitude on the stator surface. With the contact model of the distributed spring-rigid body between the stator and rotor, a two-dimension analytical model of the rotary traveling wave ultrasonic motor is constructed. Then the performances of stead rotation speed and stall torque are deduced. With MATLAB computational language and iteration algorithm, we estimate the performances of rotation speed and stall torque versus input parameters respectively. The same experiments are completed with the optoelectronic tachometer and stand weight. Both estimation and experiment results reveal the pattern of performance variation as a function of its input parameters.

  9. Precision Parameter Estimation and Machine Learning

    NASA Astrophysics Data System (ADS)

    Wandelt, Benjamin D.

    2008-12-01

    I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.

  10. Investigation of the Specht density estimator

    NASA Technical Reports Server (NTRS)

    Speed, F. M.; Rydl, L. M.

    1971-01-01

    The feasibility of using the Specht density estimator function on the IBM 360/44 computer is investigated. Factors such as storage, speed, amount of calculations, size of the smoothing parameter and sample size have an effect on the results. The reliability of the Specht estimator for normal and uniform distributions and the effects of the smoothing parameter and sample size are investigated.

  11. Sliding mode observers for automotive alternator

    NASA Astrophysics Data System (ADS)

    Chen, De-Shiou

    Estimator development for synchronous rectification of the automotive alternator is a desirable approach for estimating alternator's back electromotive forces (EMFs) without a direct mechanical sensor of the rotor position. Recent theoretical studies show that estimation of the back EMF may be observed based on system's phase current model by sensing electrical variables (AC phase currents and DC bus voltage) of the synchronous rectifier. Observer design of the back EMF estimation has been developed for constant engine speed. In this work, we are interested in nonlinear observer design of the back EMF estimation for the real case of variable engine speed. Initial back EMF estimate can be obtained from a first-order sliding mode observer (SMO) based on the phase current model. A fourth-order nonlinear asymptotic observer (NAO), complemented by the dynamics of the back EMF with time-varying frequency and amplitude, is then incorporated into the observer design for chattering reduction. Since the cost of required phase current sensors may be prohibitive, the most applicable approach in real implementation by measuring DC current of the synchronous rectifier is carried out in the dissertation. It is shown that the DC link current consists of sequential "windows" with partial information of the phase currents, hence, the cascaded NAO is responsible not only for the purpose of chattering reduction but also for necessarily accomplishing the process of estimation. Stability analyses of the proposed estimators are considered for most linear and time-varying cases. The stability of the NAO without speed information is substantiated by both numerical and experimental results. Prospective estimation algorithms for the case of battery current measurements are investigated. Theoretical study indicates that the convergence of the proposed LAO may be provided by high gain inputs. Since the order of the LAO/NAO for the battery current case is one order higher than that of the link current measurements, it is hard to find moderate values of the input gains for the real-time sampled-data systems. Technical difficulties in implementation of such high order discrete-time nonlinear estimators have been discussed. Directions of further investigations have been provided.

  12. Measuring global monopole velocities, one by one

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Eiguren, Asier; Urrestilla, Jon; Achúcarro, Ana, E-mail: asier.lopez@ehu.eus, E-mail: jon.urrestilla@ehu.eus, E-mail: achucar@lorentz.leidenuniv.nl

    We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scalingmore » solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics of the complicated dynamics of individual monopoles. Finally we use our large simulation volume to compare the results from the different estimator methods, as well as to asses the validity of the numerical approximations made.« less

  13. Accurate 3-D Profile Extraction of Skull Bone Using an Ultrasound Matrix Array.

    PubMed

    Hajian, Mehdi; Gaspar, Robert; Maev, Roman Gr

    2017-12-01

    The present study investigates the feasibility, accuracy, and precision of 3-D profile extraction of the human skull bone using a custom-designed ultrasound matrix transducer in Pulse-Echo. Due to the attenuative scattering properties of the skull, the backscattered echoes from the inner surface of the skull are severely degraded, attenuated, and at some points overlapped. Furthermore, the speed of sound (SOS) in the skull varies significantly in different zones and also from case to case; if considered constant, it introduces significant error to the profile measurement. A new method for simultaneous estimation of the skull profiles and the sound speed value is presented. The proposed method is a two-folded procedure: first, the arrival times of the backscattered echoes from the skull bone are estimated using multi-lag phase delay (MLPD) and modified space alternating generalized expectation maximization (SAGE) algorithms. Next, these arrival times are fed into an adaptive sound speed estimation algorithm to compute the optimal SOS value and subsequently, the skull bone thickness. For quantitative evaluation, the estimated bone phantom thicknesses were compared with the mechanical measurements. The accuracies of the bone thickness measurements using MLPD and modified SAGE algorithms combined with the adaptive SOS estimation were 7.93% and 4.21%, respectively. These values were 14.44% and 10.75% for the autocorrelation and cross-correlation methods. Additionally, the Bland-Altman plots showed the modified SAGE outperformed the other methods with -0.35 and 0.44 mm limits of agreement. No systematic error that could be related to the skull bone thickness was observed for this method.

  14. Traffic speed data imputation method based on tensor completion.

    PubMed

    Ran, Bin; Tan, Huachun; Feng, Jianshuai; Liu, Ying; Wang, Wuhong

    2015-01-01

    Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches.

  15. Traffic Speed Data Imputation Method Based on Tensor Completion

    PubMed Central

    Ran, Bin; Feng, Jianshuai; Liu, Ying; Wang, Wuhong

    2015-01-01

    Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches. PMID:25866501

  16. Community-LINE Source Model (C-LINE) to estimate roadway emissions

    EPA Pesticide Factsheets

    C-LINE is a web-based model that estimates emissions and dispersion of toxic air pollutants for roadways in the U.S. This reduced-form air quality model examines what-if scenarios for changes in emissions such as traffic volume fleet mix and vehicle speed.

  17. Fast and unbiased estimator of the time-dependent Hurst exponent.

    PubMed

    Pianese, Augusto; Bianchi, Sergio; Palazzo, Anna Maria

    2018-03-01

    We combine two existing estimators of the local Hurst exponent to improve both the goodness of fit and the computational speed of the algorithm. An application with simulated time series is implemented, and a Monte Carlo simulation is performed to provide evidence of the improvement.

  18. Fast and unbiased estimator of the time-dependent Hurst exponent

    NASA Astrophysics Data System (ADS)

    Pianese, Augusto; Bianchi, Sergio; Palazzo, Anna Maria

    2018-03-01

    We combine two existing estimators of the local Hurst exponent to improve both the goodness of fit and the computational speed of the algorithm. An application with simulated time series is implemented, and a Monte Carlo simulation is performed to provide evidence of the improvement.

  19. PROBABILISTIC HAZARD ASSESSMENT FOR TORNADOES, STRAIGHT-LINE WIND, AND EXTREME PRECIPITATION AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werth, D.; NOEMAIL), A.; Shine, G.

    Recent data sets for three meteorological phenomena with the potential to inflict damage on SRS facilities - tornadoes, straight winds, and heavy precipitation - are analyzed using appropriate statistical techniques to estimate occurrence probabilities for these events in the future. Summaries of the results for DOE-mandated return periods and comparisons to similar calculations performed in 1998 by Weber, et al., are given. Using tornado statistics for the states of Georgia and South Carolina, we calculated the probability per year of any location within a 2⁰ square area surrounding SRS being struck by a tornado (the ‘strike’ probability) and the probabilitymore » that any point will experience winds above set thresholds. The strike probability was calculated to be 1.15E-3 (1 chance in 870) per year and wind speeds for DOE mandated return periods of 50,000 years, 125,000 years, and 1E+7 years (USDOE, 2012) were estimated to be 136 mph, 151 mph and 221 mph, respectively. In 1998 the strike probability for SRS was estimated to be 3.53 E-4 and the return period wind speeds were 148 mph every 50,000 years and 180 mph every 125,000 years. A 1E+7 year tornado wind speed was not calculated in 1998; however a 3E+6 year wind speed was 260 mph. The lower wind speeds resulting from this most recent analysis are largely due to new data since 1998, and to a lesser degree differences in the models used. By contrast, default tornado wind speeds taken from ANSI/ANS-2.3-2011 are somewhat higher: 161 mph for return periods of 50,000 years, 173 mph every 125,000 years, and 230 mph every 1E+7 years (ANS, 2011). Although the ANS model and the SRS models are very similar, the region defined in ANS 2.3 that encompasses the SRS also includes areas of the Great Plains and lower Midwest, regions with much higher occurrence frequencies of strong tornadoes. The SRS straight wind values associated with various return periods were calculated by fitting existing wind data to a Gumbel distribution, and extrapolating the values for any return period from the tail of that function. For the DOE mandated return periods, we expect straight winds of 123 mph every 2500 years, and 132mph every 6250 years at any point within the SRS. These values are similar to those from the W98 report (which also used the Gumbel distribution for wind speeds) which gave wind speeds of 115mph and 122 mph for return periods of 2500 years and 6250 years, respectively. For extreme precipitation accumulation periods, we compared the fits of three different theoretical extreme-value distributions, and in the end decided to maintain the use of the Gumbel distribution for each period. The DOE mandated 6-hr accumulated rainfall for return periods of 2500 years and 6250 years was estimated as 7.8 inches and 8.4 inches, respectively. For the 24- hr rainfall return periods of 10,000 years and 25,000 years, total rainfall estimates were 10.4 inches and 11.1 inches, respectively. These values are substantially lower than comparable values provided in the W98 report. This is largely a consequence of the W98 use of a different extreme value distribution with its corresponding higher extreme probabilities.« less

  20. Computer considerations for real time simulation of a generalized rotor model

    NASA Technical Reports Server (NTRS)

    Howe, R. M.; Fogarty, L. E.

    1977-01-01

    Scaled equations were developed to meet requirements for real time computer simulation of the rotor system research aircraft. These equations form the basis for consideration of both digital and hybrid mechanization for real time simulation. For all digital simulation estimates of the required speed in terms of equivalent operations per second are developed based on the complexity of the equations and the required intergration frame rates. For both conventional hybrid simulation and hybrid simulation using time-shared analog elements the amount of required equipment is estimated along with a consideration of the dynamic errors. Conventional hybrid mechanization using analog simulation of those rotor equations which involve rotor-spin frequencies (this consititutes the bulk of the equations) requires too much analog equipment. Hybrid simulation using time-sharing techniques for the analog elements appears possible with a reasonable amount of analog equipment. All-digital simulation with affordable general-purpose computers is not possible because of speed limitations, but specially configured digital computers do have the required speed and consitute the recommended approach.

Top