Sample records for sensory neurons-based biosensors

  1. Detection of 5-hydroxytryptamine (5-HT) in vitro using a hippocampal neuronal network-based biosensor with extracellular potential analysis of neurons.

    PubMed

    Hu, Liang; Wang, Qin; Qin, Zhen; Su, Kaiqi; Huang, Liquan; Hu, Ning; Wang, Ping

    2015-04-15

    5-hydroxytryptamine (5-HT) is an important neurotransmitter in regulating emotions and related behaviors in mammals. To detect and monitor the 5-HT, effective and convenient methods are demanded in investigation of neuronal network. In this study, hippocampal neuronal networks (HNNs) endogenously expressing 5-HT receptors were employed as sensing elements to build an in vitro neuronal network-based biosensor. The electrophysiological characteristics were analyzed in both neuron and network levels. The firing rates and amplitudes were derived from signal to determine the biosensor response characteristics. The experimental results demonstrate a dose-dependent inhibitory effect of 5-HT on hippocampal neuron activities, indicating the effectiveness of this hybrid biosensor in detecting 5-HT with a response range from 0.01μmol/L to 10μmol/L. In addition, the cross-correlation analysis of HNNs activities suggests 5-HT could weaken HNN connectivity reversibly, providing more specificity of this biosensor in detecting 5-HT. Moreover, 5-HT induced spatiotemporal firing pattern alterations could be monitored in neuron and network levels simultaneously by this hybrid biosensor in a convenient and direct way. With those merits, this neuronal network-based biosensor will be promising to be a valuable and utility platform for the study of neurotransmitter in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Cultured neuronal networks as environmental biosensors.

    PubMed

    O'Shaughnessy, Thomas J; Gray, Samuel A; Pancrazio, Joseph J

    2004-01-01

    Contamination of water by toxins, either intentionally or unintentionally, is a growing concern for both military and civilian agencies and thus there is a need for systems capable of monitoring a wide range of natural and industrial toxicants. The EILATox-Oregon Workshop held in September 2002 provided an opportunity to test the capabilities of a prototype neuronal network-based biosensor with unknown contaminants in water samples. The biosensor is a portable device capable of recording the action potential activity from a network of mammalian neurons grown on glass microelectrode arrays. Changes in the action potential fi ring rate across the network are monitored to determine exposure to toxicants. A series of three neuronal networks derived from mice was used to test seven unknown samples. Two of these unknowns later were revealed to be blanks, to which the neuronal networks did not respond. Of the five remaining unknowns, a significant change in network activity was detected for four of the compounds at concentrations below a lethal level for humans: mercuric chloride, sodium arsenite, phosdrin and chlordimeform. These compounds--two heavy metals, an organophosphate and an insecticide--demonstrate the breadth of detection possible with neuronal networks. The results generated at the workshop show the promise of the neuronal network biosensor as an environmental detector but there is still considerable effort needed to produce a device suitable for routine environmental threat monitoring.

  3. Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications

    PubMed Central

    Shen, Yi; Lai, Tiffany; Campbell, Robert E.

    2015-01-01

    Abstract. The inherent advantages of red-shifted fluorescent proteins and fluorescent protein-based biosensors for the study of signaling processes in neurons and other tissues have motivated the development of a plethora of new tools. Relative to green fluorescent proteins (GFPs) and other blue-shifted alternatives, red fluorescent proteins (RFPs) provide the inherent advantages of lower phototoxicity, lower autofluorescence, and deeper tissue penetration associated with longer wavelength excitation light. All other factors being the same, the multiple benefits of using RFPs make these tools seemingly ideal candidates for use in neurons and, ultimately, the brain. However, for many applications, the practical utility of RFPs still falls short of the preferred GFPs. We present an overview of RFPs and RFP-based biosensors, with an emphasis on their reported applications in neuroscience. PMID:26158012

  4. PhotoMEA: an opto-electronic biosensor for monitoring in vitro neuronal network activity.

    PubMed

    Ghezzi, Diego; Pedrocchi, Alessandra; Menegon, Andrea; Mantero, Sara; Valtorta, Flavia; Ferrigno, Giancarlo

    2007-02-01

    PhotoMEA is a biosensor useful for the analysis of an in vitro neuronal network, fully based on optical methods. Its function is based on the stimulation of neurons with caged glutamate and the recording of neuronal activity by Voltage-Sensitive fluorescent Dyes (VSD). The main advantage is that it will be possible to stimulate even at sub-single neuron level and to record with high resolution the activity of the entire network in the culture. A large-scale view of neuronal intercommunications offers a unique opportunity for testing the ability of drugs to affect neuronal properties as well as alterations in the behaviour of the entire network. The concept and a prototype for validation is described here in detail.

  5. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors.

    PubMed

    Castro, Liliana R V; Guiot, Elvire; Polito, Marina; Paupardin-Tritsch, Daniéle; Vincent, Pierre

    2014-02-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP-dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, pathfinding, efficacy of synaptic transmission, regulation of excitability, or long term changes. Genetically encoded optical biosensors for cAMP or PKA are considerably improving our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progress made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the sub-cellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus, and axon. Combining this imaging approach with pharmacology or genetic models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly emerge as a forefront tool to decipher the subtle mechanics of intracellular signaling. This will certainly help us to understand the mechanism of action of current drugs and foster the development of novel molecules for neuropsychiatric diseases. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    PubMed

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  7. P2X receptors, sensory neurons and pain.

    PubMed

    Bele, Tanja; Fabbretti, Elsa

    2015-01-01

    Pain represents a very large social and clinical problem since the current treatment provides insufficient pain relief. Plasticity of pain receptors together with sensitisation of sensory neurons, and the role of soluble mediators released from non-neuronal cells render difficult to understand the spatial and temporal scale of pain development, neuronal responses and disease progression. In pathological conditions, ATP is one of the most powerful mediators that activates P2X receptors that behave as sensitive ATP-detectors, such as neuronal P2X3 receptor subtypes and P2X4 and P2X7 receptors expressed on non-neuronal cells. Dissecting the molecular mechanisms occurring in sensory neurons and in accessory cells allows to design appropriate tissue- and cell- targeted approaches to treat chronic pain.

  8. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2010-06-11

    stabilizer valproic acid, regulates neurite outgrowth through JNK and the substrate paxillin in N1E - 115 neuroblastoma cells. Exp Cell Res, 313 (9): p...developed methods for directed dopaminergic differentiation using defined medium conditions – all towards the goal of accelerating neuronal... differentiation for biosensor development. Moreover, we have begun an exploration of fluorescence-based assays as a new direction for ‘sensor element’ development

  9. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    PubMed

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  10. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification.

    PubMed

    Kramer, Ina; Sigrist, Markus; de Nooij, Joriene C; Taniuchi, Ichiro; Jessell, Thomas M; Arber, Silvia

    2006-02-02

    Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification.

  11. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    PubMed

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

    PubMed

    Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande

    2015-01-01

    Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

  13. C. elegans multi-dendritic sensory neurons: morphology and function

    PubMed Central

    Albeg, Adi; Smith, Cody; Chatzigeorgiou, Marios; Feitelson, Dror G.; Hall, David H.; Schafer, William R.; Miller, David M.; Treinin, Millet

    2010-01-01

    PVD and FLP sensory neurons envelope the body of the C. elegans adult with a highly branched network of thin sensory processes. Both PVD and FLP neurons are mechanosensors. PVD is known to mediate the response to high threshold mechanical stimuli. Thus PVD and FLP neurons are similar in both morphology and function to mammalian nociceptors. To better understand the function of these neurons we generated strains lacking them. Behavioral analysis shows that PVD and FLP regulate movement under normal growth conditions, as animals lacking these neurons demonstrate higher dwelling behavior. In addition, PVD—whose thin branches project across the body-wall muscles—may have a role in proprioception, as ablation of PVD leads to defective posture. Moreover, movement-dependent calcium transients are seen in PVD, a response that requires MEC-10, a subunit of the mechanosensory DEG/ENaC channel that is also required for maintaining wild-type posture. Hence, PVD senses both noxious and innocuous signals to regulate C. elegans behavior, and thus combines the functions of multiple mammalian somatosensory neurons. Finally, strong mechanical stimulation leads to inhibition of egg-laying, and this response also depends on PVD and FLP neurons. Based on all these results we suggest that noxious signals perceived by PVD and FLP promote an escape behavior consisting of increased speed, reduced pauses and reversals, and inhibition of egg-laying. PMID:20971193

  14. Kv7.2 regulates the function of peripheral sensory neurons.

    PubMed

    King, Chih H; Lancaster, Eric; Salomon, Daniela; Peles, Elior; Scherer, Steven S

    2014-10-01

    The Kv7 (KCNQ) family of voltage-gated K(+) channels regulates cellular excitability. The functional role of Kv7.2 has been hampered by the lack of a viable Kcnq2-null animal model. In this study, we generated homozygous Kcnq2-null sensory neurons using the Cre-Lox system; in these mice, Kv7.2 expression is absent in the peripheral sensory neurons, whereas the expression of other molecular components of nodes (including Kv7.3), paranodes, and juxtaparanodes is not altered. The conditional Kcnq2-null animals exhibit normal motor performance but have increased thermal hyperalgesia and mechanical allodynia. Whole-cell patch recording technique demonstrates that Kcnq2-null sensory neurons have increased excitability and reduced spike frequency adaptation. Taken together, our results suggest that the loss of Kv7.2 activity increases the excitability of primary sensory neurons. © 2014 Wiley Periodicals, Inc.

  15. [The mirror neuron system in motor and sensory rehabilitation].

    PubMed

    Oouchida, Yutaka; Izumi, Shinichi

    2014-06-01

    The discovery of the mirror neuron system has dramatically changed the study of motor control in neuroscience. The mirror neuron system provides a conceptual framework covering the aspects of motor as well as sensory functions in motor control. Previous studies of motor control can be classified as studies of motor or sensory functions, and these two classes of studies appear to have advanced independently. In rehabilitation requiring motor learning, such as relearning movement after limb paresis, however, sensory information of feedback for motor output as well as motor command are essential. During rehabilitation from chronic pain, motor exercise is one of the most effective treatments for pain caused by dysfunction in the sensory system. In rehabilitation where total intervention unifying the motor and sensory aspects of motor control is important, learning through imitation, which is associated with the mirror neuron system can be effective and suitable. In this paper, we introduce the clinical applications of imitated movement in rehabilitation from motor impairment after brain damage and phantom limb pain after limb amputation.

  16. Sensory Neurons Arouse C. elegans Locomotion via Both Glutamate and Neuropeptide Release

    PubMed Central

    Chatzigeorgiou, Marios; Hu, Zhitao; Schafer, William R.; Kaplan, Joshua M.

    2015-01-01

    C. elegans undergoes periods of behavioral quiescence during larval molts (termed lethargus) and as adults. Little is known about the circuit mechanisms that establish these quiescent states. Lethargus and adult locomotion quiescence is dramatically reduced in mutants lacking the neuropeptide receptor NPR-1. Here, we show that the aroused locomotion of npr-1 mutants results from the exaggerated activity in multiple classes of sensory neurons, including nociceptive (ASH), touch sensitive (ALM and PLM), and stretch sensing (DVA) neurons. These sensory neurons accelerate locomotion via both neuropeptide and glutamate release. The relative contribution of these sensory neurons to arousal differs between larval molts and adults. Our results suggest that a broad network of sensory neurons dictates transitions between aroused and quiescent behavioral states. PMID:26154367

  17. O-GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance

    PubMed Central

    Su, Cathy

    2017-01-01

    O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo. Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons. SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo. This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood–brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a

  18. Zebrafish narrowminded suggests a genetic link between formation of neural crest and primary sensory neurons

    PubMed Central

    Bruk Artinger, Kristin; Chitnis, Ajay B.; Mercola, Mark; Driever, Wolfgang

    2014-01-01

    SUMMARY In the developing vertebrate nervous system, both neural crest and sensory neurons form at the boundary between non-neural ectoderm and the neural plate. From an in situ hybridization based expression analysis screen, we have identified a novel zebrafish mutation, narrowminded (nrd), which reduces the number of early neural crest cells and eliminates Rohon-Beard (RB) sensory neurons. Mosaic analysis has shown that the mutation acts cell autonomously suggesting that nrd is involved in either the reception or interpretation of signals at the lateral neural plate boundary. Characterization of the mutant phenotype indicates that nrd is required for a primary wave of neural crest cell formation during which progenitors generate both RB sensory neurons and neural crest cells. Moreover, the early deficit in neural crest cells in nrd homozygotes is compensated later in development. Thus, we propose that a later wave can compensate for the loss of early neural crest cells but, interestingly, not the RB sensory neurons. We discuss the implications of these findings for the possibility that RB sensory neurons and neural crest cells share a common evolutionary origin. PMID:10457007

  19. Epac activation sensitizes rat sensory neurons through activation of Ras.

    PubMed

    Shariati, Behzad; Thompson, Eric L; Nicol, Grant D; Vasko, Michael R

    2016-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2'-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Epac activation sensitizes rat sensory neurons via activation of Ras

    PubMed Central

    Shariati, Behzad; Thompson, Eric L.; Nicol, Grant D.; Vasko, Michael R.

    2015-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2′-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. PMID:26596174

  1. Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons.

    PubMed

    Yaeli, Steve; Meir, Ron

    2010-01-01

    Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.

  2. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals

    PubMed Central

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2013-01-01

    Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411

  3. Anti-Hu antibodies activate enteric and sensory neurons

    PubMed Central

    Li, Qin; Michel, Klaus; Annahazi, Anita; Demir, Ihsan E.; Ceyhan, Güralp O.; Zeller, Florian; Komorowski, Lars; Stöcker, Winfried; Beyak, Michael J.; Grundy, David; Farrugia, Gianrico; De Giorgio, Roberto; Schemann, Michael

    2016-01-01

    IgG of type 1 anti-neuronal nuclear antibody (ANNA-1, anti-Hu) specificity is a serological marker of paraneoplastic neurological autoimmunity (including enteric/autonomic) usually related to small-cell lung carcinoma. We show here that IgG isolated from such sera and also affinity-purified anti-HuD label enteric neurons and cause an immediate spike discharge in enteric and visceral sensory neurons. Both labelling and activation of enteric neurons was prevented by preincubation with the HuD antigen. Activation of enteric neurons was inhibited by the nicotinic receptor antagonists hexamethonium and dihydro-β-erythroidine and reduced by the P2X antagonist pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid (PPADS) but not by the 5-HT3 antagonist tropisetron or the N-type Ca-channel blocker ω-Conotoxin GVIA. Ca++ imaging experiments confirmed activation of enteric neurons but not enteric glia. These findings demonstrate a direct excitatory action of ANNA-1, in particular anti-HuD, on visceral sensory and enteric neurons, which involves nicotinic and P2X receptors. The results provide evidence for a novel link between nerve activation and symptom generation in patients with antibody-mediated gut dysfunction. PMID:27905561

  4. Slack channels expressed in sensory neurons control neuropathic pain in mice.

    PubMed

    Lu, Ruirui; Bausch, Anne E; Kallenborn-Gerhardt, Wiebke; Stoetzer, Carsten; Debruin, Natasja; Ruth, Peter; Geisslinger, Gerd; Leffler, Andreas; Lukowski, Robert; Schmidtko, Achim

    2015-01-21

    Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain. Copyright © 2015 the authors 0270-6474/15/351125-11$15.00/0.

  5. Identification of Linear and Nonlinear Sensory Processing Circuits from Spiking Neuron Data.

    PubMed

    Florescu, Dorian; Coca, Daniel

    2018-03-01

    Inferring mathematical models of sensory processing systems directly from input-output observations, while making the fewest assumptions about the model equations and the types of measurements available, is still a major issue in computational neuroscience. This letter introduces two new approaches for identifying sensory circuit models consisting of linear and nonlinear filters in series with spiking neuron models, based only on the sampled analog input to the filter and the recorded spike train output of the spiking neuron. For an ideal integrate-and-fire neuron model, the first algorithm can identify the spiking neuron parameters as well as the structure and parameters of an arbitrary nonlinear filter connected to it. The second algorithm can identify the parameters of the more general leaky integrate-and-fire spiking neuron model, as well as the parameters of an arbitrary linear filter connected to it. Numerical studies involving simulated and real experimental recordings are used to demonstrate the applicability and evaluate the performance of the proposed algorithms.

  6. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    PubMed Central

    Gunasekaran, Manojkumar; Chatterjee, Prodyot K.; Shih, Andrew; Imperato, Gavin H.; Addorisio, Meghan; Kumar, Gopal; Lee, Annette; Graf, John F.; Meyer, Dan; Marino, Michael; Puleo, Christopher; Ashe, Jeffrey; Cox, Maureen A.; Mak, Tak W.; Bouton, Chad; Sherry, Barbara; Diamond, Betty; Andersson, Ulf; Coleman, Thomas R.; Metz, Christine N.; Tracey, Kevin J.; Chavan, Sangeeta S.

    2018-01-01

    The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses. PMID:29755449

  7. Sensory integration: neuronal filters for polarized light patterns.

    PubMed

    Krapp, Holger G

    2014-09-22

    Animal and human behaviour relies on local sensory signals that are often ambiguous. A new study shows how tuning neuronal responses to celestial cues helps locust navigation, demonstrating a common principle of sensory information processing: the use of matched filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Regulation of Drosophila hematopoietic sites by Activin-β from active sensory neurons

    PubMed Central

    Makhijani, Kalpana; Alexander, Brandy; Rao, Deepti; Petraki, Sophia; Herboso, Leire; Kukar, Katelyn; Batool, Itrat; Wachner, Stephanie; Gold, Katrina S.; Wong, Corinna; O’Connor, Michael B.; Brückner, Katja

    2017-01-01

    An outstanding question in animal development, tissue homeostasis and disease is how cell populations adapt to sensory inputs. During Drosophila larval development, hematopoietic sites are in direct contact with sensory neuron clusters of the peripheral nervous system (PNS), and blood cells (hemocytes) require the PNS for their survival and recruitment to these microenvironments, known as Hematopoietic Pockets. Here we report that Activin-β, a TGF-β family ligand, is expressed by sensory neurons of the PNS and regulates the proliferation and adhesion of hemocytes. These hemocyte responses depend on PNS activity, as shown by agonist treatment and transient silencing of sensory neurons. Activin-β has a key role in this regulation, which is apparent from reporter expression and mutant analyses. This mechanism of local sensory neurons controlling blood cell adaptation invites evolutionary parallels with vertebrate hematopoietic progenitors and the independent myeloid system of tissue macrophages, whose regulation by local microenvironments remain undefined. PMID:28748922

  9. Cholinesterase-based biosensors.

    PubMed

    Štěpánková, Šárka; Vorčáková, Katarína

    2016-01-01

    Recently, cholinesterase-based biosensors are widely used for assaying anticholinergic compounds. Primarily biosensors based on enzyme inhibition are useful analytical tools for fast screening of inhibitors, such as organophosphates and carbamates. The present review is aimed at compilation of the most important facts about cholinesterase based biosensors, types of physico-chemical transduction, immobilization strategies and practical applications.

  10. Simultaneous measurement of cholinergic tone and neuronal network dynamics in vivo in the rat brain using a novel choline oxidase based electrochemical biosensor.

    PubMed

    Santos, Ricardo M; Laranjinha, João; Barbosa, Rui M; Sirota, Anton

    2015-07-15

    Acetylcholine (ACh) modulates neuronal network activities implicated in cognition, including theta and gamma oscillations but the mechanisms remain poorly understood. Joint measurements of cholinergic activity and neuronal network dynamics with high spatio-temporal resolution are critical to understand ACh neuromodulation. However, current electrochemical biosensors are not optimized to measure nanomolar cholinergic signals across small regions like hippocampal sub-layers. Here, we report a novel oxidase-based electrochemical biosensor that matches these constraints. The approach is based on measurement of H2O2 generated by choline oxidase (ChOx) in the presence of choline (Ch). The microelectrode design consists of a twisted pair of 50µm diameter Pt/Ir wires (sensor and sentinel), which is scalable, provides high spatial resolution and optimizes common mode rejection. Microelectrode coating with ChOx in chitosan cross-linked with benzoquinone is simple, mechanically robust and provides high sensitivity (324±46nAµM(-1)cm(-2)), a limit of detection of 16nM and a t50 response time of 1.4s. Local field potential (LFP)-related currents dominate high-frequency component of electrochemical recordings in vivo. We significantly improved signal-to-noise-ratio compared to traditional sentinel subtraction by a novel frequency domain common mode rejection procedure that accounts for differential phase and amplitude of LFP-related currents on the two channels. We demonstrate measurements of spontaneous nanomolar Ch fluctuations, on top of which micromolar Ch increases occurred during periods of theta activity in anesthetized rats. Measurements were not affected by physiological O2 changes, in agreement with the low biosensor Km for O2 (2.6µM). Design and performance of the novel biosensor opens the way for multisite recordings of spontaneous cholinergic dynamics in behaving animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain

    PubMed Central

    Berta, Temugin; Qadri, Yawar; Tan, Ping-Heng; Ji, Ru-Rong

    2018-01-01

    Introduction Currently the treatment of chronic pain is inadequate and compromised by debilitating central nervous system side effects. Here we discuss new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. Areas covered The DRGs contain the cell bodies of primary sensory neurons including nociceptive neurons. After painful injuries, primary sensory neurons demonstrate maladaptive molecular changes in DRG cell bodies and in their axons. These changes result in hypersensitivity and hyperexcitability of sensory neurons (peripheral sensitization) and are crucial for the onset and maintenance of chronic pain. We discuss the following new strategies to target DRGs and primary sensory neurons as a means of alleviating chronic pain and minimizing side effects: inhibition of sensory neuron-expressing ion channels such as TRPA1, TRPV1, and Nav1.7, selective blockade of C- and Aβ-afferent fibers, gene therapy, and implantation of bone marrow stem cells. Expert opinion These peripheral pharmacological treatments, as well as gene and cell therapies, aimed at DRG tissues and primary sensory neurons can offer better and safer treatments for inflammatory, neuropathic, cancer, and other chronic pain states. PMID:28480765

  12. Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury

    PubMed Central

    Szabo, Vivien; Végh, Attila-Gergely; Lucas, Olivier; Cloitre, Thierry; Scamps, Frédérique; Gergely, Csilla

    2013-01-01

    A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins. PMID:23418549

  13. Surface stress-based biosensors.

    PubMed

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Robo2 determines subtype-specific axonal projections of trigeminal sensory neurons

    PubMed Central

    Pan, Y. Albert; Choy, Margaret; Prober, David A.; Schier, Alexander F.

    2012-01-01

    How neurons connect to form functional circuits is central to the understanding of the development and function of the nervous system. In the somatosensory system, perception of sensory stimuli to the head requires specific connections between trigeminal sensory neurons and their many target areas in the central nervous system. Different trigeminal subtypes have specialized functions and downstream circuits, but it has remained unclear how subtype-specific axonal projection patterns are formed. Using zebrafish as a model system, we followed the development of two trigeminal sensory neuron subtypes: one that expresses trpa1b, a nociceptive channel important for sensing environmental chemicals; and a distinct subtype labeled by an islet1 reporter (Isl1SS). We found that Trpa1b and Isl1SS neurons have overall similar axon trajectories but different branching morphologies and distributions of presynaptic sites. Compared with Trpa1b neurons, Isl1SS neurons display reduced branch growth and synaptogenesis at the hindbrain-spinal cord junction. The subtype-specific morphogenesis of Isl1SS neurons depends on the guidance receptor Robo2. robo2 is preferentially expressed in the Isl1SS subset and inhibits branch growth and synaptogenesis. In the absence of Robo2, Isl1SS afferents acquire many of the characteristics of Trpa1b afferents. These results reveal that subtype-specific activity of Robo2 regulates subcircuit morphogenesis in the trigeminal sensory system. PMID:22190641

  15. Impact of the Sensory Neurons on Melanoma Growth In Vivo

    PubMed Central

    Tapias, Victor; Watkins, Simon C.; Ma, Yang; Shurin, Michael R.; Shurin, Galina V.

    2016-01-01

    Nerve endings are often identified within solid tumors, but their impact on the tumor growth and progression remains poorly understood. Emerging data suggests that the central nervous system may affect cancer development and spreading via the hypothalamic-pituitary-adrenal axis and autonomous nervous system. However, the role of the afferent sensory neurons in tumor growth is unclear, except some reports on perineural invasion in prostate and pancreatic cancer and cancer-related pain syndrome. Here, we provide the results of primary testing of the concept that the interaction between melanoma cells and sensory neurons may induce the formation of tumor-supporting microenvironment via attraction of immune regulatory cells by the tumor-activated dorsal root ganglion (DRG) neurons. We report that despite DRG cells not directly up-regulating proliferation of melanoma cells in vitro, presence of DRG neurons allows tumors to grow significantly faster in vivo. This effect has been associated with increased production of chemokines by tumor-activated DRG neurons and attraction of myeloid-derived suppressor cells both in vitro and in vivo. These initial proof-of-concept results justify further investigations of the sensory (afferent) nervous system in the context of tumorigenesis and the local protumorigenic immunoenvironment. PMID:27227315

  16. Dicer maintains the identity and function of proprioceptive sensory neurons

    PubMed Central

    O’Toole, Sean M.; Ferrer, Monica M.; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R.

    2017-01-01

    Neuronal cell identity is established during development and must be maintained throughout an animal’s life (Fishell G, Heintz N. Neuron 80: 602–612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899–907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359–373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension

  17. Dicer maintains the identity and function of proprioceptive sensory neurons.

    PubMed

    O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R; Nelson, Sacha B

    2017-03-01

    Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, micro

  18. Postnatal Experience Modulates Functional Properties of Mouse Olfactory Sensory Neurons

    PubMed Central

    He, Jiwei; Tian, Huikai; Lee, Anderson C.; Ma, Minghong

    2012-01-01

    Early experience considerably modulates the organization and function of all sensory systems. In the mammalian olfactory system, deprivation of the sensory inputs via neonatal, unilateral naris closure has been shown to induce structural, molecular, and functional changes from the olfactory epithelium to the olfactory bulb and cortex. However, it remains unknown how early experience shapes functional properties of individual olfactory sensory neurons (OSNs), the primary odor detectors in the nose. To address this question, we examined odorant response properties of mouse OSNs in both the closed and open nostril after four weeks of unilateral naris closure with age-matched untreated animals as control. Using patch-clamp technique on genetically-tagged OSNs with defined odorant receptors (ORs), we found that sensory deprivation increased the sensitivity of MOR23 neurons in the closed side while overexposure caused the opposite effect in the open side. We next analyzed the response properties including rise time, decay time, and adaptation induced by repeated stimulation in MOR23 and M71 neurons. Even though these two types of neurons showed distinct properties in dynamic range and response kinetics, sensory deprivation significantly slowed down the decay phase of odorant-induced transduction events in both types. Using western blotting and antibody staining, we confirmed upregulation of several signaling proteins in the closed side as compared with the open side. This study suggests that early experience modulates functional properties of OSNs, probably via modifying the signal transduction cascade. PMID:22703547

  19. Sensory Prioritization in Rats: Behavioral Performance and Neuronal Correlates.

    PubMed

    Lee, Conrad C Y; Diamond, Mathew E; Arabzadeh, Ehsan

    2016-03-16

    Operating with some finite quantity of processing resources, an animal would benefit from prioritizing the sensory modality expected to provide key information in a particular context. The present study investigated whether rats dedicate attentional resources to the sensory modality in which a near-threshold event is more likely to occur. We manipulated attention by controlling the likelihood with which a stimulus was presented from one of two modalities. In a whisker session, 80% of trials contained a brief vibration stimulus applied to whiskers and the remaining 20% of trials contained a brief change of luminance. These likelihoods were reversed in a visual session. When a stimulus was presented in the high-likelihood context, detection performance increased and was faster compared with the same stimulus presented in the low-likelihood context. Sensory prioritization was also reflected in neuronal activity in the vibrissal area of primary somatosensory cortex: single units responded differentially to the whisker vibration stimulus when presented with higher probability compared with lower probability. Neuronal activity in the vibrissal cortex displayed signatures of multiplicative gain control and enhanced response to vibration stimuli during the whisker session. In conclusion, rats allocate priority to the more likely stimulus modality and the primary sensory cortex may participate in the redistribution of resources. Detection of low-amplitude events is critical to survival; for example, to warn prey of predators. To formulate a response, decision-making systems must extract minute neuronal signals from the sensory modality that provides key information. Here, we identify the behavioral and neuronal correlates of sensory prioritization in rats. Rats were trained to detect whisker vibrations or visual flickers. Stimuli were embedded in two contexts in which either visual or whisker modality was more likely to occur. When a stimulus was presented in the high

  20. Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons

    PubMed Central

    Wang, Ying; D'Urso, Giulia

    2012-01-01

    Degenerin/epithelial Na+ channels (DEG/ENaCs) are voltage-independent Na+ or Na+/Ca2+ channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na+ transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We recently reported the characterization of a novel DEG/ENaC in Caenorhabditis elegans that we named ACD-1. ACD-1 is expressed in glial amphid sheath cells. The glial ACD-1, together with the neuronal DEG/ENaC DEG-1, is necessary for acid avoidance and attraction to lysine. We report presently that knockout of acd-1 in glia exacerbates sensory deficits caused by another mutant: the hypomorphic allele of the cGMP-gated channel subunit tax-2. Furthermore, sensory deficits caused by mutations in Gi protein odr-3 and guanylate cyclase daf-11, which regulate the activity of TAX-2/TAX-4 channels, are worsened by knockout of acd-1. We also show that sensory neurons of acd-1 tax-2(p694) double mutants fail to undergo changes in intracellular Ca2+ when animals are exposed to low concentrations of attractant. Finally, we show that exogenous expression of TRPV1 in sensory neurons and exposure to capsaicin rescue sensory deficits of acd-1 tax-2(p694) mutants, suggesting that sensory deficits of these mutants are bypassed by increasing neuronal excitability. Our data suggest a role of glial DEG/ENaC channel ACD-1 in supporting neuronal activity. PMID:21994266

  1. Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons.

    PubMed

    Wang, Ying; D'Urso, Giulia; Bianchi, Laura

    2012-01-01

    Degenerin/epithelial Na(+) channels (DEG/ENaCs) are voltage-independent Na(+) or Na(+)/Ca(2+) channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na(+) transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We recently reported the characterization of a novel DEG/ENaC in Caenorhabditis elegans that we named ACD-1. ACD-1 is expressed in glial amphid sheath cells. The glial ACD-1, together with the neuronal DEG/ENaC DEG-1, is necessary for acid avoidance and attraction to lysine. We report presently that knockout of acd-1 in glia exacerbates sensory deficits caused by another mutant: the hypomorphic allele of the cGMP-gated channel subunit tax-2. Furthermore, sensory deficits caused by mutations in G(i) protein odr-3 and guanylate cyclase daf-11, which regulate the activity of TAX-2/TAX-4 channels, are worsened by knockout of acd-1. We also show that sensory neurons of acd-1 tax-2(p694) double mutants fail to undergo changes in intracellular Ca(2+) when animals are exposed to low concentrations of attractant. Finally, we show that exogenous expression of TRPV1 in sensory neurons and exposure to capsaicin rescue sensory deficits of acd-1 tax-2(p694) mutants, suggesting that sensory deficits of these mutants are bypassed by increasing neuronal excitability. Our data suggest a role of glial DEG/ENaC channel ACD-1 in supporting neuronal activity.

  2. PROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans.

    PubMed

    Wallace, Sean W; Singhvi, Aakanksha; Liang, Yupu; Lu, Yun; Shaham, Shai

    2016-04-19

    Sensory neurons are an animal's gateway to the world, and their receptive endings, the sites of sensory signal transduction, are often associated with glia. Although glia are known to promote sensory-neuron functions, the molecular bases of these interactions are poorly explored. Here, we describe a post-developmental glial role for the PROS-1/Prospero/PROX1 homeodomain protein in sensory-neuron function in C. elegans. Using glia expression profiling, we demonstrate that, unlike previously characterized cell fate roles, PROS-1 functions post-embryonically to control sense-organ glia-specific secretome expression. PROS-1 functions cell autonomously to regulate glial secretion and membrane structure, and non-cell autonomously to control the shape and function of the receptive endings of sensory neurons. Known glial genes controlling sensory-neuron function are PROS-1 targets, and we identify additional PROS-1-dependent genes required for neuron attributes. Drosophila Prospero and vertebrate PROX1 are expressed in post-mitotic sense-organ glia and astrocytes, suggesting conserved roles for this class of transcription factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Reconstruction of Sensory Stimuli Encoded with Integrate-and-Fire Neurons with Random Thresholds

    PubMed Central

    Lazar, Aurel A.; Pnevmatikakis, Eftychios A.

    2013-01-01

    We present a general approach to the reconstruction of sensory stimuli encoded with leaky integrate-and-fire neurons with random thresholds. The stimuli are modeled as elements of a Reproducing Kernel Hilbert Space. The reconstruction is based on finding a stimulus that minimizes a regularized quadratic optimality criterion. We discuss in detail the reconstruction of sensory stimuli modeled as absolutely continuous functions as well as stimuli with absolutely continuous first-order derivatives. Reconstruction results are presented for stimuli encoded with single as well as a population of neurons. Examples are given that demonstrate the performance of the reconstruction algorithms as a function of threshold variability. PMID:24077610

  4. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

    PubMed

    Nagy, Vanja; Cole, Tiffany; Van Campenhout, Claude; Khoung, Thang M; Leung, Calvin; Vermeiren, Simon; Novatchkova, Maria; Wenzel, Daniel; Cikes, Domagoj; Polyansky, Anton A; Kozieradzki, Ivona; Meixner, Arabella; Bellefroid, Eric J; Neely, G Gregory; Penninger, Josef M

    2015-01-01

    PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.

  5. Peptidergic CGRPα primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold

    PubMed Central

    McCoy, Eric S.; Taylor-Blake, Bonnie; Street, Sarah E.; Pribisko, Alaine L.; Zheng, Jihong; Zylka, Mark J.

    2013-01-01

    SUMMARY Calcitonin gene-related peptide (CGRP) is a classic molecular marker of peptidergic primary somatosensory neurons. Despite years of research, it is unknown if these neurons are required to sense pain or other sensory stimuli. Here, we found that genetic ablation of CGRPα-expressing sensory neurons reduced sensitivity to noxious heat, capsaicin and itch (histamine and chloroquine) and impaired thermoregulation but did not impair mechanosensation or β-alanine itch—stimuli associated with nonpeptidergic sensory neurons. Unexpectedly, ablation enhanced behavioral responses to cold stimuli and cold mimetics without altering peripheral nerve responses to cooling. Mechanistically, ablation reduced tonic and evoked activity in postsynaptic spinal neurons associated with TRPV1/heat, while profoundly increasing tonic and evoked activity in spinal neurons associated with TRPM8/cold. Our data reveal that CGRPα sensory neurons encode heat and itch and tonically cross-inhibit cold-responsive spinal neurons. Disruption of this crosstalk unmasks cold hypersensitivity, with mechanistic implications for neuropathic pain and temperature perception. PMID:23523592

  6. Early postnatal ozone exposure alters rat nodose and jugular sensory neuron development

    PubMed Central

    Zellner, Leor C.; Brundage, Kathleen M.; Hunter, Dawn D.; Dey, Richard D.

    2011-01-01

    Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O3). Airway neurons can mediate airway inflammation through the release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O3 exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O3 exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O3 (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O3-exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O3 exposure significantly alters sensory neuron development. PMID:22140294

  7. Neto2 Assembles with Kainate Receptors in DRG Neurons during Development and Modulates Neurite Outgrowth in Adult Sensory Neurons

    PubMed Central

    Vernon, Claire G.

    2017-01-01

    Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG–dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2−/− neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG–dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and

  8. Behavioral aging is associated with reduced sensory neuron excitability in Aplysia californica.

    PubMed

    Kempsell, Andrew T; Fieber, Lynne A

    2014-01-01

    Invertebrate models have advantages for understanding the basis of behavioral aging due to their simple nervous systems and short lifespans. The potential usefulness of Aplysia californica in aging research is apparent from its long history of neurobiological research, but it has been underexploited in this model use. Aging of simple reflexes at both single sensory neuron and neural circuit levels was studied to connect behavioral aging to neurophysiological aging. The tail withdrawal reflex (TWR), righting reflex, and biting response were measured throughout sexual maturity in 3 cohorts of hatchery-reared animals of known age. Reflex times increased and reflex amplitudes decreased significantly during aging. Aging in sensory neurons of animals with deficits in measures of the TWR and biting response resulted in significantly reduced excitability in old animals compared to their younger siblings. The threshold for firing increased while the number of action potentials in response to depolarizing current injection decreased during aging in sensory neurons, but not in tail motoneurons. Glutamate receptor-activated responses in sensory neurons also decreased with aging. In old tail motoneurons, the amplitude of evoked EPSPs following tail shock decreased, presumably due to reduced sensory neuron excitability during aging. The results were used to develop stages of aging relevant to both hatchery-reared and wild-caught Aplysia. Aplysia is a viable aging model in which the contributions of differential aging of components of neural circuits may be assessed.

  9. Behavioral aging is associated with reduced sensory neuron excitability in Aplysia californica

    PubMed Central

    Kempsell, Andrew T.; Fieber, Lynne A.

    2014-01-01

    Invertebrate models have advantages for understanding the basis of behavioral aging due to their simple nervous systems and short lifespans. The potential usefulness of Aplysia californica in aging research is apparent from its long history of neurobiological research, but it has been underexploited in this model use. Aging of simple reflexes at both single sensory neuron and neural circuit levels was studied to connect behavioral aging to neurophysiological aging. The tail withdrawal reflex (TWR), righting reflex, and biting response were measured throughout sexual maturity in 3 cohorts of hatchery-reared animals of known age. Reflex times increased and reflex amplitudes decreased significantly during aging. Aging in sensory neurons of animals with deficits in measures of the TWR and biting response resulted in significantly reduced excitability in old animals compared to their younger siblings. The threshold for firing increased while the number of action potentials in response to depolarizing current injection decreased during aging in sensory neurons, but not in tail motoneurons. Glutamate receptor-activated responses in sensory neurons also decreased with aging. In old tail motoneurons, the amplitude of evoked EPSPs following tail shock decreased, presumably due to reduced sensory neuron excitability during aging. The results were used to develop stages of aging relevant to both hatchery-reared and wild-caught Aplysia. Aplysia is a viable aging model in which the contributions of differential aging of components of neural circuits may be assessed. PMID:24847260

  10. Modality distribution of sensory neurons in the feline caudate nucleus and the substantia nigra.

    PubMed

    Márkus, Zita; Eördegh, Gabriella; Paróczy, Zsuzsanna; Benedek, G; Nagy, A

    2008-09-01

    Despite extensive analysis of the motor functions of the basal ganglia and the fact that multisensory information processing appears critical for the execution of their behavioral action, little is known concerning the sensory functions of the caudate nucleus (CN) and the substantia nigra (SN). In the present study, we set out to describe the sensory modality distribution and to determine the proportions of multisensory units within the CN and the SN. The separate single sensory modality tests demonstrated that a majority of the neurons responded to only one modality, so that they seemed to be unimodal. In contrast with these findings, a large proportion of these neurons exhibited significant multisensory cross-modal interactions. Thus, these neurons should also be classified as multisensory. Our results suggest that a surprisingly high proportion of sensory neurons in the basal ganglia are multisensory, and demonstrate that an analysis without a consideration of multisensory cross-modal interactions may strongly underrepresent the number of multisensory units. We conclude that a majority of the sensory neurons in the CN and SN process multisensory information and only a minority of these units are clearly unimodal.

  11. TRPA1 is a major oxidant sensor in murine airway sensory neurons

    PubMed Central

    Bessac, Bret F.; Sivula, Michael; von Hehn, Christian A.; Escalera, Jasmine; Cohn, Lauren; Jordt, Sven-Eric

    2008-01-01

    Sensory neurons in the airways are finely tuned to respond to reactive chemicals threatening airway function and integrity. Nasal trigeminal nerve endings are particularly sensitive to oxidants formed in polluted air and during oxidative stress as well as to chlorine, which is frequently released in industrial and domestic accidents. Oxidant activation of airway neurons induces respiratory depression, nasal obstruction, sneezing, cough, and pain. While normally protective, chemosensory airway reflexes can provoke severe complications in patients affected by inflammatory airway conditions like rhinitis and asthma. Here, we showed that both hypochlorite, the oxidizing mediator of chlorine, and hydrogen peroxide, a reactive oxygen species, activated Ca2+ influx and membrane currents in an oxidant-sensitive subpopulation of chemosensory neurons. These responses were absent in neurons from mice lacking TRPA1, an ion channel of the transient receptor potential (TRP) gene family. TRPA1 channels were strongly activated by hypochlorite and hydrogen peroxide in primary sensory neurons and heterologous cells. In tests of respiratory function, Trpa1–/– mice displayed profound deficiencies in hypochlorite- and hydrogen peroxide–induced respiratory depression as well as decreased oxidant-induced pain behavior. Our results indicate that TRPA1 is an oxidant sensor in sensory neurons, initiating neuronal excitation and subsequent physiological responses in vitro and in vivo. PMID:18398506

  12. Sensory neurons that detect stretch and nutrients in the digestive system

    PubMed Central

    Williams, Erika K.; Chang, Rui B.; Strochlic, David E.; Umans, Benjamin D.; Lowell, Bradford B.; Liberles, Stephen D.

    2016-01-01

    SUMMARY Neural inputs from internal organs are essential for normal autonomic function. The vagus nerve is a key body-brain connection that monitors the digestive, cardiovascular, and respiratory systems. Within the gastrointestinal tract, vagal sensory neurons detect gut hormones and organ distension. Here, we investigate the molecular diversity of vagal sensory neurons and their roles in sensing gastrointestinal inputs. Genetic approaches allowed targeted investigation of gut-to-brain afferents involved in homeostatic responses to ingested nutrients (GPR65 neurons) and mechanical distension of the stomach and intestine (GLP1R neurons). Optogenetics, in vivo ganglion imaging, and genetically guided anatomical mapping provide direct links between neuron identity, peripheral anatomy, central anatomy, conduction velocity, response properties in vitro and in vivo, and physiological function. These studies clarify the roles of vagal afferents in mediating particular gut hormone responses. Moreover, genetic control over gut-to-brain neurons provides a molecular framework for understanding neural control of gastrointestinal physiology. PMID:27238020

  13. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons

    PubMed Central

    Maina, Flavio; Hilton, Mark C.; Ponzetto, Carola; Davies, Alun M.; Klein, Rüdiger

    1997-01-01

    The development of the nervous system is a dynamic process during which factors act in an instructive fashion to direct the differentiation and survival of neurons, and to induce axonal outgrowth, guidance to, and terminal branching within the target tissue. Here we report that mice expressing signaling mutants of the hepatocyte growth factor (HGF) receptor, the Met tyrosine kinase, show a striking reduction of sensory nerves innervating the skin of the limbs and thorax, implicating the HGF/Met system in sensory neuron development. Using in vitro assays, we find that HGF cooperates with nerve growth factor (NGF) to enhance axonal outgrowth from cultured dorsal root ganglion (DRG) neurons. HGF also enhances the neurotrophic activities of NGF in vitro, and Met receptor signaling is required for the survival of a proportion of DRG neurons in vivo. This synergism is specific for NGF but not for the related neurotrophins BDNF and NT3. By using a mild signaling mutant of Met, we have demonstrated previously that Met requires signaling via the adapter molecule Grb2 to induce proliferation of myoblasts. In contrast, the actions of HGF on sensory neurons are mediated by Met effectors distinct from Grb2. Our findings demonstrate a requirement for Met signaling in neurons during development. PMID:9407027

  14. Neto2 Assembles with Kainate Receptors in DRG Neurons during Development and Modulates Neurite Outgrowth in Adult Sensory Neurons.

    PubMed

    Vernon, Claire G; Swanson, Geoffrey T

    2017-03-22

    Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG-dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2 -/- neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG-dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and

  15. Redox and Nitric Oxide-Mediated Regulation of Sensory Neuron Ion Channel Function

    PubMed Central

    2015-01-01

    Abstract Significance: Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. Recent Advances: Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. Critical Issues: The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. Future Directions: Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics. Antioxid. Redox Signal. 22, 486–504. PMID:24735331

  16. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics

    PubMed Central

    Sousa-Valente, J; Andreou, A P; Urban, L; Nagy, I

    2014-01-01

    The last decade has witnessed an explosion in novel findings relating to the molecules involved in mediating the sensation of pain in humans. Transient receptor potential (TRP) ion channels emerged as the greatest group of molecules involved in the transduction of various physical stimuli into neuronal signals in primary sensory neurons, as well as, in the development of pain. Here, we review the role of TRP ion channels in primary sensory neurons in the development of pain associated with peripheral pathologies and possible strategies to translate preclinical data into the development of effective new analgesics. Based on available evidence, we argue that nociception-related TRP channels on primary sensory neurons provide highly valuable targets for the development of novel analgesics and that, in order to reduce possible undesirable side effects, novel analgesics should prevent the translocation from the cytoplasm to the cell membrane and the sensitization of the channels rather than blocking the channel pore or binding sites for exogenous or endogenous activators. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24283624

  17. The dusp1 Immediate Early Gene is Regulated by Natural Stimuli Predominantly in Sensory Input Neurons

    PubMed Central

    Horita, Haruhito; Wada, Kazuhiro; Rivas, Miriam V.; Hara, Erina; Jarvis, Erich D.

    2010-01-01

    Many immediate early genes (IEGs) have activity-dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic-recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen-activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic-recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor-associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic-recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus-induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. PMID:20506480

  18. Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.

    PubMed

    Usui, Noriyoshi; Watanabe, Keisuke; Ono, Katsuhiko; Tomita, Koichi; Tamamaki, Nobuaki; Ikenaka, Kazuhiro; Takebayashi, Hirohide

    2012-03-01

    Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.

  19. Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons.

    PubMed

    Tsujikawa, Motokazu; Malicki, Jarema

    2004-06-10

    Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells.

  20. Mathematical Relationships between Neuron Morphology and Neurite Growth Dynamics in Drosophila melanogaster Larva Class IV Sensory Neurons

    NASA Astrophysics Data System (ADS)

    Ganguly, Sujoy; Liang, Xin; Grace, Michael; Lee, Daniel; Howard, Jonathon

    The morphology of neurons is diverse and reflects the diversity of neuronal functions, yet the principles that govern neuronal morphogenesis are unclear. In an effort to better understand neuronal morphogenesis we will be focusing on the development of the dendrites of class IV sensory neuron in Drosophila melanogaster. In particular we attempt to determine how the the total length, and the number of branches of dendrites are mathematically related to the dynamics of neurite growth and branching. By imaging class IV neurons during early embryogenesis we are able to measure the change in neurite length l (t) as a function of time v (t) = dl / dt . We found that the distribution of v (t) is well characterized by a hyperbolic secant distribution, and that the addition of new branches per unit time is well described by a Poisson process. Combining these measurements with the assumption that branching occurs with equal probability anywhere along the dendrite we were able to construct a mathematical model that provides reasonable agreement with the observed number of branches, and total length of the dendrites of the class IV sensory neuron.

  1. Graphene-based field-effect transistor biosensors

    DOEpatents

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  2. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior

    PubMed Central

    Carlson, Bruce A.

    2010-01-01

    Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge (EOD). In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals and band-pass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally-relevant stimulus information encoded into temporal patterns of activity by sensory neurons. PMID:19641105

  3. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior.

    PubMed

    Carlson, Bruce A

    2009-07-29

    Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge. In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals, and bandpass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally relevant stimulus information encoded into temporal patterns of activity by sensory neurons.

  4. The Sensory Neurons of Touch

    PubMed Central

    Abraira, Victoria E.; Ginty, David D.

    2013-01-01

    The somatosensory system decodes a wide range of tactile stimuli and thus endows us with a remarkable capacity for object recognition, texture discrimination, sensory-motor feedback and social exchange. The first step leading to perception of innocuous touch is activation of cutaneous sensory neurons called low-threshold mechanoreceptors (LTMRs). Here, we review the properties and functions of LTMRs, emphasizing the unique tuning properties of LTMR subtypes and the organizational logic of their peripheral and central axonal projections. We discuss the spinal cord neurophysiological representation of complex mechanical forces acting upon the skin and current views of how tactile information is processed and conveyed from the spinal cord to the brain. An integrative model in which ensembles of impulses arising from physiologically distinct LTMRs are integrated and processed in somatotopically aligned mechanosensory columns of the spinal cord dorsal horn underlies the nervous system’s enormous capacity for perceiving the richness of the tactile world. PMID:23972592

  5. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.

    PubMed

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.

  6. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose

    PubMed Central

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P.

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes. PMID:29474476

  7. Immunohistochemical localization of serotonin and choline acetyltransferase in sensory neurones of the locust.

    PubMed

    Lutz, E M; Tyrer, N M

    1988-01-15

    Sensory neuronal cell bodies in the leg of locust, Schistocerca gregaria, were visualized with antibodies to locust choline acetyltransferase and with antibodies to serotonin by the avidin-biotin peroxidase technique. Two groups of sensory cells react with the antibody to choline acetyltransferase: One group is associated with external mechanoreceptors (i.e., hair-plate hairs and campaniform sensilla) and the other with internal proprioceptors (i.e., chordotonal organs and multiterminal receptors). Sensory cells which react with the antibody to serotonin are associated only with internal proprioceptors being found in both chordotonal organs and multiterminal receptors. In the metathoracic femoral chordotonal organ indirect evidence suggests that some sensory cells are reactive to both antibodies. Some multiterminal receptors react with anti-choline-acetyltransferase, while others react with antiserotonin. These results support the conclusion that most insect sensory neurones are cholinergic but some are serotoninergic.

  8. Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae

    PubMed Central

    Zhang, Wei; Yan, Zhiqiang; Li, Bingxue; Jan, Lily Yeh; Jan, Yuh Nung

    2014-01-01

    Defecation allows the body to eliminate waste, an essential step in food processing for animal survival. In contrast to the extensive studies of feeding, its obligate counterpart, defecation, has received much less attention until recently. In this study, we report our characterizations of the defecation behavior of Drosophila larvae and its neural basis. Drosophila larvae display defecation cycles of stereotypic frequency, involving sequential contraction of hindgut and anal sphincter. The defecation behavior requires two groups of motor neurons that innervate hindgut and anal sphincter, respectively, and can excite gut muscles directly. These two groups of motor neurons fire sequentially with the same periodicity as the defecation behavior, as revealed by in vivo Ca2+ imaging. Moreover, we identified a single mechanosensitive sensory neuron that innervates the anal slit and senses the opening of the intestine terminus. This anus sensory neuron relies on the TRP channel NOMPC but not on INACTIVE, NANCHUNG, or PIEZO for mechanotransduction. DOI: http://dx.doi.org/10.7554/eLife.03293.001 PMID:25358089

  9. Recovery of function, peripheral sensitization and sensory neurone activation by novel pathways following axonal injury in Aplysia californica.

    PubMed

    Dulin, M F; Steffensen, I; Morris, C E; Walters, E T

    1995-10-01

    Recovery of behavioural and sensory function was examined following unilateral pedal nerve crush in Aplysia californica. Nerve crush that transected all axons connecting the tail to the central nervous system (CNS) eliminated the ipsilateral tail-evoked siphon reflex, whose sensory input travels in the crushed tail nerve (p9). The first reliable signs of recovery of this reflex were observed within 1 week, and most animals displayed tail-evoked siphon responses within 2 weeks. Wide-dynamic-range mechanosensory neurons with somata in the ventrocaudal (VC) cluster of the ipsilateral pleural ganglion exhibited a few receptive fields (RFs) on the tail 3 weeks after unilateral pedal nerve crush, indicating that the RFs had either regenerated or been reconnected to the central somata. These RFs were smaller and sensitized compared with corresponding RFs on the contralateral, uncrushed side. Centrally conducted axon responses of VC sensory neurones to electrical stimulation distal to the nerve crush site did not reappear until at least 10 days after the crush. Because the crush site was much closer to the CNS than to the tail, the failure of axon responses to be restored earlier than the behavioural responses indicates that early stages of reflex recovery are not due to regeneration of VC sensory neurone axons into the tail. Following nerve crush, VC sensory neurones often could be activated by stimulating central connectives or peripheral nerves that do not normally contain the sensory neurone's axons. These results suggest that recovery of behavioral function after nerve injury involves complex mechanisms, including regenerative growth of axotomized VC sensory neurones, sensitization of regenerating RFs and sprouting of VC sensory neurone fibres within the CNS. Furthermore, the rapidity of behavioural recovery indicates that its initial phases are mediated by additional mechanisms, perhaps centripetal regeneration of unidentified sensory neurones having peripheral

  10. Quantitation of Contacts Among Sensory, Motor, and Serotonergic Neurons in the Pedal Ganglion of Aplysia

    PubMed Central

    Zhang, Han; Wainwright, Marcy; Byrne, John H.; Cleary, Leonard J.

    2003-01-01

    Present models of long-term sensitization in Aplysia californica indicate that the enhanced behavioral response is due, at least in part, to outgrowth of sensory neurons mediating defensive withdrawal reflexes. Presumably, this outgrowth strengthens pre-existing connections by formation of newsynapses with follower neurons. However, the relationship between the number of sensorimotor contacts and the physiological strength of the connection has never been examined in intact ganglia. As a first step in addressing this issue, we used confocal microscopy to examine sites of contact between sensory and motor neurons in naive animals. Our results revealed relatively fewcontacts between physiologically connected cells. In addition, the number of contact sites was proportional to the amplitude of the EPSP elicited in the follower motor neuron by direct stimulation of the sensory neuron. This is the first time such a correlation has been observed in the central nervous system. Serotonin is the neurotransmitter most closely examined for its role in modulating synaptic strength at the sensorimotor synapse. However, the structural relationship of serotonergic processes and sensorimotor synapses has never been examined. Surprisingly, serotonergic processes usually made contact with sensory and motor neurons at sites located relatively distant from the sensorimotor synapse. This result implies that heterosynaptic regulation is due to nondirected release of serotonin into the neuropil. PMID:14557611

  11. Graphene-based biosensors.

    PubMed

    Szunerits, Sabine; Boukherroub, Rabah

    2018-06-06

    Reliable data obtained from analysis of DNA, proteins, bacteria and other disease-related molecules or organisms in biological samples have become a fundamental and crucial part of human health diagnostics and therapy. The development of non-invasive tests that are rapid, sensitive, specific and simple would allow patient discomfort to be prevented, delays in diagnosis to be avoided and the status of a disease to be followed up. Bioanalysis is thus a progressive discipline for which the future holds many exciting opportunities. The use of biosensors for the early diagnosis of diseases has become widely accepted as a point-of-care diagnosis with appropriate specificity in a short time. To allow a reliable diagnosis of a disease at an early stage, highly sensitive biosensors are required as the corresponding biomarkers are generally expressed at very low concentrations. In the past 50 years, various biosensors have been researched and developed encompassing a wide range of applications. This contrasts the limited number of commercially available biosensors. When it comes to sensing of biomarkers with the required picomolar (pM) sensitivity for real-time sensing of biological samples, only a handful of sensing systems have been proposed, and these are often rather complex and costly. Lately, graphene-based materials have been considered as superior over other nanomaterials for the development of sensitive biosensors. The advantages of graphene-based sensor interfaces are numerous, including enhanced surface loading of the desired ligand due to the high surface-to-volume ratio, excellent conductivity and a small band gap that is beneficial for sensitive electrical and electrochemical read-outs, as well as tunable optical properties for optical read-outs such as fluorescence and plasmonics. In this paper, we review the advances made in recent years on graphene-based biosensors in the field of medical diagnosis.

  12. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia

    NASA Technical Reports Server (NTRS)

    Fritzsch, Bernd

    2003-01-01

    The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.

  13. Coupled Activation of Primary Sensory Neurons Contributes to Chronic Pain.

    PubMed

    Kim, Yu Shin; Anderson, Michael; Park, Kyoungsook; Zheng, Qin; Agarwal, Amit; Gong, Catherine; Saijilafu; Young, LeAnne; He, Shaoqiu; LaVinka, Pamela Colleen; Zhou, Fengquan; Bergles, Dwight; Hanani, Menachem; Guan, Yun; Spray, David C; Dong, Xinzhong

    2016-09-07

    Primary sensory neurons in the DRG play an essential role in initiating pain by detecting painful stimuli in the periphery. Tissue injury can sensitize DRG neurons, causing heightened pain sensitivity, often leading to chronic pain. Despite the functional importance, how DRG neurons function at a population level is unclear due to the lack of suitable tools. Here we developed an imaging technique that allowed us to simultaneously monitor the activities of >1,600 neurons/DRG in live mice and discovered a striking neuronal coupling phenomenon that adjacent neurons tend to activate together following tissue injury. This coupled activation occurs among various neurons and is mediated by an injury-induced upregulation of gap junctions in glial cells surrounding DRG neurons. Blocking gap junctions attenuated neuronal coupling and mechanical hyperalgesia. Therefore, neuronal coupling represents a new form of neuronal plasticity in the DRG and contributes to pain hypersensitivity by "hijacking" neighboring neurons through gap junctions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Function-based Biosensor for Hazardous Waste Toxin Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James J Hickman

    There is a need for new types of toxicity sensors in the DOE and other agencies that are based on biological function as the toxins encountered during decontamination or waste remediation may be previously unknown or their effects subtle. Many times the contents of the environmental waste, especially the minor components, have not been fully identified and characterized. New sensors of this type could target unknown toxins that cause death as well as intermediate levels of toxicity that impair function or cause long term impairment that may eventually lead to death. The primary question posed in this grant was tomore » create an electronically coupled neuronal cellular circuit to be used as sensor elements for a hybrid non-biological/biological toxin sensor system. A sensor based on the electrical signals transmitted between two mammalian neurons would allow the marriage of advances in solid state electronics with a functioning biological system to develop a new type of biosensor. Sensors of this type would be a unique addition to the field of sensor technology but would also be complementary to existing sensor technology that depends on knowledge of what is to be detected beforehand. We integrated physics, electronics, surface chemistry, biotechnology, and fundamental neuroscience in the development of this biosensor. Methods were developed to create artificial surfaces that enabled the patterning of discrete cells, and networks of cells, in culture; the networks were then aligned with transducers. The transducers were designed to measure electromagnetic fields (EMF) at low field strength. We have achieved all of the primary goals of the project. We can now pattern neurons routinely in our labs as well as align them with transducers. We have also shown the signals between neurons can be modulated by different biochemicals. In addition, we have made another significant advance where we have repeated the patterning results with adult hippocampal cells. Finally, we

  15. Trafficking regulates the subcellular distribution of voltage-gated sodium channels in primary sensory neurons.

    PubMed

    Bao, Lan

    2015-09-30

    Voltage-gated sodium channels (Navs) comprise at least nine pore-forming α subunits. Of these, Nav1.6, Nav1.7, Nav1.8 and Nav1.9 are the most frequently studied in primary sensory neurons located in the dorsal root ganglion and are mainly localized to the cytoplasm. A large pool of intracellular Navs raises the possibility that changes in Nav trafficking could alter channel function. The molecular mediators of Nav trafficking mainly consist of signals within the Navs themselves, interacting proteins and extracellular factors. The surface expression of Navs is achieved by escape from the endoplasmic reticulum and proteasome degradation, forward trafficking and plasma membrane anchoring, and it is also regulated by channel phosphorylation and ubiquitination in primary sensory neurons. Axonal transport and localization of Navs in afferent fibers involves the motor protein KIF5B and scaffold proteins, including contactin and PDZ domain containing 2. Localization of Nav1.6 to the nodes of Ranvier in myelinated fibers of primary sensory neurons requires node formation and the submembrane cytoskeletal protein complex. These findings inform our understanding of the molecular and cellular mechanisms underlying Nav trafficking in primary sensory neurons.

  16. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    PubMed

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  17. Induction of sensory neurons from neuroepithelial stem cells by the ISX9 small molecule

    PubMed Central

    Ali, Rouknuddin Qasim; Blomberg, Evelina; Falk, Anna; Ährlund-Richter, Lars; Ulfendahl, Mats

    2016-01-01

    Hearing impairment most often involves loss of sensory hair cells and auditory neurons. As this loss is permanent in humans, a cell therapy approach has been suggested to replace damaged cells. It is thus of interest to generate lineage restricted progenitor cells appropriate for cell based therapies. Human long-term self-renewing neuroepithelial stem (lt-NES) cell lines exhibit in vitro a developmental potency to differentiate into CNS neural lineages, and importantly lack this potency in vivo, i.e do not form teratomas. Small-molecules-driven differentiation is today an established route obtain specific cell derivatives from stem cells. In this study, we have investigated the effects of three small molecules SB431542, ISX9 and Metformin to direct differentiation of lt-NES cells into sensory neurons. Exposure of lt-NES cells to Metformin or SB431542 did not induce any marked induction of markers for sensory neurons. However, a four days exposure to the ISX9 small molecule resulted in reduced expression of NeuroD1 mRNA as well as enhanced mRNA levels of GATA3, a marker and important player in auditory neuron specification and development. Subsequent culture in the presence of the neurotrophic factors BDNF and NT3 for another seven days yielded a further increase of mRNA expression for GATA3. This regimen resulted in a frequency of up to 25-30% of cells staining positive for Brn3a/Tuj1. We conclude that an approach with ISX9 small molecule induction of lt-NES cells into auditory like neurons may thus be an attractive route for obtaining safe cell replacement therapy of sensorineural hearing loss. PMID:27335699

  18. Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice.

    PubMed

    Vaughan, Sydney K; Stanley, Olivia L; Valdez, Gregorio

    2017-06-01

    The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    PubMed

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  20. Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon.

    PubMed

    Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Brookes, Simon J H; Hu, Hongzhen; Keating, Damien J; Spencer, Nick J

    2018-01-01

    The gastrointestinal tract contains its own independent population of sensory neurons within the gut wall. These sensory neurons have been referred to as intrinsic primary afferent neurons (IPANs) and can be identified by immunoreactivity to calcitonin gene-related peptide (CGRP) in mice. A common feature of IPANs is a paucity of fast synaptic inputs observed during sharp microelectrode recordings. Whether this is observed using different recording techniques is of particular interest for understanding the physiology of these neurons and neural circuit modeling. Here, we imaged spontaneous and evoked activation of myenteric neurons in isolated whole preparations of mouse colon and correlated recordings with CGRP and nitric oxide synthase (NOS) immunoreactivity, post hoc. Calcium indicator fluo 4 was used for this purpose. Calcium responses were recorded in nerve cell bodies located 5-10 mm oral to transmural electrical nerve stimuli. A total of 618 recorded neurons were classified for CGRP or NOS immunoreactivity. Aboral electrical stimulation evoked short-latency calcium transients in the majority of myenteric neurons, including ~90% of CGRP-immunoreactive Dogiel type II neurons. Activation of Dogiel type II neurons had a time course consistent with fast synaptic transmission and was always abolished by hexamethonium (300 μM) and by low-calcium Krebs solution. The nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (during synaptic blockade) directly activated Dogiel type II neurons. The present study suggests that murine colonic Dogiel type II neurons receive prominent fast excitatory synaptic inputs from hexamethonium-sensitive neural pathways. NEW & NOTEWORTHY Myenteric neurons in isolated mouse colon were recorded using calcium imaging and then neurochemically defined. Short-latency calcium transients were detected in >90% of calcitonin gene-related peptide-immunoreactive neurons to electrical stimulation of hexamethonium-sensitive pathways

  1. Central Projections of Antennal and Labial Palp Sensory Neurons in the Migratory Armyworm Mythimna separata

    PubMed Central

    Ma, Bai-Wei; Zhao, Xin-Cheng; Berg, Bente G.; Xie, Gui-Ying; Tang, Qing-Bo; Wang, Gui-Rong

    2017-01-01

    The oriental armyworm, Mythimna separata (Walker), is a polyphagous, migratory pest relying on olfactory cues to find mates, locate nectar, and guide long-distance flight behavior. In the present study, a combination of neuroanatomical techniques were utilized on this species, including backfills, confocal microscopy, and three-dimensional reconstructions, to trace the central projections of sensory neurons from the antenna and the labial pit organ, respectively. As previously shown, the axons of the labial sensory neurons project via the ipsilateral labial nerve and terminate in three main areas of the central nervous system: (1) the labial-palp pit organ glomerulus of each antennal lobe, (2) the gnathal ganglion, and (3) the prothoracic ganglion of the ventral nerve cord. Similarly, the antennal sensory axons project to multiple areas of the central nervous system. The ipsilateral antennal nerve targets mainly the antennal lobe, the antennal mechanosensory and motor center, and the prothoracic and mesothoracic ganglia. Specific staining experiments including dye application to each of the three antennal segments indicate that the antennal lobe receives input from flagellar olfactory neurons exclusively, while the antennal mechanosensory and motor center is innervated by mechanosensory neurons from the whole antenna, comprising the flagellum, pedicle, and scape. The terminals in the mechanosensory and motor center are organized in segregated zones relating to the origin of neurons. The flagellar mechanosensory axons target anterior zones, while the pedicular and scapal axons terminate in posterior zones. In the ventral nerve cord, the processes from the antennal sensory neurons terminate in the motor area of the thoracic ganglia, suggesting a close connection with motor neurons. Taken together, the numerous neuropils innervated by axons both from the antenna and labial palp indicate the multiple roles these sensory organs serve in insect behavior. PMID:29209176

  2. Activity-dependent sensitivity of proprioceptive sensory neurons in the stick insect femoral chordotonal organ.

    PubMed

    DiCaprio, Ralph A; Wolf, Harald; Büschges, Ansgar

    2002-11-01

    Mechanosensory neurons exhibit a wide range of dynamic changes in response, including rapid and slow adaptation. In addition to mechanical factors, electrical processes may also contribute to sensory adaptation. We have investigated adaptation of afferent neurons in the stick insect femoral chordotonal organ (fCO). The fCO contains sensory neurons that respond to position, velocity, and acceleration of the tibia. We describe the influence of random mechanical stimulation of the fCO on the response of fCO afferent neurons. The activity of individual sensory neurons was recorded intracellularly from their axons in the main leg nerve. Most fCO afferents (93%) exhibited a marked decrease in response to trapezoidal stimuli following sustained white noise stimulation (bandwidth = 60 Hz, amplitudes from +/-5 to +/-30 degrees ). Concurrent decreases in the synaptic drive to leg motoneurons and interneurons were also observed. Electrical stimulation of spike activity in individual fCO afferents in the absence of mechanical stimulation also led to a dramatic decrease in response in 15 of 19 afferents tested. This indicated that electrical processes are involved in the regulation of the generator potential or encoding of action potentials and partially responsible for the decreased response of the afferents. Replacing Ca(2+) with Ba(2+) in the saline surrounding the fCO greatly reduced or blocked the decrease in response elicited by electrically induced activity or mechanical stimulation when compared with control responses. Our results indicate that activity of fCO sensory neurons strongly affects their sensitivity, most likely via Ca(2+)-dependent processes.

  3. Electronic Biosensors Based on III-Nitride Semiconductors.

    PubMed

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  4. ZnO-Based Amperometric Enzyme Biosensors

    PubMed Central

    Zhao, Zhiwei; Lei, Wei; Zhang, Xiaobing; Wang, Baoping; Jiang, Helong

    2010-01-01

    Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol), respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization) and biosensor performances. PMID:22205864

  5. Peripheral Sensory Neurons Expressing Melanopsin Respond to Light

    PubMed Central

    Matynia, Anna; Nguyen, Eileen; Sun, Xiaoping; Blixt, Frank W.; Parikh, Sachin; Kessler, Jason; Pérez de Sevilla Müller, Luis; Habib, Samer; Kim, Paul; Wang, Zhe Z.; Rodriguez, Allen; Charles, Andrew; Nusinowitz, Steven; Edvinsson, Lars; Barnes, Steven; Brecha, Nicholas C.; Gorin, Michael B.

    2016-01-01

    The ability of light to cause pain is paradoxical. The retina detects light but is devoid of nociceptors while the trigeminal sensory ganglia (TG) contain nociceptors but not photoreceptors. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are thought to mediate light-induced pain but recent evidence raises the possibility of an alternative light responsive pathway independent of the retina and optic nerve. Here, we show that melanopsin is expressed in both human and mouse TG neurons. In mice, they represent 3% of small TG neurons that are preferentially localized in the ophthalmic branch of the trigeminal nerve and are likely nociceptive C fibers and high-threshold mechanoreceptor Aδ fibers based on a strong size-function association. These isolated neurons respond to blue light stimuli with a delayed onset and sustained firing, similar to the melanopsin-dependent intrinsic photosensitivity observed in ipRGCs. Mice with severe bilateral optic nerve crush exhibit no light-induced responses including behavioral light aversion until treated with nitroglycerin, an inducer of migraine in people and migraine-like symptoms in mice. With nitroglycerin, these same mice with optic nerve crush exhibit significant light aversion. Furthermore, this retained light aversion remains dependent on melanopsin-expressing neurons. Our results demonstrate a novel light-responsive neural function independent of the optic nerve that may originate in the peripheral nervous system to provide the first direct mechanism for an alternative light detection pathway that influences motivated behavior. PMID:27559310

  6. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics.

    PubMed

    Karim, M Rezaul; Moore, Adrian W

    2011-11-07

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as

  7. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice

    PubMed Central

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  8. Isolation, Purification, and Culture of Primary Murine Sensory Neurons.

    PubMed

    Katzenell, Sarah; Cabrera, Jorge R; North, Brian J; Leib, David A

    2017-01-01

    Cultured primary neurons have been of extraordinary value for the study of neuronal anatomy, cell biology, and physiology. While use of neuronal cell lines has ease and utility, there are often caveats that arise due to their mitotic nature. This methods article presents detailed methodology for the preparation, purification, and culture of adult murine sensory neurons for the study of herpes simplex virus lytic and latent infections. While virology is the application for our laboratory, these cultures also have broad utility for neurobiologists and cell biologists. While these primary cultures have been highly informative, the methodology is challenging to many investigators. Through publication of this highly detailed protocol, it is our hope that the use of this culture system can spread in the field to allow more rapid progress in furthering our understanding of neurotropic virus infection.

  9. TRPV1 recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1.

    PubMed

    Kim, Sangsung; Kang, Changjoong; Shin, Chan Young; Hwang, Sun Wook; Yang, Young Duk; Shim, Won Sik; Park, Min-Young; Kim, Eunhee; Kim, Misook; Kim, Byung-Moon; Cho, Hawon; Shin, Youngki; Oh, Uhtaek

    2006-03-01

    TRPV1, a cloned capsaicin receptor, is a molecular sensor for detecting adverse stimuli and a key element for inflammatory nociception and represents biophysical properties of native channel. However, there seems to be a marked difference between TRPV1 and native capsaicin receptors in the pharmacological response profiles to vanilloids or acid. One plausible explanation for this overt discrepancy is the presence of regulatory proteins associated with TRPV1. Here, we identify Fas-associated factor 1 (FAF1) as a regulatory factor, which is coexpressed with and binds to TRPV1 in sensory neurons. When expressed heterologously, FAF1 reduces the responses of TRPV1 to capsaicin, acid, and heat, to the pharmacological level of native capsaicin receptor in sensory neurons. Furthermore, silencing FAF1 by RNA interference augments capsaicin-sensitive current in native sensory neurons. We therefore conclude that FAF1 forms an integral component of the vanilloid receptor complex and that it constitutively modulates the sensitivity of TRPV1 to various noxious stimuli in sensory neurons.

  10. Bidirectional communication between sensory neurons and osteoblasts in an in vitro coculture system.

    PubMed

    Kodama, Daisuke; Hirai, Takao; Kondo, Hisataka; Hamamura, Kazunori; Togari, Akifumi

    2017-02-01

    Recent studies have revealed that the sensory nervous system is involved in bone metabolism. However, the mechanism of communication between neurons and osteoblasts is yet to be elucidated. In this study, we investigated the signaling pathways between sensory neurons of the dorsal root ganglion (DRG) and the osteoblast-like MC3T3-E1 cells using an in vitro coculture system. Our findings indicate that signal transduction from DRG-derived neurons to MC3T3-E1 cells is suppressed by antagonists of the AMPA receptor and the NK 1 receptor. Conversely, signal transduction from MC3T3-E1 cells to DRG-derived neurons is suppressed by a P2X 7 receptor antagonist. Our results suggest that these cells communicate with each other by exocytosis of glutamate, substance P in the efferent signal, and ATP in the afferent signal. © 2017 Federation of European Biochemical Societies.

  11. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity

    PubMed Central

    2010-01-01

    Background The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental. Results Here we report that a point mutation at the phospholipase Cγ (PLCγ) docking site in the mouse neurotrophin tyrosine kinase receptor TrkB (Ntrk2) specifically impairs fiber guidance inside the vestibular sensory epithelia, but has limited effects on the survival of vestibular sensory neurons and growth of afferent processes toward the sensory epithelia. We also show that expression of the TRPC3 cation calcium channel, whose activity is known to be required for nerve-growth cone guidance induced by brain-derived neurotrophic factor (BDNF), is altered in these animals. In addition, we find that absence of the PLCγ mediated TrkB signalling interferes with the transformation of bouton type afferent terminals of vestibular dendrites into calyces (the largest synaptic contact of dendrites known in the mammalian nervous system) on type I vestibular hair cells; the latter are normally distributed in these mutants as revealed by an unaltered expression pattern of the potassium channel KCNQ4 in these cells. Conclusions These results demonstrate a crucial involvement of the TrkB/PLCγ-mediated intracellular signalling in structural aspects of sensory neuron plasticity. PMID:20932311

  12. Single bead-based electrochemical biosensor.

    PubMed

    Liu, Changchun; Schrlau, Michael G; Bau, Haim H

    2009-12-15

    A simple, robust, single bead-based electrochemical biosensor was fabricated and characterized. The sensor's working electrode consists of an electrochemically etched platinum wire, with a nominal diameter of 25 microm, hermetically heat-fusion sealed in a pulled glass capillary (micropipette). The sealing process does not require any epoxy or glue. A commercially available, densely functionalized agarose bead was mounted on the tip of the etched platinum wire. The use of a pre-functionalized bead eliminates the tedious and complicated surface functionalization process that is often the bottleneck in the development of electrochemical biosensors. We report on the use of a biotin agarose bead-based, micropipette, electrochemical (Bio-BMP) biosensor to monitor H(2)O(2) concentration and the use of a streptavidin bead-based, micropipette, electrochemical (SA-BMP) biosensor to detect DNA amplicons. The Bio-BMP biosensor's response increased linearly as the H(2)O(2) concentration increased in the range from 1 x 10(-6) to 1.2 x10(-4)M with a detection limit of 5 x 10(-7)M. The SA-BMP was able to detect the amplicons of 1pg DNA template of B. Cereus bacteria, thus providing better detection sensitivity than conventional gel-based electropherograms.

  13. Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs

    PubMed Central

    McFarland, James M.; Cui, Yuwei; Butts, Daniel A.

    2013-01-01

    The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185

  14. Differential regulation of ASICs and TRPV1 by zinc in rat bronchopulmonary sensory neurons.

    PubMed

    Vysotskaya, Zhanna V; Moss, Charles R; Gu, Qihai

    2014-12-01

    Zinc has been known to act as a signaling molecule that regulates a variety of neuronal functions. In this study, we aimed to study the effect of zinc on two populations of acid-sensitive ion channels, acid-sensing ion channels (ASICs), and transient receptor potential vanilloid receptor-1 (TRPV1), in vagal bronchopulmonary sensory neurons. Rat vagal sensory neurons innervating lungs and airways were retrogradely labeled with a fluorescent tracer. Whole-cell perforated patch-clamp recordings were carried out in primarily cultured bronchopulmonary sensory neurons. The acid-evoked ASIC and TRPV1 currents were measured and compared between before and after the zinc pretreatment. ASIC currents were induced by a pH drop from 7.4 to 6.8 or 6.5 in the presence of capsazepine (10 µM), a specific TRPV1 antagonist. Pretreatment with zinc (50 or 300 µM, 2 min) displayed different effects on the two distinct phenotypes of ASIC currents: a marked potentiation on ASIC channels with fast kinetics of activation and inactivation or no significant effect on ASIC currents with slow activation and inactivation. On the other hand, pretreatment with zinc significantly inhibited the acid (pH 5.5 or 5.3)-induced TRPV1 currents. The inhibition was abolished by intracellular chelation of zinc by TPEN (25 µM), indicating that intracellular accumulation of zinc was likely required for its inhibitory effect on TRPV1 channels. Our study showed that zinc differentially regulates the activities of ASICs and TRPV1 channels in rat vagal bronchopulmonary sensory neurons.

  15. Weak signal amplification and detection by higher-order sensory neurons.

    PubMed

    Jung, Sarah N; Longtin, Andre; Maler, Leonard

    2016-04-01

    Sensory systems must extract behaviorally relevant information and therefore often exhibit a very high sensitivity. How the nervous system reaches such high sensitivity levels is an outstanding question in neuroscience. Weakly electric fish (Apteronotus leptorhynchus/albifrons) are an excellent model system to address this question because detailed background knowledge is available regarding their behavioral performance and its underlying neuronal substrate. Apteronotus use their electrosense to detect prey objects. Therefore, they must be able to detect electrical signals as low as 1 μV while using a sensory integration time of <200 ms. How these very weak signals are extracted and amplified by the nervous system is not yet understood. We studied the responses of cells in the early sensory processing areas, namely, the electroreceptor afferents (EAs) and pyramidal cells (PCs) of the electrosensory lobe (ELL), the first-order electrosensory processing area. In agreement with previous work we found that EAs cannot encode very weak signals with a spike count code. However, PCs can encode prey mimic signals by their firing rate, revealing a huge signal amplification between EAs and PCs and also suggesting differences in their stimulus encoding properties. Using a simple leaky integrate-and-fire (LIF) model we predict that the target neurons of PCs in the midbrain torus semicircularis (TS) are able to detect very weak signals. In particular, TS neurons could do so by assuming biologically plausible convergence rates as well as very simple decoding strategies such as temporal integration, threshold crossing, and combining the inputs of PCs. Copyright © 2016 the American Physiological Society.

  16. Weak signal amplification and detection by higher-order sensory neurons

    PubMed Central

    Longtin, Andre; Maler, Leonard

    2016-01-01

    Sensory systems must extract behaviorally relevant information and therefore often exhibit a very high sensitivity. How the nervous system reaches such high sensitivity levels is an outstanding question in neuroscience. Weakly electric fish (Apteronotus leptorhynchus/albifrons) are an excellent model system to address this question because detailed background knowledge is available regarding their behavioral performance and its underlying neuronal substrate. Apteronotus use their electrosense to detect prey objects. Therefore, they must be able to detect electrical signals as low as 1 μV while using a sensory integration time of <200 ms. How these very weak signals are extracted and amplified by the nervous system is not yet understood. We studied the responses of cells in the early sensory processing areas, namely, the electroreceptor afferents (EAs) and pyramidal cells (PCs) of the electrosensory lobe (ELL), the first-order electrosensory processing area. In agreement with previous work we found that EAs cannot encode very weak signals with a spike count code. However, PCs can encode prey mimic signals by their firing rate, revealing a huge signal amplification between EAs and PCs and also suggesting differences in their stimulus encoding properties. Using a simple leaky integrate-and-fire (LIF) model we predict that the target neurons of PCs in the midbrain torus semicircularis (TS) are able to detect very weak signals. In particular, TS neurons could do so by assuming biologically plausible convergence rates as well as very simple decoding strategies such as temporal integration, threshold crossing, and combining the inputs of PCs. PMID:26843601

  17. Sensory specificity and speciation: a potential neuronal pathway for host fruit odour discrimination in Rhagoletis pomonella

    PubMed Central

    Batra, Srishti; Ramaswamy, Sree Subha; Feder, Jeffrey L.

    2016-01-01

    Behavioural changes in habitat or mate choice can trigger population divergence, leading to speciation. However, little is known about the neurological bases for such changes. Rhagoletis pomonella (Diptera: Tephritidae) is a model for ecological speciation via host plant shifts. Within the past 180 years, Rhagoletis flies infesting hawthorn (Crataegus spp.) shifted to attack domesticated apple (Malus pumila). The two populations differ in their olfactory preferences for apple versus hawthorn fruit. Here, we looked for patterns of sensory organization that may have contributed to this shift by characterizing the morphology, specificity and distribution of olfactory sensory neurons (OSNs) on the antennae of Rhagoletis responding to host fruit and non-host volatiles. Of 28 OSN classes identified, two colocalized OSN pairs were found that specifically responded to the major behavioural attractant and antagonist volatiles for each fly population. A reversal in the response of these OSNs to fruit volatiles, either through a switch in receptor expression between these paired neurons or changes in neuronal projections in the brain, could therefore account for the behavioural difference between apple and hawthorn flies. The finding supports the hypothesis that relatively minor changes in olfactory sensory pathways may contribute to rapid host shifting and divergence in Rhagoletis. PMID:28003447

  18. Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine.

    PubMed

    Franceschini, Alessia; Nair, Asha; Bele, Tanja; van den Maagdenberg, Arn Mjm; Nistri, Andrea; Fabbretti, Elsa

    2012-11-21

    Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons.

  19. The "waiting period" of sensory and motor axons in early chick hindlimb: its role in axon pathfinding and neuronal maturation.

    PubMed

    Wang, G; Scott, S A

    2000-07-15

    During embryonic development motor axons in the chick hindlimb grow out slightly before sensory axons and wait in the plexus region at the base of the limb for approximately 24 hr before invading the limb itself (Tosney and Landmesser, 1985a). We have investigated the role of this waiting period by asking, Is the arrest of growth cones in the plexus region a general property of both sensory and motor axons? Why do axons wait? Does eliminating the waiting period affect the further development of motor and sensory neurons? Here we show that sensory axons, like motor axons, pause in the plexus region and that neither sensory nor motor axons require cues from the other population to wait in or exit from the plexus region. By transplanting older or younger donor limbs to host embryos, we show that host axons innervate donor limbs on a schedule consistent with the age of the grafted limbs. Thus, axons wait in the plexus region for maturational changes to occur in the limb rather than in the neurons themselves. Both sensory and motor axons innervate their appropriate peripheral targets when the waiting period is eliminated by grafting older donor limbs. Therefore, axons do not require a prolonged period in the plexus region to sort out and project appropriately. Eliminating the waiting period does, however, accelerate the onset of naturally occurring cell death, but it does not enhance the development of central projections or the biochemical maturation of sensory neurons.

  20. Antibody biosensors for spoilage yeast detection based on impedance spectroscopy.

    PubMed

    Tubía, I; Paredes, J; Pérez-Lorenzo, E; Arana, S

    2018-04-15

    Brettanomyces is a yeast species responsible for wine and cider spoilage, producing volatile phenols that result in off-odors and loss of fruity sensorial qualities. Current commercial detection methods for these spoilage species are liable to frequent false positives, long culture times and fungal contamination. In this work, an interdigitated (IDE) biosensor was created to detect Brettanomyces using immunological reactions and impedance spectroscopy analysis. To promote efficient antibody immobilization on the electrodes' surface and to decrease non-specific adsorption, a Self-Assembled Monolayer (SAM) was developed. An impedance spectroscopy analysis, over four yeast strains, confirmed our device's increased efficacy. Compared to label-free sensors, antibody biosensors showed a higher relative impedance. The results also suggested that these biosensors could be a promising method to monitor some spoilage yeasts, offering an efficient alternative to the laborious and expensive traditional methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Feasibility Study of Odor Biosensor Using Dissociate Neuronal Culture with Gene Expression of Ionotropic Odorant Receptors

    NASA Astrophysics Data System (ADS)

    Tanada, Norio; Sakurai, Takeshi; Mitsuno, Hidefumi; Bakkum, Douglas; Kanzaki, Ryohei; Takahashi, Hirokazu

    We propose a highly sensitive and real-time odor biosensor by expressing ionotropic odorant receptors of insects into dissociated cultures of neurons of rats. The odorant-gated ion channel structure of insect odorant receptor is expected to allow easy functional expression into cells. The neuronal dissociated cultures of rats have two significant advantages: a long lifetime comparable to rats, i.e., a few years; and amplification ability from weak ionic currents of odorant receptors into easily detectable action potentials of neurons. In the present work, in order to show the feasibility of the proposed sensor, we attempt to express the pheromone receptors of silkmoth, Bombyx mori, into cultured neurons of rats. We demonstrate that 10% of neuronal cells transfected using Lipofectamine successfully expressed pheromone receptors, and that these cells showed significant increase of calcium signals by 50% at the presentation of pheromone.

  2. Latent Herpes Simplex Virus Infection of Sensory Neurons Alters Neuronal Gene Expression

    PubMed Central

    Kramer, Martha F.; Cook, W. James; Roth, Frederick P.; Zhu, Jia; Holman, Holly; Knipe, David M.; Coen, Donald M.

    2003-01-01

    The persistence of herpes simplex virus (HSV) and the diseases that it causes in the human population can be attributed to the maintenance of a latent infection within neurons in sensory ganglia. Little is known about the effects of latent infection on the host neuron. We have addressed the question of whether latent HSV infection affects neuronal gene expression by using microarray transcript profiling of host gene expression in ganglia from latently infected versus mock-infected mouse trigeminal ganglia. 33P-labeled cDNA probes from pooled ganglia harvested at 30 days postinfection or post-mock infection were hybridized to nylon arrays printed with 2,556 mouse genes. Signal intensities were acquired by phosphorimager. Mean intensities (n = 4 replicates in each of three independent experiments) of signals from mock-infected versus latently infected ganglia were compared by using a variant of Student's t test. We identified significant changes in the expression of mouse neuronal genes, including several with roles in gene expression, such as the Clk2 gene, and neurotransmission, such as genes encoding potassium voltage-gated channels and a muscarinic acetylcholine receptor. We confirmed the neuronal localization of some of these transcripts by using in situ hybridization. To validate the microarray results, we performed real-time reverse transcriptase PCR analyses for a selection of the genes. These studies demonstrate that latent HSV infection can alter neuronal gene expression and might provide a new mechanism for how persistent viral infection can cause chronic disease. PMID:12915567

  3. Making sense of the sensory regulation of hunger neurons.

    PubMed

    Chen, Yiming; Knight, Zachary A

    2016-04-01

    AgRP and POMC neurons are two key cell types that regulate feeding in response to hormones and nutrients. Recently, it was discovered that these neurons are also rapidly modulated by the mere sight and smell of food. This rapid sensory regulation "resets" the activity of AgRP and POMC neurons before a single bite of food has been consumed. This surprising and counterintuitive discovery challenges longstanding assumptions about the function and regulation of these cells. Here we review these recent findings and discuss their implications for our understanding of feeding behavior. We propose several alternative hypotheses for how these new observations might be integrated into a revised model of the feeding circuit, and also highlight some of the key questions that remain to be answered. © 2016 WILEY Periodicals, Inc.

  4. Making sense of the sensory regulation of hunger neurons

    PubMed Central

    Chen, Yiming; Knight, Zachary A.

    2016-01-01

    AgRP and POMC neurons are two key cell types that regulate feeding in response to hormones and nutrients. Recently, it was discovered that these neurons are also rapidly modulated by the mere sight and smell of food. This rapid sensory regulation “resets” the activity of AgRP and POMC neurons before a single bite of food has been consumed. This surprising and counterintuitive discovery challenges longstanding assumptions about the function and regulation of these cells. Here we review these recent findings and discuss their implications for our understanding of feeding behavior. We propose several alternative hypotheses for how these new observations might be integrated into a revised model of the feeding circuit, and also highlight some of the key questions that remain to be answered. PMID:26898524

  5. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research.

    PubMed

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-08-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell-derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.

  6. Brn3a/Pou4f1 Regulates Dorsal Root Ganglion Sensory Neuron Specification and Axonal Projection into the Spinal Cord

    PubMed Central

    Zou, Min; Li, Shengguo; Klein, William H.; Xiang, Mengqing

    2012-01-01

    The sensory neurons of the dorsal root ganglia (DRG) must project accurately to their central targets to convey proprioceptive, nociceptive and mechanoreceptive information to the spinal cord. How these different sensory modalities and central connectivities are specified and coordinated still remains unclear. Given the expression of the POU homeodomain transcription factors Brn3a/Pou4f1 and Brn3b/Pou4f2 in DRG and spinal cord sensory neurons, we determined the subtype specification of DRG and spinal cord sensory neurons as well as DRG central projections in Brn3a and Brn3b single and double mutant mice. Inactivation of either or both genes causes no gross abnormalities in early spinal cord neurogenesis; however, in Brn3a single and Brn3a;Brn3b double mutant mice, sensory afferent axons from the DRG fail to form normal trajectories in the spinal cord. The TrkA+ afferents remain outside the dorsal horn and fail to extend into the spinal cord, while the projections of TrkC+ proprioceptive afferents into the ventral horn are also impaired. Moreover, Brn3a mutant DRGs are defective in sensory neuron specification, as marked by the excessive generation of TrkB+ and TrkC+ neurons as well as TrkA+/TrkB+ and TrkA+/TrkC+ double positive cells at early embryonic stages. At later stages in the mutant, TrkB+, TrkC+ and parvalbumin+ neurons diminish while there is a significant increase of CGRP+ and c-ret+ neurons. In addition, Brn3a mutant DRGs display a dramatic down-regulation of Runx1 expression, suggesting that the regulation of DRG sensory neuron specification by Brn3a is mediated in part by Runx1. Our results together demonstrate a critical role for Brn3a in generating DRG sensory neuron diversity and regulating sensory afferent projections to the central targets. PMID:22326227

  7. Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine

    PubMed Central

    2012-01-01

    Background Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. Results KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Conclusions Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons. PMID:23171280

  8. Characterizing Human Stem Cell–derived Sensory Neurons at the Single-cell Level Reveals Their Ion Channel Expression and Utility in Pain Research

    PubMed Central

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-01-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell–derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders. PMID:24832007

  9. The Stimulus-Dependent Gradient of Cyp26B1+ Olfactory Sensory Neurons Is Necessary for the Functional Integrity of the Olfactory Sensory Map.

    PubMed

    Login, Hande; Håglin, Sofia; Berghard, Anna; Bohm, Staffan

    2015-10-07

    Stimulus-dependent expression of the retinoic acid-inactivating enzyme Cyp26B1 in olfactory sensory neurons (OSNs) forms a dorsomedial (DM)-ventrolateral (VL) gradient in the mouse olfactory epithelium. The gradient correlates spatially with different rates of OSN turnover, as well as the functional organization of the olfactory sensory map, into overlapping zones of OSNs that express different odorant receptors (ORs). Here, we analyze transgenic mice that, instead of a stimulus-dependent Cyp26B1 gradient, have constitutive Cyp26B1 levels in all OSNs. Starting postnatally, OSN differentiation is decreased and progenitor proliferation is increased. Initially, these effects are selective to the VL-most zone and correlate with reduced ATF5 expression and accumulation of OSNs that do not express ORs. Transcription factor ATF5 is known to stabilize OR gene choice via onset of the stimulus-transducing enzyme adenylyl cyclase type 3. During further postnatal development of Cyp26B1 mice, an anomalous DM(high)-VL(low) expression gradient of adenylyl cyclase type 3 appears, which coincides with altered OR frequencies and OR zones. All OR zones expand ventrolaterally except for the VL-most zone, which contracts. The expansion results in an increased zonal overlap that is also evident in the innervation pattern of OSN axon terminals in olfactory bulbs. These findings together identify a mechanism by which postnatal sensory-stimulated vitamin A metabolism modifies the generation of spatially specified neurons and their precise topographic connectivity. The distributed patterns of vitamin A-metabolizing enzymes in the nervous system suggest the possibility that the mechanism may also regulate neuroplasticity in circuits other than the olfactory sensory map. The mouse olfactory sensory map is functionally wired according to precise axonal projections of spatially organized classes of olfactory sensory neurons in the nose. The genetically controlled mechanisms that regulate the

  10. Optical fiber-based biosensors.

    PubMed

    Monk, David J; Walt, David R

    2004-08-01

    This review outlines optical fiber-based biosensor research from January 2001 through September 2003 and was written to complement the previous review in this journal by Marazuela and Moreno-Bondi. Optical fiber-based biosensors combine the use of a biological recognition element with an optical fiber or optical fiber bundle. They are classified by the nature of the biological recognition element used for sensing: enzyme, antibody/antigen (immunoassay), nucleic acid, whole cell, and biomimetic, and may be used for a variety of analytes ranging from metals and chemicals to physiological materials.

  11. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons.

    PubMed

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-05-01

    Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.

  12. Transient receptor potential channels in sensory neurons are targets of the antimycotic agent clotrimazole.

    PubMed

    Meseguer, Victor; Karashima, Yuji; Talavera, Karel; D'Hoedt, Dieter; Donovan-Rodríguez, Tansy; Viana, Felix; Nilius, Bernd; Voets, Thomas

    2008-01-16

    Clotrimazole (CLT) is a widely used drug for the topical treatment of yeast infections of skin, vagina, and mouth. Common side effects of topical CLT application include irritation and burning pain of the skin and mucous membranes. Here, we provide evidence that transient receptor potential (TRP) channels in primary sensory neurons underlie these unwanted effects of CLT. We found that clinically relevant CLT concentrations activate heterologously expressed TRPV1 and TRPA1, two TRP channels that act as receptors of irritant chemical and/or thermal stimuli in nociceptive neurons. In line herewith, CLT stimulated a subset of capsaicin-sensitive and mustard oil-sensitive trigeminal neurons, and evoked nocifensive behavior and thermal hypersensitivity with intraplantar injection in mice. Notably, CLT-induced pain behavior was suppressed by the TRPV1-antagonist BCTC [(N-(-4-tertiarybutylphenyl)-4-(3-cholorpyridin-2-yl)tetrahydropyrazine-1(2H)-carboxamide)] and absent in TRPV1-deficient mice. In addition, CLT inhibited the cold and menthol receptor TRPM8, and blocked menthol-induced responses in capsaicin- and mustard oil-insensitive trigeminal neurons. The concentration for 50% inhibition (IC50) of inward TRPM8 current was approximately 200 nM, making CLT the most potent known TRPM8 antagonist and a useful tool to discriminate between TRPM8- and TRPA1-mediated responses. Together, our results identify TRP channels in sensory neurons as molecular targets of CLT, and offer means to develop novel CLT preparations with fewer unwanted sensory side effects.

  13. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons

    PubMed Central

    Yanez, Andy A.; Harrell, Telvin; Sriranganathan, Heather J.; Ives, Angela M.; Bertke, Andrea S.

    2017-01-01

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons. PMID:28178213

  14. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons.

    PubMed

    Yanez, Andy A; Harrell, Telvin; Sriranganathan, Heather J; Ives, Angela M; Bertke, Andrea S

    2017-02-07

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons.

  15. Traumatic Brain Injury and Neuronal Functionality Changes in Sensory Cortex

    PubMed Central

    Carron, Simone F.; Alwis, Dasuni S.; Rajan, Ramesh

    2016-01-01

    Traumatic brain injury (TBI), caused by direct blows to the head or inertial forces during relative head-brain movement, can result in long-lasting cognitive and motor deficits which can be particularly consequential when they occur in young people with a long life ahead. Much is known of the molecular and anatomical changes produced in TBI but much less is known of the consequences of these changes to neuronal functionality, especially in the cortex. Given that much of our interior and exterior lives are dependent on responsiveness to information from and about the world around us, we have hypothesized that a significant contributor to the cognitive and motor deficits seen after TBI could be changes in sensory processing. To explore this hypothesis, and to develop a model test system of the changes in neuronal functionality caused by TBI, we have examined neuronal encoding of simple and complex sensory input in the rat’s exploratory and discriminative tactile system, the large face macrovibrissae, which feeds to the so-called “barrel cortex” of somatosensory cortex. In this review we describe the short-term and long-term changes in the barrel cortex encoding of whisker motion modeling naturalistic whisker movement undertaken by rats engaged in a variety of tasks. We demonstrate that the most common form of TBI results in persistent neuronal hyperexcitation specifically in the upper cortical layers, likely due to changes in inhibition. We describe the types of cortical inhibitory neurons and their roles and how selective effects on some of these could produce the particular forms of neuronal encoding changes described in TBI, and then generalize to compare the effects on inhibition seen in other forms of brain injury. From these findings we make specific predictions as to how non-invasive extra-cranial electrophysiology can be used to provide the high-precision information needed to monitor and understand the temporal evolution of changes in neuronal

  16. Asymmetric localization of natural antisense RNA of neuropeptide sensorin in Aplysia sensory neurons during aging and activity.

    PubMed

    Kadakkuzha, Beena M; Liu, Xin-An; Narvaez, Maria; Kaye, Alexandra; Akhmedov, Komolitdin; Puthanveettil, Sathyanarayanan V

    2014-01-01

    Despite the advances in our understanding of transcriptome, regulation and function of its non-coding components continue to be poorly understood. Here we searched for natural antisense transcript for sensorin (NAT-SRN), a neuropeptide expressed in the presynaptic sensory neurons of gill-withdrawal reflex of the marine snail Aplysia californica. Sensorin (SRN) has a key role in learning and long-term memory storage in Aplysia. We have now identified NAT-SRN in the central nervous system (CNS) and have confirmed its expression by northern blotting and fluorescent RNA in situ hybridization. Quantitative analysis of NAT-SRN in micro-dissected cell bodies and processes of sensory neurons suggest that NAT-SRN is present in the distal neuronal processes along with sense transcripts. Importantly, aging is associated with reduction in levels of NAT-SRN in sensory neuron processes. Furthermore, we find that forskolin, an activator of CREB signaling, differentially alters the distribution of SRN and NAT-SRN. These studies reveal novel insights into physiological regulation of natural antisense RNAs.

  17. Stimulus encoding and feature extraction by multiple sensory neurons.

    PubMed

    Krahe, Rüdiger; Kreiman, Gabriel; Gabbiani, Fabrizio; Koch, Christof; Metzner, Walter

    2002-03-15

    Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly electric fish. These cells constitute the output neurons of the first central nervous stage of electrosensory processing. Using random amplitude modulations (RAMs) of a mimic of the fish's own electric field within behaviorally relevant frequency bands, we found that pyramidal cells with overlapping receptive fields exhibit strong stimulus-induced correlations. To quantify the encoding of the RAM time course, we estimated the stimuli from simultaneously recorded spike trains and found significant improvements over single spike trains. The quality of stimulus reconstruction, however, was still inferior to the one measured for single primary sensory afferents. In an analysis of feature extraction, we found that spikes of pyramidal cell pairs coinciding within a time window of a few milliseconds performed significantly better at detecting upstrokes and downstrokes of the stimulus compared with isolated spikes and even spike bursts of single cells. Coincident spikes can thus be considered "distributed bursts." Our results suggest that stimulus encoding by primary sensory afferents is transformed into feature extraction at the next processing stage. There, stimulus-induced coincident activity can improve the extraction of behaviorally relevant features from the stimulus.

  18. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex

    PubMed Central

    Nir, Yuval; Mukamel, Roy; Dinstein, Ilan; Privman, Eran; Harel, Michal; Fisch, Lior; Gelbard-Sagiv, Hagar; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Kramer, Uri; Arieli, Amos; Fried, Itzhak; Malach, Rafael

    2009-01-01

    Animal studies have shown robust electrophysiological activity in the sensory cortex in the absence of stimuli or tasks. Similarly, recent human functional magnetic resonance imaging (fMRI) revealed widespread, spontaneously emerging cortical fluctuations. However, it is unknown what neuronal dynamics underlie this spontaneous activity in the human brain. Here we studied this issue by combining bilateral single-unit, local field potentials (LFPs) and intracranial electrocorticography (ECoG) recordings in individuals undergoing clinical monitoring. We found slow (<0.1 Hz, following 1/f-like profiles) spontaneous fluctuations of neuronal activity with significant interhemispheric correlations. These fluctuations were evident mainly in neuronal firing rates and in gamma (40–100 Hz) LFP power modulations. Notably, the interhemispheric correlations were enhanced during rapid eye movement and stage 2 sleep. Multiple intracranial ECoG recordings revealed clear selectivity for functional networks in the spontaneous gamma LFP power modulations. Our results point to slow spontaneous modulations in firing rate and gamma LFP as the likely correlates of spontaneous fMRI fluctuations in the human sensory cortex. PMID:19160509

  19. Adipose-derived stromal cells enhance auditory neuron survival in an animal model of sensory hearing loss.

    PubMed

    Schendzielorz, Philipp; Vollmer, Maike; Rak, Kristen; Wiegner, Armin; Nada, Nashwa; Radeloff, Katrin; Hagen, Rudolf; Radeloff, Andreas

    2017-10-01

    A cochlear implant (CI) is an electronic prosthesis that can partially restore speech perception capabilities. Optimum information transfer from the cochlea to the central auditory system requires a proper functioning auditory nerve (AN) that is electrically stimulated by the device. In deafness, the lack of neurotrophic support, normally provided by the sensory cells of the inner ear, however, leads to gradual degeneration of auditory neurons with undesirable consequences for CI performance. We evaluated the potential of adipose-derived stromal cells (ASCs) that are known to produce neurotrophic factors to prevent neural degeneration in sensory hearing loss. For this, co-cultures of ASCs with auditory neurons have been studied, and autologous ASC transplantation has been performed in a guinea pig model of gentamicin-induced sensory hearing loss. In vitro ASCs were neuroprotective and considerably increased the neuritogenesis of auditory neurons. In vivo transplantation of ASCs into the scala tympani resulted in an enhanced survival of auditory neurons. Specifically, peripheral AN processes that are assumed to be the optimal activation site for CI stimulation and that are particularly vulnerable to hair cell loss showed a significantly higher survival rate in ASC-treated ears. ASC transplantation into the inner ear may restore neurotrophic support in sensory hearing loss and may help to improve CI performance by enhanced AN survival. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Graphene-Based Optical Biosensors and Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhiwen; He, Shijiang; Pei, Hao

    2014-01-13

    This chapter focuses on the design, fabrication and application of graphene based optical nanobiosensors. The emerging graphene based optical nanobiosensors demonstrated the promising bioassay and biomedical applications thanking to the unique optical features of graphene. According to the different applications, the graphene can be tailored to form either fluorescent emitter or efficient fluorescence quencher. The exceptional electronic feature of graphene makes it a powerful platform for fabricating the SPR and SERS biosensors. Today the graphene based optical biosensors have been constructed to detect various targets including ions, small biomolecules, DNA/RNA and proteins. This chapter reviews the recent progress in graphene-basedmore » optical biosensors and discusses the opportunities and challenges in this field.« less

  1. S-Layer Protein-Based Biosensors.

    PubMed

    Schuster, Bernhard

    2018-04-11

    The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  2. Tectonigral Projections in the Primate: A Pathway for Pre-Attentive Sensory Input to Midbrain Dopaminergic Neurons

    PubMed Central

    May, Paul J.; McHaffie, John G.; Stanford, Terrence R.; Jiang, Huai; Costello, M. Gabriela; Coizet, Veronique; Hayes, Lauren M.; Haber, Suzanne N.; Redgrave, Peter

    2010-01-01

    Much of the evidence linking the short-latency phasic signaling of midbrain dopaminergic neurons with reward-prediction errors used in learning and habit formation comes from recording the visual responses of monkey dopaminergic neurons. However, the information encoded by dopaminergic neuron activity is constrained by the qualities of the afferent visual signals made available to these cells. Recent evidence from rats and cats indicates the primary source of this visual input originates subcortically, via a direct tectonigral projection. The present anatomical study sought to establish whether a direct tectonigral projection is a significant feature of the primate brain. Injections of anterograde tracers into the superior colliculus of macaque monkeys labelled terminal arbors throughout the substantia nigra, with the densest terminations in the dorsal tier. Labelled boutons were found in close association (possibly indicative of synaptic contact) with ventral midbrain neurons staining positively for the dopaminergic marker tyrosine hydroxylase. Injections of retrograde tracer confined to the macaque substantia nigra retrogradely labelled small to medium sized neurons in the intermediate and deep layers of the superior colliculus. Together, these data indicate that a direct tectonigral projection is also a feature of the monkey brain, and therefore likely to have been conserved throughout mammalian evolution. Insofar as the superior colliculus is configured to detect unpredicted, biologically salient, sensory events, it may be safer to regard the phasic responses of midbrain dopaminergic neurons as ‘sensory prediction errors’ rather than ‘reward prediction errors’, in which case, dopamine-based theories of reinforcement learning will require revision. PMID:19175405

  3. Device considerations for development of conductance-based biosensors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Scott, Adina; Alam, Muhammad A.; Janes, David B.

    2009-01-01

    Design and fabrication of electronic biosensors based on field-effect-transistor (FET) devices require understanding of interactions between semiconductor surfaces and organic biomolecules. From this perspective, we review practical considerations for electronic biosensors with emphasis on molecular passivation effects on FET device characteristics upon immobilization of organic molecules and an electrostatic model for FET-based biosensors. PMID:24753627

  4. Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy.

    PubMed

    Altmann, Christine; Hardt, Stefanie; Fischer, Caroline; Heidler, Juliana; Lim, Hee-Young; Häussler, Annett; Albuquerque, Boris; Zimmer, Béla; Möser, Christine; Behrends, Christian; Koentgen, Frank; Wittig, Ilka; Schmidt, Mirko H H; Clement, Albrecht M; Deller, Thomas; Tegeder, Irmgard

    2016-12-01

    Peripheral or central nerve injury is a frequent cause of chronic pain and the mechanisms are not fully understood. Using newly generated transgenic mice we show that progranulin overexpression in sensory neurons attenuates neuropathic pain after sciatic nerve injury and accelerates nerve healing. A yeast-2-hybrid screen revealed putative interactions of progranulin with autophagy-related proteins, ATG12 and ATG4b. This was supported by colocalization and proteomic studies showing regulations of ATG13 and ATG4b and other members of the autophagy network, lysosomal proteins and proteins involved in endocytosis. The association of progranulin with the autophagic pathway was functionally confirmed in primary sensory neurons. Autophagy and survival were impaired in progranulin-deficient neurons and improved in progranulin overexpressing neurons. Nerve injury in vivo caused an accumulation of LC3b-EGFP positive bodies in neurons of the dorsal root ganglia and nerves suggesting an impairment of autophagic flux. Overexpression of progranulin in these neurons was associated with a reduction of the stress marker ATF3, fewer protein aggregates in the injured nerve and enhanced stump healing. At the behavioral level, further inhibition of the autophagic flux by hydroxychloroquine intensified cold and heat nociception after sciatic nerve injury and offset the pain protection provided by progranulin. We infer that progranulin may assist in removal of protein waste and thereby helps to resolve neuropathic pain after nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Expression of vesicular glutamate transporters in sensory and autonomic neurons innervating the mouse bladder.

    PubMed

    Brumovsky, Pablo R; Seal, Rebecca P; Lundgren, Kerstin H; Seroogy, Kim B; Watanabe, Masahiko; Gebhart, G F

    2013-06-01

    VGLUTs, which are essential for loading glutamate into synaptic vesicles, are present in various neuronal systems. However, to our knowledge the expression of VGLUTs in neurons innervating the bladder has not yet been analyzed. We studied VGLUT1, VGLUT2 and VGLUT3 in mouse bladder neurons. We analyzed the expression of VGLUT1, VGLUT2 and calcitonin gene-related peptide by immunohistochemistry in the retrograde labeled primary afferent and autonomic neurons of BALB/c mice after injecting fast blue in the bladder wall. To study VGLUT3 we traced the bladder of transgenic mice, in which VGLUT3 is identified by enhanced green fluorescent protein detection. Most bladder dorsal root ganglion neurons expressed VGLUT2. A smaller percentage of neurons also expressed VGLUT1 or VGLUT3. Co-expression with calcitonin gene-related peptide was only observed for VGLUT2. Occasional VGLUT2 immunoreactive neurons were seen in the major pelvic ganglia. Abundant VGLUT2 immunoreactive nerves were detected in the bladder dome and trigone, and the urethra. VGLUT1 immunoreactive nerves were discretely present. We present what are to our knowledge novel data on VGLUT expression in sensory and autonomic neurons innervating the mouse bladder. The frequent association of VGLUT2 and calcitonin gene-related peptide in sensory neurons suggests interactions between glutamatergic and peptidergic neurotransmissions, potentially influencing commonly perceived sensations in the bladder, such as discomfort and pain. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Aromatase inhibitors augment nociceptive behaviors in rats and enhance the excitability of sensory neurons

    PubMed Central

    Robarge, Jason D.; Duarte, Djane B.; Shariati, Behzad; Wang, Ruizhong; Flockhart, David A.; Vasko, Michael R.

    2016-01-01

    Although aromatase inhibitors (AIs) are commonly used therapies for breast cancer, their use is limited because they produce arthralgia in a large number of patients. To determine whether AIs produce hypersensitivity in animal models of pain, we examined the effects of the AI, letrozole, on mechanical, thermal, and chemical sensitivity in rats. In ovariectomized (OVX) rats, administering a single dose of 1 or 5 mg/kg letrozole significantly reduced mechanical paw withdrawal thresholds, without altering thermal sensitivity. Repeated injection of 5 mg/kg letrozole in male rats produced mechanical, but not thermal, hypersensitivity that extinguished when drug dosing was stopped. A single dose of 5 mg/kg letrozole or daily dosing of letrozole or exemestane in male rats also augmented flinching behavior induced by intraplantar injection of 1000 nmol of adenosine 5′-triphosphate (ATP). To determine whether sensitization of sensory neurons contributed to AI-induced hypersensitivity, we evaluated the excitability of neurons isolated from dorsal root ganglia of male rats chronically treated with letrozole. Both small and medium-diameter sensory neurons isolated from letrozole-treated rats were more excitable, as reflected by increased action potential firing in response to a ramp of depolarizing current, a lower resting membrane potential, and a lower rheobase. However, systemic letrozole treatment did not augment the stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP) from spinal cord slices, suggesting that the enhanced nociceptive responses were not secondary to an increase in peptide release from sensory endings in the spinal cord. These results provide the first evidence that AIs modulate the excitability of sensory neurons, which may be a primary mechanism for the effect of these drugs to augment pain behaviors in rats. PMID:27072527

  7. Identification of the Sensory Neuron Specific Regulatory Region for the Mouse Gene Encoding the Voltage Gated Sodium Channel Nav1.8

    PubMed Central

    Puhl, Henry L.; Ikeda, Stephen R.

    2008-01-01

    Voltage-gated sodium channels (VGSC) are critical membrane components that participate in the electrical activity of excitable cells. The type one VGSC family includes the tetrodotoxin insensitive sodium channel, Nav1.8, encoded by the Scn10a gene. Nav1.8 expression is restricted to small and medium diameter nociceptive sensory neurons of the dorsal root (DRG) and cranial sensory ganglia. In order to understand the stringent transcriptional regulation of the Scn10a gene, the sensory neuron specific promoter was functionally identified. While identifying the mRNA 5’ end, alternative splicing within the 5’ UTR was observed to create heterogeneity in the RNA transcript. Four kilobases of upstream genomic DNA was cloned and the presence of tissue specific promoter activity was tested by microinjection and adenoviral infection of fluorescent protein reporter constructs into primary mouse and rat neurons, and cell lines. The region contained many putative transcription factor binding sites and strong homology with the predicted rat ortholog. Homology to the predicted human ortholog was limited to the proximal end and several conserved cis elements were noted. Two regulatory modules were identified by microinjection of reporter constructs into DRG and superior cervical ganglia neurons: a neuron specific proximal promoter region between −1.6 and −0.2kb of the transcription start site cluster, and a distal sensory neuron switch region beyond −1.6kb that restricted fluorescent protein expression to a subset of primary sensory neurons. PMID:18466327

  8. Thy1.2 YFP-16 Transgenic Mouse Labels a Subset of Large-Diameter Sensory Neurons that Lack TRPV1 Expression

    PubMed Central

    Taylor-Clark, Thomas E.; Wu, Kevin Y.; Thompson, Julie-Ann; Yang, Kiseok; Bahia, Parmvir K.; Ajmo, Joanne M.

    2015-01-01

    The Thy1.2 YFP-16 mouse expresses yellow fluorescent protein (YFP) in specific subsets of peripheral and central neurons. The original characterization of this model suggested that YFP was expressed in all sensory neurons, and this model has been subsequently used to study sensory nerve structure and function. Here, we have characterized the expression of YFP in the sensory ganglia (DRG, trigeminal and vagal) of the Thy1.2 YFP-16 mouse, using biochemical, functional and anatomical analyses. Despite previous reports, we found that YFP was only expressed in approximately half of DRG and trigeminal neurons and less than 10% of vagal neurons. YFP-expression was only found in medium and large-diameter neurons that expressed neurofilament but not TRPV1. YFP-expressing neurons failed to respond to selective agonists for TRPV1, P2X2/3 and TRPM8 channels in Ca2+ imaging assays. Confocal analysis of glabrous skin, hairy skin of the back and ear and skeletal muscle indicated that YFP was expressed in some peripheral terminals with structures consistent with their presumed non-nociceptive nature. In summary, the Thy1.2 YFP-16 mouse expresses robust YFP expression in only a subset of sensory neurons. But this mouse model is not suitable for the study of nociceptive nerves or the function of such nerves in pain and neuropathies. PMID:25746468

  9. Current Trends in Nanomaterial-Based Amperometric Biosensors

    PubMed Central

    Hayat, Akhtar; Catanante, Gaëlle; Marty, Jean Louis

    2014-01-01

    The last decade has witnessed an intensive research effort in the field of electrochemical sensors, with a particular focus on the design of amperometric biosensors for diverse analytical applications. In this context, nanomaterial integration in the construction of amperometric biosensors may constitute one of the most exciting approaches. The attractive properties of nanomaterials have paved the way for the design of a wide variety of biosensors based on various electrochemical detection methods to enhance the analytical characteristics. However, most of these nanostructured materials are not explored in the design of amperometric biosensors. This review aims to provide insight into the diverse properties of nanomaterials that can be possibly explored in the construction of amperometric biosensors. PMID:25494347

  10. Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations

    PubMed Central

    Kim, Seungil; Barry, Devin M.; Liu, Xian-Yu; Yin, Shijin; Munanairi, Admire; Meng, Qing-Tao; Cheng, Wei; Mo, Ping; Wan, Li; Liu, Shen-Bin; Ratnayake, Kasun; Zhao, Zhong-Qiu; Gautam, Narasimhan; Zheng, Jie; Ajith Karunarathne, W. K.; Chen, Zhou-Feng

    2017-01-01

    The transient receptor potential channels (TRPs) respond to chemical irritants and temperature. TRPV1 responds to the itch-inducing endogenous signal histamine, and TRPA1 responds to the itch-inducing chemical chloroquine. We showed that, in sensory neurons, TRPV4 is important for both chloroquine-and histamine-induced itch and that TRPV1 has a role in chloroquine-induced itch. Chloroquine-induced scratching was reduced in mice in which TRPV1 was knocked down or pharmacologically inhibited. Both TRPV4 and TRPV1 were present in some sensory neurons. Pharmacological blockade of either TRPV4 or TRPV1 significantly attenuated the Ca2+ response of sensory neurons exposed to histamine or chloroquine. Knockout of Trpv1 impaired Ca2+ responses and reduced scratching behavior evoked by a TRPV4 agonist, whereas knockout of Trpv4 did not alter TRPV1-mediated capsaicin responses. Electrophysiological analysis of human embryonic kidney (HEK) 293 cells coexpressing TRPV4 and TRPV1 revealed that the presence of both channels enhanced the activation kinetics of TRPV4 but not of TRPV1. Biochemical and biophysical studies suggested a close proximity between TRPV4 and TRPV1 in dorsal root ganglion neurons and in cultured cells. Thus, our studies identified TRPV4 as a channel that contributes to both histamine- and chloroquine-induced itch and indicated that the function of TRPV4 in itch signaling involves TRPV1-mediated facilitation. TRP facilitation through the formation of heteromeric complexes could be a prevalent mechanism by which the vast array of somatosensory information is encoded in sensory neurons. PMID:27436359

  11. A New Laccase Based Biosensor for Tartrazine.

    PubMed

    Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu

    2017-12-09

    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM ( R ² = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  12. A New Laccase Based Biosensor for Tartrazine

    PubMed Central

    Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu

    2017-01-01

    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R2 = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis. PMID:29232842

  13. TrpA1 activation in peripheral sensory neurons underlies the ionic basis of pain hypersensitivity in response to vinca alkaloids

    PubMed Central

    Boiko, Nina; Medrano, Geraldo; Montano, Elizabeth; Jiang, Nan; Williams, Claire R.; Madungwe, Ngonidzashe B.; Bopassa, Jean C.; Kim, Charles C.; Parrish, Jay Z.; Hargreaves, Kenneth M.

    2017-01-01

    Chemotherapy induced peripheral neuropathy (CIPN), a side effect of many anti-cancer drugs including the vinca alkaloids, is characterized by a severe pain syndrome that compromises treatment in many patients. Currently there are no effective treatments for this pain syndrome except for the reduction of anti-cancer drug dose. Existing data supports the model that the pain associated with CIPN is the result of anti-cancer drugs augmenting the function of the peripheral sensory nociceptors but the cellular mechanisms underlying the effects of anti-cancer drugs on sensory neuron function are not well described. Studies from animal models have suggested a number of disease etiologies including mitotoxicity, axonal degeneration, immune signaling, and reduced sensory innervations but these outcomes are the result of prolonged treatment paradigms and do not necessarily represent the early formative events associated with CIPN. Here we show that acute exposure to vinca alkaloids results in an immediate pain syndrome in both flies and mice. Furthermore, we demonstrate that exposure of isolated sensory neurons to vinca alkaloids results in the generation of an inward sodium current capable of depolarizing these neurons to threshold resulting in neuronal firing. These neuronal effects of vinca alkaloids require the transient receptor potential ankyrin-1 (TrpA1) channel, and the hypersensitization to painful stimuli in response to the acute exposure to vinca alkaloids is reduced in TrpA1 mutant flies and mice. These findings demonstrate the direct excitation of sensory neurons by CIPN-causing chemotherapy drugs, and identify TrpA1 as an important target during the pathogenesis of CIPN. PMID:29084244

  14. Capsaicin-induced reactivation of latent herpes simplex virus type 1 in sensory neurons in culture.

    PubMed

    Hunsperger, Elizabeth A; Wilcox, Christine L

    2003-05-01

    Herpes simplex virus type 1 (HSV-1) produces a life-long latent infection in neurons of the peripheral nervous system, primarily in the trigeminal and dorsal root ganglia. Neurons of these ganglia express high levels of the capsaicin receptor, also known as the vanilloid receptor-1 (VR-1). VR-1 is a non-selective ion channel, found on sensory neurons, that primarily fluxes Ca(2+) ions in response to various stimuli, including physiologically acidic conditions, heat greater than 45 degrees C and noxious compounds such as capsaicin. Using an in vitro neuronal model to study HSV-1 latency and reactivation, we found that agonists of the VR-1 channel - capsaicin and heat - resulted in reactivation of latent HSV-1. Capsaicin-induced reactivation of HSV-1 latently infected neurons was dose-dependent. Additionally, activation of VR-1 at its optimal temperature of 46 degrees C caused a significant increase in virus titres, which could be attenuated with the VR-1 antagonist, capsazepine. VR-1 activation that resulted in HSV-1 reactivation was calcium-dependent, since the calcium chelator BAPTA significantly reduced reactivation following treatment with caspsaicin and forskolin. Taken together, these results suggest that activation of the VR-1 channel, often associated with increases in intracellular calcium, results in HSV-1 reactivation in sensory neurons.

  15. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons

    NASA Technical Reports Server (NTRS)

    Postigo, Antonio; Calella, Anna Maria; Fritzsch, Bernd; Knipper, Marlies; Katz, David; Eilers, Andreas; Schimmang, Thomas; Lewin, Gary R.; Klein, Rudiger; Minichiello, Liliana

    2002-01-01

    Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

  16. Effect of aging on gastric mucosal defense mechanisms: ROS, apoptosis, angiogenesis, and sensory neurons.

    PubMed

    Kang, Jung Mook; Kim, Nayoung; Kim, Joo-Hyon; Oh, Euichaul; Lee, Bong-Yong; Lee, Byoung Hwan; Shin, Cheol Min; Park, Ji Hyun; Lee, Mi Kyoung; Nam, Ryoung Hee; Lee, Hee Eun; Lee, Hye Seung; Kim, Joo Sung; Jung, Hyun Chae; Song, In Sung

    2010-11-01

    Aging changes in the stomach lead to a decreased capacity for tissue repair in response to gastric acid. The aim of this study was to determine the mechanism associated with the increased susceptibility to injury of aging mucosa including reactive oxygen species (5), apoptosis, angiogenesis, and sensory neuron activity. Fischer 344 rats at four different ages (6, 31, 74 wk, and 2 yr of age) were studied. The connective tissue indicators [salt-soluble collagen and sulfated glycosaminoglycan (sGAG)], lipid hydroperoxide (LPO), myeloperoxidase (MPO), and hexosamine were assessed. We also evaluated the expression of early growth response-1 (Egr-1), phosphatase and tension homologue deleted on chromosome 10 (PTEN), caspase-9 (index of apoptosis), VEGF (index of angiogenesis), calcitonin gene-related peptide (CGRP, index of sensory neurons), and neuronal nitric oxide synthase (nNOS). The histological connective tissue area in the lower part of rat gastric mucosa increased with aging, with increase of salt-soluble collagen and sGAG. LPO and MPO in old rats were significantly greater than in the young rats, whereas hexosamine was significantly reduced. The old gastric mucosa had increased expression of Egr-1, PTEN, and caspase-9, whereas the VEGF, CGRP, and nNOS expression were significantly reduced. These results indicate that the lower part of rat gastric mucosa was found to be replaced by connective tissue with accumulation of oxidative products with aging. In addition, impairment of apoptosis, angiogenesis, and sensory neuron activity via the activation of Egr-1 and PTEN might increase the susceptibility of gastric mucosa to injury during aging.

  17. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  18. Thrombospondin-4 divergently regulates voltage-gated Ca2+ channel subtypes in sensory neurons after nerve injury.

    PubMed

    Pan, Bin; Guo, Yuan; Wu, Hsiang-En; Park, John; Trinh, Van Nancy; Luo, Z David; Hogan, Quinn H

    2016-09-01

    Loss of high-voltage-activated (HVA) calcium current (ICa) and gain of low-voltage-activated (LVA) ICa after painful peripheral nerve injury cause elevated excitability in sensory neurons. Nerve injury is also accompanied by increased expression of the extracellular matrix glycoprotein thrombospondin-4 (TSP4), and interruption of TSP4 function can reverse or prevent behavioral hypersensitivity after injury. We therefore investigated TSP4 regulation of ICa in dorsal root ganglion (DRG) neurons. During depolarization adequate to activate HVA ICa, TSP4 decreases both N- and L-type ICa and the associated intracellular calcium transient. In contrast, TSP4 increases ICa and the intracellular calcium signal after low-voltage depolarization, which we confirmed is due to ICa through T-type channels. These effects are blocked by gabapentin, which ameliorates neuropathic pain by targeting the α2δ1 calcium subunit. Injury-induced changes of HVA and LVA ICa are attenuated in TSP4 knockout mice. In the neuropathic pain model of spinal nerve ligation, TSP4 application did not further regulate ICa of injured DRG neurons. Taken together, these findings suggest that elevated TSP4 after peripheral nerve injury may contribute to hypersensitivity of peripheral sensory systems by decreasing HVA and increasing LVA in DRG neurons by targeting the α2δ1 calcium subunit. Controlling TSP4 overexpression in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.

  19. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement.

    PubMed

    Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark

    2017-09-01

    Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also

  20. Co-cultures provide a new tool to probe communication between adult sensory neurons and urothelium.

    PubMed

    O'Mullane, Lauren M; Keast, Janet R; Osborne, Peregrine B

    2013-08-01

    Recent evidence suggests that the urothelium functions as a sensory transducer of chemical, mechanical or thermal stimuli and signals to nerve terminals and other cells in the bladder wall. The cellular and molecular basis of neuro-urothelial communication is not easily studied in the intact bladder. This led us to establish a method of co-culturing dorsal root ganglion sensory neurons and bladder urothelial cells. Sensory neurons and urothelial cells obtained from dorsal root ganglia and bladders dissected from adult female Sprague-Dawley® rats were isolated by enzyme treatment and mechanical dissociation. They were plated together or separately on collagen coated substrate and cultured in keratinocyte medium for 48 to 72 hours. Retrograde tracer labeling was performed to identify bladder afferents used for functional testing. Neurite growth and complexity in neurons co-cultured with urothelial cells was increased relative to that in neuronal monocultures. The growth promoting effect of urothelial cells was reduced by the tyrosine kinase inhibitor K252a but upstream inhibition of nerve growth factor signaling with TrkA-Fc had no effect. Fura-2 calcium imaging of urothelial cells showed responses to adenosine triphosphate (100 μM) and activation of TRPV4 (4α-PDD, 10 μM) but not TRPV1 (capsaicin, 1 μM), TRPV3 (farnesyl pyrophosphate, 1 μM) or TRPA1 (mustard oil, 100 μM). In contrast, co-cultured neurons were activated by all agonists except farnesyl pyrophosphate. Co-culturing provides a new methodology for investigating neuro-urothelial interactions in animal models of urological conditions. Results suggest that neuronal properties are maintained in the presence of urothelium and neurite growth is potentiated by a nerve growth factor independent mechanism. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Expression of the P/Q (Cav2.1) calcium channel in nodose sensory neurons and arterial baroreceptors.

    PubMed

    Tatalovic, Milos; Glazebrook, Patricia A; Kunze, Diana L

    2012-06-27

    The predominant calcium current in nodose sensory neurons, including the subpopulation of baroreceptor neurons, is the N-type channel, Cav2.2. It is also the primary calcium channel responsible for transmitter release at their presynaptic terminals in the nucleus of the solitary tract in the brainstem. The P/Q channel, Cav2.1, the other major calcium channel responsible for transmitter release at mammalian synapses, represents only 15-20% of total calcium current in the general population of sensory neurons and makes a minor contribution to transmitter release at the presynaptic terminal. In the present study we identified a subpopulation of the largest nodose neurons (capacitance>50pF) in which, surprisingly, Cav2.1 represents over 50% of the total calcium current, differing from the remainder of the population. Consistent with these electrophysiological data, anti-Cav2.1 antibody labeling was more membrane delimited in a subgroup of the large neurons in slices of nodose ganglia. Data reported in other synapses in the central nervous system assign different roles in synaptic information transfer to the P/Q-type versus N-type calcium channels. The study raises the possibility that the P/Q channel which has been associated with high fidelity transmission at other central synapses serves a similar function in this group of large myelinated sensory afferents, including arterial baroreceptors where a high frequency regular discharge pattern signals the pressure pulse. This contrasts to the irregular lower frequency discharge of the unmyelinated fibers that make up the majority of the sensory population and that utilize the N-type channel in synaptic transmission. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Distribution of binding sites for the plant lectin Ulex europaeus agglutinin I on primary sensory neurones in seven different mammalian species.

    PubMed

    Gerke, Michelle B; Plenderleith, Mark B

    2002-01-01

    There is an increasing body of evidence to suggest that different functional classes of neurones express characteristic cell-surface carbohydrates. Previous studies have shown that the plant lectin Ulex europaeus agglutinin-I (UEA) binds to a population of small to medium diameter primary sensory neurones in rabbits and humans. This suggests that a fucose-containing glycoconjugate may be expressed by nociceptive primary sensory neurones. In order to determine the extent to which this glycoconjugate is expressed by other species, in the current study, we have examined the distribution of UEA-binding sites on primary sensory neurones in seven different mammals. Binding sites for UEA were associated with the plasma membrane and cytoplasmic granules of small to medium dorsal root ganglion cells and their axon terminals in laminae I-III of the grey matter of the spinal cord, in the rabbit, cat and marmoset monkey. However, no binding was observed in either the dorsal root ganglia or spinal cord in the mouse, rat, guinea pig or flying fox. These results indicate an inter-species variation in the expression of cell-surface glycoconjugates on mammalian primary sensory neurones.

  3. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  4. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling

    2013-07-02

    A system for biosensor-based detection of toxins includes providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  5. Yeast-based biosensors: design and applications.

    PubMed

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  6. Dynamic synchronization of ongoing neuronal activity across spinal segments regulates sensory information flow

    PubMed Central

    Contreras-Hernández, E; Chávez, D; Rudomin, P

    2015-01-01

    Previous studies on the correlation between spontaneous cord dorsum potentials recorded in the lumbar spinal segments of anaesthetized cats suggested the operation of a population of dorsal horn neurones that modulates, in a differential manner, transmission along pathways mediating Ib non-reciprocal postsynaptic inhibition and pathways mediating primary afferent depolarization and presynaptic inhibition. In order to gain further insight into the possible neuronal mechanisms that underlie this process, we have measured changes in the correlation between the spontaneous activity of individual dorsal horn neurones and the cord dorsum potentials associated with intermittent activation of these inhibitory pathways. We found that high levels of neuronal synchronization within the dorsal horn are associated with states of incremented activity along the pathways mediating presynaptic inhibition relative to pathways mediating Ib postsynaptic inhibition. It is suggested that ongoing changes in the patterns of functional connectivity within a distributed ensemble of dorsal horn neurones play a relevant role in the state-dependent modulation of impulse transmission along inhibitory pathways, among them those involved in the central control of sensory information. This feature would allow the same neuronal network to be involved in different functional tasks. Key points We have examined, in the spinal cord of the anaesthetized cat, the relationship between ongoing correlated fluctuations of dorsal horn neuronal activity and state-dependent activation of inhibitory reflex pathways. We found that high levels of synchronization between the spontaneous activity of dorsal horn neurones occur in association with the preferential activation of spinal pathways leading to primary afferent depolarization and presynaptic inhibition relative to activation of pathways mediating Ib postsynaptic inhibition. It is suggested that changes in synchronization of ongoing activity within a

  7. An automated compound screening for anti-aging effects on the function of C. elegans sensory neurons.

    PubMed

    Bazopoulou, Daphne; Chaudhury, Amrita R; Pantazis, Alexandros; Chronis, Nikos

    2017-08-24

    Discovery of molecular targets or compounds that alter neuronal function can lead to therapeutic advances that ameliorate age-related neurodegenerative pathologies. Currently, there is a lack of in vivo screening technologies for the discovery of compounds that affect the age-dependent neuronal physiology. Here, we present a high-throughput, microfluidic-based assay for automated manipulation and on-chip monitoring and analysis of stimulus-evoked calcium responses of intact C. elegans at various life stages. First, we successfully applied our technology to quantify the effects of aging and age-related genetic and chemical factors in the calcium transients of the ASH sensory neuron. We then performed a large-scale screen of a library of 107 FDA-approved compounds to identify hits that prevented the age-dependent functional deterioration of ASH. The robust performance of our assay makes it a valuable tool for future high-throughput applications based on in vivo functional imaging.

  8. A creatinine biosensor based on admittance measurement

    NASA Astrophysics Data System (ADS)

    Ching, Congo Tak-Shing; Sun, Tai-Ping; Jheng, Deng-Yun; Tsai, Hou-Wei; Shieh, Hsiu-Li

    2015-08-01

    Regular check of blood creatinine level is very important as it is a measurement of renal function. Therefore, the objective of this study is to develop a simple and reliable creatinine biosensor based on admittance measurement for precise determination of creatinine. The creatinine biosensor was fabricated with creatinine deiminase immobilized on screen-printed carbon electrodes. Admittance measurement at a specific frequency ranges (22.80 - 84.71 Hz) showed that the biosensor has an excellent linear (r2 > 0.95) response range (50 - 250 uM), which covers the normal physiological and pathological ranges of blood creatinine levels. Intraclass correlation coefficient (ICC) showed that the biosensor has excellent reliability and validity (ICC = 0.98). In conclusion, a simple and reliable creatinine biosensor was developed and it is capable of precisely determining blood creatinine levels in both the normal physiological and pathological ranges.

  9. A thermal biosensor based on enzyme reaction.

    PubMed

    Zheng, Yi-Hua; Hua, Tse-Chao; Xu, Fei

    2005-01-01

    Application of the thermal biosensor as analytical tool is promising due to advantages as universal, simplicity and quick response. A novel thermal biosensor based on enzyme reaction has been developed. This biosensor is a flow injection analysis system and consists of two channels with enzyme reaction column and reference column. The reference column, which is set for eliminating the unspecific heat, is inactived on special enzyme reaction of the ingredient to be detected. The special enzyme reaction takes places in the enzyme reaction column at a constant temperature realizing by a thermoelectric thermostat. Thermal sensor based on the thermoelectric module containing 127 serial BiTe-thermocouples is used to monitor the temperature difference between two streams from the enzyme reaction column and the reference column. The analytical example for dichlorvos shows that this biosensor can be used as analytical tool in medicine and biology.

  10. Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia.

    PubMed

    Cao, Lishuang; McDonnell, Aoibhinn; Nitzsche, Anja; Alexandrou, Aristos; Saintot, Pierre-Philippe; Loucif, Alexandre J C; Brown, Adam R; Young, Gareth; Mis, Malgorzata; Randall, Andrew; Waxman, Stephen G; Stanley, Philip; Kirby, Simon; Tarabar, Sanela; Gutteridge, Alex; Butt, Richard; McKernan, Ruth M; Whiting, Paul; Ali, Zahid; Bilsland, James; Stevens, Edward B

    2016-04-20

    In common with other chronic pain conditions, there is an unmet clinical need in the treatment of inherited erythromelalgia (IEM). TheSCN9Agene encoding the sodium channel Nav1.7 expressed in the peripheral nervous system plays a critical role in IEM. A gain-of-function mutation in this sodium channel leads to aberrant sensory neuronal activity and extreme pain, particularly in response to heat. Five patients with IEM were treated with a new potent and selective compound that blocked the Nav1.7 sodium channel resulting in a decrease in heat-induced pain in most of the patients. We derived induced pluripotent stem cell (iPSC) lines from four of five subjects and produced sensory neurons that emulated the clinical phenotype of hyperexcitability and aberrant responses to heat stimuli. When we compared the severity of the clinical phenotype with the hyperexcitability of the iPSC-derived sensory neurons, we saw a trend toward a correlation for individual mutations. The in vitro IEM phenotype was sensitive to Nav1.7 blockers, including the clinical test agent. Given the importance of peripherally expressed sodium channels in many pain conditions, our approach may have broader utility for a wide range of pain and sensory conditions. Copyright © 2016, American Association for the Advancement of Science.

  11. Hyperlipidemic Diet Causes Loss of Olfactory Sensory Neurons, Reduces Olfactory Discrimination, and Disrupts Odor-Reversal Learning

    PubMed Central

    Thiebaud, Nicolas; Johnson, Melissa C.; Butler, Jessica L.; Bell, Genevieve A.; Ferguson, Kassandra L.; Fadool, Andrew R.; Fadool, James C.; Gale, Alana M.; Gale, David S.

    2014-01-01

    Currently, 65% of Americans are overweight, which leads to well-supported cardiovascular and cognitive declines. Little, however, is known concerning obesity's impact on sensory systems. Because olfaction is linked with ingestive behavior to guide food choice, its potential dysfunction during obesity could evoke a positive feedback loop to perpetuate poor ingestive behaviors. To determine the effect of chronic energy imbalance and reveal any structural or functional changes associated with obesity, we induced long-term, diet-induced obesity by challenging mice to high-fat diets: (1) in an obesity-prone (C57BL/6J) and obesity-resistant (Kv1.3−/−) line of mice, and compared this with (2) late-onset, genetic-induced obesity in MC4R−/− mice in which diabetes secondarily precipitates after disruption of the hypothalamic axis. We report marked loss of olfactory sensory neurons and their axonal projections after exposure to a fatty diet, with a concomitant reduction in electro-olfactogram amplitude. Loss of olfactory neurons and associated circuitry is linked to changes in neuronal proliferation and normal apoptotic cycles. Using a computer-controlled, liquid-based olfactometer, mice maintained on fatty diets learn reward-reinforced behaviors more slowly, have deficits in reversal learning demonstrating behavioral inflexibility, and exhibit reduced olfactory discrimination. When obese mice are removed from their high-fat diet to regain normal body weight and fasting glucose, olfactory dysfunctions are retained. We conclude that chronic energy imbalance therefore presents long-lasting structural and functional changes in the operation of the sensory system designed to encode external and internal chemical information and leads to altered olfactory- and reward-driven behaviors. PMID:24828650

  12. Using artificial neural networks to classify unknown volatile chemicals from the firings of insect olfactory sensory neurons.

    PubMed

    Bachtiar, Luqman R; Unsworth, Charles P; Newcomb, Richard D; Crampin, Edmund J

    2011-01-01

    The olfactory system detects volatile chemical compounds, known as odour molecules or odorants. Such odorants have a diverse chemical structure which in turn interact with the receptors of the olfactory system. The insect olfactory system provides a unique opportunity to directly measure the firing rates that are generated by the individual olfactory sensory neurons (OSNs) which have been stimulated by odorants in order to use this data to inform their classification. In this work, we demonstrate that it is possible to use the firing rates from an array of OSNs of the vinegar fly, Drosophila melanogaster, to train an Artificial Neural Network (ANN), as a series of a Multi-Layer Perceptrons (MLPs), to differentiate between eight distinct chemical classes. We demonstrate that the MLPs when trained on 108 odorants, for both clean and 10% noise injected data, can reliably identify 87% of an unseen validation set of chemicals using noise injection. In addition, the noise injected MLPs provide a more accurate level of identification. This demonstrates that a 10% noise injected series of MLPs provides a robust method for classifying chemicals from the firing rates of OSNs and paves the way to a future realisation of an artificial olfactory biosensor.

  13. A Sensitive Membrane-Targeted Biosensor for Monitoring Changes in Intracellular Chloride in Neuronal Processes

    PubMed Central

    Watts, Spencer D.; Suchland, Katherine L.; Amara, Susan G.; Ingram, Susan L.

    2012-01-01

    Background Regulation of chloride gradients is a major mechanism by which excitability is regulated in neurons. Disruption of these gradients is implicated in various diseases, including cystic fibrosis, neuropathic pain and epilepsy. Relatively few studies have addressed chloride regulation in neuronal processes because probes capable of detecting changes in small compartments over a physiological range are limited. Methodology/Principal Findings In this study, a palmitoylation sequence was added to a variant of the yellow fluorescent protein previously described as a sensitive chloride indicator (YFPQS) to target the protein to the plasma membrane (mbYFPQS) of cultured midbrain neurons. The reporter partitions to the cytoplasmic face of the cellular membranes, including the plasma membrane throughout the neurons and fluorescence is stable over 30–40 min of repeated excitation showing less than 10% decrease in mbYFPQS fluorescence compared to baseline. The mbYFPQS has similar chloride sensitivity (k50 =  41 mM) but has a shifted pKa compared to the unpalmitoylated YFPQS variant (cytYFPQS) that remains in the cytoplasm when expressed in midbrain neurons. Changes in mbYFPQS fluorescence were induced by the GABAA agonist muscimol and were similar in the soma and processes of the midbrain neurons. Amphetamine also increased mbYFPQS fluorescence in a subpopulation of cultured midbrain neurons that was reversed by the selective dopamine transporter (DAT) inhibitor, GBR12909, indicating that mbYFPQS is sensitive enough to detect endogenous DAT activity in midbrain dopamine (DA) neurons. Conclusions/Significance The mbYFPQS biosensor is a sensitive tool to study modulation of intracellular chloride levels in neuronal processes and is particularly advantageous for simultaneous whole-cell patch clamp and live-cell imaging experiments. PMID:22506078

  14. Development of biosensors based on the one-dimensional semiconductor nanomaterials.

    PubMed

    Yan, Shancheng; Shi, Yi; Xiao, Zhongdang; Zhou, Minmin; Yan, Wenfu; Shen, Haoliang; Hu, Dong

    2012-09-01

    Biosensors are becoming increasingly important due to their applications in biological and chemical analyses, food safety industry, biomedical diagnostics, clinical detection, and environmental monitoring. Recent years, nanostructured semiconductor materials have been used to fabricate biosensors owing to their biocompatibility, low toxicity, high electron mobility, and easy fabrication. In the present study, we focus on recent various biosensors based on the one-dimensional semiconductor nanomaterials such as electrochemical biosensor, field-effect transistors biosensor, and label-free optical biosensor. In particular, the development of the electrochemical biosensor is discussed detailedly.

  15. Design Strategies for Aptamer-Based Biosensors

    PubMed Central

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  16. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus.

    PubMed

    Liu, Zhenyu; Hu, Youtian; Yu, Xiaoyun; Xi, Jiefeng; Fan, Xiaoming; Tse, Chung-Ming; Myers, Allen C; Pasricha, Pankaj J; Li, Xingde; Yu, Shaoyong

    2015-03-15

    Transient receptor potential A1 (TRPA1) is a newly defined cationic ion channel, which selectively expresses in primary sensory afferent nerve, and is essential in mediating inflammatory nociception. Our previous study demonstrated that TRPA1 plays an important role in tissue mast cell activation-induced increase in the excitability of esophageal vagal nodose C fibers. The present study aims to determine whether prolonged antigen exposure in vivo sensitizes TRPA1 in a guinea pig model of eosinophilic esophagitis (EoE). Antigen challenge-induced responses in esophageal mucosa were first assessed by histological stains and Ussing chamber studies. TRPA1 function in vagal sensory neurons was then studied by calcium imaging and by whole cell patch-clamp recordings in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal vagal nodose and jugular neurons. Extracellular single-unit recordings were performed in vagal nodose and jugular C-fiber neuron subtypes using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Antigen challenge significantly increased infiltrations of eosinophils and mast cells in the esophagus. TRPA1 agonist allyl isothiocyanate (AITC)-induced calcium influx in nodose and jugular neurons was significantly increased, and current densities in esophageal DiI-labeled nodose and jugular neurons were also significantly increased in antigen-challenged animals. Prolonged antigen challenge decreased esophageal epithelial barrier resistance, which allowed intraesophageal-infused AITC-activating nodose and jugular C fibers at their nerve endings. Collectively, these results demonstrated that prolonged antigen challenge sensitized TRPA1 in esophageal sensory neurons and afferent C fibers. This novel finding will help us to better understand the molecular mechanism underlying esophageal sensory and motor dysfunctions in EoE. Copyright © 2015 the American Physiological Society.

  17. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus

    PubMed Central

    Liu, Zhenyu; Hu, Youtian; Yu, Xiaoyun; Xi, Jiefeng; Fan, Xiaoming; Tse, Chung-Ming; Myers, Allen C.; Pasricha, Pankaj J.; Li, Xingde

    2015-01-01

    Transient receptor potential A1 (TRPA1) is a newly defined cationic ion channel, which selectively expresses in primary sensory afferent nerve, and is essential in mediating inflammatory nociception. Our previous study demonstrated that TRPA1 plays an important role in tissue mast cell activation-induced increase in the excitability of esophageal vagal nodose C fibers. The present study aims to determine whether prolonged antigen exposure in vivo sensitizes TRPA1 in a guinea pig model of eosinophilic esophagitis (EoE). Antigen challenge-induced responses in esophageal mucosa were first assessed by histological stains and Ussing chamber studies. TRPA1 function in vagal sensory neurons was then studied by calcium imaging and by whole cell patch-clamp recordings in 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal vagal nodose and jugular neurons. Extracellular single-unit recordings were performed in vagal nodose and jugular C-fiber neuron subtypes using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Antigen challenge significantly increased infiltrations of eosinophils and mast cells in the esophagus. TRPA1 agonist allyl isothiocyanate (AITC)-induced calcium influx in nodose and jugular neurons was significantly increased, and current densities in esophageal DiI-labeled nodose and jugular neurons were also significantly increased in antigen-challenged animals. Prolonged antigen challenge decreased esophageal epithelial barrier resistance, which allowed intraesophageal-infused AITC-activating nodose and jugular C fibers at their nerve endings. Collectively, these results demonstrated that prolonged antigen challenge sensitized TRPA1 in esophageal sensory neurons and afferent C fibers. This novel finding will help us to better understand the molecular mechanism underlying esophageal sensory and motor dysfunctions in EoE. PMID:25591867

  18. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia.

    PubMed

    Baral, Pankaj; Umans, Benjamin D; Li, Lu; Wallrapp, Antonia; Bist, Meghna; Kirschbaum, Talia; Wei, Yibing; Zhou, Yan; Kuchroo, Vijay K; Burkett, Patrick R; Yipp, Bryan G; Liberles, Stephen D; Chiu, Isaac M

    2018-05-01

    Lung-innervating nociceptor sensory neurons detect noxious or harmful stimuli and consequently protect organisms by mediating coughing, pain, and bronchoconstriction. However, the role of sensory neurons in pulmonary host defense is unclear. Here, we found that TRPV1 + nociceptors suppressed protective immunity against lethal Staphylococcus aureus pneumonia. Targeted TRPV1 + -neuron ablation increased survival, cytokine induction, and lung bacterial clearance. Nociceptors suppressed the recruitment and surveillance of neutrophils, and altered lung γδ T cell numbers, which are necessary for immunity. Vagal ganglia TRPV1 + afferents mediated immunosuppression through release of the neuropeptide calcitonin gene-related peptide (CGRP). Targeting neuroimmunological signaling may be an effective approach to treat lung infections and bacterial pneumonia.

  19. Developmental emergence of different forms of neuromodulation in Aplysia sensory neurons.

    PubMed

    Marcus, E A; Carew, T J

    1998-04-14

    The capacity for neuromodulation and biophysical plasticity is a defining feature of most mature neuronal cell types. In several cases, modulation at the level of the individual neuron has been causally linked to changes in the functional output of a neuronal circuit and subsequent adaptive changes in the organism's behavioral responses. Understanding how such capacity for neuromodulation develops therefore may provide insights into the mechanisms both of neuronal development and learning and memory. We have examined the development of multiple forms of neuromodulation triggered by a common neurotransmitter, serotonin, in the pleural sensory neurons of Aplysia californica. We have found that multiple signaling cascades within a single neuron develop sequentially, with some being expressed only very late in development. In addition, our data suggest a model in which, within a single neuromodulatory pathway, the elements of the signaling cascade are developmentally expressed in a "retrograde" manner with the ionic channel that is modulated appearing early in development, functional elements in the second messenger cascade appearing later, and finally, coupling of the second messenger cascade to the serotonin receptor appearing quite late. These studies provide the characterization of the development of neuromodulation at the level of an identified cell type and offer insights into the potential roles of neuromodulatory processes in development and adult plasticity.

  20. Coexistence of calbindin D-28k and NADPH-diaphorase in vagal and glossopharyngeal sensory neurons of the rat.

    PubMed

    Ichikawa, H; Helke, C J

    1996-10-07

    The presence and coexistence of calbindin D-28k-immunoreactivity (ir) and nicotinamide adenosine dinucleotide phosphate (NADPH)-diaphorase activity (a marker of neurons that are presumed to convert L-arginine to L-citrulline and nitric oxide) were examined in the glossopharyngeal and vagal sensory ganglia (jugular, petrosal and nodose ganglia) of the rat. Calbindin D-28k-ir nerve cells were found in moderate and large numbers in the petrosal and nodose ganglia, respectively. Some calbindin D-28k-ir nerve cells were also observed in the jugular ganglion. NADPH-diaphorase positive nerve cells were localized to the jugular and nodose ganglia and were rare in the petrosal ganglion. A considerable portion (33-51%) of the NADPH-diaphorase positive neurons in these ganglia colocalized calbindin D-28k-ir. The presence and colocalization of calbindin D-28k-ir and NADPH-diaphorase activity in neurotransmitter-identified subpopulations of visceral sensory neurons were also studied. In all three ganglia, calcitonin gene-related peptide (CGRP)-ir was present in many NADPH-diaphorase positive neurons, a subset of which also contained calbindin D-28k-ir. In the nodose ganglion, many (42%) of tyrosine hydroxylase (TH)-ir neurons also contained NADPH diaphorase activity but did not contain calbindin D-28k-ir. These data are consistent with a potential co-operative role for calbindin D-28k and NADPH-diaphorase in the functions of a subpopulation of vagal and glossopharyngeal sensory neurons.

  1. Proper development of relay somatic sensory neurons and D2/D4 interneurons requires homeobox genes Rnx/Tlx-3 and Tlx-1

    PubMed Central

    Qian, Ying; Shirasawa, Senji; Chen, Chih-Li; Cheng, Leping; Ma, Qiufu

    2002-01-01

    Trigeminal nuclei and the dorsal spinal cord are first-order relay stations for processing somatic sensory information such as touch, pain, and temperature. The origins and development of these neurons are poorly understood. Here we show that relay somatic sensory neurons and D2/D4 dorsal interneurons likely derive from Mash1-positive neural precursors, and depend on two related homeobox genes, Rnx and Tlx-1, for proper formation. Rnx and Tlx-1 maintain expression of Drg11, a homeobox gene critical for the development of pain circuitry, and are essential for the ingrowth of trkA+ nociceptive/thermoceptive sensory afferents to their central targets. We showed previously that Rnx is necessary for proper formation of the nucleus of solitary tract, the target for visceral sensory afferents. Together, our studies demonstrate a central role for Rnx and Tlx-1 in the development of two major classes of relay sensory neurons, somatic and visceral. PMID:12023301

  2. Proper development of relay somatic sensory neurons and D2/D4 interneurons requires homeobox genes Rnx/Tlx-3 and Tlx-1.

    PubMed

    Qian, Ying; Shirasawa, Senji; Chen, Chih-Li; Cheng, Leping; Ma, Qiufu

    2002-05-15

    Trigeminal nuclei and the dorsal spinal cord are first-order relay stations for processing somatic sensory information such as touch, pain, and temperature. The origins and development of these neurons are poorly understood. Here we show that relay somatic sensory neurons and D2/D4 dorsal interneurons likely derive from Mash1-positive neural precursors, and depend on two related homeobox genes, Rnx and Tlx-1, for proper formation. Rnx and Tlx-1 maintain expression of Drg11, a homeobox gene critical for the development of pain circuitry, and are essential for the ingrowth of trkA+ nociceptive/thermoceptive sensory afferents to their central targets. We showed previously that Rnx is necessary for proper formation of the nucleus of solitary tract, the target for visceral sensory afferents. Together, our studies demonstrate a central role for Rnx and Tlx-1 in the development of two major classes of relay sensory neurons, somatic and visceral.

  3. Possible involvement of transient receptor potential ankyrin 1 in Ca2+ signaling via T-type Ca2+ channel in mouse sensory neurons.

    PubMed

    Nishizawa, Yuki; Takahashi, Kenji; Oguma, Naoko; Tominaga, Makoto; Ohta, Toshio

    2018-05-01

    T-type Ca 2+ channels and TRPA1 are expressed in sensory neurons and both are associated with pain transmission, but their functional interaction is unclear. Here we demonstrate that pharmacological evidence of the functional relation between T-type Ca 2+ channels and TRPA1 in mouse sensory neurons. Low concentration of KCl at 15 mM (15K) evoked increases of intracellular Ca 2+ concentration ([Ca 2+ ] i ), which were suppressed by selective T-type Ca 2+ channel blockers. RT-PCR showed that mouse sensory neurons expressed all subtypes of T-type Ca 2+ channel. The magnitude of 15K-induced [Ca 2+ ] i increase was significantly larger in neurons sensitive to allylisothiocyanate (AITC, a TRPA1 agonist) than in those insensitive to it, and in TRPA1 -/- mouse sensory neurons. TRPA1 blockers diminished the [Ca 2+ ] i responses to 15K in neurons sensitive to AITC, but failed to inhibit 40 mM KCl-induced [Ca 2+ ] i increases even in AITC-sensitive neurons. TRPV1 blockers did not inhibit the 15K-induced [Ca 2+ ] i increase regardless of the sensitivity to capsaicin. [Ca 2+ ] i responses to TRPA1 agonist were enhanced by co-application with 15K. These pharmacological data suggest the possibility of functional interaction between T-type Ca 2+ channels and TRPA1 in sensory neurons. Since TRPA1 channel is activated by intracellular Ca 2+ , we hypothesize that Ca 2+ entered via T-type Ca 2+ channel activation may further stimulate TRPA1, resulting in an enhancement of nociceptive signaling. Thus, T-type Ca 2+ channel may be a potential target for TRPA1-related pain. © 2017 Wiley Periodicals, Inc.

  4. Stress Hormones Epinephrine and Corticosterone Selectively Modulate Herpes Simplex Virus 1 (HSV-1) and HSV-2 Productive Infections in Adult Sympathetic, but Not Sensory, Neurons

    PubMed Central

    Ives, Angela M.

    2017-01-01

    ABSTRACT Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect and establish latency in peripheral neurons, from which they can reactivate to cause recurrent disease throughout the life of the host. Stress is associated with the exacerbation of clinical symptoms and the induction of recurrences in humans and animal models. The viruses preferentially replicate and establish latency in different subtypes of sensory neurons, as well as in neurons of the autonomic nervous system that are highly responsive to stress hormones. To determine if stress-related hormones modulate productive HSV-1 and HSV-2 infections within sensory and autonomic neurons, we analyzed viral DNA and the production of viral progeny after treatment of primary adult murine neuronal cultures with the stress hormones epinephrine and corticosterone. Both sensory trigeminal ganglion (TG) and sympathetic superior cervical ganglion (SCG) neurons expressed adrenergic receptors (activated by epinephrine) and the glucocorticoid receptor (activated by corticosterone). Productive HSV infection colocalized with these receptors in SCG but not in TG neurons. In productively infected neuronal cultures, epinephrine treatment significantly increased the levels of HSV-1 DNA replication and production of viral progeny in SCG neurons, but no significant differences were found in TG neurons. In contrast, corticosterone significantly decreased the levels of HSV-2 DNA replication and production of viral progeny in SCG neurons but not in TG neurons. Thus, the stress-related hormones epinephrine and corticosterone selectively modulate acute HSV-1 and HSV-2 infections in autonomic, but not sensory, neurons. IMPORTANCE Stress exacerbates acute disease symptoms resulting from HSV-1 and HSV-2 infections and is associated with the appearance of recurrent skin lesions in millions of people. Although stress hormones are thought to impact HSV-1 and HSV-2 through immune system suppression, sensory and autonomic neurons that

  5. Progress in chemical luminescence-based biosensors: A critical review.

    PubMed

    Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia

    2016-02-15

    Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Tissue engineering the mechanosensory circuit of the stretch reflex arc: sensory neuron innervation of intrafusal muscle fibers.

    PubMed

    Rumsey, John W; Das, Mainak; Bhalkikar, Abhijeet; Stancescu, Maria; Hickman, James J

    2010-11-01

    The sensory circuit of the stretch reflex arc, composed of specialized intrafusal muscle fibers and type Ia proprioceptive sensory neurons, converts mechanical information regarding muscle length and stretch to electrical action potentials and relays them to the central nervous system. Utilizing a non-biological substrate, surface patterning photolithography and a serum-free medium formulation a co-culture system was developed that facilitated functional interactions between intrafusal muscle fibers and sensory neurons. The presence of annulospiral wrappings (ASWs) and flower-spray endings (FSEs), both physiologically relevant morphologies in sensory neuron-intrafusal fiber interactions, were demonstrated and quantified using immunocytochemistry. Furthermore, two proposed components of the mammalian mechanosensory transduction system, BNaC1 and PICK1, were both identified at the ASWs and FSEs. To verify functionality of the mechanoreceptor elements the system was integrated with a MEMS cantilever device, and Ca(2+) currents were imaged along the length of an axon innervating an intrafusal fiber when stretched by cantilever deflection. This system provides a platform for examining the role of this mechanosensory complex in the pathology of myotonic and muscular dystrophies, peripheral neuropathy, and spasticity inducing diseases like Parkinson's. These studies will also assist in engineering fine motor control for prosthetic devices by improving our understanding of mechanosensitive feedback. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. The Molecular Motor KIF1A Transports the TrkA Neurotrophin Receptor and Is Essential for Sensory Neuron Survival and Function.

    PubMed

    Tanaka, Yosuke; Niwa, Shinsuke; Dong, Ming; Farkhondeh, Atena; Wang, Li; Zhou, Ruyun; Hirokawa, Nobutaka

    2016-06-15

    KIF1A is a major axonal transport motor protein, but its functional significance remains elusive. Here we show that KIF1A-haploinsufficient mice developed sensory neuropathy. We found progressive loss of TrkA(+) sensory neurons in Kif1a(+/-) dorsal root ganglia (DRGs). Moreover, axonal transport of TrkA was significantly disrupted in Kif1a(+/-) neurons. Live imaging and immunoprecipitation assays revealed that KIF1A bound to TrkA-containing vesicles through the adaptor GTP-Rab3, suggesting that TrkA is a cargo of the KIF1A motor. Physiological measurements revealed a weaker capsaicin response in Kif1a(+/-) DRG neurons. Moreover, these neurons were hyposensitive to nerve growth factor, which could explain the reduced neuronal survival and the functional deficiency of the pain receptor TRPV1. Because phosphatidylinositol 3-kinase (PI3K) signaling significantly rescued these phenotypes and also increased Kif1a mRNA, we propose that KIF1A is essential for the survival and function of sensory neurons because of the TrkA transport and its synergistic support of the NGF/TrkA/PI3K signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The properties, distribution and function of Na+–Ca2+ exchanger isoforms in rat cutaneous sensory neurons

    PubMed Central

    Scheff, N N; Yilmaz, E; Gold, M S

    2014-01-01

    The Na+–Ca2+ exchanger (NCX) appears to play an important role in the regulation of the high K+-evoked Ca2+ transient in putative nociceptive dorsal root ganglion (DRG) neurons. The purpose of the present study was to (1) characterize the properties of NCX activity in subpopulations of DRG neurons, (2) identify the isoform(s) underlying NCX activity, and (3) begin to assess the function of the isoform(s) in vivo. In retrogradely labelled neurons from the glabrous skin of adult male Sprague–Dawley rats, NCX activity, as assessed with fura-2-based microfluorimetry, was only detected in putative nociceptive IB4+ neurons. There were two modes of NCX activity: one was evoked in response to relatively large and long lasting (∼325 nm for >12 s) increases in the concentration of intracellular Ca2+ ([Ca2+]i), and a second was active at resting [Ca2+]i > ∼150 nm. There also were two modes of evoked activity: one that decayed relatively rapidly (<5 min) and a second that persisted (>10 min). Whereas mRNA encoding all three NCX isoforms (NCX1–3) was detected in putative nociceptive cutaneous neurons with single cell PCR, pharmacological analysis and small interfering RNA (siRNA) knockdown of each isoform in vivo suggested that NCX2 and 3 were responsible for NCX activity. Western blot analyses suggested that NCX isoforms were differentially distributed within sensory neurons. Functional assays of excitability, action potential propagation, and nociceptive behaviour suggest NCX activity has little influence on excitability per se, but instead influences axonal conduction velocity, resting membrane potential, and nociceptive threshold. Together these results indicate that the function of NCX in the regulation of [Ca2+]i in putative nociceptive neurons may be unique relative to other cells in which these exchanger isoforms have been characterized and it has the potential to influence sensory neuron properties at multiple levels. PMID:25239455

  9. Stable olfactory sensory neuron in vivo physiology during normal aging.

    PubMed

    Kass, Marley D; Czarnecki, Lindsey A; McGann, John P

    2018-05-08

    Normal aging is associated with a number of smell impairments that are paralleled by age-dependent changes in the peripheral olfactory system, including decreases in olfactory sensory neurons (OSNs) and in the regenerative capacity of the epithelium. Thus, an age-dependent degradation of sensory input to the brain is one proposed mechanism for the loss of olfactory function in older populations. Here, we tested this hypothesis by performing in vivo optical neurophysiology in 6-, 12-, 18-, and 24-month-old mice. We visualized odor-evoked neurotransmitter release from populations of OSNs into olfactory bulb glomeruli, and found that these sensory inputs are actually quite stable during normal aging. Specifically, the magnitude and number of odor-evoked glomerular responses were comparable across all ages, and there was no effect of age on the sensitivity of OSN responses to odors or on the neural discriminability of different sensory maps. These results suggest that the brain's olfactory bulbs do not receive deteriorated input during aging and that local bulbar circuitry might adapt to maintain stable nerve input. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. A BMP-mediated transcriptional cascade involving Cash1 and Tlx-3 specifies first-order relay sensory neurons in the developing hindbrain.

    PubMed

    Hornbruch, Amata; Ma, Grace; Ballermann, Mark A; Tumova, Katerina; Liu, Dan; Cairine Logan, C

    2005-07-01

    The divergent homeobox-containing transcription factor, Tlx-3 (also known as Hox11L2/Rnx), is required for proper formation of first-order relay sensory neurons in the developing vertebrate brainstem. To date, however, the inductive signals and transcriptional regulatory cascade underlying their development are poorly understood. We previously isolated the chick Tlx-3 homologue and showed it is expressed early (i.e. beginning at HH15) in distinct subcomponents of both the trigeminal/solitary and vestibular nuclei. Here we show via in vivo rhombomere inversions that expression of Tlx-3 is under control of local environmental signals. Our RNA in situ analysis shows expression of the BMP-specific receptor, Bmpr-1b, correlates well with Tlx-3. Furthermore, manipulation of the BMP signaling pathway in vivo via electroporation of expression vectors encoding either BMP or NOGGIN coupled with MASH1 gain-of-function experiments demonstrate that a BMP-mediated transcriptional cascade involving Cash1 and Tlx-3 specifies first-order relay sensory neurons in the developing brainstem. Notably, high-level Noggin misexpression results in an increase in newly differentiated Tlx-3+ neurons that correlates with a corresponding increase in the number of Calretinin+ neurons in vestibular nuclei at later developmental stages strongly suggesting that Tlx-3, in addition to being required for proper formation of somatic as well as visceral sensory neurons in the trigeminal and solitary nuclei, respectively, is sufficient for proper formation of special somatic sensory neurons in vestibular nuclei.

  11. Enzyme-modified nanoporous gold-based electrochemical biosensors.

    PubMed

    Qiu, Huajun; Xue, Luyan; Ji, Guanglei; Zhou, Guiping; Huang, Xirong; Qu, Yinbo; Gao, Peiji

    2009-06-15

    On the basis of the unique physical and chemical properties of nanoporous gold (NPG), which was obtained simply by dealloying Ag from Au/Ag alloy, an attempt was made in the present study to develop NPG-based electrochemical biosensors. The NPG-modified glassy carbon electrode (NPG/GCE) exhibited high-electrocatalytic activity toward the oxidation of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)), which resulted in a remarkable decrease in the overpotential of NADH and H(2)O(2) electro-oxidation when compared with the gold sheet electrode. The high density of edge-plane-like defective sites and large specific surface area of NPG should be responsible for the electrocatalytic behavior. Such electrocatalytic behavior of the NPG/GCE permitted effective low-potential amperometric biosensing of ethanol or glucose via the incorporation of alcohol dehydrogenase (ADH) or glucose oxidase (GOD) within the three-dimensional matrix of NPG. The ADH- and GOD-modified NPG-based biosensors showed good analytical performance for biosensing ethanol and glucose due to the clean, reproducible and uniformly distributed microstructure of NPG. The stabilization effect of NPG on the incorporated enzymes also made the constructed biosensors very stable. After 1 month storage at 4 degrees C, the ADH- and GOD-based biosensors lost only 5.0% and 4.2% of the original current response. All these indicated that NPG was a promising electrode material for biosensors construction.

  12. Novel amperometric glucose biosensor based on MXene nanocomposite.

    PubMed

    Rakhi, R B; Nayak, Pranati; Xia, Chuan; Alshareef, Husam N

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM -1 cm -2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  13. Novel amperometric glucose biosensor based on MXene nanocomposite

    PubMed Central

    Rakhi, R. B.; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors. PMID:27830757

  14. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.

    PubMed

    Song, Yang; Luo, Yanan; Zhu, Chengzhou; Li, He; Du, Dan; Lin, Yuehe

    2016-02-15

    Graphene as a star among two-dimensional nanomaterials has attracted tremendous research interest in the field of electrochemistry due to their intrinsic properties, including the electronic, optical, and mechanical properties associated with their planar structure. The marriage of graphene and electrochemical biosensors has created many ingenious biosensing strategies for applications in the areas of clinical diagnosis and food safety. This review provides a comprehensive overview of the recent advances in the development of graphene based electrochemical biosensors. Special attention is paid to graphene-based enzyme biosensors, immunosensors, and DNA biosensors. Future perspectives on high-performance graphene-based electrochemical biosensors are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bingwen; Du, Dan; Hua, Xin

    2014-05-08

    Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

  16. Decoy peptide targeted to Toll-IL-1R domain inhibits LPS and TLR4-active metabolite morphine-3 glucuronide sensitization of sensory neurons.

    PubMed

    Allette, Yohance M; Kim, Youngsook; Randolph, Aaron L; Smith, Jared A; Ripsch, Matthew S; White, Fletcher A

    2017-06-16

    Accumulating evidence indicates that Toll-like receptor (TLR) signaling adapter protein interactions with Toll/Interleukin-1 Receptor (TIR) domains present in sensory neurons may modulate neuropathic pain states. Following ligand interaction with TLRs, TIR serves to both initiate intracellular signaling and facilitate recruitment of signaling adapter proteins to the intracytoplasmic domain. Although TLR TIR is central to a number of TLR signaling cascades, its role in sensory neurons is poorly understood. In this study we investigated the degree to which TLR TIR decoy peptide modified to include a TAT sequence (Trans-Activator of Transcription gene in HIV; TAT-4BB) affected LPS-induced intracellular calcium flux and excitation in sensory neurons, and behavioral changes due to TLR4 active metabolite, morphine-3-glucuronide (M3G) exposure in vivo. TAT-4BB inhibited LPS-induced calcium changes in a majority of sensory neurons and decreased LPS-dependent neuronal excitability in small diameter neurons. Acute systemic administration of the TAT-4BB reversed M3G-induced tactile allodynia in a dose-dependent manner but did not affect motor activity, anxiety or responses to noxious thermal stimulus. These data suggest that targeting TLR TIR domains may provide novel pharmacological targets to reduce or reverse TLR4-dependent pain behavior in the rodent.

  17. Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage.

    PubMed

    Hans, Stefan; Irmscher, Anne; Brand, Michael

    2013-05-01

    Vertebrate inner ear development is a complex process that involves the induction of a common territory for otic and epibranchial precursors and their subsequent segregation into otic and epibranchial cell fates. In zebrafish, the otic-epibranchial progenitor domain (OEPD) is induced by Fgf signaling in a Foxi1- and Dlx3b/4b-dependent manner, but the functional differences of Foxi1 and Dlx3b/4b in subsequent cell fate specifications within the developing inner ear are poorly understood. Based on pioneer tracking (PioTrack), a novel Cre-dependent genetic lineage tracing method, and genetic data, we show that the competence to embark on a neuronal or sensory fate is provided sequentially and very early during otic placode induction. Loss of Foxi1 prevents neuronal precursor formation without affecting hair cell specification, whereas loss of Dlx3b/4b inhibits hair cell but not neuronal precursor formation. Consistently, in Dlx3b/4b- and Sox9a-deficient b380 mutants almost all otic epithelial fates are absent, including sensory hair cells, and the remaining otic cells adopt a neuronal fate. Furthermore, the progenitors of the anterior lateral line ganglia also arise from the OEPD in a Foxi1-dependent manner but are unaffected in the absence of Dlx3b/4b or in b380 mutants. Thus, in addition to otic fate Foxi1 provides neuronal competence during OEPD induction prior to and independently of the Dlx3b/4b-mediated sensory fate of the developing inner ear.

  18. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    PubMed Central

    Hochreiter, Bernhard; Pardo Garcia, Alan; Schmid, Johannes A.

    2015-01-01

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them. PMID:26501285

  19. Engineering nanomaterials-based biosensors for food safety detection.

    PubMed

    Lv, Man; Liu, Yang; Geng, Jinhui; Kou, Xiaohong; Xin, Zhihong; Yang, Dayong

    2018-05-30

    Food safety always remains a grand global challenge to human health, especially in developing countries. To solve food safety pertained problems, numerous strategies have been developed to detect biological and chemical contaminants in food. Among these approaches, nanomaterials-based biosensors provide opportunity to realize rapid, sensitive, efficient and portable detection, overcoming the restrictions and limitations of traditional methods such as complicated sample pretreatment, long detection time, and relying on expensive instruments and well-trained personnel. In this review article, we provide a cross-disciplinary perspective to review the progress of nanomaterials-based biosensors for the detection of food contaminants. The review article is organized by the category of food contaminants including pathogens/toxins, heavy metals, pesticides, veterinary drugs and illegal additives. In each category of food contaminant, the biosensing strategies are summarized including optical, colorimetric, fluorescent, electrochemical, and immune- biosensors; the relevant analytes, nanomaterials and biosensors are analyzed comprehensively. Future perspectives and challenges are also discussed briefly. We envision that our review could bridge the gap between the fields of food science and nanotechnology, providing implications for the scientists or engineers in both areas to collaborate and promote the development of nanomaterials-based biosensors for food safety detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Fiber optic-based regenerable biosensor

    DOEpatents

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  1. Endomorphin-2 is Released from Newborn Rat Primary Sensory Neurons in a Frequency- and Calcium- Dependent Manner

    PubMed Central

    Scanlin, Heather L.; Carroll, Elizabeth A.; Jenkins, Victoria K.; Balkowiec, Agnieszka

    2008-01-01

    Recent evidence indicates that endomorphins, endogenous mu-opioid receptor (MOR) agonists, modulate synaptic transmission in both somatic and visceral sensory pathways. Here we show that endomorphin-2 (END-2) is expressed in newborn rat dorsal root ganglion (DRG) and nodose-petrosal ganglion complex (NPG) neurons, and rarely co-localizes with brain-derived neurotrophic factor (BDNF). In order to examine activity-dependent release of END-2 from neurons, we established a model using dispersed cultures of DRG and NPG cells activated by patterned electrical field stimulation. To detect release of END-2, we developed a novel rapid capture ELISA, in which END-2 capture antibody was added to neuronal cultures shortly before their electrical stimulation. The conventional assay was effective at reliably detecting END-2 only when the cells were stimulated in the presence of CTAP, a MOR-selective antagonist. This suggests that the strength of the novel assay is related primarily to rapid capture of released END-2 before it binds to endogenous MORs. Using the rapid capture ELISA, we found that stimulation protocols known to induce plastic changes at sensory synapses were highly effective at releasing END-2. Removal of extracellular calcium or blocking voltage-activated calcium channels significantly reduced the release. Together, our data provide the first evidence that END-2 is expressed by newborn DRG neurons of all sizes found in this age group, and can be released from these, as well as from NPG neurons, in an activity-dependent manner. These results point to END-2 as a likely mediator of activity-dependent plasticity in sensory pathways. PMID:18513316

  2. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors

    PubMed Central

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  3. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    PubMed

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  4. Morphological and electrophysiological examination of olfactory sensory neurons during the early developmental prolarval stage of the sea lamprey Petromyzon marinus L

    USGS Publications Warehouse

    Zielinski, B.S.; Fredricks, Keith; McDonald, R.; Zaidi, A.U.

    2005-01-01

    This study examined olfactory sensory neuron morphology and physiological responsiveness in newly hatched sea lamprey, Petromyzon marinus L. These prolarvae hatch shortly after neural tube formation, and stay within nests for approximately 18 days, before moving downstream to silty areas where they burrow, feed and pass to the larval stage. To explore the possibility that the olfactory system is functioning during this prolarval stage, morphological and physiological development of olfactory sensory neurons was examined. The nasal cavity contained an olfactory epithelium with ciliated olfactory sensory neurons. Axons formed aggregates in the basal portion of the olfactory epithelium and spanned the narrow distance between the olfactory epithelium and the brain. The presence of asymmetric synapses with agranular vesicles within fibers in the brain, adjacent to the olfactory epithelium suggests that there was synaptic connectivity between olfactory sensory axons and the brain. Neural recordings from the surface of the olfactory epithelium showed responses following the application of L-arginine, taurocholic acid, petromyzonol sulfate (a lamprey migratory pheromone), and water conditioned by conspecifics. These results suggest that lampreys may respond to olfactory sensory input during the prolarval stage. ?? 2006 Springer Science + Business Media, LLC.

  5. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  6. Cytotoxic effect of commercially available methylprednisolone acetate with and without reduced preservatives on dorsal root ganglion sensory neurons in rats.

    PubMed

    Knezevic, Nebojsa Nick; Candido, Kenneth D; Cokic, Ivan; Krbanjevic, Aleksandar; Berth, Sarah L; Knezevic, Ivana

    2014-01-01

    Epidural and intrathecal injections of methylprednisolone acetate (MPA) have become the most commonly performed interventional procedures in the United States and worldwide in the last 2 decades. However neuraxial MPA injection has been dogged by controversy regarding the presence of different additives used in commercially prepared glucocorticoids. We previously showed that MPA could be rendered 85% free of polyethylene glycol (PEG) by a simple physical separation of elements in the suspension. The objective of the present study was to explore a possible cytotoxic effect of commercially available MPA (with intact or reduced preservatives) on rat sensory neurons. We exposed primary dissociated rat dorsal root ganglia (DRG) sensory neurons to commercially available MPA for 24 hours with either the standard (commercial) concentration of preservatives or to different fractions following separation (MPA suspension whose preservative concentration had been reduced, or fractions containing higher concentrations of preservatives). Cells were stained with the TUNEL assay kit to detect apoptotic cells and images were taken on the Bio-Rad Laser Sharp-2000 system. We also detected expression of caspase-3, as an indicator of apoptosis in cell lysates. We exposed sensory neurons from rat DRG to different concentrations of MPA from the original commercially prepared vial. TUNEL assay showed dose-related responses and increased percentages of apoptotic cells with increasing concentrations of MPA. Increased concentrations of MPA caused 1.5 - 2 times higher caspase-3 expression in DRG sensory neurons than in control cells (ANOVA, P = 0.001). Our results showed that MPA with reduced preservatives caused significantly less apoptosis observed with TUNEL assay labeling (P < 0.001) and caspase-3 immunoblotting (P = 0.001) than in neurons exposed to MPA from a commercially prepared vial or "clear phase" that contained higher concentrations of preservatives. Even though MPA with reduced

  7. Environmental Stability of Plasmonic Biosensors Based on Natural versus Artificial Antibody.

    PubMed

    Luan, Jingyi; Xu, Ting; Cashin, John; Morrissey, Jeremiah J; Kharasch, Evan D; Singamaneni, Srikanth

    2018-06-13

    Plasmonic biosensors based on the refractive index sensitivity of localized surface plasmon resonance (LSPR) are considered to be highly promising for on-chip and point-of-care biodiagnostics. However, most of the current plasmonic biosensors employ natural antibodies as biorecognition elements, which can easily lose their biorecognition ability upon exposure to environmental stressors (e.g., temperature and humidity). Plasmonic biosensors relying on molecular imprints as recognition elements (artificial antibodies) are hypothesized to be an attractive alternative for applications in resource-limited settings due to their excellent thermal, chemical, and environmental stability. In this work, we provide a comprehensive comparison of the stability of plasmonic biosensors based on natural and artificial antibodies. Although the natural antibody-based plasmonic biosensors exhibit superior sensitivity, their stability (temporal, thermal, and chemical) was found to be vastly inferior to those based on artificial antibodies. Our results convincingly demonstrate that these novel classes of artificial antibody-based plasmonic biosensors are highly attractive for point-of-care and resource-limited conditions where tight control over transport, storage, and handling conditions is not possible.

  8. Improvement of up-converting phosphor technology-based biosensor

    NASA Astrophysics Data System (ADS)

    Xie, Chengke; Huang, Lihua; Zhang, Youbao; Guo, Xiaoxian; Qu, Jianfeng; Huang, Huijie

    2008-12-01

    A novel biosensor based on up-converting phosphor technology (UPT) was developed several years ago. It is a kind of optical biosensor using up-converting phosphor (UCP) particles as the biological marker. From then on, some improvements have been made for this UPT-based biosensor. The primary aspects of the improvement lie in the control system. On one hand, the hardware of the control system has been optimized, including replacing two single chip microcomputers (SCM) with only one, the optimal design of the keyboard interface circuit and the liquid crystal module (LCM) control circuit et al.. These result in lower power consumption and higher reliability. On the other hand, a novel signal processing algorithm is proposed in this paper, which can improve the automation and operating simplicity of the UPT-based biosensor. It has proved to have high sensitivity (~ng/ml), high stability and good repeatability (CV<5%), which is better than the former system. It can meet the need of some various applications such as rapid immunoassay, chemical and biological detection and so on.

  9. [Physiopathology of cAMP/PKA signaling in neurons].

    PubMed

    Castro, Liliana; Yapo, Cedric; Vincent, Pierre

    2016-01-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases. © Société de Biologie, 2017.

  10. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review

    PubMed Central

    Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai

    2017-01-01

    With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p-nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection. PMID:28956857

  11. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review.

    PubMed

    Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai

    2017-09-28

    With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p -nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection.

  12. Sec71 functions as a GEF for the small GTPase Arf1 to govern dendrite pruning of Drosophila sensory neurons.

    PubMed

    Wang, Yan; Zhang, Heng; Shi, Meng; Liou, Yih-Cherng; Lu, Lei; Yu, Fengwei

    2017-05-15

    Pruning, whereby neurons eliminate their excess neurites, is central for the maturation of the nervous system. In Drosophila , sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning. Here, we show that the small GTPase Arf1, an important regulator of the secretory pathway, is specifically required for dendrite pruning of ddaC/D/E sensory neurons but dispensable for apoptosis of ddaF neurons. Analyses of the GTP- and GDP-locked forms of Arf1 indicate that the cycling of Arf1 between GDP-bound and GTP-bound forms is essential for dendrite pruning. We further identified Sec71 as a guanine nucleotide exchange factor for Arf1 that preferentially interacts with its GDP-bound form. Like Arf1, Sec71 is also important for dendrite pruning, but not for apoptosis, of sensory neurons. Arf1 and Sec71 are interdependent for their localizations on Golgi. Finally, we show that the Sec71/Arf1-mediated trafficking process is a prerequisite for Rab5-dependent endocytosis to facilitate endocytosis and degradation of the cell-adhesion molecule Neuroglian (Nrg). © 2017. Published by The Company of Biologists Ltd.

  13. A New Regulatory Mechanism for Kv7.2 Protein During Neuropathy: Enhanced Transport from the Soma to Axonal Terminals of Injured Sensory Neurons.

    PubMed

    Cisneros, Elsa; Roza, Carolina; Jackson, Nieka; López-García, José Antonio

    2015-01-01

    Kv7.2 channel expression has been reported to decrease in dorsal root ganglia (DRG) following the induction of a peripheral neuropathy while other experiments show that Kv7.2 accumulates in peripheral neuromas. The mechanisms underlying these novel expression patterns are poorly understood. Here we use immunofluorescence methods to analyze Kv7.2 protein expression changes in sensory neurons following peripheral axotomy and the potential role of axonal transport. Results indicate that DRG neurons express Kv7.2 in ~16% of neurons and that this number decreases by about 65% after axotomy. Damaged neurons were identified in DRG by application of the tracer Fluoro-ruby at the site of injury during surgery. Reduction of Kv7.2 expression was particularly strong in damaged neurons although some loss was also found in putative uninjured neurons. In parallel to the decrease in the soma of axotomized sensory neurons, Kv7.2 accumulated at neuromatose fiber endings. Blockade of axonal transport with either vinblastine (VLB) or colchicine (COL) abolished Kv7.2 redistribution in neuropathic animals. Channel distribution rearrangements did not occur following induction of inflammation in the hind paw. Behavioral tests indicate that protein rearrangements within sensory afferents are essential to the development of allodynia under neuropathic conditions. These results suggest that axotomy enhances axonal transport in injured sensory neurons, leading to a decrease of somatic expression of Kv7.2 protein and a concomitant accumulation in damaged fiber endings. Localized changes in channel expression patterns under pathological conditions may create novel opportunities for Kv7.2 channel openers to act as analgesics.

  14. Prior activity of olfactory receptor neurons is required for proper sensory processing and behavior in Drosophila larvae.

    PubMed

    Utashiro, Nao; Williams, Claire R; Parrish, Jay Z; Emoto, Kazuo

    2018-06-05

    Animal responses to their environment rely on activation of sensory neurons by external stimuli. In many sensory systems, however, neurons display basal activity prior to the external stimuli. This prior activity is thought to modulate neural functions, yet its impact on animal behavior remains elusive. Here, we reveal a potential role for prior activity in olfactory receptor neurons (ORNs) in shaping larval olfactory behavior. We show that prior activity in larval ORNs is mediated by the olfactory receptor complex (OR complex). Mutations of Orco, an odorant co-receptor required for OR complex function, cause reduced attractive behavior in response to optogenetic activation of ORNs. Calcium imaging reveals that Orco mutant ORNs fully respond to optogenetic stimulation but exhibit altered temporal patterns of neural responses. These findings together suggest a critical role for prior activity in information processing upon ORN activation in Drosophila larvae, which in turn contributes to olfactory behavior control.

  15. Label-free electrical detection using carbon nanotube-based biosensors.

    PubMed

    Maehashi, Kenzo; Matsumoto, Kazuhiko

    2009-01-01

    Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs). In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs). Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.

  16. [Botulinum toxin type A does not affect spontaneous discharge but blocks sympathetic-sensory coupling in chronically compressed rat dorsal root ganglion neurons].

    PubMed

    Yang, Hong-jun; Peng, Kai-run; Hu, San-jue; Duan, Jian-hong

    2007-11-01

    To study the effect of botulinum toxin type A (BTXA) on spontaneous discharge and sympathetic- sensory coupling in chronically compressed dorsal root ganglion (DRG) neurons in rats. In chronically compressed rat DRG, spontaneous activities of the single fibers from DRG neurons were recorded and their changes observed after BTAX application on the damaged DGR. Sympathetic modulation of the spontaneous discharge from the compressed DRG neurons was observed by electric stimulation of the lumbar sympathetic trunk, and the changes in this effect were evaluated after intravenous BTXA injection in the rats. Active spontaneous discharges were recorded in the injured DRG neurons, and 47 injured DRG neurons responded to Ca2+-free artificial cerebrospinal fluid but not to BTXA treatment. Sixty-four percent of the neurons in the injured DRG responded to sympathetic stimulation, and this response was blocked by intravenously injection of BTXA. BTXA does not affect spontaneous activities of injured DRG neurons, but blocks sympathetic-sensory coupling in these neurons.

  17. Superior Sensitivity of Copper-Based Plasmonic Biosensors.

    PubMed

    Stebunov, Yury V; Yakubovsky, Dmitry I; Fedyanin, Dmitry Yu; Arsenin, Aleksey V; Volkov, Valentyn S

    2018-04-17

    Plasmonic biosensing has been demonstrated to be a powerful technique for quantitative determination of molecular analytes and kinetic analysis of biochemical reactions. However, interfaces of most plasmonic biosensors are made of noble metals, such as gold and silver, which are not compatible with industrial production technologies. This greatly limits biosensing applications beyond biochemical and pharmaceutical research. Here, we propose and investigate copper-based biosensor chips fully fabricated with a standard complementary metal-oxide-semiconductor (CMOS) process. The protection of thin copper films from oxidation is achieved with SiO 2 and Al 2 O 3 dielectric films deposited onto the metal surface. In addition, the deposition of dielectric films with thicknesses of only several tens of nanometers significantly improves the biosensing sensitivity, owing to better localization of electromagnetic field above the biosensing surface. According to surface plasmon resonance (SPR) measurements, the copper biosensor chips coated with thin films of SiO 2 (25 nm) and Al 2 O 3 (15 nm) show 55% and 75% higher sensitivity to refractive index changes, respectively, in comparison to pure gold sensor chips. To test biomolecule immobilization, the copper-dielectric biosensor chips are coated with graphene oxide linking layers and used for the selective analysis of oligonucleotide hybridization. The proposed plasmonic biosensors make SPR technology more affordable for various applications and provide the basis for compact biosensors integrated with modern electronic devices.

  18. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition. PMID:26824331

  19. A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro.

    PubMed

    Bertke, Andrea S; Swanson, Sophia M; Chen, Jenny; Imai, Yumi; Kinchington, Paul R; Margolis, Todd P

    2011-07-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency and express the latency-associated transcript (LAT) preferentially in different murine sensory neuron populations, with most HSV-1 LAT expression in A5(+) neurons and most HSV-2 LAT expression in KH10(+) neurons. To study the mechanisms regulating the establishment of HSV latency in specific subtypes of neurons, cultured dissociated adult murine trigeminal ganglion (TG) neurons were assessed for relative permissiveness for productive infection. In contrast to that for neonatal TG, the relative distribution of A5(+) and KH10(+) neurons in cultured adult TG was similar to that seen in vivo. Productive infection with HSV was restricted, and only 45% of cultured neurons could be productively infected with either HSV-1 or HSV-2. A5(+) neurons supported productive infection with HSV-2 but were selectively nonpermissive for productive infection with HSV-1, a phenomenon that was not due to restricted viral entry or DNA uncoating, since HSV-1 expressing β-galactosidase under the control of the neurofilament promoter was detected in ∼90% of cultured neurons, with no preference for any neuronal subtype. Infection with HSV-1 reporter viruses expressing enhanced green fluorescent protein (EGFP) from immediate early (IE), early, and late gene promoters indicated that the block to productive infection occurred before IE gene expression. Trichostatin A treatment of quiescently infected neurons induced productive infection preferentially from non-A5(+) neurons, demonstrating that the nonpermissive neuronal subtype is also nonpermissive for reactivation. Thus, HSV-1 is capable of entering the majority of sensory neurons in vitro; productive infection occurs within a subset of these neurons; and this differential distribution of productive infection is determined at or before the expression of the viral IE genes.

  20. A5-Positive Primary Sensory Neurons Are Nonpermissive for Productive Infection with Herpes Simplex Virus 1 In Vitro▿

    PubMed Central

    Bertke, Andrea S.; Swanson, Sophia M.; Chen, Jenny; Imai, Yumi; Kinchington, Paul R.; Margolis, Todd P.

    2011-01-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency and express the latency-associated transcript (LAT) preferentially in different murine sensory neuron populations, with most HSV-1 LAT expression in A5+ neurons and most HSV-2 LAT expression in KH10+ neurons. To study the mechanisms regulating the establishment of HSV latency in specific subtypes of neurons, cultured dissociated adult murine trigeminal ganglion (TG) neurons were assessed for relative permissiveness for productive infection. In contrast to that for neonatal TG, the relative distribution of A5+ and KH10+ neurons in cultured adult TG was similar to that seen in vivo. Productive infection with HSV was restricted, and only 45% of cultured neurons could be productively infected with either HSV-1 or HSV-2. A5+ neurons supported productive infection with HSV-2 but were selectively nonpermissive for productive infection with HSV-1, a phenomenon that was not due to restricted viral entry or DNA uncoating, since HSV-1 expressing β-galactosidase under the control of the neurofilament promoter was detected in ∼90% of cultured neurons, with no preference for any neuronal subtype. Infection with HSV-1 reporter viruses expressing enhanced green fluorescent protein (EGFP) from immediate early (IE), early, and late gene promoters indicated that the block to productive infection occurred before IE gene expression. Trichostatin A treatment of quiescently infected neurons induced productive infection preferentially from non-A5+ neurons, demonstrating that the nonpermissive neuronal subtype is also nonpermissive for reactivation. Thus, HSV-1 is capable of entering the majority of sensory neurons in vitro; productive infection occurs within a subset of these neurons; and this differential distribution of productive infection is determined at or before the expression of the viral IE genes. PMID:21507969

  1. T-type calcium channels cause bursts of spikes in motor but not sensory thalamic neurons during mimicry of natural patterns of synaptic input.

    PubMed

    Kim, Haram R; Hong, Su Z; Fiorillo, Christopher D

    2015-01-01

    Although neurons within intact nervous systems can be classified as 'sensory' or 'motor,' it is not known whether there is any general distinction between sensory and motor neurons at the cellular or molecular levels. Here, we extend and test a theory according to which activation of certain subtypes of voltage-gated ion channel (VGC) generate patterns of spikes in neurons of motor systems, whereas VGC are proposed to counteract patterns in sensory neurons. We previously reported experimental evidence for the theory from visual thalamus, where we found that T-type calcium channels (TtCCs) did not cause bursts of spikes but instead served the function of 'predictive homeostasis' to maximize the causal and informational link between retinogeniculate excitation and spike output. Here, we have recorded neurons in brain slices from eight sensory and motor regions of rat thalamus while mimicking key features of natural excitatory and inhibitory post-synaptic potentials. As predicted by theory, TtCC did cause bursts of spikes in motor thalamus. TtCC-mediated responses in motor thalamus were activated at more hyperpolarized potentials and caused larger depolarizations with more spikes than in visual and auditory thalamus. Somatosensory thalamus is known to be more closely connected to motor regions relative to auditory and visual thalamus, and likewise the strength of its TtCC responses was intermediate between these regions and motor thalamus. We also observed lower input resistance, as well as limited evidence of stronger hyperpolarization-induced ('H-type') depolarization, in nuclei closer to motor output. These findings support our theory of a specific difference between sensory and motor neurons at the cellular level.

  2. Active signal conduction through the sensory dendrite of a spider mechanoreceptor neuron.

    PubMed

    Gingl, Ewald; French, Andrew S

    2003-07-09

    Rapid responses to sensory stimulation are crucial for survival. This must be especially true for mechanical stimuli containing temporal information, such as vibration. Sensory transduction occurs at the tips of relatively long sensory dendrites in many mechanoreceptors of both vertebrates and invertebrates, but little is known about the electrical properties of these crucial links between transduction and action potential generation. The VS-3 slit-sense organ of the spider Cupiennius salei contains bipolar mechanosensory neurons that allow voltage-clamp recording from the somata, whereas mechanotransduction occurs at the tips of 100- to 200-microm-long sensory dendrites. We studied the properties of VS-3 sensory dendrites using three approaches. Voltage-jump experiments measured the spread of voltage outward from the soma by observing total mechanically transduced charge recovered at the soma as a function of time after a voltage jump. Frequency-response measurements between pseudorandom mechanical stimulation and somatic membrane potential estimated the passive cable properties of the dendrite for voltage spread in the opposite direction. Both of these sets of data indicated that the dendritic cable would significantly attenuate and retard a passively propagated receptor potential. Finally, current-clamp observations of receptor potentials and action potentials indicated that action potentials normally start at the distal dendrites and propagate regeneratively to the soma, reducing the temporal delay of passive conduction.

  3. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review.

    PubMed

    Wang, Yi-Han; Huang, Ke-Jing; Wu, Xu

    2017-11-15

    Layered transition metal dichalcogenides (TMDCs) comprise a category of two-dimensional (2D) materials that offer exciting properties, including large surface area, metallic and semi-conducting electrical capabilities, and intercalatable morphologies. Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. TMDCs nanomaterials have been widely applied in various electrochemical biosensors with high sensitivity and selectivity. The marriage of TMDCs and electrochemical biosensors has created many productive sensing strategies for applications in the areas of clinical diagnosis, environmental monitoring and food safety. In recent years, an increasing number of TMDCs-based electrochemical biosensors are reported, suggesting TMDCs offers new possibilities of improving the performance of electrochemical biosensors. This review summarizes recent advances in electrochemical biosensors based on TMDCs for detection of various inorganic and organic analytes in the last five years, including glucose, proteins, DNA, heavy metal, etc. In addition, we also point out the challenges and future perspectives related to the material design and development of TMDCs-based electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  5. Desynchronizing electrical and sensory coordinated reset neuromodulation

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2012-01-01

    Coordinated reset (CR) stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS), to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling). Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated) excitatory and inhibitory stimulation. Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronal synchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals) and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers) of deep brain CR neuromodulation may be similar or even identical. Furthermore, our results indicate that an effective desynchronization and anti-kindling can even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders. PMID:22454622

  6. Desynchronizing electrical and sensory coordinated reset neuromodulation.

    PubMed

    Popovych, Oleksandr V; Tass, Peter A

    2012-01-01

    Coordinated reset (CR) stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS), to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling). Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated) excitatory and inhibitory stimulation. Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronal synchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals) and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers) of deep brain CR neuromodulation may be similar or even identical. Furthermore, our results indicate that an effective desynchronization and anti-kindling can even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders.

  7. A New Regulatory Mechanism for Kv7.2 Protein During Neuropathy: Enhanced Transport from the Soma to Axonal Terminals of Injured Sensory Neurons

    PubMed Central

    Cisneros, Elsa; Roza, Carolina; Jackson, Nieka; López-García, José Antonio

    2015-01-01

    Kv7.2 channel expression has been reported to decrease in dorsal root ganglia (DRG) following the induction of a peripheral neuropathy while other experiments show that Kv7.2 accumulates in peripheral neuromas. The mechanisms underlying these novel expression patterns are poorly understood. Here we use immunofluorescence methods to analyze Kv7.2 protein expression changes in sensory neurons following peripheral axotomy and the potential role of axonal transport. Results indicate that DRG neurons express Kv7.2 in ~16% of neurons and that this number decreases by about 65% after axotomy. Damaged neurons were identified in DRG by application of the tracer Fluoro-ruby at the site of injury during surgery. Reduction of Kv7.2 expression was particularly strong in damaged neurons although some loss was also found in putative uninjured neurons. In parallel to the decrease in the soma of axotomized sensory neurons, Kv7.2 accumulated at neuromatose fiber endings. Blockade of axonal transport with either vinblastine (VLB) or colchicine (COL) abolished Kv7.2 redistribution in neuropathic animals. Channel distribution rearrangements did not occur following induction of inflammation in the hind paw. Behavioral tests indicate that protein rearrangements within sensory afferents are essential to the development of allodynia under neuropathic conditions. These results suggest that axotomy enhances axonal transport in injured sensory neurons, leading to a decrease of somatic expression of Kv7.2 protein and a concomitant accumulation in damaged fiber endings. Localized changes in channel expression patterns under pathological conditions may create novel opportunities for Kv7.2 channel openers to act as analgesics. PMID:26696829

  8. Electrochemical sensors and biosensors based on less aggregated graphene.

    PubMed

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Selective detection of hypertoxic organophosphates pesticides via PDMS composite based acetylcholinesterase-inhibition biosensor.

    PubMed

    Zhao, Wei; Ge, Pei-Yu; Xu, Jing-Juan; Chen, Hong-Yuan

    2009-09-01

    We report on a pair of highly sensitive amperometric biosensors for organophosphate pesticides (OPs) based on assembling acetylcholinesterase (AChE) on poly(dimethylsiloxane) (PDMS)-poly(diallydimethylemmonium) (PDDA)/gold nanoparticles (AuNPs) composite film. Two AChE immobilization strategies are proposed based on the composite film with hydrophobic and hydrophilic surface tailored by oxygen plasma. The twin biosensors show interesting different electrochemical performances. The hydrophobic surface based PDMS-PDDAN AuNPs/choline oxidase (ChO)/AChE biosensor (biosensor-1) shows excellent stability and unique selectivity to hypertoxic organophosphate. At optimal conditions, this biosensor-1 could measure 5.0 x 10(-10) g/L paraoxon and 1.0 x 10(-9) g/L parathion. As for the hydrophilic surface based biosensor (biosensor-2), it shows no selectivity but can be commonly used for the detection of most OPs. Based on the structure of AChE, it is assumed that via the hydrophobic interaction between enzyme molecules and hydrophobic surface, the enzyme active sites surrounded by hydrophobic amino acids face toward the surface and get better protection from OPs. This assumption may explain the different performances of the twin biosensors and especially the unique selectivity of biosensor-1 to hypertoxic OPs. Real sample detection was performed and the omethoate residue on Cottomrose Hibiscus leaves was detected with biosensor-1.

  10. Graphene-based biosensors

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Davydov, V. Yu.; Novikov, S. N.; Litvin, D. P.; Makarov, Yu. N.; Klimovich, V. B.; Samoilovich, M. P.

    2016-07-01

    Results of developing and testing graphene-based sensors capable of detecting protein molecules are presented. The biosensor operation was checked using an immunochemical system comprising fluorescein dye and monoclonal antifluorescein antibodies. The sensor detects fluorescein concentration on a level of 1-10 ng/mL and bovine serum albumin-fluorescein conjugate on a level of 1-5 ng/mL. The proposed device has good prospects for use for early diagnostics of various diseases.

  11. Recent Developments in Enzyme, DNA and Immuno-Based Biosensors.

    PubMed

    Asal, Melis; Özen, Özlem; Şahinler, Mert; Polatoğlu, İlker

    2018-06-13

    Novel sensitive, rapid and economical biosensors are being developed in a wide range of medical environmental and food applications. In this paper, we review some of the main advances in the field over the past few years by discussing recent studies from literature. A biosensor, which is defined as an analytical device consisting of a biomolecule, a transducer and an output system, can be categorized according to the type of the incorporated biomolecule. The biomolecules can be enzymes, antibodies, ssDNA, organelles, cells etc. The main biosensor categories classified according to the biomolecules are enzymatic biosensors, immunosensors and DNA-based biosensors. These sensors can measure analytes produced or reduced during reactions at lower costs compared to the conventional detection techniques. Numerous types of biosensor studies conducted over the last decade have been explored here to reveal their key applications in medical, environmental and food industries which provide comprehensive perspective to the readers. Overviews of the working principles and applications of the reviewed sensors are also summarized.

  12. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.

    PubMed

    Mannan, Ahmad A; Liu, Di; Zhang, Fuzhong; Oyarzún, Diego A

    2017-10-20

    Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.

  13. Genomics of Mature and Immature Olfactory Sensory Neurons

    PubMed Central

    Nickell, Melissa D.; Breheny, Patrick; Stromberg, Arnold J.; McClintock, Timothy S.

    2014-01-01

    The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein transport, RNA processing, cholesterol biosynthesis, and apoptosis via death domain receptors, were overrepresented biological processes in immature OSNs. Ion transport (ion channels), presynaptic functions, and cilia-specific processes were overrepresented in mature OSNs. Processes overrepresented among the genes expressed by all OSNs were protein and ion transport, ER overload response, protein catabolism, and the electron transport chain. To more accurately represent gradations in mRNA abundance and identify all genes expressed in each cell type, classification methods were used to produce probabilities of expression in each cell type for every gene. These probabilities, which identified 9,300 genes expressed in OSNs, were 96% accurate at identifying genes expressed in OSNs and 86% accurate at discriminating genes specific to mature and immature OSNs. This OSN gene database not only predicts the genes responsible for the major biological processes active in OSNs, but also identifies thousands of never before studied genes that support OSN phenotypes. PMID:22252456

  14. Age-associated loss of selectivity in human olfactory sensory neurons

    PubMed Central

    Rawson, Nancy E.; Gomez, George; Cowart, Beverly J.; Kriete, Andres; Pribitkin, Edmund; Restrepo, Diego

    2011-01-01

    We report a cross-sectional study of olfactory impairment with age based on both odorant-stimulated responses of human olfactory sensory neurons (OSNs) and tests of olfactory threshold sensitivity. A total of 621 OSNs from 440 subjects in two age groups of younger ( 45 years) and older (≥60 years) subjects were investigated using fluorescence intensity ratio fura-2 imaging. OSNs were tested for responses to two odorant mixtures, as well as to subsets of and individual odors in those mixtures. Whereas cells from younger donors were highly selective in the odorants to which they responded, cells from older donors were more likely to respond to multiple odor stimuli, despite a loss in these subjects’ absolute olfactory sensitivity, suggesting a loss of specificity. This degradation in peripheral cellular specificity may impact odor discrimination and olfactory adaptation in the elderly. It is also possible that chronic adaptation as a result of reduced specificity contributes to observed declines in absolute sensitivity. PMID:22074806

  15. Acetylcholine and lobster sensory neurones

    PubMed Central

    Barker, David L.; Herbert, Edward; Hildebrand, John G.; Kravitz, Edward A.

    1972-01-01

    Experiments are presented in support of the hypothesis that acetylcholine functions as a sensory transmitter in the lobster nervous system. 1. Several different peripheral sensory structures incorporate radioactive choline into acetylcholine. The preparation most enriched in sensory as opposed to other nervous elements (the antennular sense organs of the distal outer flagellum) does not incorporate significant amounts of glutamate, tyrosine or tryptophan into any of the other major transmitter candidates. 2. There is a parallel between the distribution of the enzyme choline acetyltransferase and the proportion of sensory fibres in nervous tissue from many parts of the lobster nervous system. 3. Isolated sensory axons contain at least 500 times as much choline acetyltransferase per cm of axon as do efferent excitatory and inhibitory fibres. 4. Abdominal ganglia and root stumps show a decline in the rate of incorporation of choline into acetylcholine 2 to 8 weeks after severing the first and second roots bilaterally (leaving the connectives and third roots intact). Extracts of the root stumps exhibit a significantly lower level of choline acetyltransferase 2 weeks after this operation. 5. Curare and atropine partially block an identified sensory synapse in the lobster abdominal ganglion. ImagesText-fig. 4Text-fig. 5Plate 1 PMID:4343316

  16. Motor Neuron Rescue in Spinal Muscular Atrophy Mice Demonstrates That Sensory-Motor Defects Are a Consequence, Not a Cause, of Motor Neuron Dysfunction

    PubMed Central

    Gogliotti, Rocky G.; Quinlan, Katharina A.; Barlow, Courtenay B.; Heier, Christopher R.; Heckman, C. J.

    2012-01-01

    The loss of motor neurons (MNs) is a hallmark of the neuromuscular disease spinal muscular atrophy (SMA); however, it is unclear whether this phenotype autonomously originates within the MN. To address this question, we developed an inducible mouse model of severe SMA that has perinatal lethality, decreased motor function, motor unit pathology, and hyperexcitable MNs. Using an Hb9-Cre allele, we increased Smn levels autonomously within MNs and demonstrate that MN rescue significantly improves all phenotypes and pathologies commonly described in SMA mice. MN rescue also corrects hyperexcitability in SMA motor neurons and prevents sensory-motor synaptic stripping. Survival in MN-rescued SMA mice is extended by only 5 d, due in part to failed autonomic innervation of the heart. Collectively, this work demonstrates that the SMA phenotype autonomously originates in MNs and that sensory-motor synapse loss is a consequence, not a cause, of MN dysfunction. PMID:22423102

  17. Oxygen sensing glucose biosensors based on alginate nano-micro systems

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit

    2014-04-01

    Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.

  18. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance

    PubMed Central

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  19. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    PubMed

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  20. Orbital cortex neuronal responses during an odor-based conditioned associative task in rats.

    PubMed

    Yonemori, M; Nishijo, H; Uwano, T; Tamura, R; Furuta, I; Kawasaki, M; Takashima, Y; Ono, T

    2000-01-01

    Neuronal activity in the rat orbital cortex during discrimination of various odors [five volatile organic compounds (acetophenone, isoamyl acetate, cyclohexanone, p-cymene and 1,8-cineole), and food- and cosmetic-related odorants (black pepper, cheese, rose and perfume)] and other conditioned sensory stimuli (tones, light and air puff) was recorded and compared with behavioral responses to the same odors (black pepper, cheese, rose and perfume). In a neurophysiological study, the rats were trained to lick a spout that protruded close to its mouth to obtain sucrose or intracranial self-stimulation reward after presentation of conditioned stimuli. Of 150 orbital cortex neurons recorded during the task, 65 responded to one or more types of sensory stimuli. Of these, 73.8% (48/65) responded during presentation of an odor. Although the mean breadth of responsiveness (entropy) of the olfactory neurons based on the responses to five volatile organic compounds and air (control) was rather high (0.795), these stimuli were well discriminated in an odor space resulting from multidimensional scaling using Pearson's correlation coefficients between the stimuli. In a behavioral study, a rat was housed in an equilateral octagonal cage, with free access to food and choice among eight levers, four of which elicited only water (no odor, controls), and four of which elicited both water and one of four odors (black pepper, cheese, rose or perfume). Lever presses for each odor and control were counted. Distributions of these five stimuli (four odors and air) in an odor space derived from the multidimensional scaling using Pearson's correlation coefficients based on behavioral responses were very similar to those based on neuronal responses to the same five stimuli. Furthermore, Pearson's correlation coefficients between the same five stimuli based on the neuronal responses and those based on behavioral responses were significantly correlated. The results demonstrated a pivotal role of

  1. Wireless implantable electronic platform for chronic fluorescent-based biosensors.

    PubMed

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo

    2011-06-01

    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  2. Systemic Chemical Desensitization of Peptidergic Sensory Neurons with Resiniferatoxin Inhibits Experimental Periodontitis

    PubMed Central

    Breivik, Torbjørn; Gundersen, Yngvar; Gjermo, Per; Fristad, Inge; Opstad, Per Kristian

    2011-01-01

    Background and objective: The immune system is an important player in the pathophysiology of periodontitis. The brain controls immune responses via neural and hormonal pathways, and brain-neuro-endocrine dysregulation may be a central determinant for pathogenesis. Our current knowledge also emphasizes the central role of sensory nerves. In line with this, we wanted to investigate how desensitization of peptidergic sensory neurons influences the progression of ligature-induced periodontitis, and, furthermore, how selected cytokine and stress hormone responses to Gram-negative bacterial lipopolysaccharide (LPS) stimulation are affected. Material and methods: Resiniferatoxin (RTX; 50 μg/kg) or vehicle was injected subcutaneously on days 1, 2, and 3 in stress high responding and periodontitis-susceptible Fischer 344 rats. Periodontitis was induced 2 days thereafter. Progression of the disease was assessed after the ligatures had been in place for 20 days. Two h before decapitation all rats received LPS (150 μg/kg i.p.) to induce a robust immune and stress response. Results: Desensitization with RTX significantly reduced bone loss as measured by digital X-rays. LPS provoked a significantly higher increase in serum levels of the pro-inflammatory cytokine tumour necrosis factor (TNF)-α, but lower serum levels of the anti-inflammatory cytokine interleukin (IL)-10 and the stress hormone corticosterone. Conclusions: In this model RTX-induced chemical desensitization of sensory peptidergic neurons attenuated ligature-induced periodontitis and promoted a shift towards stronger pro-inflammatory cytokine and weaker stress hormone responses to LPS. The results may partly be explained by the attenuated transmission of immuno-inflammatory signals to the brain. In turn, this may weaken the anti-inflammatory brain-derived pathways. PMID:21339860

  3. Design of nanostructured-based glucose biosensors

    NASA Astrophysics Data System (ADS)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  4. Two Heteromeric Kinesin Complexes in Chemosensory Neurons and Sensory Cilia of Caenorhabditis elegans

    PubMed Central

    Signor, Dawn; Wedaman, Karen P.; Rose, Lesilee S.; Scholey, Jonathan M.

    1999-01-01

    Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia. PMID:9950681

  5. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    NASA Astrophysics Data System (ADS)

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  6. In Vitro Analysis of the Role of Schwann Cells on Axonal Degeneration and Regeneration Using Sensory Neurons from Dorsal Root Ganglia.

    PubMed

    López-Leal, Rodrigo; Diaz, Paula; Court, Felipe A

    2018-01-01

    Sensory neurons from dorsal root ganglion efficiently regenerate after peripheral nerve injuries. These neurons are widely used as a model system to study degenerative mechanisms of the soma and axons, as well as regenerative axonal growth in the peripheral nervous system. This chapter describes techniques associated to the study of axonal degeneration and regeneration using explant cultures of dorsal root ganglion sensory neurons in vitro in the presence or absence of Schwann cells. Schwann cells are extremely important due to their involvement in tissue clearance during axonal degeneration as well as their known pro-regenerative effect during regeneration in the peripheral nervous system. We describe methods to induce and study axonal degeneration triggered by axotomy (mechanical separation of the axon from its soma) and treatment with vinblastine (which blocks axonal transport), which constitute clinically relevant mechanical and toxic models of axonal degeneration. In addition, we describe three different methods to evaluate axonal regeneration using quantitative methods. These protocols constitute a valuable tool to analyze in vitro mechanisms associated to axonal degeneration and regeneration of sensory neurons and the role of Schwann cells in these processes.

  7. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons.

    PubMed

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C

    2016-08-05

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca(2+) entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca(2+) buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca(2+)-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca(2+) elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. © 2016 The Authors.

  8. An evolution based biosensor receptor DNA sequence generation algorithm.

    PubMed

    Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M; Lee, Jaewan; Zang, Yupeng

    2010-01-01

    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements.

  9. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  10. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection.

    PubMed

    Jung, Il Young; Lee, Eun Hee; Suh, Ah Young; Lee, Seung Jin; Lee, Hyukjin

    2016-04-01

    Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.

  11. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium

    PubMed Central

    Hoover, Donald B.; Shepherd, Angela V.; Southerland, E. Marie; Armour, J. Andrew; Ardell, Jeffrey L.

    2008-01-01

    While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T3 DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T3 DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30–40% of ventricular afferent somata in T3 DRG). About 30% of the ventricular afferent neurons in T2 DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB4. Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters. PMID:18558516

  12. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium.

    PubMed

    Hoover, Donald B; Shepherd, Angela V; Southerland, E Marie; Armour, J Andrew; Ardell, Jeffrey L

    2008-08-18

    While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T(3) DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T(3) DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30-40% of ventricular afferent somata in T(3) DRG). About 30% of the ventricular afferent neurons in T(2) DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB(4). Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters.

  13. Regulation of voltage-gated Ca(2+) currents by Ca(2+)/calmodulin-dependent protein kinase II in resting sensory neurons.

    PubMed

    Kostic, Sandra; Pan, Bin; Guo, Yuan; Yu, Hongwei; Sapunar, Damir; Kwok, Wai-Meng; Hudmon, Andy; Wu, Hsiang-En; Hogan, Quinn H

    2014-09-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is recognized as a key element in encoding depolarization activity of excitable cells into facilitated voltage-gated Ca(2+) channel (VGCC) function. Less is known about the participation of CaMKII in regulating VGCCs in resting cells. We examined constitutive CaMKII control of Ca(2+) currents in peripheral sensory neurons acutely isolated from dorsal root ganglia (DRGs) of adult rats. The small molecule CaMKII inhibitor KN-93 (1.0μM) reduced depolarization-induced ICa by 16-30% in excess of the effects produced by the inactive homolog KN-92. The specificity of CaMKII inhibition on VGCC function was shown by the efficacy of the selective CaMKII blocking peptide autocamtide-2-related inhibitory peptide in a membrane-permeable myristoylated form, which also reduced VGCC current in resting neurons. Loss of VGCC currents is primarily due to reduced N-type current, as application of mAIP selectively reduced N-type current by approximately 30%, and prior N-type current inhibition eliminated the effect of mAIP on VGCCs, while prior block of L-type channels did not reduce the effect of mAIP on total ICa. T-type currents were not affected by mAIP in resting DRG neurons. Transduction of sensory neurons in vivo by DRG injection of an adeno-associated virus expressing AIP also resulted in a loss of N-type currents. Together, these findings reveal a novel molecular adaptation whereby sensory neurons retain CaMKII support of VGCCs despite remaining quiescent. Published by Elsevier Inc.

  14. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    PubMed

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons.

    PubMed

    Kember, G C; Fenton, G A; Armour, J A; Kalyaniwalla, N

    2001-04-01

    Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are amplified by noisy mechanical fluctuations. This amplification is known as aperiodic stochastic resonance (ASR). Neural control in the noisy, subthreshold regime is difficult to see since there is a near absence of any correlation between input and the output, the latter being the average firing (spiking) rate of the neuron. This lack of correlation is unresolved by traditional energy models of ASR since these models are unsuitable for identifying "cause and effect" between such inputs and outputs. In this paper, the "competition between averages" model is used to determine what portion of a noisy, subthreshold input is responsible, on average, for the output of sensory neurons as represented by the Fitzhugh-Nagumo equations. A physiologically relevant conclusion of this analysis is that a nearly constant amount of input is responsible for a spike, on average, and this amount is approximately independent of the firing rate. Hence, correlation measures are generally reduced as the firing rate is lowered even though neural control under this model is actually unaffected.

  16. Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons.

    PubMed

    Prsa, Mario; Galiñanes, Gregorio L; Huber, Daniel

    2017-02-22

    Neuronal motor commands, whether generating real or neuroprosthetic movements, are shaped by ongoing sensory feedback from the displacement being produced. Here we asked if cortical stimulation could provide artificial feedback during operant conditioning of cortical neurons. Simultaneous two-photon imaging and real-time optogenetic stimulation were used to train mice to activate a single neuron in motor cortex (M1), while continuous feedback of its activity level was provided by proportionally stimulating somatosensory cortex. This artificial signal was necessary to rapidly learn to increase the conditioned activity, detect correct performance, and maintain the learned behavior. Population imaging in M1 revealed that learning-related activity changes are observed in the conditioned cell only, which highlights the functional potential of individual neurons in the neocortex. Our findings demonstrate the capacity of animals to use an artificially induced cortical channel in a behaviorally relevant way and reveal the remarkable speed and specificity at which this can occur. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli.

    PubMed

    Tornero, Daniel; Tsupykov, Oleg; Granmo, Marcus; Rodriguez, Cristina; Grønning-Hansen, Marita; Thelin, Jonas; Smozhanik, Ekaterina; Laterza, Cecilia; Wattananit, Somsak; Ge, Ruimin; Tatarishvili, Jemal; Grealish, Shane; Brüstle, Oliver; Skibo, Galina; Parmar, Malin; Schouenborg, Jens; Lindvall, Olle; Kokaia, Zaal

    2017-03-01

    Transplanted neurons derived from stem cells have been proposed to improve function in animal models of human disease by various mechanisms such as neuronal replacement. However, whether the grafted neurons receive functional synaptic inputs from the recipient's brain and integrate into host neural circuitry is unknown. Here we studied the synaptic inputs from the host brain to grafted cortical neurons derived from human induced pluripotent stem cells after transplantation into stroke-injured rat cerebral cortex. Using the rabies virus-based trans-synaptic tracing method and immunoelectron microscopy, we demonstrate that the grafted neurons receive direct synaptic inputs from neurons in different host brain areas located in a pattern similar to that of neurons projecting to the corresponding endogenous cortical neurons in the intact brain. Electrophysiological in vivo recordings from the cortical implants show that physiological sensory stimuli, i.e. cutaneous stimulation of nose and paw, can activate or inhibit spontaneous activity in grafted neurons, indicating that at least some of the afferent inputs are functional. In agreement, we find using patch-clamp recordings that a portion of grafted neurons respond to photostimulation of virally transfected, channelrhodopsin-2-expressing thalamo-cortical axons in acute brain slices. The present study demonstrates, for the first time, that the host brain regulates the activity of grafted neurons, providing strong evidence that transplanted human induced pluripotent stem cell-derived cortical neurons can become incorporated into injured cortical circuitry. Our findings support the idea that these neurons could contribute to functional recovery in stroke and other conditions causing neuronal loss in cerebral cortex. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. A reduced graphene oxide based electrochemical biosensor for tyrosine detection.

    PubMed

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-24

    In this paper, a 'green' and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10(-7) M to 2 × 10(-5) M with a detection limitation of 7.5 × 10(-8) M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  19. Characteristics of sensory neuronal groups in CGRP-cre-ER reporter mice: Comparison to Nav1.8-cre, TRPV1-cre and TRPV1-GFP mouse lines.

    PubMed

    Patil, Mayur J; Hovhannisyan, Anahit H; Akopian, Armen N

    2018-01-01

    Peptidergic sensory neurons play a critical role in nociceptive pathways. To precisely define the function and plasticity of sensory neurons in detail, new tools such as transgenic mouse models are needed. We employed electrophysiology and immunohistochemistry to characterize in detail dorsal root ganglion (DRG) neurons expressing an inducible CGRPcre-ER (CGRP-cre+); and compared them to DRG neurons expressing Nav1.8cre (Nav1.8-cre+), TRPV1cre (TRPV1-cre+) and TRPV1-GFP (V1-GFP+). Tamoxifen effectively induced CGRPcre-ER production in DRG. ≈87% of CGRPcre-ER-expressing neurons were co-labeled CGRP antibody. Three small and two medium-large-sized (5HT3a+/NPY2R- and NPY2R+) neuronal groups with unique electrophysiological profiles were CGRP-cre+. Nav1.8-cre+ neurons were detected in all CGRP-cre+ groups, as well as in 5 additional neuronal groups: MrgprD+/TRPA1-, MrgprD+/TRPA1+, TRPV1+/CGRP-, vGLUT3+ and ≈30% of trkC+ neurons. Differences between TRPV1cre and Nav1.8cre reporters were that unlike TRPV1-cre+, Nav1.8-cre+ expression was detected in non-nociceptive vGLUT3+ and trkC+ populations. Many TRPV1-cre+ neurons did not respond to capsaicin. In contrast, V1-GFP+ neurons were in 4 groups, each of which was capsaicin-sensitive. Finally, none of the analyzed reporter lines showed cre-recombination in trkB+, calbindin+, 70% of trkC+ or parvalbumin+ neurons, which together encompassed ≈20% of Nav1.8-cre- DRG neurons. The data presented here increases our knowledge of peptidergic sensory neuron characteristics, while showing the efficiency and specificity manipulation of peptidergic neurons by the CGRPcre-ER reporter. We also demonstrate that manipulation of all C- and A-nociceptors is better achieved with TRPV1-cre reporter. Finally, the described approach for detailed characterization of sensory neuronal groups can be applied to a variety of reporter mice.

  20. Last Advances in Silicon-Based Optical Biosensors.

    PubMed

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M

    2016-02-24

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  1. Last Advances in Silicon-Based Optical Biosensors

    PubMed Central

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C.; Lechuga, Laura M.

    2016-01-01

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies. PMID:26927105

  2. Sensory Neuron Fates Are Distinguished by a Transcriptional Switch that Regulates Dendrite Branch Stabilization

    PubMed Central

    Smith, Cody J.; O’Brien, Timothy; Chatzigeorgiou, Marios; Spencer, W. Clay; Feingold-Link, Elana; Husson, Steven J.; Hori, Sayaka; Mitani, Shohei; Gottschalk, Alexander; Schafer, William R.; Miller, David M.

    2013-01-01

    SUMMARY Sensory neurons adopt distinct morphologies and functional modalities to mediate responses to specific stimuli. Transcription factors and their downstream effectors orchestrate this outcome but are incompletely defined. Here, we show that different classes of mechanosensory neurons in C. elegans are distinguished by the combined action of the transcription factors MEC-3, AHR-1, and ZAG-1. Low levels of MEC-3 specify the elaborate branching pattern of PVD nociceptors, whereas high MEC-3 is correlated with the simple morphology of AVM and PVM touch neurons. AHR-1 specifies AVM touch neuron fate by elevating MEC-3 while simultaneously blocking expression of nociceptive genes such as the MEC-3 target, the claudin-like membrane protein HPO-30, that promotes the complex dendritic branching pattern of PVD. ZAG-1 exercises a parallel role to prevent PVM from adopting the PVD fate. The conserved dendritic branching function of the Drosophila AHR-1 homolog, Spineless, argues for similar pathways in mammals. PMID:23889932

  3. The HMX/NKX homeodomain protein MLS-2 specifies the identity of the AWC sensory neuron type via regulation of the ceh-36 Otx gene in C. elegans

    PubMed Central

    Kim, Kyuhyung; Kim, Rinho; Sengupta, Piali

    2010-01-01

    The differentiated features of postmitotic neurons are dictated by the expression of specific transcription factors. The mechanisms by which the precise spatiotemporal expression patterns of these factors are regulated are poorly understood. In C. elegans, the ceh-36 Otx homeobox gene is expressed in the AWC sensory neurons throughout postembryonic development, and regulates terminal differentiation of this neuronal subtype. Here, we show that the HMX/NKX homeodomain protein MLS-2 regulates ceh-36 expression specifically in the AWC neurons. Consequently, the AWC neurons fail to express neuron type-specific characteristics in mls-2 mutants. mls-2 is expressed transiently in postmitotic AWC neurons, and directly initiates ceh-36 expression. CEH-36 subsequently interacts with a distinct site in its cis-regulatory sequences to maintain its own expression, and also directly regulates the expression of AWC-specific terminal differentiation genes. We also show that MLS-2 acts in additional neuron types to regulate their development and differentiation. Our analysis describes a transcription factor cascade that defines the unique postmitotic characteristics of a sensory neuron subtype, and provides insights into the spatiotemporal regulatory mechanisms that generate functional diversity in the sensory nervous system. PMID:20150279

  4. Toward functional classification of neuronal types.

    PubMed

    Sharpee, Tatyana O

    2014-09-17

    How many types of neurons are there in the brain? This basic neuroscience question remains unsettled despite many decades of research. Classification schemes have been proposed based on anatomical, electrophysiological, or molecular properties. However, different schemes do not always agree with each other. This raises the question of whether one can classify neurons based on their function directly. For example, among sensory neurons, can a classification scheme be devised that is based on their role in encoding sensory stimuli? Here, theoretical arguments are outlined for how this can be achieved using information theory by looking at optimal numbers of cell types and paying attention to two key properties: correlations between inputs and noise in neural responses. This theoretical framework could help to map the hierarchical tree relating different neuronal classes within and across species. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    PubMed

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Graphene Based Electrochemical Sensors and Biosensors: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yuyan; Wang, Jun; Wu, Hong

    2010-05-01

    Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

  7. Optical biosensors.

    PubMed

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Time-Warp–Invariant Neuronal Processing

    PubMed Central

    Gütig, Robert; Sompolinsky, Haim

    2009-01-01

    Fluctuations in the temporal durations of sensory signals constitute a major source of variability within natural stimulus ensembles. The neuronal mechanisms through which sensory systems can stabilize perception against such fluctuations are largely unknown. An intriguing instantiation of such robustness occurs in human speech perception, which relies critically on temporal acoustic cues that are embedded in signals with highly variable duration. Across different instances of natural speech, auditory cues can undergo temporal warping that ranges from 2-fold compression to 2-fold dilation without significant perceptual impairment. Here, we report that time-warp–invariant neuronal processing can be subserved by the shunting action of synaptic conductances that automatically rescales the effective integration time of postsynaptic neurons. We propose a novel spike-based learning rule for synaptic conductances that adjusts the degree of synaptic shunting to the temporal processing requirements of a given task. Applying this general biophysical mechanism to the example of speech processing, we propose a neuronal network model for time-warp–invariant word discrimination and demonstrate its excellent performance on a standard benchmark speech-recognition task. Our results demonstrate the important functional role of synaptic conductances in spike-based neuronal information processing and learning. The biophysics of temporal integration at neuronal membranes can endow sensory pathways with powerful time-warp–invariant computational capabilities. PMID:19582146

  9. The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration?

    PubMed Central

    Fritzsch, Bernd; Beisel, Kirk W.; Hansen, Laura

    2014-01-01

    Summary The inner ear of mammals uses neurosensory cells derived from the embryonic ear for mechanoelectric transduction of vestibular and auditory stimuli (the hair cells) and conducts this information to the brain via sensory neurons. As with most other neurons of mammals, lost hair cells and sensory neurons are not spontaneously replaced and result instead in age-dependent progressive hearing loss. We review the molecular basis of neurosensory development in the mouse ear to provide a blueprint for possible enhancement of therapeutically useful transformation of stem cells into lost neurosensory cells. We identify several readily available adult sources of stem cells that express, like the ectoderm-derived ear, genes known to be essential for ear development. Use of these stem cells combined with molecular insights into neurosensory cell specification and proliferation regulation of the ear, might allow for neurosensory regeneration of mammalian ears in the near future. PMID:17120192

  10. Inflammation and nerve injury induce expression of pancreatitis-associated protein-II in primary sensory neurons.

    PubMed

    He, Shao-Qiu; Yao, Jun-Ru; Zhang, Fang-Xiong; Wang, Qiong; Bao, Lan; Zhang, Xu

    2010-04-26

    Pancreatitis-associated protein (PAP)-I and -II, lectin-related secretory proteins, are members of the regenerating gene (Reg) family. Although expression of PAP-I was found in the dorsal root ganglion (DRG) neurons following peripheral nerve injury and cystitis, whether PAP-II could be expressed in DRG neurons in chronic pain models remains unclear. The present study shows an inflammation- and nerve injury-triggered expression of PAP-II in rat DRG neurons. In situ hybridization showed that only a few DRG neurons normally contained PAP-I and -II mRNAs. After peripheral inflammation, PAP-I and -II mRNAs were present in over half of small DRG neurons. Such an elevated expression of PAP-I and -II reached the peak level on the second day. Immunostaining showed that the expression of PAP-II was mostly increased in the isolectin B4-positive subset of small DRG neurons after inflammation. Furthermore, the expression of PAP-II was also induced in DRG neurons after peripheral nerve injury. Interestingly, PAP-II expression was shifted from small neurons on day 2 to large DRG neurons that expressed neuropeptide Y during the later post-injury days. These results suggest that PAP-II may play potential roles in the modulation of spinal sensory pathways in pathological pain states.

  11. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  12. Genes that act downstream of sensory neurons to influence longevity, dauer formation, and pathogen responses in Caenorhabditis elegans.

    PubMed

    Gaglia, Marta M; Jeong, Dae-Eun; Ryu, Eun-A; Lee, Dongyeop; Kenyon, Cynthia; Lee, Seung-Jae

    2012-01-01

    The sensory systems of multicellular organisms are designed to provide information about the environment and thus elicit appropriate changes in physiology and behavior. In the nematode Caenorhabditis elegans, sensory neurons affect the decision to arrest during development in a diapause state, the dauer larva, and modulate the lifespan of the animals in adulthood. However, the mechanisms underlying these effects are incompletely understood. Using whole-genome microarray analysis, we identified transcripts whose levels are altered by mutations in the intraflagellar transport protein daf-10, which result in impaired development and function of many sensory neurons in C. elegans. In agreement with existing genetic data, the expression of genes regulated by the transcription factor DAF-16/FOXO was affected by daf-10 mutations. In addition, we found altered expression of transcriptional targets of the DAF-12/nuclear hormone receptor in the daf-10 mutants and showed that this pathway influences specifically the dauer formation phenotype of these animals. Unexpectedly, pathogen-responsive genes were repressed in daf-10 mutant animals, and these sensory mutants exhibited altered susceptibility to and behavioral avoidance of bacterial pathogens. Moreover, we found that a solute transporter gene mct-1/2, which was induced by daf-10 mutations, was necessary and sufficient for longevity. Thus, sensory input seems to influence an extensive transcriptional network that modulates basic biological processes in C. elegans. This situation is reminiscent of the complex regulation of physiology by the mammalian hypothalamus, which also receives innervations from sensory systems, most notably the visual and olfactory systems.

  13. Current trends in nanomaterial embedded field effect transistor-based biosensor.

    PubMed

    Nehra, Anuj; Pal Singh, Krishna

    2015-12-15

    Recently, as metal-, polymer-, and carbon-based biocompatible nanomaterials have been increasingly incorporated into biosensing applications, with various nanostructures having been used to increase the efficacy and sensitivity of most of the detecting devices, including field effect transistor (FET)-based devices. These nanomaterial-based methods also became the ideal for the amalgamation of biomolecules, especially for the fabrication of ultrasensitive, low-cost, and robust FET-based biosensors; these are categorically very successful at binding the target specified entities in the confined gated micro-region for high functionality. Furthermore, the contemplation of nanomaterial-based FET biosensors to various applications encompasses the desire for detection of many targets with high selectivity, and specificity. We assess how such devices have empowered the achievement of elevated biosensor performance in terms of high sensitivity, selectivity and low detection limits. We review the recent literature here to illustrate the diversity of FET-based biosensors, based on various kinds of nanomaterials in different applications and sum up that graphene or its assisted composite based FET devices are comparatively more efficient and sensitive with highest signal to noise ratio. Lastly, the future prospects and limitations of the field are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Primary sensory neuron-specific interference of TRPV1 signaling by adeno-associated virus-encoded TRPV1 peptide aptamer attenuates neuropathic pain

    PubMed Central

    Xiang, Hongfei; Liu, Zhen; Wang, Fei; Xu, Hao; Roberts, Christopher; Fischer, Gregory; Stucky, Cheryl L; Dean, Caron; Pan, Bin; Hogan, Quinn H; Yu, Hongwei

    2017-01-01

    Background TRPV1 (transient receptor potential vanilloid subfamily member 1) is a pain signaling channel highly expressed in primary sensory neurons. Attempts for analgesia by systemic TRPV1 blockade produce undesirable side effects, such as hyperthermia and impaired heat pain sensation. One approach for TRPV1 analgesia is to target TRPV1 along the peripheral sensory pathway. Results For functional blockade of TRPV1 signaling, we constructed an adeno-associated virus (AAV) vector expressing a recombinant TRPV1 interfering peptide aptamer, derived from a 38mer tetrameric assembly domain (TAD), encompassing residues 735 to 772 of rat TRPV1, fused to the C-terminus of enhanced green fluorescent protein (EGFP). AAV-targeted sensory neurons expressing EGFP-TAD after vector injection into the dorsal root ganglia (DRG) revealed decreased inward calcium current and diminished intracellular calcium accumulation in response to capsaicin, compared to neurons of naïve or expressing EGFP alone. To examine the potential for treating neuropathic pain, AAV-EGFP-TAD was injected into fourth and fifth lumbar (L) DRGs of rats subjected to neuropathic pain by tibial nerve injury (TNI). Results showed that AAV-directed selective expression of EGFP-TAD in L4/L5 DRG neuron somata, and their peripheral and central axonal projections can limit TNI-induced neuropathic pain behavior, including hypersensitivity to heat and, to a less extent, mechanical stimulation. Conclusion Selective inhibition of TRPV1 activity in primary sensory neurons by DRG delivery of AAV-encoded analgesic interfering peptide aptamers is efficacious in attenuation of neuropathic pain. With further improvements of vector constructs and in vivo application, this approach might have the potential to develop as an alternative gene therapy strategy to treat chronic pain, especially heat hypersensitivity, without complications due to systemic TRPV1 blockade. PMID:28604222

  15. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    PubMed Central

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240

  16. Sensitive-cell-based fish chromatophore biosensor

    NASA Astrophysics Data System (ADS)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  17. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    PubMed

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Nanopillar based electrochemical biosensor for monitoring microfluidic based cell culture

    NASA Astrophysics Data System (ADS)

    Gangadharan, Rajan

    In-vitro assays using cultured cells have been widely performed for studying many aspects of cell biology and cell physiology. These assays also form the basis of cell based sensing. Presently, analysis procedures on cell cultures are done using techniques that are not integrated with the cell culture system. This approach makes continuous and real-time in-vitro measurements difficult. It is well known that the availability of continuous online measurements for extended periods of time will help provide a better understanding and will give better insight into cell physiological events. With this motivation we developed a highly sensitive, selective and stable microfluidic electrochemical glucose biosensor to make continuous glucose measurements in cell culture media. The performance of the microfluidic biosensor was enhanced by adding 3D nanopillars to the electrode surfaces. The microfluidic glucose biosensor consisted of three electrodes---Enzyme electrode, Working electrode, and Counter electrode. All these electrodes were enhanced with nanopillars and were optimized in their respective own ways to obtain an effective and stable biosensing device in cell culture media. For example, the 'Enzyme electrode' was optimized for enzyme immobilization via either a polypyrrole-based or a self-assembled-monolayer-based immobilization method, and the 'Working electrode' was modified with Prussian Blue or electropolymerized Neutral Red to reduce the working potential and also the interference from other interacting electro-active species. The complete microfluidic biosensor was tested for its ability to monitor glucose concentration changes in cell culture media. The significance of this work is multifold. First, the developed device may find applications in continuous and real-time measurements of glucose concentrations in in-vitro cell cultures. Second, the development of a microfluidic biosensor will bring technical know-how toward constructing continuous glucose

  19. Graphene-Based Materials for Biosensors: A Review

    PubMed Central

    Suvarnaphaet, Phitsini; Pechprasarn, Suejit

    2017-01-01

    The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO), reduced graphene oxide (RGO) and graphene quantum dot (GQD). The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications. PMID:28934118

  20. Mechanisms of Transient Signaling via Short and Long Prolactin Receptor Isoforms in Female and Male Sensory Neurons*

    PubMed Central

    Belugin, Sergei; Diogenes, Anibal R.; Patil, Mayur J.; Ginsburg, Erika; Henry, Michael A.; Akopian, Armen N.

    2013-01-01

    Prolactin (PRL) regulates activity of nociceptors and causes hyperalgesia in pain conditions. PRL enhances nociceptive responses by rapidly modulating channels in nociceptors. The molecular mechanisms underlying PRL-induced transient signaling in neurons are not well understood. Here we use a variety of cell biology and pharmacological approaches to show that PRL transiently enhanced capsaicin-evoked responses involve protein kinase C ϵ (PKCϵ) or phosphatidylinositol 3-kinase (PI3K) pathways in female rat trigeminal (TG) neurons. We next reconstituted PRL-induced signaling in a heterologous expression system and TG neurons from PRL receptor (PRLR)-null mutant mice by expressing rat PRLR-long isoform (PRLR-L), PRLR-short isoform (PRLR-S), or a mix of both. Results show that PRLR-S, but not PRLR-L, is capable of mediating PRL-induced transient enhancement of capsaicin responses in both male and female TG neurons. However, co-expression of PRLR-L with PRLR-S (1:1 ratio) leads to the inhibition of the transient PRL actions. Co-expression of PRLR-L deletion mutants with PRLR-S indicated that the cytoplasmic site adjacent to the trans-membrane domain of PRLR-L was responsible for inhibitory effects of PRLR-L. Furthermore, in situ hybridization and immunohistochemistry data indicate that in normal conditions, PRLR-L is expressed mainly in glia with little expression in rat sensory neurons (3–5%) and human nerves. The predominant PRLR form in TG neurons/nerves from rats and humans is PRLR-S. Altogether, PRL-induced transient signaling in sensory neurons is governed by PI3K or PKCϵ, mediated via the PRLR-S isoform, and transient effects mediated by PRLR-S are inhibited by presence of PRLR-L in these cells. PMID:24142695

  1. Mechanisms of transient signaling via short and long prolactin receptor isoforms in female and male sensory neurons.

    PubMed

    Belugin, Sergei; Diogenes, Anibal R; Patil, Mayur J; Ginsburg, Erika; Henry, Michael A; Akopian, Armen N

    2013-11-29

    Prolactin (PRL) regulates activity of nociceptors and causes hyperalgesia in pain conditions. PRL enhances nociceptive responses by rapidly modulating channels in nociceptors. The molecular mechanisms underlying PRL-induced transient signaling in neurons are not well understood. Here we use a variety of cell biology and pharmacological approaches to show that PRL transiently enhanced capsaicin-evoked responses involve protein kinase C ε (PKCε) or phosphatidylinositol 3-kinase (PI3K) pathways in female rat trigeminal (TG) neurons. We next reconstituted PRL-induced signaling in a heterologous expression system and TG neurons from PRL receptor (PRLR)-null mutant mice by expressing rat PRLR-long isoform (PRLR-L), PRLR-short isoform (PRLR-S), or a mix of both. Results show that PRLR-S, but not PRLR-L, is capable of mediating PRL-induced transient enhancement of capsaicin responses in both male and female TG neurons. However, co-expression of PRLR-L with PRLR-S (1:1 ratio) leads to the inhibition of the transient PRL actions. Co-expression of PRLR-L deletion mutants with PRLR-S indicated that the cytoplasmic site adjacent to the trans-membrane domain of PRLR-L was responsible for inhibitory effects of PRLR-L. Furthermore, in situ hybridization and immunohistochemistry data indicate that in normal conditions, PRLR-L is expressed mainly in glia with little expression in rat sensory neurons (3-5%) and human nerves. The predominant PRLR form in TG neurons/nerves from rats and humans is PRLR-S. Altogether, PRL-induced transient signaling in sensory neurons is governed by PI3K or PKCε, mediated via the PRLR-S isoform, and transient effects mediated by PRLR-S are inhibited by presence of PRLR-L in these cells.

  2. Electrochemical DNA biosensor based on grafting-to mode of terminal deoxynucleoside transferase-mediated extension.

    PubMed

    Chen, Jinyuan; Liu, Zhoujie; Peng, Huaping; Zheng, Yanjie; Lin, Zhen; Liu, Ailin; Chen, Wei; Lin, Xinhua

    2017-12-15

    Previously reported electrochemical DNA biosensors based on in-situ polymerization approach reveal that terminal deoxynucleoside transferase (TdTase) has good amplifying performance and promising application in the design of electrochemical DNA biosensor. However, this method, in which the background is significantly affected by the amount of TdTase, suffers from being easy to produce false positive result and poor stability. Herein, we firstly present a novel electrochemical DNA biosensor based on grafting-to mode of TdTase-mediated extension, in which DNA targets are polymerized in homogeneous solution and then hybridized with DNA probes on BSA-based DNA carrier platform. It is surprising to find that the background in the grafting-to mode of TdTase-based electrochemical DNA biosensor have little interference from the employed TdTase. Most importantly, the proposed electrochemical DNA biosensor shows greatly improved detection performance over the in-situ polymerization approach-based electrochemical DNA biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Biosensors based on cantilevers.

    PubMed

    Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M

    2009-01-01

    Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.

  4. Pickpocket1 Is an Ionotropic Molecular Sensory Transducer*

    PubMed Central

    Boiko, Nina; Kucher, Volodymyr; Stockand, James D.; Eaton, Benjamin A.

    2012-01-01

    The molecular transformation of an external stimulus into changes in sensory neuron activity is incompletely described. Although a number of molecules have been identified that can respond to stimuli, evidence that these molecules can transduce stimulation into useful neural activity is lacking. Here we demonstrate that pickpocket1 (ppk1), a Drosophila homolog of mammalian Degenerin/epithelial sodium channels, encodes an acid-sensing sodium channel that conducts a transient depolarizing current in multidendritic sensory neurons of Drosophila melanogaster. Stimulation of Ppk1 is sufficient to bring these sensory neurons to threshold, eliciting a burst of action potentials. The transient nature of the neural activity produced by Ppk1 activation is the result of Ppk1 channel gating properties. This model is supported by the observation of enhanced bursting activity in neurons expressing a gain of function ppk1 mutant harboring the degenerin mutation. These findings demonstrate that Ppk1 can function as an ionotropic molecular sensory transducer capable of transforming the perception of a stimulus into phasic neuronal activity in sensory neurons. PMID:23033486

  5. Investigation of a Photoelectrochemical Passivated ZnO-Based Glucose Biosensor

    PubMed Central

    Lee, Ching-Ting; Chiu, Ying-Shuo; Ho, Shu-Ching; Lee, Yao-Jung

    2011-01-01

    A vapor cooling condensation system was used to deposit high quality intrinsic ZnO thin films and intrinsic ZnO nanorods as the sensing membrane of extended-gate field-effect-transistor (EGFET) glucose biosensors. The sensing sensitivity of the resulting glucose biosensors operated in the linear range was 13.4 μA mM−1 cm−2. To improve the sensing sensitivity of the ZnO-based glucose biosensors, the photoelectrochemical method was utilized to passivate the sidewall surfaces of the ZnO nanorods. The sensing sensitivity of the ZnO-based glucose biosensors with passivated ZnO nanorods was significantly improved to 20.33 μA mM−1 cm−2 under the same measurement conditions. The experimental results verified that the sensing sensitivity improvement was the result of the mitigation of the Fermi level pinning effect caused by the dangling bonds and the surface states induced on the sidewall surface of the ZnO nanorods. PMID:22163867

  6. Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring.

    PubMed

    Zhou, Shaofeng; Huang, Shaobin; Li, Yi; Zhao, Nannan; Li, Han; Angelidaki, Irini; Zhang, Yifeng

    2018-08-15

    This study presents an innovative microbial fuel cell-based biosensor for carbon monoxide (CO) monitoring. The hypothesis for the function of the biosensor is that CO inhibits bacterial activity in the anode and thereby reduces electricity production. A mature electrochemically active biofilm on the anode was exposed to CO gas at varied concentrations. A proportional linear relationship (R 2 = 0.987) between CO concentration and voltage drop (0.8 to 24 mV) in the range of 10% and 70% of CO concentration was observed. Notably, no further decrease of voltage output was observed by with further increasing CO concentration over 70%. Besides, the response time of the biosensor was 1 h. The compact design and simple operation of the biosensor makes it easy to be integrated in existing CO-based industrial facilities either as a forewarning sensor for CO toxicity or even as an individual on-line monitoring device. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats.

    PubMed

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2017-01-27

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups.

  8. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Mao, Xun; Gurung, Anant

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  9. Mapping sensory circuits by anterograde trans-synaptic transfer of recombinant rabies virus

    PubMed Central

    Zampieri, Niccolò; Jessell, Thomas M.; Murray, Andrew J.

    2014-01-01

    Summary Primary sensory neurons convey information from the external world to relay circuits within the central nervous system (CNS), but the identity and organization of the neurons that process incoming sensory information remains sketchy. Within the CNS viral tracing techniques that rely on retrograde trans-synaptic transfer provide a powerful tool for delineating circuit organization. Viral tracing of the circuits engaged by primary sensory neurons has, however, been hampered by the absence of a genetically tractable anterograde transfer system. In this study we demonstrate that rabies virus can infect sensory neurons in the somatosensory system, is subject to anterograde trans-synaptic transfer from primary sensory to spinal target neurons, and can delineate output connectivity with third-order neurons. Anterograde trans-synaptic transfer is a feature shared by other classes of primary sensory neurons, permitting the identification and potentially the manipulation of neural circuits processing sensory feedback within the mammalian CNS. PMID:24486087

  10. Transgenic expression of neuronal dystonin isoform 2 partially rescues the disease phenotype of the dystonia musculorum mouse model of hereditary sensory autonomic neuropathy VI

    PubMed Central

    Ferrier, Andrew; Sato, Tadasu; De Repentigny, Yves; Gibeault, Sabrina; Bhanot, Kunal; O'Meara, Ryan W.; Lynch-Godrei, Anisha; Kornfeld, Samantha F.; Young, Kevin G.; Kothary, Rashmi

    2014-01-01

    A newly identified lethal form of hereditary sensory and autonomic neuropathy (HSAN), designated HSAN-VI, is caused by a homozygous mutation in the bullous pemphigoid antigen 1 (BPAG1)/dystonin gene (DST). The HSAN-VI mutation impacts all major neuronal BPAG1/dystonin protein isoforms: dystonin-a1, -a2 and -a3. Homozygous mutations in the murine Dst gene cause a severe sensory neuropathy termed dystonia musculorum (dt). Phenotypically, dt mice are similar to HSAN-VI patients, manifesting progressive limb contractures, dystonia, dysautonomia and early postnatal death. To obtain a better molecular understanding of disease pathogenesis in HSAN-VI patients and the dt disorder, we generated transgenic mice expressing a myc-tagged dystonin-a2 protein under the regulation of the neuronal prion protein promoter on the dtTg4/Tg4 background, which is devoid of endogenous dystonin-a1 and -a2, but does express dystonin-a3. Restoring dystonin-a2 expression in the nervous system, particularly within sensory neurons, prevented the disorganization of organelle membranes and microtubule networks, attenuated the degeneration of sensory neuron subtypes and ameliorated the phenotype and increased life span in these mice. Despite these improvements, complete rescue was not observed likely because of inadequate expression of the transgene. Taken together, this study provides needed insight into the molecular basis of the dt disorder and other peripheral neuropathies including HSAN-VI. PMID:24381311

  11. Nogo Receptor Homolog NgR2 Expressed in Sensory DRG Neurons Controls Epidermal Innervation by Interaction with Versican

    PubMed Central

    Bäumer, Bastian E.; Kurz, Antje; Borrie, Sarah C.; Sickinger, Stephan; Dours-Zimmermann, María T.; Zimmermann, Dieter R.

    2014-01-01

    Primary sensory afferents of the dorsal root ganglion (DRG) that innervate the skin detect a wide range of stimuli, such as touch, temperature, pain, and itch. Different functional classes of nociceptors project their axons to distinct target zones within the developing skin, but the molecular mechanisms that regulate target innervation are less clear. Here we report that the Nogo66 receptor homolog NgR2 is essential for proper cutaneous innervation. NgR2−/− mice display increased density of nonpeptidergic nociceptors in the footpad and exhibit enhanced sensitivity to mechanical force and innocuous cold temperatures. These sensory deficits are not associated with any abnormality in morphology or density of DRG neurons. However, deletion of NgR2 renders nociceptive nonpeptidergic sensory neurons insensitive to the outgrowth repulsive activity of skin-derived Versican. Biochemical evidence shows that NgR2 specifically interacts with the G3 domain of Versican. The data suggest that Versican/NgR2 signaling at the dermo-epidermal junction acts in vivo as a local suppressor of axonal plasticity to control proper density of epidermal sensory fiber innervation. Our findings not only reveal the existence of a novel and unsuspected mechanism regulating epidermal target innervation, but also provide the first evidence for a physiological role of NgR2 in the peripheral nervous system. PMID:24478347

  12. Nogo receptor homolog NgR2 expressed in sensory DRG neurons controls epidermal innervation by interaction with Versican.

    PubMed

    Bäumer, Bastian E; Kurz, Antje; Borrie, Sarah C; Sickinger, Stephan; Dours-Zimmermann, María T; Zimmermann, Dieter R; Bandtlow, Christine E

    2014-01-29

    Primary sensory afferents of the dorsal root ganglion (DRG) that innervate the skin detect a wide range of stimuli, such as touch, temperature, pain, and itch. Different functional classes of nociceptors project their axons to distinct target zones within the developing skin, but the molecular mechanisms that regulate target innervation are less clear. Here we report that the Nogo66 receptor homolog NgR2 is essential for proper cutaneous innervation. NgR2(-/-) mice display increased density of nonpeptidergic nociceptors in the footpad and exhibit enhanced sensitivity to mechanical force and innocuous cold temperatures. These sensory deficits are not associated with any abnormality in morphology or density of DRG neurons. However, deletion of NgR2 renders nociceptive nonpeptidergic sensory neurons insensitive to the outgrowth repulsive activity of skin-derived Versican. Biochemical evidence shows that NgR2 specifically interacts with the G3 domain of Versican. The data suggest that Versican/NgR2 signaling at the dermo-epidermal junction acts in vivo as a local suppressor of axonal plasticity to control proper density of epidermal sensory fiber innervation. Our findings not only reveal the existence of a novel and unsuspected mechanism regulating epidermal target innervation, but also provide the first evidence for a physiological role of NgR2 in the peripheral nervous system.

  13. Dose-Dependent Differential Effect of Neurotrophic Factors on In Vitro and In Vivo Regeneration of Motor and Sensory Neurons

    PubMed Central

    Santos, Daniel; Gonzalez-Perez, Francisco; Navarro, Xavier

    2016-01-01

    Although peripheral axons can regenerate after nerve transection and repair, functional recovery is usually poor due to inaccurate reinnervation. Neurotrophic factors promote directional guidance to regenerating axons and their selective application may help to improve functional recovery. Hence, we have characterized in organotypic cultures of spinal cord and dorsal root ganglia the effect of GDNF, FGF-2, NGF, NT-3, and BDNF at different concentrations on motor and sensory neurite outgrowth. In vitro results show that GDNF and FGF-2 enhanced both motor and sensory neurite outgrowth, NGF and NT-3 were the most selective to enhance sensory neurite outgrowth, and high doses of BDNF selectively enhanced motor neurite outgrowth. Then, NGF, NT-3, and BDNF (as the most selective factors) were delivered in a collagen matrix within a silicone tube to repair the severed sciatic nerve of rats. Quantification of Fluorogold retrolabeled neurons showed that NGF and NT-3 did not show preferential effect on sensory regeneration whereas BDNF preferentially promoted motor axons regeneration. Therefore, the selective effects of NGF and NT-3 shown in vitro are lost when they are applied in vivo, but a high dose of BDNF is able to selectively enhance motor neuron regeneration both in vitro and in vivo. PMID:27867665

  14. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  15. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    PubMed Central

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-01-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113

  16. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    PubMed Central

    Wang, Jun; Wu, Chengxiong; Hu, Ning; Zhou, Jie; Du, Liping; Wang, Ping

    2012-01-01

    Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology. PMID:25585708

  17. Engineering Rugged Field Assays to Detect Hazardous Chemicals Using Spore-Based Bacterial Biosensors.

    PubMed

    Wynn, Daniel; Deo, Sapna; Daunert, Sylvia

    2017-01-01

    Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field. © 2017 Elsevier Inc. All rights reserved.

  18. GMR-based PhC biosensor: FOM analysis and experimental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syamprasad, Jagadeesh; Narayanan, Roshni; Joseph, Joby

    2014-02-20

    Guided Mode Resonance based Photonic crystal biosensor has a lot of potential applications. In our work, we are trying to improve their figure of merit values in order to achieve an optimum level through design and fabrication techniques. A robust and low-cost alternative for current biosensors is also explored through this research.

  19. Temporal precision of neuronal information in a rapid perceptual judgment.

    PubMed

    Ghose, Geoffrey M; Harrison, Ian T

    2009-03-01

    In many situations, such as pedestrians crossing a busy street or prey evading predators, rapid decisions based on limited perceptual information are critical for survival. The brevity of these perceptual judgments constrains how neuronal signals are integrated or pooled over time because the underlying sequence of processes, from sensation to perceptual evaluation to motor planning and execution, all occur within several hundred milliseconds. Because most previous physiological studies of these processes have relied on tasks requiring considerably longer temporal integration, the neuronal basis of such rapid decisions remains largely unexplored. In this study, we examine the temporal precision of neuronal activity associated with a rapid perceptual judgment. We find that the activity of individual neurons over tens of milliseconds can reliably convey information about sensory events and was well correlated with the animals' judgments. There was a strong correlation between sensory reliability and the correlation with behavioral choice, suggesting that rapid decisions were preferentially based on the most reliable sensory signals. We also find that a simple model in which the responses of a small number of individual neurons (<5) are summed can completely explain behavioral performance. These results suggest that neuronal circuits are sufficiently precise to allow for cognitive decisions to be based on small numbers of action potentials from highly reliable neurons.

  20. Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Kevin G.; University of Ottawa Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario; Kothary, Rashmi

    2008-09-10

    Dystonin/Bpag1 proteins are cytoskeletal linkers whose loss of function in mice results in a hereditary sensory neuropathy with a progressive loss of limb coordination starting in the second week of life. These mice, named dystonia musculorum (dt), succumb to the disease and die of unknown causes prior to sexual maturity. Previous evidence indicated that cytoskeletal defects in the axon are a primary cause of dt neurodegeneration. However, more recent data suggests that other factors may be equally important contributors to the disease process. In the present study, we demonstrate perikaryal defects in dorsal root ganglion (DRG) neurons at stages precedingmore » the onset of loss of limb coordination in dt mice. Abnormalities include alterations in endoplasmic reticulum (ER) chaperone protein expression, indicative of an ER stress response. Dystonin in sensory neurons localized in association with the ER and nuclear envelope (NE). A fusion protein ofthe dystonin-a2 isoform, which harbors an N-terminal transmembrane domain, associated with and reorganized the ER in cell culture. This isoform also interacts with the NE protein nesprin-3{alpha}, but not nesprin-3{beta}. Defects in dt mice, as demonstrated here, may ultimately result in pathogenesis involving ER dysfunction and contribute significantly to the dt phenotype.« less

  1. A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate.

    PubMed

    Kucherenko, I S; Kucherenko, D Yu; Soldatkin, O O; Lagarde, F; Dzyadevych, S V; Soldatkin, A P

    2016-04-01

    The paper presents a simple and inexpensive reusable biosensor for determination of the concentration of adenosine-5'-triphosphate (ATP) in aqueous samples. The biosensor is based on a conductometric transducer which contains two pairs of gold interdigitated electrodes. An enzyme hexokinase was immobilized onto one pair of electrodes, and bovine serum albumin-onto another pair (thus, a differential mode of measurement was used). Conditions of hexokinase immobilization on the transducer by cross-linking via glutaraldehyde were optimized. Influence of experimental conditions (concentration of magnesium ions, ionic strength and concentration of the working buffer) on the biosensor work was studied. The reproducibility of biosensor responses and operational stability of the biosensor were checked during one week. Dry storage at -18 °C was shown to be the best conditions to store the biosensor. The biosensor was successfully applied for measurements of ATP concentration in pharmaceutical samples. The proposed biosensor may be used in future for determination of ATP and/or glucose in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca2+ channels

    PubMed Central

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-01-01

    T-type Ca2+ channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca2+ currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca2+ channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca2+ currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a ‘reserve pool’ of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020

  3. A hard-soft microfluidic-based biosensor flow cell for SPR imaging application.

    PubMed

    Liu, Changchun; Cui, Dafu; Li, Hui

    2010-09-15

    An ideal microfluidic-based biosensor flow cell should have not only a "soft" interface for high strength sealing with biosensing chips, but also "hard" macro-to-micro interface for tubing connection. Since these properties are exclusive of each other, no one material can provide the advantages of both. In this paper, we explore the application of a SiO(2) thin film, deposited by plasma-enhanced chemical vapor deposition (PECVD) technology, as an intermediate layer for irreversibly adhering polydimethylsiloxane (PDMS) to plastic substrate, and develop a hard-soft, compact, robust microfluidic-based biosensor flow cell for the multi-array immunoassay application of surface plasmon resonance (SPR) imaging. This hard-soft biosensor flow cell consists of one rigid, computer numerically controlled (CNC)-machined poly(methyl methacrylate) (PMMA) base coated with a 200 nm thick SiO(2) thin film, and one soft PDMS microfluidic layer. This novel microfluidic-based biosensor flow cell does not only keep the original advantage of conventional PDMS-based biosensor flow cell such as the intrinsically soft interface, easy-to-fabrication, and low cost, but also has a rigid, robust, easy-to-use interface to tubing connection and can be operated up to 185 kPa in aqueous environments without failure. Its application was successfully demonstrated with two types of experiments by coupling with SPR imaging biosensor: the real-time monitoring of the immunoglobulin G (IgG) interaction, as well as the detection of sulfamethoxazole (SMOZ) and sulfamethazine (SMZ) with the sensitivity of 3.5 and 0.6 ng/mL, respectively. This novel hard-soft microfluidic device is also useful for a variety of other biosensor flow cells. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    PubMed Central

    Florescu, Monica; David, Melinda

    2017-01-01

    A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA). For increased selectivity, gold electrodes were previously modified with cobalt (II)-porphyrin (CoP) film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr) was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA), with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%), and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum. PMID:28590453

  5. Predicting the response of olfactory sensory neurons to odor mixtures from single odor response

    NASA Astrophysics Data System (ADS)

    Marasco, Addolorata; de Paris, Alessandro; Migliore, Michele

    2016-04-01

    The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific olfactory receptor responses by manipulating mixtures in a mathematically predictable manner. This result is general and applies, independently of the number of odor components, to any olfactory sensory neuron type with a response curve that can be represented as a sigmoidal function of the odor concentration.

  6. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications

    NASA Astrophysics Data System (ADS)

    Rigosa, J.; Weber, D. J.; Prochazka, A.; Stein, R. B.; Micera, S.

    2011-08-01

    Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.

  7. Photonic crystal-based optical biosensor: a brief investigation

    NASA Astrophysics Data System (ADS)

    Divya, J.; Selvendran, S.; Sivanantha Raja, A.

    2018-06-01

    In this paper, a two-dimensional photonic crystal biosensor for medical applications based on two waveguides and a nanocavity was explored with different shoulder-coupled nanocavity structures. The most important biosensor parameters, like the sensitivity and quality factor, can be significantly improved. By injecting an analyte into a sensing hole, the refractive index of the hole was changed. This refractive index biosensor senses the changes and shifts its operating wavelength accordingly. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte concentration are analyzed by the finite-difference time-domain method. The band gap for each structure is designed and observed by the plane wave expansion method. These proposed structures are designed to obtain an analyte refractive index variation of about 1–1.5 in an optical wavelength range of 1.250–1.640 µm. Accordingly, an improved sensitivity of 136.6 nm RIU‑1 and a quality factor as high as 3915 is achieved. An important feature of this structure is its very small dimensions. Such a combination of attributes makes the designed structure a promising element for label-free biosensing applications.

  8. Carbon nanotube-based biosensors

    NASA Astrophysics Data System (ADS)

    Ramoni, Roberto; Staiano, Maria; Bellucci, Stefano; Grycznyski, Ignacy; Grycznyski, Zygmunt; Crescenzo, Roberta; Iozzino, Luisa; Bharill, Shashank; Conti, Virna; Grolli, Stefano; D'Auria, Sabato

    2008-11-01

    An easy and rapid detection of hazardous compounds is crucial for making on-the-spot irreversible decisions at airport security gates, luggage storage rooms, and other crowded public places, such as stadia, concert halls, etc. In the present study we carried out a preliminary investigation into the possibility of utilizing as advanced nano-biosensors a mutant form of the bovine odorant-binding protein (bOBP) immobilized onto carbon nanotubes. In particular, after immobilization of the protein on the carbon nanotubes we developed a competitive resonance energy transfer (RET) assay between the protein tryptophan residues located at the positions 17 and 133 (W17 and W133) and the 1-amino-anthracene (AMA), a molecule that fits in the binding site of bOBP. The bOBP-AMA complex emitted light in the visible region upon excitation of the Trp donors. However, the addition of an odorant molecule to the bOBP-AMA complex displaced AMA from the binding site making the carbon nanotubes colorless. The results presented in this work are very promising for the realization of a color on/ color off b-OBP-based biosensor for the initial indication of hazardous compounds in the environment.

  9. The Upregulation of α2δ-1 Subunit Modulates Activity-Dependent Ca2+ Signals in Sensory Neurons

    PubMed Central

    Margas, Wojciech; Cassidy, John S.

    2015-01-01

    As auxiliary subunits of voltage-gated Ca2+ channels, the α2δ proteins modulate membrane trafficking of the channels and their localization to specific presynaptic sites. Following nerve injury, upregulation of the α2δ-1 subunit in sensory dorsal root ganglion neurons contributes to the generation of chronic pain states; however, very little is known about the underlying molecular mechanisms. Here we show that the increased expression of α2δ-1 in rat sensory neurons leads to prolonged Ca2+ responses evoked by membrane depolarization. This mechanism is coupled to CaV2.2 channel-mediated responses, as it is blocked by a ω-conotoxin GVIA application. Once initiated, the prolonged Ca2+ transients are not dependent on extracellular Ca2+ and do not require Ca2+ release from the endoplasmic reticulum. The selective inhibition of mitochondrial Ca2+ uptake demonstrates that α2δ-1-mediated prolonged Ca2+ signals are buffered by mitochondria, preferentially activated by Ca2+ influx through CaV2.2 channels. Thus, by controlling channel abundance at the plasma membrane, the α2δ-1 subunit has a major impact on the organization of depolarization-induced intracellular Ca2+ signaling in dorsal root ganglion neurons. PMID:25878262

  10. Biosensor-based microRNA detection: techniques, design, performance, and challenges.

    PubMed

    Johnson, Blake N; Mutharasan, Raj

    2014-04-07

    The current state of biosensor-based techniques for amplification-free microRNA (miRNA) detection is critically reviewed. Comparison with non-sensor and amplification-based molecular techniques (MTs), such as polymerase-based methods, is made in terms of transduction mechanism, associated protocol, and sensitivity. Challenges associated with miRNA hybridization thermodynamics which affect assay selectivity and amplification bias are briefly discussed. Electrochemical, electromechanical, and optical classes of miRNA biosensors are reviewed in terms of transduction mechanism, limit of detection (LOD), time-to-results (TTR), multiplexing potential, and measurement robustness. Current trends suggest that biosensor-based techniques (BTs) for miRNA assay will complement MTs due to the advantages of amplification-free detection, LOD being femtomolar (fM)-attomolar (aM), short TTR, multiplexing capability, and minimal sample preparation requirement. Areas of future importance in miRNA BT development are presented which include focus on achieving high measurement confidence and multiplexing capabilities.

  11. Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins

    PubMed Central

    Sharma, Atul; Khan, Reem; Catanante, Gaelle; Sherazi, Tauqir A.; Bhand, Sunil; Hayat, Akhtar; Marty, Jean Louis

    2018-01-01

    Small molecule toxins such as mycotoxins with low molecular weight are the most widely studied biological toxins. These biological toxins are responsible for food poisoning and have the potential to be used as biological warfare agents at the toxic dose. Due to the poisonous nature of mycotoxins, effective analysis techniques for quantifying their toxicity are indispensable. In this context, biosensors have been emerged as a powerful tool to monitors toxins at extremely low level. Recently, biosensors based on fluorescence detection have attained special interest with the incorporation of nanomaterials. This review paper will focus on the development of fluorescence-based biosensors for mycotoxin detection, with particular emphasis on their design as well as properties such as sensitivity and specificity. A number of these fluorescent biosensors have shown promising results in food samples for the detection of mycotoxins, suggesting their future potential for food applications. PMID:29751687

  12. Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins.

    PubMed

    Sharma, Atul; Khan, Reem; Catanante, Gaelle; Sherazi, Tauqir A; Bhand, Sunil; Hayat, Akhtar; Marty, Jean Louis

    2018-05-11

    Small molecule toxins such as mycotoxins with low molecular weight are the most widely studied biological toxins. These biological toxins are responsible for food poisoning and have the potential to be used as biological warfare agents at the toxic dose. Due to the poisonous nature of mycotoxins, effective analysis techniques for quantifying their toxicity are indispensable. In this context, biosensors have been emerged as a powerful tool to monitors toxins at extremely low level. Recently, biosensors based on fluorescence detection have attained special interest with the incorporation of nanomaterials. This review paper will focus on the development of fluorescence-based biosensors for mycotoxin detection, with particular emphasis on their design as well as properties such as sensitivity and specificity. A number of these fluorescent biosensors have shown promising results in food samples for the detection of mycotoxins, suggesting their future potential for food applications.

  13. DNA nanotechnology-enabled biosensors.

    PubMed

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Sensory neuronal sensitisation occurs through HMGB-1/ RAGE and TRPV1 in high glucose conditions.

    PubMed

    Bestall, S M; Hulse, R P; Blackley, Z; Swift, M; Ved, N; Paton, K; Beazley-Long, N; Bates, D O; Donaldson, L F

    2018-06-21

    Many potential causes for painful diabetic neuropathy have been proposed including actions of cytokines and growth factors. High mobility group protein B1 (HMGB1) is a RAGE agonist, increased in diabetes, that contributes to pain by modulating peripheral inflammatory responses. HMGB1 enhances nociceptive behaviour in naïve animals through an unknown mechanism. We tested the hypothesis that HMGB1 causes pain through direct neuronal activation of RAGE and alteration of nociceptive neuronal responsiveness.HMGB1 and RAGE expression were increased in skin and primary sensory (DRG) neurons of diabetic rats at times when pain behaviour was enhanced. Agonist-evoked TRPV1-mediated calcium responses increased in cultured DRG neurons from diabetic rats and in neurons from naïve rats exposed to high glucose concentrations. HMGB1-mediated increases in TRPV1-evoked calcium responses in DRG neurons were RAGE and PKC-dependent, and this was blocked by co-administration of the growth factor splice variant, VEGF-A 165 b. Pain behaviour and DRG RAGE expression increases were blocked by VEGF-A 165 b treatment of diabetic rats in vivo HMGB-1-RAGE activation sensitizes DRG neurons in vitro VEGF-A 165 b blocks HMGB-1/RAGE DRG activation, which may contribute to its analgesic properties in vivo . © 2018. Published by The Company of Biologists Ltd.

  15. Sensory noise predicts divisive reshaping of receptive fields.

    PubMed

    Chalk, Matthew; Masset, Paul; Deneve, Sophie; Gutkin, Boris

    2017-06-01

    In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics.

  16. SAD kinases sculpt axonal arbors of sensory neurons through long and short-term responses to neurotrophin signals

    PubMed Central

    Lilley, Brendan N.; Pan, Y. Albert; Sanes, Joshua R.

    2013-01-01

    SUMMARY Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex, but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short duration signals from extrinsic cues to sculpt axon arbors within the CNS. PMID:23790753

  17. Sensory nerve crush and regeneration and the receptive fields and response properties of neurons in the primary somatosensory cerebral cortex of cats.

    PubMed

    Brandenberg, G A; Mann, M D

    1989-03-01

    Extracellular recordings were made of activity evoked in neurons of the forepaw focus of somatosensory cerebral cortex by electrical stimulation of each paw in control cats and cats that had undergone crush injury of all cutaneous sensory nerves to the contralateral forepaw 31 to 63 days previously. Neurons responding only to stimulation of the contralateral forepaw were classified as sa; neurons responding to stimulation of both forepaws were classified as sb; neurons responding to stimulation of both contralateral paws were classified as sc; and neurons responding to stimulation of at least three paws were classified as m. The ratio sa:sb:sc:m neurons was 46:3:0:0 in control cats and 104:15:3:26 in cats that had undergone nerve crush 1-2 months prior to study. sa neurons from experimental cats had depth distributions similar to those in controls and responded to contralateral forepaw stimulation with more spikes per discharge, longer latency, and higher threshold than sa neurons in control cats. m neurons from experimental cats were distributed deeper in the cortex than sa neurons, and, when compared to experimental sa neurons, they responded with longer latency and poorer frequency-following ability; however, the number of spikes per discharge and threshold were not significantly different. The appearance of wide-field neurons in this tissue may be explained in terms of strengthening of previously sub-threshold inputs to neurons in the somatosensory system. If the neurons in sensory cortex play a requisite role in cutaneous sensations and if changes similar to those reported here occur and persist in human cortex after nerve crush, then "complete" recovery of sensation in such patients may occur against a background of changed cortical neuronal responsiveness.

  18. Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.

    PubMed

    Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry

    2015-07-01

    This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Central projections of sensory systems involved in honey bee dance language communication.

    PubMed

    Brockmann, Axel; Robinson, Gene E

    2007-01-01

    Honey bee dance language is a unique and complex form of animal communication used to inform nest mates in the colony about the specific location of food sources or new nest sites. Five different sensory systems have been implicated in acquiring and communicating the information necessary for dance language communication. We present results from neuronal tracer studies identifying the central projections from four of the five. Sensory neurons of the dorsal rim area of the compound eyes, involved in acquiring sun-compass based information, project to the dorsal-most part of the medulla. Sensory neurons of the neck hair plates, required to transpose sun-compass based information to gravity-based information in the dark hive, project to the dorsal labial neuromere of the subesophageal ganglion. Sensory neurons from the antennal joint hair sensilla and the Johnston's organ, which perceive information on dance direction and distance from mechanostimuli generated by abdomen waggling and wing vibration, project to the deutocerebral dorsal lobe and the subesophageal ganglion, and the posterior protocerebrum, respectively. We found no 'dance-specific' projections relative to those previously described for drone and queen honey bees and other insect species that do not exhibit dance communication. We suggest that the evolution of dance language communication was likely based on the modification of central neural pathways associated with path integration, the capability to calculate distance, and directional information during flight. Copyright 2007 S. Karger AG, Basel.

  20. Smartphone based non-invasive salivary glucose biosensor.

    PubMed

    Soni, Anuradha; Jha, Sandeep Kumar

    2017-12-15

    The present work deals with the development of a non-invasive optical glucose biosensor using saliva samples and a smartphone. The sensor was fabricated with a simple methodology by immobilization of Glucose oxidase enzyme along with a pH responsive dye on a filter paper based strip. The strip changes color upon reaction with glucose present in saliva and the color changes were detected using a smartphone camera through RGB profiling. This standalone biosensor showed good sensitivity and low interference while operating within 20 s response time. We used various means for improvements such as the use of slope method instead of differential response; use of a responsive pH indicator and made numerous tweaks in the smartphone app. Calibration with spiked saliva samples with slopes for (R + G + B) pixels revealed an exponentially increasing calibration curve with a linear detection range of 50-540 mg/dL, sensitivity of 0.0012 pixels sec -1 /mg dL -1 and LOD of 24.6 mg/dL. The biosensor was clinically validated on both healthy and diabetic subjects divided into several categories based on sex, age, diabetic status etc. and correlation between blood and salivary glucose has been established for better standardization of the sensor. Correlation of 0.44 was obtained between blood and salivary glucose in healthy individuals whereas it was 0.64 and 0.94 in case of prediabetic and diabetic patients respectively. The developed biosensor has the potential to be used for mass diagnosis of diabetes especially in such areas where people remain prohibited from routine analysis due to high healthcare cost. Apart from that, a smartphone would be the only device the user needs for this measurement, along with a disposable low cost test strip. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Extensive Use of RNA-Binding Proteins in Drosophila Sensory Neuron Dendrite Morphogenesis

    PubMed Central

    Olesnicky, Eugenia C.; Killian, Darrell J.; Garcia, Evelyn; Morton, Mary C.; Rathjen, Alan R.; Sola, Ismail E.; Gavis, Elizabeth R.

    2013-01-01

    The large number of RNA-binding proteins and translation factors encoded in the Drosophila and other metazoan genomes predicts widespread use of post-transcriptional regulation in cellular and developmental processes. Previous studies identified roles for several RNA-binding proteins in dendrite branching morphogenesis of Drosophila larval sensory neurons. To determine the larger contribution of post-transcriptional gene regulation to neuronal morphogenesis, we conducted an RNA interference screen to identify additional Drosophila proteins annotated as either RNA-binding proteins or translation factors that function in producing the complex dendritic trees of larval class IV dendritic arborization neurons. We identified 88 genes encoding such proteins whose knockdown resulted in aberrant dendritic morphology, including alterations in dendritic branch number, branch length, field size, and patterning of the dendritic tree. In particular, splicing and translation initiation factors were associated with distinct and characteristic phenotypes, suggesting that different morphogenetic events are best controlled at specific steps in post-transcriptional messenger RNA metabolism. Many of the factors identified in the screen have been implicated in controlling the subcellular distributions and translation of maternal messenger RNAs; thus, common post-transcriptional regulatory strategies may be used in neurogenesis and in the generation of asymmetry in the female germline and embryo. PMID:24347626

  2. TUTORIAL: Beyond sensory substitution—learning the sixth sense

    NASA Astrophysics Data System (ADS)

    Nagel, Saskia K.; Carl, Christine; Kringe, Tobias; Märtin, Robert; König, Peter

    2005-12-01

    Rapid advances in neuroscience have sparked numerous efforts to study the neural correlate of consciousness. Prominent subjects include higher sensory area, distributed assemblies bound by synchronization of neuronal activity and neurons in specific cortical laminae. In contrast, it has been suggested that the quality of sensory awareness is determined by systematic change of afferent signals resulting from behaviour and knowledge thereof. Support for such skill-based theories of perception is provided by experiments on sensory substitution. Here, we pursue this line of thought and create new sensorimotor contingencies and, hence, a new quality of perception. Adult subjects received orientation information, obtained by a magnetic compass, via vibrotactile stimulation around the waist. After six weeks of training we evaluated integration of the new input by a battery of tests. The results indicate that the sensory information provided by the belt (1) is processed and boosts performance, (2) if inconsistent with other sensory signals leads to variable performance, (3) does interact with the vestibular nystagmus and (4) in half of the experimental subjects leads to qualitative changes of sensory experience. These data support the hypothesis that new sensorimotor contingencies can be learned and integrated into behaviour and affect perceptual experience.

  3. High-efficient and high-content cytotoxic recording via dynamic and continuous cell-based impedance biosensor technology.

    PubMed

    Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping

    2016-10-01

    Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.

  4. Augmented sodium currents contribute to the enhanced excitability of small diameter capsaicin-sensitive sensory neurons isolated from Nf1+/⁻ mice.

    PubMed

    Wang, Yue; Duan, J-H; Hingtgen, C M; Nicol, G D

    2010-04-01

    Neurofibromin, the product of the Nf1 gene, is a guanosine triphosphatase activating protein (GAP) for p21ras (Ras) that accelerates conversion of active Ras-GTP to inactive Ras-GDP. Sensory neurons with reduced levels of neurofibromin likely have augmented Ras-GTP activity. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/⁻) exhibited greater excitability compared with wild-type mice. To determine the mechanism giving rise to the augmented excitability, differences in specific membrane currents were examined. Consistent with the enhanced excitability of Nf1+/⁻ neurons, peak current densities of both tetrodotoxin-resistant sodium current (TTX-R I(Na)) and TTX-sensitive (TTX-S) I(Na) were significantly larger in Nf1+/⁻ than in wild-type neurons. Although the voltages for half-maximal activation (V(0.5)) were not different, there was a significant depolarizing shift in the V(0.5) for steady-state inactivation of both TTX-R and TTX-S I(Na) in Nf1+/⁻ neurons. In addition, levels of persistent I(Na) were significantly larger in Nf1+/⁻ neurons. Neither delayed rectifier nor A-type potassium currents were altered in Nf1+/⁻ neurons. These results demonstrate that enhanced production of action potentials in Nf1+/⁻ neurons results, in part, from larger current densities and a depolarized voltage dependence of steady-state inactivation for I(Na) that potentially leads to a greater availability of sodium channels at voltages near the firing threshold for the action potential.

  5. The power of projectomes: genetic mosaic labeling in the larval zebrafish brain reveals organizing principles of sensory circuits.

    PubMed

    Robles, Estuardo

    2017-09-01

    In no vertebrate species do we possess an accurate, comprehensive tally of neuron types in the brain. This is in no small part due to the vast diversity of neuronal types that comprise complex vertebrate nervous systems. A fundamental goal of neuroscience is to construct comprehensive catalogs of cell types defined by structure, connectivity, and physiological response properties. This type of information will be invaluable for generating models of how assemblies of neurons encode and distribute sensory information and correspondingly alter behavior. This review summarizes recent efforts in the larval zebrafish to construct sensory projectomes, comprehensive analyses of axonal morphologies in sensory axon tracts. Focusing on the olfactory and optic tract, these studies revealed principles of sensory information processing in the olfactory and visual systems that could not have been directly quantified by other methods. In essence, these studies reconstructed the optic and olfactory tract in a virtual manner, providing insights into patterns of neuronal growth that underlie the formation of sensory axon tracts. Quantitative analysis of neuronal diversity revealed organizing principles that determine information flow through sensory systems in the zebrafish that are likely to be conserved across vertebrate species. The generation of comprehensive cell type classifications based on structural, physiological, and molecular features will lead to testable hypotheses on the functional role of individual sensory neuron subtypes in controlling specific sensory-evoked behaviors.

  6. Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode.

    PubMed

    Dai, Hong; Chi, Yuwu; Wu, Xiaoping; Wang, Youmei; Wei, Mingdeng; Chen, Guonan

    2010-02-15

    A new biocompatible ECL biosensor based on enzyme/titanate nanotubes/chitosan composite film was developed for the determination of analytes in biological samples. In the fabrication of the new ECL biosensor, biocompatible titanate nanotubes (TNTs) and a model enzyme, i.e., choline oxidase (ChOX), were immobilized on a chitosan modified glassy carbon electrode (GCE) via electrostatic adsorption and covalent interaction, respectively. By this ECL biosensor, choline was enzymatically oxidized to hydrogen peroxide and detected by a sensitive luminol ECL system. The use of TNTs not only provided a biocompatible microenvironment for the immobilized enzyme, which resulted in an excellent stability and long lifetime of the ECL biosensor, but also exhibited great enhancement towards luminol ECL and thus led to a significant improvement in sensitivity of ECL biosensor. Satisfactory results were obtained when employing this biosensor in assaying the total choline in milk samples. The work would provide a common platform to develop various sensitive, selective and biocompatible ECL biosensors based on using enzyme/TNTs/CHIT composite films. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Temporal Precision of Neuronal Information in a Rapid Perceptual Judgment

    PubMed Central

    Ghose, Geoffrey M.; Harrison, Ian T.

    2009-01-01

    In many situations, such as pedestrians crossing a busy street or prey evading predators, rapid decisions based on limited perceptual information are critical for survival. The brevity of these perceptual judgments constrains how neuronal signals are integrated or pooled over time because the underlying sequence of processes, from sensation to perceptual evaluation to motor planning and execution, all occur within several hundred milliseconds. Because most previous physiological studies of these processes have relied on tasks requiring considerably longer temporal integration, the neuronal basis of such rapid decisions remains largely unexplored. In this study, we examine the temporal precision of neuronal activity associated with a rapid perceptual judgment. We find that the activity of individual neurons over tens of milliseconds can reliably convey information about sensory events and was well correlated with the animals' judgments. There was a strong correlation between sensory reliability and the correlation with behavioral choice, suggesting that rapid decisions were preferentially based on the most reliable sensory signals. We also find that a simple model in which the responses of a small number of individual neurons (<5) are summed can completely explain behavioral performance. These results suggest that neuronal circuits are sufficiently precise to allow for cognitive decisions to be based on small numbers of action potentials from highly reliable neurons. PMID:19109454

  8. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence.

    PubMed

    Zhang, Meihe; Yuan, Ruo; Chai, Yaqin; Chen, Shihong; Zhong, Huaan; Wang, Cun; Cheng, Yinfeng

    2012-02-15

    A novel cholesterol biosensor was prepared based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence (ECL). Firstly, l-cysteine-reduced graphene oxide composites were modified on the surface of a glassy carbon electrode. Then, gold nanoparticles (AuNPs) were self-assembled on it. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the surface of AuNPs to construct a cholesterol biosensor. The stepwise fabrication processes were characterized with cyclic voltammetry and atomic force microscopy. The ECL behaviors of the biosensor were also investigated. It was found that AuNPs not only provided larger surface area for higher ChOx loading but also formed the nano-structured interface on the electrode surface to improve the analytical performance of the ECL biosensor for cholesterol. Besides, based on the efficient catalytic ability of AuNPs to luminol ECL, the response of the biosensor to cholesterol was linear range from 3.3 μM to 1.0 mM with a detection limit of 1.1 μM (S/N=3). In addition, the prepared ECL biosensor exhibited satisfying reproducibility, stability and selectivity. Taking into account the advantages of ECL, we confidently expect that ECL would have potential applications in biotechnology and clinical diagnosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Patterns of Spinal Sensory-Motor Connectivity Prescribed by a Dorsoventral Positional Template

    PubMed Central

    Sürmeli, Gülşen; Akay, Turgay; Ippolito, Gregory; Tucker, Philip W; Jessell, Thomas M

    2011-01-01

    Summary Sensory-motor circuits in the spinal cord are constructed with a fine specificity that coordinates motor behavior, but the mechanisms that direct sensory connections with their motor neuron partners remain unclear. The dorsoventral settling position of motor pools in the spinal cord is known to match the distal-to-proximal position of their muscle targets in the limb, but the significance of invariant motor neuron positioning is unknown. An analysis of sensory-motor connectivity patterns in FoxP1 mutant mice, where motor neuron position has been scrambled, shows that the final pattern of sensory-motor connections is initiated by the projection of sensory axons to discrete dorsoventral domains of the spinal cord without regard for motor neuron subtype, or indeed, the presence of motor neurons. By implication, the clustering and dorsoventral settling position of motor neuron pools serves as a determinant of the pattern of sensory input specificity, and thus motor coordination. PMID:22036571

  10. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor.

    PubMed

    Hajian, A; Ghodsi, J; Afraz, A; Yurchenko, O; Urban, G

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH=7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13μmolL(-1) and detection limit of 25nmolL(-1). The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. TRPV1, but not TRPA1, in primary sensory neurons contributes to cutaneous incision-mediated hypersensitivity

    PubMed Central

    2013-01-01

    Background Mechanisms underlying postoperative pain remain poorly understood. In rodents, skin-only incisions induce mechanical and heat hypersensitivity similar to levels observed with skin plus deep incisions. Therefore, cutaneous injury might drive the majority of postoperative pain. TRPA1 and TRPV1 channels are known to mediate inflammatory and nerve injury pain, making them key targets for pain therapeutics. These channels are also expressed extensively in cutaneous nerve fibers. Therefore, we investigated whether TRPA1 and TRPV1 contribute to mechanical and heat hypersensitivity following skin-only surgical incision. Results Behavioral responses to mechanical and heat stimulation were compared between skin-incised and uninjured, sham control groups. Elevated mechanical responsiveness occurred 1 day post skin-incision regardless of genetic ablation or pharmacological inhibition of TRPA1. To determine whether functional changes in TRPA1 occur at the level of sensory neuron somata, we evaluated cytoplasmic calcium changes in sensory neurons isolated from ipsilateral lumbar 3–5 DRGs of skin-only incised and sham wild type (WT) mice during stimulation with the TRPA1 agonist cinnamaldehyde. There were no changes in the percentage of neurons responding to cinnamaldehyde or in their response amplitudes. Likewise, the subpopulation of DRG somata retrogradely labeled specifically from the incised region of the plantar hind paw showed no functional up-regulation of TRPA1 after skin-only incision. Next, we conducted behavior tests for heat sensitivity and found that heat hypersensitivity peaked at day 1 post skin-only incision. Skin incision-induced heat hypersensitivity was significantly decreased in TRPV1-deficient mice. In addition, we conducted calcium imaging with the TRPV1 agonist capsaicin. DRG neurons from WT mice exhibited sensitization to TRPV1 activation, as more neurons (66%) from skin-incised mice responded to capsaicin compared to controls (46%), and the

  12. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.

    PubMed

    Li, Ming; Li, Rui; Li, Chang Ming; Wu, Nianqiang

    2011-06-01

    Nanomaterials and nanostructures exhibit unique size-tunable and shape-dependent physicochemical properties that are different from those of bulk materials. Advances of nanomaterials and nanostructures open a new door to develop various novel biosensors. The present work has reviewed the recent progress in electrochemical, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescent biosensors based on nanomaterials and nanostructures. An emphasis is put on the research that demonstrates how the performance of biosensors such as the limit of detection, sensitivity and selectivity is improved by the use of nanomaterials and nanostructures.

  13. Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides

    PubMed Central

    Artan, Murat; Jeong, Dae-Eun; Lee, Dongyeop; Kim, Young-Il; Son, Heehwa G.; Husain, Zahabiya; Kim, Jinmahn; Altintas, Ozlem; Kim, Kyuhyung; Alcedo, Joy; Lee, Seung-Jae V.

    2016-01-01

    Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans’ life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs. PMID:27125673

  14. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity

    PubMed Central

    Li, Chang-Lin; Li, Kai-Cheng; Wu, Dan; Chen, Yan; Luo, Hao; Zhao, Jing-Rong; Wang, Sa-Shuang; Sun, Ming-Ming; Lu, Ying-Jin; Zhong, Yan-Qing; Hu, Xu-Ye; Hou, Rui; Zhou, Bei-Bei; Bao, Lan; Xiao, Hua-Sheng; Zhang, Xu

    2016-01-01

    Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. PMID:26691752

  15. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats.

    PubMed

    Akude, Eli; Zherebitskaya, Elena; Chowdhury, Subir K Roy; Smith, Darrell R; Dobrowsky, Rick T; Fernyhough, Paul

    2011-01-01

    Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome. Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS). Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P < 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control. Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to

  16. Sensory noise predicts divisive reshaping of receptive fields

    PubMed Central

    Deneve, Sophie; Gutkin, Boris

    2017-01-01

    In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics. PMID:28622330

  17. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons

    PubMed Central

    Suslak, Thomas J.; Watson, Sonia; Thompson, Karen J.; Shenton, Fiona C.; Bewick, Guy S.; Armstrong, J. Douglas; Jarman, Andrew P.

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction. PMID:26186008

  18. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons.

    PubMed

    Suslak, Thomas J; Watson, Sonia; Thompson, Karen J; Shenton, Fiona C; Bewick, Guy S; Armstrong, J Douglas; Jarman, Andrew P

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction.

  19. A glucose biosensor based on partially unzipped carbon nanotubes.

    PubMed

    Hu, Huifang; Feng, Miao; Zhan, Hongbing

    2015-08-15

    An amperometric glucose biosensor based on direct electron transfer of glucose oxidase (GOD) self-assembled on the surface of partially unzipped carbon nanotubes (PUCNTs) modified glassy carbon electrode (GCE) has been successfully fabricated. PUCNTs were synthesized via a facile chemical oxidative etching CNTs and used as a novel immobilization matrix for GOD. The cyclic voltammetric result of the PUCNT/GOD/GCE showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0.470V and a peak to peak separation of 37mV, revealing that the fast direct electron transfer between GOD and the electrode has been achieved. It is notable that the glucose determination has been achieved in mediator-free condition. The developed biosensor displayed satisfactory analytical performance toward glucose including high sensitivity (19.50μA mM(-1)cm(-2)), low apparent Michaelis-Menten (5.09mM), a wide linear range of 0-17mM, and also preventing the interference from ascorbic acid, uric acid and dopamine usually coexisting with glucose in human blood. In addition, the biosensor acquired excellent storage stabilities. This facile, fast, environment-friendly and economical preparation strategy of PUCNT-GOD may provide a new platform for the fabrication of biocompatible glucose biosensors and other types of biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Accumulation of misfolded SOD1 in dorsal root ganglion degenerating proprioceptive sensory neurons of transgenic mice with amyotrophic lateral sclerosis.

    PubMed

    Sábado, Javier; Casanovas, Anna; Tarabal, Olga; Hereu, Marta; Piedrafita, Lídia; Calderó, Jordi; Esquerda, Josep E

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs). Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1) gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1(G93A) mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG) proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  1. Recent advances in rapid pathogen detection method based on biosensors.

    PubMed

    Chen, Ying; Wang, Zhenzhen; Liu, Yingxun; Wang, Xin; Li, Ying; Ma, Ping; Gu, Bing; Li, Hongchun

    2018-06-01

    As strain variation and drug resistance become more pervasive, the prevention and control of infection have been a serious problem in recent years. The detection of pathogen is one of the most important parts of the process of diagnosis. Having a series of advantages, such as rapid response, high sensitivity, ease of use, and low cost, biosensors have received much attention and been studied deeply. Moreover, relying on its characteristics of small size, real time, and multiple analyses, biosensors have developed rapidly and used widely and are expected to be applied for microbiological detection in order to meet higher accuracy required by clinical diagnosis. The main goal of this contribution is not to simply collect and list all papers related to pathogen detection based on biosensors published recently, but to discuss critically the development and application of many kinds of biosensors such as electrochemical (amperometric, impedimetric, potentiometric, and conductometric), optical (fluorescent, fibre optic and surface plasmon resonance), and piezoelectric (quartz crystal microbalances and atomic force microscopy) biosensors in pathogen detection as well as the comparisons with the existing clinical detection methods (traditional culture, enzyme-linked immunosorbent assay, polymerase chain reaction, and mass spectrometry).

  2. Odorant-Dependent Generation of Nitric Oxide in Mammalian Olfactory Sensory Neurons

    PubMed Central

    Brunert, Daniela; Kurtenbach, Stefan; Isik, Sonnur; Benecke, Heike; Gisselmann, Günter; Schuhmann, Wolfgang; Hatt, Hanns; Wetzel, Christian H.

    2009-01-01

    The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis. PMID:19430528

  3. Screening and Biosensor-Based Approaches for Lung Cancer Detection

    PubMed Central

    Wang, Lulu

    2017-01-01

    Early diagnosis of lung cancer helps to reduce the cancer death rate significantly. Over the years, investigators worldwide have extensively investigated many screening modalities for lung cancer detection, including computerized tomography, chest X-ray, positron emission tomography, sputum cytology, magnetic resonance imaging and biopsy. However, these techniques are not suitable for patients with other pathologies. Developing a rapid and sensitive technique for early diagnosis of lung cancer is urgently needed. Biosensor-based techniques have been recently recommended as a rapid and cost-effective tool for early diagnosis of lung tumor markers. This paper reviews the recent development in screening and biosensor-based techniques for early lung cancer detection. PMID:29065541

  4. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors.

    PubMed

    Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole

    2003-10-01

    This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.

  5. Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides.

    PubMed

    Artan, Murat; Jeong, Dae-Eun; Lee, Dongyeop; Kim, Young-Il; Son, Heehwa G; Husain, Zahabiya; Kim, Jinmahn; Altintas, Ozlem; Kim, Kyuhyung; Alcedo, Joy; Lee, Seung-Jae V

    2016-05-01

    Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans' life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs. © 2016 Artan et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Photonic crystal fiber-based plasmonic biosensor with external sensing approach

    NASA Astrophysics Data System (ADS)

    Rifat, Ahmmed A.; Hasan, Md. Rabiul; Ahmed, Rajib; Butt, Haider

    2018-01-01

    We propose a simple photonic crystal fiber (PCF) biosensor based on the surface plasmon resonance effect. The sensing properties are characterized using the finite element method. Chemically stable gold material is deposited on the outer surface of the PCF to realize the practical sensing approach. The performance of the modeled biosensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of structural parameters. In the sensing range of 1.33 to 1.37, maximum sensitivities of 4000 nm/RIU and 478 are achieved with the high sensor resolutions of 2.5×10-5 and 2.1×10-5 RIU using wavelength and amplitude interrogation methods, respectively. The designed biosensor will reduce fabrication complexity due to its simple and realistic hexagonal lattice structure. It is anticipated that the proposed biosensor may find possible applications for unknown biological and biochemical analyte detections with a high degree of accuracy.

  7. A glucose biosensor based on Prussian blue/chitosan hybrid film.

    PubMed

    Wang, Xueying; Gu, Haifang; Yin, Fan; Tu, Yifeng

    2009-01-01

    Based on electrodeposition of Prussian blue (PB) and chitosan (CS) directly on gold electrode, a hybrid film of PB/CS has been prepared. PB in this film shows a good stability compared with pure PB film when it worked in neutral and weak alkalescent solution and can act as redox mediator. It provides the potential application of such film in biosensor fabrication. A glucose biosensor was fabricated by electrodepositing glucose oxidase (GOD)/CS film on this PB/CS modified electrode. The optimum experimental conditions of biosensor for the detection of glucose have been studied in detail. Under the optimal conditions, a linear dependence of the catalytic current upon glucose concentration was obtained in the range of 2x10(-6) to 4x10(-4)M with a detection limit of 3.97x10(-7)M. The resulting biosensor could be applied to detect the blood sugar in real samples without any pretreatment.

  8. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensingmore » limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062« less

  9. A novel thermal biosensor based on enzyme reaction for pesticides measurement.

    PubMed

    Zheng, Yi-Hu; Hua, Tse-Chao; Xu, Fei

    2005-01-01

    A novel thermal biosensor based on enzyme reaction for pesticides detection has been developed. This biosensor is a flow injection analysis system and consists of two channels with enzyme reaction column and identical reference column, which is set for eliminating the unspecific heat. The enzyme reaction takes place in the enzyme reaction column at a constant temperature (40 degrees C) realized by a thermoelectric thermostat. Thermosensor based on the thermoelectric module containing 127 serial BiTe-thermocouples is used to monitor the temperature difference between two effluents from enzyme reaction column and reference column. The ability of this biosensor to detect pesticides is demonstrated by the decreased degree of the hydrolytic heat in two types of thermosensor mode. The hydrolytic reaction is inhibited by 36% at 1 mg/L DDVP and 50% at 10 mg/L DDVP when cell-typed thermosensor is used. The percent inhibition is 30% at 1 mg/L DDVP and 42% at 10 mg/L DDVP in tube-typed thermosensor mode. The detection for real sample shows that this biosensor can be used for detection of organophosphate pesticides residue.

  10. SAD kinases sculpt axonal arbors of sensory neurons through long- and short-term responses to neurotrophin signals.

    PubMed

    Lilley, Brendan N; Pan, Y Albert; Sanes, Joshua R

    2013-07-10

    Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A, and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here, we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short-duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short-duration signals from extrinsic cues to sculpt axon arbors within the CNS. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. A low cost color-based bacterial biosensor for measuring arsenic in groundwater.

    PubMed

    Huang, Chi-Wei; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan

    2015-12-01

    Using arsenic (As) contaminated groundwater for drinking or irrigation has caused major health problems for humans around the world, raising a need to monitor As level efficiently and economically. This study developed a color-based bacterial biosensor which is easy-to-use and inexpensive for measuring As and could be complementary to current As detecting techniques. The arsR-lacZ recombinant gene cassette in nonpathogenic strain Escherichia coli DH5α was used in the color-based biosensor which could be observed by eyes or measured by spectrometer. The developed bacterial biosensor demonstrates a quantitative range from 10 to 500μgL(-1) of As in 3-h reaction time. Furthermore, the biosensor was able to successfully detect and estimate As concentration in groundwater sample by measuring optical density at 595nm (OD595). Among different storage methods used in this study, biosensor in liquid at 4°C showed the longest shelf life about 9d, and liquid storage at RT and cell pellet could also be stored for about 3-5d. In conclusion, this study showed that the As biosensor with reliable color signal and economical preservation methods is useful for rapid screening of As pollutant, providing the potential for large scale screening and better management strategies for environmental quality control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Voltage-gated Na+ currents in human dorsal root ganglion neurons

    PubMed Central

    Zhang, Xiulin; Priest, Birgit T; Belfer, Inna; Gold, Michael S

    2017-01-01

    Available evidence indicates voltage-gated Na+ channels (VGSCs) in peripheral sensory neurons are essential for the pain and hypersensitivity associated with tissue injury. However, our understanding of the biophysical and pharmacological properties of the channels in sensory neurons is largely based on the study of heterologous systems or rodent tissue, despite evidence that both expression systems and species differences influence these properties. Therefore, we sought to determine the extent to which the biophysical and pharmacological properties of VGSCs were comparable in rat and human sensory neurons. Whole cell patch clamp techniques were used to study Na+ currents in acutely dissociated neurons from human and rat. Our results indicate that while the two major current types, generally referred to as tetrodotoxin (TTX)-sensitive and TTX-resistant were qualitatively similar in neurons from rats and humans, there were several differences that have important implications for drug development as well as our understanding of pain mechanisms. DOI: http://dx.doi.org/10.7554/eLife.23235.001 PMID:28508747

  13. Moderate hypoxia influences excitability and blocks dendrotoxin sensitive K+ currents in rat primary sensory neurones

    PubMed Central

    Gruss, Marco; Ettorre, Giovanni; Stehr, Annette Jana; Henrich, Michael; Hempelmann, Gunter; Scholz, Andreas

    2006-01-01

    Hypoxia alters neuronal function and can lead to neuronal injury or death especially in the central nervous system. But little is known about the effects of hypoxia in neurones of the peripheral nervous system (PNS), which survive longer hypoxic periods. Additionally, people have experienced unpleasant sensations during ischemia which are dedicated to changes in conduction properties or changes in excitability in the PNS. However, the underlying ionic conductances in dorsal root ganglion (DRG) neurones have not been investigated in detail. Therefore we investigated the influence of moderate hypoxia (27.0 ± 1.5 mmHg) on action potentials, excitability and ionic conductances of small neurones in a slice preparation of DRGs of young rats. The neurones responded within a few minutes non-uniformly to moderate hypoxia: changes of excitability could be assigned to decreased outward currents in most of the neurones (77%) whereas a smaller group (23%) displayed increased outward currents in Ringer solution. We were able to attribute most of the reduction in outward-current to a voltage-gated K+ current which activated at potentials positive to -50 mV and was sensitive to 50 nM α-dendrotoxin (DTX). Other toxins that inhibit subtypes of voltage gated K+ channels, such as margatoxin (MgTX), dendrotoxin-K (DTX-K), r-tityustoxin Kα (TsTX-K) and r-agitoxin (AgTX-2) failed to prevent the hypoxia induced reduction. Therefore we could not assign the hypoxia sensitive K+ current to one homomeric KV channel type in sensory neurones. Functionally this K+ current blockade might underlie the increased action potential (AP) duration in these neurones. Altogether these results, might explain the functional impairment of peripheral neurones under moderate hypoxia. PMID:16579848

  14. Aging in Sensory and Motor Neurons Results in Learning Failure in Aplysia californica.

    PubMed

    Kempsell, Andrew T; Fieber, Lynne A

    2015-01-01

    The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR) was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT). Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.

  15. Electrochemical glucose biosensor based on nickel oxide nanoparticle-modified carbon paste electrode.

    PubMed

    Erdem, Ceren; Zeybek, Derya Koyuncu; Aydoğdu, Gözde; Zeybek, Bülent; Pekyardımcı, Sule; Kılıç, Esma

    2014-08-01

    In the present work, we designed an amperometric glucose biosensor based on nickel oxide nanoparticles (NiONPs)-modified carbon paste electrode. The biosensor was prepared by incorporation of glucose oxidase and NiONPs into a carbon paste matrix. It showed good analytical performances such as high sensitivity (367 μA mmolL(-1)) and a wide linear response from 1.9×10(-3) mmolL(-1) to 15.0 mmolL(-1) with a limit of detection (0.11 μmolL(-1)). The biosensor was used for the determination of glucose in human serum samples. The results illustrate that NiONPs have enormous potential in the construction of biosensor for determination of glucose.

  16. Parsing glucose entry into the brain: novel findings obtained with enzyme-based glucose biosensors.

    PubMed

    Kiyatkin, Eugene A; Wakabayashi, Ken T

    2015-01-21

    Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between "active" and "passive" glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the "neuronal" hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism.

  17. Electrochemical Sunset Yellow Biosensor Based on Photocured Polyacrylamide Membrane for Food Dye Monitoring

    PubMed Central

    Rozi, Normazida; Ahmad, Amalina; Yook Heng, Lee; Shyuan, Loh Kee; Hanifah, Sharina Abu

    2018-01-01

    An enzyme-based electrochemical biosensor was investigated for the analysis of Sunset Yellow synthetic food dye. A glassy carbon electrode was coated with a poly(acrylamide-co-ethyl methacrylate) membrane to immobilize laccase using a single-step photopolymerization procedure. Poly(acrylamide-co-ethyl methacrylate) membrane was demonstrated to have acceptable water absorption and suitable for biosensor application. Sunset Yellow biosensor exhibited a linear response range from 0.08 to 10.00 µM with a detection limit of 0.02 µM. This biosensor was successfully used to determine Sunset Yellow in soft drinks with recoveries of 99.0–101.6%. The method was validated using high-performance liquid chromatography, indicating the biosensor can be as a promising alternative method for Sunset Yellow detection. PMID:29301262

  18. Biosensors and Bio-Bar Code Assays Based on Biofunctionalized Magnetic Microbeads

    PubMed Central

    Jaffrezic-Renault, Nicole; Martelet, Claude; Chevolot, Yann; Cloarec, Jean-Pierre

    2007-01-01

    This review paper reports the applications of magnetic microbeads in biosensors and bio-bar code assays. Affinity biosensors are presented through different types of transducing systems: electrochemical, piezo electric or magnetic ones, applied to immunodetection and genodetection. Enzymatic biosensors are based on biofunctionalization through magnetic microbeads of a transducer, more often amperometric, potentiometric or conductimetric. The bio-bar code assays relie on a sandwich structure based on specific biological interaction of a magnetic microbead and a nanoparticle with a defined biological molecule. The magnetic particle allows the separation of the reacted target molecules from unreacted ones. The nanoparticles aim at the amplification and the detection of the target molecule. The bio-bar code assays allow the detection at very low concentration of biological molecules, similar to PCR sensitivity.

  19. Recent advances in polyaniline based biosensors.

    PubMed

    Dhand, Chetna; Das, Maumita; Datta, Monika; Malhotra, B D

    2011-02-15

    The present paper contains a detailed overview of recent advances relating to polyaniline (PANI) as a transducer material for biosensor applications. This conducting polymer provides enormous opportunities for binding biomolecules, tuning their bio-catalytic properties, rapid electron transfer and direct communication to produce a range of analytical signals and new analytical applications. Merging the specific nature of different biomolecules (enzymes, nucleic acids, antibodies, etc.) and the key properties of this modern conducting matrix, possible biosensor designs and their biosensing characteristics have been discussed. Efforts have been made to discuss and explore various characteristics of PANI responsible for direct electron transfer leading towards fabrication of mediator-less biosensors. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Detection of triglyceride using an iridium nano-particle catalyst based amperometric biosensor.

    PubMed

    Liao, Wei-Yin; Liu, Chung-Chiun; Chou, Tse-Chuan

    2008-12-01

    The detection and quantification of triglyceride (TG) using an iridium nano-particle modified carbon based biosensor was successfully carried out in this study. The detection procedures were based on the electrochemical detection of enzymatically produced NADH. TG was hydrolyzed by lipase and the glycerol produced was catalytically oxidized by NAD-dependent glycerol dehydrogenase producing NADH in a solution containing NAD(+). Glyceryl tributyrate, a short chain triglyceride, was chosen as the substrate for the evaluation of this TG biosensor in bovine serum and human serum. A linear response to glyceryl tributyrate in the concentration range of 0 to 10 mM and a sensitivity of 7.5 nA mM(-1) in bovine serum and 7.0 nA mM(-1) in human serum were observed experimentally. The potential interference of species such as uric acid (UA) and ascorbic acid (AA) was assessed. The incorporation of a selected surfactant and an increase in the incubation temperature appeared to enhance the performance of this biosensor. The conditions for the determination of TG levels in bovine serum using this biosensor were optimized, with sunflower seed oil being used as an analyte to simulate the detection of TG in blood. The experimental results demonstrated that this iridium nano-particle modified working electrode based biosensor provided a relatively simple means for the accurate determination of TG in serum.

  1. Partitioning neuronal variability

    PubMed Central

    Goris, Robbe L.T.; Movshon, J. Anthony; Simoncelli, Eero P.

    2014-01-01

    Responses of sensory neurons differ across repeated measurements. This variability is usually treated as stochasticity arising within neurons or neural circuits. However, some portion of the variability arises from fluctuations in excitability due to factors that are not purely sensory, such as arousal, attention, and adaptation. To isolate these fluctuations, we developed a model in which spikes are generated by a Poisson process whose rate is the product of a drive that is sensory in origin, and a gain summarizing stimulus-independent modulatory influences on excitability. This model provides an accurate account of response distributions of visual neurons in macaque LGN, V1, V2, and MT, revealing that variability originates in large part from excitability fluctuations which are correlated over time and between neurons, and which increase in strength along the visual pathway. The model provides a parsimonious explanation for observed systematic dependencies of response variability and covariability on firing rate. PMID:24777419

  2. Fluorescent Biosensor for Phosphate Determination Based on Immobilized Polyfluorene-Liposomal Nanoparticles Coupled with Alkaline Phosphatase.

    PubMed

    Kahveci, Zehra; Martínez-Tomé, Maria José; Mallavia, Ricardo; Mateo, C Reyes

    2017-01-11

    This work describes the development of a novel fluorescent biosensor based on the inhibition of alkaline phosphatase (ALP). The biosensor is composed of the enzyme ALP and the conjugated cationic polyfluorene HTMA-PFP. The working principle of the biosensor is based on the fluorescence quenching of this polyelectrolyte by p-nitrophenol (PNP), a product of the hydrolysis reaction of p-nitrophenyl phosphate (PNPP) catalyzed by ALP. Because HTMA-PFP forms unstable aggregates in buffer, with low fluorescence efficiency, previous stabilization of the polyelectrolyte was required before the development of the biosensor. HTMA-PFP was stabilized through its interaction with lipid vesicles to obtain stable blue-emitting nanoparticles (NPs). Fluorescent NPs were characterized, and the ability to be quenched by PNP was evaluated. These nanoparticles were coupled to ALP and entrapped in a sol-gel matrix to produce a biosensor that can serve as a screening platform to identify ALP inhibitors. The components of the biosensor were examined before and after sol-gel entrapment, and the biosensor was optimized to allow the determination of phosphate ion in aqueous medium.

  3. A simple approach to ignoring irrelevant variables by population decoding based on multisensory neurons

    PubMed Central

    Kim, HyungGoo R.; Pitkow, Xaq; Angelaki, Dora E.

    2016-01-01

    Sensory input reflects events that occur in the environment, but multiple events may be confounded in sensory signals. For example, under many natural viewing conditions, retinal image motion reflects some combination of self-motion and movement of objects in the world. To estimate one stimulus event and ignore others, the brain can perform marginalization operations, but the neural bases of these operations are poorly understood. Using computational modeling, we examine how multisensory signals may be processed to estimate the direction of self-motion (i.e., heading) and to marginalize out effects of object motion. Multisensory neurons represent heading based on both visual and vestibular inputs and come in two basic types: “congruent” and “opposite” cells. Congruent cells have matched heading tuning for visual and vestibular cues and have been linked to perceptual benefits of cue integration during heading discrimination. Opposite cells have mismatched visual and vestibular heading preferences and are ill-suited for cue integration. We show that decoding a mixed population of congruent and opposite cells substantially reduces errors in heading estimation caused by object motion. In addition, we present a general formulation of an optimal linear decoding scheme that approximates marginalization and can be implemented biologically by simple reinforcement learning mechanisms. We also show that neural response correlations induced by task-irrelevant variables may greatly exceed intrinsic noise correlations. Overall, our findings suggest a general computational strategy by which neurons with mismatched tuning for two different sensory cues may be decoded to perform marginalization operations that dissociate possible causes of sensory inputs. PMID:27334948

  4. Plasmonic Biosensors

    PubMed Central

    Hill, Ryan T.

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594

  5. Coexpression of VGLUT1 and VGLUT2 in trigeminothalamic projection neurons in the principal sensory trigeminal nucleus of the rat.

    PubMed

    Ge, Shun-Nan; Ma, Yun-Fei; Hioki, Hiroyuki; Wei, Yan-Yan; Kaneko, Takeshi; Mizuno, Noboru; Gao, Guo-Dong; Li, Jin-Lian

    2010-08-01

    VGLUT1 and VGLUT2 have been reported to show complementary distributions in most brain regions and have been assumed to define distinct functional elements. In the present study, we first investigated the expression of VGLUT1 and VGLUT2 in the trigeminal sensory nuclear complex of the rat by dual-fluorescence in situ hybridization. Although VGLUT1 and/or VGLUT2 mRNA signals were detected in all the nuclei, colocalization was found only in the principal sensory trigeminal nucleus (Vp). About 64% of glutamatergic Vp neurons coexpressed VGLUT1 and VGLUT2, and the others expressed either VGLUT1 or VGLUT2, indicating that Vp neurons might be divided into three groups. We then injected retrograde tracer into the thalamic regions, including the posteromedial ventral nucleus (VPM) and posterior nuclei (Po), and observed that the majority of both VGLUT1- and VGLUT2-expressing Vp neurons were retrogradely labeled with the tracer. We further performed anterograde labeling of Vp neurons and observed immunoreactivies for anterograde tracer, VGLUT1, and VGLUT2 in the VPM and Po. Most anterogradely labeled axon terminals showed immunoreactivities for both VGLUT1 and VGLUT2 in the VPM and made asymmetric synapses with dendritic profiles of VPM neurons. On the other hand, in the Po, only a few axon terminals were labeled with anterograde tracer, and they were positive only for VGLUT2. The results indicated that Vp neurons expressing VGLUT1 and VGLUT2 project to the VPM, but not to the Po, although the functional differences of three distinct populations of Vp neurons, VGLUT1-, VGLUT2-, and VGLUT1/VGLUT2-expressing ones, remain unsettled. (c) 2010 Wiley-Liss, Inc.

  6. Increased thrombospondin-4 after nerve injury mediates disruption of intracellular calcium signaling in primary sensory neurons

    PubMed Central

    Guo, Yuan; Zhang, Zhiyong; Wu, Hsiang-en; Luo, Z. David; Hogan, Quinn H.; Pan, Bin

    2017-01-01

    Painful nerve injury disrupts Ca2+ signaling in primary sensory neurons by elevating plasma membrane Ca2+-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca2+ stores and stimulates store-operated Ca2+ entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca2+ current (ICa) through high-voltage–activated Ca2+ channels and increases ICa through low-voltage–activated Ca2+ channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca2+ signaling. We found that TSP4 increases PMCA activity, inhibits SERCA, depletes ER Ca2+ stores, and enhances store-operated Ca2+ influx. Injury-induced changes of SERCA and PMCA function are attenuated in TSP4 knock-out mice. Effects of TSP4 on intracellular Ca2+ signaling are attenuated in voltage-gated Ca2+ channel α2δ1 subunit (Cavα2δ1) conditional knock-out mice and are also Protein Kinase C (PKC) signaling dependent. These findings suggest that TSP4 elevation may contribute to the pathogenesis of chronic pain following nerve injury by disrupting intracellular Ca2+ signaling via interacting with the Cavα2δ1 and the subsequent PKC signaling pathway. Controlling TSP4 mediated intracellular Ca2+ signaling in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain. PMID:28232180

  7. Acetylsalicylic acid-induced changes in the chemical coding of extrinsic sensory neurons supplying the prepyloric area of the porcine stomach.

    PubMed

    Rytel, L; Calka, J

    2016-03-23

    Acetylsalicylic acid is a popular drug that is commonly used to treat fever and inflammation, but which can also negativity affect the mucosal layer of the stomach, although knowledge concerning its influence on gastric innervation is very scarce. Thus, the aim of the present study was to study the influence of prolonged acetylsalicylic acid supplementation on the extrinsic primary sensory neurons supplying the porcine stomach prepyloric region. Fast Blue (FB) was injected into the above-mentioned region of the stomach. Acetylsalicylic acid was then given orally to the experimental gilts from the seventh day after FB injection to the 27th day of the experiment. After euthanasia, the nodose ganglia (NG) and dorsal root ganglia (DRG) were collected. Sections of these ganglia were processed for routine double-labelling immunofluorescence technique for substance P (SP), calcitonine gene related peptide (CGRP), galanin (GAL), neuronal isoform of nitric oxide synthase (nNOS) and vasoactive intestinal polypeptide (VIP). Under physiological conditions within the nodose ganglia, the percentage of the FB-labeled neurons immunoreactive to particular substances ranged between 17.9 ± 2.7% (VIP-like immunoreactive (LI) neurons in the right NG) and 60.4 ± 1.7% (SP-LI cells within the left NG). Acetylsalicylic acid supplementation caused a considerable increase in the expression of all active substances studied within both left and right NG and the percentage of neurons positive to particular substances fluctuated from 47.2 ± 3.6% (GAL-LI neurons in the right NG) to 67.2 ± 2.0% (cells immunoreactive to SP in the left NG). All studied substances were also observed in DRG neurons supplying the prepyloric region of the stomach, but the number of immunoreactive neurons was too small to conduct a statistical analysis. The obtained results show that ASA may influence chemical coding of the sensory neurons supplying the porcine stomach, but the exact mechanisms of this action still

  8. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.

    PubMed

    Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal

    2015-01-01

    This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples. © 2015 American Institute of Chemical Engineers.

  9. Adverse effects of metal exposure on chemotaxis towards water-soluble attractants regulated mainly by ASE sensory neuron in nematode Caenorhabditis elegans.

    PubMed

    Xing, Xiaojuan; Du, Min; Zhang, Yanfen; Wang, Dayong

    2009-01-01

    Chemotaxis to water-soluble attractants is mainly controlled by ASE sensory neuron whose specification is regulated by che-1 in Caenorhabditis elegans. Our data suggested that exposure to high concentrations of metals, such as Pb, Cu, Ag, and Cr, would result in severe defects of chemotaxis to water-soluble attractants of NaCl, cAMP, and biotin. Moreover, the morphology of ASE neuron structures as observed by relative fluorescent intensities and relative size of fluorescent puncta of cell bodies, relative lengths of sensory endings in ASE neurons, and the expression patterns of che-1 were obviously altered in metal exposed animals when they meanwhile exhibited obvious chemotaxis defects to water-soluble attractants. In addition, the dendrite morphology could be noticeably changed in animals exposed to 150 micromol/L of Pb, Cu, and Ag. Furthermore, we observed significant decreases of chemotaxis to water-soluble attractants in Pb exposed che-1 mutant at concentrations more than 2.5 micromol/L, and in Cu, Ag, and Cr exposed che-1 mutant at concentrations more than 50 micromol/L. Therefore, impairment of the ASE neuron structures and functions may largely contribute to the appearance of chemotaxis defects to water-soluble attractants in metal exposed nematodes.

  10. Spinal motor and sensory neurons are androgen targets in an acrobatic bird.

    PubMed

    Fuxjager, Matthew J; Schultz, J Douglas; Barske, Julia; Feng, Ni Y; Fusani, Leonida; Mirzatoni, Anahid; Day, Lainy B; Hau, Michaela; Schlinger, Barney A

    2012-08-01

    Sex steroids affect the motivation to court mates, but less is known about how they influence motor movements associated with courtship behavior. Steroidal control of motor function may be especially important for species in which courtship requires superior strength, stamina, and neuromuscular coordination. Here we use the golden-collared manakin (Manacus vitellinus) to examine whether the neuromuscular circuitry that controls motoric aspects of courtship activity is sensitive to androgens. Males of this tropical species attract mates by rapidly jumping among branches in a courtship arena and using their wings to produce loud wing snaps. Testosterone activates this display via the androgen receptor (AR), and past work reveals that manakins injected with radio-labeled T ((3)H-T) accumulate radioactivity in the spinal cord. Thus, we used quantitative PCR to measure AR, estrogen receptor-α (ER-α) subtype, and aromatase (AROM) mRNA in spinal cords of male and female manakins and zebra finches. Expression of AR, but not ER-α or aromatase, was higher throughout the manakin spinal cord compared with the zebra finch. Next, we tested whether AR-expressing skeletal muscles are innervated by motor and sensory neurons that also express AR. To do this, we backfilled spinal neurons by injecting fluorescent tracers into select AR-sensitive wing and leg muscles of wild caught male and female manakins. We then removed these spinal cords and measured AR expression with in situ hybridization. Both sexes showed abundant AR mRNA in the cervical and lumbosacral spinal enlargements as well as in dorsal root ganglia attached to these enlargements. Together our findings suggest that androgens act widely on peripheral motor and sensory circuits in golden-collared manakins to influence wing snapping displays.

  11. An optimization based study of equivalent circuit models for representing recordings at the neuron-electrode interface

    PubMed Central

    Thakore, Vaibhav; Molnar, Peter; Hickman, James J.

    2014-01-01

    Extracellular neuroelectronic interfacing is an emerging field with important applications in the fields of neural prosthetics, biological computation and biosensors. Traditionally, neuron-electrode interfaces have been modeled as linear point or area contact equivalent circuits but it is now being increasingly realized that such models cannot explain the shapes and magnitudes of the observed extracellular signals. Here, results were compared and contrasted from an unprecedented optimization based study of the point contact models for an extracellular ‘on-cell’ neuron-patch electrode and a planar neuron-microelectrode interface. Concurrent electrophysiological recordings from a single neuron simultaneously interfaced to three distinct electrodes (intracellular, ‘on-cell’ patch and planar microelectrode) allowed novel insights into the mechanism of signal transduction at the neuron-electrode interface. After a systematic isolation of the nonlinear neuronal contribution to the extracellular signal, a consistent underestimation of the simulated supra-threshold extracellular signals compared to the experimentally recorded signals was observed. This conclusively demonstrated that the dynamics of the interfacial medium contribute nonlinearly to the process of signal transduction at the neuron-electrode interface. Further, an examination of the optimized model parameters for the experimental extracellular recordings from sub- and supra-threshold stimulations of the neuron-electrode junctions revealed that ionic transport at the ‘on-cell’ neuron-patch electrode is dominated by diffusion whereas at the neuron-microelectrode interface the electric double layer (EDL) effects dominate. Based on this study, the limitations of the equivalent circuit models in their failure to account for the nonlinear EDL and ionic electrodiffusion effects occurring during signal transduction at the neuron-electrode interfaces are discussed. PMID:22695342

  12. Recent advances in nanomaterial-based biosensors for antibiotics detection.

    PubMed

    Lan, Lingyi; Yao, Yao; Ping, Jianfeng; Ying, Yibin

    2017-05-15

    Antibiotics are able to be accumulated in human body by food chain and may induce severe influence to human health and safety. Hence, the development of sensitive and simple methods for rapid evaluation of antibiotic levels is highly desirable. Nanomaterials with excellent electronic, optical, mechanical, and thermal properties have been recognized as one of the most promising materials for opening new gates in the development of next-generation biosensors. This review highlights the current advances in the nanomaterial-based biosensors for antibiotics detection. Different kinds of nanomaterials including carbon nanomaterials, metal nanomaterials, magnetic nanoparticles, up-conversion nanoparticles, and quantum dots have been applied to the construction of biosensors with two main signal-transducing mechanisms, i.e. optical and electrochemical. Furthermore, the current challenges and future prospects in this field are also included to provide an overview for future research directions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Building a minimal and generalizable model of transcription factor-based biosensors: Showcasing flavonoids.

    PubMed

    Trabelsi, Heykel; Koch, Mathilde; Faulon, Jean-Loup

    2018-05-07

    Progress in synthetic biology tools has transformed the way we engineer living cells. Applications of circuit design have reached a new level, offering solutions for metabolic engineering challenges that include developing screening approaches for libraries of pathway variants. The use of transcription-factor-based biosensors for screening has shown promising results, but the quantitative relationship between the sensors and the sensed molecules still needs more rational understanding. Herein, we have successfully developed a novel biosensor to detect pinocembrin based on a transcriptional regulator. The FdeR transcription factor (TF), known to respond to naringenin, was combined with a fluorescent reporter protein. By varying the copy number of its plasmid and the concentration of the biosensor TF through a combinatorial library, different responses have been recorded and modeled. The fitted model provides a tool to understand the impact of these parameters on the biosensor behavior in terms of dose-response and time curves and offers guidelines to build constructs oriented to increased sensitivity and or ability of linear detection at higher titers. Our model, the first to explicitly take into account the impact of plasmid copy number on biosensor sensitivity using Hill-based formalism, is able to explain uncharacterized systems without extensive knowledge of the properties of the TF. Moreover, it can be used to model the response of the biosensor to different compounds (here naringenin and pinocembrin) with minimal parameter refitting. © 2018 Wiley Periodicals, Inc.

  14. Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex

    PubMed Central

    Poort, Jasper; Khan, Adil G.; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B.; Mrsic-Flogel, Thomas D.; Hofer, Sonja B.

    2015-01-01

    Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421

  15. Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission

    PubMed Central

    Du, Xiaona; Hao, Han; Yang, Yuehui; Huang, Sha; Wang, Caixue; Gigout, Sylvain; Ramli, Rosmaliza; Li, Xinmeng; Jaworska, Ewa; Edwards, Ian; Yanagawa, Yuchio; Qi, Jinlong; Guan, Bingcai; Jaffe, David B.; Zhang, Hailin

    2017-01-01

    The integration of somatosensory information is generally assumed to be a function of the central nervous system (CNS). Here we describe fully functional GABAergic communication within rodent peripheral sensory ganglia and show that it can modulate transmission of pain-related signals from the peripheral sensory nerves to the CNS. We found that sensory neurons express major proteins necessary for GABA synthesis and release and that sensory neurons released GABA in response to depolarization. In vivo focal infusion of GABA or GABA reuptake inhibitor to sensory ganglia dramatically reduced acute peripherally induced nociception and alleviated neuropathic and inflammatory pain. In addition, focal application of GABA receptor antagonists to sensory ganglia triggered or exacerbated peripherally induced nociception. We also demonstrated that chemogenetic or optogenetic depolarization of GABAergic dorsal root ganglion neurons in vivo reduced acute and chronic peripherally induced nociception. Mechanistically, GABA depolarized the majority of sensory neuron somata, yet produced a net inhibitory effect on the nociceptive transmission due to the filtering effect at nociceptive fiber T-junctions. Our findings indicate that peripheral somatosensory ganglia represent a hitherto underappreciated site of somatosensory signal integration and offer a potential target for therapeutic intervention. PMID:28375159

  16. A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements.

    PubMed

    Najeeb, Mansoor Ani; Ahmad, Zubair; Shakoor, R A; Mohamed, A M A; Kahraman, Ramazan

    2017-06-01

    During the last few decades, there has been a tremendous rise in the number of research studies dedicated towards the development of diagnostic tools based on bio-sensing technology for the early detection of various diseases like cardiovascular diseases (CVD), many types of cancer, diabetes mellitus (DM) and many infectious diseases. Many breakthroughs have been developed in the areas of improving specificity, selectivity and repeatability of the biosensor devices. Innovations in the interdisciplinary areas like biotechnology, genetics, organic electronics and nanotechnology also had a great positive impact on the growth of bio-sensing technology. As a product of these improvements, fast and consistent sensing policies have been productively created for precise and ultrasensitive biomarker-based disease diagnostics. Prostate-specific antigen (PSA) is widely considered as an important biomarker used for diagnosing prostate cancer. There have been many publications based on various biosensors used for PSA detection, but a limited review was available for the classification of these biosensors used for the detection of PSA. This review highlights the various biosensors used for PSA detection and proposes a novel classification for PSA biosensors based on the transducer type used. We also highlight the advantages, disadvantages and limitations of each technique used for PSA biosensing which will make this article a complete reference tool for the future researches in PSA biosensing. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

    PubMed Central

    Jones, Clinton

    2013-01-01

    α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776

  18. Pharmacological Consequence of the A118G Mu Opioid Receptor Polymorphism on Morphine- and Fentanyl-mediated Modulation of Ca2+ Channels in Humanized Mouse Sensory Neurons

    PubMed Central

    Mahmoud, Saifeldin; Thorsell, Annika; Sommer, Wolfgang H.; Heilig, Markus; Holgate, Joan K.; Bartlett, Selena E.; Ruiz-Velasco, Victor

    2011-01-01

    Background The most common functional single nucleotide polymorphism of the human OPRM1 gene, A118G, has been shown to be associated with inter-individual differences in opioid analgesic requirements, particularly with morphine, in patients with acute postoperative pain. The purpose of the present study was to examine whether this polymorphism would modulate the morphine and fentanyl pharmacological profile of sensory neurons isolated from a humanized mouse model homozygous for either the 118A or 118G allele. Methods The coupling of wild-type and mutant mu opioid receptors to voltage-gated Ca2+ channels after exposure to either ligand was examined by employing the whole-cell variant of the patch-clamp technique in acutely dissociated trigeminal ganglion neurons. Morphine-mediated antinociception was measured in mice carrying either the 118AA or 118GG allele. Results The biophysical parameters (cell size, current density, and peak current amplitude potential) measured from both groups of sensory neurons were not significantly different. In 118GG neurons, morphine was approximately 5-fold less potent and 26% less efficacious than that observed in 118AA neurons. On the other hand, the potency and efficacy of fentanyl were similar for both groups of neurons. Morphine-mediated analgesia in 118GG mice was significantly reduced compared to the 118AA mice. Conclusions This study provides evidence to suggest that the diminished clinical effect observed with morphine in 118G carriers results from an alteration of the receptor’s pharmacology in sensory neurons. Additionally, the impaired analgesic response with morphine may explain why carriers of this receptor variant have an increased susceptibility to become addicted to opioids. PMID:21926562

  19. Characteristics of receptor- and transducer-coupled activation of the intracellular signalling in sensory neuron revealed by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Khalisov, M. M.; Penniyaynen, V. A.; Esikova, N. A.; Ankudinov, A. V.; Krylov, B. V.

    2017-01-01

    The mechanical properties of sensory neurons upon activation of intracellular cascade processes by comenic acid binding to a membrane opioid-like receptor (receptor-coupled), as well as a very low (endogenous) concentration of ouabain (transducer-coupled), have been investigated. Using atomic force microscopy, it is established that exposure to ouabain, in contrast to the impact of comenic acid, leads to a hardening of the neuron soma. This suggests that the receptor-coupled signal transmission to the cell genome is carried out through mechanisms that are different from the transducer-coupled signal pathways.

  20. Microcystins Alter Chemotactic Behavior in Caenorhabditis elegans by Selectively Targeting the AWA Sensory Neuron

    PubMed Central

    Moore, Caroline E.; Lein, Pamela J.; Puschner, Birgit

    2014-01-01

    Harmful algal blooms expose humans and animals to microcystins (MCs) through contaminated drinking water. While hepatotoxicity following acute exposure to MCs is well documented, neurotoxicity after sub-lethal exposure is poorly understood. We developed a novel statistical approach using a generalized linear model and the quasibinomial family to analyze neurotoxic effects in adult Caenorhabditis elegans exposed to MC-LR or MC-LF for 24 h. Selective effects of toxin exposure on AWA versus AWC sensory neuron function were determined using a chemotaxis assay. With a non-monotonic response MCs altered AWA but not AWC function, and MC-LF was more potent than MC-LR. To probe a potential role for protein phosphatases (PPs) in MC neurotoxicity, we evaluated the chemotactic response in worms exposed to the PP1 inhibitor tautomycin or the PP2A inhibitor okadaic acid for 24 h. Okadaic acid impaired both AWA and AWC function, while tautomycin had no effect on function of either neuronal cell type at the concentrations tested. These findings suggest that MCs alter the AWA neuron at concentrations that do not cause AWC toxicity via mechanisms other than PP inhibition. PMID:24918360

  1. pH-based fiber optic biosensors for use in clinical and biotechnological applications

    NASA Astrophysics Data System (ADS)

    Mueller, Cord; Hitzmann, Bernd; Schubert, Florian; Scheper, Thomas

    1995-05-01

    The development of pH-based fiber optic biosensors and their uses in clinical and biotechnological applications are described. Based on a pH-sensitive optode, different biosensors for urea, penicillin, glucose and creatinine were developed. A multichannel modular fluorimeter was used to measure signals from up to three optodes simultaneously. The pH value and the buffer capacity are critical factors for biosensors based on pH probes and influence the biosensor signal. A flow injection analysis (FIA) system is used to eliminate the latter influences. With this integrated system, samples can be analyzed sequentially by the injection of a defined volume of each sample into a continuously flowing buffer stream that transports the samples to the sensors. The complex signal is transformed and analyzed by a computer system. Characteristic features of the FIA peak give information about the buffer capacity in the solution. With the help of intelligent computing (neural networks) it is possible to recognize these features and relate them to the respective buffer capacity to obtain more accurate values. Various applications of these biosensors are discussed. The pH optode is also used to monitor enzymatic reactions in non aqueous solvents. In this case the production of acetic acid can be detected on line.

  2. Biomimetic Trehalose Biosensor Using Gustatory Receptor (Gr5a) Expressed in Drosophila Cells and Ion-Sensitive Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Lau, Hui-Chong; Bae, Tae-Eon; Jang, Hyun-June; Kwon, Jae-Young; Cho, Won-Ju; Lim, Jeong-Ok

    2013-04-01

    The development of potential applications of biosensors using the sensory systems of vertebrates and invertebrates has progressed rapidly, especially in clinical diagnosis. The biosensor developed here involves the use of Drosophila cells expressing the gustatory receptor Gr5a and an ion-sensitive field-effect transistor (ISFET) sensor device. Gustatory receptor Gr5a is expressed abundantly in gustatory neurons and acts as a primary marker for tastants, especially sugar, in Drosophila. As a result, it could potentially serve as a good candidate for potential biomarkers of diseases in which the current knowledge of the cause and treatment is limited. The developed ISFET was based on the outstanding electrical characteristics of the metal-oxide-semiconductor field-effect transistor (MOSFET) with a subthreshold swing of 85 mV/dec, low leakage current of <10-12 and high on/off current ratio of 7.3×106. The SiO2 sensing membrane with a pH sensitivity of 34.9 mV/pH and drift rate 1.17 mV/h was sufficient for biosensing applications. In addition, the sensor device also showed significant compatibility with the Drosophila cells expressing Gr5a and their response to sugar, particularly trehalose. Moreover, the interactions between the transfected Drosophila cells and trehalose were consistent and reliable. This suggests that the developed ISFET sensor device could have potential use in the future as a screening device in diagnosis.

  3. In situ hybridization evidence for the coexistence of ASIC and TRPV1 within rat single sensory neurons.

    PubMed

    Ugawa, Shinya; Ueda, Takashi; Yamamura, Hisao; Shimada, Shoichi

    2005-05-20

    The activation of nociceptors by protons plays a crucial role in the initiation and maintenance of acidosis-linked pain. Acid-sensing ion channel (ASIC) and transient receptor potential/vanilloid receptor subtype-1 (TRPV1) encode proton-activated cation channels expressed by nociceptors and the opening of these channels results in nociceptor excitation. Histological relations among ASIC clones and the colocalization of each ASIC subunit and TRPV1 within single sensory neurons were examined on serial sections of rat dorsal root ganglia (DRG) using in situ hybridization histochemistry. ASIC1a transcripts were expressed in 20-25% of the DRG neurons, and most of the neurons had small (<30 microm)-diameter cell bodies. ASIC1b transcripts and ASIC3 transcripts were expressed in approximately 10% and 30-35% of the DRG neurons, respectively, and the greater part of each population was located in small-to-medium (30-50 microm)-diameter cells. The ASIC1a transcripts and ASIC1b transcripts were basically localized in the distinct populations of the DRG neurons, while approximately 20% of the ASIC1a-positive neurons and approximately 10% of the ASIC1b-positive neurons expressed ASIC3 transcripts. TRPV1 transcripts were expressed in 35-40% of the DRG neurons, and most of the TRPV1-positive neurons had small-diameter cell bodies. Intense expression signals for ASIC1a transcripts were detected in 40-45% of the TRPV1-positive neurons. Neurons expressing both ASIC1b and TRPV1 transcripts were barely detected in the DRG. Approximately 30% of the TRPV1-positive neurons expressed ASIC3 transcripts, and the double-labeled neurons were comprised of both small-diameter and medium-diameter cells. Approximately 13% of the TRPV1-positive neurons expressed both ASIC1a and ASIC3 transcripts.

  4. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis.

    PubMed

    Soler, Maria; Mesa-Antunez, Pablo; Estevez, M-Carmen; Ruiz-Sanchez, Antonio Jesus; Otte, Marinus A; Sepulveda, Borja; Collado, Daniel; Mayorga, Cristobalina; Torres, Maria Jose; Perez-Inestrosa, Ezequiel; Lechuga, Laura M

    2015-04-15

    A label-free biosensing strategy for amoxicillin (AX) allergy diagnosis based on the combination of novel dendrimer-based conjugates and a recently developed nanoplasmonic sensor technology is reported. Gold nanodisks were functionalized with a custom-designed thiol-ending-polyamido-based dendron (d-BAPAD) peripherally decorated with amoxicilloyl (AXO) groups (d-BAPAD-AXO) in order to detect specific IgE generated in patient's serum against this antibiotic during an allergy outbreak. This innovative strategy, which follows a simple one-step immobilization procedure, shows exceptional results in terms of sensitivity and robustness, leading to a highly-reproducible and long-term stable surface which allows achieving extremely low limits of detection. Moreover, the viability of this biosensor approach to analyze human biological samples has been demonstrated by directly analyzing and quantifying specific anti-AX antibodies in patient's serum without any sample pretreatment. An excellent limit of detection (LoD) of 0.6ng/mL (i.e. 0.25kU/L) has been achieved in the evaluation of clinical samples evidencing the potential of our nanoplasmonic biosensor as an advanced diagnostic tool to quickly identify allergic patients. The results have been compared and validated with a conventional clinical immunofluorescence assay (ImmunoCAP test), confirming an excellent correlation between both techniques. The combination of a novel compact nanoplasmonic platform and a dendrimer-based strategy provides a highly sensitive label free biosensor approach with over two times better detectability than conventional SPR. Both the biosensor device and the carrier structure hold great potential in clinical diagnosis for biomarker analysis in whole serum samples and other human biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Biosensor-based engineering of biosynthetic pathways

    DOE PAGES

    Rogers, Jameson K.; Taylor, Noah D.; Church, George M.

    2016-03-18

    Biosynthetic pathways provide an enzymatic route from inexpensive renewable resources to valuable metabolic products such as pharmaceuticals and plastics. However, designing these pathways is challenging due to the complexities of biology. Advances in the design and construction of genetic variants has enabled billions of cells, each possessing a slightly different metabolic design, to be rapidly generated. However, our ability to measure the quality of these designs lags by several orders of magnitude. Recent research has enabled cells to report their own success in chemical production through the use of genetically encoded biosensors. A new engineering discipline is emerging around themore » creation and application of biosensors. Biosensors, implemented in selections and screens to identify productive cells, are paving the way for a new era of biotechnological progress.« less

  6. Activation of silent mechanoreceptive cat C and Aδ sensory neurons and their substance P expression following peripheral inflammation

    PubMed Central

    Xu, Guang-Yin; Huang, Li-Yen Mae; Zhao, Zhi-Qi

    2000-01-01

    The effect of inflammation on the excitability and the level of substance P (SP) in cat mechanoreceptive C and Aδ dorsal root ganglion (DRG) neurons were studied in vivo using intracellular recording and immunocytochemical techniques. Following injections of carrageenan (Carg) into the cat hindpaw, the percentage of C neurons exhibiting spontaneous activity increased from 7.2 to 20.7 % and the percentage of Aδ neurons increased from 6.9 to 18.6 %. In contrast to most cells from normal cats, which fired regularly below 10 Hz, many cells from Carg-treated cats fired at higher frequencies or in bursts. Inflammation (Carg treatment) also depolarized membrane potentials, increased membrane input resistance, caused the disappearance of inward rectifying currents and lowered the mean current thresholds of tibial nerve-evoked responses in DRG neurons. With inflammation, the percentage of C or Aδ neurons responding to low threshold mechanoreceptive stimuli increased (C neurons: normal, 13 %; inflamed, 41 %; Aδ neurons: normal, 13 %; inflamed, 39 %), while the percentage of C or Aδ neurons responding to high threshold mechanoreceptive stimuli remained unchanged. Some receptive field (RF)-responsive cells were injected with Lucifer Yellow and their SP immunoreactivity was determined. Following Carg treatment, substantially higher percentages of RF-responsive cells were SP positive (C neurons: normal, 35.7 %; inflamed, 60 %; Aδ neurons: normal, 18.2 %; inflamed, 66.7 %). These combined increases in the excitability of DRG neurons and SP-containing RF-responsive neurons could lead to sensitization of sensory neurons, thus contributing to the development of hyperalgesia. PMID:11034623

  7. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons

    PubMed Central

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-01-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X3 receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X3 receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X3 receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X3 receptors. The α, β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X3 receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X3 receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels. PMID:22157653

  8. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons.

    PubMed

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-04-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.

  9. Biosensor development.

    PubMed

    Ziegler, C; Göpel, W

    1998-10-01

    Current biosensor developments can be summarised by different trends. For traditional enzymatic biosensors such as glucose sensors, steady improvements of well known basic principles have been made in order to achieve better sensor stability. On the other hand, new affinity sensors such as nucleic acid sensors, transmembrane sensors, and sensors utilising whole cells or even cell networks have become of increasing interest. New ways to miniaturise biosensors and to control their interfaces down to the molecular level have been introduced (the bioelectronics approach). High-throughput screening based on various signal transduction principles has become of increasing importance.

  10. Enzyme-based electrochemical biosensors for determination of organophosphorus and carbamate pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, W.R.; Rechnitz, G.A.

    1999-01-01

    A mini review of enzyme-based electrochemical biosensors for inhibition analysis of organophosphorus and carbamate pesticides is presented. Discussion includes the most recent literature to present advances in detection limits, selectivity and real sample analysis. Recent reviews on the monitoring of pesticides and their residues suggest that the classical analytical techniques of gas and liquid chromatography are the most widely used methods of detection. These techniques, although very accurate in their determinations, can be quite time consuming and expensive and usually require extensive sample clean up and pro-concentration. For these and many other reasons, the classical techniques are very difficult tomore » adapt for field use. Numerous researchers, in the past decade, have developed and made improvements on biosensors for use in pesticide analysis. This mini review will focus on recent advances made in enzyme-based electrochemical biosensors for the determinations of organophosphorus and carbamate pesticides.« less

  11. MRI biosensor for lead detection based on the DNAzyme-induced catalytic reaction.

    PubMed

    Xu, Liguang; Yin, Honghong; Ma, Wei; Wang, Libing; Kuang, Hua; Xu, Chuanlai

    2013-11-21

    A MRI biosensor for sensitive and specific detection of lead ions (Pb(2+)) was developed based on DNAzyme-induced cleavage of magnetic nanoparticles (MNPs). A low limit of detection (LOD) of 0.05 ng mL(-1) was obtained. This biosensor has the potential to serve as a general platform for the detection of heavy metal ions.

  12. Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution.

    PubMed

    Jamali, Mohsen; Mitchell, Diana E; Dale, Alexis; Carriot, Jerome; Sadeghi, Soroush G; Cullen, Kathleen E

    2014-04-01

    The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s(-1). After unilateral vestibular injury patients' direction-discrimination thresholds worsen to ∼20 deg s(-1), and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s(-1)). While thresholds showed slight improvement by week 3 (25 deg s(-1)), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues.

  13. Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution

    PubMed Central

    Jamali, Mohsen; Mitchell, Diana E; Dale, Alexis; Carriot, Jerome; Sadeghi, Soroush G; Cullen, Kathleen E

    2014-01-01

    The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1–2 deg s−1. After unilateral vestibular injury patients’ direction–discrimination thresholds worsen to ∼20 deg s−1, and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s−1). While thresholds showed slight improvement by week 3 (25 deg s−1), they never recovered to control values – a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. PMID:24366259

  14. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction.

    PubMed

    Shibukawa, Yoshiyuki; Sato, Masaki; Kimura, Maki; Sobhan, Ubaidus; Shimada, Miyuki; Nishiyama, Akihiro; Kawaguchi, Aya; Soya, Manabu; Kuroda, Hidetaka; Katakura, Akira; Ichinohe, Tatsuya; Tazaki, Masakazu

    2015-04-01

    Various stimuli induce pain when applied to the surface of exposed dentin. However, the mechanisms underlying dentinal pain remain unclear. We investigated intercellular signal transduction between odontoblasts and trigeminal ganglion (TG) neurons following direct mechanical stimulation of odontoblasts. Mechanical stimulation of single odontoblasts increased the intracellular free calcium concentration ([Ca(2+)]i) by activating the mechanosensitive-transient receptor potential (TRP) channels TRPV1, TRPV2, TRPV4, and TRPA1, but not TRPM8 channels. In cocultures of odontoblasts and TG neurons, increases in [Ca(2+)]i were observed not only in mechanically stimulated odontoblasts, but also in neighboring odontoblasts and TG neurons. These increases in [Ca(2+)]i were abolished in the absence of extracellular Ca(2+) and in the presence of mechanosensitive TRP channel antagonists. A pannexin-1 (ATP-permeable channel) inhibitor and ATP-degrading enzyme abolished the increases in [Ca(2+)]i in neighboring odontoblasts and TG neurons, but not in the stimulated odontoblasts. G-protein-coupled P2Y nucleotide receptor antagonists also inhibited the increases in [Ca(2+)]i. An ionotropic ATP (P2X3) receptor antagonist inhibited the increase in [Ca(2+)]i in neighboring TG neurons, but not in stimulated or neighboring odontoblasts. During mechanical stimulation of single odontoblasts, a connexin-43 blocker did not have any effects on the [Ca(2+)]i responses observed in any of the cells. These results indicate that ATP, released from mechanically stimulated odontoblasts via pannexin-1 in response to TRP channel activation, transmits a signal to P2X3 receptors on TG neurons. We suggest that odontoblasts are sensory receptor cells and that ATP released from odontoblasts functions as a neurotransmitter in the sensory transduction sequence for dentinal pain.

  15. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor

    PubMed Central

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-01-01

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis. PMID:26569239

  16. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.

    PubMed

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-11-09

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.

  17. Progress of new label-free techniques for biosensors: a review.

    PubMed

    Sang, Shengbo; Wang, Yajun; Feng, Qiliang; Wei, Ye; Ji, Jianlong; Zhang, Wendong

    2016-01-01

    The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.

  18. Sensory signals and neuronal groups involved in guiding the sea-ward motor behavior in turtle hatchlings of Chelonia agassizi

    NASA Astrophysics Data System (ADS)

    Fuentes, A. L.; Camarena, V.; Ochoa, G.; Urrutia, J.; Gutierrez, G.

    2007-05-01

    Turtle hatchlings orient display sea-ward oriented movements as soon as they emerge from the nest. Although most studies have emphasized the role of the visual information in this process, less attention has been paid to other sensory modalities. Here, we evaluated the nature of sensory cues used by turtle hatchlings of Chelonia agassizi to orient their movements towards the ocean. We recorded the time they took to crawl from the nest to the beach front (120m long) in control conditions and in visually, olfactory and magnetically deprived circumstances. Visually-deprived hatchlings displayed a high degree of disorientation. Olfactory deprivation and magnetic field distortion impaired, but not abolished, sea-ward oriented movements. With regard to the neuronal mapping experiments, visual deprivation reduced dramatically c-fos expression in the whole brain. Hatchlings with their nares blocked revealed neurons with c-fos expression above control levels principally in the c and d areas, while those subjected to magnetic field distortion had a wide spread activation of neurons throughout the brain predominantly in the dorsal ventricular ridge The present results support that Chelonia agassizi hatchlings use predominantly visual cues to orient their movements towards the sea. Olfactory and magnetic cues may also be use but their influence on hatchlings oriented motor behavior is not as clear as it is for vision. This conclusion is supported by the fact that in the absence of olfactory and magnetic cues, the brain turns on the expression of c- fos in neuronal groups that, in the intact hatchling, are not normally involved in accomplishing the task.

  19. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP

    PubMed Central

    Wang, Xin C.; Wilson, Stephen C.; Hammond, Ming C.

    2016-01-01

    Bacteria occupy a diverse set of environmental niches with differing oxygen availability. Anaerobic environments such as mammalian digestive tracts and industrial reactors harbor an abundance of both obligate and facultative anaerobes, many of which play significant roles in human health and biomanufacturing. Studying bacterial function under partial or fully anaerobic conditions, however, is challenging given the paucity of suitable live-cell imaging tools. Here, we introduce a series of RNA-based fluorescent biosensors that respond selectively to cyclic di-GMP, an intracellular bacterial second messenger that controls cellular motility and biofilm formation. We demonstrate the utility of these biosensors in vivo under both aerobic and anaerobic conditions, and we show that biosensor expression does not interfere with the native motility phenotype. Together, our results attest to the effectiveness and versatility of RNA-based fluorescent biosensors, priming further development and application of these and other analogous sensors to study host–microbial and microbial–microbial interactions through small molecule signals. PMID:27382070

  20. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons

    PubMed Central

    Qi, Yanmei; Andolfi, Laura; Frattini, Flavia; Mayer, Florian; Lazzarino, Marco; Hu, Jing

    2015-01-01

    Sensing force is crucial to maintain the viability of all living cells. Despite its fundamental importance, how force is sensed at the molecular level remains largely unknown. Here we show that stomatin-like protein-3 (STOML3) controls membrane mechanics by binding cholesterol and thus facilitates force transfer and tunes the sensitivity of mechano-gated channels, including Piezo channels. STOML3 is detected in cholesterol-rich lipid rafts. In mouse sensory neurons, depletion of cholesterol and deficiency of STOML3 similarly and interdependently attenuate mechanosensitivity while modulating membrane mechanics. In heterologous systems, intact STOML3 is required to maintain membrane mechanics to sensitize Piezo1 and Piezo2 channels. In C57BL/6N, but not STOML3−/− mice, tactile allodynia is attenuated by cholesterol depletion, suggesting that membrane stiffening by STOML3 is essential for mechanical sensitivity. Targeting the STOML3–cholesterol association might offer an alternative strategy for control of chronic pain. PMID:26443885

  1. Analysis of HSV viral reactivation in explants of sensory neurons

    PubMed Central

    Turner, Anne-Marie W.; Kristie, Thomas M.

    2014-01-01

    As with all Herpesviruses, Herpes simplex virus (HSV) has both a lytic replication phase and a latency-reactivation cycle. During lytic replication, there is an ordered cascade of viral gene expression that leads to the synthesis of infectious viral progeny. In contrast, latency is characterized by the lack of significant lytic gene expression and the absence of infectious virus. Reactivation from latency is characterized by the re-entry of the virus into the lytic replication cycle and the production of recurrent disease. This unit describes the establishment of the mouse sensory neuron model of HSV-1 latency-reactivation as a useful in vivo system for the analysis of mechanisms involved in latency and reactivation. Assays including the determination of viral yields, immunohistochemical/immunofluorescent detection of viral antigens, and mRNA quantitation are used in experiments designed to investigate the network of cellular and viral proteins regulating HSV-1 lytic infection, latency, and reactivation. PMID:25367271

  2. An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide.

    PubMed

    Zhai, Chen; Guo, Yemin; Sun, Xia; Zheng, Yuhe; Wang, Xiangyou

    2014-05-10

    In this study, a novel acetylcholinesterase-based biosensor was fabricated. Acetylcholinesterase (AChE) was immobilized onto a glassy carbon electrode (GCE) with the aid of Cu-Mg-Al calcined layered double hydroxide (CLDH). CLDH can provide a bigger effective surface area for AChE loading, which could improve the precision and stability of AChE biosensor. However, the poor electroconductibility of CLDHs could lead to the low sensitivity of AChE biosensor. In order to effectively compensate the disadvantages of CLDHs, graphene-gold nanocomposites were used for improving the electron transfer rate. Thus, the graphene-gold nanocomposite (GN-AuNPs) was firstly modified onto the GCE, and then the prepared CLDH-AChE composite was immobilized onto the modified GCE to construct a sensitive AChE biosensor for pesticides detection. Relevant parameters were studied in detail and optimized, including the pH of the acetylthiocholine chloride (ATCl) solution, the amount of AChE immobilized on the biosensor and the inhibition time governing the analytical performance of the biosensor. The biosensor detected chlorpyrifos at concentrations ranging from 0.05 to 150μg/L. The detection limit for chlorpyrifos was 0.05μg/L. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    NASA Astrophysics Data System (ADS)

    Berezhetskyy, A.

    2008-09-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devoted to creation and optimization of conductometric biosensor based on alkaline phosphatase active microalgae and sol gel technology, the last chapter described application of the proposed algal biosensor for measurements of heavy metal ions toxicity of waste water, general conclusions stating the progresses achieved in the field of environmental monitoring

  4. Biosensors based on β-galactosidase enzyme: Recent advances and perspectives.

    PubMed

    Sharma, Shiv K; Leblanc, Roger M

    2017-10-15

    Many industries are striving for the development of more reliable and robust β-galactosidase biosensors that exhibit high response rate, increased detection limit and enriched useful lifetime. In a newfangled technological atmosphere, a trivial advantage or disadvantage of the developed biosensor may escort to the survival and extinction of the industry. Several alternative strategies to immobilize β-galactosidase enzyme for their utilization in biosensors have been developed in recent years in the quest of maximum utility by controlling the defects seen in the previous biosensors. The overwhelming call for on-line measurement of different sample constituents has directed science and industry to search for best practical solutions and biosensors are witnessed as the best prospect. The main objective of this paper is to serve as a narrow footbridge by comparing the literary works on the β-galactosidase biosensors, critically analyze their use in the construction of best biosensor by showing the pros and cons of the predicted methods for the practical use of biosensors. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Neuronal modulation of D. melanogaster sexual behaviour.

    PubMed

    Ellendersen, Bárður Eyjólfsson; von Philipsborn, Anne C

    2017-12-01

    Drosophila melanogaster sexual behaviour relies on well-studied genetically determined neuronal circuits. At the same time, it can be flexible and is modulated by multiple external and internal factors. This review focuses on how physiological state, behavioural context and social experience impact sexual circuits in the two sexes. We discuss how females tune receptivity and other behaviours depending on mating status and how males adjust courtship intensity based on sexual satiety, age and the conflicting drive for aggression. Neuronal mechanisms for behavioural modulation include changes in sensory and central processing. Activity of modulatory neurons can enhance, suppress or reverse the behavioural response to sensory cues. In summary, fly sexual behaviour is an excellent model to study mechanisms of neuromodulation of complex innate behaviour on the circuit level. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Disposable bioluminescence-based biosensor for detection of bacterial count in food.

    PubMed

    Luo, Jinping; Liu, Xiaohong; Tian, Qing; Yue, Weiwei; Zeng, Jing; Chen, Guangquan; Cai, Xinxia

    2009-11-01

    A biosensor for rapid detection of bacterial count based on adenosine 5'-triphosphate (ATP) bioluminescence has been developed. The biosensor is composed of a key sensitive element and a photomultiplier tube used as a detector element. The disposable sensitive element consists of a sampler, a cartridge where intracellular ATP is chemically extracted from bacteria, and a microtube where the extracted ATP reacts with the luciferin-luciferase reagent to produce bioluminescence. The bioluminescence signal is transformed into relevant electrical signal by the detector and further measured with a homemade luminometer. Parameters affecting the amount of the extracted ATP, including the types of ATP extractants, the concentrations of ATP extractant, and the relevant neutralizing reagent, were optimized. Under the optimal experimental conditions, the biosensor showed a linear response to standard bacteria in a concentration range from 10(3) to 10(8) colony-forming units (CFU) per milliliter with a correlation coefficient of 0.925 (n=22) within 5min. Moreover, the bacterial count of real food samples obtained by the biosensor correlated well with those by the conventional plate count method. The proposed biosensor, with characteristics of low cost, easy operation, and fast response, provides potential application to rapid evaluation of bacterial contamination in the food industry, environment monitoring, and other fields.

  7. Charcot Marie Tooth 2B Peripheral Sensory Neuropathy: How Rab7 Mutations Impact NGF Signaling?

    PubMed

    Liu, Harry; Wu, Chengbiao

    2017-02-04

    Charcot-Marie-Tooth 2B peripheral sensory neuropathy (CMT2B) is a debilitating autosomal dominant hereditary sensory neuropathy. Patients with this disease lose pain sensation and frequently need amputation. Axonal dysfunction and degeneration of peripheral sensory neurons is a major clinical manifestation of CMT2B. However, the cellular and molecular pathogenic mechanisms remain undefined. CMT2B is caused by missense point mutations (L129F, K157N, N161T/I, V162M) in Rab7 GTPase. Strong evidence suggests that the Rab7 mutation(s) enhances the cellular levels of activated Rab7 proteins, thus resulting in increased lysosomal activity and autophagy. As a consequence, trafficking and signaling of neurotrophic factors such as nerve growth factor (NGF) in the long axons of peripheral sensory neurons are particularly vulnerable to premature degradation. A "gain of toxicity" model has, thus, been proposed based on these observations. However, studies of fly photo-sensory neurons indicate that the Rab7 mutation(s) causes a "loss of function", resulting in haploinsufficiency. In the review, we summarize experimental evidence for both hypotheses. We argue that better models (rodent animals and human neurons) of CMT2B are needed to precisely define the disease mechanisms.

  8. New CNT/poly(brilliant green) and CNT/poly(3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors.

    PubMed

    Barsan, Madalina M; Pifferi, Valentina; Falciola, Luigi; Brett, Christopher M A

    2016-07-13

    A combination of the electroactive polymer poly(brilliant green) (PBG) or conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with carbon nanotubes to obtain CNT/PBG and CNT/PEDOT modified carbon film electrodes (CFE) has been investigated as a new biosensor platform, incorporating the enzymes glucose oxidase (GOx) as test enzyme, alcohol oxidase (AlcOx) or alcohol dehydrogenase (AlcDH). The sensing parameters were optimized for all biosensors based on CNT/PBG/CFE, CNT/PEDOT/CFE platforms. Under optimized conditions, both GOx biosensors exhibited very similar sensitivities, while in the case of AlcOx and AlcDH biosensors, AlcOx/CNT/PBG/CFE was found to give a higher sensitivity and lower detection limit. The influence of dissolved O2 on oxidase-biosensor performance was investigated and was shown to be different for each enzyme. Comparisons were made with similar reported biosensors, showing the advantages of the new biosensors, and excellent selectivity against potential interferents was successfully demonstrated. Finally, alcohol biosensors were successfully used for the determination of ethanol in alcoholic beverages. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Biosensors for brain trauma and dual laser doppler flowmetry: enoxaparin simultaneously reduces stroke-induced dopamine and blood flow while enhancing serotonin and blood flow in motor neurons of brain, in vivo.

    PubMed

    Broderick, Patricia A; Kolodny, Edwin H

    2011-01-01

    Neuromolecular Imaging (NMI) based on adsorptive electrochemistry, combined with Dual Laser Doppler Flowmetry (LDF) is presented herein to investigate the brain neurochemistry affected by enoxaparin (Lovenox(®)), an antiplatelet/antithrombotic medication for stroke victims. NMI with miniature biosensors enables neurotransmitter and neuropeptide (NT) imaging; each NT is imaged with a response time in milliseconds. A semiderivative electronic reduction circuit images several NT's selectively and separately within a response time of minutes. Spatial resolution of NMI biosensors is in the range of nanomicrons and electrochemically-induced current ranges are in pico- and nano-amperes. Simultaneously with NMI, the LDF technology presented herein operates on line by illuminating the living brain, in this example, in dorso-striatal neuroanatomic substrates via a laser sensor with low power laser light containing optical fiber light guides. NMI biotechnology with BRODERICK PROBE(®) biosensors has a distinct advantage over conventional electrochemical methodologies both in novelty of biosensor formulations and on-line imaging capabilities in the biosensor field. NMI with unique biocompatible biosensors precisely images NT in the body, blood and brain of animals and humans using characteristic experimentally derived half-wave potentials driven by oxidative electron transfer. Enoxaparin is a first line clinical treatment prescribed to halt the progression of acute ischemic stroke (AIS). In the present studies, BRODERICK PROBE(®) laurate biosensors and LDF laser sensors are placed in dorsal striatum (DStr) dopaminergic motor neurons in basal ganglia of brain in living animals; basal ganglia influence movement disorders such as those correlated with AIS. The purpose of these studies is to understand what is happening in brain neurochemistry and cerebral blood perfusion after causal AIS by middle cerebral artery occlusion in vivo as well as to understand consequent enoxaparin

  10. Biosensors for Brain Trauma and Dual Laser Doppler Flowmetry: Enoxaparin Simultaneously Reduces Stroke-Induced Dopamine and Blood Flow while Enhancing Serotonin and Blood Flow in Motor Neurons of Brain, In Vivo

    PubMed Central

    Broderick, Patricia A.; Kolodny, Edwin H.

    2011-01-01

    Neuromolecular Imaging (NMI) based on adsorptive electrochemistry, combined with Dual Laser Doppler Flowmetry (LDF) is presented herein to investigate the brain neurochemistry affected by enoxaparin (Lovenox®), an antiplatelet/antithrombotic medication for stroke victims. NMI with miniature biosensors enables neurotransmitter and neuropeptide (NT) imaging; each NT is imaged with a response time in milliseconds. A semiderivative electronic reduction circuit images several NT’s selectively and separately within a response time of minutes. Spatial resolution of NMI biosensors is in the range of nanomicrons and electrochemically-induced current ranges are in pico- and nano-amperes. Simultaneously with NMI, the LDF technology presented herein operates on line by illuminating the living brain, in this example, in dorso-striatal neuroanatomic substrates via a laser sensor with low power laser light containing optical fiber light guides. NMI biotechnology with BRODERICK PROBE® biosensors has a distinct advantage over conventional electrochemical methodologies both in novelty of biosensor formulations and on-line imaging capabilities in the biosensor field. NMI with unique biocompatible biosensors precisely images NT in the body, blood and brain of animals and humans using characteristic experimentally derived half-wave potentials driven by oxidative electron transfer. Enoxaparin is a first line clinical treatment prescribed to halt the progression of acute ischemic stroke (AIS). In the present studies, BRODERICK PROBE® laurate biosensors and LDF laser sensors are placed in dorsal striatum (DStr) dopaminergic motor neurons in basal ganglia of brain in living animals; basal ganglia influence movement disorders such as those correlated with AIS. The purpose of these studies is to understand what is happening in brain neurochemistry and cerebral blood perfusion after causal AIS by middle cerebral artery occlusion in vivo as well as to understand consequent enoxaparin and

  11. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers.

    PubMed

    Cinti, Stefano; Basso, Mattia; Moscone, Danila; Arduini, Fabiana

    2017-04-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 % vol ), with a sensitivity of 9.13 μA/mM cm 2 (1574 μA/% vol cm 2 ) and a detection limit equal to 0.52 mM (0.003% vol ). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Plasmonic biosensors.

    PubMed

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  13. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.

    PubMed

    Vopálenská, Irena; Váchová, Libuše; Palková, Zdena

    2015-10-15

    Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Neuronal correlates of a virtual-reality-based passive sensory P300 network.

    PubMed

    Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching

    2014-01-01

    P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person's intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients' analytic results with this study. For example, the task

  15. Neuronal Correlates of a Virtual-Reality-Based Passive Sensory P300 Network

    PubMed Central

    Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching

    2014-01-01

    P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person’s intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients’ analytic results with this study. For example, the task

  16. Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies.

    PubMed

    Skotadis, Evangelos; Voutyras, Konstantinos; Chatzipetrou, Marianneza; Tsekenis, Georgios; Patsiouras, Lampros; Madianos, Leonidas; Chatzandroulis, Stavros; Zergioti, Ioanna; Tsoukalas, Dimitris

    2016-07-15

    A novel nanoparticle based biosensor for the fast and simple detection of DNA hybridization events is presented. The sensor utilizes hybridized DNA's charge transport properties, combining them with metallic nanoparticle networks that act as nano-gapped electrodes. The DNA hybridization events can be detected by a significant reduction in the sensor's resistance due to the conductive bridging offered by hybridized DNA. By modifying the nanoparticle surface coverage, which can be controlled experimentally being a function of deposition time, and the structural properties of the electrodes, an optimized biosensor for the in situ detection of DNA hybridization events is ultimately fabricated. The fabricated biosensor exhibits a wide response range, covering four orders of magnitude, a limit of detection of 1nM and can detect a single base pair mismatch between probe and complementary DNA. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Nanoscale Biosensor Based on Silicon Photonic Cavity for Home Healthcare Diagnostic Application

    NASA Astrophysics Data System (ADS)

    Ebrahimy, Mehdi N.; Moghaddam, Aydin B.; Andalib, Alireza; Naziri, Mohammad; Ronagh, Nazli

    2015-09-01

    In this paper, a new ultra-compact optical biosensor based on photonic crystal (phc) resonant cavity is proposed. This sensor has ability to work in chemical optical processes for the determination and analysis of liquid material. Here, we used an optical filter based on two-dimensional phc resonant cavity on a silicon layer and an active area is created in center of cavity. According to results, with increasing the refractive index of cavity, resonant wavelengths shift so that this phenomenon provides the ability to measure the properties of materials. This novel designed biosensor has more advantage to operate in the biochemical process for example sensing protein and DNA molecule refractive index. This nanoscale biosensor has quality factor higher than 1.5 × 104 and it is suitable to be used in the home healthcare diagnostic applications.

  18. FRET and BRET-based biosensors in live cell compound screens.

    PubMed

    Robinson, Katie Herbst; Yang, Jessica R; Zhang, Jin

    2014-01-01

    Live cell compound screening with genetically encoded fluorescence or bioluminescence-based biosensors offers a potentially powerful approach to identify novel regulators of a signaling event of interest. In particular, compound screening in living cells has the added benefit that the entire signaling network remains intact, and thus the screen is not just against a single molecule of interest but against any molecule within the signaling network that may modulate the distinct signaling event reported by the biosensor in use. Furthermore, only molecules that are cell permeable or act at cell surface receptors will be identified as "hits," thus reducing further optimization of the compound in terms of cell penetration. Here we discuss a detailed protocol for using genetically encoded biosensors in living cells in a 96-well format for the execution of high throughput compound screens and the identification of small molecules which modulate a signaling event of interest.

  19. SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells.

    PubMed

    Fujioka, Mari; Asano, Yumi; Nakada, Shigeyuki; Ohba, Yusuke

    2017-01-01

    Fluorescent proteins (FPs) displaying distinct spectra have shed their light on a wide range of biological functions. Moreover, sophisticated biosensors engineered to contain single or multiple FPs, including Förster resonance energy transfer (FRET)-based biosensors, spatiotemporally reveal the molecular mechanisms underlying a variety of pathophysiological processes. However, their usefulness for applied life sciences has yet to be fully explored. Recently, our research group has begun to expand the potential of FPs from basic biological research to the clinic. Here, we describe a method to evaluate the responsiveness of leukemia cells from patients to tyrosine kinase inhibitors using a biosensor based on FP technology and the principle of FRET. Upon phosphorylation of the tyrosine residue of the biosensor, binding of the SH2 domain to phosphotyrosine induces conformational change of the biosensor and brings the donor and acceptor FPs into close proximity. Therefore, kinase activity and response to kinase inhibitors can be monitored by an increase and a decrease in FRET efficiency, respectively. As in basic research, this biosensor resolves hitherto arduous tasks and may provide innovative technological advances in clinical laboratory examinations. State-of-the-art detection devices that enable such innovation are also introduced.

  20. Pheromone detection by mammalian vomeronasal neurons.

    PubMed

    Zufall, Frank; Kelliher, Kevin R; Leinders-Zufall, Trese

    2002-08-01

    The vomeronasal organ (VNO) of mammals plays an essential role in the perception of chemical stimuli of social nature including pheromone-like signals but direct evidence for the transduction of pheromones by vomeronasal sensory neurons has been lacking. The recent development of electrophysiological and optical imaging methods using confocal microscopy has enabled researchers to systematically analyze sensory responses in large populations of mouse vomeronasal neurons. These experiments revealed that vomeronasal neurons are surprisingly sensitive and highly discriminative detectors of volatile, urinary metabolites that have pheromonal activity in recipient mice. Functional mapping studies of pheromone receptor activation have uncovered the basic principles of sensory processing by vomeronasal neurons and revealed striking differences in the neural mechanisms by which chemosensory information is detected by receptor neurons in the VNO and the main olfactory epithelium. These advances offer the opportunity to decipher the logic of mammalian pheromonal communication. Copyright 2002 Wiley-Liss, Inc.

  1. Expression of Vesicular Glutamate Transporters Type 1 and 2 in Sensory and Autonomic Neurons Innervating the Mouse Colorectum

    PubMed Central

    Brumovsky, Pablo R.; Robinson, David R.; La, Jun-Ho; Seroogy, Kim B.; Lundgren, Kerstin H.; Albers, Kathryn M.; Kiyatkin, Michael E.; Seal, Rebecca P.; Edwards, Robert H.; Watanabe, Masahiko; Hökfelt, Tomas; Gebhart, G.F.

    2013-01-01

    Vesicular glutamate transporters (VGLUTs) have been extensively studied in various neuronal systems, but their expression in visceral sensory and autonomic neurons remains to be analyzed in detail. Here we studied VGLUTs type 1 and 2 (VGLUT1 and VGLUT2, respectively) in neurons innervating the mouse colorectum. Lumbosacral and thoracolumbar dorsal root ganglion (DRG), lumbar sympathetic chain (LSC), and major pelvic ganglion (MPG) neurons innervating the colorectum of BALB/C mice were retrogradely traced with Fast Blue, dissected, and processed for immunohistochemistry. Tissue from additional naïve mice was included. Previously characterized antibodies against VGLUT1, VGLUT2, and calcitonin gene-related peptide (CGRP) were used. Riboprobe in situ hybridization, using probes against VGLUT1 and VGLUT2, was also performed. Most colorectal DRG neurons expressed VGLUT2 and often colocalized with CGRP. A smaller percentage of neurons expressed VGLUT1. VGLUT2-immunoreactive (IR) neurons in the MPG were rare. Abundant VGLUT2-IR nerves were detected in all layers of the colorectum; VGLUT1-IR nerves were sparse. A subpopulation of myenteric plexus neurons expressed VGLUT2 protein and mRNA, but VGLUT1 mRNA was undetectable. In conclusion, we show 1) that most colorectal DRG neurons express VGLUT2, and to a lesser extent, VGLUT1; 2) abundance of VGLUT2-IR fibers innervating colorectum; and 3) a subpopulation of myenteric plexus neurons expressing VGLUT2. Altogether, our data suggests a role for VGLUT2 in colorectal glutamatergic neurotransmission, potentially influencing colorectal sensitivity and motility. PMID:21800314

  2. Neuroglial modulation in peripheral sensory systems.

    PubMed

    Pack, Adam K; Pawson, Lorraine J

    2010-08-01

    Glia are increasingly appreciated as active participants in central neural processing via calcium waves, electrical coupling, and even synaptic-like release of "neuro"-transmitters. In some sensory organs (e.g., retina, olfactory bulb), glia have been shown to interact with neurons in the same manner, although their role in perception has yet to be elucidated. In the organ of Corti, synapses occur between supporting cells and neurons. In one sensory organ, the Pacinian corpuscle (fine touch), glia have been shown to play just as important a role in sensory transduction as they do in neural processing in the brain, and the functional role is quite clear; the modified Schwann cells of the capsule are responsible for the rapid adaptation process of the PCs, integral to its function as a vibration detector. This complex glial/neuronal relationship may be a recent evolutionary phenomenon and may account for much of the relative sophistication of vertebrate nervous systems.

  3. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings.

    PubMed

    Schmid, Florian; Wachsmuth, Lydia; Schwalm, Miriam; Prouvot, Pierre-Hugues; Jubal, Eduardo Rosales; Fois, Consuelo; Pramanik, Gautam; Zimmer, Claus; Faber, Cornelius; Stroh, Albrecht

    2016-11-01

    Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca 2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca 2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca 2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca 2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping. © The Author(s) 2015.

  4. A novel inhibition based biosensor using urease nanoconjugate entrapped biocomposite membrane for potentiometric glyphosate detection.

    PubMed

    Vaghela, Chetana; Kulkarni, Mohan; Haram, Santosh; Aiyer, Rohini; Karve, Meena

    2018-03-01

    A potentiometric biosensor based on agarose-guar gum (A-G) entrapped bio-nanoconjugate of urease with gold nanoparticles (AUNps), has been reported for the first time for glyphosate detection. The biosensor is based on inhibition of urease activity by glyphosate, which was measured by direct potentiometry using ammonium ion selective electrode covered with A-G-urease nanoconjugate membrane. TEM and FTIR analysis revealed nanoconjugate formation and its immobilization in A-G matrix respectively. The composite biopolymer employed for immobilization yields thin, transparent, flexible membrane having superior mechanical strength and stability. It retains the maximum activity (92%) of urease with negligible leaching. The conjugation of urease with AUNps allows improvement in response characteristics for potentiometric measurement. The biosensor shows a linear response in the glyphosate concentration range from 0.5ppm-50ppm, with limit of detection at 0.5ppm, which covers maximum residual limit set by WHO for drinking water. The inhibition of catalytic activity of urease nanoconjugate by gyphosate was confirmed by FTIR analysis. The response of fabricated biosensor is selective towards glyphosate as against various other pesticides. The biosensor exhibits good performance in terms of reproducibility and prolonged storage stability of 180days. Thus, the present biosensor provides an alternative method for simple, selective and cost effective detection of glyphosate based on urease inhibition. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Differential effects of lipopolysaccharide on mouse sensory TRP channels.

    PubMed

    Boonen, Brett; Alpizar, Yeranddy A; Sanchez, Alicia; López-Requena, Alejandro; Voets, Thomas; Talavera, Karel

    2018-04-14

    Acute neurogenic inflammation and pain associated to bacterial infection have been traditionally ascribed to sensitization and activation of sensory nerve afferents secondary to immune cell stimulation. However, we recently showed that lipopolysaccharides (LPS) directly activate the Transient Receptor Potential channels TRPA1 in sensory neurons and TRPV4 in airway epithelial cells. Here we investigated whether LPS activates other sensory TRP channels expressed in sensory neurons. Using intracellular Ca 2+ imaging and patch-clamp we determined the effects of LPS on recombinant TRPV1, TRPV2, TRPM3 and TRPM8, heterologously expressed in HEK293T cells. We found that LPS activates TRPV1, although with lower potency than for TRPA1. Activation of TRPV1 by LPS was not affected by mutations of residues required for activation by electrophilic agents or by diacylglycerol and capsaicin. On the other hand, LPS weakly activated TRPM3, activated TRPM8 at 25 °C, but not at 35 °C, and was ineffective on TRPV2. Experiments performed in mouse dorsal root ganglion (DRG) neurons revealed that genetic ablation of Trpa1 did not abolish the responses to LPS, but remain detected in 30% of capsaicin-sensitive cells. The population of neurons responding to LPS was dramatically lower in double Trpa1/Trpv1 KO neurons. Our results show that, in addition to TRPA1, other TRP channels in sensory neurons can be targets of LPS, suggesting that they may contribute to trigger and regulate innate defenses against gram-negative bacterial infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Photoelectrochemical enzymatic biosensors.

    PubMed

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Behavioral and Functional Assays for Investigating Mechanisms of Noxious Cold Detection and Multimodal Sensory Processing in Drosophila Larvae

    PubMed Central

    Patel, Atit A.; Cox, Daniel N.

    2017-01-01

    To investigate cellular, molecular and behavioral mechanisms of noxious cold detection, we developed cold plate behavioral assays and quantitative means for evaluating the predominant noxious cold-evoked contraction behavior. To characterize neural activity in response to noxious cold, we implemented a GCaMP6-based calcium imaging assay enabling in vivo studies of intracellular calcium dynamics in intact Drosophila larvae. We identified Drosophila class III multidendritic (md) sensory neurons as multimodal sensors of innocuous mechanical and noxious cold stimuli and to dissect the mechanistic bases of multimodal sensory processing we developed two independent functional assays. First, we developed an optogenetic dose response assay to assess whether levels of neural activation contributes to the multimodal aspects of cold sensitive sensory neurons. Second, we utilized CaMPARI, a photo-switchable calcium integrator that stably converts fluorescence from green to red in presence of high intracellular calcium and photo-converting light, to assess in vivo functional differences in neural activation levels between innocuous mechanical and noxious cold stimuli. These novel assays enable investigations of behavioral and functional roles of peripheral sensory neurons and multimodal sensory processing in Drosophila larvae. PMID:28835907

  8. Emerging Role of Sensory Perception in Aging and Metabolism.

    PubMed

    Riera, Celine E; Dillin, Andrew

    2016-05-01

    Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues. Here we review how these findings are redefining metabolic signaling and establish a prominent role of sensory neuroendocrine processes in controlling health span and lifespan, with a goal of translating this knowledge towards managing age-associated diseases. Copyright © 2016. Published by Elsevier Ltd.

  9. Electrochemical biosensors for hormone analyses.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Knowledge-based design of a biosensor to quantify localized ERK activation in living cells

    PubMed Central

    Kummer, Lutz; Hsu, Chia-Wen; Dagliyan, Onur; MacNevin, Christopher; Kaufholz, Melanie; Zimmermann, Bastian; Dokholyan, Nikolay V.; Hahn, Klaus M.; Plückthun, Andreas

    2014-01-01

    Summary Investigation of protein activation in living cells is fundamental to understand how proteins are influenced by the full complement of upstream regulators they experience. We describe here the generation of a biosensor based on the Designed Ankyrin Repeat Protein (DARPin) binding scaffold suited for intracellular applications. Combining selection and evolution from libraries, knowledge-based design and efficient and rapid testing of conjugate candidates, we created an ERK activity biosensor by derivatizing a DARPin specific for phosphorylated ERK (pERK) with a solvatochromic merocyanine dye (mero87), whose fluorescence increases upon pERK binding. The biosensor specifically responded to pERK2, recognized by its conformation, but not to non-phosphorylated ERK2 or other closely related mitogen-activated kinases tested. Activated endogenous ERK was visualized in mouse embryo fibroblasts incubated in 2% serum, revealing greater activation in the nucleus, perinuclear regions, and especially the nucleoli. Activity was greatly reduced by the MEK1/2 inhibitor U0126. The DARPin-based biosensor will serve as useful tool for studying biological functions of ERK in vitro and in vivo. PMID:23790495

  11. Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.

    PubMed

    Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal

    2017-08-18

    The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.

  12. Variation of Cholinesterase-Based Biosensor Sensitivity to Inhibition by Organophosphate Due To Ionizing Radiation

    PubMed Central

    Pohanka, Miroslav; Koch, Miroslav

    2009-01-01

    A cholinesterase based biosensor was constructed in order to assess the effects of ionizing radiation on exposed AChE. Although the primary objective of the experiment was to investigate the effect of ionizing radiation on the activity of the biosensor, no changes in cholinesterase activity were observed. Current provided by oxidation of thiocholine previously created from acetylthiocholine by enzyme catalyzed reaction was in a range 395–455 nA. No significant influence of radiation on AChE activity was found, despite the current variation. However, a surprising phenomenon was observed when a model organophosphate paraoxon was assayed. Irradiated biosensors seem to be more susceptible to the inhibitory effects of paraoxon. Control biosensors provided a 94 ± 5 nA current after exposure to 1 ppm paraoxon. The biosensors irradiated by a 5 kGy radiation dose and exposed to paraoxon provided a current of 49 ± 6 nA. Irradiation by doses ranging from 5 mGy to 100 kGy were investigated and the mentioned effect was confirmed at doses above 50 Gy. After the first promising experiments, biosensors irradiated by 5 kGy were used for calibration on paraoxon and compared with the control biosensors. Limits of detection 2.5 and 3.8 ppb were achieved for irradiated and non-irradiated biosensors respectively. The overall impact of this effect is discussed. PMID:22346715

  13. Sensory Neuropathy Due to Loss of Bcl-w

    PubMed Central

    Courchesne, Stephanie L.; Karch, Christoph; Pazyra-Murphy, Maria F.; Segal, Rosalind A.

    2010-01-01

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w −/− mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w −/− sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w −/− mice as an animal model of small fiber sensory neuropathy, and provide new insight regarding the role of bcl-w and of mitochondria in preventing axonal degeneration. PMID:21289171

  14. Regulate axon branching by the cyclic GMP pathway via inhibition of glycogen synthase kinase 3 in dorsal root ganglion sensory neurons.

    PubMed

    Zhao, Zhen; Wang, Zheng; Gu, Ying; Feil, Robert; Hofmann, Franz; Ma, Le

    2009-02-04

    Cyclic GMP has been proposed to regulate axonal development, but the molecular and cellular mechanisms underlying the formation of axon branches are not well understood. Here, we report the use of rodent embryonic sensory neurons from the dorsal root ganglion (DRG) to demonstrate the role of cGMP signaling in axon branching and to identify the downstream molecular pathway mediating this novel regulation. Pharmacologically, a specific cGMP analog promotes DRG axon branching in culture, and this activity can be achieved by activating the endogenous soluble guanylyl cyclase that produces cGMP. At the molecular level, the cGMP-dependent protein kinase 1 (PrkG1) mediates this activity, as DRG neurons isolated from the kinase-deficient mouse fail to respond to cGMP activation to make branches, whereas overexpression of a PrkG1 mutant with a higher-than-normal basal kinase activity is sufficient to induce branching. In addition, cGMP activation in DRG neurons leads to phosphorylation of glycogen synthase kinase 3 (GSK3), a protein that normally suppresses branching. This interaction is direct, because PrkG1 binds GSK3 in heterologous cells and the purified kinase can phosphorylate GSK3 in vitro. More importantly, overexpression of a dominant active form of GSK3 suppresses cGMP-dependent branching in DRG neurons. Thus, our study establishes an intrinsic signaling cascade that links cGMP activation to GSK3 inhibition in controlling axon branching during sensory axon development.

  15. Mixed input to olfactory glomeruli from two subsets of ciliated sensory neurons does not impede relay neuron specificity in the crucian carp.

    PubMed

    Hansson, Kenth-Arne; Døving, Kjell B; Skjeldal, Frode M

    2015-10-01

    The consensus view of olfactory processing is that the axons of receptor-specific primary olfactory sensory neurons (OSNs) converge to a small subset of glomeruli, thus preserving the odour identity before the olfactory information is processed in higher brain centres. In the present study, we show that two different subsets of ciliated OSNs with different odorant specificities converge to the same glomeruli. In order to stain different ciliated OSNs in the crucian carp Carassius carassius we used two different chemical odorants, a bile salt and a purported alarm substance, together with fluorescent dextrans. The dye is transported within the axons and stains glomeruli in the olfactory bulb. Interestingly, the axons from the ciliated OSNs co-converge to the same glomeruli. Despite intermingled innervation of glomeruli, axons and terminal fields from the two different subsets of ciliated OSNs remained mono-coloured. By 4-6 days after staining, the dye was transported trans-synaptically to separately stained axons of relay neurons. These findings demonstrate that specificity of the primary neurons is retained in the olfactory pathways despite mixed innervation of the olfactory glomeruli. The results are discussed in relation to the emerging concepts about non-mammalian glomeruli. © 2015. Published by The Company of Biologists Ltd.

  16. Steroid Treatment Reduces Allergic Airway Inflammation and Does Not Alter the Increased Numbers of Dendritic Cells and Calcitonin Gene-Related Peptide-Expressing Neurons in Airway Sensory Ganglia.

    PubMed

    Le, Duc Dung; Funck, Ulrike; Wronski, Sabine; Heck, Sebastian; Tschernig, Thomas; Bischoff, Markus; Sester, Martina; Herr, Christian; Bals, Robert; Welte, Tobias; Braun, Armin; Dinh, Quoc Thai

    2016-01-01

    Our previous data demonstrated that allergic airway inflammation induces migration of dendritic cells (DC) into airway sensory jugular and nodose ganglia (jugular-nodose ganglion complex; JNC). Here we investigated the effects of steroid treatment regarding the expression and migration of DC and calcitonin gene-related peptide (CGRP)-immunoreactive neurons of vagal sensory ganglia during allergic airway inflammation. A house dust mite (HDM) model for allergic airway inflammation was used. The mice received 0.3 mg fluticasone propionate per kilogram of body weight in the last 9 days. JNC slices were analyzed on MHC II, the neuronal marker PGP9.5, and the neuropeptide CGRP. Allergic airway inflammation increased the numbers of DC and CGRP-expressing neurons in the JNC significantly in comparison to the controls (DC/neurons: HDM 44.58 ± 1.6% vs. saline 33.29 ± 1.6%, p < 0.05; CGRP-positive neurons/total neurons: HDM 30.65 ± 1.9% vs. saline 19.49 ± 2.3%, p < 0.05). Steroid treatment did not have any effect on the numbers of DC and CGRP-expressing neurons in the JNC compared to HDM-treated mice. The present findings indicate an important role of DC and CGRP-containing neurons in the pathogenesis of allergic airway inflammation. However, steroid treatment did not have an effect on the population of DC and neurons displaying CGRP in the JNC, whereas steroid treatment was found to suppress allergic airway inflammation. © 2015 S. Karger AG, Basel.

  17. Immune biosensors based on the SPR and TIRE: efficiency of their application for bacteria determination

    NASA Astrophysics Data System (ADS)

    Starodub, N. F.; Ogorodniichuk, J.; Lebedeva, T.; Shpylovyy, P.

    2013-11-01

    In this work we have designed high-specific biosensors for Salmonella typhimurium detection based on the surface plasmon resonance (SPR) and total internal reflection ellipsometry (TIRE). It has been demonstrated high selectivity and sensitivity of analysis. As a registering part for our experiments the Spreeta (USA) and "Plasmonotest" (Ukraine) with flowing cell have been applied among of SPR device. Previous researches confirmed an efficiency of SPR biosensors using for detecting of specific antigen-antibody interactions therefore this type of reactions with some previous preparations of surface binding layer was used as reactive part. It has been defined that in case with Spreeta sensitivity was on the level 103 - 107 cells/ml. Another biosensor based on the SPR has shown the sensitivity within 101 - 106 cells/ml. Maximal sensitivity was on the level of several cells in 10 ml (up to the fact that less than 5 cells) which has been obtained using the biosensor based on TIRE.

  18. NOTCH SIGNALING ALTERS SENSORY OR NEURONAL CELL FATE SPECIFICATION OF INNER EAR STEM CELLS

    PubMed Central

    Jeon, Sang-Jun; Fujioka, Masato; Kim, Shi-Chan; Edge, Albert S.B.

    2011-01-01

    Multipotent progenitor cells in the otic placode give rise to the specialized cell types of the inner ear, including neurons, supporting cells and hair cells. The mechanisms governing acquisition of specific fates by the cells that form the cochleovestibular organs remain poorly characterized. Here we show that whereas blocking Notch signaling with a γ-secretase inhibitor increased the conversion of inner ear stem cells to hair cells by a mechanism that involved the upregulation of bHLH transcription factor, Math1 (mouse Atoh1), differentiation to a neuronal lineage was increased by expression of the Notch intracellular domain. The shift to a neuronal lineage could be attributed in part to the continued cell proliferation in cells that did not undergo sensory cell differentiation due to the high Notch signaling, but also involved upregulation of Ngn1. The Notch intracellular domain influenced Ngn1 indirectly by upregulation of Sox2, a transcription factor expressed in many neural progenitor cells, and directly by an interaction with an RBP-J binding site in the Ngn1 promoter/enhancer. The induction of Ngn1 was blocked partially by mutation of the RBP-J site and nearly completely when the mutation was combined with inhibition of Sox2 expression. Thus Notch signaling had a significant role in the fate specification of neurons and hair cells from inner ear stem cells, and decisions about cell fate were mediated in part by a differential effect of combinatorial signaling by Notch and Sox2 on the expression of bHLH transcription factors. PMID:21653840

  19. Coding of position by simultaneously recorded sensory neurones in the cat dorsal root ganglion

    PubMed Central

    Stein, R B; Weber, D J; Aoyagi, Y; Prochazka, A; Wagenaar, J B M; Shoham, S; Normann, R A

    2004-01-01

    Muscle, cutaneous and joint afferents continuously signal information about the position and movement of individual joints. How does the nervous system extract more global information, for example about the position of the foot in space? To study this question we used microelectrode arrays to record impulses simultaneously from up to 100 discriminable nerve cells in the L6 and L7 dorsal root ganglia (DRG) of the anaesthetized cat. When the hindlimb was displaced passively with a random trajectory, the firing rate of the neurones could be predicted from a linear sum of positions and velocities in Cartesian (x, y), polar or joint angular coordinates. The process could also be reversed to predict the kinematics of the limb from the firing rates of the neurones with an accuracy of 1–2 cm. Predictions of position and velocity could be combined to give an improved fit to limb position. Decoders trained using random movements successfully predicted cyclic movements and movements in which the limb was displaced from a central point to various positions in the periphery. A small number of highly informative neurones (6–8) could account for over 80% of the variance in position and a similar result was obtained in a realistic limb model. In conclusion, this work illustrates how populations of sensory receptors may encode a sense of limb position and how the firing of even a small number of neurones can be used to decode the position of the limb in space. PMID:15331686

  20. Morphological evidence for novel enteric neuronal circuitry in guinea pig distal colon.

    PubMed

    Smolilo, D J; Costa, M; Hibberd, T J; Wattchow, D A; Spencer, Nick J

    2018-07-01

    The gastrointestinal (GI) tract is unique compared to all other internal organs; it is the only organ with its own nervous system and its own population of intrinsic sensory neurons, known as intrinsic primary afferent neurons (IPANs). How these IPANs form neuronal circuits with other functional classes of neurons in the enteric nervous system (ENS) is incompletely understood. We used a combination of light microscopy, immunohistochemistry and confocal microscopy to examine the topographical distribution of specific classes of neurons in the myenteric plexus of guinea-pig colon, including putative IPANs, with other classes of enteric neurons. These findings were based on immunoreactivity to the neuronal markers, calbindin, calretinin and nitric oxide synthase. We then correlated the varicose outputs formed by putative IPANs with subclasses of excitatory interneurons and motor neurons. We revealed that calbindin-immunoreactive varicosities form specialized structures resembling 'baskets' within the majority of myenteric ganglia, which were arranged in clusters around calretinin-immunoreactive neurons. These calbindin baskets directly arose from projections of putative IPANs and represent morphological evidence of preferential input from sensory neurons directly to a select group of calretinin neurons. Our findings uncovered that these neurons are likely to be ascending excitatory interneurons and excitatory motor neurons. Our study reveals for the first time in the colon, a novel enteric neural circuit, whereby calbindin-immunoreactive putative sensory neurons form specialized varicose structures that likely direct synaptic outputs to excitatory interneurons and motor neurons. This circuit likely forms the basis of polarized neuronal pathways underlying motility. © 2018 Wiley Periodicals, Inc.

  1. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Ye, Ling; Mao, Ju-Xian; Zhang, Jun-Ming

    2013-01-01

    Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models, and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain following local inflammation of the rat lumbar sensory ganglia. In normal DRG, quantitative PCR showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6′ immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C-cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8, because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7, because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain, and that some pain conditions may be primarily mediated by myelinated A-fiber sensory neurons. PMID:23622763

  2. Central representation of sensory inputs from the cardio-renal system in Aplysia depilans.

    PubMed

    Rózsa, K S; Salánki, J; Véró, M; Kovacević, N; Konjevic, D

    1980-01-01

    Studying the central representation of sensory inputs originating from the heart in Aplysia depilans, it was found that: 1. Neurons responding to heart stimulation can be found in the abdominal, pedal and pleural ganglia alike. 2. The representation of heart input signals was more abundant in the left hemisphere of the abdominal ganglion and in the left pedal and pleural ganglia. 3. The giant neurons of Aplysia depilans can be compared to the homologous cells of Aplysia californica. Two motoneurons (RBHE, LDHI) and one interneuron (L10) proved to be identical in the two subspecies. 4. Sensory inputs originating from the heart may modify the pattern of both heart regulatory motoneurons and interneurons. 5. Nine giant and 19 small neurons of the abdominal ganglion, 3--3 neurons of the right and left pleural ganglion, 6 neurons of the left pedal ganglion responded to heart stimulation. 6. The bursting patterns of cells R15 and L4 were modified to tonic discharge in response to heart stimulation. 7. The representation of sensory inputs originating from the heart is scattered throughout the CNS of Aplysia depilans and heart regulation is based on a feedback mechanism similar to that found in other gastropod species.

  3. Single Nanochannel-Aptamer-Based Biosensor for Ultrasensitive and Selective Cocaine Detection.

    PubMed

    Wang, Jian; Hou, Jue; Zhang, Huacheng; Tian, Ye; Jiang, Lei

    2018-01-17

    Ultrasensitive and selective detection of molecules at nano or sub-nanomolar level is very important for many areas such as early diagnosis and drug testing. Herein, we report a high-sensitive cocaine sensor based on a single nanochannel coupled with DNA aptamers. The single nanochannel-aptamer-based biosensor can recognize cocaine molecules with an excellent sensitivity and good selectivity. A linear relationship between target cocaine concentration and output ionic current is obtained in a wide concentration range of cocaine from 1 nM to 10 μM. The cocaine sensor also shows a detection limit down to 1 nM. This study provides a new avenue to develop new nanochannel-aptamer-based biosensors for rapid and ultratrace detection of a variety of illicit drugs.

  4. Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film.

    PubMed

    Safavi, Afsaneh; Farjami, Fatemeh

    2010-07-01

    The composite film based on Nafion and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium chloride ([bmim]Cl) was used as an immobilization matrix to entrap myoglobin (Mb). The study of ionic liquid (IL)-Mb interaction by ultraviolet-visible (UV-vis) spectroscopy showed that Mb retains its native conformation in the presence of IL. The immobilized Mb displayed a pair of well-defined cyclic voltammetric peaks with a formal potential (E(o)(')) of -0.35 V in a 0.1 M phosphate buffer solution (PBS) of pH 7.0. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide, based on which a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range for the determination of hydrogen peroxide was from 1.0 to 180 microM with a detection limit of 0.14 microM at a signal/noise ratio of 3. The apparent Michaelis constant (K(m)(app)) for the electrocatalytic reaction was 22.6 microM. The stability, repeatability, and selectivity of the sensor were evaluated. The proposed biosensor has a lower detection limit than many other IL-heme protein-based biosensors and is free from common interference in hydrogen peroxide biosensors. 2010 Elsevier Inc. All rights reserved.

  5. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    PubMed Central

    Liu, Fei; Li, Fang; Nordin, Anis Nurashikin; Voiculescu, Ioana

    2013-01-01

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35∼45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection. PMID:23459387

  6. Sensory Detection and Responses to Toxic Gases

    PubMed Central

    Bessac, Bret F.; Jordt, Sven-Eric

    2010-01-01

    The inhalation of reactive gases and vapors can lead to severe damage of the airways and lung, compromising the function of the respiratory system. Exposures to oxidizing, electrophilic, acidic, or basic gases frequently occur in occupational and ambient environments. Corrosive gases and vapors such as chlorine, phosgene, and chloropicrin were used as warfare agents and in terrorist acts. Chemical airway exposures are detected by the olfactory, gustatory, and nociceptive sensory systems that initiate protective physiological and behavioral responses. This review focuses on the role of airway nociceptive sensory neurons in chemical sensing and discusses the recent discovery of neuronal receptors for reactive chemicals. Using physiological, imaging, and genetic approaches, Transient Receptor Potential (TRP) ion channels in sensory neurons were shown to respond to a wide range of noxious chemical stimuli, initiating pain, respiratory depression, cough, glandular secretions, and other protective responses. TRPA1, a TRP ion channel expressed in chemosensory C-fibers, is activated by almost all oxidizing and electrophilic chemicals, including chlorine, acrolein, tear gas agents, and methyl isocyanate, the highly noxious chemical released in the Bhopal disaster. Chemicals likely activate TRPA1 through covalent protein modification. Animal studies using TRPA1 antagonists or TRPA1-deficient mice confirmed the role of TRPA1 in chemically induced respiratory reflexes, pain, and inflammation in vivo. New research shows that sensory neurons are not merely passive sensors of chemical exposures. Sensory channels such as TRPA1 are essential for maintenance of airway inflammation in asthma and may contribute to the progression of airway injury following high-level chemical exposures. PMID:20601631

  7. Amperometric Enzyme-Based Biosensors for Application in Food and Beverage Industry

    NASA Astrophysics Data System (ADS)

    Csöoregi, Elisabeth; Gáspñr, Szilveszter; Niculescu, Mihaela; Mattiasson, Bo; Schuhmann, Wolfgang

    Continuous, sensitive, selective, and reliable monitoring of a large variety of different compounds in various food and beverage samples is of increasing importance to assure a high-quality and tracing of any possible source of contamination of food and beverages. Most of the presently used classical analytical methods are often requiring expensive instrumentation, long analysis times and well-trained staff. Amperometric enzyme-based biosensors on the other hand have emerged in the last decade from basic science to useful tools with very promising application possibilities in food and beverage industry. Amperometric biosensors are in general highly selective, sensitive, relatively cheap, and easy to integrate into continuous analysis systems. A successful application of such sensors for industrial purposes, however, requires a sensor design, which satisfies the specific needs of monitoring the targeted analyte in the particular application, Since each individual application needs different operational conditions and sensor characteristics, it is obvious that biosensors have to be tailored for the particular case. The characteristics of the biosensors are depending on the used biorecognition element (enzyme), nature of signal transducer (electrode material) and the communication between these two elements (electron-transfer pathway).

  8. Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds.

    PubMed

    Urmann, Katharina; Walter, Johanna-Gabriela; Scheper, Thomas; Segal, Ester

    2015-02-03

    A proof-of-concept for a label-free and reagentless optical biosensing platform based on nanostructured porous silicon (PSi) and aptamers is presented in this work. Aptamers are oligonucleotides (single-stranded DNA or RNA) that can bind their targets with high affinity and specificity, making them excellent recognition elements for biosensor design. Here we describe the fabrication and characterization of aptamer-conjugated PSi biosensors, where a previously characterized his-tag binding aptamer (6H7) is used as model system. Exposure of the aptamer-functionalized PSi to the target proteins as well as to complex fluids (i.e., bacteria lysates containing target proteins) results in robust and well-defined changes in the PSi optical interference spectrum, ascribed to specific aptamer-protein binding events occurring within the nanoscale pores, monitored in real time. The biosensors show exceptional stability and can be easily regenerated by a short rinsing step for multiple biosensing analyses. This proof-of-concept study demonstrates the possibility of designing highly stable and specific label-free optical PSi biosensors, employing aptamers as capture probes, holding immense potential for application in detection of a broad range of targets, in a simple yet reliable manner.

  9. Sol-Gel-Based Titania-Silica Thin Film Overlay for Long Period Fiber Grating-Based Biosensors.

    PubMed

    Chiavaioli, Francesco; Biswas, Palas; Trono, Cosimo; Jana, Sunirmal; Bandyopadhyay, Somnath; Basumallick, Nandini; Giannetti, Ambra; Tombelli, Sara; Bera, Susanta; Mallick, Aparajita; Baldini, Francesco

    2015-12-15

    An evanescent wave optical fiber biosensor based on titania-silica-coated long period grating (LPG) is presented. The chemical overlay, which increases the refractive index (RI) sensitivity of the sensor, consists of a sol-gel-based titania-silica thin film, deposited along the sensing portion of the fiber by means of the dip-coating technique. Changing both the sol viscosity and the withdrawal speed during the dip-coating made it possible to adjust the thickness of the film overlay, which is a crucial parameter for the sensor performance. After the functionalization of the fiber surface using a methacrylic acid/methacrylate copolymer, an antibody/antigen (IgG/anti-IgG) assay was carried out to assess the performance of sol-gel based titania-silica-coated LPGs as biosensors. The analyte concentration was determined from the wavelength shift at the end of the binding process and from the initial binding rate. This is the first time that a sol-gel based titania-silica-coated LPG is proposed as an effective and feasible label-free biosensor. The specificity of the sensor was validated by performing the same model assay after spiking anti-IgG into human serum. With this structured LPG, detection limits of the order of tens of micrograms per liter (10(-11) M) are attained.

  10. Yif1 associates with Yip1 on Golgi and regulates dendrite pruning in sensory neurons during Drosophila metamorphosis.

    PubMed

    Wang, Qiwei; Wang, Yan; Yu, Fengwei

    2018-05-16

    Pruning that selectively removes unnecessary neurites without causing neuronal death is essential for sculpting the mature nervous system during development. In Drosophila , ddaC sensory neurons specifically prune their larval dendrites with intact axons during metamorphosis. However, it remains unknown about an important role of ER-to-Golgi transport in dendrite pruning. Here, in a clonal screen we identified Yif1, an uncharacterized Drosophila homologue of Yif1p that is known as a regulator of ER-to-Golgi transport in yeast. We show that Yif1 is required for dendrite pruning of ddaC neurons but not for apoptosis of ddaF neurons. We further identified the Yif1-binding partner Yip1 which is also crucial for dendrite pruning. Yif1 forms a protein complex with Yip1 in S2 cells and ddaC neurons. Yip1 and Yif1 colocalize on ER/Golgi and are required for the integrity of Golgi apparatus and outposts. Moreover, we show that two GTPases Rab1 and Sar1, known to regulate ER-to-Golgi transport, are essential for dendrite pruning of ddaC neurons. Finally, our data reveal that ER-to-Golgi transport promotes endocytosis and downregulation of cell adhesion molecule Neuroglian and thereby dendrite pruning. © 2018. Published by The Company of Biologists Ltd.

  11. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    PubMed

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Biosensoric potential of microbial fuel cells.

    PubMed

    Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós

    2016-08-01

    Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.

  13. Lignin and silicate based hydrogels for biosensor applications

    NASA Astrophysics Data System (ADS)

    Burrs, S. L.; Jairam, S.; Vanegas, D. C.; Tong, Z.; McLamore, E. S.

    2013-05-01

    Advances in biocompatible materials and electrocatalytic nanomaterials have extended and enhanced the field of biosensors. Immobilization of biorecognition elements on nanomaterial platforms is an efficient technique for developing high fidelity biosensors. Single layer (i.e., Langmuir-Blodgett) protein films are efficient, but disadvantages of this approach include high cost, mass transfer limitations, and Vromer competition for surface binding sites. There is a need for simple, user friendly protein-nanomaterial sensing membranes that can be developed in laboratories or classrooms (i.e., outside of the clean room). In this research, we develop high fidelity nanomaterial platforms for developing electrochemical biosensors using sustainable biomaterials and user-friendly deposition techniques. Catalytic nanomaterial platforms are developed using a combination of self assembled monolayer chemistry and electrodeposition. High performance biomaterials (e.g., nanolignin) are recovered from paper pulp waste and combined with proteins and nanomaterials to form active sensor membranes. These methods are being used to develop electrochemical biosensors for studying physiological transport in biomedical, agricultural, and environmental applications.

  14. Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia

    PubMed Central

    Javitt, Daniel C.; Freedman, Robert

    2015-01-01

    Sensory processing deficits, first investigated by Kraeplin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being re-characterized in the context of modern understanding of the involved molecular and neurobiological brain mechanisms. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia such as hallucinations. The pre-pulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slightly different stimuli that elicits the cortical Mismatch Negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and, vice versa, are affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of the illness and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients’ sensory perception of the surrounding world, even during treatment sessions, may differ considerable from others’ perceptions. A person’s ability to understand and interact effectively with surrounding world ultimately depends upon an underlying sensory experience of it. PMID:25553496

  15. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication.

    PubMed

    Wang, Juan; Silva, Malan; Haas, Leonard A; Morsci, Natalia S; Nguyen, Ken C Q; Hall, David H; Barr, Maureen M

    2014-03-03

    Cells release extracellular vesicles (ECVs) that play important roles in intercellular communication and may mediate a broad range of physiological and pathological processes. Many fundamental aspects of ECV biogenesis and signaling have yet to be determined, with ECV detection being a challenge and obstacle due to the small size (100 nm) of the ECVs. We developed an in vivo system to visualize the dynamic release of GFP-labeled ECVs. We show here that specific Caenorhabdidits elegans ciliated sensory neurons shed and release ECVs containing GFP-tagged polycystins LOV-1 and PKD-2. These ECVs are also abundant in the lumen surrounding the cilium. Electron tomography and genetic analysis indicate that ECV biogenesis occurs via budding from the plasma membrane at the ciliary base and not via fusion of multivesicular bodies. Intraflagellar transport and kinesin-3 KLP-6 are required for environmental release of PKD-2::GFP-containing ECVs. ECVs isolated from wild-type animals induce male tail-chasing behavior, while ECVs isolated from klp-6 animals and lacking PKD-2::GFP do not. We conclude that environmentally released ECVs play a role in animal communication and mating-related behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Laurate Biosensors Image Brain Neurotransmitters In Vivo: Can an Antihypertensive Medication Alter Psychostimulant Behavior?

    PubMed

    Broderick, Patricia A; Ho, Helen; Wat, Karyn; Murthy, Vivek

    2008-07-04

    Neuromolecular Imaging (NMI) with novel biosensors enables the selective detection of neurotransmitters in vivo within seconds, on line and in real time. Biosensors remain in place for continuing studies over a period of months. This biotechnological advance is based on conventional electrochemistry; the biosensors detect neurotransmitters by electron transfer. Simply stated, biosensors adsorb electrons from each neurotransmitter at specific oxidation potentials; the current derived from electron transfer is proportional to neurotransmitter concentration. Selective electron transfer properties of these biosensors permit the imaging of neurotransmitters, metabolites and precursors. The novel BRODERICK PROBE ® biosensors we have developed, differ in formulation and detection capabilities from biosensors/electrodes used in conventional electrochemistry/ voltammetry. In these studies, NMI, specifically, the BRODERICK PROBE ® laurate biosensor images neurotransmitter signals within mesolimbic neuronal terminals, nucleus accumbens (NAc); dopamine (DA), serotonin (5-HT), homovanillic acid (HVA) and Ltryptophan (L-TP) are selectively imaged. Simultaneously, we use infrared photobeams to monitor open-field movement behaviors on line with NMI in the same animal subjects. The goals are to investigate integrated neurochemical and behavioral effects of cocaine and caffeine alone and co-administered and further, to use ketanserin to decipher receptor profiles for these psychostimulants, alone and co-administered. The rationale for selecting this medication is: ketanserin (a) is an antihypertensive and cocaine and caffeine produce hypertension and (b) acts at 5-HT 2A/2C receptors, prevalent in NAc and implicated in hypertension and cocaine addiction. Key findings are: (a) the moderate dose of caffeine simultaneously potentiates cocaine's neurochemical and behavioral responses. (b) ketanserin simultaneously inhibits cocaine-increased DA and 5-HT release in NAc and open

  17. Laurate Biosensors Image Brain Neurotransmitters In Vivo: Can an Antihypertensive Medication Alter Psychostimulant Behavior?

    PubMed Central

    Broderick, Patricia A.; Ho, Helen; Wat, Karyn; Murthy, Vivek

    2008-01-01

    Neuromolecular Imaging (NMI) with novel biosensors enables the selective detection of neurotransmitters in vivo within seconds, on line and in real time. Biosensors remain in place for continuing studies over a period of months. This biotechnological advance is based on conventional electrochemistry; the biosensors detect neurotransmitters by electron transfer. Simply stated, biosensors adsorb electrons from each neurotransmitter at specific oxidation potentials; the current derived from electron transfer is proportional to neurotransmitter concentration. Selective electron transfer properties of these biosensors permit the imaging of neurotransmitters, metabolites and precursors. The novel BRODERICK PROBE® biosensors we have developed, differ in formulation and detection capabilities from biosensors/electrodes used in conventional electrochemistry/voltammetry. In these studies, NMI, specifically, the BRODERICK PROBE® laurate biosensor images neurotransmitter signals within mesolimbic neuronal terminals, nucleus accumbens (NAc); dopamine (DA), serotonin (5-HT), homovanillic acid (HVA) and L-tryptophan (L-TP) are selectively imaged. Simultaneously, we use infrared photobeams to monitor open-field movement behaviors on line with NMI in the same animal subjects. The goals are to investigate integrated neurochemical and behavioral effects of cocaine and caffeine alone and co-administered and further, to use ketanserin to decipher receptor profiles for these psychostimulants, alone and co-administered. The rationale for selecting this medication is: ketanserin (a) is an antihypertensive and cocaine and caffeine produce hypertension and (b) acts at 5-HT2A/2C receptors, prevalent in NAc and implicated in hypertension and cocaine addiction. Key findings are: (a) the moderate dose of caffeine simultaneously potentiates cocaine's neurochemical and behavioral responses. (b) ketanserin simultaneously inhibits cocaine-increased DA and 5-HT release in NAc and open

  18. Ultrasound neuro-modulation chip: activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves.

    PubMed

    Zhou, Wei; Wang, Jingjing; Wang, Kaiyue; Huang, Bin; Niu, Lili; Li, Fei; Cai, Feiyan; Chen, Yan; Liu, Xin; Zhang, Xiaoyan; Cheng, Hankui; Kang, Lijun; Meng, Long; Zheng, Hairong

    2017-05-16

    Ultrasound neuro-modulation has gained increasing attention as a non-invasive method. In this paper, we present an ultrasound neuro-modulation chip, capable of initiating reversal behaviour and activating neurons of C. elegans under the stimulation of a single-shot, short-pulsed ultrasound. About 85.29% ± 6.17% of worms respond to the ultrasound stimulation exhibiting reversal behaviour. Furthermore, the worms can adapt to the ultrasound stimulation with a lower acoustic pulse duration of stimulation. In vivo calcium imaging shows that the activity of ASH, a polymodal sensory neuron in C. elegans, can be directly evoked by the ultrasound stimulation. On the other hand, AFD, a thermal sensitive neuron, cannot be activated by the ultrasound stimulation using the same parameter and the temperature elevation during the stimulation process is relatively small. Consistent with the calcium imaging results, the tax-4 mutants, which are insensitive to temperature increase, do not show a significant difference in avoidance probability compared to the wild type. Therefore, the mechanical effects induced by ultrasound are the main reason for neural and behavioural modulation of C. elegans. With the advantages of confined acoustic energy on the surface, compatible with standard calcium imaging, this neuro-modulation chip could be a powerful tool for revealing the molecular mechanisms of ultrasound neuro-modulation.

  19. Nuclear Localization of the C1 Factor (Host Cell Factor) in Sensory Neurons Correlates with Reactivation of Herpes Simplex Virus from Latency

    NASA Astrophysics Data System (ADS)

    Kristie, Thomas M.; Vogel, Jodi L.; Sears, Amy E.

    1999-02-01

    After a primary infection, herpes simplex virus is maintained in a latent state in neurons of sensory ganglia until complex stimuli reactivate viral lytic replication. Although the mechanisms governing reactivation from the latent state remain unknown, the regulated expression of the viral immediate early genes represents a critical point in this process. These genes are controlled by transcription enhancer complexes whose assembly requires and is coordinated by the cellular C1 factor (host cell factor). In contrast to other tissues, the C1 factor is not detected in the nuclei of sensory neurons. Experimental conditions that induce the reactivation of herpes simplex virus in mouse model systems result in rapid nuclear localization of the protein, indicating that the C1 factor is sequestered in these cells until reactivation signals induce a redistribution of the protein. The regulated localization suggests that C1 is a critical switch determinant of the viral lytic-latent cycle.

  20. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide.

    PubMed

    Lang, Qiaolin; Han, Lei; Hou, Chuantao; Wang, Fei; Liu, Aihua

    2016-08-15

    A sensitive amperometric acetylcholinesterase (AChE) biosensor, based on gold nanorods (AuNRs), was developed for the detection of organophosphate pesticide. Compared with Au@Ag heterogeneous NRs, AuNRs exhibited excellent electrocatalytic properties, which can electrocatalytically oxidize thiocholine, the hydrolysate of acetylthiocholine chloride (ATCl) by AChE at +0.55V (vs. SCE). The AChE/AuNRs/GCE biosensor was fabricated on basis of the inhibition of AChE activity by organophosphate pesticide. The biosensor could detect paraoxon in the linear range from 1nM to 5μM and dimethoate in the linear range from 5nM to 1μM, respectively. The detection limits of paraoxon and dimethoate were 0.7nM and 3.9nM, which were lower than the reported AChE biosensor. The proposed biosensor could restore to over 95% of its original current, which demonstrated the good reactivation. Moreover, the biosensor can be applicable to real water sample measurement. Thus, the biosensor exhibited low applied potential, high sensitivity and good stability, providing a promising tool for analysis of pesticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nanochannels Photoelectrochemical Biosensor.

    PubMed

    Zhang, Nan; Ruan, Yi-Fan; Zhang, Li-Bin; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-02-06

    Nanochannels have brought new opportunities for biosensor development. Herein, we present the novel concept of a nanochannels photoelectrochemical (PEC) biosensor based on the integration of a unique Cu x O-nanopyramid-islands (NPIs) photocathode, an anodic aluminum oxide (AAO) membrane, and alkaline phosphatase (ALP) catalytic chemistry. The Cu x O-NPIs photocathode possesses good performance, and further assembly with AAO yields a designed architecture composed of vertically aligned, highly ordered nanoarrays on top of the Cu x O-NPIs film. After biocatalytic precipitation (BCP) was stimulated within the channels, the biosensor was used for the successful detection of ALP activity. This study has not only provided a novel paradigm for an unconventional nanochannels PEC biosensor, which can be used for general bioanalytical purposes, but also indicated that the new concept of nanochannel-semiconductor heterostructures is a step toward innovative biomedical applications.

  2. Dendrite regeneration of adult Drosophila sensory neurons diminishes with aging and is inhibited by epidermal-derived matrix metalloproteinase 2.

    PubMed

    DeVault, Laura; Li, Tun; Izabel, Sarah; Thompson-Peer, Katherine L; Jan, Lily Yeh; Jan, Yuh Nung

    2018-03-01

    Dendrites possess distinct structural and functional properties that enable neurons to receive information from the environment as well as other neurons. Despite their key role in neuronal function, current understanding of the ability of neurons to regenerate dendrites is lacking. This study characterizes the structural and functional capacity for dendrite regeneration in vivo in adult animals and examines the effect of neuronal maturation on dendrite regeneration. We focused on the class IV dendritic arborization (c4da) neuron of the Drosophila sensory system, which has a dendritic arbor that undergoes dramatic remodeling during the first 3 d of adult life and then maintains a relatively stable morphology thereafter. Using a laser severing paradigm, we monitored regeneration after acute and spatially restricted injury. We found that the capacity for regeneration was present in adult neurons but diminished as the animal aged. Regenerated dendrites recovered receptive function. Furthermore, we found that the regenerated dendrites show preferential alignment with the extracellular matrix (ECM). Finally, inhibition of ECM degradation by inhibition of matrix metalloproteinase 2 (Mmp2) to preserve the extracellular environment characteristics of young adults led to increased dendrite regeneration. These results demonstrate that dendrites retain regenerative potential throughout adulthood and that regenerative capacity decreases with aging. © 2018 DeVault et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Zebrafish In Situ Spinal Cord Preparation for Electrophysiological Recordings from Spinal Sensory and Motor Neurons

    PubMed Central

    Moreno, Rosa L.; Josey, Megan; Ribera, Angeles B.

    2017-01-01

    Zebrafish, first introduced as a developmental model, have gained popularity in many other fields. The ease of rearing large numbers of rapidly developing organisms, combined with the embryonic optical clarity, served as initial compelling attributes of this model. Over the past two decades, the success of this model has been further propelled by its amenability to large-scale mutagenesis screens and by the ease of transgenesis. More recently, gene-editing approaches have extended the power of the model. For neurodevelopmental studies, the zebrafish embryo and larva provide a model to which multiple methods can be applied. Here, we focus on methods that allow the study of an essential property of neurons, electrical excitability. Our preparation for the electrophysiological study of zebrafish spinal neurons involves the use of veterinarian suture glue to secure the preparation to a recording chamber. Alternative methods for recording from zebrafish embryos and larvae involve the attachment of the preparation to the chamber using a fine tungsten pin12345. A tungsten pin is most often used to mount the preparation in a lateral orientation, although it has been used to mount larvae dorsal-side up4. The suture glue has been used to mount embryos and larvae in both orientations. Using the glue, a minimal dissection can be performed, allowing access to spinal neurons without the use of an enzymatic treatment, thereby avoiding any resultant damage. However, for larvae, it is necessary to apply a brief enzyme treatment to remove the muscle tissue surrounding the spinal cord. The methods described here have been used to study the intrinsic electrical properties of motor neurons, interneurons, and sensory neurons at several developmental stages6789. PMID:28448016

  4. Bi nanowire-based thermal biosensor for the detection of salivary cortisol using the Thomson effect

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Hyun Lee, Jung; Kim, MinGin; Kim, Jeongmin; Song, Min-Jung; Jung, Hyo-Il; Lee, Wooyoung

    2013-09-01

    We present a study of a thermal biosensor based on bismuth nanowire that is fabricated for the detection of the human stress hormone cortisol using the Thomson effect. The Bi nanowire was grown using the On-Film Formation of Nanowires (OFF-ON) method. The thermal device was fabricated using photolithography, and the sensing area was modified with immobilized anti-cortisol antibodies conjugated with protein G for the detection of cortisol. The voltages were measured with two probe tips during surface modification to investigate the biochemical reactions in the fabricated thermal biosensor. The Bi nanowire-based thermal biosensor exhibited low detection limit and good selectivity for the detection of cortisol.

  5. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum.

    PubMed

    Cullen, Kathleen E; Brooks, Jessica X

    2015-02-01

    During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new

  6. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite.

    PubMed

    Zhybak, M; Beni, V; Vagin, M Y; Dempsey, E; Turner, A P F; Korpan, Y

    2016-03-15

    The use of a novel ammonium ion-specific copper-polyaniline nano-composite as transducer for hydrolase-based biosensors is proposed. In this work, a combination of creatinine deaminase and urease has been chosen as a model system to demonstrate the construction of urea and creatinine biosensors to illustrate the principle. Immobilisation of enzymes was shown to be a crucial step in the development of the biosensors; the use of glycerol and lactitol as stabilisers resulted in a significant improvement, especially in the case of the creatinine, of the operational stability of the biosensors (from few hours to at least 3 days). The developed biosensors exhibited high selectivity towards creatinine and urea. The sensitivity was found to be 85 ± 3.4 mAM(-1)cm(-2) for the creatinine biosensor and 112 ± 3.36 mAM(-1)cm(-2) for the urea biosensor, with apparent Michaelis-Menten constants (KM,app), obtained from the creatinine and urea calibration curves, of 0.163 mM for creatinine deaminase and 0.139 mM for urease, respectively. The biosensors responded linearly over the concentration range 1-125 µM, with a limit of detection of 0.5 µM and a response time of 15s. The performance of the biosensors in a real sample matrix, serum, was evaluated and a good correlation with standard spectrophotometric clinical laboratory techniques was found. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Theoretical analysis of microring resonator-based biosensor with high resolution and free of temperature influence

    NASA Astrophysics Data System (ADS)

    Jian, Aoqun; Zou, Lu; Tang, Haiquan; Duan, Qianqian; Ji, Jianlong; Zhang, Qianwu; Zhang, Xuming; Sang, Shengbo

    2017-06-01

    The issue of thermal effects is inevitable for the ultrahigh refractive index (RI) measurement. A biosensor with parallel-coupled dual-microring resonator configuration is proposed to achieve high resolution and free thermal effects measurement. Based on the coupled-resonator-induced transparency effect, the design and principle of the biosensor are introduced in detail, and the performance of the sensor is deduced by simulations. Compared to the biosensor based on a single-ring configuration, the designed biosensor has a 10-fold increased Q value according to the simulation results, thus the sensor is expected to achieve a particularly high resolution. In addition, the output signal of the mathematical model of the proposed sensor can eliminate the thermal influence by adopting an algorithm. This work is expected to have great application potentials in the areas of high-resolution RI measurement, such as biomedical discoveries, virus screening, and drinking water safety.

  8. Application of a Nanostructured Enzymatic Biosensor Based on Fullerene and Gold Nanoparticles to Polyphenol Detection.

    PubMed

    Tortolini, Cristina; Sanzò, Gabriella; Antiochia, Riccarda; Mazzei, Franco; Favero, Gabriele

    2017-01-01

    Electrochemical biosensors provide an attractive means of analyzing the content of a biological sample due to the direct conversion of a biological event to an electronic signal. The signal transduction and the general performance of electrochemical biosensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. We show herein a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features. The use of these nanomaterials improved the electrochemical performance of the proposed biosensor.An application of the nanostructured enzyme-based biosensor has been developed for evaluating the detection of polyphenols either in buffer solution or in real wine samples.

  9. Breadth of tuning in taste afferent neurons varies with stimulus strength

    PubMed Central

    Wu, An; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2015-01-01

    Gustatory stimuli are detected by taste buds and transmitted to the hindbrain via sensory afferent neurons. Whether each taste quality (sweet, bitter and so on) is encoded by separate neurons (‘labelled lines') remains controversial. We used mice expressing GCaMP3 in geniculate ganglion sensory neurons to investigate taste-evoked activity. Using confocal calcium imaging, we recorded responses to oral stimulation with prototypic taste stimuli. Up to 69% of neurons respond to multiple tastants. Moreover, neurons tuned to a single taste quality at low concentration become more broadly tuned when stimuli are presented at higher concentration. Responses to sucrose and monosodium glutamate are most related. Although mice prefer dilute NaCl solutions and avoid concentrated NaCl, we found no evidence for two separate populations of sensory neurons that encode this distinction. Altogether, our data suggest that taste is encoded by activity in patterns of peripheral sensory neurons and challenge the notion of strict labelled line coding. PMID:26373451

  10. Photonic crystal waveguide-based biosensor for detection of diseases

    NASA Astrophysics Data System (ADS)

    Chopra, Harshita; Kaler, Rajinder S.; Painam, Balveer

    2016-07-01

    A biosensor is a device that is used to detect the analytes or molecules of a sample by means of a binding mechanism. A two-dimensional photonic crystal waveguide-based biosensor is designed with a diamond-shaped ring resonator and two waveguides: a bus waveguide and a drop waveguide. The sensing mechanism is based on change in refractive index of the analytes, leading to a shift in the peak resonant wavelength. This mechanism can be used in the field of biomedical treatment where different body fluids such as blood, tears, saliva, or urine can be used as the analyte in which different components of the fluid can be detected. It can also be used to differentiate between the cell lines of a normal and an unhealthy human being. Average value of quality factor for this device comes out to be 1082.2063. For different analytes used, the device exhibits enhanced sensitivity and, hence, it is useful for the detection of diseases.

  11. Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology

    PubMed Central

    Oman, Charles M.; Cullen, Kathleen E.

    2014-01-01

    The origin of the internal “sensory conflict” stimulus causing motion sickness has been debated for more than four decades. Recent studies show a subclass of neurons in the vestibular nuclei and deep cerebellar nuclei that respond preferentially to passive head movements. During active movement, the semicircular canal and otolith input (“reafference”) to these neurons is cancelled by a mechanism comparing the expected consequences of self-generated movement (estimated with an internal model-presumably located in the cerebellum) with the actual sensory feedback. The un-cancelled component (“exafference”) resulting from passive movement normally helps compensate for unexpected postural disturbances. Notably, the existence of such vestibular “sensory conflict” neurons had been postulated as early as 1982, but their existence and putative role in posture control, motion sickness has been long debated. Here we review the development of “sensory conflict” theories in relation to recent evidence for brainstem and cerebellar reafference cancellation, and identify some open research questions. We propose that conditions producing persistent activity of these neurons, or their targets, stimulates nearby brainstem emetic centers – via an as yet unidentified mechanism. We discuss how such a mechanism is consistent with the notable difference in motion sickness susceptibility of drivers as opposed to passengers, human immunity to normal self-generated movement, and why head restraint or lying horizontal confers relative immunity. Finally, we propose that fuller characterization of these mechanisms, and their potential role in motion sickness could lead to more effective, scientifically based prevention and treatment for motion sickness. PMID:24838552

  12. Sensory rehabilitation in the plastic brain.

    PubMed

    Collignon, Olivier; Champoux, François; Voss, Patrice; Lepore, Franco

    2011-01-01

    The purpose of this review is to consider new sensory rehabilitation avenues in the context of the brain's remarkable ability to reorganize itself following sensory deprivation. Here, deafness and blindness are taken as two illustrative models. Mainly, two promising rehabilitative strategies based on opposing theoretical principles will be considered: sensory substitution and neuroprostheses. Sensory substitution makes use of the remaining intact senses to provide blind or deaf individuals with coded information of the lost sensory system. This technique thus benefits from added neural resources in the processing of the remaining senses resulting from crossmodal plasticity, which is thought to be coupled with behavioral enhancements in the intact senses. On the other hand, neuroprostheses represent an invasive approach aimed at stimulating the deprived sensory system directly in order to restore, at least partially, its functioning. This technique therefore relies on the neuronal integrity of the brain areas normally dedicated to the deprived sense and is rather hindered by the compensatory reorganization observed in the deprived cortex. Here, we stress that our understanding of the neuroplastic changes that occur in sensory-deprived individuals may help guide the design and the implementation of such rehabilitative methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula.

    PubMed

    Izadi, Zahra; Sheikh-Zeinoddin, Mahmoud; Ensafi, Ali A; Soleimanian-Zad, Sabihe

    2016-06-15

    This paper describes fabrication of a DNA-based Au-nanoparticle modified pencil graphite electrode (PGE) biosensor for detection of Bacillus cereus, causative agent of two types of food-borne disease, i.e., emetic and diarrheal syndrome. The sensing element of the biosensor was comprised of gold nanoparticles (GNPs) self-assembled with single-stranded DNA (ssDNA) of nheA gene immobilized with thiol linker on the GNPs modified PGE. The size, shape and dispersion of the GNPs were characterized by field emission scanning electron microscope (FESEM). Detection of B. cereus was carried out based on an increase in the charge transfer resistance (Rct) of the biosensor due to hybridization of the ss-DNA with target DNA. An Atomic force microscope (AFM) was used to confirm the hybridization. The biosensor sensitivity in pure cultures of B. cereus was found to be 10(0) colony forming units per milliliter (CFU/mL) with a detection limit of 9.4 × 10(-12) mol L(-1). The biosensor could distinguish complementary from mismatch DNA sequence. The proposed biosensor exhibited a rapid detection, low cost, high sensitivity to bacterial contamination and could exclusively and specifically detect the target DNA sequence of B. cereus from other bacteria that can be found in dairy products. Moreover, the DNA biosensor exhibited high reproducibility and stability, thus it may be used as a suitable biosensor to detect B. cereus and to become a portable system for food quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  15. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  16. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  17. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures.

    PubMed

    Xiu, Yu; Jang, Sungho; Jones, J Andrew; Zill, Nicholas A; Linhardt, Robert J; Yuan, Qipeng; Jung, Gyoo Yeol; Koffas, Mattheos A G

    2017-10-01

    The ability to design and construct combinatorial synthetic metabolic pathways has far exceeded our capacity for efficient screening and selection of the resulting microbial strains. The need for high-throughput rapid screening techniques is of upmost importance for the future of synthetic biology and metabolic engineering. Here we describe the development of an RNA riboswitch-based biosensor module with dual fluorescent reporters, and demonstrate a high-throughput flow cytometry-based screening method for identification of naringenin over producing Escherichia coli strains in co-culture. Our efforts helped identify a number of key operating parameters that affect biosensor performance, including the selection of promoter and linker elements within the sensor-actuator domain, and the effect of host strain, fermentation time, and growth medium on sensor dynamic range. The resulting biosensor demonstrates a high correlation between specific fluorescence of the biosensor strain and naringenin titer produced by the second member of the synthetic co-culture system. This technique represents a novel application for synthetic microbial co-cultures and can be expanded from naringenin to any metabolite if a suitable riboswitch is identified. The co-culture technique presented here can be applied to a variety of target metabolites in combination with the SELEX approach for aptamer design. Due to the compartmentalization of the two genetic constructs responsible for production and detection into separate cells and application as independent modules of a synthetic microbial co-culture we have subsequently reduced the need for re-optimization of the producer module when the biosensor is replaced or removed. Biotechnol. Bioeng. 2017;114: 2235-2244. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Biosensor commercialization strategy - a theoretical approach.

    PubMed

    Lin, Chin-Tsai; Wang, Su-Man

    2005-01-01

    Biosensors are analytical devices, which use biological interactions to provide either qualitative or quantitative results. They are extensively employed in many fields such as clinical diagnosis and biomedicine, military applications, anti-terrorism, farm, garden and veterinary analysis, process control, fermentation control and analysis, pharmaceutical and drug analysis, food and drink production and analysis, pollution control and monitoring, microbiology, bacterial and viral analysis, mining, and industrial and toxic gases. The biosensor market has significantly increased and will be mushrooming in the next decade. The total biosensor market is estimated to be 10.8 billion dollars by 2007. The emerging biosensor market presents both opportunities and obstacles to start-up biosensor entrepreneurs. The major challenge and threat for these entrepreneurs is how to predict the biosensor market and how to convert promising biosensor technology into commercialized biosensors. By adopting a simple commercialization strategy framework, we identify two key elements of biosensor commercialization strategy: excludability and complementary asset. We further divide biosensor commercialization environments into four distinct sub-environments: the Attacker's Advantage, Reputation-Based Idea Trading, Greenfield Competition and Ideas Factories. This paper explains how the interaction between these two key elements shapes biosensor commercialization strategy and biosensor industry dynamics. This paper also discusses alternative commercialization strategies for each specific commercialization environment and how to choose from these alternatives. The analysis of this study further provides a good reference for start-up biosensor entrepreneurs to formulate effective biosensor commercialization strategy.

  19. A tweaking principle for executive control: neuronal circuit mechanism for rule-based task switching and conflict resolution.

    PubMed

    Ardid, Salva; Wang, Xiao-Jing

    2013-12-11

    A hallmark of executive control is the brain's agility to shift between different tasks depending on the behavioral rule currently in play. In this work, we propose a "tweaking hypothesis" for task switching: a weak rule signal provides a small bias that is dramatically amplified by reverberating attractor dynamics in neural circuits for stimulus categorization and action selection, leading to an all-or-none reconfiguration of sensory-motor mapping. Based on this principle, we developed a biologically realistic model with multiple modules for task switching. We found that the model quantitatively accounts for complex task switching behavior: switch cost, congruency effect, and task-response interaction; as well as monkey's single-neuron activity associated with task switching. The model yields several testable predictions, in particular, that category-selective neurons play a key role in resolving sensory-motor conflict. This work represents a neural circuit model for task switching and sheds insights in the brain mechanism of a fundamental cognitive capability.

  20. Fast Synaptic Inhibition in Spinal Sensory Processing and Pain Control

    PubMed Central

    Zeilhofer, Hanns Ulrich; Wildner, Hendrik; Yevenes, Gonzalo E.

    2013-01-01

    The two amino acids γ-amino butyric acid (GABA) and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes. PMID:22298656

  1. TRPA1 Is Functionally Expressed Primarily by IB4-Binding, Non-Peptidergic Mouse and Rat Sensory Neurons

    PubMed Central

    Stucky, Cheryl L.

    2012-01-01

    Subpopulations of somatosensory neurons are characterized by functional properties and expression of receptor proteins and surface markers. CGRP expression and IB4-binding are commonly used to define peptidergic and non-peptidergic subpopulations. TRPA1 is a polymodal, plasma membrane ion channel that contributes to mechanical and cold hypersensitivity during tissue injury, making it a key target for pain therapeutics. Some studies have shown that TRPA1 is predominantly expressed by peptidergic sensory neurons, but others indicate that TRPA1 is expressed extensively within non-peptidergic, IB4-binding neurons. We used FURA-2 calcium imaging to define the functional distribution of TRPA1 among peptidergic and non-peptidergic adult mouse (C57BL/6J) DRG neurons. Approximately 80% of all small-diameter (<27 µm) neurons from lumbar 1–6 DRGs that responded to TRPA1 agonists allyl isothiocyanate (AITC; 79%) or cinnamaldehyde (84%) were IB4-positive. Retrograde labeling via plantar hind paw injection of WGA-Alexafluor594 showed similarly that most (81%) cutaneous neurons responding to TRPA1 agonists were IB4-positive. Additionally, we cultured DRG neurons from a novel CGRP-GFP mouse where GFP expression is driven by the CGRPα promoter, enabling identification of CGRP-expressing live neurons. Interestingly, 78% of TRPA1-responsive neurons were CGRP-negative. Co-labeling with IB4 revealed that the majority (66%) of TRPA1 agonist responders were IB4-positive but CGRP-negative. Among TRPA1-null DRGs, few small neurons (2–4%) responded to either TRPA1 agonist, indicating that both cinnamaldehyde and AITC specifically target TRPA1. Additionally, few large neurons (≥27 µm diameter) responded to AITC (6%) or cinnamaldehyde (4%), confirming that most large-diameter somata lack functional TRPA1. Comparison of mouse and rat DRGs showed that the majority of TRPA1-responsive neurons in both species were IB4-positive. Together, these data demonstrate that TRPA1 is functionally

  2. Contribution of amygdalar and lateral hypothalamic neurons to visual information processing of food and nonfood in monkey.

    PubMed

    Ono, T; Tamura, R; Nishijo, H; Nakamura, K; Tabuchi, E

    1989-02-01

    Visual information processing was investigated in the inferotemporal cortical (ITCx)-amygdalar (AM)-lateral hypothalamic (LHA) axis which contributes to food-nonfood discrimination. Neuronal activity was recorded from monkey AM and LHA during discrimination of sensory stimuli including sight of food or nonfood. The task had four phases: control, visual, bar press, and ingestion. Of 710 AM neurons tested, 220 (31.0%) responded during visual phase: 48 to only visual stimulation, 13 (1.9%) to visual plus oral sensory stimulation, 142 (20.0%) to multimodal stimulation and 17 (2.4%) to one affectively significant item. Of 669 LHA neurons tested, 106 (15.8%) responded in the visual phase. Of 80 visual-related neurons tested systematically, 33 (41.2%) responded selectively to the sight of any object predicting the availability of reward, and 47 (58.8%) responded nondifferentially to both food and nonfood. Many of AM neuron responses were graded according to the degree of affective significance of sensory stimuli (sensory-affective association), but responses of LHA food responsive neurons did not depend on the kind of reward indicated by the sensory stimuli (stimulus-reinforcement association). Some AM and LHA food responses were modulated by extinction or reversal. Dynamic information processing in ITCx-AM-LHA axis was investigated by reversible deficits of bilateral ITCx or AM by cooling. ITCx cooling suppressed discrimination by vision responding AM neurons (8/17). AM cooling suppressed LHA responses to food (9/22). We suggest deep AM-LHA involvement in food-nonfood discrimination based on AM sensory-affective association and LHA stimulus-reinforcement association.

  3. The dorsal raphe modulates sensory responsiveness during arousal in zebrafish

    PubMed Central

    Yokogawa, Tohei; Hannan, Markus C.; Burgess, Harold A.

    2012-01-01

    During waking behavior animals adapt their state of arousal in response to environmental pressures. Sensory processing is regulated in aroused states and several lines of evidence imply that this is mediated at least partly by the serotonergic system. However there is little information directly showing that serotonergic function is required for state-dependent modulation of sensory processing. Here we find that zebrafish larvae can maintain a short-term state of arousal during which neurons in the dorsal raphe modulate sensory responsiveness to behaviorally relevant visual cues. Following a brief exposure to water flow, larvae show elevated activity and heightened sensitivity to perceived motion. Calcium imaging of neuronal activity after flow revealed increased activity in serotonergic neurons of the dorsal raphe. Genetic ablation of these neurons abolished the increase in visual sensitivity during arousal without affecting baseline visual function or locomotor activity. We traced projections from the dorsal raphe to a major visual area, the optic tectum. Laser ablation of the tectum demonstrated that this structure, like the dorsal raphe, is required for improved visual sensitivity during arousal. These findings reveal that serotonergic neurons of the dorsal raphe have a state-dependent role in matching sensory responsiveness to behavioral context. PMID:23100441

  4. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma.

    PubMed

    Devillers, Marion; Ahmad, Lama; Korri-Youssoufi, Hafsa; Salmon, Laurent

    2017-10-15

    Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe 2+ /Fe 3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Biosensors for hepatitis B virus detection.

    PubMed

    Yao, Chun-Yan; Fu, Wei-Ling

    2014-09-21

    A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed.

  6. Transformation of Context-dependent Sensory Dynamics into Motor Behavior

    PubMed Central

    Latorre, Roberto; Levi, Rafael; Varona, Pablo

    2013-01-01

    The intrinsic dynamics of sensory networks play an important role in the sensory-motor transformation. In this paper we use conductance based models and electrophysiological recordings to address the study of the dual role of a sensory network to organize two behavioral context-dependent motor programs in the mollusk Clione limacina. We show that: (i) a winner take-all dynamics in the gravimetric sensory network model drives the typical repetitive rhythm in the wing central pattern generator (CPG) during routine swimming; (ii) the winnerless competition dynamics of the same sensory network organizes the irregular pattern observed in the wing CPG during hunting behavior. Our model also shows that although the timing of the activity is irregular, the sequence of the switching among the sensory cells is preserved whenever the same set of neurons are activated in a given time window. These activation phase locks in the sensory signals are transformed into specific events in the motor activity. The activation phase locks can play an important role in motor coordination driven by the intrinsic dynamics of a multifunctional sensory organ. PMID:23459114

  7. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study

    PubMed Central

    Sundt, Danielle; Gamper, Nikita

    2015-01-01

    Unmyelinated C-fibers are a major type of sensory neurons conveying pain information. Action potential conduction is regulated by the bifurcation (T-junction) of sensory neuron axons within the dorsal root ganglia (DRG). Understanding how C-fiber signaling is influenced by the morphology of the T-junction and the local expression of ion channels is important for understanding pain signaling. In this study we used biophysical computer modeling to investigate the influence of axon morphology within the DRG and various membrane conductances on the reliability of spike propagation. As expected, calculated input impedance and the amplitude of propagating action potentials were both lowest at the T-junction. Propagation reliability for single spikes was highly sensitive to the diameter of the stem axon and the density of voltage-gated Na+ channels. A model containing only fast voltage-gated Na+ and delayed-rectifier K+ channels conducted trains of spikes up to frequencies of 110 Hz. The addition of slowly activating KCNQ channels (i.e., KV7 or M-channels) to the model reduced the following frequency to 30 Hz. Hyperpolarization produced by addition of a much slower conductance, such as a Ca2+-dependent K+ current, was needed to reduce the following frequency to 6 Hz. Attenuation of driving force due to ion accumulation or hyperpolarization produced by a Na+-K+ pump had no effect on following frequency but could influence the reliability of spike propagation mutually with the voltage shift generated by a Ca2+-dependent K+ current. These simulations suggest how specific ion channels within the DRG may contribute toward therapeutic treatments for chronic pain. PMID:26334005

  8. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  9. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides

    PubMed Central

    Rahman, Md. Mahbubur; Saleh Ahammad, A. J.; Jin, Joon-Hyung; Ahn, Sang Jung; Lee, Jae-Joon

    2010-01-01

    Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I)/(II) oxides, MnO2, TiO2, CeO2, SiO2, ZrO2, and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric) of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors. PMID:22399911

  10. An immuno-biosensor system based on quartz crystal microbalance for avian influenza virus detection

    NASA Astrophysics Data System (ADS)

    Liu, Shengping; Chen, Guoming; Zhou, Qi; Wei, Yunlong

    2007-12-01

    For the quick detection of Avian Influenza Virus (AIV), a biosensor based on Quartz Crystal Microbalance (QCM) was fabricated according to the specific bonding principle between antibody and antigen. Staphylococcal Protein A (SPA) was extracted from Staphylococcus and purified. Then SPA was coated on the surface of QCM for immobilizing AIV monoclonal antibodies. The use of AIV monoclonal antibody could enhance the specificity of the immuno-biosensor. A multi-channel piezoelectricity detection system for the immuno-biosensor was developed. The system can work for the quick detection of AIV antigen in the case of the entirely aqueous status owe to one special oscillating circuit designed in this work. The optimum conditions of SPA coating and AIV monoclonal antibody immobilization were investigated utilizing the multi-channel detection system. The preliminary application of the immuno-biosensor system for detection of AIV was evaluated. Results indicate that the immuno-biosensor system can detect the AIV antigens with a linear range of 3-200ng/ml. The system can accomplish the detection of AIV antigens around 40 minutes.

  11. Herpes Simplex Virus 1 Tropism for Human Sensory Ganglion Neurons in the Severe Combined Immunodeficiency Mouse Model of Neuropathogenesis

    PubMed Central

    Che, Xibing; Reichelt, Mike; Qiao, Yanli; Gu, Haidong; Arvin, Ann

    2013-01-01

    The tropism of herpes simplex virus (HSV-1) for human sensory neurons infected in vivo was examined using dorsal root ganglion (DRG) xenografts maintained in mice with severe combined immunodeficiency (SCID). In contrast to the HSV-1 lytic infectious cycle in vitro, replication of the HSV-1 F strain was restricted in human DRG neurons despite the absence of adaptive immune responses in SCID mice, allowing the establishment of neuronal latency. At 12 days after DRG inoculation, 26.2% of human neurons expressed HSV-1 protein and 13.1% expressed latency-associated transcripts (LAT). Some infected neurons showed cytopathic changes, but HSV-1, unlike varicella-zoster virus (VZV), only rarely infected satellite cells and did not induce fusion of neuronal and satellite cell plasma membranes. Cell-free enveloped HSV-1 virions were observed, indicating productive infection. A recombinant HSV-1-expressing luciferase exhibited less virulence than HSV-1 F in the SCID mouse host, enabling analysis of infection in human DRG xenografts for a 61-day interval. At 12 days after inoculation, 4.2% of neurons expressed HSV-1 proteins; frequencies increased to 32.1% at 33 days but declined to 20.8% by 61 days. Frequencies of LAT-positive neurons were 1.2% at 12 days and increased to 40.2% at 33 days. LAT expression remained at 37% at 61 days, in contrast to the decline in neurons expressing viral proteins. These observations show that the progression of HSV-1 infection is highly restricted in human DRG, and HSV-1 genome silencing occurs in human neurons infected in vivo as a consequence of virus-host cell interactions and does not require adaptive immune control. PMID:23269807

  12. Extensive excitatory network interactions shape temporal processing of communication signals in a model sensory system.

    PubMed

    Ma, Xiaofeng; Kohashi, Tsunehiko; Carlson, Bruce A

    2013-07-01

    Many sensory brain regions are characterized by extensive local network interactions. However, we know relatively little about the contribution of this microcircuitry to sensory coding. Detailed analyses of neuronal microcircuitry are usually performed in vitro, whereas sensory processing is typically studied by recording from individual neurons in vivo. The electrosensory pathway of mormyrid fish provides a unique opportunity to link in vitro studies of synaptic physiology with in vivo studies of sensory processing. These fish communicate by actively varying the intervals between pulses of electricity. Within the midbrain posterior exterolateral nucleus (ELp), the temporal filtering of afferent spike trains establishes interval tuning by single neurons. We characterized pairwise neuronal connectivity among ELp neurons with dual whole cell recording in an in vitro whole brain preparation. We found a densely connected network in which single neurons influenced the responses of other neurons throughout the network. Similarly tuned neurons were more likely to share an excitatory synaptic connection than differently tuned neurons, and synaptic connections between similarly tuned neurons were stronger than connections between differently tuned neurons. We propose a general model for excitatory network interactions in which strong excitatory connections both reinforce and adjust tuning and weak excitatory connections make smaller modifications to tuning. The diversity of interval tuning observed among this population of neurons can be explained, in part, by each individual neuron receiving a different complement of local excitatory inputs.

  13. Small Microbial Three-Electrode Cell Based Biosensor for Online Detection of Acute Water Toxicity.

    PubMed

    Yu, Dengbin; Zhai, Junfeng; Liu, Changyu; Zhang, Xueping; Bai, Lu; Wang, Yizhe; Dong, Shaojun

    2017-11-22

    The monitoring of toxicity of water is very important to estimate the safety of drinking water and the level of water pollution. Herein, a small microbial three-electrode cell (M3C) biosensor filled with polystyrene particles was proposed for online monitoring of the acute water toxicity. The peak current of the biosensor related with the performance of the bioanode was regarded as the toxicity indicator, and thus the acute water toxicity could be determined in terms of inhibition ratio by comparing the peak current obtained with water sample to that obtained with nontoxic standard water. The incorporation of polystyrene particles in the electrochemical cell not only reduced the volume of the samples used, but also improved the sensitivity of the biosensor. Experimental conditions including washing time with PBS and the concentration of sodium acetate solution were optimized. The stability of the M3C biosensor under optimal conditions was also investigated. The M3C biosensor was further examined by formaldehyde at the concentration of 0.01%, 0.03%, and 0.05% (v/v), and the corresponding inhibition ratios were 14.6%, 21.6%, and 36.4%, respectively. This work provides a new insight into the development of an online toxicity detector based on M3C biosensor.

  14. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi Jun; Mandelis, Andreas, E-mail: mandelis@mie.utoronto.ca; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that couldmore » be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.« less

  15. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications.

    PubMed

    Lanzellotto, C; Favero, G; Antonelli, M L; Tortolini, C; Cannistraro, S; Coppari, E; Mazzei, F

    2014-05-15

    In this work a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features, has been developed and characterized. Gold nanoparticles (AuNPs) exhibit attractive electrocatalytic behavior stimulating in the last years, several sensing applications; on the other hand, fullerene and its derivatives are a very promising family of electroactive compounds although they have not yet been fully employed in biosensing. The methodology proposed in this work was finalized to the setup of a laccase biosensor based on a multilayer material consisting in AuNPs, fullerenols and Trametes versicolor Laccase (TvL) assembled layer by layer onto a gold (Au) electrode surface. The influence of different modification step procedures on the electroanalytical performance of biosensors has been evaluated. Cyclic voltammetry, chronoamperometry, surface plasmon resonance (SPR) and scanning tunneling microscopy (STM) were used to characterize the modification of surface and to investigate the bioelectrocatalytic biosensor response. This biosensor showed fast amperometric response to gallic acid, which is usually considered a standard for polyphenols analysis of wines, with a linear range 0.03-0.30 mmol L(-1) (r(2)=0.9998), with a LOD of 0.006 mmol L(-1) or expressed as polyphenol index 5.0-50 mg L(-1) and LOD 1.1 mg L(-1). A tentative application of the developed nanostructured enzyme-based biosensor was performed evaluating the detection of polyphenols either in buffer solution or in real wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. M2 receptors exert analgesic action on DRG sensory neurons by negatively modulating VR1 activity.

    PubMed

    De Angelis, Federica; Marinelli, Sara; Fioretti, Bernard; Catacuzzeno, Luigi; Franciolini, Fabio; Pavone, Flaminia; Tata, Ada Maria

    2014-06-01

    The peripheral application of the M2 cholinergic agonist arecaidine on sensory nerve endings shows anti-nociceptive properties. In this work, we analyze in vitro, the mechanisms downstream M2 receptor activation causing the analgesic effects, and in vivo the effects produced by M2 agonist arecaidine administration on nociceptive responses in a murine model of nerve growth factor (NGF)-induced pain. Cultured DRG neurons treated with arecaidine showed a decreased level of VR1 and SP transcripts. Conversely, we found an increased expression of VR1 and SP transcripts in DRG from M2/M4(-/-) mice compared to WT and M1(-/-) mice, confirming the inhibitory effect in particular of M2 receptors on SP and VR1 expression. Patch-clamp experiments in the whole-cell configuration showed that arecaidine treatment caused a reduction of the fraction of capsaicin-responsive cells, without altering the mean capsaicin-activated current in responsive cells. We also demonstrated that arecaidine prevents PKCϵ translocation to the plasma membrane after inflammatory agent stimulation, mainly in medium-small sensory neurons. Finally, in mice, we have observed that intraperitoneal injection of arecaidine reduces VR1 expression blocking hyperalgesia and allodynia caused by NGF intraplantar administration. In conclusion, our data demonstrate that in vivo M2 receptor activation induces desensitization to mechanical and heat stimuli by a down-regulation of VR1 expression and by the inhibition of PKCϵ activity hindering its translocation to the plasma membrane, as suggested by in vitro experiments. © 2013 Wiley Periodicals, Inc.

  17. ß-catenin, a transcription factor activated by canonical Wnt signaling, is expressed in sensory neurons of calves latently infected with bovine herpesvirus 1

    USDA-ARS?s Scientific Manuscript database

    Like many a-herpesvirinae subfamily members, bovine herpes virus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons: the latency-related (LR) RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch mediate...

  18. Angiotensin II type 2 receptor (AT2R) localization and antagonist-mediated inhibition of capsaicin responses and neurite outgrowth in human and rat sensory neurons

    PubMed Central

    Anand, U; Facer, P; Yiangou, Y; Sinisi, M; Fox, M; McCarthy, T; Bountra, C; Korchev, YE; Anand, P

    2013-01-01

    Background The angiotensin II (AngII) receptor subtype 2 (AT2R) is expressed in sensory neurons and may play a role in nociception and neuronal regeneration. Methods We used immunostaining with characterized antibodies to study the localization of AT2R in cultured human and rat dorsal root ganglion (DRG) neurons and a range of human tissues. The effects of AngII and AT2R antagonist EMA401 on capsaicin responses in cultured human and rat (DRG) neurons were measured with calcium imaging, on neurite length and density with Gap43 immunostaining, and on cyclic adenosine monophosphate (cAMP) expression using immunofluorescence. Results AT2R expression was localized in small-/medium-sized cultured neurons of human and rat DRG. Treatment with the AT2R antagonist EMA401 resulted in dose-related functional inhibition of capsaicin responses (IC50 = 10 nmol/L), which was reversed by 8-bromo-cAMP, and reduced neurite length and density; AngII treatment significantly enhanced capsaicin responses, cAMP levels and neurite outgrowth. The AT1R antagonist losartan had no effect on capsaicin responses. AT2R was localized in sensory neurons of human DRG, and nerve fibres in peripheral nerves, skin, urinary bladder and bowel. A majority sub-population (60%) of small-/medium-diameter neuronal cells were immunopositive in both control post-mortem and avulsion-injured human DRG; some very small neurons appeared to be intensely immunoreactive, with TRPV1 co-localization. While AT2R levels were reduced in human limb peripheral nerve segments proximal to injury, they were preserved in painful neuromas. Conclusions AT2R antagonists could be particularly useful in the treatment of chronic pain and hypersensitivity associated with abnormal nerve sprouting. PMID:23255326

  19. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates

    PubMed Central

    Kaneko, Takuya; Ye, Bing

    2015-01-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and post-synaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography. PMID:26091779

  20. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    PubMed

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.

  1. Assessing activity of Hepatitis A virus 3C protease using a cyclized luciferase-based biosensor.

    PubMed

    Zhou, Junwei; Wang, Dang; Xi, Yongqiang; Zhu, Xinyu; Yang, Yuting; Lv, Mengting; Luo, Chuanzhen; Chen, Jiyao; Ye, Xu; Fang, Liurong; Xiao, Shaobo

    2017-07-08

    Hepatitis A is an acute infection caused by Hepatitis A virus (HAV), which is widely distributed throughout the world. The HAV 3C cysteine protease (3C pro ), an important nonstructural protein, is responsible for most cleavage within the viral polyprotein and is critical for the processes of viral replication. Our group has previously demonstrated that HAV 3C pro cleaves human NF-κB essential modulator (NEMO), a kinase required in interferon signaling. Based on this finding, we generated four luciferase-based biosensors containing the NEMO sequence (PVLKAQ↓ADIYKA) that is cleaved by HAV 3C pro and/or the Nostoc punctiforme DnaE intein, to monitor the activity of HAV 3C pro in human embryonic kidney cells (HEK-293T). Western blotting showed that HAV 3C pro recognized and cleaved the NEMO cleavage sequence incorporated in the four biosensors, whereas only one cyclized luciferase-based biosensor (233-DnaE-HAV, 233DH) showed a measurable and reliable increase in firefly luciferase activity, with very low background, in the presence of HAV 3C pro . With this biosensor (233DH), we monitored HAV 3C pro activity in HEK-293T cells, and tested it against a catalytically deficient mutant HAV 3C pro and other virus-encoded proteases. The results showed that the activity of this luciferase biosensor is specifically dependent on HAV 3C pro . Collectively, our data demonstrate that the luciferase biosensor developed here might provide a rapid, sensitive, and efficient evaluation of HAV 3C pro activity, and should extend our better understanding of the biological relevance of HAV 3C pro . Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes.

    PubMed

    Jung, Il Young; Kim, Ji Su; Choi, Bo Ram; Lee, Kyuri; Lee, Hyukjin

    2017-06-01

    Hydrogel-based biosensors have drawn considerable attention due to their various advantages over conventional detection systems. Recent studies have shown that hydrogel biosensors can be excellent alternative systems to detect a wide range of biomolecules, including small biochemicals, pathogenic proteins, and disease specific genes. Due to the excellent physical properties of hydrogels such as the high water content and stimuli-responsive behavior of cross-linked network structures, this system can offer substantial improvement for the design of novel detection systems for various diagnostic applications. The other main advantage of hydrogels is the role of biomimetic three-dimensional (3D) matrix immobilizing enzymes and aptamers within the detection systems, which enhances their stability. This provides ideal reaction conditions for enzymes and aptamers to interact with substrates within the aqueous environment of the hydrogel. In this review, we have highlighted various novel detection approaches utilizing the outstanding properties of the hydrogel. This review summarizes the recent progress of hydrogel-based biosensors and discusses their future perspectives and clinical limitations to overcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Zebrafish In Situ Spinal Cord Preparation for Electrophysiological Recordings from Spinal Sensory and Motor Neurons.

    PubMed

    Moreno, Rosa L; Josey, Megan; Ribera, Angeles B

    2017-04-18

    Zebrafish, first introduced as a developmental model, have gained popularity in many other fields. The ease of rearing large numbers of rapidly developing organisms, combined with the embryonic optical clarity, served as initial compelling attributes of this model. Over the past two decades, the success of this model has been further propelled by its amenability to large-scale mutagenesis screens and by the ease of transgenesis. More recently, gene-editing approaches have extended the power of the model. For neurodevelopmental studies, the zebrafish embryo and larva provide a model to which multiple methods can be applied. Here, we focus on methods that allow the study of an essential property of neurons, electrical excitability. Our preparation for the electrophysiological study of zebrafish spinal neurons involves the use of veterinarian suture glue to secure the preparation to a recording chamber. Alternative methods for recording from zebrafish embryos and larvae involve the attachment of the preparation to the chamber using a fine tungsten pin 1 , 2 , 3 , 4 , 5 . A tungsten pin is most often used to mount the preparation in a lateral orientation, although it has been used to mount larvae dorsal-side up 4 . The suture glue has been used to mount embryos and larvae in both orientations. Using the glue, a minimal dissection can be performed, allowing access to spinal neurons without the use of an enzymatic treatment, thereby avoiding any resultant damage. However, for larvae, it is necessary to apply a brief enzyme treatment to remove the muscle tissue surrounding the spinal cord. The methods described here have been used to study the intrinsic electrical properties of motor neurons, interneurons, and sensory neurons at several developmental stages 6 , 7 , 8 , 9 .

  4. G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons

    PubMed Central

    Connelly, Timothy; Yu, Yiqun; Grosmaitre, Xavier; Wang, Jue; Santarelli, Lindsey C.; Savigner, Agnes; Qiao, Xin; Wang, Zhenshan; Storm, Daniel R.; Ma, Minghong

    2015-01-01

    Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR–G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical responses of OSNs. Furthermore, ectopic expression of an OR restores mechanosensitivity in loss-of-function OSNs. Lastly, heterologous expression of an OR confers mechanosensitivity to its host cells. These results indicate that certain ORs are both necessary and sufficient to cause mechanical responses, revealing a previously unidentified mechanism for mechanotransduction. PMID:25550517

  5. Feeding-dependent activation of enteric cells and sensory neurons by lymphatic fluid: evidence for a neurolymphocrine system

    PubMed Central

    Poole, Daniel P.; Lee, Mike; Tso, Patrick; Bunnett, Nigel W.; Yo, Sek Jin; Lieu, TinaMarie; Shiu, Amy; Wang, Jen-Chywan; Nomura, Daniel K.

    2014-01-01

    Lymphatic fluid is a plasma filtrate that can be viewed as having biological activity through the passive accumulation of molecules from the interstitial fluid. The possibility that lymphatic fluid is part of an active self-contained signaling process that parallels the endocrine system, through the activation of G-protein coupled receptors (GPCR), has remained unexplored. We show that the GPCR lysophosphatidic acid 5 (LPA5) is found in sensory nerve fibers expressing calcitonin gene-related peptide (CGRP) that innervate the lumen of lymphatic lacteals and enteric nerves. Using LPA5 as a model for nutrient-responsive GPCRs present on sensory nerves, we demonstrate that dietary protein hydrolysate (peptone) can induce c-Fos expression in enterocytes and nerves that express LPA5. Mesenteric lymphatic fluid (MLF) mobilizes intracellular calcium in cell models expressing LPA5 upon feeding in a time- and dose-dependent manner. Primary cultured neurons of the dorsal root ganglia expressing CGRP are activated by MLF, which is enhanced upon LPA5 overexpression. Activation is independent of the known LPA5 agonists, lysophosphatidic acid and farnesyl pyrophosphate. These data bring forth a pathway for the direct stimulation of sensory nerves by luminal contents and interstitial fluid. Thus, by activating LPA5 on sensory nerves, MLF provides a means for known and yet to be identified constituents of the interstitial fluid to act as signals to comprise a “neurolymphocrine” system. PMID:24578341

  6. Botulinum toxin type A induces changes in the chemical coding of substance P-immunoreactive dorsal root ganglia sensory neurons supplying the porcine urinary bladder.

    PubMed

    Bossowska, Agnieszka; Lepiarczyk, Ewa; Mazur, Urszula; Janikiewicz, Paweł; Markiewicz, Włodzimierz

    2015-11-16

    Botulinum toxin (BTX) is a potent neurotoxin which blocks acetylcholine release from nerve terminals, and therefore leads to cessation of somatic motor and/or parasympathetic transmission. Recently it has been found that BTX also interferes with sensory transmission, thus, the present study was aimed at investigating the neurochemical characterization of substance P-immunoreactive (SP-IR) bladder-projecting sensory neurons (BPSN) after the toxin treatment. Investigated neurons were visualized with retrograde tracing method and their chemical profile was disclosed with double-labelling immunohistochemistry using antibodies against SP, calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP), neuronal nitric oxide synthase (nNOS), galanin (GAL), calbindin (CB), and somatostatin (SOM). In the control group (n = 6), 45% of the total population of BPSN were SP-IR. Nearly half of these neurons co-expressed PACAP or CGRP (45% and 35%, respectively), while co-localization of SP with GAL, nNOS, SOM or CB was found less frequently (3.7%, 1.8%, 1.2%, and 0.7%, respectively). In BTX-treated pigs (n = 6), toxin-injections caused a decrease in the number of SP-IR cells containing CGRP, SOM or CB (16.2%, 0.5%, and 0%, respectively) and a distinct increase in these nerve cells immunopositive to GAL (27.2%). The present study demonstrates that BTX significantly modifies the chemical phenotypes of SP-IR BPSN.

  7. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor.

    PubMed

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-09-10

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors.

  8. A review on ZnO-based electrical biosensors for cardiac biomarker detection

    PubMed Central

    Shanmugam, Nandhinee R; Muthukumar, Sriram; Prasad, Shalini

    2017-01-01

    Over the past few decades zinc oxide (ZnO)-based thin films and nanostructures have shown unprecedented performance in a wide range of applications. In particular, owing to high isoelectric point, biocompatibility and other multifunctional characteristics, ZnO has extensively been studied as a transduction material for biosensor development. The fascinating properties of ZnO help retain biological activity of the immobilized biomolecule and help in achieving enhanced sensing performance. As a consequence of recent advancements in this multidisciplinary field, diagnostic biosensors are expanding beyond traditional clinical labs to point-of-care and home settings. Label-free electrical detection of biomarkers has been demonstrated using ZnO-sensing platforms. In this review we highlight the characteristics of ZnO that enable realization of its use in development of point-of-care biosensors toward disease diagnosis, in particular cardiovascular diseases. PMID:29134112

  9. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study

    PubMed Central

    Brownstone, Robert M.

    2015-01-01

    Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740

  10. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was oftenmore » reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal

  11. Amperometric Glucose Biosensor Based on Effective Self-Assembly Technology for Preparation of Poly(allylamine hydrochloride)/Au Nanoparticles Multilayers.

    PubMed

    Ye, Yuhang; Xie, Hangqing; Shao, Xiaobao; Wei, Yuan; Liu, Yuhong; Zhao, Wenbo; Xia, Xinyi

    2016-03-01

    Novel nanomaterials and nanotechnology for use in bioassay applications represent a rapidly advancing field. This study developed a novel method to fabricate the glucose biosensor with good gold nanoparticles (AuNPs) fixed efficiency based on effective self-assembly technology for preparation of multilayers composed of poly(allylamine hydrochloride) (PAH) and AuNPs. The electrochemical properties of the biosensor based on (AuNPs/PAH)n/AuNPs/glucose oxide (GOD) with different multilayers were systematically investigated. Among the resulting glucose biosensors, electrochemical properties of the biosensor with three times self-assembly processes ((AuNPs/PAH)3/AuNPs/GOD) is best. The GOD biosensor exhibited a fast amperometric response (5 s) to glucose, a good linear current-time relation over a wide range of glucose concentrations from 0.05 to 162 mM, and a low detection limit of 0.029 mM. The GOD biosensor modified with (AuNPs/PAH)n layers will have essential significance and practical application in future owing to the simple method of fabrication and good performance.

  12. A role for the anandamide membrane transporter in TRPV1-mediated neurosecretion from trigeminal sensory neurons

    PubMed Central

    Price, Theodore J.; Patwardhan, Amol M.; Flores, Christopher M.; Hargreaves, Kenneth M.

    2007-01-01

    Many n-acylethanolamines utilize the anandamide membrane transporter (AMT) to gain facilitated access to the intracellular compartment, hence, we hypothesized that this mechanism might be important for anandamide (AEA)- and N-arachidonoyl-dopamine (NADA)-evoked CGRP release from cultured trigeminal ganglion (TG) neurons. Using [14C]AEA we demonstrated that TG neurons transported AEA in a FAAH- and AMT-inhibitable fashion. Although TRPV1-positive TG neurons were found to express fatty acid amide hydrolase, the application of FAAH inhibitors had no effect on AEA-evoked CGRP release. In contrast, application of the AMT inhibitors OMDM-2 or VDM-11 significantly reduced the potency and efficacy of AEA-, NADA- and capsaicin-evoked CGRP release. Moreover OMDM-2 (IC50 values ranging from 6.4–9.6 μM) and VDM-11 (IC50 values ranging from 5.3–11 μM) inhibited CGRP release evoked by EC80 concentrations of AEA, NADA and CAP and these values were consistent with IC50s obtained for inhibition of uptake. OMDM-2 had no effect on CGRP release per se while VDM-11 evoked CGRP release on its own (EC50 ~35 μM) in a CPZ-insensitive, but ruthenium red (RR)-sensitive fashion. This is the first demonstration that TG sensory neurons possess an AMT-like mechanism suggesting that this mechanism is important for the pharmacological action of AEA and NADA at native TRPV1 channels. PMID:15992578

  13. Advances and challenges in biosensor-based diagnosis of infectious diseases

    PubMed Central

    Sin, Mandy LY; Mach, Kathleen E; Wong, Pak Kin; Liao, Joseph C

    2014-01-01

    Rapid diagnosis of infectious diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in biosensor technologies have potential to deliver point-of-care diagnostics that match or surpass conventional standards in regards to time, accuracy and cost. Broadly classified as either label-free or labeled, modern biosensors exploit micro- and nanofabrication technologies and diverse sensing strategies including optical, electrical and mechanical transducers. Despite clinical need, translation of biosensors from research laboratories to clinical applications has remained limited to a few notable examples, such as the glucose sensor. Challenges to be overcome include sample preparation, matrix effects and system integration. We review the advances of biosensors for infectious disease diagnostics and discuss the critical challenges that need to be overcome in order to implement integrated diagnostic biosensors in real world settings. PMID:24524681

  14. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons.

    PubMed

    Albers, Kathryn M; Zhang, Xiu Lin; Diges, Charlotte M; Schwartz, Erica S; Yang, Charles I; Davis, Brian M; Gold, Michael S

    2014-05-22

    Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund's adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. These findings suggest that Artn

  15. Sensory transduction and the mammalian epidermis.

    PubMed

    Hoath, S B; Donnelly, M M; Boissy, R E

    1990-01-01

    This paper constitutes, in its main intent, an introduction to the mammalian epidermis as a surface for biosensor applications. In particular, the structure and function of the epidermis of the newborn rat are examined as a model for studies of the human state. Data are presented illustrating an anisotropic organization of the dorsal surface of the neonatal rodent with regard to line of tension and thermal gradients. The dependence of the mechanical properties of the epidermis upon calcium is examined by means of an in-vitro assay of epidermal retraction. The potential role of keratin tonofilaments as piezoelectric and pyroelectric elements in the epidermis is introduced and the spatial alignment of these macromolecular arrays is demonstrated to be a function of physiological tensions. These findings are discussed in the context of noninvasive epidermal sensors utilized to understand mechanisms of sensory development and physiological regulation. Optoelectronic (infrared) imaging of the dorsal temperature field and the alteration in this field by treatment with epidermal growth factor are presented as examples of this methodologic approach. It is concluded that a detailed examination of the material and physical properties of mammalian epidermis is a reasonable goal of biosensor development and research. Hypothetically, such studies may reveal important molecular and cellular mechanisms by which sensory data are transmitted or transduced at the organism-environmental interface.

  16. A global benchmark study using affinity-based biosensors

    PubMed Central

    Rich, Rebecca L.; Papalia, Giuseppe A.; Flynn, Peter J.; Furneisen, Jamie; Quinn, John; Klein, Joshua S.; Katsamba, Phini S.; Waddell, M. Brent; Scott, Michael; Thompson, Joshua; Berlier, Judie; Corry, Schuyler; Baltzinger, Mireille; Zeder-Lutz, Gabrielle; Schoenemann, Andreas; Clabbers, Anca; Wieckowski, Sebastien; Murphy, Mary M.; Page, Phillip; Ryan, Thomas E.; Duffner, Jay; Ganguly, Tanmoy; Corbin, John; Gautam, Satyen; Anderluh, Gregor; Bavdek, Andrej; Reichmann, Dana; Yadav, Satya P.; Hommema, Eric; Pol, Ewa; Drake, Andrew; Klakamp, Scott; Chapman, Trevor; Kernaghan, Dawn; Miller, Ken; Schuman, Jason; Lindquist, Kevin; Herlihy, Kara; Murphy, Michael B.; Bohnsack, Richard; Andrien, Bruce; Brandani, Pietro; Terwey, Danny; Millican, Rohn; Darling, Ryan J.; Wang, Liann; Carter, Quincy; Dotzlaf, Joe; Lopez-Sagaseta, Jacinto; Campbell, Islay; Torreri, Paola; Hoos, Sylviane; England, Patrick; Liu, Yang; Abdiche, Yasmina; Malashock, Daniel; Pinkerton, Alanna; Wong, Melanie; Lafer, Eileen; Hinck, Cynthia; Thompson, Kevin; Primo, Carmelo Di; Joyce, Alison; Brooks, Jonathan; Torta, Federico; Bagge Hagel, Anne Birgitte; Krarup, Janus; Pass, Jesper; Ferreira, Monica; Shikov, Sergei; Mikolajczyk, Malgorzata; Abe, Yuki; Barbato, Gaetano; Giannetti, Anthony M.; Krishnamoorthy, Ganeshram; Beusink, Bianca; Satpaev, Daulet; Tsang, Tiffany; Fang, Eric; Partridge, James; Brohawn, Stephen; Horn, James; Pritsch, Otto; Obal, Gonzalo; Nilapwar, Sanjay; Busby, Ben; Gutierrez-Sanchez, Gerardo; Gupta, Ruchira Das; Canepa, Sylvie; Witte, Krista; Nikolovska-Coleska, Zaneta; Cho, Yun Hee; D’Agata, Roberta; Schlick, Kristian; Calvert, Rosy; Munoz, Eva M.; Hernaiz, Maria Jose; Bravman, Tsafir; Dines, Monica; Yang, Min-Hsiang; Puskas, Agnes; Boni, Erica; Li, Jiejin; Wear, Martin; Grinberg, Asya; Baardsnes, Jason; Dolezal, Olan; Gainey, Melicia; Anderson, Henrik; Peng, Jinlin; Lewis, Mark; Spies, Peter; Trinh, Quyhn; Bibikov, Sergei; Raymond, Jill; Yousef, Mohammed; Chandrasekaran, Vidya; Feng, Yuguo; Emerick, Anne; Mundodo, Suparna; Guimaraes, Rejane; McGirr, Katy; Li, Yue-Ji; Hughes, Heather; Mantz, Hubert; Skrabana, Rostislav; Witmer, Mark; Ballard, Joshua; Martin, Loic; Skladal, Petr; Korza, George; Laird-Offringa, Ite; Lee, Charlene S.; Khadir, Abdelkrim; Podlaski, Frank; Neuner, Phillippe; Rothacker, Julie; Rafique, Ashique; Dankbar, Nico; Kainz, Peter; Gedig, Erk; Vuyisich, Momchilo; Boozer, Christina; Ly, Nguyen; Toews, Mark; Uren, Aykut; Kalyuzhniy, Oleksandr; Lewis, Kenneth; Chomey, Eugene; Pak, Brian J.; Myszka, David G.

    2013-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used. PMID:19133223

  17. 1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect

    NASA Astrophysics Data System (ADS)

    Teotia, Pradeep Kumar; Kaler, R. S.

    2018-01-01

    Grating based surface plasmon resonance waveguide biosensor have been reported for the detection of lung cancer biomarkers using Vroman effect. The proposed grating based multilayered biosensor is designed with high detection accuracy for Epidermal growth factor receptor (EGFR) and also analysed to show high detection accuracy with acceptable sensitivity for both cancer biomarkers. The introduction of periodic grating with multilayer metals generates a good resonance that make it possible for early detection of cancerous cells. Using finite difference time domain method, it is observed wavelength of biosensor get red-shifted on variations of the refractive index due to the presence of both the cancerous bio-markers. The reported detection accuracy and sensitivity of proposed biosensor is quite acceptable for both lung cancer biomarkers i.e. Carcinoembryonic antigen (CEA) and Epidermal growth factor receptor (EGFR) which further offer us label free early detection of lung cancer using these biomarkers.

  18. Nanomaterial-Based Biosensors for Detection of Pesticides and Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Lin, Yuehe

    2009-01-01

    In this chapter, we describe nanomaterial-based biosensors for detecting OP pesticides and explosives. CNTs and functionalized silica nanoparticles have been chosen for this study. The biosensors were combined with the flow-injection system, providing great advantages for onsite, real-time, and continuous detection of environmental pollutants such as OPs and TNT. The sensors take advantage of the electrocatalytic properties of CNTs, which makes it feasible to achieve a sensitive electrochemical detection of the products from enzymatic reactions at low potential. This approach uses a large aspect ratio of silica nanoparticles, which can be used as a carrier for loading a large amountmore » of electroactive species, such as poly(guanine), for amplified detection of explosives. These methods offer a new environmental monitoring tool for rapid, inexpensive, and highly sensitive detection of OPs or TNT compounds.« less

  19. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference.

    PubMed

    Yeom, Se-Hyuk; Kim, Ok-Geun; Kang, Byoung-Ho; Kim, Kyu-Jin; Yuan, Heng; Kwon, Dae-Hyuk; Kim, Hak-Rin; Kang, Shin-Won

    2011-11-07

    We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time.

  20. Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons.

    PubMed

    Miranda-Vizuete, Antonio; Fierro González, Juan Carlos; Gahmon, Gabriele; Burghoorn, Jan; Navas, Plácido; Swoboda, Peter

    2006-01-23

    Thioredoxins are a class of small proteins that play a key role in regulating many cellular redox processes. We report here the characterization of the first member of the thioredoxin family in metazoans that is mainly associated with neurons. The Caenorhabditis elegans gene B0228.5 encodes a thioredoxin (TRX-1) that is expressed in ASJ ciliated sensory neurons, and to some extent also in the posterior-most intestinal cells. TRX-1 is active at reducing protein disulfides in the presence of a heterologous thioredoxin reductase. A mutant worm strain carrying a null allele of the trx-1 gene displays a reproducible decrease in both mean and maximum lifespan when compared to wild-type. The identification and characterization of TRX-1 paves the way to use C. elegans as an in vivo model to study the role of thioredoxins in lifespan and nervous system physiology and pathology.