Age effects on sensory-processing abilities and their impact on handwriting.
Engel-Yeger, Batya; Hus, Sari; Rosenblum, Sara
2012-12-01
Sensory-processing abilities are known to deteriorate in the elderly. As a result, daily activities such as handwriting may be impaired. Yet, knowledge about sensory-processing involvement in handwriting characteristics among older persons is limited. To examine how age influences sensory-processing abilities and the impact on handwriting as a daily performance. The study participants were 118 healthy, independently functioning adults divided into four age groups: 31-45, 46-60, 61-75 and 76+ years. All participants completed the Adolescent/ Adult Sensory Profile (AASP). Handwriting process was documented using the Computerized Handwriting Penmanship Evaluation Tool (ComPET). Age significantly affects sensory processing and handwriting pressure as well as temporal and spatial measures. Both handwriting time and spatial organization of the written product were predicted by sensory seeking. When examining age contribution to the prediction of handwriting by sensory processing, sensory seeking showed a tendency for predicting handwriting pressure (p = .06), while sensory sensitivity significantly predicted handwriting velocity. Age appears to influence sensory-processing abilities and affect daily performance tasks, such as handwriting, for which sensitivity and seeking for sensations are essential. Awareness of clinicians to sensory-processing deficits among older adults and examining their impact on broader daily activities are essential to improve daily performance and quality of life.
Engel-Yeger, Batya; Rosenblum, Sara
2017-02-01
Meaningful occupational engagement is essential for successful aging. Sensory-processing abilities that are known to deteriorate with age may reduce occupational engagement. However, the relationship between sensory-processing abilities and occupational engagement among older persons in daily life is unknown. This study examined the relationship between sensory-processing patterns and occupational engagement among older persons. Participants were 180 people, ages 50 to 73 years, in good health, who lived in their homes. All participants completed the Adolescent/Adult Sensory Profile and the Activity Card Sort. Better registration of sensory input and greater sensory seeking were related to greater occupational engagement. Sensory-processing abilities among older persons and their relation to occupational engagement in various life settings should receive attention in research and practice. Occupational therapists should encourage older people to seek sensory input and provide them with rich sensory environments for enhancing meaningful engagement in real life.
No cross-sectional evidence for an increased relation of cognitive and sensory abilities in old age.
Ihle, Andreas; Oris, Michel; Fagot, Delphine; Kliegel, Matthias
2017-04-01
A key question in gerontological research concerns whether good functioning can be maintained in some cognitive abilities in old age, even if deficits occur in other cognitive or sensory abilities. Our goals were to investigate relations of cognitive and sensory abilities in old age, whether these relations differed in size across old age, and whether this was affected by general cognitive ability (processing speed), educational level, and/or general health status. Two thousand eight hundred and twelve older adults (aged 65-101, M = 77.9 years) from the Vivre-Leben-Vivere survey served as cross-sectional sample for the present study. We administered psychometric tests on processing speed (the speed of cognitive processing), cognitive flexibility (the ability to alternate between cognitive operations), and verbal abilities (vocabulary). In addition, we interviewed individuals on their hearing, eyesight, educational level, and general health status. We regressed sizes of relations between abilities (calculated within each 1-year age tranche) on mean age within the corresponding age tranche, with the number of participants within the corresponding age tranche as case weights. We observed a decrease in relations between processing speed and cognitive flexibility in old age that was particularly pronounced in individuals with high educational level (r = -.41). In contrast, we did not find differences in relations between other cognitive and sensory abilities across old age, which held for different levels of general cognitive ability, education, and general health status. Present data do not support the view of a generally increased relation of cognitive and sensory abilities in old age.
ERIC Educational Resources Information Center
Hochhauser, Michal; Engel-Yeger, Batya
2010-01-01
Children with autism may have atypical sensory processing abilities, which are known to impact child's performance and participation. However, lack of information exists regarding the expression of these abilities in specific groups on the spectrum, as children with high-functioning autism spectrum disorder (HFASD). This study aimed to…
The Effects of Sensory Processing and Behavior of Toddlers on Parent Participation: A Pilot Study
ERIC Educational Resources Information Center
DaLomba, Elaina; Baxter, Mary Frances; Fingerhut, Patricia; O'Donnell, Anne
2017-01-01
Occupational therapists treat children with sensory processing and behavioral concerns, however, little information exists on how these issues affect parent participation. This pilot study examined the sensory processing and behaviors of toddlers with developmental delays and correlated these with parents' perceived ability to participate in…
Atypical Movement Performance and Sensory Integration in Asperger's Syndrome
ERIC Educational Resources Information Center
Siaperas, Panagiotis; Ring, Howard A.; McAllister, Catherine J.; Henderson, Sheila; Barnett, Anna; Watson, Peter; Holland, Anthony J.
2012-01-01
The aims of this study were to investigate whether individuals with AS have impaired motor abilities and sensorimotor processing and whether these impairments were age-related. Sensorimotor abilities were examined using the Movement Assessment Battery for Children-2, and the Sensory Integration Praxis Test. Fifty boys with AS aged 7-14 years old…
Variable sensory perception in autism.
Haigh, Sarah M
2018-03-01
Autism is associated with sensory and cognitive abnormalities. Individuals with autism generally show normal or superior early sensory processing abilities compared to healthy controls, but deficits in complex sensory processing. In the current opinion paper, it will be argued that sensory abnormalities impact cognition by limiting the amount of signal that can be used to interpret and interact with environment. There is a growing body of literature showing that individuals with autism exhibit greater trial-to-trial variability in behavioural and cortical sensory responses. If multiple sensory signals that are highly variable are added together to process more complex sensory stimuli, then this might destabilise later perception and impair cognition. Methods to improve sensory processing have shown improvements in more general cognition. Studies that specifically investigate differences in sensory trial-to-trial variability in autism, and the potential changes in variability before and after treatment, could ascertain if trial-to-trial variability is a good mechanism to target for treatment in autism. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1990-01-01
Three areas related to human orientation control are investigated: (1) reflexes associated with the control of eye movements and posture; (2) the perception of body rotation and position with respect to gravity; and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. This process is referred as sensory selection. This proposal will attempt to quantify subject's sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms.
ERIC Educational Resources Information Center
Hill, Franklin; Shiavi, Damaris
2012-01-01
Sensory experiences are the foundation of the learning process, regardless of cognitive ability. However, within the context of students with special needs, the sensory experience may focus on therapeutic and psychological relaxation without necessarily having clearly defined educational goals that directly improve learning. The frequently used…
Relationship Between Sensory Processing and Pretend Play in Typically Developing Children.
Roberts, Tara; Stagnitti, Karen; Brown, Ted; Bhopti, Anoo
We sought to investigate the relationship between sensory processing and pretend play in typically developing children. Forty-two typically developing children ages 5-7 yr were assessed with the Child Initiated Pretend Play Assessment and the Home and Main Classroom forms of the Sensory Processing Measure (SPM). There were significant relationships between elaborate pretend play and body awareness (r = .62, p < .01), balance (r = .42, p < .01), and touch (r = .47, p < .01). Object substitution was associated with social participation (r = .42, p < .05). The sensory processing factors (from the SPM)-namely, Body Awareness, Balance, Touch, and Social Participation-were predictive of the quality of children's engagement in pretend play in the home environment. The results indicated that, to engage and participate in play, children are involving sensory processing abilities, especially body awareness, balance, and touch. Copyright © 2018 by the American Occupational Therapy Association, Inc.
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1992-01-01
The overall objective of this proposal is to understand the relationship between human orientation control and motion sickness susceptibility. Three areas related to orientation control will be investigated. These three areas are (1) reflexes associated with the control of eye movements and posture, (2) the perception of body rotation and position with respect to gravity, and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. We refer to this process as sensory selection. This proposal will attempt to quantify subjects' sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms. Measurements of reflexes, motion perception, sensory selection abilities, and motion sickness susceptibility will concentrate on pitch and roll motions since these seem most relevant to the space motion sickness problem. Vestibulo-ocular (VOR) and oculomotor reflexes will be measured using a unique two-axis rotation device developed in our laboratory over the last seven years. Posture control reflexes will be measured using a movable posture platform capable of independently altering proprioceptive and visual orientation cues. Motion perception will be quantified using closed loop feedback technique developed by Zacharias and Young (Exp Brain Res, 1981). This technique requires a subject to null out motions induced by the experimenter while being exposed to various confounding sensory orientation cues. A subject's sensory selection abilities will be measured by the magnitude and timing of his reactions to changes in sensory environments. Motion sickness susceptibility will be measured by the time required to induce characteristic changes in the pattern of electrogastrogram recordings while exposed to various sensory environments during posture and motion perception tests. The results of this work are relevant to NASA's interest in understanding the etiology of space motion sickness. If any of the reflex, perceptual, or sensory selection abilities of subjects are found to correlate with motion sickness susceptibility, this work may be an important step in suggesting a method of predicting motion sickness susceptibility. If sensory selection can provide a means to avoid sensory conflict, then further work may lead to training programs which could enhance a subject's sensory selection ability and therefore minimize motion sickness susceptibility.
Electrotactile and vibrotactile displays for sensory substitution systems
NASA Technical Reports Server (NTRS)
Kaczmarek, Kurt A.; Webster, John G.; Bach-Y-rita, Paul; Tompkins, Willis J.
1991-01-01
Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used or with the information processed in some useful way. The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). The relevant sensory physiology of the skin, including the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile, or electrocutaneous, stimulation), is reviewed. The information-processing ability of the tactile sense and its relevance to sensory substitution is briefly summarized. The limitations of current tactile display technologies are discussed.
Eagle-eyed visual acuity: an experimental investigation of enhanced perception in autism.
Ashwin, Emma; Ashwin, Chris; Rhydderch, Danielle; Howells, Jessica; Baron-Cohen, Simon
2009-01-01
Anecdotal accounts of sensory hypersensitivity in individuals with autism spectrum conditions (ASC) have been noted since the first reports of the condition. Over time, empirical evidence has supported the notion that those with ASC have superior visual abilities compared with control subjects. However, it remains unclear whether these abilities are specifically the result of differences in sensory thresholds (low-level processing), rather than higher-level cognitive processes. This study investigates visual threshold in n = 15 individuals with ASC and n = 15 individuals without ASC, using a standardized optometric test, the Freiburg Visual Acuity and Contrast Test, to investigate basic low-level visual acuity. Individuals with ASC have significantly better visual acuity (20:7) compared with control subjects (20:13)-acuity so superior that it lies in the region reported for birds of prey. The results of this study suggest that inclusion of sensory hypersensitivity in the diagnostic criteria for ASC may be warranted and that basic standardized tests of sensory thresholds may inform causal theories of ASC.
Finke, Mareike; Sandmann, Pascale; Bönitz, Hanna; Kral, Andrej; Büchner, Andreas
2016-01-01
Single-sided deaf subjects with a cochlear implant (CI) provide the unique opportunity to compare central auditory processing of the electrical input (CI ear) and the acoustic input (normal-hearing, NH, ear) within the same individual. In these individuals, sensory processing differs between their two ears, while cognitive abilities are the same irrespectively of the sensory input. To better understand perceptual-cognitive factors modulating speech intelligibility with a CI, this electroencephalography study examined the central-auditory processing of words, the cognitive abilities, and the speech intelligibility in 10 postlingually single-sided deaf CI users. We found lower hit rates and prolonged response times for word classification during an oddball task for the CI ear when compared with the NH ear. Also, event-related potentials reflecting sensory (N1) and higher-order processing (N2/N4) were prolonged for word classification (targets versus nontargets) with the CI ear compared with the NH ear. Our results suggest that speech processing via the CI ear and the NH ear differs both at sensory (N1) and cognitive (N2/N4) processing stages, thereby affecting the behavioral performance for speech discrimination. These results provide objective evidence for cognition to be a key factor for speech perception under adverse listening conditions, such as the degraded speech signal provided from the CI. © 2016 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Singer, Bryan F.; Bryan, Myranda A.; Popov, Pavlo; Scarff, Raymond; Carter, Cody; Wright, Erin; Aragona, Brandon J.; Robinson, Terry E.
2016-01-01
The sensory properties of a reward-paired cue (a conditioned stimulus; CS) may impact the motivational value attributed to the cue, and in turn influence the form of the conditioned response (CR) that develops. A cue with multiple sensory qualities, such as a moving lever-CS, may activate numerous neural pathways that process auditory and visual…
Sensory signals during active versus passive movement.
Cullen, Kathleen E
2004-12-01
Our sensory systems are simultaneously activated as the result of our own actions and changes in the external world. The ability to distinguish self-generated sensory events from those that arise externally is thus essential for perceptual stability and accurate motor control. Recently, progress has been made towards understanding how this distinction is made. It has been proposed that an internal prediction of the consequences of our actions is compared to the actual sensory input to cancel the resultant self-generated activation. Evidence in support of this hypothesis has been obtained for early stages of sensory processing in the vestibular, visual and somatosensory systems. These findings have implications for the sensory-motor transformations that are needed to guide behavior.
Classifying sensory profiles of children in the general population.
Little, L M; Dean, E; Tomchek, S D; Dunn, W
2017-01-01
The aim of this study was to subtype groups of children in a community sample with and without developmental conditions, based on sensory processing patterns. We used latent profile analysis to determine the number of sensory subtypes in a sample of n = 1132 children aged 3-14 years with typical development and developmental conditions, including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder and learning disabilities. A five-subtype solution was found to best characterize the sample, which differed on overall degree and differential presentation of sensory processing patterns. Children with and without developmental conditions presented across subtypes, and one subtype was significantly younger in age than others (P < 0.05). Our results show that sensory subtypes include both children with typical development and those with developmental conditions. Sensory subtypes have previously been investigated in ASD only, and our results suggest that similar sensory subtypes are present in a sample reflective of the general population of children including those largely with typical development. Elevated scores on sensory processing patterns are not unique to ASD but rather are reflections of children's abilities to respond to environmental demands. © 2016 John Wiley & Sons Ltd.
Processing Determinants of Reading Speed.
ERIC Educational Resources Information Center
Jackson, Mark D.; McClelland, James L.
1979-01-01
Two groups of undergraduates differing in reading ability were tested on a number of reaction-time tasks designed to determine the speed of encoding visual information at several different levels, tests of sensory functions, verbal and quantitative reasoning ability, short-term auditory memory span, and ability to comprehend spoken text.…
ERIC Educational Resources Information Center
Stampoltzis, Aglaia; Antonopoulou, Ekaterini; Zenakou, Elena; Kouvava, Sofia
2010-01-01
Introduction: Dyslexia has been shown to affect the learning ability of individuals who experience difficulties in processing written information and developing effective study skills. Method: In the present study we assessed the relationship between dyslexia, the learning sensory modalities and educational characteristics in 20 dyslexic and 40…
Milne, Alice E; Petkov, Christopher I; Wilson, Benjamin
2017-07-05
Language flexibly supports the human ability to communicate using different sensory modalities, such as writing and reading in the visual modality and speaking and listening in the auditory domain. Although it has been argued that nonhuman primate communication abilities are inherently multisensory, direct behavioural comparisons between human and nonhuman primates are scant. Artificial grammar learning (AGL) tasks and statistical learning experiments can be used to emulate ordering relationships between words in a sentence. However, previous comparative work using such paradigms has primarily investigated sequence learning within a single sensory modality. We used an AGL paradigm to evaluate how humans and macaque monkeys learn and respond to identically structured sequences of either auditory or visual stimuli. In the auditory and visual experiments, we found that both species were sensitive to the ordering relationships between elements in the sequences. Moreover, the humans and monkeys produced largely similar response patterns to the visual and auditory sequences, indicating that the sequences are processed in comparable ways across the sensory modalities. These results provide evidence that human sequence processing abilities stem from an evolutionarily conserved capacity that appears to operate comparably across the sensory modalities in both human and nonhuman primates. The findings set the stage for future neurobiological studies to investigate the multisensory nature of these sequencing operations in nonhuman primates and how they compare to related processes in humans. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquiere, Pol
2007-01-01
This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school…
SENSORY PROCESSING DURING CHILDHOOD IN PRETERM INFANTS: A SYSTEMATIC REVIEW.
Machado, Ana Carolina Cabral de Paula; Oliveira, Suelen Rosa de; Magalhães, Lívia de Castro; Miranda, Débora Marques de; Bouzada, Maria Cândida Ferrarez
2017-01-01
To conduct a systematic search for grounded and quality evidence of sensory processing in preterm infants during childhood. The search of the available literature on the theme was held in the following electronic databases: Medical Literature Analysis and Retrieval System Online (Medline)/PubMed, Latin American and Caribbean Literature in Health Sciences (Lilacs)/Virtual Library in Health (BVS), Índice Bibliográfico Español de Ciencias de la Salud (IBECS)/BVS, Scopus, and Web of Science. We included only original indexed studies with a quantitative approach, which were available in full text on digital media, published in Portuguese, English, or Spanish between 2005 and 2015, involving children aged 0-9years. 581 articles were identified and eight were included. Six studies (75%) found high frequency of dysfunction in sensory processing in preterm infants. The association of sensory processing with developmental outcomes was observed in three studies (37.5%). The association of sensory processing with neonatal characteristics was observed in five studies (62.5%), and the sensory processing results are often associated with gestational age, male gender, and white matter lesions. The current literature suggests that preterm birth affects the sensory processing, negatively. Gestational age, male gender, and white matter lesions appear as risk factors for sensoryprocessing disorders in preterm infants. The impairment in the ability to receivesensory inputs, to integrateand to adapt to them seems to have a negative effect on motor, cognitive, and language development of these children. We highlight the feasibility of identifying sensory processing disorders early in life, favoring early clinical interventions.
SENSORY PROCESSING DURING CHILDHOOD IN PRETERM INFANTS: A SYSTEMATIC REVIEW
Machado, Ana Carolina Cabral de Paula; de Oliveira, Suelen Rosa; Magalhães, Lívia de Castro; de Miranda, Débora Marques; Bouzada, Maria Cândida Ferrarez
2017-01-01
ABSTRACT Objective: To conduct a systematic search for grounded and quality evidence of sensory processing in preterm infants during childhood. Data source: The search of the available literature on the theme was held in the following electronic databases: Medical Literature Analysis and Retrieval System Online (Medline)/PubMed, Latin American and Caribbean Literature in Health Sciences (Lilacs)/Virtual Library in Health (BVS), Índice Bibliográfico Español de Ciencias de la Salud (IBECS)/BVS, Scopus, and Web of Science. We included only original indexed studies with a quantitative approach, which were available in full text on digital media, published in Portuguese, English, or Spanish between 2005 and 2015, involving children aged 0-9years. Data synthesis: 581 articles were identified and eight were included. Six studies (75%) found high frequency of dysfunction in sensory processing in preterm infants. The association of sensory processing with developmental outcomes was observed in three studies (37.5%). The association of sensory processing with neonatal characteristics was observed in five studies (62.5%), and the sensory processing results are often associated with gestational age, male gender, and white matter lesions. Conclusions: The current literature suggests that preterm birth affects the sensory processing, negatively. Gestational age, male gender, and white matter lesions appear as risk factors for sensoryprocessing disorders in preterm infants. The impairment in the ability to receivesensory inputs, to integrateand to adapt to them seems to have a negative effect on motor, cognitive, and language development of these children. We highlight the feasibility of identifying sensory processing disorders early in life, favoring early clinical interventions. PMID:28977307
Kam, Julia W. Y.; Handy, Todd C.
2013-01-01
A unique human characteristic is our ability to mind wander – a state in which we are free to engage in thoughts that are not directly tied to sensations and perceptions from our immediate physical environment. From a neurocognitive perspective, it has been proposed that during mind wandering, our executive resources are decoupled from the external environment and directed to these internal thoughts. In this review, we examine an underappreciated aspect of this phenomenon – attenuation of sensory-motor processing – from two perspectives. First, we describe the range of widespread sensory, cognitive and motor processes attenuated during mind wandering states, and how this impacts our neurocognitive processing of external events. We then consider sensory-motor attenuation in a class of clinical neurocognitive disorders that have ties to pathological patterns of decoupling, reviews suggesting that mind wandering and these clinical states may share a common mechanism of sensory-motor attenuation. Taken together, these observations suggest the sensory-motor consequences of decoupled thinking are integral to normal and pathological neurocognitive states. PMID:24133472
Sensory processing issues in young children presenting to an outpatient feeding clinic.
Davis, Ann M; Bruce, Amanda S; Khasawneh, Rima; Schulz, Trina; Fox, Catherine; Dunn, Winifred
2013-02-01
The aim of the study was to describe the relation between sensory issues and medical complexity in a series of patients presenting to an outpatient multidisciplinary feeding team for evaluation, by a standardized measure of sensory-processing abilities. A retrospective chart review of all of the patients seen from 2004 to 2009 on 2 key variables: medical diagnostic category and short sensory profile (SSP) score. On the SSP, 67.6% of children scored in the clinical ("definite difference") range. The most common diagnostic categories were developmental (n = 23), gastrointestinal (n = 16), and neurological (n = 13). Behavioral and cardiorespiratory medical diagnostic categories were significantly related to SSP total score and SSP definite difference score. Children who present for feeding evaluation do indeed tend to have clinically elevated scores regarding sensory processing, and these elevated scores are significantly related to certain medical diagnostic categories. Future research is needed to determine why these significant relations exist as well as their implications for treatment of feeding-related issues.
Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia
Javitt, Daniel C.; Freedman, Robert
2015-01-01
Sensory processing deficits, first investigated by Kraeplin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being re-characterized in the context of modern understanding of the involved molecular and neurobiological brain mechanisms. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia such as hallucinations. The pre-pulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slightly different stimuli that elicits the cortical Mismatch Negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and, vice versa, are affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of the illness and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients’ sensory perception of the surrounding world, even during treatment sessions, may differ considerable from others’ perceptions. A person’s ability to understand and interact effectively with surrounding world ultimately depends upon an underlying sensory experience of it. PMID:25553496
Sensory Processing and Its Relationship with Children's Daily Life Participation.
Chien, Chi-Wen; Rodger, Sylvia; Copley, Jodie; Branjerdporn, Grace; Taggart, Caitlin
2016-01-01
To investigate whether children with probable or definite differences in sensory processing (SP) had participation restrictions, and the relationship between Short Sensory Profile (SSP) scores and children's participation. The participants were parents of 64 children (mean age 8 years 1 month); 36 with potential impairments in regulating sensory input and filtering out unnecessary stimuli (29 boys, 7 girls) and 28 with typical SP abilities (25 boys, 3 girls). Parents' completed the SSP and Participation in Childhood Occupations Questionnaire (PICO-Q). The SSP score was used to categorize children as potential SP impairment group and typical SP ability group. Children categorized as having probable or definite differences in SP exhibited significantly lower participation levels and enjoyment than children categorized as having typical SP abilities. However, participation frequency between both groups was similar. Six out of the seven SP impairment types had small to moderate correlations with children's participation (r = 0.25-0.48, p < 0.05). Multiple regression analyses indicated that only three impairment types (Underresponsive/Seeks Sensation, Low Energy/Weak, and Visual/Auditory Sensitivity) were significant predictors of PICO-Q participation domains. The results suggest that children with potential SP impairments have restrictions in the degree of participation and enjoyment. Three SP types were related to specific participation domains, but they explained a small amount of variance or none in some participation domains. Other variables should be considered to identify determinants of children's participation.
The Role of Working Memory in the Probabilistic Inference of Future Sensory Events.
Cashdollar, Nathan; Ruhnau, Philipp; Weisz, Nathan; Hasson, Uri
2017-05-01
The ability to represent the emerging regularity of sensory information from the external environment has been thought to allow one to probabilistically infer future sensory occurrences and thus optimize behavior. However, the underlying neural implementation of this process is still not comprehensively understood. Through a convergence of behavioral and neurophysiological evidence, we establish that the probabilistic inference of future events is critically linked to people's ability to maintain the recent past in working memory. Magnetoencephalography recordings demonstrated that when visual stimuli occurring over an extended time series had a greater statistical regularity, individuals with higher working-memory capacity (WMC) displayed enhanced slow-wave neural oscillations in the θ frequency band (4-8 Hz.) prior to, but not during stimulus appearance. This prestimulus neural activity was specifically linked to contexts where information could be anticipated and influenced the preferential sensory processing for this visual information after its appearance. A separate behavioral study demonstrated that this process intrinsically emerges during continuous perception and underpins a realistic advantage for efficient behavioral responses. In this way, WMC optimizes the anticipation of higher level semantic concepts expected to occur in the near future. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Jimenez-Villarreal, J R; Pohlman, F W; Johnson, Z B; Brown, A H
2003-11-01
The impact of multiple antimicrobial interventions on ground beef processing, lipid, textural, instrumental color and sensory characteristics were evaluated. Beef trimmings were treated with 0.5% cetylpyridinium chloride followed by 10% trisodium phosphate (CT), 200-ppm chlorine dioxide followed by 0.5% cetylpyridinium chloride (CLC), 200-ppm chlorine dioxide followed by 10% trisodium phosphate (CLT), or 2% lactic acid followed by 0.5% cetylpyridinium chloride (LC) and compared to an untreated control (C). Sensory panelists found LC and CT treatments similar (P>0.05) in grinding ability to C. By day 2 of display, CT, CLT and LC patties were redder (a(∗); P<0.05) than C. Sensory panelists found CT patties redder (P<0.05) than C by day 2 of display. Sensory panelists found CT and CLT juicier than C. Therefore, the use of these multiple antimicrobial intervention agents on beef trimmings may improve sensory characteristics and shelf-life of ground beef patties.
On the dependence of response inhibition processes on sensory modality.
Bodmer, Benjamin; Beste, Christian
2017-04-01
The ability to inhibit responses is a central sensorimotor function but only recently the importance of sensory processes for motor inhibition mechanisms went more into the research focus. In this regard it is elusive, whether there are differences between sensory modalities to trigger response inhibition processes. Due to functional neuroanatomical considerations strong differences may exist, for example, between the visual and the tactile modality. In the current study we examine what neurophysiological mechanisms as well as functional neuroanatomical networks are modulated during response inhibition. Therefore, a Go/NoGo-paradigm employing a novel combination of visual, tactile, and visuotactile stimuli was used. The data show that the tactile modality is more powerful than the visual modality to trigger response inhibition processes. However, the tactile modality loses its efficacy to trigger response inhibition processes when being combined with the visual modality. This may be due to competitive mechanisms leading to a suppression of certain sensory stimuli and the response selection level. Variations in sensory modalities specifically affected conflict monitoring processes during response inhibition by modulating activity in a frontal parietal network including the right inferior frontal gyrus, anterior cingulate cortex and the temporoparietal junction. Attentional selection processes are not modulated. The results suggest that the functional neuroanatomical networks involved in response inhibition critically depends on the nature of the sensory input. Hum Brain Mapp 38:1941-1951, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Engel-Yeger, Batya; Darawsha Najjar, Sanaa; Darawsha, Mahmud
2017-08-13
(1) To profile sensory deficits examined in the ability to process sensory information from daily environment and discriminate between tactile stimuli among patients with controlled and un-controlled diabetes mellitus. (2) Examine the relationship between the sensory deficits and patients' health-related quality of life. This study included 115 participants aged 33-55 with uncontrolled (n = 22) or controlled (n = 24) glycemic levels together with healthy subjects (n = 69). All participants completed the brief World Health Organization Quality of Life Questionnaire, the Adolescent/Adult Sensory Profile and performed the tactile discrimination test. Sensory deficits were more emphasized among patients with uncontrolled glycemic levels as expressed in difficulties to register sensory input, lower sensation seeking in daily environments and difficulties to discriminate between tactile stimuli. They also reported the lowest physical and social quality of life as compared to the other two groups. Better sensory seeking and registration predicted better quality of life. Disease control and duration contributed to these predictions. Difficulties in processing sensory information from their daily environments are particularly prevalent among patients with uncontrolled glycemic levels, and significantly impacted their quality of life. Clinicians should screen for sensory processing difficulties among patients with diabetes mellitus and understand their impacts on patients' quality of life. Implications for Rehabilitation Patients with diabetes mellitus, and particularly those with uncontrolled glycemic levels, may have difficulties in processing sensory information from daily environment. A multidisciplinary intervention approach is recommended: clinicians should screen for sensory processing deficits among patients with diabetes mellitus and understand their impacts on patients' daily life. By providing the patients with environmental adaptations and coping strategies, clinicians may assist in optimizing sensory experiences in real life context and elevate patients' quality of life. Relating to quality of life and emphasizing a multidisciplinary approach is of major importance in broadening our understanding of health conditions and providing holistic treatment for patients.
Concepts Within Reach: Action Performance Predicts Action Language Processing in Stroke
Desai, Rutvik H.; Herter, Troy; Riccardi, Nicholas; Rorden, Chris; Fridriksson, Julius
2015-01-01
The relationship between the brain’s conceptual or semantic and sensory-motor systems remains controversial. Here, we tested manual and conceptual abilities of 41 chronic stroke patients in order to examine their relationship. Manual abilities were assed through a reaching task using an exoskeleton robot. Semantic abilities were assessed with implicit as well as explicit semantic tasks, for both verbs and nouns. The results show that that the degree of selective impairment for action word processing was predicted by the degree of impairment in reaching performance. Moreover, the implicit semantic measures showed a correlation with a global reaching parameter, while the explicit semantic similarity judgment task predicted performance in action initiation. These results indicate that action concepts are dynamically grounded through motoric simulations, and that more details are simulated for more explicit semantic tasks. This is evidence for a close and causal relationship between sensory-motor and conceptual systems of the brain. PMID:25858602
Thalamic control of sensory selection in divided attention.
Wimmer, Ralf D; Schmitt, L Ian; Davidson, Thomas J; Nakajima, Miho; Deisseroth, Karl; Halassa, Michael M
2015-10-29
How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.
[Treatment of sensory information in neurodevelopmental disorders].
Zoenen, D; Delvenne, V
2018-01-01
The processing of information coming from the elementary sensory systems conditions the development and fulfilment of a child's abilities. A dysfunction in the sensory stimuli processing may generate behavioural patterns that might affect a child's learning capacities as well as his relational sphere. The DSM-5 recognizes the sensory abnormalities as part of the symptomatology of Autism Spectrum Disorders. However, similar features are observed in other neurodevelopmental disorders. Over the years, these conditions have been the subject of numerous controversies. Nowadays, they are all grouped together under the term of Neurodevelopmental Disorders in DSM-5. The semiology of these disorders is rich and complex due to the frequent presence of comorbidities and their impact on cognitive, behavioural, and sensorimotor organization but also on a child's personality, as well as his family, his school, or his social relationships. We carried out a review of the literature on the alterations in the treatment of sensory information in ASD but also on the different neurodevelopmental clinical panels in order to show their impact on child development. Atypical sensory profiles have been demonstrated in several neurodevelopmental clinical populations such as Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorders, Dysphasia and Intellectual Disability. Abnomalies in the processing of sensory information should be systematically evaluated in child developmental disorders.
Sensory Perception and Aging in Model Systems: From the Outside In
Linford, Nancy J.; Kuo, Tsung-Han; Chan, Tammy P.; Pletcher, Scott D.
2014-01-01
Sensory systems provide organisms from bacteria to human with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organism lifespan, have opened the door for powerful new research into aging. While direct links between sensory perception and aging have been established only recently, here we discuss these initial discoveries and evaluate the potential for different forms of sensory processing to modulate lifespan across taxa. Harnessing the neurobiology of simple model systems to study the biological impact of sensory experiences will yield insights into the broad influence of sensory perception in mammals and may help uncover new mechanisms of healthy aging. PMID:21756108
Sensory perception and aging in model systems: from the outside in.
Linford, Nancy J; Kuo, Tsung-Han; Chan, Tammy P; Pletcher, Scott D
2011-01-01
Sensory systems provide organisms from bacteria to humans with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organismal lifespan, have opened the door for powerful new research into aging. Although direct links between sensory perception and aging have been established only recently, here we discuss these initial discoveries and evaluate the potential for different forms of sensory processing to modulate lifespan across taxa. Harnessing the neurobiology of simple model systems to study the biological impact of sensory experiences will yield insights into the broad influence of sensory perception in mammals and may help uncover new mechanisms of healthy aging.
Do early sensory cortices integrate cross-modal information?
Kayser, Christoph; Logothetis, Nikos K
2007-09-01
Our different senses provide complementary evidence about the environment and their interaction often aids behavioral performance or alters the quality of the sensory percept. A traditional view defers the merging of sensory information to higher association cortices, and posits that a large part of the brain can be reduced into a collection of unisensory systems that can be studied in isolation. Recent studies, however, challenge this view and suggest that cross-modal interactions can already occur in areas hitherto regarded as unisensory. We review results from functional imaging and electrophysiology exemplifying cross-modal interactions that occur early during the evoked response, and at the earliest stages of sensory cortical processing. Although anatomical studies revealed several potential origins of these cross-modal influences, there is yet no clear relation between particular functional observations and specific anatomical connections. In addition, our view on sensory integration at the neuronal level is coined by many studies on subcortical model systems of sensory integration; yet, the patterns of cross-modal interaction in cortex deviate from these model systems in several ways. Consequently, future studies on cortical sensory integration need to leave the descriptive level and need to incorporate cross-modal influences into models of the organization of sensory processing. Only then will we be able to determine whether early cross-modal interactions truly merit the label sensory integration, and how they increase a sensory system's ability to scrutinize its environment and finally aid behavior.
Thomson, Eric E.; Zea, Ivan; França, Wendy
2017-01-01
Abstract Adult rats equipped with a sensory prosthesis, which transduced infrared (IR) signals into electrical signals delivered to somatosensory cortex (S1), took approximately 4 d to learn a four-choice IR discrimination task. Here, we show that when such IR signals are projected to the primary visual cortex (V1), rats that are pretrained in a visual-discrimination task typically learn the same IR discrimination task on their first day of training. However, without prior training on a visual discrimination task, the learning rates for S1- and V1-implanted animals converged, suggesting there is no intrinsic difference in learning rate between the two areas. We also discovered that animals were able to integrate IR information into the ongoing visual processing stream in V1, performing a visual-IR integration task in which they had to combine IR and visual information. Furthermore, when the IR prosthesis was implanted in S1, rats showed no impairment in their ability to use their whiskers to perform a tactile discrimination task. Instead, in some rats, this ability was actually enhanced. Cumulatively, these findings suggest that cortical sensory neuroprostheses can rapidly augment the representational scope of primary sensory areas, integrating novel sources of information into ongoing processing while incurring minimal loss of native function. PMID:29279860
Deficits in the Ability to Use Proprioceptive Feedback in Children with Hemiplegic Cerebral Palsy
ERIC Educational Resources Information Center
Goble, Daniel J.; Hurvitz, Edward A.; Brown, Susan H.
2009-01-01
Compared with motor impairment in children with hemiplegic cerebral palsy (CP), less attention has been paid to sensory feedback processing deficits. This includes, especially, proprioceptive information regarding arm position. This study examined the ability of children with hemiplegic CP to use proprioceptive feedback during a goal-directed…
Chen, Hui-Ya; Chang, Hsiao-Yun; Ju, Yan-Ying; Tsao, Hung-Ting
2017-06-01
Rhythmic gymnasts specialise in dynamic balance under sensory conditions of numerous somatosensory, visual, and vestibular stimulations. This study investigated whether adolescent rhythmic gymnasts are superior to peers in Sensory Organisation test (SOT) performance, which quantifies the ability to maintain standing balance in six sensory conditions, and explored whether they plateaued faster during familiarisation with the SOT. Three and six sessions of SOTs were administered to 15 female rhythmic gymnasts (15.0 ± 1.8 years) and matched peers (15.1 ± 2.1 years), respectively. The gymnasts were superior to their peers in terms of fitness measures, and their performance was better in the SOT equilibrium score when visual information was unreliable. The SOT learning effects were shown in more challenging sensory conditions between Sessions 1 and 2 and were equivalent in both groups; however, over time, the gymnasts gained marginally significant better visual ability and relied less on visual sense when unreliable. In conclusion, adolescent rhythmic gymnasts have generally the same sensory organisation ability and learning rates as their peers. However, when visual information is unreliable, they have superior sensory organisation ability and learn faster to rely less on visual sense.
Sensory Transduction in Caenorhabditis elegans
NASA Astrophysics Data System (ADS)
Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.
The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.
Nissen, Lise R; Byrne, Derek V; Bertelsen, Grete; Skibsted, Leif H
2004-11-01
Antioxidative efficiency of extracts of rosemary, green tea, coffee and grape skin in precooked pork patties was investigated during storage under retail conditions (10 days, 4 °C, atmospheric air), using descriptive sensory profiling following reheating and quantitative measurements of hexanal, thiobarbituric acid reactive substances (TBARS) and vitamin E as indicators of lipid oxidation. The initial oxidative status of pork patties (evaluated by ANOVA) showed a significant lower level of secondary oxidation products and higher levels of vitamin E in patties with extracts incorporated, indicating that the extracts retarded lipid oxidation during processing of the meat. Data analysis for the storage study was based on qualitative overview of sensory/chemical variation by principal component analysis (PCA) and quantitative ANOVA-PLSR for determination of the relationship between design variables (days of chill-storage, extract treatment) versus sensory-chemical variables and PLSR for elucidating the predictive ability of the chemical methods for sensory terms. Lipid oxidation was seen to involve a decrease in perception of meat flavour/odour and a concomitant increase in the off-flavour/odours linseed, rancid. TBARS, hexanal and vitamin E were all significant predictive indices (P<0.05) for the majority of the sensory terms, while vitamin E through negative correlation with TBARS and hexanal displayed its antioxidative effect and thus, its ability to preserve sensory fresh meat flavour/odour. The effect of the various extracts incorporated in the product was clearly related to the degree of lipid oxidation and an overall ranking of the antioxidative efficiency of extracts in declining order became apparent: Rosemary>Grape skin>Tea>Coffee>Reference. Furthermore, the relation between extracts and vitamin E indicated that the extracts, to some extent, interacted with the vitamin and prevented it from degrading. In conclusion, the rosemary extract displayed potential for maintaining sensory eating quality in processed pork products.
Dysfunction of sensory oscillations in Autism Spectrum Disorder
Simon, David M.; Wallace, Mark T.
2016-01-01
Autism Spectrum Disorder (ASD) is a highly prevalent developmental disability characterized by deficits in social communication and interaction, restricted interests, and repetitive behaviors. Recently, anomalous sensory and perceptual function has gained an increased level of recognition as an important feature of ASD. A specific impairment in the ability to integrate information across brain networks has been proposed to contribute to these disruptions. A crucial mechanism for these integrative processes is the rhythmic synchronization of neuronal excitability across neural populations; collectively known as oscillations. In ASD there is believed to be a deficit in the ability to efficiently couple functional neural networks using these oscillations. This review discusses evidence for disruptions in oscillatory synchronization in ASD, and how disturbance of this neural mechanism contributes to alterations in sensory and perceptual function. The review also frames oscillatory data from the perspective of prevailing neurobiologically-inspired theories of ASD. PMID:27451342
Development of Metallic Sensory Alloys
NASA Technical Reports Server (NTRS)
Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.
2010-01-01
Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.
Neural Markers of Responsiveness to the Environment in Human Sleep.
Andrillon, Thomas; Poulsen, Andreas Trier; Hansen, Lars Kai; Léger, Damien; Kouider, Sid
2016-06-15
Sleep is characterized by a loss of behavioral responsiveness. However, recent research has shown that the sleeping brain is not completely disconnected from its environment. How neural activity constrains the ability to process sensory information while asleep is yet unclear. Here, we instructed human volunteers to classify words with lateralized hand responses while falling asleep. Using an electroencephalographic (EEG) marker of motor preparation, we show how responsiveness is modulated across sleep. These modulations are tracked using classic event-related potential analyses complemented by Lempel-Ziv complexity (LZc), a measure shown to track arousal in sleep and anesthesia. Neural activity related to the semantic content of stimuli was conserved in light non-rapid eye movement (NREM) sleep. However, these processes were suppressed in deep NREM sleep and, importantly, also in REM sleep, despite the recovery of wake-like neural activity in the latter. In NREM sleep, sensory activations were counterbalanced by evoked down states, which, when present, blocked further processing of external information. In addition, responsiveness markers correlated positively with baseline complexity, which could be related to modulation in sleep depth. In REM sleep, however, this relationship was reversed. We therefore propose that, in REM sleep, endogenously generated processes compete with the processing of external input. Sleep can thus be seen as a self-regulated process in which external information can be processed in lighter stages but suppressed in deeper stages. Last, our results suggest drastically different gating mechanisms in NREM and REM sleep. Previous research has tempered the notion that sleepers are isolated from their environment. Here, we pushed this idea forward and examined, across all sleep stages, the brain's ability to flexibly process sensory information, up to the decision level. We extracted an EEG marker of motor preparation to determine the completion of the sensory processing chain and explored how it is constrained by baseline and evoked neural activity. In NREM sleep, slow waves elicited by stimuli appeared to block response preparation. We also used a novel analytic approach (Lempel-Ziv complexity) and showed that the ability to process external information correlates with neural complexity. A reversal of the correlation between complexity and motor indices in REM sleep suggests drastically different gating mechanisms across sleep stages. Copyright © 2016 the authors 0270-6474/16/366583-14$15.00/0.
Auditory Temporal-Organization Abilities in School-Age Children with Peripheral Hearing Loss
ERIC Educational Resources Information Center
Koravand, Amineh; Jutras, Benoit
2013-01-01
Purpose: The objective was to assess auditory sequential organization (ASO) ability in children with and without hearing loss. Method: Forty children 9 to 12 years old participated in the study: 12 with sensory hearing loss (HL), 12 with central auditory processing disorder (CAPD), and 16 with normal hearing. They performed an ASO task in which…
Heath, Christopher J; Picciotto, Marina R
2009-01-01
Despite a great deal of progress, more than 10% of pregnant women in the USA smoke. Epidemiological studies have demonstrated correlations between developmental tobacco smoke exposure and sensory processing deficits, as well as a number of neuropsychiatric conditions, including attention deficit hyperactivity disorder. Significantly, data from animal models of developmental nicotine exposure have suggested that the nicotine in tobacco contributes significantly to the effects of developmental smoke exposure. Consequently, we hypothesize that nicotinic acetylcholine receptors (nAChRs) are important for setting and refining the strength of corticothalamic-thalamocortical loops during critical periods of development and that disruption of this process by developmental nicotine exposure can result in long-lasting dysregulation of sensory processing. The ability of nAChR activation to modulate synaptic plasticity is likely to underlie the effects of both endogenous cholinergic signaling and pharmacologically administered nicotine to alter cellular, physiological and behavioral processes during critical periods of development.
Gee, Bryan M; Strickland, Jane; Thompson, Kelly; Miller, Lucy Jane
2017-01-01
The purpose of this study was to explore the effectiveness of a series of online, module-based instructional reusable learning objects (RLOs) targeted at entry-level, 1st year, Master of Occupational Therapy students. The content of the RLOs addressed knowledge and implementation of A SECRET, a parental reasoning approach for children with a sensory processing disorder, specifically sensory over responsiveness. Nine RLOs were developed and embedded within a commonly used learning management system. Participants ( n = 8) were evaluated regarding their ability to discriminate between appropriate and inappropriate A SECRET strategies using a selected-response assessment. The participants' overall average score was 68%, a positive finding given the novelty of the instruction, assessment, and the content.
Miller, Robert; Weckesser, Lisa J; Smolka, Michael N; Kirschbaum, Clemens; Plessow, Franziska
2015-03-01
A substantial amount of research documents the impact of glucocorticoids on higher-order cognitive functioning. By contrast, surprisingly little is known about the susceptibility of basic sensory processes to glucocorticoid exposure given that the glucocorticoid receptor density in the human visual cortex exceeds those observed in prefrontal and most hippocampal brain regions. As executive tasks also rely on these sensory processes, the present study investigates the impact of glucocorticoid exposure on different performance parameters characterizing the maintenance and transfer of sensory information from iconic memory (IM; the sensory buffer of the visual system) to working memory (WM). Using a crossover factorial design, we administered one out of three doses of hydrocortisone (0.06, 0.12, or 0.24mg/kg bodyweight) and a placebo to 18 healthy young men. Thereafter participants performed a partial report task, which was used to assess their individual ability to process sensory information. Blood samples were concurrently drawn to determine free and total cortisol concentrations. The compiled pharmacokinetic and psychophysical data demonstrates that free cortisol specifically accelerated the decay of sensory information (r=0.46) without significantly affecting the selective information transfer from IM to WM or the capacity limit of WM. Specifically, nonparametric regression revealed a sigmoid dose-response relationship between free cortisol levels during the testing period and the IM decay rates. Our findings highlight that glucocorticoid exposure may not only impact on the recruitment of top-down control for an active maintenance of sensory information, but alter their passive (stimulus-driven) maintenance thereby changing the availability of information prior to subsequent executive processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Auditory Pitch Perception in Autism Spectrum Disorder Is Associated With Nonverbal Abilities.
Chowdhury, Rakhee; Sharda, Megha; Foster, Nicholas E V; Germain, Esther; Tryfon, Ana; Doyle-Thomas, Krissy; Anagnostou, Evdokia; Hyde, Krista L
2017-11-01
Atypical sensory perception and heterogeneous cognitive profiles are common features of autism spectrum disorder (ASD). However, previous findings on auditory sensory processing in ASD are mixed. Accordingly, auditory perception and its relation to cognitive abilities in ASD remain poorly understood. Here, children with ASD, and age- and intelligence quotient (IQ)-matched typically developing children, were tested on a low- and a higher level pitch processing task. Verbal and nonverbal cognitive abilities were measured using the Wechsler's Abbreviated Scale of Intelligence. There were no group differences in performance on either auditory task or IQ measure. However, there was significant variability in performance on the auditory tasks in both groups that was predicted by nonverbal, not verbal skills. These results suggest that auditory perception is related to nonverbal reasoning rather than verbal abilities in ASD and typically developing children. In addition, these findings provide evidence for preserved pitch processing in school-age children with ASD with average IQ, supporting the idea that there may be a subgroup of individuals with ASD that do not present perceptual or cognitive difficulties. Future directions involve examining whether similar perceptual-cognitive relationships might be observed in a broader sample of individuals with ASD, such as those with language impairment or lower IQ.
Integrated Ecology: The Process of Counseling with Nature.
ERIC Educational Resources Information Center
Cohen, Michael J.
1994-01-01
Discusses the theory behind an applied ecopsychology program based on Integrated Ecology. Integrated Ecology uses personal sensory contact with natural areas, in backyards, parks, or back country to unleash natural ability to relate and survive responsibly. (LZ)
Primary Auditory Cortex is Required for Anticipatory Motor Response.
Li, Jingcheng; Liao, Xiang; Zhang, Jianxiong; Wang, Meng; Yang, Nian; Zhang, Jun; Lv, Guanghui; Li, Haohong; Lu, Jian; Ding, Ran; Li, Xingyi; Guang, Yu; Yang, Zhiqi; Qin, Han; Jin, Wenjun; Zhang, Kuan; He, Chao; Jia, Hongbo; Zeng, Shaoqun; Hu, Zhian; Nelken, Israel; Chen, Xiaowei
2017-06-01
The ability of the brain to predict future events based on the pattern of recent sensory experience is critical for guiding animal's behavior. Neocortical circuits for ongoing processing of sensory stimuli are extensively studied, but their contributions to the anticipation of upcoming sensory stimuli remain less understood. We, therefore, used in vivo cellular imaging and fiber photometry to record mouse primary auditory cortex to elucidate its role in processing anticipated stimulation. We found neuronal ensembles in layers 2/3, 4, and 5 which were activated in relationship to anticipated sound events following rhythmic stimulation. These neuronal activities correlated with the occurrence of anticipatory motor responses in an auditory learning task. Optogenetic manipulation experiments revealed an essential role of such neuronal activities in producing the anticipatory behavior. These results strongly suggest that the neural circuits of primary sensory cortex are critical for coding predictive information and transforming it into anticipatory motor behavior. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Clawson, Wesley Patrick
Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized using mutual information between sensory input, visual stimulus, and neural response,. The primary finding of our experiments in the visual cortex in turtles and neuronal network modeling confirms this theoretical prediction. We show that sensory discrimination is maximized when visual cortex operates near criticality. In addition to presenting this primary finding in detail, this thesis will also address our preliminary results on change-point-detection in experimentally measured cortical dynamics.
Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J
2015-12-01
Research evidence has suggested that anxiety influences gait in PD, with an identified dopa-sensitive gait response in highly anxious PD. It has been well-established that accurate perception of the environment and sensory feedback is essential for gait. Arguably since sensory and perceptual deficits have been noted in PD, anxiety has the potential to exacerbate movement impairments, since one might expect that reducing resources needed to overcome or compensate for sensory-perceptual deficits may lead to even more severe gait impairments. It is possible that anxiety in threatening situations might consume more processing resources, limiting the ability to process information about the environment or one's own movement (sensory feedback) especially in highly anxious PD. Therefore, the current study aimed to (i) evaluate whether processing of threat-related aspects of the environment was influenced by anxiety, (ii) evaluate whether anxiety influences the ability to utilize sensory feedback in PD while walking in threatening situations, and (iii) further understand the role of dopaminergic medication on these processes in threatening situations in PD. Forty-eight participants (24 HC; 12 Low Anxious [LA-PD], 12 Highly Anxious [HA-PD]) completed 20 walking trials in virtual reality across a plank that was (i) located on the ground (GROUND) (ii) located above a deep pit (ELEVATED); while provided with or without visual feedback about their lower limbs (+VF; -VF). After walking across the plank, participants were asked to judge the width of the plank they had just walked across. The plank varied in size from 60-100 cm. Both ON and OFF dopaminergic medication states were evaluated in PD. Gait parameters, judgment error and self-reported anxiety levels were measured. Results showed that HA-PD reported greater levels of anxiety overall (p<0.001) compared to HC and LA-PD, and all participants reported greater anxiety during the ELEVATED condition compared to GROUND (p=0.01). PD had similar judgment error as HC. Additionally, medication state did not significantly influence judgment error in PD. More importantly, HA-PD were the only group that did not adjust their step width when feedback was provided during the GROUND condition. However, medication facilitated a reduction in ST-CV when visual feedback was available only in the HA-PD group. Therefore, the current study provides evidence that anxiety may interfere with information processing, especially utilizing sensory feedback while walking. Dopaminergic medication appears to improve utilization of sensory feedback in stressful situations by reducing anxiety and/or improving resource allocation especially in those with PD who are highly anxious. Copyright © 2015 Elsevier Ltd. All rights reserved.
Training and Older Workers: Implications for U.S. Competitiveness. Contract Report.
ERIC Educational Resources Information Center
Rothstein, Frances R.; Ratte, Donna J.
Age-related changes in functional ability and work attitude affect job performance, but many variables affect the extent and timing of change for different older workers. Declines due to age occur in sensory/perceptual processes; strength, speed and accuracy of movement, and balance; and cognitive processes. Individuals can compensate for some…
ERIC Educational Resources Information Center
Boets, Bart; Wouters, Jan; van Wieringen, Astrid; De Smedt, Bert; Ghesquiere, Pol
2008-01-01
The general magnocellular theory postulates that dyslexia is the consequence of a multimodal deficit in the processing of transient and dynamic stimuli. In the auditory modality, this deficit has been hypothesized to interfere with accurate speech perception, and subsequently disrupt the development of phonological and later reading and spelling…
Top-down modulation of visual and auditory cortical processing in aging.
Guerreiro, Maria J S; Eck, Judith; Moerel, Michelle; Evers, Elisabeth A T; Van Gerven, Pascal W M
2015-02-01
Age-related cognitive decline has been accounted for by an age-related deficit in top-down attentional modulation of sensory cortical processing. In light of recent behavioral findings showing that age-related differences in selective attention are modality dependent, our goal was to investigate the role of sensory modality in age-related differences in top-down modulation of sensory cortical processing. This question was addressed by testing younger and older individuals in several memory tasks while undergoing fMRI. Throughout these tasks, perceptual features were kept constant while attentional instructions were varied, allowing us to devise all combinations of relevant and irrelevant, visual and auditory information. We found no top-down modulation of auditory sensory cortical processing in either age group. In contrast, we found top-down modulation of visual cortical processing in both age groups, and this effect did not differ between age groups. That is, older adults enhanced cortical processing of relevant visual information and suppressed cortical processing of visual distractors during auditory attention to the same extent as younger adults. The present results indicate that older adults are capable of suppressing irrelevant visual information in the context of cross-modal auditory attention, and thereby challenge the view that age-related attentional and cognitive decline is due to a general deficits in the ability to suppress irrelevant information. Copyright © 2014 Elsevier B.V. All rights reserved.
[Sensory loss and brain reorganization].
Fortin, Madeleine; Voss, Patrice; Lassonde, Maryse; Lepore, Franco
2007-11-01
It is without a doubt that humans are first and foremost visual beings. Even though the other sensory modalities provide us with valuable information, it is vision that generally offers the most reliable and detailed information concerning our immediate surroundings. It is therefore not surprising that nearly a third of the human brain processes, in one way or another, visual information. But what happens when the visual information no longer reaches these brain regions responsible for processing it? Indeed numerous medical conditions such as congenital glaucoma, retinis pigmentosa and retinal detachment, to name a few, can disrupt the visual system and lead to blindness. So, do the brain areas responsible for processing visual stimuli simply shut down and become non-functional? Do they become dead weight and simply stop contributing to cognitive and sensory processes? Current data suggests that this is not the case. Quite the contrary, it would seem that congenitally blind individuals benefit from the recruitment of these areas by other sensory modalities to carry out non-visual tasks. In fact, our laboratory has been studying blindness and its consequences on both the brain and behaviour for many years now. We have shown that blind individuals demonstrate exceptional hearing abilities. This finding holds true for stimuli originating from both near and far space. It also holds true, under certain circumstances, for those who lost their sight later in life, beyond a period generally believed to limit the brain changes following the loss of sight. In the case of the early blind, we have shown their ability to localize sounds is strongly correlated with activity in the occipital cortex (the location of the visual processing), demonstrating that these areas are functionally engaged by the task. Therefore it would seem that the plastic nature of the human brain allows them to make new use of the cerebral areas normally dedicated to visual processing.
Sensory rehabilitation in the plastic brain.
Collignon, Olivier; Champoux, François; Voss, Patrice; Lepore, Franco
2011-01-01
The purpose of this review is to consider new sensory rehabilitation avenues in the context of the brain's remarkable ability to reorganize itself following sensory deprivation. Here, deafness and blindness are taken as two illustrative models. Mainly, two promising rehabilitative strategies based on opposing theoretical principles will be considered: sensory substitution and neuroprostheses. Sensory substitution makes use of the remaining intact senses to provide blind or deaf individuals with coded information of the lost sensory system. This technique thus benefits from added neural resources in the processing of the remaining senses resulting from crossmodal plasticity, which is thought to be coupled with behavioral enhancements in the intact senses. On the other hand, neuroprostheses represent an invasive approach aimed at stimulating the deprived sensory system directly in order to restore, at least partially, its functioning. This technique therefore relies on the neuronal integrity of the brain areas normally dedicated to the deprived sense and is rather hindered by the compensatory reorganization observed in the deprived cortex. Here, we stress that our understanding of the neuroplastic changes that occur in sensory-deprived individuals may help guide the design and the implementation of such rehabilitative methods. Copyright © 2011 Elsevier B.V. All rights reserved.
Kulikova, Sofya P; Tolmacheva, Elena A; Anderson, Paul; Gaudias, Julien; Adams, Brendan E; Zheng, Thomas; Pinault, Didier
2012-11-01
Sensory and cognitive deficits are common in schizophrenia. They are associated with abnormal brain rhythms, including disturbances in γ frequency (30-80 Hz) oscillations (GFO) in cortex-related networks. However, the underlying anatomofunctional mechanisms remain elusive. Clinical and experimental evidence suggests that these deficits result from a hyporegulation of glutamate N-methyl-D-aspartate receptors. Here we modeled these deficits in rats with ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist and a translational psychotomimetic substance at subanesthetic doses. We tested the hypothesis that ketamine-induced sensory deficits involve an impairment of the ability of the thalamocortical (TC) system to discriminate the relevant information from the baseline activity. Furthermore, we wanted to assess whether ketamine disrupts synaptic plasticity in TC systems. We conducted multisite network recordings in the rat somatosensory TC system, natural stimulation of the vibrissae and high-frequency electrical stimulation (HFS) of the thalamus. A single systemic injection of ketamine increased the amount of baseline GFO, reduced the amplitude of the sensory-evoked TC response and decreased the power of the sensory-evoked GFO. Furthermore, cortical application of ketamine elicited local and distant increases in baseline GFO. The ketamine effects were transient. Unexpectedly, HFS of the TC pathway had opposite actions. In conclusion, ketamine and thalamic HFS have opposite effects on the ability of the somatosensory TC system to discriminate the sensory-evoked response from the baseline GFO during information processing. Investigating the link between the state and function of the TC system may conceptually be a key strategy to design innovative therapies against neuropsychiatric disorders. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Lozano, Cecil A.; Kaczmarek, Kurt A.; Santello, Marco
2010-01-01
Due to its high sensitivity and conductivity, electrotactile stimulation (ETS) on the tongue has proven to be a useful and technically convenient tool to substitute and/or augment sensory capabilities. However, most of its applications have only provided spatial attributes and little is known about (a) the ability of the tongue's sensory system to process electrical stimuli of varying magnitudes and (b) how modulation of ETS intensity affects subjects' ability to decode stimulus intensity. We addressed these questions by quantifying: (1) the magnitude of the dynamic range (DR; maximal comfortable intensity/perception threshold) and its sensitivity to prolonged exposure; (2) subjects' ability to perceive intensity changes; and (3) subjects' ability to associate intensity with angular excursions of a protractor's handle. We found that the average DR (17 dB) was generally large in comparison with other tactile loci and of a relatively constant magnitude among subjects, even after prolonged exposure, despite a slight but significant upward drift (P < 0.001). Additionally, our results showed that as stimulus intensity increased, subjects' ability to discriminate ETS stimuli of different intensities improved (P < 0.05) while estimation accuracy, in general, slightly decreased (increasing underestimation). These results suggest that higher ETS intensity may increase recruitment of rapidly adapting mechanoreceptor fibers, as these are specialized for coding stimulus differences rather than absolute intensities. Furthermore, our study revealed that the tongue's sensory system can effectively convey electrical stimuli despite minimal practice and when information transfer is limited by memory and DR drift. PMID:19697262
ERIC Educational Resources Information Center
Stevenson, Ryan A.; Zemtsov, Raquel K.; Wallace, Mark T.
2012-01-01
Human multisensory systems are known to bind inputs from the different sensory modalities into a unified percept, a process that leads to measurable behavioral benefits. This integrative process can be observed through multisensory illusions, including the McGurk effect and the sound-induced flash illusion, both of which demonstrate the ability of…
Attention and Cognitive Control Networks Assessed in a Dichotic Listening fMRI Study
ERIC Educational Resources Information Center
Falkenberg, Liv E.; Specht, Karsten; Westerhausen, Rene
2011-01-01
A meaningful interaction with our environment relies on the ability to focus on relevant sensory input and to ignore irrelevant information, i.e. top-down control and attention processes are employed to select from competing stimuli following internal goals. In this, the demands for the recruitment of top-down control processes depend on the…
ERIC Educational Resources Information Center
Chasiotis, Athanasios; Kiessling, Florian; Winter, Vera; Hofer, Jan
2006-01-01
After distinguishing between neocortical abilities for executive control and subcortical sensory motor skills for proprioceptive and vestibular integration, we compare a sample of 116 normal preschoolers with a sample of 31 preschoolers receiving occupational therapeutical treatment. This is done in an experimental design controlled for age (mean:…
Self-reported tolerance influences prefrontal cortex hemodynamics and affective responses.
Tempest, Gavin; Parfitt, Gaynor
2016-02-01
The relationship between cognitive and sensory processes in the brain contributes to the regulation of affective responses (pleasure-displeasure). Exercise can be used to manipulate sensory processes (by increasing physiological demand) in order to examine the role of dispositional traits that may influence an individual's ability to cognitively regulate these responses. With the use of near infrared spectroscopy, in this study we examined the influence of self-reported tolerance upon prefrontal cortex (PFC) hemodynamics and affective responses. The hemodynamic response was measured in individuals with high or low tolerance during an incremental exercise test. Sensory manipulation was standardized against metabolic processes (ventilatory threshold [VT] and respiratory compensation point [RCP]), and affective responses were recorded. The results showed that the high-tolerance group displayed a larger hemodynamic response within the right PFC above VT (which increased above RCP). The low-tolerance group showed a larger hemodynamic response within the left PFC above VT. The high-tolerance group reported a more positive/less negative affective response above VT. These findings provide direct neurophysiological evidence of differential hemodynamic responses within the PFC that are associated with tolerance in the presence of increased physiological demands. This study supports the role of dispositional traits and previous theorizing into the underlying mechanisms (cognitive vs. sensory processes) of affective responses.
Learning to perceptually organize speech signals in native fashion.
Nittrouer, Susan; Lowenstein, Joanna H
2010-03-01
The ability to recognize speech involves sensory, perceptual, and cognitive processes. For much of the history of speech perception research, investigators have focused on the first and third of these, asking how much and what kinds of sensory information are used by normal and impaired listeners, as well as how effective amounts of that information are altered by "top-down" cognitive processes. This experiment focused on perceptual processes, asking what accounts for how the sensory information in the speech signal gets organized. Two types of speech signals processed to remove properties that could be considered traditional acoustic cues (amplitude envelopes and sine wave replicas) were presented to 100 listeners in five groups: native English-speaking (L1) adults, 7-, 5-, and 3-year-olds, and native Mandarin-speaking adults who were excellent second-language (L2) users of English. The L2 adults performed more poorly than L1 adults with both kinds of signals. Children performed more poorly than L1 adults but showed disproportionately better performance for the sine waves than for the amplitude envelopes compared to both groups of adults. Sentence context had similar effects across groups, so variability in recognition was attributed to differences in perceptual organization of the sensory information, presumed to arise from native language experience.
Liepert, Joachim; Büsching, Imke; Sehle, Aida; Schoenfeld, Mircea Ariel
2016-11-22
Motor imagery is used for treatment of motor deficits after stroke. Clinical observations suggested that motor imagery abilities might be reduced in patients with severe sensory deficits. This study investigated the influence of somatosensory deficits on temporal (mental chronometry, MC) and spatial aspects of motor imagery abilities. Stroke patients (n = 70; <6 months after stroke) were subdivided into 3 groups according to their somatosensory functions. Group 1 (n = 31) had no sensory deficits, group 2 (n = 27) had a mild to moderate sensory impairment and group 3 (n = 12) had severe sensory deficits. Patients and a healthy age-matched control group (n = 23) participated in a mental chronometry task (Box and Block Test, BBT) and a mental rotation task (Hand Identification Test, HIT). MC abilities were expressed as a ratio (motor execution time-motor imagery time/motor execution time). MC for the affected hand was significantly impaired in group 3 in comparison to stroke patients of group 1 (p = 0.006), group 2 (p = 0.005) and healthy controls (p < 0.001). For the non-affected hand MC was similar across all groups. Stroke patients had a slower BBT motor execution than healthy controls (p < 0.001), and group 1 executed the task faster than group 3 (p = 0.002). The percentage of correct responses in the HIT was similar for all groups. Severe sensory deficits impair mental chronometry abilities but have no impact on mental rotation abilities. Future studies should explore whether the presence of severe sensory deficits in stroke patients reduces the benefit from motor imagery therapy.
Sensory Changes with Age: Implications for Learning and Research.
ERIC Educational Resources Information Center
Carter, Phillip Dean
1982-01-01
Hearing loss, vision loss, and other physical impairments which are natural parts of the aging process can be compensated for in planning learning for older adults. Such impairments should not be taken as restrictions on the older adult's ability or desire to learn. (SK)
Lefaivre, Shannon C; Almeida, Quincy J
2015-02-01
Impaired sensory processing in Parkinson's disease (PD) has been argued to contribute to balance deficits. Exercises aimed at improving sensory feedback and body awareness have the potential to ameliorate balance deficits in PD. Recently, PD SAFEx™, a sensory and attention focused rehabilitation program, has been shown to improve motor deficits in PD, although balance control has never been evaluated. The objective of this study was to measure the effects of PD SAFEx™ on balance control in PD. Twenty-one participants with mild to moderate idiopathic PD completed 12 weeks of PD SAFEx™ training (three times/week) in a group setting. Prior to training, participants completed a pre-assessment evaluating balance in accordance with an objective, computerized test of balance (modified clinical test of sensory integration and balance (m-CTSIB) and postural stability testing (PST)) protocols. The m-CTSIB was our primary outcome measure, which allowed assessment of balance in both eyes open and closed conditions, thus enabling evaluation of specific sensory contributions to balance improvement. At post-test, a significant interaction between time of assessment and vision condition (p=.014) demonstrated that all participants significantly improved balance control, specifically when eyes were closed. Balance control did not change from pre to post with eyes open. These results provide evidence that PD SAFEx™ is effective at improving the ability to utilize proprioceptive information, resulting in improved balance control in the absence of vision. Enhancing the ability to utilize proprioception for individuals with PD is an important intermediary to improving balance deficits. Copyright © 2015. Published by Elsevier B.V.
Aggelopoulos, Nikolaos C
2015-08-01
Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience. Copyright © 2015 Elsevier Ltd. All rights reserved.
Auditory-prosodic processing in bipolar disorder; from sensory perception to emotion.
Van Rheenen, Tamsyn E; Rossell, Susan L
2013-12-01
Accurate emotion processing is critical to understanding the social world. Despite growing evidence of facial emotion processing impairments in patients with bipolar disorder (BD), comprehensive investigations of emotional prosodic processing is limited. The existing (albeit sparse) literature is inconsistent at best, and confounded by failures to control for the effects of gender or low level sensory-perceptual impairments. The present study sought to address this paucity of research by utilizing a novel behavioural battery to comprehensively investigate the auditory-prosodic profile of BD. Fifty BD patients and 52 healthy controls completed tasks assessing emotional and linguistic prosody, and sensitivity for discriminating tones that deviate in amplitude, duration and pitch. BD patients were less sensitive than their control counterparts in discriminating amplitude and durational cues but not pitch cues or linguistic prosody. They also demonstrated impaired ability to recognize happy intonations; although this was specific to male's with the disorder. The recognition of happy in the patient group was correlated with pitch and amplitude sensitivity in female patients only. The small sample size of patients after stratification by current mood state prevented us from conducting subgroup comparisons between symptomatic, euthymic and control participants to explicitly examine the effects of mood. Our findings indicate the existence of a female advantage for the processing of emotional prosody in BD, specifically for the processing of happy. Although male BD patients were impaired in their ability to recognize happy prosody, this was unrelated to reduced tone discrimination sensitivity. This study indicates the importance of examining both gender and low order sensory perceptual capacity when examining emotional prosody. © 2013 Elsevier B.V. All rights reserved.
Cini, Alessandro; Ortolani, Irene; Zechini, Luigi; Cervo, Rita
2015-02-01
Insect social parasites have to conquer a host colony by overcoming its defensive barriers. In addition to increased fighting abilities, many social parasites evolved sophisticated sensory deception mechanisms to elude host colonies defenses by exploiting host communication channels. Recently, it has been shown that the conspicuous facial markings of a paper wasp social parasite, Polistes sulcifer, decrease the aggressiveness of host foundresses. Two main hypotheses stand as explanations of this phenomenon: visual sensory deception (i.e. the black patterning reduces host aggression by exploiting the host visual communication system) and visual quality assessment (i.e. facial markings reduce aggressiveness as they signal the increased fighting ability of parasites). Through behavioral assays and morphological measurements we tested three predictions resulting from these hypotheses and found no support either for the visual sensory deception or for the quality assessment to explain the reduction in host aggressiveness towards the parasite. Our results suggest that other discrimination processes may explain the observed phenomenon. Copyright © 2014 Elsevier B.V. All rights reserved.
Folmer, Robert L; Billings, Curtis J; Diedesch-Rouse, Anna C; Gallun, Frederick J; Lew, Henry L
2011-10-01
Traumatic brain injuries are often associated with damage to sensory and cognitive processing pathways. Because evoked potentials (EPs) and event-related potentials (ERPs) are generated by neuronal activity, they are useful for assessing the integrity of neural processing capabilities in patients with traumatic brain injury (TBI). This review of somatosensory, auditory and visual ERPs in assessments of TBI patients is provided with the hope that it will be of interest to clinicians and researchers who conduct or interpret electrophysiological evaluations of this population. Because this article reviews ERP studies conducted in three different sensory modalities, involving patients with a wide range of TBI severity ratings and circumstances, it is difficult to provide a coherent summary of findings. However, some general trends emerge that give rise to the following observations and recommendations: 1) bilateral absence of somatosensory evoked potentials (SEPs) is often associated with poor clinical prognosis and outcome; 2) the presence of normal ERPs does not guarantee favorable outcome; 3) ERPs evoked by a variety of sensory stimuli should be used to evaluate TBI patients, especially those with severe injuries; 4) time since onset of injury should be taken into account when conducting ERP evaluations of TBI patients or interpreting results; 5) because sensory deficits (e.g., vision impairment or hearing loss) affect ERP results, tests of peripheral sensory integrity should be conducted in conjunction with ERP recordings; and 6) patients' state of consciousness, physical and cognitive abilities to respond and follow directions should be considered when conducting or interpreting ERP evaluations. Published by Elsevier B.V.
Wiersema, Jan R.; Brass, Marcel
2017-01-01
Abstract Next to social problems, individuals with autism spectrum disorder (ASD) often report severe sensory difficulties. Altered processing of touch is however a stronger mediator of social symptoms’ severity than altered processing of for instance vision or audition. Why is this the case? We reasoned that sensory difficulties may be linked to social problems in ASD through insufficient self-other distinction centred on touch. We investigated by means of EEG whether the brain of adults with ASD adequately signals when a tactile consequence of an observed action does not match own touch, as compared to the brain of matched controls. We employed the action-based somatosensory congruency paradigm. Participants observed a human or wooden hand touching a surface, combined with a tap-like tactile sensation that either matched or mismatched the tactile consequence of the observed movement. The ASD group showed a diminished congruency effect for human hands only in the P3-complex, suggesting difficulties with signalling observed action-based touch of others that does not match own touch experiences. Crucially, this effect reliably correlated with self-reported social and sensory everyday difficulties in ASD. The findings might denote a novel theoretical link between sensory and social impairments in the autism spectrum. PMID:27613781
Impact of Sensory Impairments on Functional Disability in Adults With Arthritis
Fisher, Diana E.; Ward, Michael M.; Hoffman, Howard J.; Li, Chuan-Ming; Cotch, Mary Frances
2015-01-01
Introduction Mobility is reduced in people with sensory impairments and those with arthritis. The joint impact of these conditions may be underappreciated. This study examines the associations between impairments in vision, hearing, and balance and functional ability in adults with versus without arthritis. Methods Using National Health and Nutrition Examination Survey data from 1999–2004, arthritis status, functional ability, and sensory impairments (vision, hearing, and balance) were assessed from self-reported responses by 6,654 individuals aged ≥50 years (mean age, 63.4 years; 46.3% male). Multivariable regression analyses, conducted in 2014, assessed the associations between sensory impairment and arthritis on functional ability and mobility. Results Among study participants, 41.8% reported having arthritis; of these, 27.1%, 44.9%, and 35.1% reported impaired vision, hearing, or balance, respectively. Having multiple sensory impairments was significantly associated with reduced functional ability in people with arthritis; individuals with three sensory impairments reported the highest levels of disability for all functional domains (compared with no impairment; lower extremity mobility, 80.2% vs 39.1%; general physical activities, 94.7% vs 75.9%; activities of daily living, 69.7% vs 27.2%; instrumental activities of daily living, 77.2% vs 37.4%; leisure and social activities, 66.3% vs 30.6%; impaired gait speed, 48.1% vs 16.3%; all p<0.001). Importantly, visual deficits, in combination with arthritis, had the greatest impact on mobility, with odds of impaired mobility at least twice as high as for individuals without arthritis. Conclusions Addressing sensory deficits, especially difficulties with vision, may improve functional ability, which may be particularly helpful for adults with arthritis. PMID:26410186
Effective Mathematics Strategies for Pre-School Children with Autism
ERIC Educational Resources Information Center
Su, Hui Fang Huang; Lai, Leanne; Rivera, Herminia Janet
2012-01-01
Autism is a neural development disorder which impairs one's ability to socialise, communicate, process sensory information, and those with autism experience restricted interests and repetitive behaviours. These signs all begin before three years of age and the child may have difficulty with organising their responses, with inhibition of repetitive…
ERIC Educational Resources Information Center
Wakefield, Beverly
The purpose of this booklet is to provide a summary of perception research and to suggest practical applications which will improve students' and teachers' communication ability. The "theory" section of this work is devoted to the definition of perception as a selective process, dependent on such factors as acuity of sensory equipment, physical…
Demopoulos, Carly; Hopkins, Joyce; Kopald, Brandon E; Paulson, Kim; Doyle, Lauren; Andrews, Whitney E; Lewine, Jeffrey David
2015-11-01
The primary aim of this study was to examine whether there is an association between magnetoencephalography-based (MEG) indices of basic cortical auditory processing and vocal affect recognition (VAR) ability in individuals with autism spectrum disorder (ASD). MEG data were collected from 25 children/adolescents with ASD and 12 control participants using a paired-tone paradigm to measure quality of auditory physiology, sensory gating, and rapid auditory processing. Group differences were examined in auditory processing and vocal affect recognition ability. The relationship between differences in auditory processing and vocal affect recognition deficits was examined in the ASD group. Replicating prior studies, participants with ASD showed longer M1n latencies and impaired rapid processing compared with control participants. These variables were significantly related to VAR, with the linear combination of auditory processing variables accounting for approximately 30% of the variability after controlling for age and language skills in participants with ASD. VAR deficits in ASD are typically interpreted as part of a core, higher order dysfunction of the "social brain"; however, these results suggest they also may reflect basic deficits in auditory processing that compromise the extraction of socially relevant cues from the auditory environment. As such, they also suggest that therapeutic targeting of sensory dysfunction in ASD may have additional positive implications for other functional deficits. (c) 2015 APA, all rights reserved).
A measure for assessing the effects of audiovisual speech integration.
Altieri, Nicholas; Townsend, James T; Wenger, Michael J
2014-06-01
We propose a measure of audiovisual speech integration that takes into account accuracy and response times. This measure should prove beneficial for researchers investigating multisensory speech recognition, since it relates to normal-hearing and aging populations. As an example, age-related sensory decline influences both the rate at which one processes information and the ability to utilize cues from different sensory modalities. Our function assesses integration when both auditory and visual information are available, by comparing performance on these audiovisual trials with theoretical predictions for performance under the assumptions of parallel, independent self-terminating processing of single-modality inputs. We provide example data from an audiovisual identification experiment and discuss applications for measuring audiovisual integration skills across the life span.
Corollary discharge across the animal kingdom
Crapse, Trinity B.; Sommer, Marc A.
2016-01-01
Our movements can hinder our ability to sense the world. Movements can induce sensory input (for example, when you hit something) that is indistinguishable from the input that is caused by external agents (for example, when something hits you). It is critical for nervous systems to be able to differentiate between these two scenarios. A ubiquitous strategy is to route copies of movement commands to sensory structures. These signals, which are referred to as corollary discharge (CD), influence sensory processing in myriad ways. Here we review the CD circuits that have been uncovered by neurophysiological studies and suggest a functional taxonomic classification of CD across the animal kingdom. This broad understanding of CD circuits lays the groundwork for more challenging studies that combine neurophysiology and psychophysics to probe the role of CD in perception. PMID:18641666
Corollary discharge across the animal kingdom.
Crapse, Trinity B; Sommer, Marc A
2008-08-01
Our movements can hinder our ability to sense the world. Movements can induce sensory input (for example, when you hit something) that is indistinguishable from the input that is caused by external agents (for example, when something hits you). It is critical for nervous systems to be able to differentiate between these two scenarios. A ubiquitous strategy is to route copies of movement commands to sensory structures. These signals, which are referred to as corollary discharge (CD), influence sensory processing in myriad ways. Here we review the CD circuits that have been uncovered by neurophysiological studies and suggest a functional taxonomic classification of CD across the animal kingdom. This broad understanding of CD circuits lays the groundwork for more challenging studies that combine neurophysiology and psychophysics to probe the role of CD in perception.
König, Sabine U; Schumann, Frank; Keyser, Johannes; Goeke, Caspar; Krause, Carina; Wache, Susan; Lytochkin, Aleksey; Ebert, Manuel; Brunsch, Vincent; Wahn, Basil; Kaspar, Kai; Nagel, Saskia K; Meilinger, Tobias; Bülthoff, Heinrich; Wolbers, Thomas; Büchel, Christian; König, Peter
2016-01-01
Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation.
Schumann, Frank; Keyser, Johannes; Goeke, Caspar; Krause, Carina; Wache, Susan; Lytochkin, Aleksey; Ebert, Manuel; Brunsch, Vincent; Wahn, Basil; Kaspar, Kai; Nagel, Saskia K.; Meilinger, Tobias; Bülthoff, Heinrich; Wolbers, Thomas; Büchel, Christian; König, Peter
2016-01-01
Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation. PMID:27959914
Scarbel, Lucie; Beautemps, Denis; Schwartz, Jean-Luc; Sato, Marc
2017-07-01
Speech communication can be viewed as an interactive process involving a functional coupling between sensory and motor systems. One striking example comes from phonetic convergence, when speakers automatically tend to mimic their interlocutor's speech during communicative interaction. The goal of this study was to investigate sensory-motor linkage in speech production in postlingually deaf cochlear implanted participants and normal hearing elderly adults through phonetic convergence and imitation. To this aim, two vowel production tasks, with or without instruction to imitate an acoustic vowel, were proposed to three groups of young adults with normal hearing, elderly adults with normal hearing and post-lingually deaf cochlear-implanted patients. Measure of the deviation of each participant's f 0 from their own mean f 0 was measured to evaluate the ability to converge to each acoustic target. showed that cochlear-implanted participants have the ability to converge to an acoustic target, both intentionally and unintentionally, albeit with a lower degree than young and elderly participants with normal hearing. By providing evidence for phonetic convergence and speech imitation, these results suggest that, as in young adults, perceptuo-motor relationships are efficient in elderly adults with normal hearing and that cochlear-implanted adults recovered significant perceptuo-motor abilities following cochlear implantation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Demopoulos, Carly; Yu, Nina; Tripp, Jennifer; Mota, Nayara; Brandes-Aitken, Anne N.; Desai, Shivani S.; Hill, Susanna S.; Antovich, Ashley D.; Harris, Julia; Honma, Susanne; Mizuiri, Danielle; Nagarajan, Srikantan S.; Marco, Elysa J.
2017-01-01
This study compared magnetoencephalographic (MEG) imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18), those with sensory processing dysfunction (SPD; N = 13) who do not meet ASD criteria, and typically developing control (TDC; N = 19) participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain. PMID:28603492
The Visual Arts and Qualitative Research: Diverse and Emerging Voices.
ERIC Educational Resources Information Center
Stephen, Veronica P.
The arts are basic educational processes that involve students with different abilities and from differing age groups in sensory perception. This perception, augmented by the use of art compositions, establishes a critical dialogue between the medium and the viewer. What one views, sees, and observes in an art piece serves to create a…
Center for the Study of Rhythmic Processes
1990-12-01
Mathematical modeling Neuromodulators . Regaerti-n Sensory feedback -9. A35ACT (Convtinue an reverse if necesusy and4 4onTify by WJoo number) The Center for...activation and movement, and the ability of the network to regenerate. Work on the STG included results on neuromodulators that change the output of the
Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony
2009-01-01
It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…
Deliberate Laterality Practice Facilitates Sensory-Motor Processing in Developing Children
ERIC Educational Resources Information Center
Pedersen, Scott J.
2014-01-01
Background: The innate ability for typically developing children to attain developmental motor milestones early in life has been a thoroughly researched area of inquiry. Nonetheless, as children grow and are required to perform more complex motor skills in order to experience success in physical activity and sport pursuits, the range of…
Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel
2017-02-01
Next to social problems, individuals with autism spectrum disorder (ASD) often report severe sensory difficulties. Altered processing of touch is however a stronger mediator of social symptoms' severity than altered processing of for instance vision or audition. Why is this the case? We reasoned that sensory difficulties may be linked to social problems in ASD through insufficient self-other distinction centred on touch. We investigated by means of EEG whether the brain of adults with ASD adequately signals when a tactile consequence of an observed action does not match own touch, as compared to the brain of matched controls. We employed the action-based somatosensory congruency paradigm. Participants observed a human or wooden hand touching a surface, combined with a tap-like tactile sensation that either matched or mismatched the tactile consequence of the observed movement. The ASD group showed a diminished congruency effect for human hands only in the P3-complex, suggesting difficulties with signalling observed action-based touch of others that does not match own touch experiences. Crucially, this effect reliably correlated with self-reported social and sensory everyday difficulties in ASD. The findings might denote a novel theoretical link between sensory and social impairments in the autism spectrum. © The Author (2016). Published by Oxford University Press.
Cognitive domains that predict time to diagnosis in prodromal Huntington disease.
Harrington, Deborah Lynn; Smith, Megan M; Zhang, Ying; Carlozzi, Noelle E; Paulsen, Jane S
2012-06-01
Prodromal Huntington's disease (prHD) is associated with a myriad of cognitive changes but the domains that best predict time to clinical diagnosis have not been studied. This is a notable gap because some domains may be more sensitive to cognitive decline, which would inform clinical trials. The present study sought to characterise cognitive domains underlying a large test battery and for the first time, evaluate their ability to predict time to diagnosis. Participants included gene negative and gene positive prHD participants who were enrolled in the PREDICT-HD study. The CAG-age product (CAP) score was the measure of an individual's genetic signature. A factor analysis of 18 tests was performed to identify sets of measures or latent factors that elucidated core constructs of tests. Factor scores were then fit to a survival model to evaluate their ability to predict time to diagnosis. Six factors were identified: (1) speed/inhibition, (2) verbal working memory, (3) motor planning/speed, (4) attention-information integration, (5) sensory-perceptual processing and (6) verbal learning/memory. Factor scores were sensitive to worsening of cognitive functioning in prHD, typically more so than performances on individual tests comprising the factors. Only the motor planning/speed and sensory-perceptual processing factors predicted time to diagnosis, after controlling for CAP scores and motor symptoms. Conclusions The results suggest that motor planning/speed and sensory-perceptual processing are important markers of disease prognosis. The findings also have implications for using composite indices of cognition in preventive Huntington's disease trials where they may be more sensitive than individual tests.
Isolation of sphere-forming stem cells from the mouse inner ear.
Oshima, Kazuo; Senn, Pascal; Heller, Stefan
2009-01-01
The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.
Dolivo, Vassilissa; Taborsky, Michael
2017-05-01
Sensory modalities individuals use to obtain information from the environment differ among conspecifics. The relative contributions of genetic divergence and environmental plasticity to this variance remain yet unclear. Numerous studies have shown that specific sensory enrichments or impoverishments at the postnatal stage can shape neural development, with potential lifelong effects. For species capable of adjusting to novel environments, specific sensory stimulation at a later life stage could also induce specific long-lasting behavioral effects. To test this possibility, we enriched young adult Norway rats with either visual, auditory, or olfactory cues. Four to 8 months after the enrichment period we tested each rat for their learning ability in 3 two-choice discrimination tasks, involving either visual, auditory, or olfactory stimulus discrimination, in a full factorial design. No sensory modality was more relevant than others for the proposed task per se, but rats performed better when tested in the modality for which they had been enriched. This shows that specific environmental conditions encountered during early adulthood have specific long-lasting effects on the learning abilities of rats. Furthermore, we disentangled the relative contributions of genetic and environmental causes of the response. The reaction norms of learning abilities in relation to the stimulus modality did not differ between families, so interindividual divergence was mainly driven by environmental rather than genetic factors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Retinoid-Related Orphan Receptor β and Transcriptional Control of Neuronal Differentiation.
Liu, Hong; Aramaki, Michihiko; Fu, Yulong; Forrest, Douglas
2017-01-01
The ability to generate neuronal diversity is central to the function of the nervous system. Here we discuss the key neurodevelopmental roles of retinoid-related orphan receptor β (RORβ) encoded by the Rorb (Nr1f2) gene. Recent studies have reported loss of function of the human RORB gene in cases of familial epilepsy and intellectual disability. Principal sites of expression of the Rorb gene in model species include sensory organs, the spinal cord, and brain regions that process sensory and circadian information. Genetic analyses in mice have indicated functions in circadian behavior, vision, and, at the cellular level, the differentiation of specific neuronal cell types. Studies in the retina and sensory areas of the cerebral cortex suggest that this orphan nuclear receptor acts at decisive steps in transcriptional hierarchies that determine neuronal diversity. 2017 Published by Elsevier Inc.
Sensation-to-Cognition Cortical Streams in Attention-Deficit/Hyperactivity Disorder
Carmona, Susana; Hoekzema, Elseline; Castellanos, Francisco X.; García-García, David; Lage-Castellanos, Agustín; Dijk, Koene R.A.Van; Navas-Sánchez, Francisco J.; Martínez, Kenia; Desco, Manuel; Sepulcre, Jorge
2015-01-01
We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120 children with ADHD and 120 age-matched typically developing children (TDC). Starting in unimodal primary cortex—visual, auditory, and somatosensory—we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link-step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention-regulatory areas is reduced. Third, at subsequent link-step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication-naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD. PMID:25821110
Bigand, Emmanuel; Delbé, Charles; Poulin-Charronnat, Bénédicte; Leman, Marc; Tillmann, Barbara
2014-01-01
During the last decade, it has been argued that (1) music processing involves syntactic representations similar to those observed in language, and (2) that music and language share similar syntactic-like processes and neural resources. This claim is important for understanding the origin of music and language abilities and, furthermore, it has clinical implications. The Western musical system, however, is rooted in psychoacoustic properties of sound, and this is not the case for linguistic syntax. Accordingly, musical syntax processing could be parsimoniously understood as an emergent property of auditory memory rather than a property of abstract processing similar to linguistic processing. To support this view, we simulated numerous empirical studies that investigated the processing of harmonic structures, using a model based on the accumulation of sensory information in auditory memory. The simulations revealed that most of the musical syntax manipulations used with behavioral and neurophysiological methods as well as with developmental and cross-cultural approaches can be accounted for by the auditory memory model. This led us to question whether current research on musical syntax can really be compared with linguistic processing. Our simulation also raises methodological and theoretical challenges to study musical syntax while disentangling the confounded low-level sensory influences. In order to investigate syntactic abilities in music comparable to language, research should preferentially use musical material with structures that circumvent the tonal effect exerted by psychoacoustic properties of sounds. PMID:24936174
Behavioral training promotes multiple adaptive processes following acute hearing loss.
Keating, Peter; Rosenior-Patten, Onayomi; Dahmen, Johannes C; Bell, Olivia; King, Andrew J
2016-03-23
The brain possesses a remarkable capacity to compensate for changes in inputs resulting from a range of sensory impairments. Developmental studies of sound localization have shown that adaptation to asymmetric hearing loss can be achieved either by reinterpreting altered spatial cues or by relying more on those cues that remain intact. Adaptation to monaural deprivation in adulthood is also possible, but appears to lack such flexibility. Here we show, however, that appropriate behavioral training enables monaurally-deprived adult humans to exploit both of these adaptive processes. Moreover, cortical recordings in ferrets reared with asymmetric hearing loss suggest that these forms of plasticity have distinct neural substrates. An ability to adapt to asymmetric hearing loss using multiple adaptive processes is therefore shared by different species and may persist throughout the lifespan. This highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders.
Wagenaar, Daniel A
2017-01-01
Studies of neuronal network emergence during sensory processing and motor control are greatly facilitated by technologies that allow us to simultaneously record the membrane potential dynamics of a large population of neurons in single cell resolution. To achieve whole-brain recording with the ability to detect both small synaptic potentials and action potentials, we developed a voltage-sensitive dye (VSD) imaging technique based on a double-sided microscope that can image two sides of a nervous system simultaneously. We applied this system to the segmental ganglia of the medicinal leech. Double-sided VSD imaging enabled simultaneous recording of membrane potential events from almost all of the identifiable neurons. Using data obtained from double-sided VSD imaging, we analyzed neuronal dynamics in both sensory processing and generation of behavior and constructed functional maps for identification of neurons contributing to these processes. PMID:28944754
The development of emotion perception in face and voice during infancy.
Grossmann, Tobias
2010-01-01
Interacting with others by reading their emotional expressions is an essential social skill in humans. How this ability develops during infancy and what brain processes underpin infants' perception of emotion in different modalities are the questions dealt with in this paper. Literature review. The first part provides a systematic review of behavioral findings on infants' developing emotion-reading abilities. The second part presents a set of new electrophysiological studies that provide insights into the brain processes underlying infants' developing abilities. Throughout, evidence from unimodal (face or voice) and multimodal (face and voice) processing of emotion is considered. The implications of the reviewed findings for our understanding of developmental models of emotion processing are discussed. The reviewed infant data suggest that (a) early in development, emotion enhances the sensory processing of faces and voices, (b) infants' ability to allocate increased attentional resources to negative emotional information develops earlier in the vocal domain than in the facial domain, and (c) at least by the age of 7 months, infants reliably match and recognize emotional information across face and voice.
Huisingh, Carrie; McGwin, Gerald; Owsley, Cynthia
2017-01-01
Background Many studies on vision and driving cessation have relied on measures of sensory function, which are insensitive to the higher order cognitive aspects of visual processing. The purpose of this study was to examine the association between traditional measures of visual sensory function and higher order visual processing skills with incident driving cessation in a population-based sample of older drivers. Methods Two thousand licensed drivers aged ≥70 were enrolled and followed-up for three years. Tests for central vision and visual processing were administered at baseline and included visual acuity, contrast sensitivity, sensitivity in the driving visual field, visual processing speed (Useful Field of View (UFOV) Subtest 2 and Trails B), and spatial ability measured by the Visual Closure Subtest of the Motor-free Visual Perception Test. Participants self-reported the month and year of driving cessation and provided a reason for cessation. Cox proportional hazards models were used to generate crude and adjusted hazard ratios with 95% confidence intervals between visual functioning characteristics and risk of driving cessation over a three-year period. Results During the study period, 164 participants stopped driving which corresponds to a cumulative incidence of 8.5%. Impaired contrast sensitivity, visual fields, visual processing speed (UFOVand Trails B), and spatial ability were significant risk factors for subsequent driving cessation after adjusting for age, gender, marital status, number of medical conditions, and miles driven. Visual acuity impairment was not associated with driving cessation. Medical problems (63%), specifically musculoskeletal and neurological problems, as well as vision problems (17%) were cited most frequently as the reason for driving cessation. Conclusion Assessment of cognitive and visual functioning can provide useful information about subsequent risk of driving cessation among older drivers. In addition, a variety of factors, not just vision, influenced the decision to stop driving and may be amenable to intervention. PMID:27353969
Component processes underlying future thinking.
D'Argembeau, Arnaud; Ortoleva, Claudia; Jumentier, Sabrina; Van der Linden, Martial
2010-09-01
This study sought to investigate the component processes underlying the ability to imagine future events, using an individual-differences approach. Participants completed several tasks assessing different aspects of future thinking (i.e., fluency, specificity, amount of episodic details, phenomenology) and were also assessed with tasks and questionnaires measuring various component processes that have been hypothesized to support future thinking (i.e., executive processes, visual-spatial processing, relational memory processing, self-consciousness, and time perspective). The main results showed that executive processes were correlated with various measures of future thinking, whereas visual-spatial processing abilities and time perspective were specifically related to the number of sensory descriptions reported when specific future events were imagined. Furthermore, individual differences in self-consciousness predicted the subjective feeling of experiencing the imagined future events. These results suggest that future thinking involves a collection of processes that are related to different facets of future-event representation.
Fluorescence fingerprint as an instrumental assessment of the sensory quality of tomato juices.
Trivittayasil, Vipavee; Tsuta, Mizuki; Imamura, Yoshinori; Sato, Tsuneo; Otagiri, Yuji; Obata, Akio; Otomo, Hiroe; Kokawa, Mito; Sugiyama, Junichi; Fujita, Kaori; Yoshimura, Masatoshi
2016-03-15
Sensory analysis is an important standard for evaluating food products. However, as trained panelists and time are required for the process, the potential of using fluorescence fingerprint as a rapid instrumental method to approximate sensory characteristics was explored in this study. Thirty-five out of 44 descriptive sensory attributes were found to show a significant difference between samples (analysis of variance test). Principal component analysis revealed that principal component 1 could capture 73.84 and 75.28% variance for aroma category and combined flavor and taste category respectively. Fluorescence fingerprints of tomato juices consisted of two visible peaks at excitation/emission wavelengths of 290/350 and 315/425 nm and a long narrow emission peak at 680 nm. The 680 nm peak was only clearly observed in juices obtained from tomatoes cultivated to be eaten raw. The ability to predict overall sensory profiles was investigated by using principal component 1 as a regression target. Fluorescence fingerprint could predict principal component 1 of both aroma and combined flavor and taste with a coefficient of determination above 0.8. The results obtained in this study indicate the potential of using fluorescence fingerprint as an instrumental method for assessing sensory characteristics of tomato juices. © 2015 Society of Chemical Industry.
Adolescents' Self-Regulation Development via the Sensory Room System
ERIC Educational Resources Information Center
Kalimullin, Aydar M.; Kuvaldina, Elana A.; Koinova-Zoellner, Julia
2016-01-01
The urgency of the issue stated in this article is caused by the need for mastering skills and patterns of self-regulation when being an adolescent since this time is sensitive for developing processes of personal understanding and evolution. Thus, mastering skills and patterns of self-regulation as a necessary part of the whole ability of…
ERIC Educational Resources Information Center
Duerden, Emma G.; Oatley, Hannah K.; Mak-Fan, Kathleen M.; McGrath, Patricia A.; Taylor, Margot J.; Szatmari, Peter; Roberts, S. Wendy
2012-01-01
While self-injurious behaviors (SIB) can cause significant morbidity for children with autism spectrum disorders (ASD), little is known about its associated risk factors. We assessed 7 factors that may influence self-injury in a large cohort of children with ASD: (a) atypical sensory processing; (b) impaired cognitive ability; (c) abnormal…
[Characterization of stem cells derived from the neonatal auditory sensory epithelium].
Diensthuber, M; Heller, S
2010-11-01
In contrast to regenerating hair cell-bearing organs of nonmammalian vertebrates the adult mammalian organ of Corti appears to have lost its ability to maintain stem cells. The result is a lack of regenerative ability and irreversible hearing loss following auditory hair cell death. Unexpectedly, the neonatal auditory sensory epithelium has recently been shown to harbor cells with stem cell features. The origin of these cells within the cochlea's sensory epithelium is unknown. We applied a modified neurosphere assay to identify stem cells within distinct subregions of the neonatal mouse auditory sensory epithelium. Sphere cells were characterized by multiple markers and morphologic techniques. Our data reveal that both the greater and the lesser epithelial ridge contribute to the sphere-forming stem cell population derived from the auditory sensory epithelium. These self-renewing sphere cells express a variety of markers for neural and otic progenitor cells and mature inner ear cell types. Stem cells can be isolated from specific regions of the auditory sensory epithelium. The distinct features of these cells imply a potential application in the development of a cell replacement therapy to regenerate the damaged sensory epithelium.
Sensory Discrimination, Working Memory and Intelligence in 9-Year-Old and 11-Year-Old Children
ERIC Educational Resources Information Center
Voelke, Annik E.; Troche, Stefan J.; Rammsayer, Thomas H.; Wagner, Felicitas L.; Roebers, Claudia M.
2013-01-01
More than a century ago, Galton and Spearman suggested that there was a functional relationship between sensory discrimination ability and intelligence. Studies have since been able to confirm a close relationship between general discrimination ability (GDA) and IQ. The aim of the present study was to assess whether this strong relationship…
Palavecino Prpich, Noelia Z; Castro, Marcela P; Cayré, María E; Garro, Oscar A; Vignolo, Graciela M
2015-01-01
Lactic acid bacteria (LAB) and coagulase negative cocci (CNC) were isolated from artisanal dry sausages sampled from the northeastern region of Chaco, Argentina. In order to evaluate their performance in situ and considering technological features of the isolated strains, two mixed selected autochthonous starter cultures (SAS) were designed: (i) SAS-1 (Lactobacillus sakei 487 + Staphylococcus vitulinus C2) and (ii) SAS-2 (L. sakei 442 + S. xylosus C8). Cultures were introduced into dry sausage manufacturing process at a local small-scale facility. Microbiological and physicochemical parameters were monitored throughout fermentation and ripening periods, while sensory attributes of the final products were evaluated by a trained panel. Lactic acid bacteria revealed their ability to colonize and adapt properly to the meat matrix, inhibiting the growth of spontaneous microflora and enhancing safety and hygienic profile of the products. Both SAS showed a beneficial effect on lipid oxidation and texture of the final products. Staphylococcus vitulinus C2, from SAS-1, promoted a better redness of the final product. Sensory profile revealed that SAS addition preserved typical sensory attributes. Introduction of these cultures could provide an additional tool to standardize manufacturing processes aiming to enhance safety and quality while keeping typical sensory attributes of regional dry fermented sausages.
Cullen, Kathleen E; Brooks, Jessica X
2015-02-01
During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new relationships would have important implications for understanding how responses to passive stimulation endure despite the cerebellum's ability to learn new relationships between motor commands and sensory feedback.
Cools, A R
1980-10-01
The purpose of this study was to detect the behavioural effect of drug-induced changes in the neostriatal dopaminergic activity upon the degree of intrinsic (self-generated) and extrinsic (externally produced) constraints on the selection of behavioural patterns in rats. Both systemic and neostriatal injections of extremely low doses of apomorphine and haloperidol were used to change the neostriatal dopaminergic activity. Behavioural changes were observed in (a) an open-field test, (b) a so-called 'swimming without escape' test, (c) a so-called 'swimming with escape' test, and (d) a test to detect deficiencies in sensory, motor and sensorimotor capacities required to perform both swimming tests. Evidence is found that the neostriatum, especially the neostriatal, dopaminergic activity determines the animal's ability to select the best strategy in a stressful situation by modifying the process of switching strategies under pressure of factors intrinsic to the organism: neither sensory neglect nor inability to initiate voluntary movements underlay the observed phenomena. It is suggested that the neostriatum determines the individual flexibility to cope with available sensory information.
ERIC Educational Resources Information Center
Pa, Judy; Hickok, Gregory
2008-01-01
Several sensory-motor integration regions have been identified in parietal cortex, which appear to be organized around motor-effectors (e.g., eyes, hands). We investigated whether a sensory-motor integration area might exist for the human vocal tract. Speech requires extensive sensory-motor integration, as does other abilities such as vocal…
Sensory Integration Used with Children with Asperger's Syndrome
ERIC Educational Resources Information Center
Smith, Analisa L.
2010-01-01
Sensory Integration Program on Children with Asperger's Syndrome This literature review will document the effects of a parent implemented Sensory Integration Program upon children diagnosed with Asperger's Syndrome in order to discern its influence upon these children's overall ability to attend to learning and social development. The infrequency…
Working Together: Computers and People with Sensory Impairments.
ERIC Educational Resources Information Center
Washington Univ., Seattle.
This brief paper considers ways in which people with sensory impairments can benefit from the assistive technology available with computers. Assistive technology practitioners are urged not to focus on the disability, but on the individual's abilities and the tasks to be performed. Explanations of the major sensory disability areas precedes…
Diensthuber, Marc; Oshima, Kazuo; Heller, Stefan
2009-06-01
Nonmammalian vertebrates regenerate lost sensory hair cells by means of asymmetric division of supporting cells. Inner ear or lateral line supporting cells in birds, amphibians, and fish consequently serve as bona fide stem cells resulting in high regenerative capacity of hair cell-bearing organs. Hair cell regeneration does not happen in the mammalian cochlea, but cells with proliferative capacity can be isolated from the neonatal cochlea. These cells have the ability to form clonal floating colonies, so-called spheres, when cultured in nonadherent conditions. We noticed that the sphere population derived from mouse cochlear sensory epithelium cells was heterogeneous, consisting of morphologically distinct sphere types, hereby classified as solid, transitional, and hollow. Cochlear sensory epithelium-derived stem/progenitor cells initially give rise to small solid spheres, which subsequently transition into hollow spheres, a change that is accompanied by epithelial differentiation of the majority of sphere cells. Only solid spheres, and to a lesser extent, transitional spheres, appeared to harbor self-renewing stem cells, whereas hollow spheres could not be consistently propagated. Solid spheres contained significantly more rapidly cycling Pax-2-expressing presumptive otic progenitor cells than hollow spheres. Islet-1, which becomes upregulated in nascent sensory patches, was also more abundant in solid than in hollow spheres. Likewise, hair cell-like cells, characterized by the expression of multiple hair cell markers, differentiated in significantly higher numbers in cell populations derived from solid spheres. We conclude that cochlear sensory epithelium cell populations initially give rise to small solid spheres that have self-renewing capacity before they subsequently convert into hollow spheres, a process that is accompanied by loss of stemness and reduced ability to spontaneously give rise to hair cell-like cells. Solid spheres might, therefore, represent the most suitable sphere type for cell-based assays or animal model transplantation studies aimed at development of cell replacement therapies.
Sensation-to-cognition cortical streams in attention-deficit/hyperactivity disorder.
Carmona, Susana; Hoekzema, Elseline; Castellanos, Francisco X; García-García, David; Lage-Castellanos, Agustín; Van Dijk, Koene R A; Navas-Sánchez, Francisco J; Martínez, Kenia; Desco, Manuel; Sepulcre, Jorge
2015-07-01
We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120 children with ADHD and 120 age-matched typically developing children (TDC). Starting in unimodal primary cortex-visual, auditory, and somatosensory-we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link-step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention-regulatory areas is reduced. Third, at subsequent link-step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication-naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD. © 2015 Wiley Periodicals, Inc.
Enhanced Chemosensory Detection of Negative Emotions in Congenital Blindness
Iversen, Katrine D.; Ptito, Maurice; Møller, Per; Kupers, Ron
2015-01-01
It is generally acknowledged that congenitally blind individuals develop superior sensory abilities in order to compensate for their lack of vision. Substantial research has been done on somatosensory and auditory sensory information processing of the blind. However, relatively little information is available about compensatory plasticity in the olfactory domain. Although previous studies indicate that blind individuals have superior olfactory abilities, no studies so far have investigated their sense of smell in relation to social and affective communication. The current study compares congenitally blind and normal sighted individuals in their ability to discriminate and identify emotions from body odours. A group of 14 congenitally blind and 14 age- and sex-matched sighted control subjects participated in the study. We compared participants' abilities to detect and identify by smelling sweat from donors who had been watching excerpts from emotional movies showing amusement, fear, disgust, or sexual arousal. Our results show that congenitally blind subjects outperformed sighted controls in identifying fear from male donors. In addition, there was a strong tendency that blind individuals were also better in detecting disgust. Our findings reveal that congenitally blind individuals are better at identifying ecologically important emotions and provide new insights into the mechanisms of social and affective communication in blindness. PMID:25878902
Perceptual Literacy and the Construction of Significant Meanings within Art Education
ERIC Educational Resources Information Center
Cerkez, Beatriz Tomsic
2014-01-01
In order to verify how important the ability to process visual images and sounds in a holistic way can be, we developed an experiment based on the production and reception of an art work that was conceived as a multi-sensorial experience and implied a complex understanding of visual and auditory information. We departed from the idea that to…
Spatial Disorientation in Flight: Current Problems
1980-10-01
intimately involved with various sensory, cognitive , and emotional processes of habituation (Guedry,1971). While repeated exposure to patterns of...stimuli normally involved in orientation and the failure of a learned cognitive skill to compensate for mismatched signals. Recently, a new concept has...It is well known that under atypical stimulation, unusual environmental conditions, or stress, the first abilities to be impaired are learned cognitive
Phonological Processing of Second Language Phonemes: A Selective Deficit in a Bilingual Aphasic.
ERIC Educational Resources Information Center
Eviatar, Zohar; Leikin, Mark; Ibrahim, Raphiq
1999-01-01
A case study of a Russian-Hebrew bilingual woman with transcortical sensory aphasia showed that overall, aphasic symptoms were similar in the two languages, with Hebrew somewhat more impaired. The woman revealed a difference in her ability to perceive phonemes in the context of Hebrew words that depended on whether they were presented in a Russian…
Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability.
Truong, D T; Che, A; Rendall, A R; Szalkowski, C E; LoTurco, J J; Galaburda, A M; Holly Fitch, R
2014-11-01
Dyslexia is a complex neurodevelopmental disorder characterized by impaired reading ability despite normal intellect, and is associated with specific difficulties in phonological and rapid auditory processing (RAP), visual attention and working memory. Genetic variants in Doublecortin domain-containing protein 2 (DCDC2) have been associated with dyslexia, impairments in phonological processing and in short-term/working memory. The purpose of this study was to determine whether sensory and behavioral impairments can result directly from mutation of the Dcdc2 gene in mice. Several behavioral tasks, including a modified pre-pulse inhibition paradigm (to examine auditory processing), a 4/8 radial arm maze (to assess/dissociate working vs. reference memory) and rotarod (to examine sensorimotor ability and motor learning), were used to assess the effects of Dcdc2 mutation. Behavioral results revealed deficits in RAP, working memory and reference memory in Dcdc2(del2/del2) mice when compared with matched wild types. Current findings parallel clinical research linking genetic variants of DCDC2 with specific impairments of phonological processing and memory ability. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
NASA Technical Reports Server (NTRS)
Lewis, Richard F.
2003-01-01
Accurate motor control requires adaptive processes that correct for gradual and rapid perturbations in the properties of the controlled object. The ability to quickly switch between different movement synergies using sensory cues, referred to as context-dependent adaptation, is a subject of considerable interest at present. The potential function of the cerebellum in context-dependent adaptation remains uncertain, but the data reviewed below suggest that it may play a fundamental role in this process.
Hearing shapes our perception of time: temporal discrimination of tactile stimuli in deaf people.
Bolognini, Nadia; Cecchetto, Carlo; Geraci, Carlo; Maravita, Angelo; Pascual-Leone, Alvaro; Papagno, Costanza
2012-02-01
Confronted with the loss of one type of sensory input, we compensate using information conveyed by other senses. However, losing one type of sensory information at specific developmental times may lead to deficits across all sensory modalities. We addressed the effect of auditory deprivation on the development of tactile abilities, taking into account changes occurring at the behavioral and cortical level. Congenitally deaf and hearing individuals performed two tactile tasks, the first requiring the discrimination of the temporal duration of touches and the second requiring the discrimination of their spatial length. Compared with hearing individuals, deaf individuals were impaired only in tactile temporal processing. To explore the neural substrate of this difference, we ran a TMS experiment. In deaf individuals, the auditory association cortex was involved in temporal and spatial tactile processing, with the same chronometry as the primary somatosensory cortex. In hearing participants, the involvement of auditory association cortex occurred at a later stage and selectively for temporal discrimination. The different chronometry in the recruitment of the auditory cortex in deaf individuals correlated with the tactile temporal impairment. Thus, early hearing experience seems to be crucial to develop an efficient temporal processing across modalities, suggesting that plasticity does not necessarily result in behavioral compensation.
A neural network model of normal and abnormal auditory information processing.
Du, X; Jansen, B H
2011-08-01
The ability of the brain to attenuate the response to irrelevant sensory stimulation is referred to as sensory gating. A gating deficiency has been reported in schizophrenia. To study the neural mechanisms underlying sensory gating, a neuroanatomically inspired model of auditory information processing has been developed. The mathematical model consists of lumped parameter modules representing the thalamus (TH), the thalamic reticular nucleus (TRN), auditory cortex (AC), and prefrontal cortex (PC). It was found that the membrane potential of the pyramidal cells in the PC module replicated auditory evoked potentials, recorded from the scalp of healthy individuals, in response to pure tones. Also, the model produced substantial attenuation of the response to the second of a pair of identical stimuli, just as seen in actual human experiments. We also tested the viewpoint that schizophrenia is associated with a deficit in prefrontal dopamine (DA) activity, which would lower the excitatory and inhibitory feedback gains in the AC and PC modules. Lowering these gains by less than 10% resulted in model behavior resembling the brain activity seen in schizophrenia patients, and replicated the reported gating deficits. The model suggests that the TRN plays a critical role in sensory gating, with the smaller response to a second tone arising from a reduction in inhibition of TH by the TRN. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sensory discrimination and intelligence: testing Spearman's other hypothesis.
Deary, Ian J; Bell, P Joseph; Bell, Andrew J; Campbell, Mary L; Fazal, Nicola D
2004-01-01
At the centenary of Spearman's seminal 1904 article, his general intelligence hypothesis remains one of the most influential in psychology. Less well known is the article's other hypothesis that there is "a correspondence between what may provisionally be called 'General Discrimination' and 'General Intelligence' which works out with great approximation to one or absoluteness" (Spearman, 1904, p. 284). Studies that do not find high correlations between psychometric intelligence and single sensory discrimination tests do not falsify this hypothesis. This study is the first directly to address Spearman's general intelligence-general sensory discrimination hypothesis. It attempts to replicate his findings with a similar sample of schoolchildren. In a well-fitting structural equation model of the data, general intelligence and general discrimination correlated .92. In a reanalysis of data published byActon and Schroeder (2001), general intelligence and general sensory ability correlated .68 in men and women. One hundred years after its conception, Spearman's other hypothesis achieves some confirmation. The association between general intelligence and general sensory ability remains to be replicated and explained.
Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung
2016-01-01
Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which was independent of clinical characteristics. Patients further demonstrated similar pattern and level of utilizing sensory information to maintain balance compared to the controls.
Assessment of sensory function in the National Social Life, Health, and Aging Project.
Schumm, L Philip; McClintock, Martha; Williams, Sharon; Leitsch, Sara; Lundstrom, Johan; Hummel, Thomas; Lindau, Stacy Tessler
2009-11-01
The National Social Life, Health, and Aging Project assessed functioning of all 5 senses using both self-report and objective measures. We evaluate the performance of the objective measures and model differences in sensory function by gender and age. In the process, we demonstrate how to use and interpret these measures. Distance vision was assessed using a standard Sloan eye chart, and touch was measured using a stationary 2-point discrimination test applied to the index fingertip of the dominant hand. Olfactory function (both intensity detection and odor identification) was assessed using odorants administered via felt-tip pens. Gustatory function was measured via identification of four taste strips. The performance of the objective measures was similar to that reported for previous studies, as was the relationship between sensory function and both gender and age. Sensory function is important in studies of aging and health both because it is an important health outcome and also because a decline in functioning can be symptomatic of or predict other health conditions. Although the objective measures provide considerably more precision than the self-report items, the latter can be valuable for imputation of missing data and for understanding differences in how older adults perceive their own sensory ability.
Assessment of Sensory Function in the National Social Life, Health, and Aging Project
McClintock, Martha; Williams, Sharon; Leitsch, Sara; Lundstrom, Johan; Hummel, Thomas; Lindau, Stacy Tessler
2009-01-01
Objectives The National Social Life, Health, and Aging Project assessed functioning of all 5 senses using both self-report and objective measures. We evaluate the performance of the objective measures and model differences in sensory function by gender and age. In the process, we demonstrate how to use and interpret these measures. Methods Distance vision was assessed using a standard Sloan eye chart, and touch was measured using a stationary 2-point discrimination test applied to the index fingertip of the dominant hand. Olfactory function (both intensity detection and odor identification) was assessed using odorants administered via felt-tip pens. Gustatory function was measured via identification of four taste strips. Results The performance of the objective measures was similar to that reported for previous studies, as was the relationship between sensory function and both gender and age. Discussion Sensory function is important in studies of aging and health both because it is an important health outcome and also because a decline in functioning can be symptomatic of or predict other health conditions. Although the objective measures provide considerably more precision than the self-report items, the latter can be valuable for imputation of missing data and for understanding differences in how older adults perceive their own sensory ability. PMID:19549923
May, Jon; Kavanagh, David J; Andrade, Jackie
2015-05-01
Ten years after the publication of Elaborated Intrusion (EI) Theory, there is now substantial research into its key predictions. The distinction between intrusive thoughts, which are driven by automatic processes, and their elaboration, involving controlled processing, is well established. Desires for both addictive substances and other desired targets are typically marked by imagery, especially when they are intense. Attention training strategies such as body scanning reduce intrusive thoughts, while concurrent tasks that introduce competing sensory information interfere with elaboration, especially if they compete for the same limited-capacity working memory resources. EI Theory has spawned new assessment instruments that are performing strongly and offer the ability to more clearly delineate craving from correlated processes. It has also inspired new approaches to treatment. In particular, training people to use vivid sensory imagery for functional goals holds promise as an intervention for substance misuse, since it is likely to both sustain motivation and moderate craving. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wettstein, Markus; Kuźma, Elżbieta; Wahl, Hans-Werner; Heyl, Vera
2016-09-01
Gaining a comprehensive picture of the network of constructs in which cognitive functioning is embedded is crucial across the full lifespan. With respect to personality, previous findings support a relationship between neuroticism and cognitive abilities. However, findings regarding old age are inconsistent. In particular, little is known about potentially moderating variables which might explain some of the inconsistency. Our aim was to examine the moderating effect of severe sensory impairment on cross-sectional and longitudinal associations between neuroticism and cognitive functioning. The study sample consisted of 121 visually impaired (VI), 116 hearing impaired (HI), and 150 sensory unimpaired older adults (UI). Mean age was 82.50 years (SD = 4.71 years). Neuroticism was assessed by the NEO Five Factor Inventory, and multiple established tests were used for the assessment of cognitive performance (e.g., subtests of the revised Wechsler Adult Intelligence Scale). Bivariate correlations and multi-group structural equation models indicated stronger relationships between cognitive abilities and neuroticism in both sensory impaired groups (VI and HI) compared to UI older individuals. This relationship was attenuated but still significant in both sensory impaired groups when controlling for age, education and health (number of chronic conditions). In cross-lagged panel models, higher baseline neuroticism was significantly associated with lower cognitive performance four years later in VI and HI individuals. Our results suggest that sensory impairment moderates both cross-sectional and longitudinal associations between neuroticism and cognitive function in advanced old age.
ERIC Educational Resources Information Center
Gerstorf, Denis; Ram, Nilam; Lindenberger, Ulman; Smith, Jacqui
2013-01-01
Mortality-related processes are known to modulate late-life change in cognitive abilities, but it is an open question whether and how precipitous declines with impending death generalize to other domains of functioning. We investigated this notion by using 13-year longitudinal data from now-deceased participants in the Berlin Aging Study (N = 439;…
ERIC Educational Resources Information Center
Smolík, Filip; Kríž, Adam
2015-01-01
Imageability is the ability of words to elicit mental sensory images of their referents. Recent research has suggested that imageability facilitates the processing and acquisition of inflected word forms. The present study examined whether inflected word forms are acquired earlier in highly imageable words in Czech children. Parents of 317…
Carlsson, Håkan; Rosén, Birgitta; Pessah-Rasmussen, Hélène; Björkman, Anders; Brogårdh, Christina
2018-04-17
Many stroke survivors suffer from sensory impairments of their affected upper limb (UL). Although such impairments can affect the ability to use the UL in everyday activities, very little attention is paid to sensory impairments in stroke rehabilitation. The purpose of this trial is to investigate if sensory re-learning in combination with task-specific training may prove to be more effective than task-specific training alone to improve sensory function of the hand, dexterity, the ability to use the hand in daily activities, perceived participation, and life satisfaction. This study is a single-blinded pilot randomized controlled trial (RCT) with two treatment arms. The participants will be randomly assigned either to sensory re-learning in combination with task-specific training (sensory group) or to task-specific training only (control group). The training will consist of 2.5 h of group training per session, 2 times per week for 5 weeks. The primary outcome measures to assess sensory function are as follows: Semmes-Weinstein monofilament, Shape/Texture Identification (STI™) test, Fugl-Meyer Assessment-upper extremity (FMA-UE; sensory section), and tactile object identification test. The secondary outcome measures to assess motor function are as follows: Box and Block Test (BBT), mini Sollerman Hand Function Test (mSHFT), Modified Motor Assessment Scale (M-MAS), and Grippit. To assess the ability to use the hand in daily activities, perceived participation, and life satisfaction, the Motor Activity Log (MAL), Canadian Occupational Performance Measure (COPM), Stroke Impact Scale (SIS) participation domain, and Life Satisfaction checklist will be used. Assessments will be performed pre- and post-training and at 3-month follow-up by independent assessors, who are blinded to the participants' group allocation. At the 3-month follow-up, the participants in the sensory group will also be interviewed about their general experience of the training and how effective they perceived the training. The results from this study can add new knowledge about the effectiveness of sensory re-learning in combination with task-specific training on UL functioning after stroke. If the new training approach proves efficient, the results can provide information on how to design a larger RCT in the future in persons with sensory impairments of the UL after stroke. ClinicalTrials.gov, NCT03336749 . Registered on 8 November 2017.
Food for patients at nutritional risk: a model of food sensory quality to promote intake.
Sorensen, Janice; Holm, Lotte; Frøst, Michael Bom; Kondrup, Jens
2012-10-01
The aim was to investigate food sensory quality as experienced and perceived by patients at nutritional risk within the context of establishing a framework to develop foods to develop foods to promote intake. Patients at nutritional risk (NRS-2002; food intake ≤ 75% of requirements) were observed at meals in hospital (food choice, hunger/fullness/appetite scores). This was followed by a semi-structured interview based on the observations and focusing on food sensory perception and eating ability as related to food quality. Two weeks post-discharge, a 3-day food record was taken and interviews were repeated by phone. Interviews were transcribed, coded, and analysed thematically. Patients (N = 22) from departments of gastrointestinal surgery, oncology, infectious medicine, cardiology, and hepatology were interviewed at meals (N = 65) in hospital (82%) and post-discharge (18%). Food sensory perception and eating ability dictated specific food sensory needs (i.e., appearance, aroma, taste, texture, temperature, and variety defining food sensory quality to promote intake) within the context of motivation to eat including: pleasure, comfort, and survival. Patients exhibited large inter- and intra-individual variability in their food sensory needs. The study generated a model for optimising food sensory quality and developing user-driven, innovative foods to promote intake in patients at nutritional risk. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Ruiz-Moyano, Santiago; Martín, Alberto; Benito, María José; Aranda, Emilio; Casquete, Rocío; Córdoba, María de Guia
2011-01-01
The purpose of this study was to investigate the potential of incorporating the probiotic L. reuteri PL519 into the manufacturing of Iberian dry fermented sausages, and to observe its effect on the sensory properties of these meat products. Specific polymerase chain reaction (PCR) was carried out to detect the presence of probiotic strain at high counts in the inoculated sausages. Changes due to probiotic inoculation on physicochemical parameters were determined and the impact on sensory quality evaluated. Dry fermented sausages inoculated with L. reuteri PL519 may be considered as functional products according to the counts of this strain found at the end of processing. Inoculation with L. reuteri PL519 increased the amount of acetic acid, protein, and lipid degradation products in dry fermented sausages. The differences observed in the descriptive sensorial analysis corresponded, however, to a little impact on overall acceptability since no significant changes were found between the control and L. reuteri PL519 batch in the hedonic test. Processing and marketing of Iberian dry fermented sausages with functional characteristics. © 2011 Institute of Food Technologists®
Mirror-Like Mechanisms and Music
D'Ausilio, Alessandro
2009-01-01
The neural processes underlying sensory-motor integration have always attracted strong interest. The classic view is that action and perception are two extremes of mental operations. In the past 2 decades, though, a large number of discoveries have indeed refuted such an interpretation in favor of a more integrated view. Specifically, the discovery of mirror neurons in monkey premotor cortex is a rather strong demonstration that sensory and motor processes share the same neural substrates. In fact, these cells show complex sensory-motor properties, such that observed, heard, or executed goal-directed actions could equally activate these neurons. On the other hand, the neuroscience of music has similarly emerged as an active and productive field of research. In fact, music-related behaviors are a useful model of action-perception mechanisms and how they develop through training. More recently, these two lines of research have begun to intersect into a novel branch of research. As a consequence, it has been proposed recently that mirror-like mechanisms might be at the basis of human music perception-production abilities. The scope of the present short review is to set the scientific background for mirror-like mechanisms in music by examining recent published data. PMID:20024515
Audio-Tactile Integration in Congenitally and Late Deaf Cochlear Implant Users
Nava, Elena; Bottari, Davide; Villwock, Agnes; Fengler, Ineke; Büchner, Andreas; Lenarz, Thomas; Röder, Brigitte
2014-01-01
Several studies conducted in mammals and humans have shown that multisensory processing may be impaired following congenital sensory loss and in particular if no experience is achieved within specific early developmental time windows known as sensitive periods. In this study we investigated whether basic multisensory abilities are impaired in hearing-restored individuals with deafness acquired at different stages of development. To this aim, we tested congenitally and late deaf cochlear implant (CI) recipients, age-matched with two groups of hearing controls, on an audio-tactile redundancy paradigm, in which reaction times to unimodal and crossmodal redundant signals were measured. Our results showed that both congenitally and late deaf CI recipients were able to integrate audio-tactile stimuli, suggesting that congenital and acquired deafness does not prevent the development and recovery of basic multisensory processing. However, we found that congenitally deaf CI recipients had a lower multisensory gain compared to their matched controls, which may be explained by their faster responses to tactile stimuli. We discuss this finding in the context of reorganisation of the sensory systems following sensory loss and the possibility that these changes cannot be “rewired” through auditory reafferentation. PMID:24918766
Audio-tactile integration in congenitally and late deaf cochlear implant users.
Nava, Elena; Bottari, Davide; Villwock, Agnes; Fengler, Ineke; Büchner, Andreas; Lenarz, Thomas; Röder, Brigitte
2014-01-01
Several studies conducted in mammals and humans have shown that multisensory processing may be impaired following congenital sensory loss and in particular if no experience is achieved within specific early developmental time windows known as sensitive periods. In this study we investigated whether basic multisensory abilities are impaired in hearing-restored individuals with deafness acquired at different stages of development. To this aim, we tested congenitally and late deaf cochlear implant (CI) recipients, age-matched with two groups of hearing controls, on an audio-tactile redundancy paradigm, in which reaction times to unimodal and crossmodal redundant signals were measured. Our results showed that both congenitally and late deaf CI recipients were able to integrate audio-tactile stimuli, suggesting that congenital and acquired deafness does not prevent the development and recovery of basic multisensory processing. However, we found that congenitally deaf CI recipients had a lower multisensory gain compared to their matched controls, which may be explained by their faster responses to tactile stimuli. We discuss this finding in the context of reorganisation of the sensory systems following sensory loss and the possibility that these changes cannot be "rewired" through auditory reafferentation.
Effects of Aging on the Biomechanics of Slips and Falls
Lockhart, Thurmon E.; Smith, James L.; Woldstad, Jeffrey C.
2010-01-01
Although much has been learned in recent decades about the deterioration of muscular strength, gait adaptations, and sensory degradation among older adults, little is known about how these intrinsic changes affect biomechanical parameters associated with slip-induced fall accidents. In general, the objective of this laboratory study was to investigate the process of initiation, detection, and recovery of inadvertent slips and falls. We examined the initiation of and recovery from foot slips among three age groups utilizing biomechanical parameters, muscle strength, and sensory measurements. Forty-two young, middle-age, and older participants walked around a walking track at a comfortable pace. Slippery floor surfaces were placed on the track over force platforms at random intervals without the participants’ awareness. Results indicated that younger participants slipped as often as the older participants, suggesting that the likelihood of slip initiation is similar across all age groups; however, older individuals’ recovery process was much slower and less effective. The ability to successfully recover from a slip (thus preventing a fall) is believed to be affected by lower extremity muscle strength and sensory degradation among older individuals. Results from this research can help pinpoint possible intervention strategies for improving dynamic equilibrium among older adults. PMID:16553061
Fava, Joseph L.; Rosen, Rochelle K.; Vargas, Sara; Shaw, Julia G.; Kojic, E. Milu; Kiser, Patrick F.; Friend, David R.; Katz, David F.
2014-01-01
Abstract The effectiveness of any biomedical prevention technology relies on both biological efficacy and behavioral adherence. Microbicide trials have been hampered by low adherence, limiting the ability to draw meaningful conclusions about product effectiveness. Central to this problem may be an inadequate conceptualization of how product properties themselves impact user experience and adherence. Our goal is to expand the current microbicide development framework to include product “perceptibility,” the objective measurement of user sensory perceptions (i.e., sensations) and experiences of formulation performance during use. For vaginal gels, a set of biophysical properties, including rheological properties and measures of spreading and retention, may critically impact user experiences. Project LINK sought to characterize the user experience in this regard, and to validate measures of user sensory perceptions and experiences (USPEs) using four prototype topical vaginal gel formulations designed for pericoital use. Perceptibility scales captured a range of USPEs during the product application process (five scales), ambulation after product insertion (six scales), and during sexual activity (eight scales). Comparative statistical analyses provided empirical support for hypothesized relationships between gel properties, spreading performance, and the user experience. Project LINK provides preliminary evidence for the utility of evaluating USPEs, introducing a paradigm shift in the field of microbicide formulation design. We propose that these user sensory perceptions and experiences initiate cognitive processes in users resulting in product choice and willingness-to-use. By understanding the impact of USPEs on that process, formulation development can optimize both drug delivery and adherence. PMID:24180360
Morrow, Kathleen M; Fava, Joseph L; Rosen, Rochelle K; Vargas, Sara; Shaw, Julia G; Kojic, E Milu; Kiser, Patrick F; Friend, David R; Katz, David F
2014-01-01
Abstract The effectiveness of any biomedical prevention technology relies on both biological efficacy and behavioral adherence. Microbicide trials have been hampered by low adherence, limiting the ability to draw meaningful conclusions about product effectiveness. Central to this problem may be an inadequate conceptualization of how product properties themselves impact user experience and adherence. Our goal is to expand the current microbicide development framework to include product "perceptibility," the objective measurement of user sensory perceptions (i.e., sensations) and experiences of formulation performance during use. For vaginal gels, a set of biophysical properties, including rheological properties and measures of spreading and retention, may critically impact user experiences. Project LINK sought to characterize the user experience in this regard, and to validate measures of user sensory perceptions and experiences (USPEs) using four prototype topical vaginal gel formulations designed for pericoital use. Perceptibility scales captured a range of USPEs during the product application process (five scales), ambulation after product insertion (six scales), and during sexual activity (eight scales). Comparative statistical analyses provided empirical support for hypothesized relationships between gel properties, spreading performance, and the user experience. Project LINK provides preliminary evidence for the utility of evaluating USPEs, introducing a paradigm shift in the field of microbicide formulation design. We propose that these user sensory perceptions and experiences initiate cognitive processes in users resulting in product choice and willingness-to-use. By understanding the impact of USPEs on that process, formulation development can optimize both drug delivery and adherence.
Impact of indoor surface material on perceived air quality.
Senitkova, I
2014-03-01
The material combination impact on perceived indoor air quality for various surface interior materials is presented in this paper. The chemical analysis and sensory assessments identifies health adverse of indoor air pollutants (TVOCs). In this study, emissions and odors from different common indoor surface materials were investigated in glass test chamber under standardized conditions. Chemical measurements (TVOC concentration) and sensory assessments (odor intensity, air acceptability) were done after building materials exposure to standardized conditions. The results of the chemical and sensory assessment of individual materials and their combinations are compared and discussed within the paper. The using possibility of individual material surface sorption ability was investigated. The knowledge of targeted sorption effects can be used in the interior design phase. The results demonstrate the various sorption abilities of various indoor materials as well as the various sorption abilities of the same indoor material in various combinations. Copyright © 2013 Elsevier B.V. All rights reserved.
Sensory Processing in Preterm Preschoolers and Its Association with Executive Function
Adams, Jenna N.; Feldman, Heidi M.; Huffman, Lynne C.; Loe, Irene M.
2015-01-01
Background Symptoms of abnormal sensory processing have been related to preterm birth, but have not yet been studied specifically in preterm preschoolers. The degree of association between sensory processing and other domains is important for understanding the role of sensory processing symptoms in the development of preterm children. Aims To test two related hypotheses: (1) preterm preschoolers have more sensory processing symptoms than full term preschoolers and (2) sensory processing is associated with both executive function and adaptive function in preterm preschoolers. Study Design Cross-sectional study Subjects Preterm children (≤34 weeks of gestation; n = 54) and full term controls (≥37 weeks of gestation; n = 73) ages 3-5 years. Outcome Measures Sensory processing was assessed with the Short Sensory Profile. Executive function was assessed with (1) parent ratings on the Behavior Rating Inventory of Executive Function- Preschool version and (2) a performance-based battery of tasks. Adaptive function was assessed with the Vineland Adaptive Behavior Scales-II. Results Preterm preschoolers showed significantly more sensory symptoms than full term controls. A higher percentage of preterm than full term preschoolers had elevated numbers of sensory symptoms (37% vs. 12%). Sensory symptoms in preterm preschoolers were associated with scores on executive function measures, but were not significantly associated with adaptive function. Conclusions Preterm preschoolers exhibited more sensory symptoms than full term controls. Preterm preschoolers with elevated numbers of sensory symptoms also showed executive function impairment. Future research should further examine whether sensory processing and executive function should be considered independent or overlapping constructs. PMID:25706317
Jaeger, Sara R; Spinelli, Sara; Ares, Gastón; Monteleone, Erminio
2018-07-01
Sensory product characterisation by consumers is increasingly supplemented by measurement of emotional associations. However, studies that link products' sensory perception and emotional associations are still scarce. Five consumer studies were conducted using cashew nuts, peanuts, chocolate, fruit and processed tomatoes as the product categories. Consumers (n = 685) completed check-all-that-apply (CATA) questions to obtain sensory product perceptions and associations with emotion words. The latter were conceptualised and interpreted through a circumplex emotion model spanned by the dimensions of valence (pleasure to displeasure) and arousal (activation to deactivation). Through regression analysis, sensory terms were mapped to the circumplex model to represent statistical linkages with emotion words. Within a were interpretable. The most notable finding was the highly study-specific nature of the linkages, which was mainly attributed to the influence of product category. Methodological choices may also have been partly responsible for the differences. Three studies used a general emotion vocabulary (EsSense Profile®) and an identical number of sensory terms (n = 39). The less complete coverage of the emotional circumplex and the presence of synonymous sensory terms could have diminished the ability to interpret the results. Conversely, two studies used fewer emotion words and sensory terms and these, furthermore, were purposefully selected for the focal sets of samples. The linkages in these latter studies were more interpretable and this could suggest that customised vocabularies of modest length may be desirable when seeking to establish linkages between emotional associations and sensory characteristics of food/beverage stimuli. Purposeful inclusion of emotion words that fully span the circumplex emotion model may also be desirable. Overall, the research represents a new method for establishing linkages between the sensory properties and emotional association to food and beverage products. Copyright © 2018 Elsevier Ltd. All rights reserved.
Muessig, L; Hauser, J; Wills, T J; Cacucci, F
2016-08-01
Place cells are hippocampal pyramidal cells that are active when an animal visits a restricted area of the environment, and collectively their activity constitutes a neural representation of space. Place cell populations in the adult rat hippocampus display fundamental properties consistent with an associative memory network: the ability to 1) generate new and distinct spatial firing patterns when encountering novel spatial contexts or changes in sensory input ("remapping") and 2) reinstate previously stored firing patterns when encountering a familiar context, including on the basis of an incomplete/degraded set of sensory cues ("pattern completion"). To date, it is unknown when these spatial memory responses emerge during brain development. Here, we show that, from the age of first exploration (postnatal day 16) onwards, place cell populations already exhibit these key features: they generate new representations upon exposure to a novel context and can reactivate familiar representations on the basis of an incomplete set of sensory cues. These results demonstrate that, as early as exploratory behaviors emerge, and despite the absence of an adult-like grid cell network, the developing hippocampus processes incoming sensory information as an associative memory network. © The Author 2016. Published by Oxford University Press.
The Role of Age of Acquisition on Past Tense Generation in Spanish-English Bilinguals: An fMRI Study
ERIC Educational Resources Information Center
Waldron, Eric J.; Hernandez, Arturo E.
2013-01-01
At its most basic sense, the sensorimotor/emergentist (S/E) model suggests that early second language (L2) learning is preferentially reliant upon sensory and motor processes, while later L2 learning is accomplished by greater reliance on executive abilities. To investigate the S/E model using fMRI, neural correlates of L2 age of acquisition were…
Avian visual behavior and the organization of the telencephalon.
Shimizu, Toru; Patton, Tadd B; Husband, Scott A
2010-01-01
Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. 2010 S. Karger AG, Basel.
Avian Visual Behavior and the Organization of the Telencephalon
Shimizu, Toru; Patton, Tadd B.; Husband, Scott A.
2010-01-01
Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. PMID:20733296
Bryan, Myranda A.; Popov, Pavlo; Scarff, Raymond; Carter, Cody; Wright, Erin; Aragona, Brandon J.; Robinson, Terry E.
2016-01-01
The sensory properties of a reward-paired cue (a conditioned stimulus; CS) may impact the motivational value attributed to the cue, and in turn influence the form of the conditioned response (CR) that develops. A cue with multiple sensory qualities, such as a moving lever-CS, may activate numerous neural pathways that process auditory and visual information, resulting in CRs that vary both within and between individuals. For example, CRs include approach to the lever-CS itself (rats that “sign-track”; ST), approach to the location of reward delivery (rats that “goal-track”; GT), or an “intermediate” combination of these behaviors. We found that the multimodal sensory features of the lever-CS were important to the development and expression of sign-tracking. When the lever-CS was covered, and thus could only be heard moving, STs not only continued to approach the lever location but also started to approach the food cup during the CS period. While still predictive of reward, the auditory component of the lever-CS was a much weaker conditioned reinforcer than the visible lever-CS. This plasticity in behavioral responding observed in STs closely resembled behaviors normally seen in rats classified as “intermediates.” Furthermore, the ability of both the lever-CS and the reward-delivery to evoke dopamine release in the nucleus accumbens was also altered by covering the lever—dopamine signaling in STs resembled neurotransmission observed in rats that normally only GT. These data suggest that while the visible lever-CS was attractive, wanted, and had incentive value for STs, when presented in isolation, the auditory component of the cue was simply predictive of reward, lacking incentive salience. Therefore, the specific sensory features of cues may differentially contribute to responding and ensure behavioral flexibility. PMID:27918279
Allen, Susan; Casey, Jackie
2017-09-01
Children with developmental coordination disorder or sensory processing and integration difficulties face challenges to participation in daily living. To date there has been no exploration of the co-occurrence of developmental coordination disorders and sensory processing and integration difficulties. Records of children meeting Diagnostic and Statistical Manual - V criteria for developmental coordination disorder ( n = 93) age 5 to 12 years were examined. Data on motor skills (Movement Assessment Battery for Children - 2) and sensory processing and integration (Sensory Processing Measure) were interrogated. Of the total sample, 88% exhibited some or definite differences in sensory processing and integration. No apparent relationship was observed between motor coordination and sensory processing and integration. The full sample showed high rates of some difficulties in social participation, hearing, body awareness, balance and motion, and planning and ideation. Further, children with co-morbid autistic spectrum disorder showed high rates of difficulties with touch and vision. Most, but not all, children with developmental coordination disorder presented with some difficulties in sensory processing and integration that impacted on their participation in everyday activities. Sensory processing and integration difficulties differed significantly between those with and without co-morbid autistic spectrum disorder.
Hearing: The Future of Sensory Rehabilitation?
Skoe, Erika
2017-11-06
A new randomized, double-blind controlled study has found that playing a video game modeled from sensory foraging behavior can improve the aging brain's ability to hear complex signals hidden in background noise. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nieto, C; López, B; Gandía, H
2017-12-01
This study investigated sensory processing in a sample of Spanish children with autism spectrum disorder (ASD). Specifically, the study aimed to explore (1) the prevalence and distribution of atypical sensory processing patterns, (2) the relationship between adaptive and maladaptive behaviour with atypical sensory processing and (3) the possible relationship between sensory subtype and maternal stress. The short sensory profile 2 (Dunn 2014) and the vineland adaptive behavior scale (Sparrow et al. 1984) were administered to examine the sensory processing difficulties and maladaptive behaviours of 45 children with ASD aged 3 to 14; their mothers also completed the parenting stress index-short form (Abidin 1995). Atypical sensory features were found in 86.7% of the children; avoider and sensor being the two most common patterns. No significant relationship was found between atypical sensory processing and adaptive behaviour. However, the analysis showed a strong relationship between sensory processing and maladaptive behaviour. Both maladaptive behaviour and sensory processing difficulties correlated significantly with maternal stress although maternal stress was predicted only by the sensory variable, and in particular by the avoider pattern. The findings suggest that sensory features in ASD may be driving the high prevalence of parental stress in carers. They also suggest that the effect on parental stress that has been attributed traditionally to maladaptive behaviours may be driven by sensory difficulties. The implications of these findings are discussed in relation to the development of interventions and the need to explore contextual and cultural variables as possible sources of variability. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Sensory Processing Subtypes in Autism: Association with Adaptive Behavior
ERIC Educational Resources Information Center
Lane, Alison E.; Young, Robyn L.; Baker, Amy E. Z.; Angley, Manya T.
2010-01-01
Children with autism are frequently observed to experience difficulties in sensory processing. This study examined specific patterns of sensory processing in 54 children with autistic disorder and their association with adaptive behavior. Model-based cluster analysis revealed three distinct sensory processing subtypes in autism. These subtypes…
Enhancing astronaut performance using sensorimotor adaptability training
Bloomberg, Jacob J.; Peters, Brian T.; Cohen, Helen S.; Mulavara, Ajitkumar P.
2015-01-01
Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments—enhancing their ability to “learn to learn.” We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts. PMID:26441561
Enhancing astronaut performance using sensorimotor adaptability training.
Bloomberg, Jacob J; Peters, Brian T; Cohen, Helen S; Mulavara, Ajitkumar P
2015-01-01
Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments-enhancing their ability to "learn to learn." We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.
SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE
Lush, Mark E.; Piotrowski, Tatjana
2014-01-01
Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019
Role of orientation reference selection in motion sickness, supplement 2S
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1987-01-01
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals. The conceptual basis of the present proposal hinges on the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with benign paroxysmal positional vertigo (BPPV) syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans. The overall objectives are to determine: if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects; if abnormal vertical canal-otolith function is the source of abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and if it can be quantified by vestibular and oculomotor reflex measurements; and quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability.
Auditory temporal processing skills in musicians with dyslexia.
Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha
2014-08-01
The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.
Hertz, Uri; Amedi, Amir
2015-01-01
The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756
Hertz, Uri; Amedi, Amir
2015-08-01
The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.
Celik, Halil Ibrahim; Elbasan, Bulent; Gucuyener, Kivilcim; Kayihan, Hulya; Huri, Meral
The aim of this study was to analyze the correlation between sensory processing and motor development in preterm infants. We included 30 preterm and 30 term infants with corrected and chronological ages between 10 and 12 mo. We used the Test of Sensory Functions in Infants to evaluate sensory processing and the Alberta Infant Motor Scale to evaluate motor development. The Spearman correlation test indicated a strong positive relationship between sensory processing and motor development in preterm infants (r = .63, p < .001). Given the relationship between sensory processing and motor development in the preterm group, the evaluation of sensory processing and motor development in preterm infants was considered necessary for the effective implementation of physiotherapy assessment and interventions. Copyright © 2018 by the American Occupational Therapy Association, Inc.
Schneider, Mary L.; Moore, Colleen F.; Adkins, Miriam; Barr, Christina S.; Larson, Julie A.; Resch, Leslie M.; Roberts, Andrew
2017-01-01
Neonatal sensory processing (tactile and vestibular function) was tested in 78 rhesus macaques from two experiments. At ages 4–5 years, striatal dopamine D2 receptor binding was examined using positron emission tomography. At ages 5–7 years, adult sensory processing was assessed. Findings were: (a) prenatal stress exposure yielded less optimal neonatal sensory processing; (b) animals carrying the short rh5-HTTLPR allele had less optimal neonatal sensory scores than monkeys homozygous for the long allele; (c) neonatal sensory processing was significantly related to striatal D2 receptor binding for carriers of the short allele, but not for animals homozygous for the long allele; and (d) there was moderate developmental continuity in sensory processing from the neonatal period to adulthood. PMID:27338151
Salisbury, Dean F; McCathern, Alexis G
2016-11-01
The simple mismatch negativity (MMN) to tones deviating physically (in pitch, loudness, duration, etc.) from repeated standard tones is robustly reduced in schizophrenia. Although generally interpreted to reflect memory or cognitive processes, simple MMN likely contains some activity from non-adapted sensory cells, clouding what process is affected in schizophrenia. Research in healthy participants has demonstrated that MMN can be elicited by deviations from abstract auditory patterns and complex rules that do not cause sensory adaptation. Whether persons with schizophrenia show abnormalities in the complex MMN is unknown. Fourteen schizophrenia participants and 16 matched healthy underwent EEG recording while listening to 400 groups of 6 tones 330 ms apart, separated by 800 ms. Occasional deviant groups were missing the 4th or 6th tone (50 groups each). Healthy participants generated a robust response to a missing but expected tone. The schizophrenia group was significantly impaired in activating the missing stimulus MMN, generating no significant activity at all. Schizophrenia affects the ability of "primitive sensory intelligence" and pre-attentive perceptual mechanisms to form implicit groups in the auditory environment. Importantly, this deficit must relate to abnormalities in abstract complex pattern analysis rather than sensory problems in the disorder. The results indicate a deficit in parsing of the complex auditory scene which likely impacts negatively on successful social navigation in schizophrenia. Knowledge of the location and circuit architecture underlying the true novelty-related MMN and its pathophysiology in schizophrenia will help target future interventions.
Brooks, Jessica X.
2014-01-01
Most of our sensory experiences are gained by active exploration of the world. While the ability to distinguish sensory inputs resulting of our own actions (termed reafference) from those produced externally (termed exafference) is well established, the neural mechanisms underlying this distinction are not fully understood. We have previously proposed that vestibular signals arising from self-generated movements are inhibited by a mechanism that compares the internal prediction of the proprioceptive consequences of self-motion to the actual feedback. Here we directly tested this proposal by recording from single neurons in monkey during vestibular stimulation that was externally produced and/or self-generated. We show for the first time that vestibular reafference is equivalently canceled for self-generated sensory stimulation produced by activation of the neck musculature (head-on-body motion), or axial musculature (combined head and body motion), when there is no discrepancy between the predicted and actual proprioceptive consequences of self-motion. However, if a discrepancy does exist, central vestibular neurons no longer preferentially encode vestibular exafference. Specifically, when simultaneous active and passive motion resulted in activation of the same muscle proprioceptors, neurons robustly encoded the total vestibular input (i.e., responses to vestibular reafference and exafference were equally strong), rather than exafference alone. Taken together, our results show that the cancellation of vestibular reafference in early vestibular processing requires an explicit match between expected and actual proprioceptive feedback. We propose that this vital neuronal computation, necessary for both accurate sensory perception and motor control, has important implications for a variety of sensory systems that suppress self-generated signals. PMID:24671531
Kolacz, Jacek; Raspa, Melissa; Heilman, Keri J; Porges, Stephen W
2018-06-01
Individuals with fragile X syndrome (FXS), especially those co-diagnosed with autism spectrum disorder (ASD), face many sensory processing challenges. However, sensory processing measures informed by neurophysiology are lacking. This paper describes the development and psychometric properties of a parent/caregiver report, the Brain-Body Center Sensory Scales (BBCSS), based on Polyvagal Theory. Parents/guardians reported on 333 individuals with FXS, 41% with ASD features. Factor structure using a split-sample exploratory-confirmatory design conformed to neurophysiological predictions. Internal consistency, test-retest, and inter-rater reliability were good to excellent. BBCSS subscales converged with the Sensory Profile and Sensory Experiences Questionnaire. However, data also suggest that BBCSS subscales reflect unique features related to sensory processing. Individuals with FXS and ASD features displayed more sensory challenges on most subscales.
Lenartowicz, Agatha; Simpson, Gregory V.; Haber, Catherine M.; Cohen, Mark S.
2017-01-01
The ability to attend to an input selectively while ignoring distracting sensations is thought to depend on the coordination of two processes: enhancement of target signals and attenuation of distractor signals. This implies that attending and ignoring may be dissociable neural processes and that they make separable contributions to behavioral outcomes of attention. In this study, we tested these hypotheses in the context of sustained attention by measuring neurophysiological responses to attended and ignored stimuli in a noncued, continuous, audiovisual selective attention task. We compared these against responses during a passive control to quantify effects of attending and ignoring separately. In both sensory modalities, responses to ignored stimuli were attenuated relative to a passive control, whereas responses to attended stimuli were enhanced. The scalp topographies and brain activations of these modulatory effects were consistent with the sensory regions that process each modality. They also included parietal and prefrontal activations that suggest these effects arise from interactions between top–down and sensory cortices. Most importantly, we found that both attending and ignoring processes contributed to task accuracy and that these effects were not correlated—suggesting unique neural trajectories. This conclusion was supported by the novel observation that attending and ignoring differed in timing and in active cortical regions. The data provide direct evidence for the separable contributions of attending and ignoring to behavioral outcomes of attention control during sustained intersensory attention. PMID:24666167
Helping Children with Sensory Processing Disorders: The Role of Occupational Therapy
ERIC Educational Resources Information Center
Sweet, Margarita
2010-01-01
Normally functioning sensory systems develop through sensory experiences. Children are stimulated through their senses in many different ways. Even though a person's sensory system is intact, he or she may have a sensory processing disorder (SPD), also known as sensory integration dysfunction. This means the person's brain does not correctly…
Boone, Kelly M; Gracious, Barbara; Klebanoff, Mark A; Rogers, Lynette K; Rausch, Joseph; Coury, Daniel L; Keim, Sarah A
2017-12-01
Despite advances in the health and long-term survival of infants born preterm, they continue to face developmental challenges including higher risk for autism spectrum disorder (ASD) and atypical sensory processing patterns. This secondary analysis aimed to describe sensory profiles and explore effects of combined dietary docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and gamma-linolenic acid (GLA) supplementation on parent-reported sensory processing in toddlers born preterm who were exhibiting ASD symptoms. 90-day randomized, double blinded, placebo-controlled trial. 31 children aged 18-38months who were born at ≤29weeks' gestation. Mixed effects regression analyses followed intent to treat and explored effects on parent-reported sensory processing measured by the Infant/Toddler Sensory Profile (ITSP). Baseline ITSP scores reflected atypical sensory processing, with the majority of atypical scores falling below the mean. Sensory processing sections: auditory (above=0%, below=65%), vestibular (above=13%, below=48%), tactile (above=3%, below=35%), oral sensory (above=10%; below=26%), visual (above=10%, below=16%); sensory processing quadrants: low registration (above=3%; below=71%), sensation avoiding (above=3%; below=39%), sensory sensitivity (above=3%; below=35%), and sensation seeking (above=10%; below=19%). Twenty-eight of 31 children randomized had complete outcome data. Although not statistically significant (p=0.13), the magnitude of the effect for reduction in behaviors associated with sensory sensitivity was medium to large (effect size=0.57). No other scales reflected a similar magnitude of effect size (range: 0.10 to 0.32). The findings provide support for larger randomized trials of omega fatty acid supplementation for children at risk of sensory processing difficulties, especially those born preterm. Copyright © 2017 Elsevier B.V. All rights reserved.
Vasopressin Proves Es-sense-tial: Vasopressin and the Modulation of Sensory Processing in Mammals
Bester-Meredith, Janet K.; Fancher, Alexandria P.; Mammarella, Grace E.
2015-01-01
As mammals develop, they encounter increasing social complexity in the surrounding world. In order to survive, mammals must show appropriate behaviors toward their mates, offspring, and same-sex conspecifics. Although the behavioral effects of the neuropeptide arginine vasopressin (AVP) have been studied in a variety of social contexts, the effects of this neuropeptide on multimodal sensory processing have received less attention. AVP is widely distributed through sensory regions of the brain and has been demonstrated to modulate olfactory, auditory, gustatory, and visual processing. Here, we review the evidence linking AVP to the processing of social stimuli in sensory regions of the brain and explore how sensory processing can shape behavioral responses to these stimuli. In addition, we address the interplay between hormonal and neural AVP in regulating sensory processing of social cues. Because AVP pathways show plasticity during development, early life experiences may shape life-long processing of sensory information. Furthermore, disorders of social behavior such as autism and schizophrenia that have been linked with AVP also have been linked with dysfunctions in sensory processing. Together, these studies suggest that AVP’s diversity of effects on social behavior across a variety of mammalian species may result from the effects of this neuropeptide on sensory processing. PMID:25705203
Circuit mechanisms of sensorimotor learning
Makino, Hiroshi; Hwang, Eun Jung; Hedrick, Nathan G.; Komiyama, Takaki
2016-01-01
SUMMARY The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process in three hierarchical levels with distinct goals: 1) sensory perceptual learning, 2) sensorimotor associative learning, and 3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior. PMID:27883902
Effects of aging on perception of motion
NASA Astrophysics Data System (ADS)
Kaur, Manpreet; Wilder, Joseph; Hung, George; Julesz, Bela
1997-09-01
Driving requires two basic visual components: 'visual sensory function' and 'higher order skills.' Among the elderly, it has been observed that when attention must be divided in the presence of multiple objects, their attentional skills and relational processes, along with impairment of basic visual sensory function, are markedly impaired. A high frame rate imaging system was developed to assess the elderly driver's ability to locate and distinguish computer generated images of vehicles and to determine their direction of motion in a simulated intersection. Preliminary experiments were performed at varying target speeds and angular displacements to study the effect of these parameters on motion perception. Results for subjects in four different age groups, ranging from mid- twenties to mid-sixties, show significantly better performance for the younger subjects as compared to the older ones.
Jorquera-Cabrera, Sara; Romero-Ayuso, Dulce; Rodriguez-Gil, Gemma; Triviño-Juárez, José-Matías
2017-01-01
The assessment of sensory perception, discrimination, integration, modulation, praxis, and other motor skills, such as posture, balance, and bilateral motor coordination, is necessary to identify the sensory and motor factors influencing the development of personal autonomy. The aim of this work is to study the assessment tools currently available for identifying different patterns of sensory processing. There are 15 tests available that have psychometric properties, primarily for the US population. Nine of them apply to children in preschool and up to grade 12. The assessment of sensory processing is a process that includes the use of standardized tests, administration of caregiver questionnaires, and clinical observations. The review of different studies using PRISMA criteria or Osteba Critical Appraisal Cards reveals that the most commonly used tools are the Sensory Integration and Praxis Test, the Sensory Processing Measure, and the Sensory Profile.
Jorquera-Cabrera, Sara; Romero-Ayuso, Dulce; Rodriguez-Gil, Gemma; Triviño-Juárez, José-Matías
2017-01-01
The assessment of sensory perception, discrimination, integration, modulation, praxis, and other motor skills, such as posture, balance, and bilateral motor coordination, is necessary to identify the sensory and motor factors influencing the development of personal autonomy. The aim of this work is to study the assessment tools currently available for identifying different patterns of sensory processing. There are 15 tests available that have psychometric properties, primarily for the US population. Nine of them apply to children in preschool and up to grade 12. The assessment of sensory processing is a process that includes the use of standardized tests, administration of caregiver questionnaires, and clinical observations. The review of different studies using PRISMA criteria or Osteba Critical Appraisal Cards reveals that the most commonly used tools are the Sensory Integration and Praxis Test, the Sensory Processing Measure, and the Sensory Profile. PMID:28424762
The sensory system: More than just a window to the external world.
Gendron, Christi M; Chung, Brian Y; Pletcher, Scott D
2015-01-01
While the traditional importance of the sensory system lies in its ability to perceive external information about the world, emerging discoveries suggest that sensory perception has a greater impact on health and longevity than was previously appreciated. These effects are conserved across species. In this mini-review, we discuss the specific sensory cues that have been identified to significantly impact organismal physiology and lifespan. Ongoing work in the aging field has begun to identify the downstream molecules that mediate the broad effects of sensory signals. Candidates include FOXO, neuropeptide F (NPF), adipokinetic hormone (AKH), dopamine, serotonin, and octopamine. We then discuss the many implications that arise from our current understanding of the effects of sensory perception on health and longevity.
Dunn, Winnie; Little, Lauren; Dean, Evan; Robertson, Sara; Evans, Benjamin
2016-04-01
The objective of this study was to identify and synthesize research about how sensory factors affect daily life of children. We designed a conceptual model to guide a scoping review of research published from 2005 to October 2014 (10 years). We searched MEDLINE, CINAHL, and PsycINFO and included studies about sensory perception/processing; children, adolescents/young adults; and participation. We excluded studies about animals, adults, and review articles. Our process resulted in 261 articles meeting criteria. Research shows that children with conditions process sensory input differently than peers. Neuroscience evidence supports the relationship between sensory-related behaviors and brain activity. Studies suggest that sensory processing is linked to social participation, cognition, temperament, and participation. Intervention research illustrates the importance of contextually relevant practices. Future work can examine the developmental course of sensory processing aspects of behavior across the general population and focus on interventions that support children's sensory processing as they participate in their daily lives. © The Author(s) 2016.
Mindful Yoga Pilot Study Shows Modulation of Abnormal Pain Processing in Fibromyalgia Patients.
Carson, James W; Carson, Kimberly M; Jones, Kim D; Lancaster, Lindsay; Mist, Scott D
2016-01-01
Published findings from a randomized controlled trial have shown that Mindful Yoga training improves symptoms, functional deficits, and coping abilities in individuals with fibromyalgia and that these benefits are replicable and can be maintained 3 months post-treatment. The aim of this study was to collect pilot data in female fibromyalgia patients (n = 7) to determine if initial evidence indicates that Mindful Yoga also modulates the abnormal pain processing that characterizes fibromyalgia. Pre- and post-treatment data were obtained on quantitative sensory tests and measures of symptoms, functional deficits, and coping abilities. Separation test analyses indicated significant improvements in heat pain tolerance, pressure pain threshold, and heat pain after-sensations at post-treatment. Fibromyalgia symptoms and functional deficits also improved significantly, including physical tests of strength and balance, and pain coping strategies. These findings indicate that further investigation is warranted into the effect of Mindful Yoga on neurobiological pain processing.
Evidence for shared cognitive processing of pitch in music and language.
Perrachione, Tyler K; Fedorenko, Evelina G; Vinke, Louis; Gibson, Edward; Dilley, Laura C
2013-01-01
Language and music epitomize the complex representational and computational capacities of the human mind. Strikingly similar in their structural and expressive features, a longstanding question is whether the perceptual and cognitive mechanisms underlying these abilities are shared or distinct--either from each other or from other mental processes. One prominent feature shared between language and music is signal encoding using pitch, conveying pragmatics and semantics in language and melody in music. We investigated how pitch processing is shared between language and music by measuring consistency in individual differences in pitch perception across language, music, and three control conditions intended to assess basic sensory and domain-general cognitive processes. Individuals' pitch perception abilities in language and music were most strongly related, even after accounting for performance in all control conditions. These results provide behavioral evidence, based on patterns of individual differences, that is consistent with the hypothesis that cognitive mechanisms for pitch processing may be shared between language and music.
The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain
Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R.; Dehaene, Stanislas; Sigman, Mariano
2010-01-01
The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates. PMID:20442869
Bolis, Dimitris; Schilbach, Leonhard
2018-01-01
Autism is a developmental condition, characterized by difficulties of social interaction and communication, as well as restricted interests and repetitive behaviors. Although several important conceptions have shed light on specific facets, there is still no consensus about a universal yet specific theory in terms of its underlying mechanisms. While some theories have exclusively focused on sensory aspects, others have emphasized social difficulties. However, sensory and social processes in autism might be interconnected to a higher degree than what has been traditionally thought. We propose that a mismatch in sensory abilities across individuals can lead to difficulties on a social, i.e. interpersonal level and vice versa. In this article, we, therefore, selectively review evidence indicating an interrelationship between perceptual and social difficulties in autism. Additionally, we link this body of research with studies, which investigate the mechanisms of action control in social contexts. By doing so, we highlight that autistic traits are also crucially related to differences in integration, anticipation and automatic responding to social cues, rather than a mere inability to register and learn from social cues. Importantly, such differences may only manifest themselves in sufficiently complex situations, such as real-life social interactions, where such processes are inextricably linked. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Aizpurua, Ostaizka; Alberdi, Antton; Aihartza, Joxerra; Garin, Inazio
2015-01-01
Several insectivorous bats have included fish in their diet, yet little is known about the processes underlying this trophic shift. We performed three field experiments with wild fishing bats to address how they manage to discern fish from insects and adapt their hunting technique to capture fish. We show that bats react only to targets protruding above the water and discern fish from insects based on prey disappearance patterns. Stationary fish trigger short and shallow dips and a terminal echolocation pattern with an important component of the narrowband and low frequency calls. When the fish disappears during the attack process, bats regulate their attack increasing the number of broadband and high frequency calls in the last phase of the echolocation as well as by lengthening and deepening their dips. These adjustments may allow bats to obtain more valuable sensorial information and to perform dips adjusted to the level of uncertainty on the location of the submerged prey. The observed ultrafast regulation may be essential for enabling fishing to become cost-effective in bats, and demonstrates the ability of bats to rapidly modify and synchronise their sensorial and motor features as a response to last minute stimulus variations. PMID:26196094
Hearing loss in older adults affects neural systems supporting speech comprehension.
Peelle, Jonathan E; Troiani, Vanessa; Grossman, Murray; Wingfield, Arthur
2011-08-31
Hearing loss is one of the most common complaints in adults over the age of 60 and a major contributor to difficulties in speech comprehension. To examine the effects of hearing ability on the neural processes supporting spoken language processing in humans, we used functional magnetic resonance imaging to monitor brain activity while older adults with age-normal hearing listened to sentences that varied in their linguistic demands. Individual differences in hearing ability predicted the degree of language-driven neural recruitment during auditory sentence comprehension in bilateral superior temporal gyri (including primary auditory cortex), thalamus, and brainstem. In a second experiment, we examined the relationship of hearing ability to cortical structural integrity using voxel-based morphometry, demonstrating a significant linear relationship between hearing ability and gray matter volume in primary auditory cortex. Together, these results suggest that even moderate declines in peripheral auditory acuity lead to a systematic downregulation of neural activity during the processing of higher-level aspects of speech, and may also contribute to loss of gray matter volume in primary auditory cortex. More generally, these findings support a resource-allocation framework in which individual differences in sensory ability help define the degree to which brain regions are recruited in service of a particular task.
Hearing loss in older adults affects neural systems supporting speech comprehension
Peelle, Jonathan E.; Troiani, Vanessa; Grossman, Murray; Wingfield, Arthur
2011-01-01
Hearing loss is one of the most common complaints in adults over the age of 60 and a major contributor to difficulties in speech comprehension. To examine the effects of hearing ability on the neural processes supporting spoken language processing in humans, we used functional magnetic resonance imaging (fMRI) to monitor brain activity while older adults with age-normal hearing listened to sentences that varied in their linguistic demands. Individual differences in hearing ability predicted the degree of language-driven neural recruitment during auditory sentence comprehension in bilateral superior temporal gyri (including primary auditory cortex), thalamus, and brainstem. In a second experiment we examined the relationship of hearing ability to cortical structural integrity using voxel-based morphometry (VBM), demonstrating a significant linear relationship between hearing ability and gray matter volume in primary auditory cortex. Together, these results suggest that even moderate declines in peripheral auditory acuity lead to a systematic downregulation of neural activity during the processing of higher-level aspects of speech, and may also contribute to loss of gray matter volume in primary auditory cortex. More generally these findings support a resource-allocation framework in which individual differences in sensory ability help define the degree to which brain regions are recruited in service of a particular task. PMID:21880924
Schauder, Kimberly B.; Bennetto, Loisa
2016-01-01
Sensory processing differences have long been associated with autism spectrum disorder (ASD), and they have recently been added to the diagnostic criteria for the disorder. The focus on sensory processing in ASD research has increased substantially in the last decade. This research has been approached from two different perspectives: the first focuses on characterizing the symptoms that manifest in response to real world sensory stimulation, and the second focuses on the neural pathways and mechanisms underlying sensory processing. The purpose of this paper is to integrate the empirical literature on sensory processing in ASD from the last decade, including both studies characterizing sensory symptoms and those that investigate neural response to sensory stimuli. We begin with a discussion of definitions to clarify some of the inconsistencies in terminology that currently exist in the field. Next, the sensory symptoms literature is reviewed with a particular focus on developmental considerations and the relationship of sensory symptoms to other core features of the disorder. Then, the neuroscience literature is reviewed with a focus on methodological approaches and specific sensory modalities. Currently, these sensory symptoms and neuroscience perspectives are largely developing independently from each other leading to multiple, but separate, theories and methods, thus creating a multidisciplinary approach to sensory processing in ASD. In order to progress our understanding of sensory processing in ASD, it is now critical to integrate these two research perspectives and move toward an interdisciplinary approach. This will inevitably aid in a better understanding of the underlying biological basis of these symptoms and help realize the translational value through its application to early identification and treatment. The review ends with specific recommendations for future research to help bridge these two research perspectives in order to advance our understanding of sensory processing in ASD. PMID:27378838
Sensory Processing in Adults with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Crane, Laura; Goddard, Lorna; Pring, Linda
2009-01-01
Unusual sensory processing has been widely reported in autism spectrum disorders (ASDs); however, the majority of research in this area has focused on children. The present study assessed sensory processing in adults with ASD using the Adult/Adolescent Sensory Profile (AASP), a 60-item self-report questionnaire assessing levels of sensory…
Ismael, Noor T; Lawson, Lisa A Mische; Cox, Jane A
2015-12-01
Sensory processing patterns may be associated with children's preferences for different activities; however, knowledge about how different sensory processing patterns may relate to children's participation in leisure activities is scarce. This study investigated in what leisure activities children with extreme sensory processing patterns participate and if relationships exist between children's sensory processing patterns and their leisure preferences and participation patterns. This correlational study analyzed data from children's Sensory Profiles and reported play and leisure preferences. All 91 children in the sample completed the Children's Assessment for Participation and Enjoyment (CAPE) and the Preferences for Activities of Children (PAC). Parents of children ages 6 to 10 years completed the Sensory Profile, and children ages 11 to 14 years completed the Adolescent/Adult Sensory Profile. Children with different sensory processing patterns preferred both similar and distinct leisure activities. Low-registration quadrant summary z scores negatively correlated with CAPE overall diversity scores (rs=-.23, p=.03), sensitivity quadrant summary z scores negatively correlated with preferences for social activities (rs=-.23, p=.03) and preferences for skill-based activities (rs=-.22, p=.04), and avoiding quadrant summary z scores negatively correlated with preferences for social activities (rs=-.26, p=.01). Children's sensory preferences are related to leisure preferences and participation. © CAOT 2015.
Baum, Sarah H.; Stevenson, Ryan A.; Wallace, Mark T.
2015-01-01
Although sensory processing challenges have been noted since the first clinical descriptions of autism, it has taken until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 for sensory problems to be included as part of the core symptoms of autism spectrum disorder (ASD) in the diagnostic profile. Because sensory information forms the building blocks for higher-order social and cognitive functions, we argue that sensory processing is not only an additional piece of the puzzle, but rather a critical cornerstone for characterizing and understanding ASD. In this review we discuss what is currently known about sensory processing in ASD, how sensory function fits within contemporary models of ASD, and what is understood about the differences in the underlying neural processing of sensory and social communication observed between individuals with and without ASD. In addition to highlighting the sensory features associated with ASD, we also emphasize the importance of multisensory processing in building perceptual and cognitive representations, and how deficits in multisensory integration may also be a core characteristic of ASD. PMID:26455789
Warchol, Mark E
2002-04-01
Sensory hair cells in the inner ears of nonmammalian vertebrates can regenerate after injury. In many species, replacement hair cells are produced by the proliferation of epithelial supporting cells. Thus, the ability of supporting cells to undergo renewed proliferation is a key determinant of regenerative ability. The present study used cultures of isolated inner ear sensory epithelia to identify cellular signals that regulate supporting cell proliferation. Small pieces of sensory epithelia from the chicken utricle were cultured in glass microwells. Under those conditions, cell proliferation was inversely related to local cell density. The signaling molecules N-cadherin, beta-catenin, and focal adhesion kinase were immunolocalized in the cultured epithelial cells, and high levels of phosphotyrosine immunoreactivity were present at cell-cell junctions and focal contacts of proliferating cells. Binding of microbeads coated with a function-blocking antibody to N-cadherin inhibited ongoing proliferation. The growth of epithelial cells was also affected by the density of extracellular matrix molecules. The results suggest that cell density, cell-cell contact, and the composition of the extracellular matrix may be critical influences on the regulation of sensory regeneration in the inner ear.
Sensory hair cell regeneration in the zebrafish lateral line.
Lush, Mark E; Piotrowski, Tatjana
2014-10-01
Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.
Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model
Marsh, John E.; Campbell, Tom A.
2016-01-01
The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory. PMID:27242396
Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model.
Marsh, John E; Campbell, Tom A
2016-01-01
The rostral brainstem receives both "bottom-up" input from the ascending auditory system and "top-down" descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory.
Decoding the future from past experience: learning shapes predictions in early visual cortex.
Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe
2015-05-01
Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.
Behavioral model of visual perception and recognition
NASA Astrophysics Data System (ADS)
Rybak, Ilya A.; Golovan, Alexander V.; Gusakova, Valentina I.
1993-09-01
In the processes of visual perception and recognition human eyes actively select essential information by way of successive fixations at the most informative points of the image. A behavioral program defining a scanpath of the image is formed at the stage of learning (object memorizing) and consists of sequential motor actions, which are shifts of attention from one to another point of fixation, and sensory signals expected to arrive in response to each shift of attention. In the modern view of the problem, invariant object recognition is provided by the following: (1) separated processing of `what' (object features) and `where' (spatial features) information at high levels of the visual system; (2) mechanisms of visual attention using `where' information; (3) representation of `what' information in an object-based frame of reference (OFR). However, most recent models of vision based on OFR have demonstrated the ability of invariant recognition of only simple objects like letters or binary objects without background, i.e. objects to which a frame of reference is easily attached. In contrast, we use not OFR, but a feature-based frame of reference (FFR), connected with the basic feature (edge) at the fixation point. This has provided for our model, the ability for invariant representation of complex objects in gray-level images, but demands realization of behavioral aspects of vision described above. The developed model contains a neural network subsystem of low-level vision which extracts a set of primary features (edges) in each fixation, and high- level subsystem consisting of `what' (Sensory Memory) and `where' (Motor Memory) modules. The resolution of primary features extraction decreases with distances from the point of fixation. FFR provides both the invariant representation of object features in Sensor Memory and shifts of attention in Motor Memory. Object recognition consists in successive recall (from Motor Memory) and execution of shifts of attention and successive verification of the expected sets of features (stored in Sensory Memory). The model shows the ability of recognition of complex objects (such as faces) in gray-level images invariant with respect to shift, rotation, and scale.
ERIC Educational Resources Information Center
Cheung, Phoebe P. P.; Siu, Andrew M. H.
2009-01-01
This study compared the patterns of sensory processing among children with autism spectrum disorder (ASD), attention deficit and hyperactivity disorder (ADHD), and children without disabilities. Parents reported on the frequency of sensory processing issues by completing the Chinese Sensory Profile (CSP). Children with disabilities (ASD or ADHD)…
Aging and Posture Control: Changes in Sensory Organization and Muscular Coordination.
ERIC Educational Resources Information Center
Woollacott, Marjorie H.; And Others
1986-01-01
Examined two aspects of balance control in the older adult: coordination of timing and amplitude of muscle responses to postural perturbations, and ability of the participant to reorganize sensory inputs and subsequently modify postural responses as a consequence of changing environmental conditions. (Author/ABB)
Biological Correlates of Cognitive, Sensory and Motor Abilities
1975-04-01
specialized, histologically modified ends of sensory nerve fibers. The receptors are designed to respond to a particular form of energy at a much lower...consider the comparativ ■ approach as having rich potential. It is believed to be the only currently available means of definitely establish- ing
Evolution of Implicit and Explicit Communication in Mobile Robots
NASA Astrophysics Data System (ADS)
de Greeff, Joachim; Nolfi, Stefano
This work investigates the conditions in which a population of embodied agents evolved for the ability to display coordinated/cooperative skills can develop an ability to communicate, whether and to what extent the evolved communication system can complexify during the course of the evolutionary process, and how the characteristics of such communication system varies evolutionarily. The analysis of the obtained results indicates that evolving robots develop a capacity to access/generate information which has a communicative value, an ability to produce different signals encoding useful regularities, and an ability to react appropriately to explicit and implicit signals. The analysis of the obtained results allows us to formulate detailed hypothesis on the evolution of communication for what concern aspects such us: (i) how communication can emerge from a population of initially non-communicating agents, (ii) how communication systems can complexify, (iii) how signals/meanings can originate and how they can be grounded in agents' sensory-motor states.
Xu, Ren; Jiang, Ning; Dosen, Strahinja; Lin, Chuang; Mrachacz-Kersting, Natalie; Dremstrup, Kim; Farina, Dario
2016-08-01
In this study, we present a novel multi-class brain-computer interface (BCI) for communication and control. In this system, the information processing is shared by the algorithm (computer) and the user (human). Specifically, an electro-tactile cycle was presented to the user, providing the choice (class) by delivering timely sensory input. The user discriminated these choices by his/her endogenous sensory ability and selected the desired choice with an intuitive motor task. This selection was detected by a fast brain switch based on real-time detection of movement-related cortical potentials from scalp EEG. We demonstrated the feasibility of such a system with a four-class BCI, yielding a true positive rate of ∼ 80% and ∼ 70%, and an information transfer rate of ∼ 7 bits/min and ∼ 5 bits/min, for the movement and imagination selection command, respectively. Furthermore, when the system was extended to eight classes, the throughput of the system was improved, demonstrating the capability of accommodating a large number of classes. Combining the endogenous sensory discrimination with the fast brain switch, the proposed system could be an effective, multi-class, gaze-independent BCI system for communication and control applications.
Sensorimotor abilities predict on-field performance in professional baseball.
Burris, Kyle; Vittetoe, Kelly; Ramger, Benjamin; Suresh, Sunith; Tokdar, Surya T; Reiter, Jerome P; Appelbaum, L Gregory
2018-01-08
Baseball players must be able to see and react in an instant, yet it is hotly debated whether superior performance is associated with superior sensorimotor abilities. In this study, we compare sensorimotor abilities, measured through 8 psychomotor tasks comprising the Nike Sensory Station assessment battery, and game statistics in a sample of 252 professional baseball players to evaluate the links between sensorimotor skills and on-field performance. For this purpose, we develop a series of Bayesian hierarchical latent variable models enabling us to compare statistics across professional baseball leagues. Within this framework, we find that sensorimotor abilities are significant predictors of on-base percentage, walk rate and strikeout rate, accounting for age, position, and league. We find no such relationship for either slugging percentage or fielder-independent pitching. The pattern of results suggests performance contributions from both visual-sensory and visual-motor abilities and indicates that sensorimotor screenings may be useful for player scouting.
van Atteveldt, Nienke; Musacchia, Gabriella; Zion-Golumbic, Elana; Sehatpour, Pejman; Javitt, Daniel C.; Schroeder, Charles
2015-01-01
The brain’s fascinating ability to adapt its internal neural dynamics to the temporal structure of the sensory environment is becoming increasingly clear. It is thought to be metabolically beneficial to align ongoing oscillatory activity to the relevant inputs in a predictable stream, so that they will enter at optimal processing phases of the spontaneously occurring rhythmic excitability fluctuations. However, some contexts have a more predictable temporal structure than others. Here, we tested the hypothesis that the processing of rhythmic sounds is more efficient than the processing of irregularly timed sounds. To do this, we simultaneously measured functional magnetic resonance imaging (fMRI) and electro-encephalograms (EEG) while participants detected oddball target sounds in alternating blocks of rhythmic (e.g., with equal inter-stimulus intervals) or random (e.g., with randomly varied inter-stimulus intervals) tone sequences. Behaviorally, participants detected target sounds faster and more accurately when embedded in rhythmic streams. The fMRI response in the auditory cortex was stronger during random compared to random tone sequence processing. Simultaneously recorded N1 responses showed larger peak amplitudes and longer latencies for tones in the random (vs. the rhythmic) streams. These results reveal complementary evidence for more efficient neural and perceptual processing during temporally predictable sensory contexts. PMID:26579044
Pietrasik, Z; Gaudette, N J
2014-03-01
Two salt replacers (Ocean's Flavor - OF45, OF60) and one flavor enhancer [Fonterra™ 'Savoury Powder' (SP)] were evaluated for their ability to effectively reduce sodium, while maintaining the functional and sensory properties of restructured hams. Product functionality and safety were assessed using instrumental measures (yield, purge, pH, expressible moisture, proximate composition, sodium content, color, texture) and microbiological assessment. Sensory attributes were evaluated using consumer sensory panelists. All alternative formulations resulted in products with sodium contents below the Health Check(TM) Program guidelines, without detrimental effect on water binding and texture in treatments when NaCl was substituted with sea salt replacers (OF45, OF60). Sodium reduction had no effect on the shelf life of the cooked ham with up to 60 days of refrigerated storage. Consumer hedonics for flavor and aftertaste were lower for OF45 and OF60 compared to control, suggesting that these salt replacers may not be appropriate for inclusion in these products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sellers, Kristin K.; Bennett, Davis V.; Hutt, Axel; Williams, James H.
2015-01-01
During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers. PMID:25833839
Cognitive mechanisms associated with auditory sensory gating
Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.
2016-01-01
Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891
Meteran, Hanieh; Vindbjerg, Erik; Uldall, Sigurd Wiingaard; Glenthøj, Birte; Carlsson, Jessica; Oranje, Bob
2018-05-17
Impairments in mechanisms underlying early information processing have been reported in posttraumatic stress disorder (PTSD); however, findings in the existing literature are inconsistent. This current study capitalizes on technological advancements of research on electroencephalographic event-related potential and applies it to a novel PTSD population consisting of trauma-affected refugees. A total of 25 trauma-affected refugees with PTSD and 20 healthy refugee controls matched on age, gender, and country of origin completed the study. In two distinct auditory paradigms sensory gating, indexed as P50 suppression, and sensorimotor gating, indexed as prepulse inhibition (PPI), startle reactivity, and habituation of the eye-blink startle response were examined. Within the P50 paradigm, N100 and P200 amplitudes were also assessed. In addition, correlations between psychophysiological and clinical measures were investigated. PTSD patients demonstrated significantly elevated stimuli responses across the two paradigms, reflected in both increased amplitude of the eye-blink startle response, and increased N100 and P200 amplitudes relative to healthy refugee controls. We found a trend toward reduced habituation in the patients, while the groups did not differ in PPI and P50 suppression. Among correlations, we found that eye-blink startle responses were associated with higher overall illness severity and lower levels of functioning. Fundamental gating mechanisms appeared intact, while the pattern of deficits in trauma-affected refugees with PTSD point toward a different form of sensory overload, an overall neural hypersensitivity and disrupted the ability to down-regulate stimuli responses. This study represents an initial step toward elucidating sensory processing deficits in a PTSD subgroup.
Limitations of Sensory-Motor Screening for Reading Problems in the First Grade.
ERIC Educational Resources Information Center
Sautter, Scott W.; Barth, Jeffrey T.
1991-01-01
Several assessment procedures were analyzed to determine their ability to discriminate below-average from above-average readers among 50 first graders. Results indicated that language tests were more successful in classifying reading skills than were sensory-motor and perceptual procedures. Clear cut asymmetrical hemispheric specializations,…
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention
ERIC Educational Resources Information Center
Yu, Chen; Smith, Linda B.
2017-01-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of this study was to understand the complex system of sensory-motor behaviors that…
Sensory Integration and Ego Development in a Schizophrenic Adolescent Male.
ERIC Educational Resources Information Center
Pettit, Karen A.
1987-01-01
A retrospective study compared hours spent by a schizophrenic adolescent in "time out" before and after initiation of treatment. The study evaluated the effects of sensory integrative treatment on the ability to handle anger and frustration. Results demonstrate the utility of statistical analysis versus visual comparison to validate effectiveness…
Use of the Binaural Sensory Aid by Young Children.
ERIC Educational Resources Information Center
Strelow, E. R.
1983-01-01
Four blind children aged 10-30 months received training in the use of the Binaural Sensory Aid, adapted for use by children. Although the two youngest children learned to use the aid, the two older children showed substantially less ability to respond to information provided by the aid. (Author/CL)
Learning What Works in Sensory Disabilities: Establishing Causal Inference
ERIC Educational Resources Information Center
Cooney, John B.; Young, John, III; Luckner, John L.; Ferrell, Kay Alicyn
2015-01-01
This article is intended to assist teachers and researchers in designing studies that examine the efficacy of a particular intervention or strategy with students with sensory disabilities. Ten research designs that can establish causal inference (the ability to attribute any effects to the intervention) with and without randomization are discussed.
The Nucleus Accumbens and Pavlovian Reward Learning
Day, Jeremy J.
2011-01-01
The ability to form associations between predictive environmental events and rewarding outcomes is a fundamental aspect of learned behavior. This apparently simple ability likely requires complex neural processing evolved to identify, seek, and utilize natural rewards and redirect these activities based on updated sensory information. Emerging evidence from both animal and human research suggests that this type of processing is mediated in part by the nucleus accumbens and a closely associated network of brain structures. The nucleus accumbens is required for a number of reward-related behaviors, and processes specific information about reward availability, value, and context. Additionally, this structure is critical for the acquisition and expression of most Pavlovian stimulus-reward relationships, and cues that predict rewards produce robust changes in neural activity in the nucleus accumbens. While processing within the nucleus accumbens may enable or promote Pavlovian reward learning in natural situations, it has also been implicated in aspects of human drug addiction, including the ability of drug-paired cues to control behavior. This article will provide a critical review of the existing animal and human literature concerning the role of the NAc in Pavlovian learning with non-drug rewards and consider some clinical implications of these findings. PMID:17404375
ERIC Educational Resources Information Center
Olson, Carol H.; Henry, Diana A.; Kliner, Ashley Peck; Kyllo, Alissa; Richter, Chelsea Munson; Charley, Jane; Whitcher, Meagan Chapman; Reinke, Katherine Roth; Tysver, Chelsay Horner; Wagner, Lacey; Walworth, Jessica
2016-01-01
This pre- and posttest multiple-case study examined the effectiveness and usability of the Sensory Processing Measure-Preschool Quick Tips (SPM-P QT) by key stakeholders (parents and teachers) for implementing data-driven intervention to address sensory processing challenges. The Sensory Processing Measure-Preschool (SPM-P) was administered as an…
Examining Sensory Quadrants in Autism
ERIC Educational Resources Information Center
Kern, Janet K.; Garver, Carolyn R.; Carmody, Thomas; Andrews, Alonzo A.; Trivedi, Madhukar H.; Mehta, Jyutika A.
2007-01-01
The purpose of this study was to examine sensory quadrants in autism based on Dunn's Theory of Sensory Processing. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to 103 age- and gender-matched community…
Hofmann, Stefan G.; Bitran, Stella
2007-01-01
Sensory-processing sensitivity is assumed to be a heritable vulnerability factor for shyness. The present study is the first to examine sensory-processing sensitivity among individuals with social anxiety disorder. The results showed that the construct is separate from social anxiety, but it is highly correlated with harm avoidance and agoraphobic avoidance. Individuals with a generalized subtype of social anxiety disorder reported higher levels of sensory-processing sensitivity than individuals with a non-generalized subtype. These preliminary findings suggest that sensory-processing sensitivity is uniquely associated with the generalized subtype of social anxiety disorder. Recommendations for future research are discussed. PMID:17241764
Factors Influencing Obstacle Crossing Performance in Patients with Parkinson's Disease
Liao, Ying-Yi; Yang, Yea-Ru; Wu, Yih-Ru; Wang, Ray-Yau
2014-01-01
Background Tripping over obstacles is the major cause of falls in community-dwelling patients with Parkinson's disease (PD). Understanding the factors associated with the obstacle crossing behavior may help to develop possible training programs for crossing performance. This study aimed to identify the relationships and important factors determining obstacle crossing performance in patients with PD. Methods Forty-two idiopathic patients with PD (Hoehn and Yahr stages I to III) participated in this study. Obstacle crossing performance was recorded by the Liberty system, a three-dimensional motion capture device. Maximal isometric strength of the lower extremity was measured by a handheld dynamometer. Dynamic balance and sensory integration ability were assessed using the Balance Master system. Movement velocity (MV), maximal excursion (ME), and directional control (DC) were obtained during the limits of stability test to quantify dynamic balance. The sum of sensory organization test (SOT) scores was used to quantify sensory organization ability. Results Both crossing stride length and stride velocity correlated significantly with lower extremity muscle strength, dynamic balance control (forward and sideward), and sum of SOT scores. From the regression model, forward DC and ankle dorsiflexor strength were identified as two major determinants for crossing performance (R2 = .37 to.41 for the crossing stride length, R2 = .43 to.44 for the crossing stride velocity). Conclusions Lower extremity muscle strength, dynamic balance control and sensory integration ability significantly influence obstacle crossing performance. We suggest an emphasis on muscle strengthening exercises (especially ankle dorsiflexors), balance training (especially forward DC), and sensory integration training to improve obstacle crossing performance in patients with PD. PMID:24454723
Bjurström, M F; Álvarez, R; Nicol, A L; Olmstead, R; Amid, P K; Chen, D C
2017-04-01
Neurectomy of the inguinal nerves may be considered for selected refractory cases of chronic postherniorrhaphy inguinal pain (CPIP). There is to date a paucity of easily applicable clinical tools to identify neuropathic pain and examine the neurosensory effects of remedial surgery. The present quantitative sensory testing (QST) pilot study evaluates a sensory mapping technique. Longitudinal (preoperative, immediate postoperative, and late postoperative) dermatomal sensory mapping and a comprehensive QST protocol were conducted in CPIP patients with unilateral, predominantly neuropathic inguinodynia presenting for triple neurectomy (n = 13). QST was conducted in four areas on the affected, painful side and in one contralateral comparison site. QST variables were compared according to sensory mapping outcomes: (o)/normal sensation, (+)/pain, and (-)/numbness. Diagnostic ability of the sensory mapping outcomes to detect QST-assessed allodynia or hypoesthesia was estimated through calculation of specificity and sensitivity values. Preoperatively, patients exhibited mechanical hypoesthesia and allodynia and pressure allodynia and hyperalgesia in painful areas mapped (+) (p < .05); sensory mapping outcome (+) demonstrated high ability to detect mechanical allodynia [sensitivity 0.74 (95% CI 0.61-0.86), specificity 0.94 (0.84-1.00)] and pressure allodynia [sensitivity 0.96 (0.89-1.00), specificity 1.00 (1.00-1.00)], but not thermal allodynia. Postoperatively, mapped areas of numbness (-) were associated with mechanical and thermal hypoesthesia (p < .05); (-) showed high sensitivity and specificity to detect mechanical and cold hypoesthesia. Sensory mapping provides an accurate clinical neuropathic assessment with strong correlation to QST findings of preoperative mechanical and pressure allodynia, and postoperative mechanical and thermal hypoesthesia in CPIP patients undergoing neurectomy.
ERIC Educational Resources Information Center
Germani, Tamara; Zwaigenbaum, Lonnie; Bryson, Susan; Brian, Jessica; Smith, Isabel; Roberts, Wendy; Szatmari, Peter; Roncadin, Caroline; Sacrey, Lori Ann R.; Garon, Nancy; Vaillancourt, Tracy
2014-01-01
This study assessed sensory processing differences between 24-month infants at high-risk of autism spectrum disorder (ASD), each with an older sibling with ASD, and low-risk infants with no family history of ASD. Sensory processing differences were assessed using the Infant/Toddler Sensory Profile, a parent-reported measure. Groups were compared…
Reevaluating the Sensory Account of Visual Working Memory Storage.
Xu, Yaoda
2017-10-01
Recent human fMRI pattern-decoding studies have highlighted the involvement of sensory areas in visual working memory (VWM) tasks and argue for a sensory account of VWM storage. In this review, evidence is examined from human behavior, fMRI decoding, and transcranial magnetic stimulation (TMS) studies, as well as from monkey neurophysiology studies. Contrary to the prevalent view, the available evidence provides little support for the sensory account of VWM storage. Instead, when the ability to resist distraction and the existence of top-down feedback are taken into account, VWM-related activities in sensory areas seem to reflect feedback signals indicative of VWM storage elsewhere in the brain. Collectively, the evidence shows that prefrontal and parietal regions, rather than sensory areas, play more significant roles in VWM storage. Copyright © 2017 Elsevier Ltd. All rights reserved.
How is an ideal satiating yogurt described? A case study with added-protein yogurts.
Morell, P; Piqueras-Fiszman, B; Hernando, I; Fiszman, S
2015-12-01
Protein is recognized as the macronutrient with the highest satiating ability. Yogurt can be an excellent basis for designing satiating food as it is protein-based food product. Five different set-type yogurts were formulated by adding extra skim milk powder (MP), whey protein concentrate (WPC), calcium caseinate (CAS) or a blend of whey protein concentrate with calcium caseinate (CAS-WPC). A control yogurt without extra protein content was also prepared. Differences in sensory perceptions (through CATA questions) were related to the consumers' expected satiating ability and liking scores (of several modalities). In addition, an "Ideal satiating yogurt" was included in the CATA question to perform a penalty analysis to show potential directions for yogurt reformulation and to relate sensory and non-sensory yogurt characteristics to satiating capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Souza, Rimenez R; França, Sanmara L; Bessa, Marília M; Takahashi, Reinaldo N
2013-11-01
Due to the ability for depleting neuronal storages of monoamines, the reserpine model is a suitable approach for the investigation of the neurobiology of neurodegenerative diseases. However, the behavioral effects of low doses of reserpine are not always detected by classic animal tests of cognition, emotion, and sensory ability. In this study, the effects of reserpine (0.5-1.0mg/kg) were evaluated in olfactory fear conditioning, inhibitory avoidance, open-field, elevated plus-maze, and olfactory discrimination. Possible protective effects were also investigated. We found that single administration of reserpine impaired the acquisition of olfactory fear conditioning (in both doses) as well as olfactory discrimination (in the higher dose), while no effects were seen in all other tests. Additionally, we demonstrated that prior exposure to environmental enrichment prevented effects of reserpine in animals tested in olfactory fear conditioning. Altogether, these findings suggest that a combined cognitive, emotional and sensory-dependent task would be more sensitive to the effects of the reserpine model. In addition, the present data support the environmental enrichment as an useful approach for the study of resilience mechanisms in neurodegenerative processes. Copyright © 2013 Elsevier B.V. All rights reserved.
Sensory nerve action potentials and sensory perception in women with arthritis of the hand.
Calder, Kristina M; Martin, Alison; Lydiate, Jessica; MacDermid, Joy C; Galea, Victoria; MacIntyre, Norma J
2012-05-10
Arthritis of the hand can limit a person's ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p < 0.05). No group differences were found for SNAP conduction velocities, SM, VPT, and CPT. We propose, based on these findings, that women with hand OA or RA may have axonal loss of sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception.
Sensory nerve action potentials and sensory perception in women with arthritis of the hand
2012-01-01
Background Arthritis of the hand can limit a person’s ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Methods Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. Results All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p < 0.05). No group differences were found for SNAP conduction velocities, SM, VPT, and CPT. Discussion We propose, based on these findings, that women with hand OA or RA may have axonal loss of sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception. PMID:22575001
Sensory processing and world modeling for an active ranging device
NASA Technical Reports Server (NTRS)
Hong, Tsai-Hong; Wu, Angela Y.
1991-01-01
In this project, we studied world modeling and sensory processing for laser range data. World Model data representation and operation were defined. Sensory processing algorithms for point processing and linear feature detection were designed and implemented. The interface between world modeling and sensory processing in the Servo and Primitive levels was investigated and implemented. In the primitive level, linear features detectors for edges were also implemented, analyzed and compared. The existing world model representations is surveyed. Also presented is the design and implementation of the Y-frame model, a hierarchical world model. The interfaces between the world model module and the sensory processing module are discussed as well as the linear feature detectors that were designed and implemented.
NASA Technical Reports Server (NTRS)
Nashman, Marilyn; Chaconas, Karen J.
1988-01-01
The sensory processing system for the NASA/NBS Standard Reference Model (NASREM) for telerobotic control is described. This control system architecture was adopted by NASA of the Flight Telerobotic Servicer. The control system is hierarchically designed and consists of three parallel systems: task decomposition, world modeling, and sensory processing. The Sensory Processing System is examined, and in particular the image processing hardware and software used to extract features at low levels of sensory processing for tasks representative of those envisioned for the Space Station such as assembly and maintenance are described.
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1987-01-01
The objectives of this proposal were developed to further explore and quantify the orientation reference selection abilities of subjects and the relation, if any, between motion sickness and orientation reference selection. The overall objectives of this proposal are to determine (1) if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects, (2) if abnormal vertical canal-otolith function is the source of these abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and (3) if quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability demonstrated by tests which systematically control the sensory imformation available for orientation.
Is Attentional Resource Allocation Across Sensory Modalities Task-Dependent?
Wahn, Basil; König, Peter
2017-01-01
Human information processing is limited by attentional resources. That is, via attentional mechanisms, humans select a limited amount of sensory input to process while other sensory input is neglected. In multisensory research, a matter of ongoing debate is whether there are distinct pools of attentional resources for each sensory modality or whether attentional resources are shared across sensory modalities. Recent studies have suggested that attentional resource allocation across sensory modalities is in part task-dependent. That is, the recruitment of attentional resources across the sensory modalities depends on whether processing involves object-based attention (e.g., the discrimination of stimulus attributes) or spatial attention (e.g., the localization of stimuli). In the present paper, we review findings in multisensory research related to this view. For the visual and auditory sensory modalities, findings suggest that distinct resources are recruited when humans perform object-based attention tasks, whereas for the visual and tactile sensory modalities, partially shared resources are recruited. If object-based attention tasks are time-critical, shared resources are recruited across the sensory modalities. When humans perform an object-based attention task in combination with a spatial attention task, partly shared resources are recruited across the sensory modalities as well. Conversely, for spatial attention tasks, attentional processing does consistently involve shared attentional resources for the sensory modalities. Generally, findings suggest that the attentional system flexibly allocates attentional resources depending on task demands. We propose that such flexibility reflects a large-scale optimization strategy that minimizes the brain's costly resource expenditures and simultaneously maximizes capability to process currently relevant information.
CONGENITAL BLINDNESS AS AN INSTANCE OF SENSORY DEPRIVATION, IMPLICATIONS FOR REHABILITATION.
ERIC Educational Resources Information Center
NEISWORTH, JOHN T.; SMITH, ROBERT M.
RESEARCH CONCERNING SENSORY DEPRIVATION AND ITS RELATIONSHIP TO PERSONALITY VARIABLES AND SUBSEQUENT BEHAVIORAL AND COGNITIVE CHANGES IS REVIEWED. THREE LIMITATIONS OF THE CONGENITALLY BLIND ARE LISTED (1) RESTRICTION IN THE RANGE AND VARIETY OF EXPERIENCES, (2) DEFICITS IN THE ABILITY TO MOVE ABOUT, (3) DEFICITS IN THE CAPACITY TO CONTROL THE…
Mechanisms of Aminoglycoside-Induced Hair Cell Death
ERIC Educational Resources Information Center
Mangiardi, Dominic A.; Cotanche, Douglas A.
2005-01-01
Aminoglycoside antibiotics are commonly used because of their ability to treat bacterial infections, yet they also are a major cause of deafness. Aminoglycosides selectively damage the cochlea's sensory hair cells, the receptors that respond to the fluid movement in the cochlea to produce neural signals that are relayed to the brain. Sensory hair…
The Effect of Sensory Integration Treatment on Children with Multiple Disabilities.
ERIC Educational Resources Information Center
Din, Feng S.; Lodato, Donna M.
Six children with multiple disabilities (ages 5 to 8) participated in this evaluation of the effect of sensory integration treatment on sensorimotor function and academic learning. The children had cognitive abilities ranging from sub-average to significantly sub-average, three were non-ambulatory, one had severe behavioral problems, and each…
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1988-01-01
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals used to control upright posture. In particular, there is one class of subjects with a vestibular disorder known as benign paroxysmal positional vertigo (BPPV) who often are particularly sensitive to inaccurate visual information. That is, they will use visual sensory information for the control of their posture even when that visual information is inaccurate and is in conflict with accurate proprioceptive and vestibular sensory signals. BPPV has been associated with disorders of both posterior semicircular canal function and possibly otolith function. The present proposal hopes to take advantage of the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with the BPPV syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives of this proposal are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans.
Pietrasik, Zeb; Gaudette, Nicole J
2015-07-01
Producing high-quality processed meats that contain reduced amounts of sodium chloride is a major challenge facing industry owing to the importance of sodium chloride toward the functional, microbial stability and sensory properties of these products. In order to create reduced sodium alternatives, a number of commercial salt replacers and flavor enhancers have entered the market; however, their ability to be applied in processed meats requires investigation. In this study, two salt replacers (Ocean's Flavor - OF45, OF60) and one flavor enhancer (Fonterra™ Savoury Powder - SP) were evaluated for their ability to effectively reduce sodium while maintaining the functional and sensory properties of turkey sausages. Functionality via instrumental measures (yield, purge loss, pH, expressible moisture, proximate composition, sodium content, color, texture), safety (microbiological assessment) and consumer acceptability were obtained on all samples. All non-control treatments resulted in products with sodium chloride contents below Canada's Health Check™ Program target for processed meats. There was no detrimental effect on water binding and texture in treatments when NaCl was substituted with OF60 sea salt replacers. Sodium reduction had no negative effect on the shelf life of the turkey sausages with up to 60 days of refrigerated storage. Consumer acceptability for all attributes did not differ significantly, except for aftertaste, which scored lowest for OF45 compared with the control (regular NaCl content). This work demonstrated that salt replacers could potentially substitute for NaCl in smoked turkey sausages; however, further flavor optimization may be required to suppress undesirable levels of bitterness elicited by some of these ingredients. © 2014 Society of Chemical Industry.
McCullagh, Elizabeth A; Salcedo, Ernesto; Huntsman, Molly M; Klug, Achim
2017-11-01
Hyperexcitability and the imbalance of excitation/inhibition are one of the leading causes of abnormal sensory processing in Fragile X syndrome (FXS). The precise timing and distribution of excitation and inhibition is crucial for auditory processing at the level of the auditory brainstem, which is responsible for sound localization ability. Sound localization is one of the sensory abilities disrupted by loss of the Fragile X Mental Retardation 1 (Fmr1) gene. Using triple immunofluorescence staining we tested whether there were alterations in the number and size of presynaptic structures for the three primary neurotransmitters (glutamate, glycine, and GABA) in the auditory brainstem of Fmr1 knockout mice. We found decreases in either glycinergic or GABAergic inhibition to the medial nucleus of the trapezoid body (MNTB) specific to the tonotopic location within the nucleus. MNTB is one of the primary inhibitory nuclei in the auditory brainstem and participates in the sound localization process with fast and well-timed inhibition. Thus, a decrease in inhibitory afferents to MNTB neurons should lead to greater inhibitory output to the projections from this nucleus. In contrast, we did not see any other significant alterations in balance of excitation/inhibition in any of the other auditory brainstem nuclei measured, suggesting that the alterations observed in the MNTB are both nucleus and frequency specific. We furthermore show that glycinergic inhibition may be an important contributor to imbalances in excitation and inhibition in FXS and that the auditory brainstem is a useful circuit for testing these imbalances. © 2017 Wiley Periodicals, Inc.
Individual differences in online spoken word recognition: Implications for SLI
McMurray, Bob; Samelson, Vicki M.; Lee, Sung Hee; Tomblin, J. Bruce
2012-01-01
Thirty years of research has uncovered the broad principles that characterize spoken word processing across listeners. However, there have been few systematic investigations of individual differences. Such an investigation could help refine models of word recognition by indicating which processing parameters are likely to vary, and could also have important implications for work on language impairment. The present study begins to fill this gap by relating individual differences in overall language ability to variation in online word recognition processes. Using the visual world paradigm, we evaluated online spoken word recognition in adolescents who varied in both basic language abilities and non-verbal cognitive abilities. Eye movements to target, cohort and rhyme objects were monitored during spoken word recognition, as an index of lexical activation. Adolescents with poor language skills showed fewer looks to the target and more fixations to the cohort and rhyme competitors. These results were compared to a number of variants of the TRACE model (McClelland & Elman, 1986) that were constructed to test a range of theoretical approaches to language impairment: impairments at sensory and phonological levels; vocabulary size, and generalized slowing. None were strongly supported, and variation in lexical decay offered the best fit. Thus, basic word recognition processes like lexical decay may offer a new way to characterize processing differences in language impairment. PMID:19836014
A Systematic Review of Sensory Processing Interventions for Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Case-Smith, Jane; Weaver, Lindy L.; Fristad, Mary A.
2015-01-01
Children with autism spectrum disorders often exhibit co-occurring sensory processing problems and receive interventions that target self-regulation. In current practice, sensory interventions apply different theoretic constructs, focus on different goals, use a variety of sensory modalities, and involve markedly disparate procedures. Previous…
ERIC Educational Resources Information Center
Simmons, Karen; Miller, Lucy Jane
2008-01-01
Sensory processing refers to the way the brain takes incoming sensory messages, converts them into meaningful messages, then makes a response. If the responses are disorganized or inappropriate given the sensory input, sensory processing disorder (SPD) may co-exist with autism. If a child has an occasional atypical response to sensation, he or she…
Ellison, David; Mugler, Andrew; Brennan, Matthew D.; Lee, Sung Hoon; Huebner, Robert J.; Shamir, Eliah R.; Woo, Laura A.; Kim, Joseph; Amar, Patrick; Nemenman, Ilya; Ewald, Andrew J.; Levchenko, Andre
2016-01-01
Collective cell responses to exogenous cues depend on cell–cell interactions. In principle, these can result in enhanced sensitivity to weak and noisy stimuli. However, this has not yet been shown experimentally, and little is known about how multicellular signal processing modulates single-cell sensitivity to extracellular signaling inputs, including those guiding complex changes in the tissue form and function. Here we explored whether cell–cell communication can enhance the ability of cell ensembles to sense and respond to weak gradients of chemotactic cues. Using a combination of experiments with mammary epithelial cells and mathematical modeling, we find that multicellular sensing enables detection of and response to shallow epidermal growth factor (EGF) gradients that are undetectable by single cells. However, the advantage of this type of gradient sensing is limited by the noisiness of the signaling relay, necessary to integrate spatially distributed ligand concentration information. We calculate the fundamental sensory limits imposed by this communication noise and combine them with the experimental data to estimate the effective size of multicellular sensory groups involved in gradient sensing. Functional experiments strongly implicated intercellular communication through gap junctions and calcium release from intracellular stores as mediators of collective gradient sensing. The resulting integrative analysis provides a framework for understanding the advantages and limitations of sensory information processing by relays of chemically coupled cells. PMID:26792522
Spatial constancy mechanisms in motor control
Medendorp, W. Pieter
2011-01-01
The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye–head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals. PMID:21242137
Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making.
Rungratsameetaweemana, Nuttida; Itthipuripat, Sirawaj; Salazar, Annalisa; Serences, John T
2018-06-13
Two factors play important roles in shaping perception: the allocation of selective attention to behaviorally relevant sensory features, and prior expectations about regularities in the environment. Signal detection theory proposes distinct roles of attention and expectation on decision-making such that attention modulates early sensory processing, whereas expectation influences the selection and execution of motor responses. Challenging this classic framework, recent studies suggest that expectations about sensory regularities enhance the encoding and accumulation of sensory evidence during decision-making. However, it is possible, that these findings reflect well documented attentional modulations in visual cortex. Here, we tested this framework in a group of male and female human participants by examining how expectations about stimulus features (orientation and color) and expectations about motor responses impacted electroencephalography (EEG) markers of early sensory processing and the accumulation of sensory evidence during decision-making (the early visual negative potential and the centro-parietal positive potential, respectively). We first demonstrate that these markers are sensitive to changes in the amount of sensory evidence in the display. Then we show, counter to recent findings, that neither marker is modulated by either feature or motor expectations, despite a robust effect of expectations on behavior. Instead, violating expectations about likely sensory features and motor responses impacts posterior alpha and frontal theta oscillations, signals thought to index overall processing time and cognitive conflict. These findings are inconsistent with recent theoretical accounts and suggest instead that expectations primarily influence decisions by modulating post-perceptual stages of information processing. SIGNIFICANCE STATEMENT Expectations about likely features or motor responses play an important role in shaping behavior. Classic theoretical frameworks posit that expectations modulate decision-making by biasing late stages of decision-making including the selection and execution of motor responses. In contrast, recent accounts suggest that expectations also modulate decisions by improving the quality of early sensory processing. However, these effects could instead reflect the influence of selective attention. Here we examine the effect of expectations about sensory features and motor responses on a set of electroencephalography (EEG) markers that index early sensory processing and later post-perceptual processing. Counter to recent empirical results, expectations have little effect on early sensory processing but instead modulate EEG markers of time-on-task and cognitive conflict. Copyright © 2018 the authors 0270-6474/18/385632-17$15.00/0.
Haug, Megan T; King, Ellena S; Heymann, Hildegarde; Crisosto, Carlos H
2013-08-01
A trained sensory panel evaluated the 6 fig cultivars currently sold in the California dried fig market. The main flavor and aroma attributes determined by the sensory panel were "caramel," "honey," "raisin," and "fig," with additional aroma attributes: "common date," "dried plum," and "molasses." Sensory differences were observed between dried fig cultivars. All figs were processed by 2 commercial handlers. Processing included potassium sorbate as a preservative and SO2 application as an antibrowning agent for white cultivars. As a consequence of SO2 use during processing, high sulfite residues affected the sensory profiles of the white dried fig cultivars. Significant differences between dried fig cultivars and sources demonstrate perceived differences between processing and storage methods. The panel-determined sensory lexicon can help with California fig marketing. © 2013 The Regents of California, Davis Campus Department of Plant Sciences.
The bridge of iconicity: from a world of experience to the experience of language.
Perniss, Pamela; Vigliocco, Gabriella
2014-09-19
Iconicity, a resemblance between properties of linguistic form (both in spoken and signed languages) and meaning, has traditionally been considered to be a marginal, irrelevant phenomenon for our understanding of language processing, development and evolution. Rather, the arbitrary and symbolic nature of language has long been taken as a design feature of the human linguistic system. In this paper, we propose an alternative framework in which iconicity in face-to-face communication (spoken and signed) is a powerful vehicle for bridging between language and human sensori-motor experience, and, as such, iconicity provides a key to understanding language evolution, development and processing. In language evolution, iconicity might have played a key role in establishing displacement (the ability of language to refer beyond what is immediately present), which is core to what language does; in ontogenesis, iconicity might play a critical role in supporting referentiality (learning to map linguistic labels to objects, events, etc., in the world), which is core to vocabulary development. Finally, in language processing, iconicity could provide a mechanism to account for how language comes to be embodied (grounded in our sensory and motor systems), which is core to meaningful communication.
The bridge of iconicity: from a world of experience to the experience of language
Perniss, Pamela; Vigliocco, Gabriella
2014-01-01
Iconicity, a resemblance between properties of linguistic form (both in spoken and signed languages) and meaning, has traditionally been considered to be a marginal, irrelevant phenomenon for our understanding of language processing, development and evolution. Rather, the arbitrary and symbolic nature of language has long been taken as a design feature of the human linguistic system. In this paper, we propose an alternative framework in which iconicity in face-to-face communication (spoken and signed) is a powerful vehicle for bridging between language and human sensori-motor experience, and, as such, iconicity provides a key to understanding language evolution, development and processing. In language evolution, iconicity might have played a key role in establishing displacement (the ability of language to refer beyond what is immediately present), which is core to what language does; in ontogenesis, iconicity might play a critical role in supporting referentiality (learning to map linguistic labels to objects, events, etc., in the world), which is core to vocabulary development. Finally, in language processing, iconicity could provide a mechanism to account for how language comes to be embodied (grounded in our sensory and motor systems), which is core to meaningful communication. PMID:25092668
Extinction reveals that primary sensory cortex predicts reinforcement outcome
Bieszczad, Kasia M.; Weinberger, Norman M.
2011-01-01
Primary sensory cortices are traditionally regarded as stimulus analyzers. However, studies of associative learning-induced plasticity in the primary auditory cortex (A1) indicate involvement in learning, memory and other cognitive processes. For example, the area of representation of a tone becomes larger for stronger auditory memories and the magnitude of area gain is proportional to the degree that a tone becomes behaviorally important. Here, we used extinction to investigate whether “behavioral importance” specifically reflects a sound’s ability to predict reinforcement (reward or punishment) vs. to predict any significant change in the meaning of a sound. If the former, then extinction should reverse area gains as the signal no longer predicts reinforcement. Rats (n = 11) were trained to bar-press to a signal tone (5.0 kHz) for water-rewards, to induce signal-specific area gains in A1. After subsequent withdrawal of reward, A1 was mapped to determine representational areas. Signal-specific area gains — estimated from a previously established brain–behavior quantitative function — were reversed, supporting the “reinforcement prediction” hypothesis. Area loss was specific to the signal tone vs. test tones, further indicating that withdrawal of reinforcement, rather than unreinforced tone presentation per se, was responsible for area loss. Importantly, the amount of area loss was correlated with the amount of extinction (r = 0.82, p < 0.01). These findings show that primary sensory cortical representation can encode behavioral importance as a signal’s value to predict reinforcement, and that the number of cells tuned to a stimulus can dictate its ability to command behavior. PMID:22304434
Behavioral and anatomical consequences of early versus late symbol training in macaques.
Srihasam, Krishna; Mandeville, Joseph B; Morocz, Istvan A; Sullivan, Kevin J; Livingstone, Margaret S
2012-02-09
Distinct brain regions, reproducible from one person to the next, are specialized for processing different kinds of human expertise, such as face recognition and reading. Here, we explore the relationship between age of learning, learning ability, and specialized brain structures. Specifically, we ask whether the existence of reproducible cortical domains necessarily means that certain abilities are innate, or innately easily learned, or whether reproducible domains can be formed, or refined, by interactions between genetic programs and common early experience. Functional MRI showed that intensive early, but not late, experience caused the formation of category-selective regions in macaque temporal lobe for stimuli never naturally encountered by monkeys. And behaviorally, early training produced more fluent processing of these stimuli than the same training in adults. One explanation for these results is that in higher cortical areas, as in early sensory areas, experience drives functional clustering and functional clustering determines how that information is processed. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Fletcher, Tina S.; Blake, Amanda B.; Shelffo, Kathleen E.
2018-01-01
Children routinely visit art museums as part of their educational experience and family time, many of them having special needs. The number of children diagnosed with autism and sensory processing disorders is increasing. These conditions may include heightened sensory "avoiding" or "seeking" behaviors that can interfere with a…
Sensory Sensitivity and Food Selectivity in Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Chistol, Liem T.; Bandini, Linda G.; Must, Aviva; Phillips, Sarah; Cermak, Sharon A.; Curtin, Carol
2018-01-01
Few studies have compared atypical sensory characteristics and food selectivity between children with and without autism spectrum disorder (ASD). We compared oral sensory processing between children with (n = 53) and without ASD (n = 58), ages 3-11 years. We also examined the relationships between atypical oral sensory processing, food…
Perceptual load interacts with stimulus processing across sensory modalities.
Klemen, J; Büchel, C; Rose, M
2009-06-01
According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.
Sensory atypicalities in dyads of children with autism spectrum disorder (ASD) and their parents.
Glod, Magdalena; Riby, Deborah M; Honey, Emma; Rodgers, Jacqui
2017-03-01
Sensory atypicalities are a common feature of autism spectrum disorder (ASD). To date, the relationship between sensory atypicalities in dyads of children with ASD and their parents has not been investigated. Exploring these relationships can contribute to an understanding of how phenotypic profiles may be inherited, and the extent to which familial factors might contribute towards children's sensory profiles and constitute an aspect of the broader autism phenotype (BAP). Parents of 44 children with ASD and 30 typically developing (TD) children, aged between 3 and 14 years, participated. Information about children's sensory experiences was collected through parent report using the Sensory Profile questionnaire. Information about parental sensory experiences was collected via self-report using the Adolescent/Adult Sensory Profile. Parents of children with ASD had significantly higher scores than parents of TD children in relation to low registration, over responsivity, and taste/smell sensory processing. Similar levels of agreement were obtained within ASD and TD parent-child dyads on a number of sensory atypicalities; nevertheless significant correlations were found between parents and children in ASD families but not TD dyads for sensation avoiding and auditory, visual, and vestibular sensory processing. The findings suggest that there are similarities in sensory processing profiles between parents and their children in both ASD and TD dyads. Familial sensory processing factors are likely to contribute towards the BAP. Further work is needed to explore genetic and environmental influences on the developmental pathways of the sensory atypicalities in ASD. Autism Res 2017, 10: 531-538. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Acetylated tubulin is essential for touch sensation in mice.
Morley, Shane J; Qi, Yanmei; Iovino, Loredana; Andolfi, Laura; Guo, Da; Kalebic, Nereo; Castaldi, Laura; Tischer, Christian; Portulano, Carla; Bolasco, Giulia; Shirlekar, Kalyanee; Fusco, Claudia M; Asaro, Antonino; Fermani, Federica; Sundukova, Mayya; Matti, Ulf; Reymond, Luc; De Ninno, Adele; Businaro, Luca; Johnsson, Kai; Lazzarino, Marco; Ries, Jonas; Schwab, Yannick; Hu, Jing; Heppenstall, Paul A
2016-12-13
At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch.
Tavassoli, Teresa; Miller, Lucy Jane; Schoen, Sarah A; Jo Brout, Jennifer; Sullivan, Jillian; Baron-Cohen, Simon
2018-01-01
Although the DSM-5 added sensory symptoms as a criterion for ASC, there is a group of children who display sensory symptoms but do not have ASC; children with sensory processing disorder (SPD). To be able to differentiate these two disorders, our aim was to evaluate whether children with ASC show more sensory symptomatology and/or different cognitive styles in empathy and systemizing compared to children with SPD and typically developing (TD) children. The study included 210 participants: 68 children with ASC, 79 with SPD and 63 TD children. The Sensory Processing Scale Inventory was used to measure sensory symptoms, the Autism Spectrum Quotient (AQ) to measure autistic traits, and the Empathy Quotient (EQ) and Systemizing Quotient (SQ) to measure cognitive styles. Across groups, a greater sensory symptomatology was associated with lower empathy. Further, both the ASC and SPD groups showed more sensory symptoms than TD children. Children with ASC and SPD only differed on sensory under-reactivity. The ASD group did, however, show lower empathy and higher systemizing scores than the SPD group. Together, this suggest that sensory symptoms alone may not be adequate to differentiate children with ASC and SPD but that cognitive style measures could be used for differential diagnosis. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Machado, Sergio; Cunha, Marlo; Velasques, Bruna; Minc, Daniel; Teixeira, Silmar; Domingues, Clayton A; Silva, Julio G; Bastos, Victor H; Budde, Henning; Cagy, Mauricio; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro
2010-10-01
Sensorimotor integration is defined as the capability of the central nervous system to integrate different sources of stimuli, and parallelly, to transform such inputs in motor actions. To review the basic principles of sensorimotor integration, such as, its neural bases and its elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects, and the abnormalities reported in the most common movement disorders, such as, Parkinson' disease, dystonia and stroke, like the cortical reorganization-related mechanisms. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but most of the data support a central mechanism. We found that the sensorimotor integration process plays a potential role in elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects and in occurrence of abnormalities in most common movement disorders and, moreover, play a potential role on the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of motor outputs consciously goal-directed.
Aggression and courtship in Drosophila: pheromonal communication and sex recognition.
Fernández, María Paz; Kravitz, Edward A
2013-11-01
Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices.
Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.
Smith, Michael E; Monroe, J David
2016-01-01
Sensory hair cells are the mechanotransductive receptors that detect gravity, sound, and vibration in all vertebrates. Damage to these sensitive receptors often results in deficits in vestibular function and hearing. There are currently two main reasons for studying the process of hair cell loss in fishes. First, fishes, like other non-mammalian vertebrates, have the ability to regenerate hair cells that have been damaged or lost via exposure to ototoxic chemicals or acoustic overstimulation. Thus, they are used as a biomedical model to understand the process of hair cell death and regeneration and find therapeutics that treat or prevent human hearing loss. Secondly, scientists and governmental natural resource managers are concerned about the potential effects of intense anthropogenic sounds on aquatic organisms, including fishes. Dr. Arthur N. Popper and his students, postdocs and research associates have performed pioneering experiments in both of these lines of fish hearing research. This review will discuss the current knowledge regarding the causes and consequences of both lateral line and inner ear hair cell damage in teleost fishes.
Aggression and Courtship in Drosophila: Pheromonal Communication and Sex Recognition
Fernández, María Paz; Kravitz, Edward A.
2013-01-01
Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices. PMID:24043358
Ghanizadeh, Ahmad
2011-05-01
There are debates whether autistic disorder (autism) and Asperger's disorder are two distinct disorders. Moreover, interventional sensory occupational therapy should consider the clinical characteristics of patients. Already, commonalities and differences between Asperger's disorder and autistic disorder are not well studied. The aim of this study is to compare tactile sensory function of children with autistic disorder and children with Asperger's disorder. Tactile sensory function was compared between 36 children with autism and 19 children with Asperger's disorder. The two disorders were diagnosed based on Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision. The parent-reported Tactile Dysfunction Checklist was used to assess the three aspects of hypersensitivity, hyposensitivity, and poor tactile perception and discrimination. Developmental coordination was also assessed. Developmental coordination problems total score was not associated with group. The mean (standard deviation) score of tactile hyper-responsivity was not different between the groups. Tactile hyporesponsivity and poor tactile perception and discrimination scores were statistically higher in autistic disorder than Asperger's disorder group. These results for the first time indicated that at least some aspects of tactile perception can differentiate these two disorders. Children with autistic disorder have more tactile sensory seeking behaviors than children with Asperger's disorder. Moreover, the ability of children with autistic disorder for tactile discrimination and sensory perception is less than those with Asperger's disorder. Interventional sensory therapy in children with autistic disorder should have some characteristics that can be different and specific for children with Asperger's disorder. Formal intelligence quotient testing was not performed on all of the children evaluated, which is a limitation to this study. In some cases, a clinical estimation of intelligence quotient was given, which limits the conclusions that can be drawn from the data. Additional research using formal intelligence quotient testing on all of the subjects should be performed in order to draw more concrete conclusions.
2011-01-01
Objective There are debates whether autistic disorder (autism) and Asperger's disorder are two distinct disorders. Moreover, interventional sensory occupational therapy should consider the clinical characteristics of patients. Already, commonalities and differences between Asperger's disorder and autistic disorder are not well studied. The aim of this study is to compare tactile sensory function of children with autistic disorder and children with Asperger's disorder. Methods Tactile sensory function was compared between 36 children with autism and 19 children with Asperger's disorder. The two disorders were diagnosed based on Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision. The parent-reported Tactile Dysfunction Checklist was used to assess the three aspects of hypersensitivity, hyposensitivity, and poor tactile perception and discrimination. Developmental coordination was also assessed. Results Developmental coordination problems total score was not associated with group. The mean (standard deviation) score of tactile hyper-responsivity was not different between the groups. Tactile hyporesponsivity and poor tactile perception and discrimination scores were statistically higher in autistic disorder than Asperger's disorder group. Conclusion These results for the first time indicated that at least some aspects of tactile perception can differentiate these two disorders. Children with autistic disorder have more tactile sensory seeking behaviors than children with Asperger's disorder. Moreover, the ability of children with autistic disorder for tactile discrimination and sensory perception is less than those with Asperger's disorder. Interventional sensory therapy in children with autistic disorder should have some characteristics that can be different and specific for children with Asperger's disorder. Formal intelligence quotient testing was not performed on all of the children evaluated, which is a limitation to this study. In some cases, a clinical estimation of intelligence quotient was given, which limits the conclusions that can be drawn from the data. Additional research using formal intelligence quotient testing on all of the subjects should be performed in order to draw more concrete conclusions. PMID:21686145
Randazzo, C L; De Luca, S; Todaro, A; Restuccia, C; Lanza, C M; Spagna, G; Caggia, C
2007-08-01
The aim of this work was to preliminary characterize wild lactic acid bacteria (LAB), previously isolated during artisanal Pecorino Siciliano (PS) cheese-making for technological and flavour formation abilities in a model cheese system. Twelve LAB were studied for the ability to grow at 10 and 45 degrees C, to coagulate and acidify both reconstituted skim milk and ewe's milk. Moreover, the capacity of the strains to generate aroma compounds was evaluated in a model cheese system at 30- and 60-day ripening. Flavour compounds were screened by sensory analysis and throughout gas chromatography (GC)-mass spectrometry (MS). Most of the strains were able to grow both at 10 and 45 degrees C and exhibited high ability to acidify and coagulate ewes' milk. Sensory evaluation revealed that the wild strains produced more significant flavour attributes than commercial strains in the 60-day-old model cheese system. GC-MS data confirmed the results of sensory evaluations and showed the ability of wild lactobacilli to generate key volatile compounds. Particularly, three wild lactobacilli strains, belonging to Lactobacillus casei, Lb. rhamnosus and Lb. plantarum species, generated both in 60- and 30-day-old model cheeses system, the 3-methyl butan(al)(ol) compound, which is associated with fruity taste. The present work preliminarily demonstrated that the technological and flavour formation abilities of the wild strains are strain-specific and that wild lactobacilli, which produced key flavour compounds during ripening, could be used as tailor-made starters. This study reports the technological characterization and flavour formation ability of wild LAB strains isolated from artisanal Pecorino cheese and highlights that the catabolic activities were highly strain dependent. Hence, wild lactobacilli could be selected as tailor-made starter cultures for the PS cheese manufacture.
Gnostic rings: usefulness in sensibility evaluation and sensory reeducation.
Brunelli, G; Battiston, B; Dellon, A L
1992-01-01
The benefit of additional clinical tools for quantifying patients' ability to recognize objects is clear, as well as its correlation with the moving two-point discrimination test. The recognition of letters is such a tool. The authors describe gnostic rings, an additional technique, that is useful for clinical sensibility testing, as well as for sensory reeducation.
Functional recovery of odor representations in regenerated sensory inputs to the olfactory bulb
Cheung, Man C.; Jang, Woochan; Schwob, James E.; Wachowiak, Matt
2014-01-01
The olfactory system has a unique capacity for recovery from peripheral damage. After injury to the olfactory epithelium (OE), olfactory sensory neurons (OSNs) regenerate and re-converge on target glomeruli of the olfactory bulb (OB). Thus far, this process has been described anatomically for only a few defined populations of OSNs. Here we characterize this regeneration at a functional level by assessing how odor representations carried by OSN inputs to the OB recover after massive loss and regeneration of the sensory neuron population. We used chronic imaging of mice expressing synaptopHluorin in OSNs to monitor odor representations in the dorsal OB before lesion by the olfactotoxin methyl bromide and after a 12 week recovery period. Methyl bromide eliminated functional inputs to the OB, and these inputs recovered to near-normal levels of response magnitude within 12 weeks. We also found that the functional topography of odor representations recovered after lesion, with odorants evoking OSN input to glomerular foci within the same functional domains as before lesion. At a finer spatial scale, however, we found evidence for mistargeting of regenerated OSN axons onto OB targets, with odorants evoking synaptopHluorin signals in small foci that did not conform to a typical glomerular structure but whose distribution was nonetheless odorant-specific. These results indicate that OSNs have a robust ability to reestablish functional inputs to the OB and that the mechanisms underlying the topography of bulbar reinnervation during development persist in the adult and allow primary sensory representations to be largely restored after massive sensory neuron loss. PMID:24431990
Ruczyński, Ireneusz; Bartoń, Kamil A.
2012-01-01
Sensory limitation plays an important role in the evolution of animal behaviour. Animals have to find objects of interest (e.g. food, shelters, predators). When sensory abilities are strongly limited, animals adjust their behaviour to maximize chances for success. Bats are nocturnal, live in complex environments, are capable of flight and must confront numerous perceptual challenges (e.g. limited sensory range, interfering clutter echoes). This makes them an excellent model for studying the role of compensating behaviours to decrease costs of finding resources. Cavity roosting bats are especially interesting because the availability of tree cavities is often limited, and their quality is vital for bats during the breeding season. From a bat’s sensory point of view, cavities are difficult to detect and finding them requires time and energy. However, tree cavities are also long lasting, allowing information transfer among conspecifics. Here, we use a simple simulation model to explore the benefits of tree selection, memory and eavesdropping (compensation behaviours) to searches for tree cavities by bats with short and long perception range. Our model suggests that memory and correct discrimination of tree suitability are the basic strategies decreasing the cost of roost finding, whereas perceptual range plays a minor role in this process. Additionally, eavesdropping constitutes a buffer that reduces the costs of finding new resources (such as roosts), especially when they occur in low density. We conclude that natural selection may promote different strategies of roost finding in relation to habitat conditions and cognitive skills of animals. PMID:23028666
Clapping in time parallels literacy and calls upon overlapping neural mechanisms in early readers.
Bonacina, Silvia; Krizman, Jennifer; White-Schwoch, Travis; Kraus, Nina
2018-05-12
The auditory system is extremely precise in processing the temporal information of perceptual events and using these cues to coordinate action. Synchronizing movement to a steady beat relies on this bidirectional connection between sensory and motor systems, and activates many of the auditory and cognitive processes used when reading. Here, we use Interactive Metronome, a clinical intervention technology requiring an individual to clap her hands in time with a steady beat, to investigate whether the links between literacy and synchronization skills, previously established in older children, are also evident in children who are learning to read. We tested 64 typically developing children (ages 5-7 years) on their synchronization abilities, neurophysiological responses to speech in noise, and literacy skills. We found that children who have lower variability in synchronizing have higher phase consistency, higher stability, and more accurate envelope encoding-all neurophysiological response components linked to language skills. Moreover, performing the same task with visual feedback reveals links with literacy skills, notably processing speed, phonological processing, word reading, spelling, morphology, and syntax. These results suggest that rhythm skills and literacy call on overlapping neural mechanisms, supporting the idea that rhythm training may boost literacy in part by engaging sensory-motor systems. © 2018 New York Academy of Sciences.
D'Imperio, Daniela; Scandola, Michele; Gobbetto, Valeria; Bulgarelli, Cristina; Salgarello, Matteo; Avesani, Renato; Moro, Valentina
2017-10-01
Cross-modal interactions improve the processing of external stimuli, particularly when an isolated sensory modality is impaired. When information from different modalities is integrated, object recognition is facilitated probably as a result of bottom-up and top-down processes. The aim of this study was to investigate the potential effects of cross-modal stimulation in a case of simultanagnosia. We report a detailed analysis of clinical symptoms and an 18 F-fluorodeoxyglucose (FDG) brain positron emission tomography/computed tomography (PET/CT) study of a patient affected by Balint's syndrome, a rare and invasive visual-spatial disorder following bilateral parieto-occipital lesions. An experiment was conducted to investigate the effects of visual and nonvisual cues on performance in tasks involving the recognition of overlapping pictures. Four modalities of sensory cues were used: visual, tactile, olfactory, and auditory. Data from neuropsychological tests showed the presence of ocular apraxia, optic ataxia, and simultanagnosia. The results of the experiment indicate a positive effect of the cues on the recognition of overlapping pictures, not only in the identification of the congruent valid-cued stimulus (target) but also in the identification of the other, noncued stimuli. All the sensory modalities analyzed (except the auditory stimulus) were efficacious in terms of increasing visual recognition. Cross-modal integration improved the patient's ability to recognize overlapping figures. However, while in the visual unimodal modality both bottom-up (priming, familiarity effect, disengagement of attention) and top-down processes (mental representation and short-term memory, the endogenous orientation of attention) are involved, in the cross-modal integration it is semantic representations that mainly activate visual recognition processes. These results are potentially useful for the design of rehabilitation training for attentional and visual-perceptual deficits.
Cortical activity patterns predict speech discrimination ability
Engineer, Crystal T; Perez, Claudia A; Chen, YeTing H; Carraway, Ryan S; Reed, Amanda C; Shetake, Jai A; Jakkamsetti, Vikram; Chang, Kevin Q; Kilgard, Michael P
2010-01-01
Neural activity in the cerebral cortex can explain many aspects of sensory perception. Extensive psychophysical and neurophysiological studies of visual motion and vibrotactile processing show that the firing rate of cortical neurons averaged across 50–500 ms is well correlated with discrimination ability. In this study, we tested the hypothesis that primary auditory cortex (A1) neurons use temporal precision on the order of 1–10 ms to represent speech sounds shifted into the rat hearing range. Neural discrimination was highly correlated with behavioral performance on 11 consonant-discrimination tasks when spike timing was preserved and was not correlated when spike timing was eliminated. This result suggests that spike timing contributes to the auditory cortex representation of consonant sounds. PMID:18425123
Watson, Charles S; Kidd, Gary R; Homer, Douglas G; Connell, Phil J; Lowther, Andrya; Eddins, David A; Krueger, Glenn; Goss, David A; Rainey, Bill B; Gospel, Mary D; Watson, Betty U
2003-01-01
Standardized sensory, perceptual, linguistic, intellectual, and cognitive tests were administered to 470 children, approximately 96% of the students entering the first grade in the four elementary schools of Benton County, Indiana, over a 3-year period (1995--1997). The results of 36 tests and subtests administered to entering first graders were well described by a 4-factor solution. These factors and the tests that loaded most heavily on them were reading-related skills (phonological awareness, letter and word identification); visual cognition (visual perceptual abilities, spatial perception, visual memory); verbal cognition (language development, vocabulary, verbal concepts); and speech processing (the ability to understand speech under difficult listening conditions). A cluster analysis identified 9 groups of children, each with a different profile of scores on the 4 factors. Within these groups, the proportion of students with unsatisfactory reading achievement in the first 2 years of elementary school (as reflected in teacher-assigned grades) varied from 3% to 40%. The profiles of factor scores demonstrated the primary influence of the reading-related skills factor on reading achievement and also on other areas of academic performance. The second strongest predictor of reading and mathematics grades was the visual cognition factor, followed by the verbal cognition factor. The speech processing factor was the weakest predictor of academic achievement, accounting for less than 1% of the variance in reading achievement. This project was a collaborative effort of the Benton Community School Corporation and a multidisciplinary group of investigators from Indiana University.
An interoceptive model of bulimia nervosa: A neurobiological systematic review.
Klabunde, Megan; Collado, Danielle; Bohon, Cara
2017-11-01
The objective of our study was to examine the neurobiological support for an interoceptive sensory processing model of bulimia nervosa (BN). To do so, we conducted a systematic review of interoceptive sensory processing in BN, using the PRISMA guidelines. We searched PsychInfo, Pubmed, and Web of Knowledge databases to identify biological and behavioral studies that examine interoceptive detection in BN. After screening 390 articles for inclusion and conducting a quality assessment of articles that met inclusion criteria, we reviewed 41 articles. We found that global interoceptive sensory processing deficits may be present in BN. Specifically there is evidence of abnormal brain function, structure and connectivity in the interoceptive neural network, in addition to gastric and pain processing disturbances. These results suggest that there may be a neurobiological basis for global interoceptive sensory processing deficits in BN that remain after recovery. Data from taste and heart beat detection studies were inconclusive; some studies suggest interoceptive disturbances in these sensory domains. Discrepancies in findings appear to be due to methodological differences. In conclusion, interoceptive sensory processing deficits may directly contribute to and explain a variety of symptoms present in those with BN. Further examination of interoceptive sensory processing deficits could inform the development of treatments for those with BN. Copyright © 2017 Elsevier Ltd. All rights reserved.
Age-equivalent top-down modulation during cross-modal selective attention.
Guerreiro, Maria J S; Anguera, Joaquin A; Mishra, Jyoti; Van Gerven, Pascal W M; Gazzaley, Adam
2014-12-01
Selective attention involves top-down modulation of sensory cortical areas, such that responses to relevant information are enhanced whereas responses to irrelevant information are suppressed. Suppression of irrelevant information, unlike enhancement of relevant information, has been shown to be deficient in aging. Although these attentional mechanisms have been well characterized within the visual modality, little is known about these mechanisms when attention is selectively allocated across sensory modalities. The present EEG study addressed this issue by testing younger and older participants in three different tasks: Participants attended to the visual modality and ignored the auditory modality, attended to the auditory modality and ignored the visual modality, or passively perceived information presented through either modality. We found overall modulation of visual and auditory processing during cross-modal selective attention in both age groups. Top-down modulation of visual processing was observed as a trend toward enhancement of visual information in the setting of auditory distraction, but no significant suppression of visual distraction when auditory information was relevant. Top-down modulation of auditory processing, on the other hand, was observed as suppression of auditory distraction when visual stimuli were relevant, but no significant enhancement of auditory information in the setting of visual distraction. In addition, greater visual enhancement was associated with better recognition of relevant visual information, and greater auditory distractor suppression was associated with a better ability to ignore auditory distraction. There were no age differences in these effects, suggesting that when relevant and irrelevant information are presented through different sensory modalities, selective attention remains intact in older age.
Kujala, Teija; Leminen, Miika
2017-12-01
In specific language impairment (SLI), there is a delay in the child's oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN) in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Copyright © 2017. Published by Elsevier Ltd.
Sight and sound converge to form modality-invariant representations in temporo-parietal cortex
Man, Kingson; Kaplan, Jonas T.; Damasio, Antonio; Meyer, Kaspar
2013-01-01
People can identify objects in the environment with remarkable accuracy, irrespective of the sensory modality they use to perceive them. This suggests that information from different sensory channels converges somewhere in the brain to form modality-invariant representations, i.e., representations that reflect an object independently of the modality through which it has been apprehended. In this functional magnetic resonance imaging study of human subjects, we first identified brain areas that responded to both visual and auditory stimuli and then used crossmodal multivariate pattern analysis to evaluate the neural representations in these regions for content-specificity (i.e., do different objects evoke different representations?) and modality-invariance (i.e., do the sight and the sound of the same object evoke a similar representation?). While several areas became activated in response to both auditory and visual stimulation, only the neural patterns recorded in a region around the posterior part of the superior temporal sulcus displayed both content-specificity and modality-invariance. This region thus appears to play an important role in our ability to recognize objects in our surroundings through multiple sensory channels and to process them at a supra-modal (i.e., conceptual) level. PMID:23175818
Listening to Another Sense: Somatosensory Integration in the Auditory System
Wu, Calvin; Stefanescu, Roxana A.; Martel, David T.
2014-01-01
Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems, and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body, and the auditory cortex. In this review, we explore the process of multisensory integration from 1) anatomical (inputs and connections), 2) physiological (cellular responses), 3) functional, and 4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing, and offers a multisensory perspective regarding the understanding of sensory disorders. PMID:25526698
Clince, Maria; Connolly, Laura; Nolan, Clodagh
2016-01-01
Research regarding sensory processing and adults with attention deficit hyperactivity disorder (ADHD) or autism spectrum disorder (ASD) is limited. This study aimed to compare sensory processing patterns of groups of higher education students with ADHD or ASD and to explore the implications of these disorders for their college life. The Adolescent/Adult Sensory Profile was administered to 28 students with ADHD and 27 students with ASD. Students and professionals were interviewed. The majority of students received scores that differed from those of the general population. Students with ADHD received significantly higher scores than students with ASD in relation to sensation seeking; however, there were no other major differences. Few differences exist between the sensory processing patterns of students with ADHD and ASD; however, both groups differ significantly from the general population. Occupational therapists should consider sensory processing patterns when designing supports for these groups. Copyright © 2016 by the American Occupational Therapy Association, Inc.
Adaptation to sensory input tunes visual cortex to criticality
NASA Astrophysics Data System (ADS)
Shew, Woodrow L.; Clawson, Wesley P.; Pobst, Jeff; Karimipanah, Yahya; Wright, Nathaniel C.; Wessel, Ralf
2015-08-01
A long-standing hypothesis at the interface of physics and neuroscience is that neural networks self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory information processing. This idea is partially supported by strong evidence for critical dynamics observed in the cerebral cortex, but the impact of sensory input on these dynamics is largely unknown. Thus, the foundations of this hypothesis--the self-organization process and how it manifests during strong sensory input--remain unstudied experimentally. Here we show in visual cortex and in a computational model that strong sensory input initially elicits cortical network dynamics that are not critical, but adaptive changes in the network rapidly tune the system to criticality. This conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality. Our findings establish sensory adaptation as a self-organizing mechanism that maintains criticality in visual cortex during sensory information processing.
Bats adjust their mouth gape to zoom their biosonar field of view.
Kounitsky, Pavel; Rydell, Jens; Amichai, Eran; Boonman, Arjan; Eitan, Ofri; Weiss, Anthony J; Yovel, Yossi
2015-05-26
Active sensing, where sensory acquisition is actively modulated, is an inherent component of almost all sensory systems. Echolocating bats are a prime example of active sensing. They can rapidly adjust many of their biosonar parameters to optimize sensory acquisition. They dynamically adjust pulse design, pulse duration, and pulse rate within dozens of milliseconds according to the sensory information that is required for the task that they are performing. The least studied and least understood degree of freedom in echolocation is emission beamforming--the ability to change the shape of the sonar sound beam in a functional way. Such an ability could have a great impact on the bat's control over its sensory perception. On the one hand, the bat could direct more energy into a narrow sector to zoom its biosonar field of view, and on the other hand, it could widen the beam to increase the space that it senses. We show that freely behaving bats constantly control their biosonar field of view in natural situations by rapidly adjusting their emitter aperture--the mouth gape. The bats dramatically narrowed the beam when entering a confined space, and they dramatically widened it within dozens of milliseconds when flying toward open space. Hence, mouth-emitting bats dynamically adjust their mouth gape to optimize the area that they sense with their echolocation system.
Bats adjust their mouth gape to zoom their biosonar field of view
Rydell, Jens; Amichai, Eran; Boonman, Arjan; Eitan, Ofri; Weiss, Anthony J.; Yovel, Yossi
2015-01-01
Active sensing, where sensory acquisition is actively modulated, is an inherent component of almost all sensory systems. Echolocating bats are a prime example of active sensing. They can rapidly adjust many of their biosonar parameters to optimize sensory acquisition. They dynamically adjust pulse design, pulse duration, and pulse rate within dozens of milliseconds according to the sensory information that is required for the task that they are performing. The least studied and least understood degree of freedom in echolocation is emission beamforming—the ability to change the shape of the sonar sound beam in a functional way. Such an ability could have a great impact on the bat’s control over its sensory perception. On the one hand, the bat could direct more energy into a narrow sector to zoom its biosonar field of view, and on the other hand, it could widen the beam to increase the space that it senses. We show that freely behaving bats constantly control their biosonar field of view in natural situations by rapidly adjusting their emitter aperture—the mouth gape. The bats dramatically narrowed the beam when entering a confined space, and they dramatically widened it within dozens of milliseconds when flying toward open space. Hence, mouth-emitting bats dynamically adjust their mouth gape to optimize the area that they sense with their echolocation system. PMID:25941395
Antfolk, Christian; D'Alonzo, Marco; Controzzi, Marco; Lundborg, Göran; Rosén, Birgitta; Sebelius, Fredrik; Cipriani, Christian
2013-01-01
This work assesses the ability of transradial amputees to discriminate multi-site tactile stimuli in sensory discrimination tasks. It compares different sensory feedback modalities using an artificial hand prosthesis in: 1) a modality matched paradigm where pressure recorded on the five fingertips of the hand was fed back as pressure stimulation on five target points on the residual limb; and 2) a modality mismatched paradigm where the pressures were transformed into mechanical vibrations and fed back. Eight transradial amputees took part in the study and were divided in two groups based on the integrity of their phantom map; group A had a complete phantom map on the residual limb whereas group B had an incomplete or nonexisting map. The ability in localizing stimuli was compared with that of 10 healthy subjects using the vibration feedback and 11 healthy subjects using the pressure feedback (in a previous study), on their forearms, in similar experiments. Results demonstrate that pressure stimulation surpassed vibrotactile stimulation in multi-site sensory feedback discrimination. Furthermore, we demonstrate that subjects with a detailed phantom map had the best discrimination performance and even surpassed healthy participants for both feedback paradigms whereas group B had the worst performance overall. Finally, we show that placement of feedback devices on a complete phantom map improves multi-site sensory feedback discrimination, independently of the feedback modality.
The role of visual context in manual target localization
NASA Technical Reports Server (NTRS)
Barry, Susan R.
1993-01-01
During space flight and immediately after return to the 1-g environment of earth, astronauts experience perceptual and sensory-motor disturbances. These changes result from adaptation of the astronaut to the microgravity environment of space. During space flight, sensory information from the eyes, limbs, and vestibular organs is reinterpreted by the central nervous system in order to produce appropriate body movements in the microgravity. This adaptation takes several days to develop. Upon return to earth, the changes in the sensory-motor system are no longer appropriate to a 1-g environment. Over several days, the astronaut must re-adapt to the terrestrial environment. Alterations in sensory-motor function may affect eye-head-hand coordination and, thus, the crewmember's ability to manually locate objects in extrapersonal space. Previous reports have demonstrated that crewmembers have difficulty in estimating joint and limb position and in pointing to memorized target positions on orbit and immediately postflight. The ability to point at or reach toward an object or perform other manual tasks is essential for safe Shuttle operation and may be compromised particularly during re-entry and landing sequences and during possible emergency egress from the Shuttle. An understanding of eye-head-hand coordination and the changes produced during space flight is necessary to develop effective countermeasures. This summer's project formed part of the study of the sensory cues use in the manual localization of objects.
Robertson, Caroline E; Baron-Cohen, Simon
2017-11-01
Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.
Champagne, Tina
2011-01-01
The purpose of this article is to provide a brief overview of how Posttraumatic Stress Disorder (PTSD), Depression, and Sensory Processing patterns influence occupational engagement, including work performance. Interventions and outcomes of the Sensory Modulation Program and approaches from Cognitive Behavior Therapy (CBT) are reviewed through single case exploration with a 42 year-old woman in outpatient services. The marked increase in occupational engagement and improved work performance in this single case review demonstrates the need for more research on the use of the Sensory Modulation Program and approaches from CBT with populations with PTSD, Depression, and Sensory Processing disorder.
ERIC Educational Resources Information Center
Engel-Yeger, Batya
2010-01-01
The objective of this study was to examine the applicability of the short sensory profile (SSP) for screening sensory processing disorders (SPDs) among typical children in Israel, and to evaluate the relationship between SPDs and socio-demographic parameters. Participants were 395 Israeli children, aged 3 years to 10 years 11 months, with typical…
ERIC Educational Resources Information Center
Gonthier, Corentin; Longuépée, Lucie; Bouvard, Martine
2016-01-01
Sensory processing abnormalities are relatively universal in individuals with autism spectrum disorder, and can be very disabling. Surprisingly, very few studies have investigated these abnormalities in low-functioning adults with autism. The goals of the present study were (a) to characterize distinct profiles of sensory dysfunction, and (b) to…
Liesenjohann, Thilo; Neuhaus, Birger; Schmidt-Rhaesa, Andreas
2006-08-01
The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha. Copyright 2006 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Pagano, John
2005-01-01
Functionally Approached Body (FAB) Strategies offer a clinical approach to help parents of young children with behavioral and sensory processing strategies. This article introduces the FAB Strategies, clinical strategies developed by the author for understanding and addressing young children's behavioral and sensory processing challenges. The FAB…
Humes, Larry E
2015-06-01
The purpose of this article is to introduce the special research forum on sensory-processing changes in middle-aged adults. This is a brief written introduction to the special session, which included five presentations, each emphasizing a slightly different aspect of sensory perception. The effects of aging on sensory processing, including auditory processing and speech perception, are not confined to older adults but begin in middle age in many cases.
ERIC Educational Resources Information Center
Sabatos-DeVito, Maura; Schipul, Sarah E.; Bulluck, John C.; Belger, Aysenil; Baranek, Grace T.
2016-01-01
This study used a gap-overlap paradigm to examine the impact of distractor salience and temporal overlap on the ability to disengage and orient attention in 50 children (4-13 years) with ASD, DD and TD, and associations between attention and sensory response patterns. Results revealed impaired disengagement and orienting accuracy in ASD.…
ERIC Educational Resources Information Center
Fong, Shirley S. M.; Tsang, William W. N.; Ng, Gabriel Y. F.
2012-01-01
Children with developmental coordination disorder (DCD) have poorer postural control and are more susceptible to falls and injuries than their healthy counterparts. Sports training may improve sensory organization and balance ability in this population. This study aimed to evaluate the effects of three months of Taekwondo (TKD) training on the…
Sinclair, D.; Oranje, B.; Razak, K.A.; Siegel, S.J.; Schmid, S.
2017-01-01
Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics. PMID:27235081
Visual perception of ADHD children with sensory processing disorder.
Jung, Hyerim; Woo, Young Jae; Kang, Je Wook; Choi, Yeon Woo; Kim, Kyeong Mi
2014-04-01
The aim of the present study was to investigate the visual perception difference between ADHD children with and without sensory processing disorder, and the relationship between sensory processing and visual perception of the children with ADHD. Participants were 47 outpatients, aged 6-8 years, diagnosed with ADHD. After excluding those who met exclusion criteria, 38 subjects were clustered into two groups, ADHD children with and without sensory processing disorder (SPD), using SSP reported by their parents, then subjects completed K-DTVP-2. Spearman correlation analysis was run to determine the relationship between sensory processing and visual perception, and Mann-Whitney-U test was conducted to compare the K-DTVP-2 score of two groups respectively. The ADHD children with SPD performed inferiorly to ADHD children without SPD in the on 3 quotients of K-DTVP-2. The GVP of K-DTVP-2 score was related to Movement Sensitivity section (r=0.368(*)) and Low Energy/Weak section of SSP (r=0.369*). The result of the present study suggests that among children with ADHD, the visual perception is lower in those children with co-morbid SPD. Also, visual perception may be related to sensory processing, especially in the reactions of vestibular and proprioceptive senses. Regarding academic performance, it is necessary to consider how sensory processing issues affect visual perception in children with ADHD.
Mechanosensation and Adaptive Motor Control in Insects.
Tuthill, John C; Wilson, Rachel I
2016-10-24
The ability of animals to flexibly navigate through complex environments depends on the integration of sensory information with motor commands. The sensory modality most tightly linked to motor control is mechanosensation. Adaptive motor control depends critically on an animal's ability to respond to mechanical forces generated both within and outside the body. The compact neural circuits of insects provide appealing systems to investigate how mechanical cues guide locomotion in rugged environments. Here, we review our current understanding of mechanosensation in insects and its role in adaptive motor control. We first examine the detection and encoding of mechanical forces by primary mechanoreceptor neurons. We then discuss how central circuits integrate and transform mechanosensory information to guide locomotion. Because most studies in this field have been performed in locusts, cockroaches, crickets, and stick insects, the examples we cite here are drawn mainly from these 'big insects'. However, we also pay particular attention to the tiny fruit fly, Drosophila, where new tools are creating new opportunities, particularly for understanding central circuits. Our aim is to show how studies of big insects have yielded fundamental insights relevant to mechanosensation in all animals, and also to point out how the Drosophila toolkit can contribute to future progress in understanding mechanosensory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Engel-Yeger, Batya; Ziv-On, Daniella
2011-01-01
Sensory processing difficulties (SPD) are prevalent among children with ADHD. Yet, the question whether different SPD characterize children with different types of ADHD has not received enough attention in the literature. The current study characterized sensory processing difficulties (SPD) of children with different types of ADHD and explored the…
ERIC Educational Resources Information Center
Brandwein, Alice B.; Foxe, John J.; Butler, John S.; Frey, Hans-Peter; Bates, Juliana C.; Shulman, Lisa H.; Molholm, Sophie
2015-01-01
Atypical processing and integration of sensory inputs are hypothesized to play a role in unusual sensory reactions and social-cognitive deficits in autism spectrum disorder (ASD). Reports on the relationship between objective metrics of sensory processing and clinical symptoms, however, are surprisingly sparse. Here we examined the relationship…
de Campos, Ana Carolina; Kukke, Sahana N; Hallett, Mark; Alter, Katharine E; Damiano, Diane L
2014-05-01
The authors assessed bilateral motor and sensory function in individuals with upper limb dystonia due to unilateral perinatal stroke and explored interrelationships of motor function and sensory ability. Reach kinematics and tactile sensation were measured in 7 participants with dystonia and 9 healthy volunteers. The dystonia group had poorer motor (hold time, reach time, shoulder/elbow correlation) and sensory (spatial discrimination, stereognosis) outcomes than the control group on the nondominant side. On the dominant side, only sensation (spatial discrimination, stereognosis) was poorer in the dystonia group compared with the control group. In the dystonia group, although sensory and motor outcomes were uncorrelated, dystonia severity was related to poorer stereognosis, longer hold and reach times, and decreased shoulder/elbow coordination. Findings of bilateral sensory deficits in dystonia can be explained by neural reorganization. Visual compensation for somatosensory changes in the nonstroke hemisphere may explain the lack of bilateral impairments in reaching.
de Campos, Ana Carolina; Kukke, Sahana N.; Hallett, Mark; Alter, Katharine E.; Damiano, Diane L.
2014-01-01
We assessed bilateral motor and sensory function in individuals with upper limb dystonia due to unilateral perinatal stroke and explored interrelationships of motor function and sensory ability. Reach kinematics and tactile sensation were measured in seven participants with dystonia and nine healthy volunteers. The dystonia group had poorer motor (hold time, reach time, shoulder/elbow correlation) and sensory (spatial discrimination, stereognosis) outcomes than the control group on the non-dominant side. On the dominant side, only sensation (spatial discrimination, stereognosis) was poorer in the dystonia group compared to the control group. In the dystonia group, although sensory and motor outcomes were uncorrelated, dystonia severity was related to poorer stereognosis, longer hold and reach times, and decreased shoulder/elbow coordination. Findings of bilateral sensory deficits in dystonia may be explained by neural reorganization. Visual compensation for somatosensory changes in the non-stroke hemisphere may explain the lack of bilateral impairments in reaching. PMID:24396131
Avraham, Karen B.
2016-01-01
The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. In contrast to non-mammalian vertebrates, adult mammals lack the ability to regenerate inner ear mechano-sensory hair cells. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict sensory hair cell regeneration. PMID:27836639
Carrión, Ricardo E; Cornblatt, Barbara A; McLaughlin, Danielle; Chang, Jeremy; Auther, Andrea M; Olsen, Ruth H; Javitt, Daniel C
2015-05-01
There is a growing recognition that individuals at clinical high risk need intervention for functional impairments, along with emerging psychosis, as the majority of clinical high risk (CHR) individuals show persistent deficits in social and role functioning regardless of transition to psychosis. Recent studies have demonstrated reduced reading ability as a potential cause of functional disability in schizophrenia, related to underlying deficits in generation of mismatch negativity (MMN). The present study extends these findings to subjects at CHR. The sample consisted of 34 CHR individuals and 33 healthy comparison subjects (CNTLs) from the Recognition and Prevention (RAP) Program at the Zucker Hillside Hospital in New York. At baseline, reading measures were collected, along with MMN to pitch, duration, and intensity deviants, and measures of neurocognition, and social and role (academic/work) functioning. CHR subjects showed impairments in reading ability, neurocognition, and MMN generation, relative to CNTLs. Lower-amplitude MMN responses were correlated with worse reading ability, slower processing speed, and poorer social and role functioning. However, when entered into a simultaneous regression, only reduced responses to deviance in sound duration and volume predicted poor social and role functioning, respectively. Deficits in reading ability exist even prior to illness onset in schizophrenia and may represent a decline in performance from prior abilities. As in schizophrenia, deficits are related to impaired MMN generation, suggesting specific contributions of sensory-level impairment to neurocognitive processes related to social and role function. Copyright © 2015 Elsevier B.V. All rights reserved.
Jao Keehn, R Joanne; Sanchez, Sandra S; Stewart, Claire R; Zhao, Weiqi; Grenesko-Stevens, Emily L; Keehn, Brandon; Müller, Ralph-Axel
2017-01-01
Autism spectrum disorders (ASD) are pervasive developmental disorders characterized by impairments in language development and social interaction, along with restricted and stereotyped behaviors. These behaviors often include atypical responses to sensory stimuli; some children with ASD are easily overwhelmed by sensory stimuli, while others may seem unaware of their environment. Vision and audition are two sensory modalities important for social interactions and language, and are differentially affected in ASD. In the present study, 16 children and adolescents with ASD and 16 typically developing (TD) participants matched for age, gender, nonverbal IQ, and handedness were tested using a mixed event-related/blocked functional magnetic resonance imaging paradigm to examine basic perceptual processes that may form the foundation for later-developing cognitive abilities. Auditory (high or low pitch) and visual conditions (dot located high or low in the display) were presented, and participants indicated whether the stimuli were "high" or "low." Results for the auditory condition showed downregulated activity of the visual cortex in the TD group, but upregulation in the ASD group. This atypical activity in visual cortex was associated with autism symptomatology. These findings suggest atypical crossmodal (auditory-visual) modulation linked to sociocommunicative deficits in ASD, in agreement with the general hypothesis of low-level sensorimotor impairments affecting core symptomatology. Autism Res 2017, 10: 130-143. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Tavassoli, Teresa; Bellesheim, Katherine; Siper, Paige M.; Wang, A. Ting; Halpern, Danielle; Gorenstein, Michelle; Grodberg, David; Kolevzon, Alexander; Buxbaum, Joseph D.
2016-01-01
Sensory reactivity is a new DSM-5 criterion for autism spectrum disorder (ASD). The current study aims to validate a clinician-administered sensory observation in ASD, the Sensory Processing Scale Assessment (SPS). The SPS and the Short Sensory Profile (SSP) parent-report were used to measure sensory reactivity in children with ASD (n = 35) and…
Sensory Subtypes in Preschool Aged Children with Autism Spectrum Disorder.
Tomchek, Scott D; Little, Lauren M; Myers, John; Dunn, Winnie
2018-06-01
Given the heterogeneity of autism spectrum disorder (ASD), research has investigated how sensory features elucidate subtypes that enhance our understanding of etiology and tailored treatment approaches. Previous studies, however, have not integrated core developmental behaviors with sensory features in investigations of subtypes in ASD. Therefore, we used latent profile analysis to examine subtypes in a preschool aged sample considering sensory processing patterns in combination with social-communication skill, motor performance, and adaptive behavior. Results showed four subtypes that differed by degree and quality of sensory features, age and differential presentation of developmental skills. Findings partially align with previous literature on sensory subtypes and extends our understanding of how sensory processing aligns with other developmental domains in young children with ASD.
Smell or vision? The use of different sensory modalities in predator discrimination.
Fischer, Stefan; Oberhummer, Evelyne; Cunha-Saraiva, Filipa; Gerber, Nina; Taborsky, Barbara
2017-01-01
Theory predicts that animals should adjust their escape responses to the perceived predation risk. The information animals obtain about potential predation risk may differ qualitatively depending on the sensory modality by which a cue is perceived. For instance, olfactory cues may reveal better information about the presence or absence of threats, whereas visual information can reliably transmit the position and potential attack distance of a predator. While this suggests a differential use of information perceived through the two sensory channels, the relative importance of visual vs. olfactory cues when distinguishing between different predation threats is still poorly understood. Therefore, we exposed individuals of the cooperatively breeding cichlid Neolamprologus pulcher to a standardized threat stimulus combined with either predator or non-predator cues presented either visually or chemically. We predicted that flight responses towards a threat stimulus are more pronounced if cues of dangerous rather than harmless heterospecifics are presented and that N. pulcher , being an aquatic species, relies more on olfaction when discriminating between dangerous and harmless heterospecifics. N. pulcher responded faster to the threat stimulus, reached a refuge faster and entered a refuge more likely when predator cues were perceived. Unexpectedly, the sensory modality used to perceive the cues did not affect the escape response or the duration of the recovery phase. This suggests that N. pulcher are able to discriminate heterospecific cues with similar acuity when using vision or olfaction. We discuss that this ability may be advantageous in aquatic environments where the visibility conditions strongly vary over time. The ability to rapidly discriminate between dangerous predators and harmless heterospecifics is crucial for the survival of prey animals. In seasonally fluctuating environment, sensory conditions may change over the year and may make the use of multiple sensory modalities for heterospecific discrimination highly beneficial. Here we compared the efficacy of visual and olfactory senses in the discrimination ability of the cooperatively breeding cichlid Neolamprologus pulcher . We presented individual fish with visual or olfactory cues of predators or harmless heterospecifics and recorded their flight response. When exposed to predator cues, individuals responded faster, reached a refuge faster and were more likely to enter the refuge. Unexpectedly, the olfactory and visual senses seemed to be equally efficient in this discrimination task, suggesting that seasonal variation of water conditions experienced by N. pulcher may necessitate the use of multiple sensory channels for the same task.
Bashapoor, Sajjad; Hosseini-Kiasari, Seyyedeh Tayebeh; Daneshvar, Somayeh; Kazemi-Taskooh, Zeinab
2015-01-01
Sensory information processing and alexithymia are two important factors in determining behavioral reactions. Some studies explain the effect of the sensitivity of sensory processing and alexithymia in the tendency to substance abuse. Giving that, the aim of the current study was to compare the styles of sensory information processing and alexithymia between substance-dependent people and normal ones. The research method was cross-sectional and the statistical population of the current study comprised of all substance-dependent men who are present in substance quitting camps of Masal, Iran, in October 2013 (n = 78). 36 persons were selected randomly by simple randomly sampling method from this population as the study group, and 36 persons were also selected among the normal population in the same way as the comparison group. Both groups was evaluated by using Toronto alexithymia scale (TAS) and adult sensory profile, and the multivariate analysis of variance (MANOVA) test was applied to analyze data. The results showed that there are significance differences between two groups in low registration (P < 0.020, F = 5.66), sensation seeking (P < 0.050, F = 1.92), and sensory avoidance (P < 0.008, F = 7.52) as a components of sensory processing and difficulty in describing emotions (P < 0.001, F = 15.01) and difficulty in identifying emotions (P < 0.002, F = 10.54) as a components of alexithymia. However, no significant difference were found between two groups in components of sensory sensitivity (P < 0.170, F = 1.92) and external oriented thinking style (P < 0.060, F = 3.60). These results showed that substance-dependent people process sensory information in a different way than normal people and show more alexithymia features than them.
Bashapoor, Sajjad; Hosseini-Kiasari, Seyyedeh Tayebeh; Daneshvar, Somayeh; Kazemi-Taskooh, Zeinab
2015-01-01
Background Sensory information processing and alexithymia are two important factors in determining behavioral reactions. Some studies explain the effect of the sensitivity of sensory processing and alexithymia in the tendency to substance abuse. Giving that, the aim of the current study was to compare the styles of sensory information processing and alexithymia between substance-dependent people and normal ones. Methods The research method was cross-sectional and the statistical population of the current study comprised of all substance-dependent men who are present in substance quitting camps of Masal, Iran, in October 2013 (n = 78). 36 persons were selected randomly by simple randomly sampling method from this population as the study group, and 36 persons were also selected among the normal population in the same way as the comparison group. Both groups was evaluated by using Toronto alexithymia scale (TAS) and adult sensory profile, and the multivariate analysis of variance (MANOVA) test was applied to analyze data. Findings The results showed that there are significance differences between two groups in low registration (P < 0.020, F = 5.66), sensation seeking (P < 0.050, F = 1.92), and sensory avoidance (P < 0.008, F = 7.52) as a components of sensory processing and difficulty in describing emotions (P < 0.001, F = 15.01) and difficulty in identifying emotions (P < 0.002, F = 10.54) as a components of alexithymia. However, no significant difference were found between two groups in components of sensory sensitivity (P < 0.170, F = 1.92) and external oriented thinking style (P < 0.060, F = 3.60). Conclusion These results showed that substance-dependent people process sensory information in a different way than normal people and show more alexithymia features than them. PMID:26885354
Fast Synaptic Inhibition in Spinal Sensory Processing and Pain Control
Zeilhofer, Hanns Ulrich; Wildner, Hendrik; Yevenes, Gonzalo E.
2013-01-01
The two amino acids γ-amino butyric acid (GABA) and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes. PMID:22298656
Measurement in Sensory Modulation: The Sensory Processing Scale Assessment
Miller, Lucy J.; Sullivan, Jillian C.
2014-01-01
OBJECTIVE. Sensory modulation issues have a significant impact on participation in daily life. Moreover, understanding phenotypic variation in sensory modulation dysfunction is crucial for research related to defining homogeneous groups and for clinical work in guiding treatment planning. We thus evaluated the new Sensory Processing Scale (SPS) Assessment. METHOD. Research included item development, behavioral scoring system development, test administration, and item analyses to evaluate reliability and validity across sensory domains. RESULTS. Items with adequate reliability (internal reliability >.4) and discriminant validity (p < .01) were retained. Feedback from the expert panel also contributed to decisions about retaining items in the scale. CONCLUSION. The SPS Assessment appears to be a reliable and valid measure of sensory modulation (scale reliability >.90; discrimination between group effect sizes >1.00). This scale has the potential to aid in differential diagnosis of sensory modulation issues. PMID:25184464
Timescale- and Sensory Modality-Dependency of the Central Tendency of Time Perception.
Murai, Yuki; Yotsumoto, Yuko
2016-01-01
When individuals are asked to reproduce intervals of stimuli that are intermixedly presented at various times, longer intervals are often underestimated and shorter intervals overestimated. This phenomenon may be attributed to the central tendency of time perception, and suggests that our brain optimally encodes a stimulus interval based on current stimulus input and prior knowledge of the distribution of stimulus intervals. Two distinct systems are thought to be recruited in the perception of sub- and supra-second intervals. Sub-second timing is subject to local sensory processing, whereas supra-second timing depends on more centralized mechanisms. To clarify the factors that influence time perception, the present study investigated how both sensory modality and timescale affect the central tendency. In Experiment 1, participants were asked to reproduce sub- or supra-second intervals, defined by visual or auditory stimuli. In the sub-second range, the magnitude of the central tendency was significantly larger for visual intervals compared to auditory intervals, while visual and auditory intervals exhibited a correlated and comparable central tendency in the supra-second range. In Experiment 2, the ability to discriminate sub-second intervals in the reproduction task was controlled across modalities by using an interval discrimination task. Even when the ability to discriminate intervals was controlled, visual intervals exhibited a larger central tendency than auditory intervals in the sub-second range. In addition, the magnitude of the central tendency for visual and auditory sub-second intervals was significantly correlated. These results suggest that a common modality-independent mechanism is responsible for the supra-second central tendency, and that both the modality-dependent and modality-independent components of the timing system contribute to the central tendency in the sub-second range.
Intrinsic regenerative potential of murine cochlear supporting cells.
Sinkkonen, Saku T; Chai, Renjie; Jan, Taha A; Hartman, Byron H; Laske, Roman D; Gahlen, Felix; Sinkkonen, Wera; Cheng, Alan G; Oshima, Kazuo; Heller, Stefan
2011-01-01
The lack of cochlear regenerative potential is the main cause for the permanence of hearing loss. Albeit quiescent in vivo, dissociated non-sensory cells from the neonatal cochlea proliferate and show ability to generate hair cell-like cells in vitro. Only a few non-sensory cell-derived colonies, however, give rise to hair cell-like cells, suggesting that sensory progenitor cells are a subpopulation of proliferating non-sensory cells. Here we purify from the neonatal mouse cochlea four different non-sensory cell populations by fluorescence-activated cell sorting (FACS). All four populations displayed proliferative potential, but only lesser epithelial ridge and supporting cells robustly gave rise to hair cell marker-positive cells. These results suggest that cochlear supporting cells and cells of the lesser epithelial ridge show robust potential to de-differentiate into prosensory cells that proliferate and undergo differentiation in similar fashion to native prosensory cells of the developing inner ear.
Auditory sensory memory and language abilities in former late talkers: a mismatch negativity study.
Grossheinrich, Nicola; Kademann, Stefanie; Bruder, Jennifer; Bartling, Juergen; Von Suchodoletz, Waldemar
2010-09-01
The present study investigated whether (a) a reduced duration of auditory sensory memory is found in late talking children and (b) whether deficits of sensory memory are linked to persistent difficulties in language acquisition. Former late talkers and children without delayed language development were examined at the age of 4 years and 7 months using mismatch negativity (MMN) with interstimulus intervals (ISIs) of 500 ms and 2000 ms. Additionally, short-term memory, language skills, and nonverbal intelligence were assessed. MMN mean amplitude was reduced for the ISI of 2000 ms in former late talking children both with and without persistent language deficits. In summary, our findings suggest that late talkers are characterized by a reduced duration of auditory sensory memory. However, deficits in auditory sensory memory are not sufficient for persistent language difficulties and may be compensated for by some children.
Savant Syndrome: Case Studies, Hypotheses, and Implications for Special Education.
ERIC Educational Resources Information Center
Cheatham, Susan Klug; And Others
1995-01-01
The concept of savant syndrome, encompassing those individuals historically known as "idiot savants," is reviewed. Case studies demonstrating special abilities in the areas of calendar calculating, musical ability, artistic talent, memorization, mathematical skills, mechanical achievement, and fine sensory discrimination are discussed,…
Mendes, César S; Bartos, Imre; Akay, Turgay; Márka, Szabolcs; Mann, Richard S
2013-01-01
Coordinated walking in vertebrates and multi-legged invertebrates such as Drosophila melanogaster requires a complex neural network coupled to sensory feedback. An understanding of this network will benefit from systems such as Drosophila that have the ability to genetically manipulate neural activities. However, the fly's small size makes it challenging to analyze walking in this system. In order to overcome this limitation, we developed an optical method coupled with high-speed imaging that allows the tracking and quantification of gait parameters in freely walking flies with high temporal and spatial resolution. Using this method, we present a comprehensive description of many locomotion parameters, such as gait, tarsal positioning, and intersegmental and left-right coordination for wild type fruit flies. Surprisingly, we find that inactivation of sensory neurons in the fly's legs, to block proprioceptive feedback, led to deficient step precision, but interleg coordination and the ability to execute a tripod gait were unaffected. DOI: http://dx.doi.org/10.7554/eLife.00231.001 PMID:23326642
Sugimoto, Masahiro; Obiya, Shinichi; Kaneko, Miku; Enomoto, Ayame; Honma, Mayu; Wakayama, Masataka; Tomita, Masaru
2016-11-01
We conducted a consumer acceptability analysis of dry-cured ham based on sensory evaluation. Consumer acceptability data are rendered heterogeneous by the diverse backgrounds and assessment abilities of the participants, requiring versatile analytical methods for their interpretation. Totally, 9 sensory attributes of 12 kinds of dry-cured ham samples collected from Japan (n=9), Italy (n=1), Spain (n=1), and Germany (n=1) were tasted by 117 Japanese consumers who showed acceptable evaluation abilities during blind sampling. Common techniques, such as hierarchical clustering, principal component analysis, and external preference mapping, were simultaneously utilized to analyze each characteristics scored in modified hedonic scale. These analyses revealed the relationships between the features and preferences of the assessors. For example, consumers aged 20-30 with smoking and drinking habits preferred sweetness and saltiness, and gave high ratings to Spanish Jómon serrano and Italian prosciutto. Our approach could assist ham marketers to identify potential purchasers and the preferred characteristics of their products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Finlay, Barbara L; Hinz, Flora; Darlington, Richard B
2011-07-27
The pattern of individual variation in brain component structure in pigs, minks and laboratory mice is very similar to variation across species in the same components, at a reduced scale. This conserved pattern of allometric scaling resembles robotic architectures designed to be robust to changes in computing power and task demands, and may reflect the mechanism by which both growing and evolving brains defend basic sensory, motor and homeostatic functions at multiple scales. Conserved scaling rules also have implications for species-specific sensory and social communication systems, motor competencies and cognitive abilities. The role of relative changes in neuron number in the central nervous system in producing species-specific behaviour is thus highly constrained, while changes in the sensory and motor periphery, and in motivational and attentional systems increase in probability as the principal loci producing important changes in functional neuroanatomy between species. By their nature, these loci require renewed attention to development and life history in the initial organization and production of species-specific behavioural abilities.
1987-11-17
associated with stimulus intensities, sensory processes, encoding processes, perceptual mechanisms, memory systems, or response processes. Each possibility...has been proposed in the literature and the answer is not known. If SEs are due to a single mechanism, it is not stimulus intensity, a sensory ...on neural activities in the ear. Since the stimuli and the stimulus sequences were identical the ME and ME-with-feedback studies, sensory
The Functional Role of Neural Oscillations in Non-Verbal Emotional Communication
Symons, Ashley E.; El-Deredy, Wael; Schwartze, Michael; Kotz, Sonja A.
2016-01-01
Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS), and orbitofrontal cortex (OFC). However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterize the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronization appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronization may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronization reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities), presence or absence of predictive information, and attentional or task demands. Thus, the synchronization of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity across multiples frequency bands supports a predictive coding model of multisensory emotion perception in which emotional facial and body expressions facilitate the processing of emotional vocalizations. PMID:27252638
Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P
2011-10-13
Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.
The Functional Role of Neural Oscillations in Non-Verbal Emotional Communication.
Symons, Ashley E; El-Deredy, Wael; Schwartze, Michael; Kotz, Sonja A
2016-01-01
Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS), and orbitofrontal cortex (OFC). However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterize the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronization appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronization may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronization reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities), presence or absence of predictive information, and attentional or task demands. Thus, the synchronization of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity across multiples frequency bands supports a predictive coding model of multisensory emotion perception in which emotional facial and body expressions facilitate the processing of emotional vocalizations.
Kim, Min-A; Sim, Hye-Min; Lee, Hye-Seong
2016-11-01
As reformulations and processing changes are increasingly needed in the food industry to produce healthier, more sustainable, and cost effective products while maintaining superior quality, reliable measurements of consumers' sensory perception and discrimination are becoming more critical. Consumer discrimination methods using a preferred-reference duo-trio test design have been shown to be effective in improving the discrimination performance by customizing sample presentation sequences. However, this design can add complexity to the discrimination task for some consumers, resulting in more errors in sensory discrimination. The objective of the present study was to investigate the effects of different types of test instructions using the preference-reference duo-trio test design where a paired-preference test is followed by 6 repeated preferred-reference duo-trio tests, in comparison to the analytical method using the balanced-reference duo-trio. Analyses of d' estimates (product-related measure) and probabilistic sensory discriminators in momentary numbers of subjects showing statistical significance (subject-related measure) revealed that only preferred-reference duo-trio test using affective reference-framing, either by providing no information about the reference or information on a previously preferred sample, improved the sensory discrimination more than the analytical method. No decrease in discrimination performance was observed with any type of instruction, confirming that consumers could handle the test methods. These results suggest that when repeated tests are feasible, using the affective discrimination method would be operationally more efficient as well as ecologically more reliable for measuring consumers' sensory discrimination ability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Basic and supplementary sensory feedback in handwriting
Danna, Jérémy; Velay, Jean-Luc
2015-01-01
The mastering of handwriting is so essential in our society that it is important to try to find new methods for facilitating its learning and rehabilitation. The ability to control the graphic movements clearly impacts on the quality of the writing. This control allows both the programming of letter formation before movement execution and the online adjustments during execution, thanks to diverse sensory feedback (FB). New technologies improve existing techniques or enable new methods to supply the writer with real-time computer-assisted FB. The possibilities are numerous and various. Therefore, two main questions arise: (1) What aspect of the movement is concerned and (2) How can we best inform the writer to help them correct their handwriting? In a first step, we report studies on FB naturally used by the writer. The purpose is to determine which information is carried by each sensory modality, how it is used in handwriting control and how this control changes with practice and learning. In a second step, we report studies on supplementary FB provided to the writer to help them to better control and learn how to write. We suggest that, depending on their contents, certain sensory modalities will be more appropriate than others to assist handwriting motor control. We emphasize particularly the relevance of auditory modality as online supplementary FB on handwriting movements. Using real-time supplementary FB to assist in the handwriting process is probably destined for a brilliant future with the growing availability and rapid development of tablets. PMID:25750633
Developmental trends in the facilitation of multisensory objects with distractors
Downing, Harriet C.; Barutchu, Ayla; Crewther, Sheila G.
2015-01-01
Sensory integration and the ability to discriminate target objects from distractors are critical to survival, yet the developmental trajectories of these abilities are unknown. This study investigated developmental changes in 9- (n = 18) and 11-year-old (n = 20) children, adolescents (n = 19) and adults (n = 22) using an audiovisual object discrimination task with uni- and multisensory distractors. Reaction times (RTs) were slower with visual/audiovisual distractors, and although all groups demonstrated facilitation of multisensory RTs in these conditions, children's and adolescents' responses corresponded to fewer race model violations than adults', suggesting protracted maturation of multisensory processes. Multisensory facilitation could not be explained by changes in RT variability, suggesting that tests of race model violations may still have theoretical value at least for familiar multisensory stimuli. PMID:25653630
Biasing the brain's attentional set: I. cue driven deployments of intersensory selective attention.
Foxe, John J; Simpson, Gregory V; Ahlfors, Seppo P; Saron, Clifford D
2005-10-01
Brain activity associated with directing attention to one of two possible sensory modalities was examined using high-density mapping of human event-related potentials. The deployment of selective attention was based on visually presented symbolic cue-words instructing subjects on a trial-by-trial basis, which sensory modality to attend. We measured the spatio-temporal pattern of activation in the approximately 1 second period between the cue-instruction and a subsequent compound auditory-visual imperative stimulus. This allowed us to assess the flow of processing across brain regions involved in deploying and sustaining inter-sensory selective attention, prior to the actual selective processing of the compound audio-visual target stimulus. Activity over frontal and parietal areas showed sensory specific increases in activation during the early part of the anticipatory period (~230 ms), probably representing the activation of fronto-parietal attentional deployment systems for top-down control of attention. In the later period preceding the arrival of the "to-be-attended" stimulus, sustained differential activity was seen over fronto-central regions and parieto-occipital regions, suggesting the maintenance of sensory-specific biased attentional states that would allow for subsequent selective processing. Although there was clear sensory biasing in this late sustained period, it was also clear that both sensory systems were being prepared during the cue-target period. These late sensory-specific biasing effects were also accompanied by sustained activations over frontal cortices that also showed both common and sensory specific activation patterns, suggesting that maintenance of the biased state includes top-down inputs from generators in frontal cortices, some of which are sensory-specific regions. These data support extensive interactions between sensory, parietal and frontal regions during processing of cue information, deployment of attention, and maintenance of the focus of attention in anticipation of impending attentionally relevant input.
Rodent Auditory Perception: Critical Band Limitations and Plasticity
King, Julia; Insanally, Michele; Jin, Menghan; Martins, Ana Raquel O.; D'amour, James A.; Froemke, Robert C.
2015-01-01
What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception. PMID:25827498
Suaste-Gómez, Ernesto; Rodríguez-Roldán, Grissel; Reyes-Cruz, Héctor; Terán-Jiménez, Omar
2016-01-01
An ear prosthesis was designed in 3D computer graphics software and fabricated using a 3D printing process of polyvinylidene fluoride (PVDF) for use as a hearing aid. In addition, the prosthesis response to pressure and temperature was observed. Pyroelectric and piezoelectric properties of this ear prosthesis were investigated using an astable multivibrator circuit, as changes in PVDF permittivity were observed according to variations of pressure and temperature. The results show that this prosthesis is reliable for use under different conditions of pressure (0 Pa to 16,350 Pa) and temperature (2 °C to 90 °C). The experimental results show an almost linear and inversely proportional behavior between the stimuli of pressure and temperature with the frequency response. This 3D-printed ear prosthesis is a promising tool and has a great potentiality in the biomedical engineering field because of its ability to generate an electrical potential proportional to pressure and temperature, and it is the first time that such a device has been processed by the additive manufacturing process (3D printing). More work needs to be carried out to improve the performance, such as electrical stimulation of the nervous system, thereby extending the purpose of a prosthesis to the area of sensory perception. PMID:26959026
Suaste-Gómez, Ernesto; Rodríguez-Roldán, Grissel; Reyes-Cruz, Héctor; Terán-Jiménez, Omar
2016-03-04
An ear prosthesis was designed in 3D computer graphics software and fabricated using a 3D printing process of polyvinylidene fluoride (PVDF) for use as a hearing aid. In addition, the prosthesis response to pressure and temperature was observed. Pyroelectric and piezoelectric properties of this ear prosthesis were investigated using an astable multivibrator circuit, as changes in PVDF permittivity were observed according to variations of pressure and temperature. The results show that this prosthesis is reliable for use under different conditions of pressure (0 Pa to 16,350 Pa) and temperature (2 °C to 90 °C). The experimental results show an almost linear and inversely proportional behavior between the stimuli of pressure and temperature with the frequency response. This 3D-printed ear prosthesis is a promising tool and has a great potentiality in the biomedical engineering field because of its ability to generate an electrical potential proportional to pressure and temperature, and it is the first time that such a device has been processed by the additive manufacturing process (3D printing). More work needs to be carried out to improve the performance, such as electrical stimulation of the nervous system, thereby extending the purpose of a prosthesis to the area of sensory perception.
It all adds up …. Or does it? Numbers, mathematics and purpose.
Conway Morris, Simon
2016-08-01
No chimpanzee knows what a square root is, let alone a complex number. Yet not only our closest ape cousins but even some invertebrates, possess a capacity for numerosity, that is the ability to assess relative numerical magnitudes and distances. That numerosity should confer adaptive advantages, such as social species that choose shoal size, is obvious. Moreover, it is widely assumed that numerosity and mathematics are seamlessly linked, as would be consistent with Darwinian notions of descent and modification. Animal numerosity, however, involves sensory processes (usually vision, but other modalities such as olfaction can be as effective) that follow psychophysical principles, notable the Weber-Fechner law. In contrast, mathematics may require sensory mediation but is an abstract process. The supposed connection between these processes is described as supramodality but the mechanisms that allow humans, but not animals, to engage in even simple mathematics are opaque. Here, I argue that any resolution will depend on proper explanations for not only mathematics, but language and by implication consciousness. In this light, concepts of purpose are not intellectual mirages but legitimate descriptions of the worlds in which we are embedded. These are both visible (and tangible) and invisible (and although intangible, equally real). Copyright © 2015 Elsevier Ltd. All rights reserved.
Predictive Measures of Locomotor Performance on an Unstable Walking Surface
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Caldwell, E. E.; Batson, C. D.; De Dios, Y. E.; Gadd, N. E.; Goel, R.; Wood, S. J.; Cohen, H. S.;
2016-01-01
Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.
Sensory over-responsivity in adults with autism spectrum conditions.
Tavassoli, Teresa; Miller, Lucy J; Schoen, Sarah A; Nielsen, Darci M; Baron-Cohen, Simon
2014-05-01
Anecdotal reports and empirical evidence suggest that sensory processing issues are a key feature of autism spectrum conditions. This study set out to investigate whether adults with autism spectrum conditions report more sensory over-responsivity than adults without autism spectrum conditions. Another goal of the study was to identify whether autistic traits in adults with and without autism spectrum conditions were associated with sensory over-responsivity. Adults with (n = 221) and without (n = 181) autism spectrum conditions participated in an online survey. The Autism Spectrum Quotient, the Raven Matrices and the Sensory Processing Scale were used to characterize the sample. Adults with autism spectrum conditions reported more sensory over-responsivity than control participants across various sensory domains (visual, auditory, tactile, olfactory, gustatory and proprioceptive). Sensory over-responsivity correlated positively with autistic traits (Autism Spectrum Quotient) at a significant level across groups and within groups. Adults with autism spectrum conditions experience sensory over-responsivity to daily sensory stimuli to a high degree. A positive relationship exists between sensory over-responsivity and autistic traits. Understanding sensory over-responsivity and ways of measuring it in adults with autism spectrum conditions has implications for research and clinical settings.
Kuo, Li-Chieh; Hsu, Hsiao-Man; Wu, Po-Ting; Lin, Sheng-Che; Hsu, Hsiu-Yun; Jou, I-Ming
2014-06-01
This study investigates the handwriting performance of patients with carpal tunnel syndrome (CTS) and healthy controls in office and administrative support occupations, adopting both biomechanical and functional perspectives. This work also explores how surgical intervention altered the performance of the CTS patients. Fourteen CTS patients and 14 control subjects were recruited to complete a self-reported survey and participate in sensory tests, hand strength, dexterity and handwriting tasks using a custom force acquisition pen along with motion capture technology. Based on the results of these, the sensory measurements, along with functional and biomechanical parameters, were used to determine the differences between the groups and also reveal any improvements that occurred in the CTS group after surgical intervention. The CTS patients showed significantly poorer hand sensibility and dexterity than the controls, as well as excessive force exertion of the digits and pen tip, and less efficient force adjustment ability during handwriting. After surgery and sensory recovery, the hand dexterity and pen tip force of the CTS patients improved significantly. The force adjustment abilities of the digits also increased, but these changes were not statistically significant. This study provides the objective measurements and novel apparatus that can be used to determine impairments in the handwriting abilities of office or administrative workers with CTS. The results can also help clinicians or patients to better understand the sensory-related deficits in sensorimotor control of the hand related to CTS, and thus develop and implement more suitable training or adaptive protocols.
Deficits in Top-Down Sensory Prediction in Infants At Risk due to Premature Birth.
Emberson, Lauren L; Boldin, Alex M; Riccio, Julie E; Guillet, Ronnie; Aslin, Richard N
2017-02-06
A prominent theoretical view is that the brain is inherently predictive [1, 2] and that prediction helps drive the engine of development [3, 4]. Although infants exhibit neural signatures of top-down sensory prediction [5, 6], in order to establish that prediction supports development, it must be established that deficits in early prediction abilities alter trajectories. We investigated prediction in infants born prematurely, a leading cause of neuro-cognitive impairment worldwide [7]. Prematurity, independent of medical complications, leads to developmental disturbances [8-12] and a broad range of developmental delays [13-17]. Is an alteration in early prediction abilities the common cause? Using functional near-infrared spectroscopy (fNIRS), we measured top-down sensory prediction in preterm infants (born <33 weeks gestation) before infants exhibited clinically identifiable developmental delays (6 months corrected age). Whereas preterm infants had typical neural responses to presented visual stimuli, they exhibited altered neural responses to predicted visual stimuli. Importantly, a separate behavioral control confirmed that preterm infants detect pattern violations at the same rate as full-terms, establishing selectivity of this response to top-down predictions (e.g., not in learning an audiovisual association). These findings suggest that top-down sensory prediction plays a crucial role in development and that deficits in this ability may be the reason why preterm infants experience altered developmental trajectories and are at risk for poor developmental outcomes. Moreover, this work presents an opportunity for establishing a neuro-biomarker for early identification of infants at risk and could guide early intervention regimens. Copyright © 2017 Elsevier Ltd. All rights reserved.
O'Donnell, Sean; Clifford, Marie R; DeLeon, Sara; Papa, Christopher; Zahedi, Nazaneen; Bulova, Susan J
2013-01-01
The mosaic brain evolution hypothesis predicts that the relative volumes of functionally distinct brain regions will vary independently and correlate with species' ecology. Paper wasp species (Hymenoptera: Vespidae, Polistinae) differ in light exposure: they construct open versus enclosed nests and one genus (Apoica) is nocturnal. We asked whether light environments were related to species differences in the size of antennal and optic processing brain tissues. Paper wasp brains have anatomically distinct peripheral and central regions that process antennal and optic sensory inputs. We measured the volumes of 4 sensory processing brain regions in paper wasp species from 13 Neotropical genera including open and enclosed nesters, and diurnal and nocturnal species. Species differed in sensory region volumes, but there was no evidence for trade-offs among sensory modalities. All sensory region volumes correlated with brain size. However, peripheral optic processing investment increased with brain size at a higher rate than peripheral antennal processing investment. Our data suggest that mosaic and concerted (size-constrained) brain evolution are not exclusive alternatives. When brain regions increase with brain size at different rates, these distinct allometries can allow for differential investment among sensory modalities. As predicted by mosaic evolution, species ecology was associated with some aspects of brain region investment. Nest architecture variation was not associated with brain investment differences, but the nocturnal genus Apoica had the largest antennal:optic volume ratio in its peripheral sensory lobes. Investment in central processing tissues was not related to nocturnality, a pattern also noted in mammals. The plasticity of neural connections in central regions may accommodate evolutionary shifts in input from the periphery with relatively minor changes in volume. © 2013 S. Karger AG, Basel.
Emerging Role of Sensory Perception in Aging and Metabolism.
Riera, Celine E; Dillin, Andrew
2016-05-01
Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues. Here we review how these findings are redefining metabolic signaling and establish a prominent role of sensory neuroendocrine processes in controlling health span and lifespan, with a goal of translating this knowledge towards managing age-associated diseases. Copyright © 2016. Published by Elsevier Ltd.
Multi-Sensory Informatics Education
ERIC Educational Resources Information Center
Katai, Zoltan; Toth, Laszlo; Adorjani, Alpar Karoly
2014-01-01
A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1) computational thinking is an important ability that all people should possess; (2) informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school…
The synaptic pharmacology underlying sensory processing in the superior colliculus.
Binns, K E
1999-10-01
The superior colliculus (SC) is one of the most ancient regions of the vertebrate central sensory system. In this hub afferents from several sensory pathways converge, and an extensive range of neural circuits enable primary sensory processing, multi-sensory integration and the generation of motor commands for orientation behaviours. The SC has a laminar structure and is usually considered in two parts; the superficial visual layers and the deep multi-modal/motor layers. Neurones in the superficial layers integrate visual information from the retina, cortex and other sources, while the deep layers draw together data from many cortical and sub-cortical sensory areas, including the superficial layers, to generate motor commands. Functional studies in anaesthetized subjects and in slice preparations have used pharmacological tools to probe some of the SC's interacting circuits. The studies reviewed here reveal important roles for ionotropic glutamate receptors in the mediation of sensory inputs to the SC and in transmission between the superficial and deep layers. N-methyl-D-aspartate receptors appear to have special responsibility for the temporal matching of retinal and cortical activity in the superficial layers and for the integration of multiple sensory data-streams in the deep layers. Sensory responses are shaped by intrinsic inhibitory mechanisms mediated by GABA(A) and GABA(B) receptors and influenced by nicotinic acetylcholine receptors. These sensory and motor-command activities of SC neurones are modulated by levels of arousal through extrinsic connections containing GABA, serotonin and other transmitters. It is possible to naturally stimulate many of the SC's sensory and non-sensory inputs either independently or simultaneously and this brain area is an ideal location in which to study: (a) interactions between inputs from the same sensory system; (b) the integration of inputs from several sensory systems; and (c) the influence of non-sensory systems on sensory processing.
Mapping sensory circuits by anterograde trans-synaptic transfer of recombinant rabies virus
Zampieri, Niccolò; Jessell, Thomas M.; Murray, Andrew J.
2014-01-01
Summary Primary sensory neurons convey information from the external world to relay circuits within the central nervous system (CNS), but the identity and organization of the neurons that process incoming sensory information remains sketchy. Within the CNS viral tracing techniques that rely on retrograde trans-synaptic transfer provide a powerful tool for delineating circuit organization. Viral tracing of the circuits engaged by primary sensory neurons has, however, been hampered by the absence of a genetically tractable anterograde transfer system. In this study we demonstrate that rabies virus can infect sensory neurons in the somatosensory system, is subject to anterograde trans-synaptic transfer from primary sensory to spinal target neurons, and can delineate output connectivity with third-order neurons. Anterograde trans-synaptic transfer is a feature shared by other classes of primary sensory neurons, permitting the identification and potentially the manipulation of neural circuits processing sensory feedback within the mammalian CNS. PMID:24486087
Sensation during Active Behaviors
Cardin, Jessica A.; Chiappe, M. Eugenia; Halassa, Michael M.; McGinley, Matthew J.; Yamashita, Takayuki
2017-01-01
A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field. PMID:29118211
Common computational properties found in natural sensory systems
NASA Astrophysics Data System (ADS)
Brooks, Geoffrey
2009-05-01
Throughout the animal kingdom there are many existing sensory systems with capabilities desired by the human designers of new sensory and computational systems. There are a few basic design principles constantly observed among these natural mechano-, chemo-, and photo-sensory systems, principles that have been proven by the test of time. Such principles include non-uniform sampling and processing, topological computing, contrast enhancement by localized signal inhibition, graded localized signal processing, spiked signal transmission, and coarse coding, which is the computational transformation of raw data using broadly overlapping filters. These principles are outlined here with references to natural biological sensory systems as well as successful biomimetic sensory systems exploiting these natural design concepts.
Galileo Galilei's vision of the senses.
Piccolino, Marco; Wade, Nicholas J
2008-11-01
Neuroscientists have become increasingly aware of the complexities and subtleties of sensory processing. This applies particularly to the complex elaborations of nerve signals that occur in the sensory circuits, sometimes at the very initial stages of sensory pathways. Sensory processing is now known to be very different from a simple neural copy of the physical signal present in the external world, and this accounts for the intricacy of neural organization that puzzled great investigators of neuroanatomy such as Santiago Ramón Y Cajal a century ago. It will surprise present-day sensory neuroscientists, applying their many modern methods, that the conceptual basis of the contemporary approach to sensory function had been recognized four centuries ago by Galileo Galilei.
Understanding Female Receiver Psychology in Reproductive Contexts.
Lynch, Kathleen S
2017-10-01
Mate choice decision-making requires four components: sensory, cognitive, motivation, and salience. During the breeding season, the neural mechanisms underlying these components act in concert to radically transform the way a female perceives the social cues around her as well as the way in which cognitive and motivational processes influence her decision to respond to courting males. The role of each of these four components in mate choice responses will be discussed here as well as the brain regions involved in regulating each component. These components are not independent, modular systems. Instead, they are dependent on one another. This review will discuss the many ways in which these components interact and affect one another. The interaction of these components, however, ultimately leads back to a few key neuromodulators that thread motivation, sensory, salience, and cognitive components into a set of inter-dependent processes. These neuromodulators are estrogens and catecholamines. This review will highlight the need to understand estrogens in reproductive contexts not just as simply a 'sexual motivation modulator' or catecholamines as 'cognitive regulators' but as neuromodulators that work together to fully transform a non-breeding female into a completely reproductive female displaying: heightened sexual interest in courting males, greater arousal and selective attention toward courtship signals, improved signal detection and discrimination abilities, enhanced contextual signal memory, and increased motivation to respond to signals assigned incentive salience. The aim of this review is to build a foundation in which to understand the brain regions associated with cognitive, sensory, motivational, and signal salience not as independently acting systems but as a set of interacting processes that function together in a context-appropriate manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Liu, Shih-Chii; Delbruck, Tobi
2010-06-01
Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.
Frölander, Hans-Erik; Möller, Claes; Rudner, Mary; Mishra, Sushmit; Marshall, Jan D; Piacentini, Heather; Lyxell, Björn
2015-01-01
This study focuses on cognitive prerequisites for the development of theory-of-mind (ToM), the ability to impute mental states to self and others in young adults with Alström syndrome (AS). AS is a rare and quite recently described recessively inherited ciliopathic disorder which causes progressive sensorineural hearing loss and juvenile blindness, as well as many other organ dysfunctions. Two cognitive abilities were considered; Phonological working memory (WM) and executive functions (EF), both of importance in speech development. Ten individuals (18-37 years) diagnosed with AS, and 20 individuals with no known impairment matched for age, gender, and educational level participated. Sensory functions were measured. Information about motor functions and communicative skills was obtained from responses to a questionnaire. ToM was assessed using Happés strange stories, verbal ability by a vocabulary test, phonological WM by means of an auditory presented non-word serial recall task and EF by tests of updating and inhibition. The AS group performed at a significantly lower level than the control group in both the ToM task and the EF tasks. A significant correlation was observed between recall of non-words and EF in the AS group. Updating, but not inhibition, correlated significantly with verbal ability, whereas both updating and inhibition were significantly related to the ability to initiate and sustain communication. Poorer performance in the ToM and EF tasks were related to language perseverance and motor mannerisms. The AS group displayed a delayed ToM as well as reduced phonological WM, EF, and verbal ability. A significant association between ToM and EF, suggests a compensatory role of EF. This association may reflect the importance of EF to perceive and process input from the social environment when the social interaction is challenged by dual sensory loss. We argue that limitations in EF capacity in individuals with AS, to some extent, may be related to early blindness and progressive hearing loss, but maybe also to gene specific abnormalities.
Frölander, Hans-Erik; Möller, Claes; Rudner, Mary; Mishra, Sushmit; Marshall, Jan D.; Piacentini, Heather; Lyxell, Björn
2015-01-01
Objective: This study focuses on cognitive prerequisites for the development of theory-of-mind (ToM), the ability to impute mental states to self and others in young adults with Alström syndrome (AS). AS is a rare and quite recently described recessively inherited ciliopathic disorder which causes progressive sensorineural hearing loss and juvenile blindness, as well as many other organ dysfunctions. Two cognitive abilities were considered; Phonological working memory (WM) and executive functions (EF), both of importance in speech development. Methods: Ten individuals (18–37 years) diagnosed with AS, and 20 individuals with no known impairment matched for age, gender, and educational level participated. Sensory functions were measured. Information about motor functions and communicative skills was obtained from responses to a questionnaire. ToM was assessed using Happés strange stories, verbal ability by a vocabulary test, phonological WM by means of an auditory presented non-word serial recall task and EF by tests of updating and inhibition. Results: The AS group performed at a significantly lower level than the control group in both the ToM task and the EF tasks. A significant correlation was observed between recall of non-words and EF in the AS group. Updating, but not inhibition, correlated significantly with verbal ability, whereas both updating and inhibition were significantly related to the ability to initiate and sustain communication. Poorer performance in the ToM and EF tasks were related to language perseverance and motor mannerisms. Conclusion: The AS group displayed a delayed ToM as well as reduced phonological WM, EF, and verbal ability. A significant association between ToM and EF, suggests a compensatory role of EF. This association may reflect the importance of EF to perceive and process input from the social environment when the social interaction is challenged by dual sensory loss. We argue that limitations in EF capacity in individuals with AS, to some extent, may be related to early blindness and progressive hearing loss, but maybe also to gene specific abnormalities. PMID:26441796
Speech perception in older adults: the importance of speech-specific cognitive abilities.
Sommers, M S
1997-05-01
To provide a critical evaluation of studies examining the contribution of changes in language-specific cognitive abilities to the speech perception difficulties of older adults. A review of the literature on aging and speech perception. The research considered in the present review suggests that age-related changes in absolute sensitivity is the principal factor affecting older listeners' speech perception in quiet. However, under less favorable listening conditions, changes in a number of speech-specific cognitive abilities can also affect spoken language processing in older people. Clinically, these findings suggest that hearing aids, which have been the traditional treatment for improving speech perception in older adults, are likely to offer considerable benefit in quiet listening situations because the amplification they provide can serve to compensate for age-related hearing losses. However, such devices may be less beneficial in more natural environments, (e.g., noisy backgrounds, multiple talkers, reverberant rooms) because they are less effective for improving speech perception difficulties that result from age-related cognitive declines. It is suggested that an integrative approach to designing test batteries that can assess both sensory and cognitive abilities needed for processing spoken language offers the most promising approach for developing therapeutic interventions to improve speech perception in older adults.
The Relationship between Sensory Processing Patterns and Behavioral Patterns in Children
ERIC Educational Resources Information Center
Nesayan, Abbas; Asadi Gandomani, Roghayeh; Movallali, Gita; Dunn, Winnie
2018-01-01
This study investigates the relationship between sensory processing patterns and behavioral patterns in children. The population consisted of all children in Tehran city. Participation included 229 school and 155 preschool children. We collected data using the Sensory Profile School Companion and Conners Teacher Rating Scale. Results showed that…
A sound advantage: Increased auditory capacity in autism.
Remington, Anna; Fairnie, Jake
2017-09-01
Autism Spectrum Disorder (ASD) has an intriguing auditory processing profile. Individuals show enhanced pitch discrimination, yet often find seemingly innocuous sounds distressing. This study used two behavioural experiments to examine whether an increased capacity for processing sounds in ASD could underlie both the difficulties and enhanced abilities found in the auditory domain. Autistic and non-autistic young adults performed a set of auditory detection and identification tasks designed to tax processing capacity and establish the extent of perceptual capacity in each population. Tasks were constructed to highlight both the benefits and disadvantages of increased capacity. Autistic people were better at detecting additional unexpected and expected sounds (increased distraction and superior performance respectively). This suggests that they have increased auditory perceptual capacity relative to non-autistic people. This increased capacity may offer an explanation for the auditory superiorities seen in autism (e.g. heightened pitch detection). Somewhat counter-intuitively, this same 'skill' could result in the sensory overload that is often reported - which subsequently can interfere with social communication. Reframing autistic perceptual processing in terms of increased capacity, rather than a filtering deficit or inability to maintain focus, increases our understanding of this complex condition, and has important practical implications that could be used to develop intervention programs to minimise the distress that is often seen in response to sensory stimuli. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Cognitive, sensory and physical factors enabling driving safety in older adults.
Anstey, Kaarin J; Wood, Joanne; Lord, Stephen; Walker, Janine G
2005-01-01
We reviewed literature on cognitive, sensory, motor and physical factors associated with safe driving and crash risk in older adults with the goal of developing a model of factors enabling safe driving behaviour. Thirteen empirical studies reporting associations between cognitive, sensory, motor and physical factors and either self-reported crashes, state crash records or on-road driving measures were identified. Measures of attention, reaction time, memory, executive function, mental status, visual function, and physical function variables were associated with driving outcome measures. Self-monitoring was also identified as a factor that may moderate observed effects by influencing driving behavior. We propose that three enabling factors (cognition, sensory function and physical function/medical conditions) predict driving ability, but that accurate self-monitoring of these enabling factors is required for safe driving behaviour.
Visual Image Sensor Organ Replacement
NASA Technical Reports Server (NTRS)
Maluf, David A.
2014-01-01
This innovation is a system that augments human vision through a technique called "Sensing Super-position" using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks. Three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. Because the human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns, the translation of images into sounds reduces the risk of accidentally filtering out important clues. The VISOR device was developed to augment the current state-of-the-art head-mounted (helmet) display systems. It provides the ability to sense beyond the human visible light range, to increase human sensing resolution, to use wider angle visual perception, and to improve the ability to sense distances. It also allows compensation for movement by the human or changes in the scene being viewed.
Clancy, Kevin; Ding, Mingzhou; Bernat, Edward; Schmidt, Norman B; Li, Wen
2017-07-01
Post-traumatic stress disorder is characterized by exaggerated threat response, and theoretical accounts to date have focused on impaired threat processing and dysregulated prefrontal-cortex-amygdala circuitry. Nevertheless, evidence is accruing for broad, threat-neutral sensory hyperactivity in post-traumatic stress disorder. As low-level, sensory processing impacts higher-order operations, such sensory anomalies can contribute to widespread dysfunctions, presenting an additional aetiological mechanism for post-traumatic stress disorder. To elucidate a sensory pathology of post-traumatic stress disorder, we examined intrinsic visual cortical activity (based on posterior alpha oscillations) and bottom-up sensory-driven causal connectivity (Granger causality in the alpha band) during a resting state (eyes open) and a passive, serial picture viewing state. Compared to patients with generalized anxiety disorder (n = 24) and healthy control subjects (n = 20), patients with post-traumatic stress disorder (n = 25) demonstrated intrinsic sensory hyperactivity (suppressed posterior alpha power, source-localized to the visual cortex-cuneus and precuneus) and bottom-up inhibition deficits (reduced posterior→frontal Granger causality). As sensory input increased from resting to passive picture viewing, patients with post-traumatic stress disorder failed to demonstrate alpha adaptation, highlighting a rigid, set mode of sensory hyperactivity. Interestingly, patients with post-traumatic stress disorder also showed heightened frontal processing (augmented frontal gamma power, source-localized to the superior frontal gyrus and dorsal cingulate cortex), accompanied by attenuated top-down inhibition (reduced frontal→posterior causality). Importantly, not only did suppressed alpha power and bottom-up causality correlate with heightened frontal gamma power, they also correlated with increased severity of sensory and executive dysfunctions (i.e. hypervigilance and impulse control deficits, respectively). Therefore, sensory aberrations help construct a vicious cycle in post-traumatic stress disorder that is in action even at rest, implicating dysregulated triangular sensory-prefrontal-cortex-amygdala circuitry: intrinsic sensory hyperactivity and disinhibition give rise to frontal overload and disrupt executive control, fuelling and perpetuating post-traumatic stress disorder symptoms. Absent in generalized anxiety disorder, these aberrations highlight a unique sensory pathology of post-traumatic stress disorder (ruling out effects merely reflecting anxious hyperarousal), motivating new interventions targeting sensory processing and the sensory brain in these patients. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shinn-Cunningham, Barbara
2017-10-17
This review provides clinicians with an overview of recent findings relevant to understanding why listeners with normal hearing thresholds (NHTs) sometimes suffer from communication difficulties in noisy settings. The results from neuroscience and psychoacoustics are reviewed. In noisy settings, listeners focus their attention by engaging cortical brain networks to suppress unimportant sounds; they then can analyze and understand an important sound, such as speech, amidst competing sounds. Differences in the efficacy of top-down control of attention can affect communication abilities. In addition, subclinical deficits in sensory fidelity can disrupt the ability to perceptually segregate sound sources, interfering with selective attention, even in listeners with NHTs. Studies of variability in control of attention and in sensory coding fidelity may help to isolate and identify some of the causes of communication disorders in individuals presenting at the clinic with "normal hearing." How well an individual with NHTs can understand speech amidst competing sounds depends not only on the sound being audible but also on the integrity of cortical control networks and the fidelity of the representation of suprathreshold sound. Understanding the root cause of difficulties experienced by listeners with NHTs ultimately can lead to new, targeted interventions that address specific deficits affecting communication in noise. http://cred.pubs.asha.org/article.aspx?articleid=2601617.
ERIC Educational Resources Information Center
Hart, Verna; Ferrell, Kay
Twenty-four congenitally visually handicapped infants, aged 6-24 months, participated in a study to determine (1) those stimuli best able to elicit visual attention, (2) the stability of visual acuity over time, and (3) the effects of binaural sensory aids on both visual attention and visual acuity. Ss were dichotomized into visually handicapped…
[How we smell and what it means to us: basic principles of the sense of smell].
Manzini, I; Frasnelli, J; Croy, I
2014-12-01
The origins of the sense of smell lie in the perception of environmental molecules and go back to unicellular organisms such as bacteria. Odors transmit a multitude of information about the chemical composition of our environment. The sense of smell helps people and animals with orientation in space, warns of potential threats, influences the choice of sexual partners, regulates food intake and influences feelings and social behavior in general. The perception of odors begins in sensory neurons residing in the olfactory epithelium that express G protein-coupled receptors, the so-called olfactory receptors. The binding of odor molecules to olfactory receptors initiates a signal transduction cascade that converts olfactory stimuli into electrical signals. These signals are then transmitted to the olfactory bulb, the first relay center in the olfactory pathway, via the axons of the sensory neurons. The olfactory information is processed in the bulb and then transferred to higher olfactory centers via axons of mitral cells, the bulbar projection neurons. This review describes the mechanisms involved in peripheral detection of odorants, outlines the further processing of olfactory information in higher olfactory centers and finally gives an overview of the overall significance of the ability to smell.
A Spiking Neural Network System for Robust Sequence Recognition.
Yu, Qiang; Yan, Rui; Tang, Huajin; Tan, Kay Chen; Li, Haizhou
2016-03-01
This paper proposes a biologically plausible network architecture with spiking neurons for sequence recognition. This architecture is a unified and consistent system with functional parts of sensory encoding, learning, and decoding. This is the first systematic model attempting to reveal the neural mechanisms considering both the upstream and the downstream neurons together. The whole system is a consistent temporal framework, where the precise timing of spikes is employed for information processing and cognitive computing. Experimental results show that the system is competent to perform the sequence recognition, being robust to noisy sensory inputs and invariant to changes in the intervals between input stimuli within a certain range. The classification ability of the temporal learning rule used in the system is investigated through two benchmark tasks that outperform the other two widely used learning rules for classification. The results also demonstrate the computational power of spiking neurons over perceptrons for processing spatiotemporal patterns. In summary, the system provides a general way with spiking neurons to encode external stimuli into spatiotemporal spikes, to learn the encoded spike patterns with temporal learning rules, and to decode the sequence order with downstream neurons. The system structure would be beneficial for developments in both hardware and software.
On Curating Multimodal Sensory Data for Health and Wellness Platforms
Amin, Muhammad Bilal; Banos, Oresti; Khan, Wajahat Ali; Muhammad Bilal, Hafiz Syed; Gong, Jinhyuk; Bui, Dinh-Mao; Cho, Soung Ho; Hussain, Shujaat; Ali, Taqdir; Akhtar, Usman; Chung, Tae Choong; Lee, Sungyoung
2016-01-01
In recent years, the focus of healthcare and wellness technologies has shown a significant shift towards personal vital signs devices. The technology has evolved from smartphone-based wellness applications to fitness bands and smartwatches. The novelty of these devices is the accumulation of activity data as their users go about their daily life routine. However, these implementations are device specific and lack the ability to incorporate multimodal data sources. Data accumulated in their usage does not offer rich contextual information that is adequate for providing a holistic view of a user’s lifelog. As a result, making decisions and generating recommendations based on this data are single dimensional. In this paper, we present our Data Curation Framework (DCF) which is device independent and accumulates a user’s sensory data from multimodal data sources in real time. DCF curates the context of this accumulated data over the user’s lifelog. DCF provides rule-based anomaly detection over this context-rich lifelog in real time. To provide computation and persistence over the large volume of sensory data, DCF utilizes the distributed and ubiquitous environment of the cloud platform. DCF has been evaluated for its performance, correctness, ability to detect complex anomalies, and management support for a large volume of sensory data. PMID:27355955
Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas
2014-12-01
Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.
White matter correlates of sensory processing in autism spectrum disorders
Pryweller, Jennifer R.; Schauder, Kimberly B.; Anderson, Adam W.; Heacock, Jessica L.; Foss-Feig, Jennifer H.; Newsom, Cassandra R.; Loring, Whitney A.; Cascio, Carissa J.
2014-01-01
Autism spectrum disorder (ASD) has been characterized by atypical socio-communicative behavior, sensorimotor impairment and abnormal neurodevelopmental trajectories. DTI has been used to determine the presence and nature of abnormality in white matter integrity that may contribute to the behavioral phenomena that characterize ASD. Although atypical patterns of sensory responding in ASD are well documented in the behavioral literature, much less is known about the neural networks associated with aberrant sensory processing. To address the roles of basic sensory, sensory association and early attentional processes in sensory responsiveness in ASD, our investigation focused on five white matter fiber tracts known to be involved in these various stages of sensory processing: superior corona radiata, centrum semiovale, inferior longitudinal fasciculus, posterior limb of the internal capsule, and splenium. We acquired high angular resolution diffusion images from 32 children with ASD and 26 typically developing children between the ages of 5 and 8. We also administered sensory assessments to examine brain-behavior relationships between white matter integrity and sensory variables. Our findings suggest a modulatory role of the inferior longitudinal fasciculus and splenium in atypical sensorimotor and early attention processes in ASD. Increased tactile defensiveness was found to be related to reduced fractional anisotropy in the inferior longitudinal fasciculus, which may reflect an aberrant connection between limbic structures in the temporal lobe and the inferior parietal cortex. Our findings also corroborate the modulatory role of the splenium in attentional orienting, but suggest the possibility of a more diffuse or separable network for social orienting in ASD. Future investigation should consider the use of whole brain analyses for a more robust assessment of white matter microstructure. PMID:25379451
Think like a sponge: The genetic signal of sensory cells in sponges.
Mah, Jasmine L; Leys, Sally P
2017-11-01
A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the sponge sensory system. Copyright © 2017 Elsevier Inc. All rights reserved.
Sensory system plasticity in a visually specialized, nocturnal spider.
Stafstrom, Jay A; Michalik, Peter; Hebets, Eileen A
2017-04-21
The interplay between an animal's environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.
Moeller, S; Wulf, D; Meeker, D; Ndife, M; Sundararajan, N; Solomon, M B
1999-08-01
Paired, boneless pork loin muscles were obtained from 76 market hogs to evaluate tenderness, meat quality characteristics, sensory attributes, and microbial characterization of pork muscle exposed to the Hydrodyne Process (H) compared with untreated control (C) loin. A subset of 16 paired loins was randomly selected for use in sensory evaluation and microbial characterization. Loins were vacuum packaged and immersed in a heat shrink tank prior to the H treatment. The Hydrodyne treatment exposed the loin to the pressure equivalent of a 150-g explosive, generating a pressure distribution of approximately 703 kg/cm2 at the surface of the samples. Meat quality assessments taken following treatment included subjective color, firmness/wetness, marbling scores (1 to 5 scale), Minolta reflectance and color readings, drip loss, and lipid content. The P-value for statistical significance for main effects and interactions was set at <.05 in all analyses. Administration of H resulted in a 17% improvement in Warner-Bratzler shear force (2.69 vs. 3.24 kg), with the shear force similar at two end-point cooking times (11 and 16 min) corresponding to approximately 75 and 83 degrees C, respectively. No differences between H and C were observed for color score, firmness score, Minolta L, Minolta Y, or drip loss on uncooked samples. The H loins had lower marbling scores (P<.05) and intramuscular lipid (P<.05) content than the paired C loin. Sensory evaluation on the randomly selected (n = 16) paired loins samples showed no improvement in Warner-Bratzler shear force. Sensory panelists were also unable to detect a difference between H and C loins for both initial and sustained tenderness scores. No differences between H and C loins were found for pork flavor, off-flavor, cohesiveness, or number of chews before swallowing, but H loins had a significantly lower juiciness score and more cooking loss than C loins. Microbial analysis results showed no differences in coliform bacteria counts, aerobic plate counts, and no detectable levels of Escherichia coli bacteria in any loins. The findings support the ability of the Hydrodyne procedure to improve tenderness without impacting other muscle quality attributes of pork.
Rocchi, Lorenzo; Casula, Elias; Tocco, Pierluigi; Berardelli, Alfredo; Rothwell, John
2016-01-13
Somatosensory temporal discrimination threshold (STDT) is defined as the shortest time interval necessary for a pair of tactile stimuli to be perceived as separate. Although STDT is altered in several neurological disorders, its neural bases are not entirely clear. We used continuous theta burst stimulation (cTBS) to condition the excitability of the primary somatosensory cortex in healthy humans to examine its possible contribution to STDT. Excitability was assessed using the recovery cycle of the N20 component of somatosensory evoked potentials (SEP) and the area of high-frequency oscillations (HFO). cTBS increased STDT and reduced inhibition in the N20 recovery cycle at an interstimulus interval of 5 ms. It also reduced the amplitude of late HFO. All three effects were correlated. There was no effect of cTBS over the secondary somatosensory cortex on STDT, although it reduced the N120 component of the SEP. STDT is assessed conventionally with a simple ascending method. To increase insight into the effect of cTBS, we measured temporal discrimination with a psychophysical method. cTBS reduced the slope of the discrimination curve, consistent with a reduction of the quality of sensory information caused by an increase in noise. We hypothesize that cTBS reduces the effectiveness of inhibitory interactions normally used to sharpen temporal processing of sensory inputs. This reduction in discriminability of sensory input is equivalent to adding neural noise to the signal. Precise timing of sensory information is crucial for nearly every aspect of human perception and behavior. One way to assess the ability to analyze temporal information in the somatosensory domain is to measure the somatosensory temporal discrimination threshold (STDT), defined as the shortest time interval necessary for a pair of tactile stimuli to be perceived as separate. In this study, we found that STDT depends on inhibitory mechanisms within the primary somatosensory area (S1). This finding helps interpret the sensory processing deficits in neurological diseases, such as focal dystonia and Parkinson's disease, and possibly prompts future studies using neurostimulation techniques over S1 for therapeutic purposes in dystonic patients. Copyright © 2016 the authors 0270-6474/16/360325-11$15.00/0.
Yeast strains as potential aroma enhancers in dry fermented sausages.
Flores, Mónica; Corral, Sara; Cano-García, Liliana; Salvador, Ana; Belloch, Carmela
2015-11-06
Actual healthy trends produce changes in the sensory characteristics of dry fermented sausages therefore, new strategies are needed to enhance their aroma. In particular, a reduction in the aroma characteristics was observed in reduced fat and salt dry sausages. In terms of aroma enhancing, generally coagulase-negative cocci were selected as the most important group from the endogenous microbiota in the production of flavour compounds. Among the volatile compounds analysed in dry sausages, ester compounds contribute to fruity aroma notes associated with high acceptance of traditional dry sausages. However, the origin of ester compounds in traditional dry sausages can be due to other microorganisms as lactic acid bacteria, yeast and moulds. Yeast contribution in dry fermented sausages was investigated with opposite results attributed to low yeast survival or low activity during processing. Generally, they affect sausage colour and flavour by their oxygen-scavenging and lipolytic activities in addition to, their ability to catabolize fermentation products such as lactate increasing the pH and contributing to less tangy and more aromatic sausages. Recently, the isolation and characterization of yeast from traditional dry fermented sausages made possible the selection of those with ability to produce aroma active compounds. Molecular methods were used for genetic typing of the isolated yeasts whereas their ability to produce aroma compounds was tested in different systems such as in culture media, in model systems and finally on dry fermented sausages. The results revealed that the appropriate selection of yeast strains with aroma potential may be used to improve the sensory characteristics of reformulated fermented sausages. Copyright © 2015 Elsevier B.V. All rights reserved.
The remapping of space in motor learning and human-machine interfaces
Mussa-Ivaldi, F.A.; Danziger, Z.
2009-01-01
Studies of motor adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. One of the most fundamental elements of our environment is space itself. This article focuses on the notion of Euclidean space as it applies to common sensory motor experiences. Starting from the assumption that we interact with the world through a system of neural signals, we observe that these signals are not inherently endowed with metric properties of the ordinary Euclidean space. The ability of the nervous system to represent these properties depends on adaptive mechanisms that reconstruct the Euclidean metric from signals that are not Euclidean. Gaining access to these mechanisms will reveal the process by which the nervous system handles novel sophisticated coordinate transformation tasks, thus highlighting possible avenues to create functional human-machine interfaces that can make that task much easier. A set of experiments is presented that demonstrate the ability of the sensory-motor system to reorganize coordination in novel geometrical environments. In these environments multiple degrees of freedom of body motions are used to control the coordinates of a point in a two-dimensional Euclidean space. We discuss how practice leads to the acquisition of the metric properties of the controlled space. Methods of machine learning based on the reduction of reaching errors are tested as a means to facilitate learning by adaptively changing he map from body motions to controlled device. We discuss the relevance of the results to the development of adaptive human machine interfaces and optimal control. PMID:19665553
Fast transfer of crossmodal time interval training.
Chen, Lihan; Zhou, Xiaolin
2014-06-01
Sub-second time perception is essential for many important sensory and perceptual tasks including speech perception, motion perception, motor coordination, and crossmodal interaction. This study investigates to what extent the ability to discriminate sub-second time intervals acquired in one sensory modality can be transferred to another modality. To this end, we used perceptual classification of visual Ternus display (Ternus in Psychol Forsch 7:81-136, 1926) to implicitly measure participants' interval perception in pre- and posttests and implemented an intra- or crossmodal sub-second interval discrimination training protocol in between the tests. The Ternus display elicited either an "element motion" or a "group motion" percept, depending on the inter-stimulus interval between the two visual frames. The training protocol required participants to explicitly compare the interval length between a pair of visual, auditory, or tactile stimuli with a standard interval or to implicitly perceive the length of visual, auditory, or tactile intervals by completing a non-temporal task (discrimination of auditory pitch or tactile intensity). Results showed that after fast explicit training of interval discrimination (about 15 min), participants improved their ability to categorize the visual apparent motion in Ternus displays, although the training benefits were mild for visual timing training. However, the benefits were absent for implicit interval training protocols. This finding suggests that the timing ability in one modality can be rapidly acquired and used to improve timing-related performance in another modality and that there may exist a central clock for sub-second temporal processing, although modality-specific perceptual properties may constrain the functioning of this clock.
Habitat-dependent olfactory discrimination in three-spined sticklebacks (Gasterosteus aculeatus).
Hiermes, Meike; Mehlis, Marion; Rick, Ingolf P; Bakker, Theo C M
2015-07-01
The ability to recognize conspecifics is indispensible for differential treatment of particular individuals in social contexts like grouping behavior. The advantages of grouping are multifarious, and there exist numerous additional benefits of joining aggregations of conspecifics. Recognition is based on different signals and transmitted via multiple channels, among others the olfactory channel. The sensory system or the combination of sensory modalities used in recognition processes is highly dependent on the availability and effectiveness of modalities, which are a function of the environmental conditions. Using F1-generations of six three-spined stickleback (Gasterosteus aculeatus) populations from two habitat types (tea-stained and clear-water lakes) from the Outer Hebrides, Scotland, we investigated whether individuals are able to recognize members of their own population solely based on olfactory cues and whether the habitat type an individual originated from had an influence on its recognition abilities. When given the choice (own vs. foreign population) sticklebacks from tea-stained lakes significantly preferred the odor of their own population, whereas fish from clear-water habitats did not show any preference. Moreover, fish from the two habitat types differed significantly in their recognition abilities, indicating that olfactory communication is better developed when visual signaling is disturbed. Thus, the observed odor preferences appear to be the consequence of different selective constraints and adaptations as a result of the differences in environmental conditions that have acted on the parental generations. These adaptations are likely genetically based as the differences are present in the F1-generation that had been reared under identical laboratory conditions.
Identification of a brain center whose activity discriminates a choice behavior in zebrafish
Lau, Billy Y. B.; Mathur, Priya; Gould, Georgianna G.; Guo, Su
2011-01-01
The ability to make choices and carry out appropriate actions is critical for individual survival and well-being. Choice behaviors, from hard-wired to experience-dependent, have been observed across the animal kingdom. Although differential engagement of sensory neuronal pathways is a known mechanism, neurobiological substrates in the brain that underlie choice making downstream of sensory perception are not well understood. Here, we report a behavioral paradigm in zebrafish in which a half-light/half-dark visual image evokes an innate choice behavior, light avoidance. Neuronal activity mapping using the immediate early gene c-fos reveals the engagement of distinct brain regions, including the medial zone of the dorsal telencephalic region (Dm) and the dorsal nucleus of the ventral telencephalic area (Vd), the teleost anatomical homologs of the mammalian amygdala and striatum, respectively. In animals that were subjected to the identical sensory stimulus but displayed little or no avoidance, strikingly, the Dm and Vd were not engaged, despite similar levels of activation in the brain nuclei involved in visual processing. Based on these findings and previous connectivity data, we propose a neural circuitry model in which the Dm serves as a brain center, the activity of which predicates this choice behavior in zebrafish. PMID:21262817
How chimpanzees integrate sensory information to select figs.
Dominy, Nathaniel J; Yeakel, Justin D; Bhat, Uttam; Ramsden, Lawrence; Wrangham, Richard W; Lucas, Peter W
2016-06-06
Figs are keystone resources that sustain chimpanzees when preferred fruits are scarce. Many figs retain a green(ish) colour throughout development, a pattern that causes chimpanzees to evaluate edibility on the basis of achromatic accessory cues. Such behaviour is conspicuous because it entails a succession of discrete sensory assessments, including the deliberate palpation of individual figs, a task that requires advanced visuomotor control. These actions are strongly suggestive of domain-specific information processing and decision-making, and they call attention to a potential selective force on the origin of advanced manual prehension and digital dexterity during primate evolution. To explore this concept, we report on the foraging behaviours of chimpanzees and the spectral, chemical and mechanical properties of figs, with cutting tests revealing ease of fracture in the mouth. By integrating the ability of different sensory cues to predict fructose content in a Bayesian updating framework, we quantified the amount of information gained when a chimpanzee successively observes, palpates and bites the green figs of Ficus sansibarica. We found that the cue eliciting ingestion was not colour or size, but fig mechanics (including toughness estimates from wedge tests), which relays higher-quality information on fructose concentrations than colour vision. This result explains why chimpanzees evaluate green figs by palpation and dental incision, actions that could explain the adaptive origins of advanced manual prehension.
Dissociating sensory from decision processes in human perceptual decision making.
Mostert, Pim; Kok, Peter; de Lange, Floris P
2015-12-15
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.
Dissociating sensory from decision processes in human perceptual decision making
Mostert, Pim; Kok, Peter; de Lange, Floris P.
2015-01-01
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393
Sensory processing patterns predict the integration of information held in visual working memory.
Lowe, Matthew X; Stevenson, Ryan A; Wilson, Kristin E; Ouslis, Natasha E; Barense, Morgan D; Cant, Jonathan S; Ferber, Susanne
2016-02-01
Given the limited resources of visual working memory, multiple items may be remembered as an averaged group or ensemble. As a result, local information may be ill-defined, but these ensemble representations provide accurate diagnostics of the natural world by combining gist information with item-level information held in visual working memory. Some neurodevelopmental disorders are characterized by sensory processing profiles that predispose individuals to avoid or seek-out sensory stimulation, fundamentally altering their perceptual experience. Here, we report such processing styles will affect the computation of ensemble statistics in the general population. We identified stable adult sensory processing patterns to demonstrate that individuals with low sensory thresholds who show a greater proclivity to engage in active response strategies to prevent sensory overstimulation are less likely to integrate mean size information across a set of similar items and are therefore more likely to be biased away from the mean size representation of an ensemble display. We therefore propose the study of ensemble processing should extend beyond the statistics of the display, and should also consider the statistics of the observer. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Fusi, Stefano; Asaad, Wael F.; Miller, Earl K.; Wang, Xiao-Jing
2007-01-01
Summary Volitional behavior relies on the brain’s ability to remap sensory flow to motor programs whenever demanded by a changed behavioral context. To investigate the circuit basis of such flexible behavior, we have developed a biophysically-based decision-making network model of spiking neurons for arbitrary sensorimotor mapping. The model quantitatively reproduces behavioral and prefrontal single-cell data from an experiment in which monkeys learn visuo-motor associations that are reversed unpredictably from time to time. We show that when synaptic modifications occur on multiple timescales, the model behavior becomes flexible only when needed: slow components of learning usually dominate the decision process. However, if behavioral contexts change frequently enough, fast components of plasticity take over, and the behavior exhibits a quick forget-and-learn pattern. This model prediction is confirmed by monkey data. Therefore, our work reveals a scenario for conditional associative learning that is distinct from instant switching between sets of well established sensorimotor associations. PMID:17442251
Acetylated tubulin is essential for touch sensation in mice
Morley, Shane J; Qi, Yanmei; Iovino, Loredana; Andolfi, Laura; Guo, Da; Kalebic, Nereo; Castaldi, Laura; Tischer, Christian; Portulano, Carla; Bolasco, Giulia; Shirlekar, Kalyanee; Fusco, Claudia M; Asaro, Antonino; Fermani, Federica; Sundukova, Mayya; Matti, Ulf; Reymond, Luc; De Ninno, Adele; Businaro, Luca; Johnsson, Kai; Lazzarino, Marco; Ries, Jonas; Schwab, Yannick; Hu, Jing; Heppenstall, Paul A
2016-01-01
At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch. DOI: http://dx.doi.org/10.7554/eLife.20813.001 PMID:27976998
Gigliotta, Onofrio; Bartolomeo, Paolo; Miglino, Orazio
2015-09-01
Mainstream approaches to modelling cognitive processes have typically focused on (1) reproducing their neural underpinning, without regard to sensory-motor systems and (2) producing a single, ideal computational model. Evolutionary robotics is an alternative possibility to bridge the gap between neural substrate and behavior by means of a sensory-motor apparatus, and a powerful tool to build a population of individuals rather than a single model. We trained 4 populations of neurorobots, equipped with a pan/tilt/zoom camera, and provided with different types of motor control in order to perform a cancellation task, often used to tap spatial cognition. Neurorobots' eye movements were controlled by (a) position, (b) velocity, (c) simulated muscles and (d) simulated muscles with fixed level of zoom. Neurorobots provided with muscle and velocity control showed better performances than those controlled in position. This is an interesting result since muscle control can be considered a particular type of position control. Finally, neurorobots provided with muscle control and zoom outperformed those without zooming ability.
Manassa, R P; McCormick, M I; Chivers, D P; Ferrari, M C O
2013-08-22
The ability of prey to observe and learn to recognize potential predators from the behaviour of nearby individuals can dramatically increase survival and, not surprisingly, is widespread across animal taxa. A range of sensory modalities are available for this learning, with visual and chemical cues being well-established modes of transmission in aquatic systems. The use of other sensory cues in mediating social learning in fishes, including mechano-sensory cues, remains unexplored. Here, we examine the role of different sensory cues in social learning of predator recognition, using juvenile damselfish (Amphiprion percula). Specifically, we show that a predator-naive observer can socially learn to recognize a novel predator when paired with a predator-experienced conspecific in total darkness. Furthermore, this study demonstrates that when threatened, individuals release chemical cues (known as disturbance cues) into the water. These cues induce an anti-predator response in nearby individuals; however, they do not facilitate learnt recognition of the predator. As such, another sensory modality, probably mechano-sensory in origin, is responsible for information transfer in the dark. This study highlights the diversity of sensory cues used by coral reef fishes in a social learning context.
Reported Sensory Processing of Children with Down Syndrome
ERIC Educational Resources Information Center
Bruni, Maryanne; Cameron, Debra; Dua, Shelly; Noy, Sarah
2010-01-01
Investigators have identified delays and differences in cognitive, language, motor, and sensory development in children with Down syndrome (DS). The purpose of this study was to determine the parent-reported frequency of sensory processing issues in children with DS aged 3-10 years, and the parent-reported functional impact of those sensory…
The Experience of Children Living with Sensory Processing Disorder
ERIC Educational Resources Information Center
Scotch, Melissa Dawn
2017-01-01
Sensory processing disorder (SPD) is a neurological condition that alters the way an individual perceives sensory information. Although the condition has been studied for more than 40 years, SPD remains a difficult condition to diagnose, treat, and live with because it affects individuals uniquely, and the symptoms can change from childhood to…
Sensory Processing Relates to Attachment to Childhood Comfort Objects of College Students
ERIC Educational Resources Information Center
Kalpidou, Maria
2012-01-01
The author tested the hypothesis that attachment to comfort objects is based on the sensory processing characteristics of the individual. Fifty-two undergraduate students with and without a childhood comfort object reported sensory responses and performed a tactile threshold task. Those with a comfort object described their object and rated their…
ERIC Educational Resources Information Center
Riby, Deborah M.; Janes, Emily; Rodgers, Jacqui
2013-01-01
This study explored the relationship between sensory processing abnormalities and repetitive behaviours in children with Williams Syndrome (WS; n = 21). This is a novel investigation bringing together two clinical phenomena for the first time in this neuro-developmental disorder. Parents completed the Sensory Profile (Short Form; Dunn in The…
Low-level mechanisms for processing odor information in the behaving animal.
Wachowiak, Matt; Wesson, Daniel W; Pírez, Nicolás; Verhagen, Justus V; Carey, Ryan M
2009-07-01
Sensory processing is typically thought to act on representations of sensory stimuli that are relatively fixed at low levels in the nervous system and become increasingly complex and subject to modulation at higher levels. Here we present recent findings from our laboratory demonstrating that, in the olfactory system, odor representations in the behaving animal can be transformed at low levels--as early as the primary sensory neurons themselves--via a variety of mechanisms. First, changes in odor sampling behavior, such as sniffing, can dramatically and rapidly alter primary odor representations by changing the strength and temporal structure of sensory input to the olfactory bulb, effectively shaping which features of the olfactory landscape are emphasized and likely altering how information is processed by the olfactory bulb network. Second, neural substrates exist for presynaptically modulating the strength of sensory input to the bulb as a function of behavioral state. The systems most likely to be involved in this modulation--cholinergic and serotonergic centrifugal inputs to the bulb--are linked to attention and arousal effects in other brain areas. Together, sniffing behavior and presynaptic inhibition have the potential to mediate, or at least contribute to, sensory processing phenomena, such as figure-ground separation, intensity invariance, and context-dependent and attentional modulation of response properties. Thus, "high order" processing can occur even before sensory neurons transmit information to the brain.
Serafini, Gianluca; Gonda, Xenia; Canepa, Giovanna; Pompili, Maurizio; Rihmer, Zoltan; Amore, Mario; Engel-Yeger, Batya
2017-03-01
The involvement of extreme sensory processing patterns, impulsivity, alexithymia, and hopelessness was hypothesized to contribute to the complex pathophysiology of major depression and bipolar disorder. However, the nature of the relation between these variables has not been thoroughly investigated. This study aimed to explore the association between extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness. We recruited 281 euthymic participants (mean age=47.4±12.1) of which 62.3% with unipolar major depression and 37.7% with bipolar disorder. All participants completed the Adolescent/Adult Sensory Profile (AASP), Toronto Alexithymia Scale (TAS-20), second version of the Beck Depression Inventory (BDI-II), Barratt Impulsivity Scale (BIS), and Beck Hopelessness Scale (BHS). Lower registration of sensory input showed a significant correlation with depression, impulsivity, attentional/motor impulsivity, and alexithymia. It was significantly more frequent among participants with elevated hopelessness, and accounted for 22% of the variance in depression severity, 15% in greater impulsivity, 36% in alexithymia, and 3% in hopelessness. Elevated sensory seeking correlated with enhanced motor impulsivity and decreased non-planning impulsivity. Higher sensory sensitivity and sensory avoiding correlated with depression, impulsivity, and alexithymia. The study was limited by the relatively small sample size and cross-sectional nature of the study. Furthermore, only self-report measures that may be potentially biased by social desirability were used. Extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness may show a characteristic pattern in patients with major affective disorders. The careful assessment of sensory profiles may help in developing targeted interventions and improve functional/adaptive strategies. Copyright © 2016 Elsevier B.V. All rights reserved.
Homing orientation in salamanders: A mechanism involving chemical cues
NASA Technical Reports Server (NTRS)
Madison, D. M.
1972-01-01
A detailed description is given of experiments made to determine the senses and chemical cues used by salamanders for homing orientation. Sensory impairment and cue manipulative techniques were used in the investigation. All experiments were carried out at night. Results show that sense impaired animals did not home as readily as those who were blind but retained their sensory mechanism. This fact suggests that the olfactory mechanism is necessary for homing in the salamander. It was determined that after the impaired salamander regenerated its sensory mechanism it too returned home. It was concluded that homing ability in salamanders is direction independent, distant dependent, and vision independent.
Examining Sensory Modulation in Individuals with Autism as Compared to Community Controls
ERIC Educational Resources Information Center
Kern, Janet K.; Garver, Carolyn R.; Carmody, Thomas; Andrews, Alonzo A.; Mehta, Jyutika A.; Trivedi, Madhukar H.
2008-01-01
The purpose of the study was to examine sensory modulation items on the Sensory Profile in individuals with autism as compared to community controls. The data for this study were collected as part of a cross-sectional study that examined sensory processing, using the Sensory Profile, in 103 individuals with autism and/or pervasive developmental…
De Sanctis, Pierfilippo; Katz, Richard; Wylie, Glenn R; Sehatpour, Pejman; Alexopoulos, George S; Foxe, John J
2008-10-01
Evidence has emerged for age-related amplification of basic sensory processing indexed by early components of the visual evoked potential (VEP). However, since these age-related effects have been incidental to the main focus of these studies, it is unclear whether they are performance dependent or alternately, represent intrinsic sensory processing changes. High-density VEPs were acquired from 19 healthy elderly and 15 young control participants who viewed alphanumeric stimuli in the absence of any active task. The data show both enhanced and delayed neural responses within structures of the ventral visual stream, with reduced hemispheric asymmetry in the elderly that may be indicative of a decline in hemispheric specialization. Additionally, considerably enhanced early frontal cortical activation was observed in the elderly, suggesting frontal hyper-activation. These age-related differences in early sensory processing are discussed in terms of recent proposals that normal aging involves large-scale compensatory reorganization. Our results suggest that such compensatory mechanisms are not restricted to later higher-order cognitive processes but may also be a feature of early sensory-perceptual processes.
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
Suppressive mechanisms in visual motion processing: from perception to intelligence
Tadin, Duje
2015-01-01
Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and those with schizophrenia—a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. PMID:26299386
Perspectives on Sensory Processing Disorder: A Call for Translational Research
Miller, Lucy J.; Nielsen, Darci M.; Schoen, Sarah A.; Brett-Green, Barbara A.
2009-01-01
This article explores the convergence of two fields, which have similar theoretical origins: a clinical field originally known as sensory integration and a branch of neuroscience that conducts research in an area also called sensory integration. Clinically, the term was used to identify a pattern of dysfunction in children and adults, as well as a related theory, assessment, and treatment method for children who have atypical responses to ordinary sensory stimulation. Currently the term for the disorder is sensory processing disorder (SPD). In neuroscience, the term sensory integration refers to converging information in the brain from one or more sensory domains. A recent subspecialty in neuroscience labeled multisensory integration (MSI) refers to the neural process that occurs when sensory input from two or more different sensory modalities converge. Understanding the specific meanings of the term sensory integration intended by the clinical and neuroscience fields and the term MSI in neuroscience is critical. A translational research approach would improve exploration of crucial research questions in both the basic science and clinical science. Refinement of the conceptual model of the disorder and the related treatment approach would help prioritize which specific hypotheses should be studied in both the clinical and neuroscience fields. The issue is how we can facilitate a translational approach between researchers in the two fields. Multidisciplinary, collaborative studies would increase knowledge of brain function and could make a significant contribution to alleviating the impairments of individuals with SPD and their families. PMID:19826493
The Rubber Hand Illusion paradigm as a sensory learning process in patients with schizophrenia.
Lev-Ari, L; Hirschmann, S; Dyskin, O; Goldman, O; Hirschmann, I
2015-10-01
The Rubber Hand Illusion (RHI) has previously been used to depict the hierarchy between visual, tactile and perceptual stimuli. Studies on schizophrenia inpatients (SZs) have found mixed results in the ability to first learn the illusion, and have yet to explain the learning process involved. This study's aim was two-fold: to examine the learning process of the RHI in SZs and healthy controls over time, and to better understand the relationship between psychotic symptoms and the RHI. Thirty schizophrenia inpatients and 30 healthy controls underwent five different trials of the RHI over a two-week period. As has been found in previous studies, SZs felt the initial illusion faster than healthy controls did, but their learning process throughout the trials was inconsistent. Furthermore, for SZs, no correlations between psychotic symptoms and the learning of the illusion emerged. Healthy individuals show a delayed reaction to first feeling the illusion (due to latent inhibition), but easily learn the illusion over time. For SZs, both strength of the illusion and the ability to learn the illusion over time are inconsistent. The cognitive impairment in SZ impedes the learning process of the RHI, and SZs are unable to utilize the repetition of the process as healthy individuals can. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
Natural search algorithms as a bridge between organisms, evolution, and ecology
Hein, Andrew M.; Carrara, Francesco; Brumley, Douglas R.; Stocker, Roman; Levin, Simon A.
2016-01-01
The ability to navigate is a hallmark of living systems, from single cells to higher animals. Searching for targets, such as food or mates in particular, is one of the fundamental navigational tasks many organisms must execute to survive and reproduce. Here, we argue that a recent surge of studies of the proximate mechanisms that underlie search behavior offers a new opportunity to integrate the biophysics and neuroscience of sensory systems with ecological and evolutionary processes, closing a feedback loop that promises exciting new avenues of scientific exploration at the frontier of systems biology. PMID:27496324
Butler, P V
2000-08-01
The aim of this paper is to document regular nocturnal intensification of delusional nihilistic and persecutory ideas (Cotard delusion) linked with extreme depersonalisation and hypervivid dreaming. A 17-year-old man presented with Cotard and Capgras delusions after sustaining multiple cognitive impairments secondary to traumatic brain injury. Delusional ideation fully resolved within 14 days of commencement of olanzapine 5 mg daily. This patient's experience of perceptual abnormalities and impairments in meta-abilities related to self-monitoring and critical inferencing lends support to multicomponent sensory processing accounts of brain injury related, content-specific delusional syndromes.
Prenatal thalamic waves regulate cortical area size prior to sensory processing.
Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M; López-Bendito, Guillermina
2017-02-03
The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing.
The Sensory Environment and Participation of Preschool Children With Autism Spectrum Disorder.
Piller, Aimee; Pfeiffer, Beth
2016-07-01
Sensory processing is recognized as impacting participation for preschool children with autism spectrum disorder (ASD). Little research exists to examine the impact of the sensory environment on the participation patterns of children with ASD, specifically from a contextual standpoint. The researchers in this study examined the viewpoint of teachers and occupational therapists on the sensory-related environmental barriers to participation within the preschool context. Qualitative descriptive methodology was used for data collection and analysis. Thirteen preschool teachers and occupational therapists were interviewed. Sensory aspects of the environment both inhibited and enhanced participation. Physical and temporal components of the environment are identified as being the most influential. Modifications of the environment are identified as increasing participation. It is important to consider the sensory aspects of the environment, in addition to the sensory processing patterns of the person in assessment and intervention planning within the preschool environment. © The Author(s) 2016.
Prenatal thalamic waves regulate cortical area size prior to sensory processing
Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M.; López-Bendito, Guillermina
2017-01-01
The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. PMID:28155854
Perceptual Decisions in the Presence of Relevant and Irrelevant Sensory Evidence
Anders, Ursula M.; McLean, Charlotte S.; Ouyang, Bowen; Ditterich, Jochen
2017-01-01
Perceptual decisions in the presence of decision-irrelevant sensory information require a selection of decision-relevant sensory evidence. To characterize the mechanism that is responsible for separating decision-relevant from irrelevant sensory information we asked human subjects to make judgments about one of two simultaneously present motion components in a random dot stimulus. Subjects were able to ignore the decision-irrelevant component to a large degree, but their decisions were still influenced by the irrelevant sensory information. Computational modeling revealed that this influence was not simply the consequence of subjects forgetting at times which stimulus component they had been instructed to base their decision on. Instead, residual irrelevant information always seems to be leaking through, and the decision process is captured by a net sensory evidence signal being accumulated to a decision threshold. This net sensory evidence is a linear combination of decision-relevant and irrelevant sensory information. The selection process is therefore well-described by a strong linear gain modulation, which, in our experiment, resulted in the relevant sensory evidence having at least 10 times more impact on the decision than the irrelevant evidence. PMID:29176941
Perceptual Decisions in the Presence of Relevant and Irrelevant Sensory Evidence.
Anders, Ursula M; McLean, Charlotte S; Ouyang, Bowen; Ditterich, Jochen
2017-01-01
Perceptual decisions in the presence of decision-irrelevant sensory information require a selection of decision-relevant sensory evidence. To characterize the mechanism that is responsible for separating decision-relevant from irrelevant sensory information we asked human subjects to make judgments about one of two simultaneously present motion components in a random dot stimulus. Subjects were able to ignore the decision-irrelevant component to a large degree, but their decisions were still influenced by the irrelevant sensory information. Computational modeling revealed that this influence was not simply the consequence of subjects forgetting at times which stimulus component they had been instructed to base their decision on. Instead, residual irrelevant information always seems to be leaking through, and the decision process is captured by a net sensory evidence signal being accumulated to a decision threshold. This net sensory evidence is a linear combination of decision-relevant and irrelevant sensory information. The selection process is therefore well-described by a strong linear gain modulation, which, in our experiment, resulted in the relevant sensory evidence having at least 10 times more impact on the decision than the irrelevant evidence.
ERIC Educational Resources Information Center
Chuang, Tsung-Yen; Kuo, Ming-Shiou
2016-01-01
Children with Sensory Integration Dysfunction (SID, also known as Sensory Processing Disorder, SPD) are also learners with disabilities with regard to responding adequately to the demands made by a learning environment. With problems of organizing and processing the sensation information coming from body modalities, children with SID (CwSID)…
ERIC Educational Resources Information Center
Donaldson, Chelsea K.; Stauder, Johannes E. A.; Donkers, Franc C. L.
2017-01-01
Recent studies have suggested that sensory processing atypicalities may share genetic influences with autism spectrum disorder (ASD). To further investigate this, the adolescent/adult sensory profile (AASP) questionnaire was distributed to 85 parents of typically developing children (P-TD), 121 parents from simplex ASD families (SPX), and 54…
Moll, Jorge; de Oliveira-Souza, Ricardo
2017-09-01
The concept of left hemispheric dominance for praxis, speech, and language has been one of the pillars of neurology since the mid-19th century. In 1906, Hermann Oppenheim reported a patient with bilateral stereoagnosia (astereognosis) caused by a left parietal lobe tumor and proposed that the left hemisphere was also dominant for stereognosis. Surprisingly, few cases of bilateral stereoagnosia caused by a unilateral cerebral lesion have been documented in the literature since then. Here we report a 75-year-old right-handed man who developed bilateral stereoagnosia after suffering a small infarct in the crown of the left postcentral gyrus. He could not recognize objects with either hand, but retained the ability to localize stimuli applied to the palm of his left (ipsilesional) hand. He was severely disabled in ordinary activities requiring the use of his hands. The lesion corresponded to Brodmann area 1, where probabilistic anatomic, functional, and electrophysiologic studies have located one of the multiple somatosensory representations of the hand. The lesion was in a strategic position to interrupt both the processing of afferent tactile information issuing from the primary somatosensory cortex (areas 3a and 3b) and the forward higher-order processing in area 2, the secondary sensory cortex, and the contralateral area 1. The lesion also deprived the motor hand area of its afferent regulation from the sensory hand area (grasping), while leaving intact the visuomotor projections from the occipital cortex (reaching). Our patient supports Oppenheim's proposal that the left postcentral gyrus of some individuals is dominant for stereognosis.
Dai, Lengshi; Shinn-Cunningham, Barbara G
2016-01-01
Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics and task demands.
The Role of Sensory Modulation Deficits and Behavioral Symptoms in a Diagnosis for Early Childhood
ERIC Educational Resources Information Center
Perez-Robles, Ruth; Doval, Eduardo; Jane, Ma Claustre; da Silva, Pedro Caldeira; Papoila, Ana Luisa; Virella, Daniel
2013-01-01
To contribute to the validation of the sensory and behavioral criteria for Regulation Disorders of Sensory Processing (RDSP) (DC:0-3R, 2005), this study examined a sample of toddlers in a clinical setting to analyze: (1) the severity of sensory modulation deficits and the behavioral symptoms of RDSP; (2) the associations between sensory and…
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
High Resolution MALDI Imaging Mass Spectrometry of Retinal Tissue Lipids
NASA Astrophysics Data System (ADS)
Anderson, David M. G.; Ablonczy, Zsolt; Koutalos, Yiannis; Spraggins, Jeffrey; Crouch, Rosalie K.; Caprioli, Richard M.; Schey, Kevin L.
2014-08-01
Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism's surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4 -/- knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers.
Sensory processing disorder: any of a nurse practitioner's business?
Byrne, Mary W
2009-06-01
Children who exhibit the confusing symptom patterns associated with sensory processing deficits are often seen first by primary care providers, including family and pediatric nurse practitioners (NPs). The purpose of this article is to alert NPs to the state of the science for these disorders and to the roles NPs could play in filling the knowledge gaps in assessment, treatment, education, and research. Literature searches using PubMed and MedLine databases and clinical practice observations. Sensory integration disorders have only begun to be defined during the past 35 years. They are not currently included in the DSM IV standard terminology, and are not yet substantively incorporated into most health disciplines' curricula or practice, including those of the NP. NPs are in a unique position to test hypothesized terminology for Sensory Processing Disorder (SPD) by contributing precise clinical descriptions of children who match as well as deviate from the criteria for three proposed diagnostic groups: Sensory Modulation Disorder (SMD), Sensory Discrimination Disorder (SDD), and Sensory-Based Motor Disorder (SBMD). Beyond the SPD diagnostic debate, for children with sensory deficit patterns the NP role can incorporate participating in interdisciplinary treatment plans, refining differential diagnoses, providing frontline referral and support for affected children and their families, and making both secondary prevention and critical causal research possible through validation of consistently accepted diagnostic criteria.
Wasila, Humaira; Li, Xuan; Liu, Linwei; Ahmad, Imran; Ahmad, Sajjad
2013-08-01
Pomegranate peel was used in juicing to find out its effects on the juice products' (storable juice and wine) sensory property, polyphenols composition, and antioxidant ability. Macroporous resin was used to purify the polyphenols, and 6 different in vitro assays were used to comprehensively determine the antioxidant activity of each. The results showed that juicing with peel made the juice bitter and astringent, but contributed better sensory quality to wine. Peel contributed higher total polyphenols and flavonoids, but lower anthocyanins to the juice products, and caused the phenolics content to fluctuate more dramatically during making wine than the storable juice. Polyphenols purified from the juice products containing peel showed higher total reducing ability and 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical elimination abilities, but their clearance activity of hydroxyl radicals was not positive, and their superoxide anion radical elimination ability showed no significant difference when compared to polyphenols purified from juice products without peel. © 2013 Institute of Food Technologists®
Language-Universal Sensory Deficits in Developmental Dyslexia: English, Spanish, and Chinese
ERIC Educational Resources Information Center
Goswami, Usha; Wang, H.-L. Sharon; Cruz, Alicia; Fosker, Tim; Mead, Natasha; Huss, Martina
2011-01-01
Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of "phonological processing", the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific…
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
Measuring the effect of attention on simple visual search.
Palmer, J; Ames, C T; Lindsey, D T
1993-02-01
Set-size in visual search may be due to 1 or more of 3 factors: sensory processes such as lateral masking between stimuli, attentional processes limiting the perception of individual stimuli, or attentional processes affecting the decision rules for combining information from multiple stimuli. These possibilities were evaluated in tasks such as searching for a longer line among shorter lines. To evaluate sensory contributions, display set-size effects were compared with cuing conditions that held sensory phenomena constant. Similar effects for the display and cue manipulations suggested that sensory processes contributed little under the conditions of this experiment. To evaluate the contribution of decision processes, the set-size effects were modeled with signal detection theory. In these models, a decision effect alone was sufficient to predict the set-size effects without any attentional limitation due to perception.
Occlusal force discrimination by denture patients.
Pacer, R J; Bowman, D C
1975-06-01
A study was conducted on subjects with conventional dentures and with overlay dentures to compare their abilities to discriminate between occlusal forces. Perpendicular forces were applied to the dynamic center of the occlusal table of the mandibular denture. Each subject's ability to distinguish differences in values of force was observed and recorded. All subjects with dentures showed sensory threshold values close to those reported for natural teeth. A graphic plotting showed that the responses of subjects with overlay-type dentures were more closely correlated with the psychophysical law as expressed by Stevens as a power function. Since this phenomenon holds true for natural teeth, the overlay denture more closely resembles natural teeth in this type of sensory function than does the conventional denture. In addition to recognized advantages, such as preservation of the ridge and improved retention and stability, the overlay denture provides more typical sensory function than is provided by the conventional denture. This advantage should further motivate dentists and patients to consider the retention and utilization of at least two suitable teeth in an overlay-type denture service.
Shifts in Audiovisual Processing in Healthy Aging.
Baum, Sarah H; Stevenson, Ryan
2017-09-01
The integration of information across sensory modalities into unified percepts is a fundamental sensory process upon which a multitude of cognitive processes are based. We review the body of literature exploring aging-related changes in audiovisual integration published over the last five years. Specifically, we review the impact of changes in temporal processing, the influence of the effectiveness of sensory inputs, the role of working memory, and the newer studies of intra-individual variability during these processes. Work in the last five years on bottom-up influences of sensory perception has garnered significant attention. Temporal processing, a driving factors of multisensory integration, has now been shown to decouple with multisensory integration in aging, despite their co-decline with aging. The impact of stimulus effectiveness also changes with age, where older adults show maximal benefit from multisensory gain at high signal-to-noise ratios. Following sensory decline, high working memory capacities have now been shown to be somewhat of a protective factor against age-related declines in audiovisual speech perception, particularly in noise. Finally, newer research is emerging focusing on the general intra-individual variability observed with aging. Overall, the studies of the past five years have replicated and expanded on previous work that highlights the role of bottom-up sensory changes with aging and their influence on audiovisual integration, as well as the top-down influence of working memory.
The associations between multisensory temporal processing and symptoms of schizophrenia.
Stevenson, Ryan A; Park, Sohee; Cochran, Channing; McIntosh, Lindsey G; Noel, Jean-Paul; Barense, Morgan D; Ferber, Susanne; Wallace, Mark T
2017-01-01
Recent neurobiological accounts of schizophrenia have included an emphasis on changes in sensory processing. These sensory and perceptual deficits can have a cascading effect onto higher-level cognitive processes and clinical symptoms. One form of sensory dysfunction that has been consistently observed in schizophrenia is altered temporal processing. In this study, we investigated temporal processing within and across the auditory and visual modalities in individuals with schizophrenia (SCZ) and age-matched healthy controls. Individuals with SCZ showed auditory and visual temporal processing abnormalities, as well as multisensory temporal processing dysfunction that extended beyond that attributable to unisensory processing dysfunction. Most importantly, these multisensory temporal deficits were associated with the severity of hallucinations. This link between atypical multisensory temporal perception and clinical symptomatology suggests that clinical symptoms of schizophrenia may be at least partly a result of cascading effects from (multi)sensory disturbances. These results are discussed in terms of underlying neural bases and the possible implications for remediation. Copyright © 2016 Elsevier B.V. All rights reserved.
... healthy lifestyle. Eat a balanced diet full of fruits and vegetables. Exercise regularly. Get plenty of sleep. ... SPD)Sensory processing disorder is a condition that affects how your brain processes sensory information: things you ...
ERIC Educational Resources Information Center
Donkers, Franc C. L.; Schipul, Sarah E.; Baranek, Grace T.; Cleary, Katherine M.; Willoughby, Michael T.; Evans, Anna M.; Bulluck, John C.; Lovmo, Jeanne E.; Belger, Aysenil
2015-01-01
Neurobiological underpinnings of unusual sensory features in individuals with autism are unknown. Event-related potentials elicited by task-irrelevant sounds were used to elucidate neural correlates of auditory processing and associations with three common sensory response patterns (hyperresponsiveness; hyporesponsiveness; sensory seeking).…
Reliability of the Participation and Sensory Environment Questionnaire: Teacher Version
ERIC Educational Resources Information Center
Piller, Aimee; Fletcher, Tina; Pfeiffer, Beth; Dunlap, Karen; Pickens, Noralyn
2017-01-01
The Participation and Sensory Environment Questionnaire-Teacher Version (PSEQ-TV) is a teacher-report questionnaire to assess the impact of the sensory environment on participation of preschool children with autism spectrum disorder (ASD). Many children with ASD have sensory processing differences, although these differences are frequently…
Sensory Integration Dysfunction: Implications for Counselors Working with Children
ERIC Educational Resources Information Center
Withrow, Rebecca L.
2007-01-01
Sensory Integration Dysfunction (SID), a sensory processing problem that afflicts about 15% of children, sets many children on a developmental trajectory of emotional and social problems. Children with SID often unintentionally alienate parents, peers, and teachers in their efforts to modify the amounts of sensory stimulation they receive. They…
ERIC Educational Resources Information Center
Miller, Lucy Jane; Nielsen, Darci M.; Schoen, Sarah A.
2012-01-01
Children with attention deficit hyperactivity disorder (ADHD) are impulsive, inattentive and hyperactive, while children with sensory modulation disorder (SMD), one subtype of Sensory Processing Disorder, have difficulty responding adaptively to daily sensory experiences. ADHD and SMD are often difficult to distinguish. To differentiate these…
Brief Report: Further Evidence of Sensory Subtypes in Autism
ERIC Educational Resources Information Center
Lane, Alison E.; Dennis, Simon J.; Geraghty, Maureen E.
2011-01-01
Distinct sensory processing (SP) subtypes in autism have been reported previously. This study sought to replicate the previous findings in an independent sample of thirty children diagnosed with an Autism Spectrum Disorder. Model-based cluster analysis of parent-reported sensory functioning (measured using the Short Sensory Profile) confirmed the…
ERIC Educational Resources Information Center
Chuang, Tsung-Yen; Kuo, Ming-Shiou; Fan, Ping-Lin; Hsu, Yen-Wei
2017-01-01
Sensory integration dysfunction (SID, also known as sensory processing disorder, SPD) is a condition that exists when a person's multisensory integration fails to process and respond adequately to the demands of the environment. Children with SID (CwSID) are also learners with disabilities with regard to responding adequately to the demands made…
Sleep Disrupts High-Level Speech Parsing Despite Significant Basic Auditory Processing.
Makov, Shiri; Sharon, Omer; Ding, Nai; Ben-Shachar, Michal; Nir, Yuval; Zion Golumbic, Elana
2017-08-09
The extent to which the sleeping brain processes sensory information remains unclear. This is particularly true for continuous and complex stimuli such as speech, in which information is organized into hierarchically embedded structures. Recently, novel metrics for assessing the neural representation of continuous speech have been developed using noninvasive brain recordings that have thus far only been tested during wakefulness. Here we investigated, for the first time, the sleeping brain's capacity to process continuous speech at different hierarchical levels using a newly developed Concurrent Hierarchical Tracking (CHT) approach that allows monitoring the neural representation and processing-depth of continuous speech online. Speech sequences were compiled with syllables, words, phrases, and sentences occurring at fixed time intervals such that different linguistic levels correspond to distinct frequencies. This enabled us to distinguish their neural signatures in brain activity. We compared the neural tracking of intelligible versus unintelligible (scrambled and foreign) speech across states of wakefulness and sleep using high-density EEG in humans. We found that neural tracking of stimulus acoustics was comparable across wakefulness and sleep and similar across all conditions regardless of speech intelligibility. In contrast, neural tracking of higher-order linguistic constructs (words, phrases, and sentences) was only observed for intelligible speech during wakefulness and could not be detected at all during nonrapid eye movement or rapid eye movement sleep. These results suggest that, whereas low-level auditory processing is relatively preserved during sleep, higher-level hierarchical linguistic parsing is severely disrupted, thereby revealing the capacity and limits of language processing during sleep. SIGNIFICANCE STATEMENT Despite the persistence of some sensory processing during sleep, it is unclear whether high-level cognitive processes such as speech parsing are also preserved. We used a novel approach for studying the depth of speech processing across wakefulness and sleep while tracking neuronal activity with EEG. We found that responses to the auditory sound stream remained intact; however, the sleeping brain did not show signs of hierarchical parsing of the continuous stream of syllables into words, phrases, and sentences. The results suggest that sleep imposes a functional barrier between basic sensory processing and high-level cognitive processing. This paradigm also holds promise for studying residual cognitive abilities in a wide array of unresponsive states. Copyright © 2017 the authors 0270-6474/17/377772-10$15.00/0.
Predictors of Early Reading Skill in 5-Year-Old Children With Hearing Loss Who Use Spoken Language
Ching, Teresa Y.C.; Crowe, Kathryn; Day, Julia; Seeto, Mark
2013-01-01
This research investigated the concurrent association between early reading skills and phonological awareness (PA), print knowledge, language, cognitive, and demographic variables in 101 5-year-old children with prelingual hearing losses ranging from mild to profound who communicated primarily using spoken language. All participants were fitted with hearing aids (n = 71) or cochlear implants (n = 30). They completed standardized assessments of PA, receptive vocabulary, letter knowledge, word and non-word reading, passage comprehension, math reasoning, and nonverbal cognitive ability. Multiple regressions revealed that PA (assessed using judgments of similarity based on words’ initial or final sounds) made a significant, independent contribution to children’s early reading ability (for both letters and words/non-words) after controlling for variation in receptive vocabulary, nonverbal cognitive ability, and a range of demographic variables (including gender, degree of hearing loss, communication mode, type of sensory device, age at fitting of sensory devices, and level of maternal education). Importantly, the relationship between PA and reading was specific to reading and did not generalize to another academic ability, math reasoning. Additional multiple regressions showed that letter knowledge (names or sounds) was superior in children whose mothers had undertaken post-secondary education, and that better receptive vocabulary was associated with less severe hearing loss, use of a cochlear implant, and earlier age at implant switch-on. Earlier fitting of hearing aids or cochlear implants was not, however, significantly associated with better PA or reading outcomes in this cohort of children, most of whom were fitted with sensory devices before 3 years of age. PMID:24563553
Schneider, Mary L.; Moore, Colleen F.; Larson, Julie A.; Barr, Christina S.; DeJesus, Onofre T.; Roberts, Andrew D.
2009-01-01
Sensory processing disorder, characterized by over- or under-responsivity to non-noxious environmental stimuli, is a common but poorly understood disorder. We examined the role of prenatal alcohol exposure, serotonin transporter gene polymorphic region variation (rh5-HTTLPR), and striatal dopamine (DA) function on behavioral measures of sensory responsivity to repeated non-noxious sensory stimuli in macaque monkeys. Results indicated that early gestation alcohol exposure induced behavioral under-responsivity to environmental stimuli in monkeys carrying the short (s) rh5-HTTLPR allele compared to both early-exposed monkeys homozygous for the long (l) allele and monkeys from middle-to-late exposed pregnancies and controls, regardless of genotype. Moreover, prenatal timing of alcohol exposure altered the relationship between sensory scores and DA D2R availability. In early-exposed monkeys, a positive relationship was shown between sensory scores and DA D2R availability, with low or blunted DA function associated with under-responsive sensory function. The opposite pattern was found for the middle-to-late gestation alcohol-exposed group. These findings raise questions about how the timing of prenatal perturbation and genotype contributes to effects on neural processing and possibly alters neural connections. PMID:19936317
Processes to Preserve Spice and Herb Quality and Sensory Integrity During Pathogen Inactivation
Moberg, Kayla; Amin, Kemia N.; Wright, Melissa; Newkirk, Jordan J.; Ponder, Monica A.; Acuff, Gary R.; Dickson, James S.
2017-01-01
Abstract Selected processing methods, demonstrated to be effective at reducing Salmonella, were assessed to determine if spice and herb quality was affected. Black peppercorn, cumin seed, oregano, and onion powder were irradiated to a target dose of 8 kGy. Two additional processes were examined for whole black peppercorns and cumin seeds: ethylene oxide (EtO) fumigation and vacuum assisted‐steam (82.22 °C, 7.5 psia). Treated and untreated spices/herbs were compared (visual, odor) using sensory similarity testing protocols (α = 0.20; β = 0.05; proportion of discriminators: 20%) to determine if processing altered sensory quality. Analytical assessment of quality (color, water activity, and volatile chemistry) was completed. Irradiation did not alter visual or odor sensory quality of black peppercorn, cumin seed, or oregano but created differences in onion powder, which was lighter (higher L *) and more red (higher a*) in color, and resulted in nearly complete loss of measured volatile compounds. EtO processing did not create detectable odor or appearance differences in black peppercorn; however visual and odor sensory quality differences, supported by changes in color (higher b *; lower L *) and increased concentrations of most volatiles, were detected for cumin seeds. Steam processing of black peppercorn resulted in perceptible odor differences, supported by increased concentration of monoterpene volatiles and loss of all sesquiterpenes; only visual differences were noted for cumin seed. An important step in process validation is the verification that no effect is detectable from a sensory perspective. PMID:28407236
Properties of frozen dairy desserts processed by microfluidization of their mixes.
Olson, D W; White, C H; Watson, C E
2003-04-01
Sensory properties and rate of meltdown of nonfat (0% fat) and low-fat (2% fat) vanilla ice creams processed either by conventional valve homogenization or microfluidization of their mixes were compared with each other and to ice cream (10% fat) processed by conventional valve homogenization. Mixes for frozen dairy desserts containing 0, 2, and 10% fat were manufactured. Some of the nonfat and low-fat ice cream mixes were processed by microfluidization at 50, 100, 150, and 200 MPa, and the remaining nonfat and low-fat ice cream mixes and all of the ice cream mix were processed by conventional valve homogenization at 13.8 MPa, first stage, and 3.4 MPa, second stage. The finished frozen and hardened products were evaluated at d 1 and 45 for meltdown rate and for flavor and body and texture by preference testing. Nonfat and low-fat ice creams that usually had a slower meltdown were produced when processing their mixes by microfluidization instead of by conventional valve homogenization. Sensory scores for the ice cream were significantly higher than sensory scores for the nonfat and low-fat ice creams, but the sensory scores for the conventional valve homogenized controls for the nonfat ice cream and low-fat ice cream were not significantly different from the sensory scores for the nonfat ice cream and low-fat ice cream processed by microfluidization of the mixes, respectively. Microfluidization produced nonfat and low-fat ice creams that usually had a slower meltdown without affecting sensory properties.
2017-01-01
Purpose This review provides clinicians with an overview of recent findings relevant to understanding why listeners with normal hearing thresholds (NHTs) sometimes suffer from communication difficulties in noisy settings. Method The results from neuroscience and psychoacoustics are reviewed. Results In noisy settings, listeners focus their attention by engaging cortical brain networks to suppress unimportant sounds; they then can analyze and understand an important sound, such as speech, amidst competing sounds. Differences in the efficacy of top-down control of attention can affect communication abilities. In addition, subclinical deficits in sensory fidelity can disrupt the ability to perceptually segregate sound sources, interfering with selective attention, even in listeners with NHTs. Studies of variability in control of attention and in sensory coding fidelity may help to isolate and identify some of the causes of communication disorders in individuals presenting at the clinic with “normal hearing.” Conclusions How well an individual with NHTs can understand speech amidst competing sounds depends not only on the sound being audible but also on the integrity of cortical control networks and the fidelity of the representation of suprathreshold sound. Understanding the root cause of difficulties experienced by listeners with NHTs ultimately can lead to new, targeted interventions that address specific deficits affecting communication in noise. Presentation Video http://cred.pubs.asha.org/article.aspx?articleid=2601617 PMID:29049598
Innes, Carrie R H; Jones, Richard D; Anderson, Tim J; Hollobon, Susan G; Dalrymple-Alford, John C
2009-05-01
Currently, there is no international standard for the assessment of fitness to drive for cognitively or physically impaired persons. A computerized battery of driving-related sensory-motor and cognitive tests (SMCTests) has been developed, comprising tests of visuoperception, visuomotor ability, complex attention, visual search, decision making, impulse control, planning, and divided attention. Construct validity analysis was conducted in 60 normal, healthy subjects and showed that, overall, the novel cognitive tests assessed cognitive functions similar to a set of standard neuropsychological tests. The novel tests were found to have greater perceived face validity for predicting on-road driving ability than was found in the equivalent standard tests. Test-retest stability and reliability of SMCTests measures, as well as correlations between SMCTests and on-road driving, were determined in a subset of 12 subjects. The majority of test measures were stable and reliable across two sessions, and significant correlations were found between on-road driving scores and measures from ballistic movement, footbrake reaction, hand-control reaction, and complex attention. The substantial face validity, construct validity, stability, and reliability of SMCTests, together with the battery's level of correlation with on-road driving in normal subjects, strengthen our confidence in the ability of SMCTests to detect and identify sensory-motor and cognitive deficits related to unsafe driving and increased risk of accidents.
Job, Xavier E; de Fockert, Jan W; van Velzen, José
2016-08-01
Behavioural and electrophysiological evidence has demonstrated that preparation of goal-directed actions modulates sensory perception at the goal location before the action is executed. However, previous studies have focused on sensory perception in areas of peripersonal space. The present study investigated visual and tactile sensory processing at the goal location of upcoming movements towards the body, much of which is not visible, as well as visible peripersonal space. A motor task cued participants to prepare a reaching movement towards goals either in peripersonal space in front of them or personal space on the upper chest. In order to assess modulations of sensory perception during movement preparation, event-related potentials (ERPs) were recorded in response to task-irrelevant visual and tactile probe stimuli delivered randomly at one of the goal locations of the movements. In line with previous neurophysiological findings, movement preparation modulated visual processing at the goal of a movement in peripersonal space. Movement preparation also modulated somatosensory processing at the movement goal in personal space. The findings demonstrate that tactile perception in personal space is subject to similar top-down sensory modulation by motor preparation as observed for visual stimuli presented in peripersonal space. These findings show for the first time that the principles and mechanisms underlying adaptive modulation of sensory processing in the context of action extend to tactile perception in unseen personal space. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hurtado, Adriana; Guàrdia, Maria Dolors; Picouet, Pierre; Jofré, Anna; Ros, José María; Bañón, Sancho
2017-02-01
Non-thermal pasteurisation by high-pressure processing (HPP) is increasingly replacing thermal processing (TP) to maintain the properties of fresh fruit products. The resulting products need to be validated from a sensory and nutritional standpoint. The objective was to assess a mild HPP treatment to stabilise red fruit-based smoothies in a wide (sensory quality and major nutrients) study. HPP (350 MPa/ 10 °C/ 5 min) provided 'fresh-like' smoothies, free of cooked-fruit flavours, for at least 14 days at 4 °C, although their sensory stability was low compared with the TP-smoothies (85 °C/ 7 min). In HPP-smoothies, the loss of fresh fruit flavour and reduced sliminess were the clearest signs of sensory deterioration during storage. Furthermore, HPP permitted the higher initial retention of vitamin C, although this vitamin and, to a lesser extent, total phenols, had a higher degradation rate during storage. The content of sugar present was not affected by either processing treatment. Mild HPP treatment did not alter the sensory and nutritional properties of smoothies. The sensory and nutritional losses during storage were less than might be expected, probably due to the high antioxidant content and the natural turbidity provided by red fruits. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Trumpp, Natalie M; Traub, Felix; Pulvermüller, Friedemann; Kiefer, Markus
2014-02-01
Classical theories of semantic memory assume that concepts are represented in a unitary amodal memory system. In challenging this classical view, pure or hybrid modality-specific theories propose that conceptual representations are grounded in the sensory-motor brain areas, which typically process sensory and action-related information. Although neuroimaging studies provided evidence for a functional-anatomical link between conceptual processing of sensory or action-related features and the sensory-motor brain systems, it has been argued that aspects of such sensory-motor activation may not directly reflect conceptual processing but rather strategic imagery or postconceptual elaboration. In the present ERP study, we investigated masked effects of acoustic and action-related conceptual features to probe unconscious automatic conceptual processing in isolation. Subliminal feature-specific ERP effects at frontocentral electrodes were observed, which differed with regard to polarity, topography, and underlying brain electrical sources in congruency with earlier findings under conscious viewing conditions. These findings suggest that conceptual acoustic and action representations can also be unconsciously accessed, thereby excluding any postconceptual strategic processes. This study therefore further substantiates a grounding of conceptual and semantic processing in action and perception.
Cross-Modal Correspondences Enhance Performance on a Colour-to-Sound Sensory Substitution Device.
Hamilton-Fletcher, Giles; Wright, Thomas D; Ward, Jamie
Visual sensory substitution devices (SSDs) can represent visual characteristics through distinct patterns of sound, allowing a visually impaired user access to visual information. Previous SSDs have avoided colour and when they do encode colour, have assigned sounds to colour in a largely unprincipled way. This study introduces a new tablet-based SSD termed the ‘Creole’ (so called because it combines tactile scanning with image sonification) and a new algorithm for converting colour to sound that is based on established cross-modal correspondences (intuitive mappings between different sensory dimensions). To test the utility of correspondences, we examined the colour–sound associative memory and object recognition abilities of sighted users who had their device either coded in line with or opposite to sound–colour correspondences. Improved colour memory and reduced colour-errors were made by users who had the correspondence-based mappings. Interestingly, the colour–sound mappings that provided the highest improvements during the associative memory task also saw the greatest gains for recognising realistic objects that also featured these colours, indicating a transfer of abilities from memory to recognition. These users were also marginally better at matching sounds to images varying in luminance, even though luminance was coded identically across the different versions of the device. These findings are discussed with relevance for both colour and correspondences for sensory substitution use.
How to Care for Your Baby's Teeth
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
Olsson, Viktoria; Håkansson, Andreas
2018-01-01
Varying processing conditions can strongly affect the microstructure of mayonnaise, opening up new applications for the creation of products tailored to meet different consumer preferences. The aim of the study was to evaluate the effect of emulsification intensity on sensory and instrumental characteristics of full-fat mayonnaise. Mayonnaise, based on a standard recipe, was processed at low and high emulsification intensities, with selected sensory and instrumental properties then evaluated using an analytical panel and a back extrusion method. The evaluation also included a commercial reference mayonnaise. The overall effects of a higher emulsification intensity on the sensory and instrumental characteristics of full-fat mayonnaise were limited. However, texture was affected, with a more intense emulsification resulting in a firmer mayonnaise according to both back extrusion data and the analytical sensory panel. Appearance, taste and flavor attributes were not affected by processing. PMID:29342128
Soukoulis, Christos; Fisk, Ian
2016-11-17
Over the past decade, ice cream manufacturers have developed a strong understanding of the functionality of key ingredients and processing, developing effective explanations for the link between structure forming agents, stability mechanisms, and perceived quality. Increasing demand for products perceived as healthier/more natural with minimal processing has identified a number of new tools to improve quality and storage stability of frozen dairy desserts. Ingredients such as dietary fiber, polysaccharides, prebiotics, alternate sweeteners, fat sources rich in unsaturated fatty acids and ice strucsturing proteins (ISP) have been successfully applied as cryoprotective, texturizing, and structuring agents. Emerging minimal processing technologies including hydrostatic pressure processing, ultrasonic or high pressure assisted freezing, low temperature extrusion and enzymatically induced biopolymers crosslinking have been evaluated for their ability to improve colloidal stability, texture and sensory quality. It is therefore timely for a comprehensive review.
Sensory modulation disorder symptoms in anorexia nervosa and bulimia nervosa: A pilot study.
Brand-Gothelf, Ayelet; Parush, Shula; Eitan, Yehudith; Admoni, Shai; Gur, Eitan; Stein, Daniel
2016-01-01
Individuals with anorexia nervosa (AN) and bulimia nervosa (BN) may exhibit reduced ability to modulate sensory, physiological, and affective responses. The aim of the present study is to assess sensory modulation disorder (SMD) symptoms in patients with AN and BN. We assessed female adolescent and young adult inpatients with restrictive type anorexia nervosa (AN-R; n = 20) and BN (n = 20) evaluated in the acute stage of their illness, and 27 female controls. Another group of 20 inpatients with AN-R was assessed on admission and discharge, upon achieving their required weight. Participants completed standardized questionnaires assessing the severity of their eating disorder (ED) and the sensory responsiveness questionnaire (SRQ). Inpatients with AN-R demonstrated elevated overall sensory over-responsiveness as well as elevated scores on the taste/gustatory, vestibular/kinesthetic and somatosensory/tactile SRQ modalities compared with patients with BN and controls. Significant correlations between the severity of sensory over-responsiveness and ED-related symptomatology were found in acutely-ill patients with AN-R and to a lesser extent, following weight restoration. Elevated sensory over-responsiveness was retained in weight-restored inpatients with AN-R. Inpatients with BN demonstrated greater sensory under-responsiveness in the intensity subscale of the SRQ, but not in the frequency and combined SRQ dimensions. Female inpatients with AN-R exhibited sensory over-responsiveness both in the acute stage of their illness and following weight restoration, suggesting that sensory over-responsiveness may represent a trait related to the illness itself above and beyond the influence of malnutrition. The finding for sensory under-responsiveness in BN is less consistent. © 2015 Wiley Periodicals, Inc.
False memory for context activates the parahippocampal cortex.
Karanian, Jessica M; Slotnick, Scott D
2014-01-01
Previous studies have reported greater activity in the parahippocampal cortex during true memory than false memory, which has been interpreted as reflecting greater sensory processing during true memory. However, in these studies, sensory detail and contextual information were confounded. In the present fMRI study, we employed a novel paradigm to dissociate these factors. During encoding, abstract shapes were presented in one of two contexts (i.e., moving or stationary). During retrieval, participants classified shapes as previously "moving" or "stationary." Critically, contextual processing was relatively greater during false memory ("moving" responses to stationary items), while sensory processing was relatively greater during true memory ("moving" responses to moving items). Within the medial temporal lobe, false memory versus true memory produced greater activity in the parahippocampal cortex, whereas true memory versus false memory produced greater activity in the hippocampus. The present results indicate that the parahippocampal cortex mediates contextual processing rather than sensory processing.
Meta-awareness, perceptual decoupling and the wandering mind.
Schooler, Jonathan W; Smallwood, Jonathan; Christoff, Kalina; Handy, Todd C; Reichle, Erik D; Sayette, Michael A
2011-07-01
Mind wandering (i.e. engaging in cognitions unrelated to the current demands of the external environment) reflects the cyclic activity of two core processes: the capacity to disengage attention from perception (known as perceptual decoupling) and the ability to take explicit note of the current contents of consciousness (known as meta-awareness). Research on perceptual decoupling demonstrates that mental events that arise without any external precedent (known as stimulus independent thoughts) often interfere with the online processing of sensory information. Findings regarding meta-awareness reveal that the mind is only intermittently aware of engaging in mind wandering. These basic aspects of mind wandering are considered with respect to the activity of the default network, the role of executive processes, the contributions of meta-awareness and the functionality of mind wandering. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Stewart, Claire R.; Sanchez, Sandra S.; Grenesko, Emily L.; Brown, Christine M.; Chen, Colleen P.; Keehn, Brandon; Velasquez, Francisco; Lincoln, Alan J.; Müller, Ralph-Axel
2016-01-01
Atypical sensory responses are common in autism spectrum disorder (ASD). While evidence suggests impaired auditory-visual integration for verbal information, findings for nonverbal stimuli are inconsistent. We tested for sensory symptoms in children with ASD (using the Adolescent/Adult Sensory Profile) and examined unisensory and bisensory…
Analysis of the Sensory Profile in Children with Smith-Magenis Syndrome
ERIC Educational Resources Information Center
Hildenbrand, Hanna L.; Smith, Ann C. M.
2012-01-01
This study systematically assessed sensory processing in 34 children, aged 3-14 years, with Smith-Magenis syndrome (SMS) using the Sensory Profile Caregiver Questionnaire. Scores for the SMS cohort were significantly different from scores of the national sample of children with and without disabilities in all Sensory Profile categories and…
Longitudinal relationships between resources, motivation, and functioning.
Hess, Thomas M; Emery, Lisa; Neupert, Shevaun D
2012-05-01
We investigated how fluctuations and linear changes in health and cognitive resources influence the motivation to engage in complex cognitive activity and the extent to which motivation mediated the relationship between changing resources and cognitively demanding activities. Longitudinal data from 332 adults aged 20-85 years were examined. Motivation was assessed using a composite of Need for Cognition and Personal Need for Structure and additional measures of health, sensory functioning, cognitive ability, and self-reported activity engagement. Multilevel modeling revealed that age-typical changes in health, sensory functions, and ability were associated with changes in motivation, with the impact of declining health on motivation being particularly strong in older adulthood. Changes in motivation, in turn, predicted involvement in cognitive and social activities as well as changes in cognitive ability. Finally, motivation was observed to partially mediate the relationship between changes in resources and cognitively demanding activities. Our results suggest that motivation may play an important role in determining the course of cognitive change and involvement in cognitively demanding everyday activities in adulthood.
InSPAL: A Novel Immersive Virtual Learning Programme.
Byrne, Julia; Ip, Horace H S; Shuk-Ying Lau, Kate; Chen Li, Richard; Tso, Amy; Choi, Catherine
2015-01-01
In this paper we introduce The Interactive Sensory Program for Affective Learning (InSPAL) a pioneering virtual learning programme designed for the severely intellectually disabled (SID) students, who are having cognitive deficiencies and other sensory-motor handicaps, and thus need more help and attention in overcoming their learning difficulties. Through combining and integrating interactive media and virtual reality technology with the principles of art therapy and relevant pedagogical techniques, InSPAL aims to strengthen SID students' pre-learning abilities, promote their self-awareness, decrease behavioral interferences with learning as well as social interaction, enhance their communication and thus promote their quality of life. Results of our study show that students who went through our programme were more focused, and the ability to do things more independently increased by 15%. Moreover, 50% of the students showed a marked improvement in the ability to raise their hands in response, thus increasing their communication skills. The use of therapeutic interventions enabled a better control to the body, mind and emotions, resulting a greater performance and better participation.
Brug, Annet Ten; Van der Putten, Annette A J; Vlaskamp, Carla
2013-12-01
Knowledge about the preferences and abilities of children with profound intellectual and multiple disabilities (PIMDs) is crucial for providing appropriate activities. Multi-sensory storytelling (MSST) can be an ideal activity for gathering such knowledge about children with PIMDs. The aim of this study was to analyse whether using MSST did lead to changes in teachers' knowledge about preferences and abilities and whether this knowledge was then applied in practice. Three dyads of children with PIMDs and their teachers read an MSST book 20 times during a 10-week period. A questionnaire designed to identify the teachers' current knowledge was filled in before the 1st and again after the 10th and 20th reading sessions. Also, the teachers were asked for their opinion about their newly gathered knowledge. In all three cases, changes in the teachers' knowledge were observed. However, teachers are insufficiently aware of their new knowledge and do not apply it in practice.
The Role of Sensory Modality in Age-Related Distraction: A Critical Review and a Renewed View
ERIC Educational Resources Information Center
Guerreiro, Maria J. S.; Murphy, Dana R.; Van Gerven, Pascal W. M.
2010-01-01
Selective attention requires the ability to focus on relevant information and to ignore irrelevant information. The ability to inhibit irrelevant information has been proposed to be the main source of age-related cognitive change (e.g., Hasher & Zacks, 1988). Although age-related distraction by irrelevant information has been extensively…
You've Got That Magic Touch: Integrating the Sense of Touch into Early Childhood Services
ERIC Educational Resources Information Center
Schneider, Elaine Fogel; Patterson, Philip P.
2010-01-01
Newborns have often been characterized as helpless. However, more recent research suggests that infants are armed with an arsenal of sensory and perceptual abilities that enable them to organize and attach meaning to the world. Examples of such abilities include visual, auditory, olfactory, and gustatory skills. Although initially primitive, these…
Man's nature: innate determinants of response to natural environments
B. L. Driver; Peter Greene
1977-01-01
Man's sensory mechanisms evolved by natural selection in natural settings and humans survived as a species not so much by the "club in the hand" but by the "plan in the head." That plan or ability enabled man to remember, interpret, and predict environmental events. Humans have an innate capacity (but not necessarily a developed ability) to...
Sensory modulation in preterm children: Theoretical perspective and systematic review
Oostrom, Kim J.; Lafeber, Harrie N.; Jansma, Elise P.; Oosterlaan, Jaap
2017-01-01
Background Neurodevelopmental sequelae in preterm born children are generally considered to result from cerebral white matter damage and noxious effects of environmental factors in the neonatal intensive care unit (NICU). Cerebral white matter damage is associated with sensory processing problems in terms of registration, integration and modulation. However, research into sensory processing problems and, in particular, sensory modulation problems, is scarce in preterm children. Aim This review aims to integrate available evidence on sensory modulation problems in preterm infants and children (<37 weeks of gestation) and their association with neurocognitive and behavioral problems. Method Relevant studies were extracted from PubMed, EMBASE.com and PsycINFO following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Selection criteria included assessment of sensory modulation in preterm born children (<37 weeks of gestation) or with prematurity as a risk factor. Results Eighteen studies were included. Results of this review support the presence of sensory modulation problems in preterm children. Although prematurity may distort various aspects of sensory modulation, the nature and severity of sensory modulation problems differ widely between studies. Conclusions Sensory modulation problems may play a key role in understanding neurocognitive and behavioral sequelae in preterm children. Some support is found for a dose-response relationship between both white matter brain injury and length of NICU stay and sensory modulation problems. PMID:28182680
Jang, Sang Hun; Lee, Jung-Ho
2016-01-01
This study attempts to investigate the impact that the sensory integration training has on the recovery of balance among patients with stroke by examining the muscle activity and limit of stability (LOS). A total of 28 subjects participated. The subjects were randomly allocated by the computer program to one of two groups: control (CON) group (n=15), sensory integration training (SIT) group (n=13). The research subjects received intervention five days a week for a total of four weeks. The CON group additionally received 30-minute general balance training, while the SIT group additionally received 30-minute sensory integration training. In the muscle activity, the improvement of Erector spinae (ES) and Gluteus medius (GM) was more significant in the SIT group than in the CON group. In the LOS, the improvement of affected side and forward side was significantly higher in the SIT group compared to the CON group. Sensory integration training can improve balance ability of patients with stroke by increasing muscle activity of stance limb muscles such as GM and trunk extensor such as ES along with enhancement of the limit of stability.
Anemonefishes rely on visual and chemical cues to correctly identify conspecifics
NASA Astrophysics Data System (ADS)
Johnston, Nicole K.; Dixson, Danielle L.
2017-09-01
Organisms rely on sensory cues to interpret their environment and make important life-history decisions. Accurate recognition is of particular importance in diverse reef environments. Most evidence on the use of sensory cues focuses on those used in predator avoidance or habitat recognition, with little information on their role in conspecific recognition. Yet conspecific recognition is essential for life-history decisions including settlement, mate choice, and dominance interactions. Using a sensory manipulated tank and a two-chamber choice flume, anemonefish conspecific response was measured in the presence and absence of chemical and/or visual cues. Experiments were then repeated in the presence or absence of two heterospecific species to evaluate whether a heterospecific fish altered the conspecific response. Anemonefishes responded to both the visual and chemical cues of conspecifics, but relied on the combination of the two cues to recognize conspecifics inside the sensory manipulated tank. These results contrast previous studies focusing on predator detection where anemonefishes were found to compensate for the loss of one sensory cue (chemical) by utilizing a second cue (visual). This lack of sensory compensation may impact the ability of anemonefishes to acclimate to changing reef environments in the future.
The impact of systemic cortical alterations on perception
NASA Astrophysics Data System (ADS)
Zhang, Zheng
2011-12-01
Perception is the process of transmitting and interpreting sensory information, and the primary somatosensory (SI) area in the human cortex is the main sensory receptive area for the sensation of touch. The elaborate neuroanatomical connectivity that subserves the neuronal communication between adjacent and near-adjacent regions within sensory cortex has been widely recognized to be essential to normal sensory function. As a result, systemic cortical alterations that impact the cortical regional interaction, as associated with many neurological disorders, are expected to have significant impact on sensory perception. Recently, our research group has developed a novel sensory diagnostic system that employs quantitative sensory testing methods and is able to non-invasively assess central nervous system healthy status. The intent of this study is to utilize quantitative sensory testing methods that were designed to generate discriminable perception to objectively and quantitatively assess the impacts of different conditions on human sensory information processing capacity. The correlation between human perceptions with observations from animal research enables a better understanding of the underlying neurophysiology of human perception. Additional findings on different subject populations provide valuable insight of the underlying mechanisms for the development and maintenance of different neurological diseases. During the course of the study, several protocols were designed and utilized. And this set of sensory-based perceptual metrics was employed to study the effects of different conditions (non-noxious thermal stimulation, chronic pain stage, and normal aging) on sensory perception. It was found that these conditions result in significant deviations of the subjects' tactile information processing capacities from normal values. Although the observed shift of sensory detection sensitivity could be a result of enhanced peripheral activity, the changes in the effects of adaptation most likely reflect changes in central nervous system. The findings in this work provide valuable information for better understanding the underlying mechanisms involved in the development and maintenance of different neurological conditions.
Auditory scene analysis in school-aged children with developmental language disorders
Sussman, E.; Steinschneider, M.; Lee, W.; Lawson, K.
2014-01-01
Natural sound environments are dynamic, with overlapping acoustic input originating from simultaneously active sources. A key function of the auditory system is to integrate sensory inputs that belong together and segregate those that come from different sources. We hypothesized that this skill is impaired in individuals with phonological processing difficulties. There is considerable disagreement about whether phonological impairments observed in children with developmental language disorders can be attributed to specific linguistic deficits or to more general acoustic processing deficits. However, most tests of general auditory abilities have been conducted with a single set of sounds. We assessed the ability of school-aged children (7–15 years) to parse complex auditory non-speech input, and determined whether the presence of phonological processing impairments was associated with stream perception performance. A key finding was that children with language impairments did not show the same developmental trajectory for stream perception as typically developing children. In addition, children with language impairments required larger frequency separations between sounds to hear distinct streams compared to age-matched peers. Furthermore, phonological processing ability was a significant predictor of stream perception measures, but only in the older age groups. No such association was found in the youngest children. These results indicate that children with language impairments have difficulty parsing speech streams, or identifying individual sound events when there are competing sound sources. We conclude that language group differences may in part reflect fundamental maturational disparities in the analysis of complex auditory scenes. PMID:24548430
Brayanov, Jordan B.
2010-01-01
Which is heavier: a pound of lead or a pound of feathers? This classic trick question belies a simple but surprising truth: when lifted, the pound of lead feels heavier—a phenomenon known as the size–weight illusion. To estimate the weight of an object, our CNS combines two imperfect sources of information: a prior expectation, based on the object's appearance, and direct sensory information from lifting it. Bayes' theorem (or Bayes' law) defines the statistically optimal way to combine multiple information sources for maximally accurate estimation. Here we asked whether the mechanisms for combining these information sources produce statistically optimal weight estimates for both perceptions and actions. We first studied the ability of subjects to hold one hand steady when the other removed an object from it, under conditions in which sensory information about the object's weight sometimes conflicted with prior expectations based on its size. Since the ability to steady the supporting hand depends on the generation of a motor command that accounts for lift timing and object weight, hand motion can be used to gauge biases in weight estimation by the motor system. We found that these motor system weight estimates reflected the integration of prior expectations with real-time proprioceptive information in a Bayesian, statistically optimal fashion that discounted unexpected sensory information. This produces a motor size–weight illusion that consistently biases weight estimates toward prior expectations. In contrast, when subjects compared the weights of two objects, their perceptions defied Bayes' law, exaggerating the value of unexpected sensory information. This produces a perceptual size–weight illusion that biases weight perceptions away from prior expectations. We term this effect “anti-Bayesian” because the bias is opposite that seen in Bayesian integration. Our findings suggest that two fundamentally different strategies for the integration of prior expectations with sensory information coexist in the nervous system for weight estimation. PMID:20089821
The Role of Attention in Somatosensory Processing: A Multi-trait, Multi-method Analysis
Puts, Nicolaas A. J.; Mahone, E. Mark; Edden, Richard A. E.; Tommerdahl, Mark; Mostofsky, Stewart H.
2016-01-01
Sensory processing abnormalities in autism have largely been described by parent report. This study used a multi-method (parent-report and measurement), multi-trait (tactile sensitivity and attention) design to evaluate somatosensory processing in ASD. Results showed multiple significant within-method (e.g., parent report of different traits)/cross-trait (e.g., attention and tactile sensitivity) correlations, suggesting that parent-reported tactile sensory dysfunction and performance-based tactile sensitivity describe different behavioral phenomena. Additionally, both parent-reported tactile functioning and performance-based tactile sensitivity measures were significantly associated with measures of attention. Findings suggest that sensory (tactile) processing abnormalities in ASD are multifaceted, and may partially reflect a more global deficit in behavioral regulation (including attention). Challenges of relying solely on parent-report to describe sensory difficulties faced by children/families with ASD are also highlighted. PMID:27448580
Krishnan, Ananthanarayan; Gandour, Jackson T
2014-12-01
Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information.
Krishnan, Ananthanarayan; Gandour, Jackson T.
2015-01-01
Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information. PMID:25838636
How chimpanzees integrate sensory information to select figs
Yeakel, Justin D.; Bhat, Uttam; Ramsden, Lawrence; Wrangham, Richard W.; Lucas, Peter W.
2016-01-01
Figs are keystone resources that sustain chimpanzees when preferred fruits are scarce. Many figs retain a green(ish) colour throughout development, a pattern that causes chimpanzees to evaluate edibility on the basis of achromatic accessory cues. Such behaviour is conspicuous because it entails a succession of discrete sensory assessments, including the deliberate palpation of individual figs, a task that requires advanced visuomotor control. These actions are strongly suggestive of domain-specific information processing and decision-making, and they call attention to a potential selective force on the origin of advanced manual prehension and digital dexterity during primate evolution. To explore this concept, we report on the foraging behaviours of chimpanzees and the spectral, chemical and mechanical properties of figs, with cutting tests revealing ease of fracture in the mouth. By integrating the ability of different sensory cues to predict fructose content in a Bayesian updating framework, we quantified the amount of information gained when a chimpanzee successively observes, palpates and bites the green figs of Ficus sansibarica. We found that the cue eliciting ingestion was not colour or size, but fig mechanics (including toughness estimates from wedge tests), which relays higher-quality information on fructose concentrations than colour vision. This result explains why chimpanzees evaluate green figs by palpation and dental incision, actions that could explain the adaptive origins of advanced manual prehension. PMID:27274803
Vision-mediated exploitation of a novel host plant by a tephritid fruit fly.
Piñero, Jaime C; Souder, Steven K; Vargas, Roger I
2017-01-01
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion.
Vision-mediated exploitation of a novel host plant by a tephritid fruit fly
2017-01-01
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion. PMID:28380069
Analysis of the sensory profile in children with Smith-Magenis syndrome.
Hildenbrand, Hanna L; Smith, Ann C M
2012-02-01
This study systematically assessed sensory processing in 34 children, aged 3-14 years, with Smith-Magenis syndrome (SMS) using the Sensory Profile Caregiver Questionnaire. Scores for the SMS cohort were significantly different from scores of the national sample of children with and without disabilities in all Sensory Profile categories and quadrants (p < .001). No main effects of age or gender were found, but an interaction effect of age by gender was found in Modulation of Sensory Input Affecting Emotional Responses, in which older females presented with the lowest scores. A significant decline over time was found in the Seeking pattern, reflecting increased vulnerability (p < .05). Nonsignificant trends suggest more vulnerabilities for older versus younger children, especially older females. The neurobehavioral phenotype in children with SMS is expanded by this description of sensory processing. How children with SMS experience and respond to everyday sensations informs multidisciplinary team decisions.
Processes to Preserve Spice and Herb Quality and Sensory Integrity During Pathogen Inactivation.
Duncan, Susan E; Moberg, Kayla; Amin, Kemia N; Wright, Melissa; Newkirk, Jordan J; Ponder, Monica A; Acuff, Gary R; Dickson, James S
2017-05-01
Selected processing methods, demonstrated to be effective at reducing Salmonella, were assessed to determine if spice and herb quality was affected. Black peppercorn, cumin seed, oregano, and onion powder were irradiated to a target dose of 8 kGy. Two additional processes were examined for whole black peppercorns and cumin seeds: ethylene oxide (EtO) fumigation and vacuum assisted-steam (82.22 °C, 7.5 psia). Treated and untreated spices/herbs were compared (visual, odor) using sensory similarity testing protocols (α = 0.20; β = 0.05; proportion of discriminators: 20%) to determine if processing altered sensory quality. Analytical assessment of quality (color, water activity, and volatile chemistry) was completed. Irradiation did not alter visual or odor sensory quality of black peppercorn, cumin seed, or oregano but created differences in onion powder, which was lighter (higher L * ) and more red (higher a * ) in color, and resulted in nearly complete loss of measured volatile compounds. EtO processing did not create detectable odor or appearance differences in black peppercorn; however visual and odor sensory quality differences, supported by changes in color (higher b * ; lower L * ) and increased concentrations of most volatiles, were detected for cumin seeds. Steam processing of black peppercorn resulted in perceptible odor differences, supported by increased concentration of monoterpene volatiles and loss of all sesquiterpenes; only visual differences were noted for cumin seed. An important step in process validation is the verification that no effect is detectable from a sensory perspective. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.
The Relationship between Sensory Sensitivity and Autistic Traits in the General Population
ERIC Educational Resources Information Center
Robertson, Ashley E.; Simmons, David R.
2013-01-01
Individuals with Autism Spectrum Disorders (ASDs) tend to have sensory processing difficulties (Baranek et al. in J Child Psychol Psychiatry 47:591-601, 2006). These difficulties include over- and under-responsiveness to sensory stimuli, and problems modulating sensory input (Ben-Sasson et al. in J Autism Dev Disorders 39:1-11, 2009). As those…
ERIC Educational Resources Information Center
Mays, Nicole M.; Beal-Alvarez, Jennifer; Jolivette, Kristine
2011-01-01
This article outlines a three-step process to help teachers determine whether or not the function of a student's stereotypical behavior is sensory-based and if so, how to select and monitor an appropriate sensory intervention to promote instructional engagement. In particular, characteristics of students who are seeking to gain sensory input in…
Behavioural system identification of visual flight speed control in Drosophila melanogaster
Rohrseitz, Nicola; Fry, Steven N.
2011-01-01
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744
Velasques, Bruna; Machado, Sergio; Paes, Flávia; Cunha, Marlo; Sanfim, Antonio; Budde, Henning; Cagy, Mauricio; Anghinah, Renato; Basile, Luis F; Piedade, Roberto; Ribeiro, Pedro
2011-12-01
Recent evidence is reviewed to examine relationships among sensorimotor and cognitive aspects in some important psychiatry disorders. This study reviews the theoretical models in the context of sensorimotor integration and the abnormalities reported in the most common psychiatric disorders, such as Alzheimer's disease, autism spectrum disorder and squizophrenia. The bibliographical search used Pubmed/Medline, ISI Web of Knowledge, Cochrane data base and Scielo databases. The terms chosen for the search were: Alzheimer's disease, AD, autism spectrum disorder, and Squizophrenia in combination with sensorimotor integration. Fifty articles published in English and were selected conducted from 1989 up to 2010. We found that the sensorimotor integration process plays a relevant role in elementary mechanisms involved in occurrence of abnormalities in most common psychiatric disorders, participating in the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of consciously goal-directed motor outputs. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but some studies support a central mechanism. Sensorimotor integration seems to play a significant role in the disturbances of motor control, like deficits in the feedforward mechanism, typically seen in AD, autistic and squizophrenic patients.
Behavioural system identification of visual flight speed control in Drosophila melanogaster.
Rohrseitz, Nicola; Fry, Steven N
2011-02-06
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.
Prestimulus influences on auditory perception from sensory representations and decision processes.
Kayser, Stephanie J; McNair, Steven W; Kayser, Christoph
2016-04-26
The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task.
Prestimulus influences on auditory perception from sensory representations and decision processes
McNair, Steven W.
2016-01-01
The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task. PMID:27071110
Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E.
2016-01-01
The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160
Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E
2016-02-05
The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization.
Developmental and Cognitive Characteristics of “High-Level Potentialities” (Highly Gifted) Children
Vaivre-Douret, Laurence
2011-01-01
This study covers the interesting field of the development in gifted children which is often neglected in pediatrics because psychomotor development data are still rare, since “gifted” children are generally noticed towards the end of their primary schooling by IQ measurement. Developmental studies have shown the evidence from several fields that children identified as “high-level potentialities” or “intellectually gifted” develop sensory, locomotor, neuropsychological, and language skills earlier than typically expected. The hypothesis is offered that the earlier development originates from biological processes affecting the physical development of the brain and in turn even intellectual abilities are developed earlier, potentially allowing for advanced development. Further it is discussed how these developmental advances interact with the social environment and in certain circumstances may entail increased risk for developing socioemotional difficulties and learning disabilities that often go unaddressed due to the masking by the advance intellectual abilities. PMID:21977044
Organists and organ music composers.
Foerch, Christian; Hennerici, Michael G
2015-01-01
Clinical case reports of patients with exceptional musical talent and education provide clues as to how the brain processes musical ability and aptitude. In this chapter, selected examples from famous and unknown organ players/composers are presented to demonstrate the complexity of modified musical performances as well as the capacities of the brain to preserve artistic abilities: both authors are active organists and academic neurologists with strong clinical experience, practice, and knowledge about the challenges to play such an outstanding instrument and share their interest to explore potentially instrument-related phenomena of brain modulation in specific transient or permanent impairments. We concentrate on the sites of lesions, suggested pathophysiology, separate positive (e.g., seizures, visual or auditory hallucinations, or synesthesia [an involuntary perception produced by stimulation of another sense]) and negative phenomena (e.g., amusia, aphasia, neglect, or sensory-motor deficits) and particularly address aspects of recent concepts of temporary and permanent network disorders. © 2015 Elsevier B.V. All rights reserved.
Excitatory Local Interneurons Enhance Tuning of Sensory Information
Assisi, Collins; Stopfer, Mark; Bazhenov, Maxim
2012-01-01
Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process –lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations. PMID:22807661
[Human interaction, social cognition, and the superior temporal sulcus].
Brunelle, Francis; Saitovitch, Anna; Boddaert, Nathalie; Grevent, David; Cambier, Jean; Lelord, Gilbert; Samson, Yves; Zilbovicius, Monica
2013-01-01
Human beings are social animals. This ability to live together is ensured by cognitive functions, the neuroanatomical bases of which are starting to be unraveled by MRI-based studies. The regions and network engaged in this process are known as the "social brain ". The core of this network is the superior temporal sulcus (STS), which integrates sensory and emotional inputs. Modeling studies of healthy volunteers have shown the role of the STS.in recognizing others as biological beings, as well as facial and eye-gaze recognition, intentionality and emotions. This cognitive capacity has been described as the "theory of mind ". Pathological models such as autism, in which the main clinical abnormality is altered social abilities and communication, have confirmed the role of the STS in the social brain. Conceptualisation of this empathic capacity has been described as "meta cognition ", which forms the basis of human social organizationand culture.
Vecchio, Riccardo; Lisanti, Maria Tiziana; Caracciolo, Francesco; Cembalo, Luigi; Gambuti, Angelita; Moio, Luigi; Siani, Tiziana; Marotta, Giuseppe; Nazzaro, Concetta; Piombino, Paola
2018-05-28
The present research aims to analyse, by combining sensory and experimental economics techniques, to what extent production process, and the information about it, may affect consumer preferences. Sparkling wines produced by Champenoise and Charmat methods were the object of the study. A quantitative descriptive sensory analysis with a trained panel and non-hypothetical auctions combined with hedonic ratings involving young wine consumers (N=100), under different information scenarios(Blind, Info and Info Taste), were performed. Findings show that the production process impacts both the sensory profile of sparkling wines and consumer expectations. In particular, the hedonic ratings revealed that when tasting the products, both with no information on the production process (Blind) and with such information (Info Taste), the consumers preferred the Charmat wines. On the contrary, when detailed information on the production methods was given without tasting (Info), consumers liked more the two Champenoise wines. It can be concluded that sensory and non-sensory attributes of sparkling wines affect consumers' preferences. Specifically, the study suggests that production process information strongly impacts liking expectations, while not affecting informed liking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
How mechanisms of perceptual decision-making affect the psychometric function
Gold, Joshua I.; Ding, Long
2012-01-01
Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the “neurometric” sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. PMID:22609483
Motor development and sensory processing: A comparative study between preterm and term infants.
Cabral, Thais Invenção; Pereira da Silva, Louise Gracelli; Tudella, Eloisa; Simões Martinez, Cláudia Maria
2014-10-16
Infants born preterm and/or with low birth weight may present a clinical condition of organic instability and usually face a long period of hospitalization in the Neonatal Intensive Care Units, being exposed to biopsychosocial risk factors to their development due to decreased spontaneous movement and excessive sensory stimuli. This study assumes that there are relationships between the integration of sensory information of preterm infants, motor development and their subsequent effects. To evaluate the sensory processing and motor development in preterm infants aged 4-6 months and compare performance data with their peers born at term. This was a cross-sectional and comparative study consisting of a group of preterm infants (n=15) and a group of term infants (n=15), assessed using the Test of Sensory Functions in Infants (TSFI) and the Alberta Infant Motor Scale (AIMS). The results showed no significant association between motor performance on the AIMS scale (total score) and sensory processing in the TSFI (total score). However, all infants who scored abnormal in the total TSFI score, subdomain 1, and subdomain 5 presented motor performance at or below the 5th percentile on the AIMS scale. Since all infants who presented definite alteration in tolerating tactile deep pressure and poor postural control are at risk of delayed gross motor development, there may be peculiarities not detected by the tests used that seem to establish some relationship between sensory processing and motor development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Utilizing sensory prediction errors for movement intention decoding: A new methodology
Nakamura, Keigo; Ando, Hideyuki
2018-01-01
We propose a new methodology for decoding movement intentions of humans. This methodology is motivated by the well-documented ability of the brain to predict sensory outcomes of self-generated and imagined actions using so-called forward models. We propose to subliminally stimulate the sensory modality corresponding to a user’s intended movement, and decode a user’s movement intention from his electroencephalography (EEG), by decoding for prediction errors—whether the sensory prediction corresponding to a user’s intended movement matches the subliminal sensory stimulation we induce. We tested our proposal in a binary wheelchair turning task in which users thought of turning their wheelchair either left or right. We stimulated their vestibular system subliminally, toward either the left or the right direction, using a galvanic vestibular stimulator and show that the decoding for prediction errors from the EEG can radically improve movement intention decoding performance. We observed an 87.2% median single-trial decoding accuracy across tested participants, with zero user training, within 96 ms of the stimulation, and with no additional cognitive load on the users because the stimulation was subliminal. PMID:29750195
The role of the vestibular system in manual target localization
NASA Technical Reports Server (NTRS)
Barry, Susan R.; Mueller, S. Alyssa
1995-01-01
Astronauts experience perceptual and sensory-motor disturbances during spaceflight and immediately after return to the 1-g environment of Earth. During spaceflight, sensory information from the eyes, limbs and vestibular organs is reinterpreted by the central nervous system so that astronauts can produce appropriate body movements in microgravity. Alterations in sensory-motor function may affect eye-head-hand coordination and, thus, the crewmember's ability to manually locate objects in extrapersonal space. Previous reports have demonstrated that crewmembers have difficulty in estimating joint and limb position and in pointing to memorized target positions on orbit and immediately postflight. One set of internal cues that may assist in the manual localization of objects is information from the vestibular system. This system contributes to our sense of the body's position in space by providing information on head position and movement and the orientation of the body with respect to gravity. Research on the vestibular system has concentrated on its role in oculo-motor control. Little is known about the role that vestibular information plays in manual motor control, such as reaching and pointing movements. Since central interpretation of vestibular information is altered in microgravity, it is important to determine its role in this process. This summer, we determined the importance of vestibular information in a subject's ability to point accurately toward a target in extrapersonal space. Subjects were passively rotated across the earth-vertical axis and then asked to point back to a previously-seen target. In the first paradigm, the subjects used both visual and vestibular cues for the pointing response, while, in the second paradigm, subjects used only vestibular information. Subjects were able to point with 85 percent accuracy to a target using vestibular information alone. We infer from this result that vestibular input plays a role in the spatial programming of manual responses.
Aging and the interaction of sensory cortical function and structure.
Peiffer, Ann M; Hugenschmidt, Christina E; Maldjian, Joseph A; Casanova, Ramon; Srikanth, Ryali; Hayasaka, Satoru; Burdette, Jonathan H; Kraft, Robert A; Laurienti, Paul J
2009-01-01
Even the healthiest older adults experience changes in cognitive and sensory function. Studies show that older adults have reduced neural responses to sensory information. However, it is well known that sensory systems do not act in isolation but function cooperatively to either enhance or suppress neural responses to individual environmental stimuli. Very little research has been dedicated to understanding how aging affects the interactions between sensory systems, especially cross-modal deactivations or the ability of one sensory system (e.g., audition) to suppress the neural responses in another sensory system cortex (e.g., vision). Such cross-modal interactions have been implicated in attentional shifts between sensory modalities and could account for increased distractibility in older adults. To assess age-related changes in cross-modal deactivations, functional MRI studies were performed in 61 adults between 18 and 80 years old during simple auditory and visual discrimination tasks. Results within visual cortex confirmed previous findings of decreased responses to visual stimuli for older adults. Age-related changes in the visual cortical response to auditory stimuli were, however, much more complex and suggested an alteration with age in the functional interactions between the senses. Ventral visual cortical regions exhibited cross-modal deactivations in younger but not older adults, whereas more dorsal aspects of visual cortex were suppressed in older but not younger adults. These differences in deactivation also remained after adjusting for age-related reductions in brain volume of sensory cortex. Thus, functional differences in cortical activity between older and younger adults cannot solely be accounted for by differences in gray matter volume. (c) 2007 Wiley-Liss, Inc.
Sensory and demographic characteristics of deafblindness rehabilitation clients in Montréal, Canada.
Wittich, Walter; Watanabe, Donald H; Gagné, Jean-Pierre
2012-05-01
Demographic changes are increasing the number of older adults with combined age-related vision and hearing loss, while medical advances increase the survival probability of children with congenital dual (or multiple) impairments due to pre-maturity or rare hereditary diseases. Rehabilitation services for these populations are highly in demand since traditional uni-sensory rehabilitation approaches using the other sense to compensate are not always utilizable. Very little is currently known about the client population characteristics with dual sensory impairment. The present study provides information about demographic and sensory variables of persons in the Montreal region that were receiving rehabilitation for dual impairment in December 2010. This information can inform researchers, clinicians, educators, as well as administrators about potential research and service delivery priorities. A chart review of all client files across the three rehabilitation agencies that offer integrated dual sensory rehabilitation services in Montreal provided data on visual acuity, visual field, hearing detection thresholds, and demographic variables. The 209 males and 355 females ranged in age from 4months to 105years (M=71.9, S.D.=24.6), indicating a prevalence estimate for dual sensory impairment at 15/100000. Only 5.7% were under 18years of age, while 69.1% were over the age of 65years, with 43.1% over the age of 85years. The diagnostic combination that accounted for 31% of the entire sample was age-related macular degeneration with presbycusis. Their visual and auditory measures indicated that older adults were likely to fall into moderate to severe levels of impairment on both measures. Individuals with Usher Syndrome comprised 20.9% (n=118) of the sample. The age distribution in this sample of persons with dual sensory impairment indicates that service delivery planning will need to strongly consider the growing presence of older adults as the baby-boomers approach retirement age. The distribution of their visual and auditory limits indicates that the large majority of this client group has residual vision and hearing that can be maximized in the rehabilitation process in order to restore functional abilities and social participation. Future research in this area should identify the specific priorities in both rehabilitation and research in individuals affected with combined vision and hearing loss. Ophthalmic & Physiological Optics © 2012 The College of Optometrists.
Neuromast hair cells retain the capacity of regeneration during heavy metal exposure.
Montalbano, G; Capillo, G; Laurà, R; Abbate, F; Levanti, M; Guerrera, M C; Ciriaco, E; Germanà, A
2018-07-01
The neuromast is the morphological unit of the lateral line of fishes and is composed of a cluster of central sensory cells (hair cells) surrounded by support and mantle cells. Heavy metals exposure leads to disruption of hair cells within the neuromast. It is well known that the zebrafish has the ability to regenerate the hair cells after damage caused by toxicants. The process of regeneration depends on proliferation, differentiation and cellular migration of sensory and non-sensory progenitor cells. Therefore, our study was made in order to identify which cellular types are involved in the complex process of regeneration during heavy metals exposure. For this purpose, adult zebrafish were exposed to various heavy metals (Arsenic, cadmium and zinc) for 72h. After acute (24h) exposure, immunohistochemical localization of S100 (a specific marker for hair cells) in the neuromasts highlighted the hair cells loss. The immunoreaction for Sox2 (a specific marker for stem cells), at the same time, was observed in the support and mantle cells, after exposure to arsenic and cadmium, while only in the support cells after exposure to zinc. After chronic (72h) exposure the hair cells were regenerated, showing an immunoreaction for S100 protein. At the same exposure time to the three metals, a Sox2 immunoreaction was expressed in support and mantle cells. Our results showed for the first time the regenerative capacity of hair cells, not only after, but also during exposure to heavy metals, demonstrated by the presence of different stem cells that can diversify in hair cells. Copyright © 2018 Elsevier GmbH. All rights reserved.
Haldin, Célise; Acher, Audrey; Kauffmann, Louise; Hueber, Thomas; Cousin, Emilie; Badin, Pierre; Perrier, Pascal; Fabre, Diandra; Perennou, Dominic; Detante, Olivier; Jaillard, Assia; Lœvenbruck, Hélène; Baciu, Monica
2017-11-17
The rehabilitation of speech disorders benefits from providing visual information which may improve speech motor plans in patients. We tested the proof of concept of a rehabilitation method (Sensori-Motor Fusion, SMF; Ultraspeech player) in one post-stroke patient presenting chronic non-fluent aphasia. SMF allows visualisation by the patient of target tongue and lips movements using high-speed ultrasound and video imaging. This can improve the patient's awareness of his/her own lingual and labial movements, which can, in turn, improve the representation of articulatory movements and increase the ability to coordinate and combine articulatory gestures. The auditory and oro-sensory feedback received by the patient as a result of his/her own pronunciation can be integrated with the target articulatory movements they watch. Thus, this method is founded on sensorimotor integration during speech. The SMF effect on this patient was assessed through qualitative comparison of language scores and quantitative analysis of acoustic parameters measured in a speech production task, before and after rehabilitation. We also investigated cerebral patterns of language reorganisation for rhyme detection and syllable repetition, to evaluate the influence of SMF on phonological-phonetic processes. Our results showed that SMF had a beneficial effect on this patient who qualitatively improved in naming, reading, word repetition and rhyme judgment tasks. Quantitative measurements of acoustic parameters indicate that the patient's production of vowels and syllables also improved. Compared with pre-SMF, the fMRI data in the post-SMF session revealed the activation of cerebral regions related to articulatory, auditory and somatosensory processes, which were expected to be recruited by SMF. We discuss neurocognitive and linguistic mechanisms which may explain speech improvement after SMF, as well as the advantages of using this speech rehabilitation method.
NASA Astrophysics Data System (ADS)
Johnson, M.
2015-12-01
Animals make decisions about the suitability of habitat and their reaction to other organisms based on the sensory information that they first obtain. This information is transmitted, masked and filtered by fluvial processes, such as turbulent flow. Despite governing how animals interact with the environment, limited attention has been paid to the controls on the propagation of sensory signals through rivers. Some animals interpret hydraulic events and use the characteristics of wakes to sense the presence of other organisms. This implies that at least some animals can differentiate turbulent flow generated by the presence of living organisms from ambient environmental turbulence. We investigate whether there are specific flow characteristics, distinct from the ambient environment, that potentially flag the presence of organisms to other animals. ADV and PIV measurements in a series of laboratory flume experiments quantified the flow around living Signal Crayfish (Pacifastacus leniusculus) and two inanimate objects of equivalent shape and size. Experiments were repeated across a gradient of turbulence intensities generated over nine combinations of flow velocity and relative submergence. Flows downstream of living crayfish were distinct from inanimate objects, with greater turbulent intensities, higher energy in low- to intermediate frequencies, and flow structures that were less coherent in comparison to those measured downstream of inanimate objects. However, the hydrodynamic signature of crayfish became masked as the intensity of ambient turbulence exceeded that generated by living crayfish. These results demonstrate the importance of the fluvial processes in the transmission of sensory information and suggest that the ability of animals to perceive hydraulic signatures is likely to be limited in many situations in rivers. Thus, animals may need to rely on other senses, such as sight or hearing, especially where depth is shallow relative to grain size.
Carlson, Bruce A
2016-01-01
Sensory systems play a key role in social behavior by mediating the detection and analysis of communication signals. In mormyrid fishes, electric signals are processed within a dedicated sensory pathway, providing a unique opportunity to relate sensory biology to social behavior. Evolutionary changes within this pathway led to new perceptual abilities that have been linked to increased rates of signal evolution and species diversification in a lineage called 'clade A'. Previous field observations suggest that clade-A species tend to be solitary and territorial, whereas non-clade-A species tend to be clustered in high densities suggestive of schooling or shoaling. To explore behavioral differences between species in these lineages in greater detail, I studied population densities, social interactions, and electric signaling in two mormyrid species, Gnathonemus victoriae (clade A) and Petrocephalus degeni (non-clade A), from Lwamunda Swamp, Uganda. Petrocephalus degeni was found at higher population densities, but intraspecific diversity in electric signal waveform was greater in G. victoriae. In the laboratory, G. victoriae exhibited strong shelter-seeking behavior and competition for shelter, whereas P. degeni were more likely to abandon shelter in the presence of conspecifics as well as electric mimics of signaling conspecifics. In other words, P. degeni exhibited social affiliation whereas G. victoriae exhibited social competition. Further, P. degeni showed correlated electric signaling behavior whereas G. victoriae showed anti-correlated signaling behavior. These findings extend previous reports of social spacing, territoriality, and habitat preference among mormyrid species, suggesting that evolutionary divergence in electrosensory processing relates to differences in social behavior. © 2016. Published by The Company of Biologists Ltd.
Joyner, Helen S; Jones, Kari E; Rasco, Barbara A
2017-10-01
Pasta hydration and cooking requirements make in-package microwave pasteurization of pasta a processing challenge. The objective of this study was to assess instrumental and sensory attributes of microwave-treated pasta in comparison to conventionally cooked pasta. Fettuccine pasta was parboiled for 0, 3, 6, 9, or 12 min, pasteurized by microwaves at 915 MHz, then stored under refrigeration for 1 week. Pastas were evaluated by a trained sensory panel and with rheometry. Total pasta heat treatment affected both rheological and sensory behaviors; these differences were attributed to ultrastructure differences. Significant nonlinear behavior and dominant fluid-like behavior was observed in all pastas at strains >1%. Sensory results suggested microwave pasteurization may intensify the attributes associated with the aging of pasta such as retrogradation. A clear trend between magnitude of heat treatment and attribute intensity was not observed for all sensory attributes tested. The microwave pasta with the longest parboil time showed rheological behavior most similar to conventionally cooked pasta. Principal component analysis revealed that no microwave-treated pasta was similar to the control pasta. However, pasta parboiled for 9 min before microwave treatment had the greatest number of similar sensory attributes, followed by pasta parboiled for 6 or 12 min. Further study is needed to determine overall consumer acceptance of microwave-treated pasta and whether the differences in sensory and rheological behavior would impact consumer liking. The results of this study may be applied to optimize microwave pasteurization processes for cooked pasta and similar products, such as rice. The measurement and analysis procedures can be used to evaluate processing effects on a variety of different foods to determine overall palatability. © 2017 Wiley Periodicals, Inc.
Concise Review: Inner Ear Stem Cells—An Oxymoron, But Why?
Ronaghi, Mohammad; Nasr, Marjan; Heller, Stefan
2012-01-01
Hearing loss, caused by irreversible loss of cochlear sensory hair cells, affects millions of patients worldwide. In this concise review, we examine the conundrum of inner ear stem cells, which obviously are present in the inner ear sensory epithelia of nonmammalian vertebrates, giving these ears the ability to functionally recover even from repetitive ototoxic insults. Despite the inability of the mammalian inner ear to regenerate lost hair cells, there is evidence for cells with regenerative capacity because stem cells can be isolated from vestibular sensory epithelia and from the neonatal cochlea. Challenges and recent progress toward identification of the intrinsic and extrinsic signaling pathways that could be used to re-establish stemness in the mammalian organ of Corti are discussed. PMID:22102534
Twenty Weeks of Computer-Training Improves Sense of Agency in Children with Spastic Cerebral Palsy
ERIC Educational Resources Information Center
Ritterband-Rosenbaum, A.; Christensen, M. S.; Nielsen, J. B.
2012-01-01
Children with cerebral palsy (CP) show alteration of perceptual and cognitive abilities in addition to motor and sensory deficits, which may include altered sense of agency. The aim of this study was to evaluate whether 20 weeks of internet-based motor, perceptual and cognitive training enhances the ability of CP children to determine whether they…
Perception as a closed-loop convergence process.
Ahissar, Ehud; Assa, Eldad
2016-05-09
Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception.
Perception as a closed-loop convergence process
Ahissar, Ehud; Assa, Eldad
2016-01-01
Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception. DOI: http://dx.doi.org/10.7554/eLife.12830.001 PMID:27159238
Suppressive mechanisms in visual motion processing: From perception to intelligence.
Tadin, Duje
2015-10-01
Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and individuals with schizophrenia-a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
O'Brien, Justin; Tsermentseli, Stella; Cummins, Omar; Happe, Francesca; Heaton, Pamela; Spencer, Janine
2009-01-01
In this article, we examine the extent to which children with autism and children with learning difficulties can be discriminated from their responses to different patterns of sensory stimuli. Using an adapted version of the Short Sensory Profile (SSP), sensory processing was compared in 34 children with autism to 33 children with typical…
Clay, Olivio J.; Edwards, Jerri D.; Ross, Lesley A.; Okonkwo, Ozioma; Wadley, Virginia G.; Roth, David L.; Ball, Karlene K.
2010-01-01
Objectives: To evaluate the relationship between sensory and cognitive decline, particularly with respect to speed of processing, memory span, and fluid intelligence. Additionally, the common cause, sensory degradation and speed of processing hypotheses were compared. Methods: Structural equation modeling was used to investigate the complex relationships among age-related decrements in these areas. Results: Cross-sectional data analyses included 842 older adult participants (M = 73 years). After accounting for age-related declines in vision and processing speed, the direct associations between age and memory span and between age and fluid intelligence were nonsignificant. Older age was associated with visual decline, which was associated with slower speed of processing, which in turn was associated with greater cognitive deficits. Discussion: The findings support both the sensory degradation and speed of processing accounts of age-related cognitive decline. Further, the findings highlight positive aspects of normal cognitive aging in that older age may not be associated with a loss of fluid intelligence if visual sensory functioning and processing speed can be maintained. PMID:19436063
Central Processing Dysfunctions in Children: A Review of Research.
ERIC Educational Resources Information Center
Chalfant, James C.; Scheffelin, Margaret A.
Research on central processing dysfunctions in children is reviewed in three major areas. The first, dysfunctions in the analysis of sensory information, includes auditory, visual, and haptic processing. The second, dysfunction in the synthesis of sensory information, covers multiple stimulus integration and short-term memory. The third area of…
Phenol induced by irradiation does not impair sensory quality of fenugreek and papaya
NASA Astrophysics Data System (ADS)
Chatterjee, Suchandra; Variyar, Prasad S.; Sharma, Arun
2013-11-01
The effect of radiation processing on the sensory quality of fenugreek and papaya exposed to doses in the range of 2.5-10 kGy and 100 Gy-2.5 kGy respectively was investigated. Despite an increase in the content of phenol in the volatile oil of these food products overall sensory quality of the irradiated and control samples was not significantly affected by radiation processing.
David, Nicole; Skoruppa, Stefan; Gulberti, Alessandro
2016-01-01
The sense of agency describes the ability to experience oneself as the agent of one's own actions. Previous studies of the sense of agency manipulated the predicted sensory feedback related either to movement execution or to the movement’s outcome, for example by delaying the movement of a virtual hand or the onset of a tone that resulted from a button press. Such temporal sensorimotor discrepancies reduce the sense of agency. It remains unclear whether movement-related feedback is processed differently than outcome-related feedback in terms of agency experience, especially if these types of feedback differ with respect to sensory modality. We employed a mixed-reality setup, in which participants tracked their finger movements by means of a virtual hand. They performed a single tap, which elicited a sound. The temporal contingency between the participants’ finger movements and (i) the movement of the virtual hand or (ii) the expected auditory outcome was systematically varied. In a visual control experiment, the tap elicited a visual outcome. For each feedback type and participant, changes in the sense of agency were quantified using a forced-choice paradigm and the Method of Constant Stimuli. Participants were more sensitive to delays of outcome than to delays of movement execution. This effect was very similar for visual or auditory outcome delays. Our results indicate different contributions of movement- versus outcome-related sensory feedback to the sense of agency, irrespective of the modality of the outcome. We propose that this differential sensitivity reflects the behavioral importance of assessing authorship of the outcome of an action. PMID:27536948
Frank, Damian; Eyres, Graham T; Piyasiri, Udayasika; Cochet-Broch, Maeva; Delahunty, Conor M; Lundin, Leif; Appelqvist, Ingrid M
2015-10-21
The density and composition of a food matrix affect the rates of oral breakdown and in-mouth flavor release as well as the overall sensory experience. Agar gels of increasing concentration (1.0, 1.7, 2.9, and 5% agarose) with and without added fat (0, 2, 5, and 10%) were spiked with seven aroma volatiles. Differences in oral processing and sensory perception were systematically measured by a trained panel using a discrete interval time intensity method. Volatile release was measured in vivo and in vitro by proton transfer reaction mass spectrometry. Greater oral processing was required as agar gel strength increased, and the intensity of flavor-related sensory attributes decreased. Volatile release was inversely related to gel strength, showing that physicochemical phenomena were the main mechanisms underlying the perceived sensory changes. Fat addition reduced the amount of oral processing and had differential effects on release, depending on the fat solubility or lipophilicity of the volatiles.
Gohel, Bakul; Lee, Peter; Jeong, Yong
2016-08-01
Brain regions that respond to more than one sensory modality are characterized as multisensory regions. Studies on the processing of shape or object information have revealed recruitment of the lateral occipital cortex, posterior parietal cortex, and other regions regardless of input sensory modalities. However, it remains unknown whether such regions show similar (modality-invariant) or different (modality-specific) neural oscillatory dynamics, as recorded using magnetoencephalography (MEG), in response to identical shape information processing tasks delivered to different sensory modalities. Modality-invariant or modality-specific neural oscillatory dynamics indirectly suggest modality-independent or modality-dependent participation of particular brain regions, respectively. Therefore, this study investigated the modality-specificity of neural oscillatory dynamics in the form of spectral power modulation patterns in response to visual and tactile sequential shape-processing tasks that are well-matched in terms of speed and content between the sensory modalities. Task-related changes in spectral power modulation and differences in spectral power modulation between sensory modalities were investigated at source-space (voxel) level, using a multivariate pattern classification (MVPC) approach. Additionally, whole analyses were extended from the voxel level to the independent-component level to take account of signal leakage effects caused by inverse solution. The modality-specific spectral dynamics in multisensory and higher-order brain regions, such as the lateral occipital cortex, posterior parietal cortex, inferior temporal cortex, and other brain regions, showed task-related modulation in response to both sensory modalities. This suggests modality-dependency of such brain regions on the input sensory modality for sequential shape-information processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Episodic Memory Retrieval Functionally Relies on Very Rapid Reactivation of Sensory Information.
Waldhauser, Gerd T; Braun, Verena; Hanslmayr, Simon
2016-01-06
Episodic memory retrieval is assumed to rely on the rapid reactivation of sensory information that was present during encoding, a process termed "ecphory." We investigated the functional relevance of this scarcely understood process in two experiments in human participants. We presented stimuli to the left or right of fixation at encoding, followed by an episodic memory test with centrally presented retrieval cues. This allowed us to track the reactivation of lateralized sensory memory traces during retrieval. Successful episodic retrieval led to a very early (∼100-200 ms) reactivation of lateralized alpha/beta (10-25 Hz) electroencephalographic (EEG) power decreases in the visual cortex contralateral to the visual field at encoding. Applying rhythmic transcranial magnetic stimulation to interfere with early retrieval processing in the visual cortex led to decreased episodic memory performance specifically for items encoded in the visual field contralateral to the site of stimulation. These results demonstrate, for the first time, that episodic memory functionally relies on very rapid reactivation of sensory information. Remembering personal experiences requires a "mental time travel" to revisit sensory information perceived in the past. This process is typically described as a controlled, relatively slow process. However, by using electroencephalography to measure neural activity with a high time resolution, we show that such episodic retrieval entails a very rapid reactivation of sensory brain areas. Using transcranial magnetic stimulation to alter brain function during retrieval revealed that this early sensory reactivation is causally relevant for conscious remembering. These results give first neural evidence for a functional, preconscious component of episodic remembering. This provides new insight into the nature of human memory and may help in the understanding of psychiatric conditions that involve the automatic intrusion of unwanted memories. Copyright © 2016 the authors 0270-6474/16/360251-10$15.00/0.
Jacobo-Velázquez, D A; Ramos-Parra, P A; Hernández-Brenes, C
2010-08-01
High hydrostatic pressure (HHP) pasteurized and refrigerated avocado and mango pulps contain lower microbial counts and thus are safer and acceptable for human consumption for a longer period of time, when compared to fresh unprocessed pulps. However, during their commercial shelf life, changes in their sensory characteristics take place and eventually produce the rejection of these products by consumers. Therefore, in the present study, the use of sensory evaluation was proposed for the shelf-life determinations of HHP-processed avocado and mango pulps. The study focused on evaluating the feasibility of applying survival analysis methodology to the data generated by consumers in order to determine the sensory shelf lives of both HHP-treated pulps of avocado and mango. Survival analysis proved to be an effective methodology for the estimation of the sensory shelf life of avocado and mango pulps processed with HHP, with potential application for other pressurized products. Practical Application: At present, HHP processing is one of the most effective alternatives for the commercial nonthermal pasteurization of fresh tropical fruits. HHP processing improves the microbial stability of the fruit pulps significantly; however, the products continue to deteriorate during their refrigerated storage mainly due to the action of residual detrimental enzymes. This article proposes the application of survival analysis methodology for the determination of the sensory shelf life of HHP-treated avocado and mango pulps. Results demonstrated that the procedure appears to be simple and practical for the sensory shelf-life determination of HHP-treated foods when their main mode of failure is not caused by increases in microbiological counts that can affect human health.
Reduced modulation of thalamocortical connectivity during exposure to sensory stimuli in ASD.
Green, Shulamite A; Hernandez, Leanna; Bookheimer, Susan Y; Dapretto, Mirella
2017-05-01
Recent evidence for abnormal thalamic connectivity in autism spectrum disorders (ASD) and sensory processing disorders suggests the thalamus may play a role in sensory over-responsivity (SOR), an extreme negative response to sensory stimuli, which is common in ASD. However, there is yet little understanding of changes in thalamic connectivity during exposure to aversive sensory inputs in individuals with ASD. In particular, the pulvinar nucleus of the thalamus is implicated in atypical sensory processing given its role in selective attention, regulation, and sensory integration. This study aimed to examine the role of pulvinar connectivity in ASD during mildly aversive sensory input. Functional magnetic resonance imaging was used to examine connectivity with the pulvinar during exposure to mildly aversive auditory and tactile stimuli in 38 youth (age 9-17; 19 ASD, 19 IQ-matched typically developing (TD)). Parents rated children's SOR severity on two standard scales. Compared to TD, ASD participants displayed aberrant modulation of connectivity between pulvinar and cortex (including sensory-motor and prefrontal regions) during sensory stimulation. In ASD participants, pulvinar-amygdala connectivity was correlated with severity of SOR symptoms. Deficits in modulation of thalamocortical connectivity in youth with ASD may reflect reduced thalamo-cortical inhibition in response to sensory stimulation, which could lead to difficulty filtering out and/or integrating sensory information. An increase in amygdala connectivity with the pulvinar might be partially responsible for deficits in selective attention as the amygdala signals the brain to attend to distracting sensory stimuli. Autism Res 2017, 10: 801-809. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Dynamic combination of sensory and reward information under time pressure
Farashahi, Shiva; Kao, Chang-Hao
2018-01-01
When making choices, collecting more information is beneficial but comes at the cost of sacrificing time that could be allocated to making other potentially rewarding decisions. To investigate how the brain balances these costs and benefits, we conducted a series of novel experiments in humans and simulated various computational models. Under six levels of time pressure, subjects made decisions either by integrating sensory information over time or by dynamically combining sensory and reward information over time. We found that during sensory integration, time pressure reduced performance as the deadline approached, and choice was more strongly influenced by the most recent sensory evidence. By fitting performance and reaction time with various models we found that our experimental results are more compatible with leaky integration of sensory information with an urgency signal or a decision process based on stochastic transitions between discrete states modulated by an urgency signal. When combining sensory and reward information, subjects spent less time on integration than optimally prescribed when reward decreased slowly over time, and the most recent evidence did not have the maximal influence on choice. The suboptimal pattern of reaction time was partially mitigated in an equivalent control experiment in which sensory integration over time was not required, indicating that the suboptimal response time was influenced by the perception of imperfect sensory integration. Meanwhile, during combination of sensory and reward information, performance did not drop as the deadline approached, and response time was not different between correct and incorrect trials. These results indicate a decision process different from what is involved in the integration of sensory information over time. Together, our results not only reveal limitations in sensory integration over time but also illustrate how these limitations influence dynamic combination of sensory and reward information. PMID:29584717
He, Qianru; Man, Lili; Ji, Yuhua; Zhang, Shuqiang; Jiang, Maorong; Ding, Fei; Gu, Xiaosong
2012-06-01
Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.
Individual differences in emotionality and peri-traumatic processing.
Logan, Shanna; O'Kearney, Richard
2012-06-01
Recent cognitive models propose that intrusive trauma memories arise and persist because high levels of emotional arousal triggered by the trauma disrupt conceptual processing of elements of the event, while enhancing sensory/perceptual processing. A trauma film analogue design was used to investigate if the predicted facilitating effects on intrusions from inhibiting conceptual processing and predicted attenuating effects on intrusions from inhibiting sensory processing are moderated by individual differences in emotionality. One hundred and five non-clinical participants viewed a traumatic film while undertaking a conceptual interference task, a sensory interference task, or no interference task. Participants recorded the frequency and intensity of intrusions over the following week. There was no facilitating effect for the conceptual interference task compared to no interference task. A significant attenuation of the frequency of intrusions was evident for those undertaking sensory interference (ŋ(2) = .04). This effect, however, was only present for those with high trait anxiety (d = .82) and not for those with low trait anxiety (d = .08). Relative to high trait anxious controls, high anxious participants who undertook sensory interference also reported lower intensity of intrusions (d = .66). This is the first trauma film analogue study to show that the attenuating effect of concurrent sensory/perceptual processing on the frequency and intensity of subsequent intrusions is evident only for people with high trait anxiety. The results have implications for conceptual models of intrusion development and for their application to the prevention of post traumatic distress. Copyright © 2011 Elsevier Ltd. All rights reserved.
Human skin wetness perception: psychophysical and neurophysiological bases.
Filingeri, Davide; Havenith, George
2015-01-01
The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception.
Patel, Atit A.; Cox, Daniel N.
2017-01-01
To investigate cellular, molecular and behavioral mechanisms of noxious cold detection, we developed cold plate behavioral assays and quantitative means for evaluating the predominant noxious cold-evoked contraction behavior. To characterize neural activity in response to noxious cold, we implemented a GCaMP6-based calcium imaging assay enabling in vivo studies of intracellular calcium dynamics in intact Drosophila larvae. We identified Drosophila class III multidendritic (md) sensory neurons as multimodal sensors of innocuous mechanical and noxious cold stimuli and to dissect the mechanistic bases of multimodal sensory processing we developed two independent functional assays. First, we developed an optogenetic dose response assay to assess whether levels of neural activation contributes to the multimodal aspects of cold sensitive sensory neurons. Second, we utilized CaMPARI, a photo-switchable calcium integrator that stably converts fluorescence from green to red in presence of high intracellular calcium and photo-converting light, to assess in vivo functional differences in neural activation levels between innocuous mechanical and noxious cold stimuli. These novel assays enable investigations of behavioral and functional roles of peripheral sensory neurons and multimodal sensory processing in Drosophila larvae. PMID:28835907
Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.
Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R
2016-09-21
The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Copyright © 2016 the authors 0270-6474/16/369763-07$15.00/0.
Sensory shelf-life limiting factor of high hydrostatic pressure processed avocado paste.
Jacobo-Velázquez, D A; Hernández-Brenes, C
2011-08-01
High hydrostatic pressure (HHP) processing pasteurizes avocado paste without a significant impact on flavor. Although HHP-treated avocado paste stored under refrigeration is safe for human consumption for months, sensory changes taking place during storage cause the rejection of the product by consumers within days. Although it is known that the shelf life of the product ends before its microbial counts are high, its sensory shelf life limiting factor remains unknown. The present study focused on the use of a trained panel and a consumer panel to determine the sensory shelf life limiting factor of HHP-treated avocado paste. The trained panel identified sour and rancid flavors as the main sensory descriptors (critical descriptors) that differentiated stored from freshly processed samples. Further data obtained from consumers identified sour flavor as the main cause for a significant decrease in the acceptability (shelf life limiting factor) of refrigerated HHP-treated avocado paste. The study allowed the elucidation of a proposed deterioration mechanism for HHP-treated avocado paste during its refrigerated shelf life. The information through this work enhances scientific knowledge of the product and proposes the sour flavor development during storage as a relevant sensory attribute that needs to be improved in order to enhance the product shelf life. At present, HHP is the most effective commercial nonthermal technology to process avocado paste when compared to thermal and chemical alternatives. HHP-treated avocado paste is a microbiologically stable food for a period of at least 45 d stored under refrigeration. However, previous published work indicated that consumers rejected the product after approximately 19 d of storage due to sensory changes. This manuscript presents a sensory study that permitted the identification of the critical sensory descriptor that is acting as the sensory shelf life limiting factor of the product. The data presented herein along with previous reported data allows a better understanding of the deterioration mechanism that occurs during the storage of HHP-treated avocado paste. This information is relevant and useful for the elucidation of possible alternatives to enhance the shelf life of HHP-treated avocado paste. © 2011 Institute of Food Technologists®
Perceptual Learning: Use-Dependent Cortical Plasticity.
Li, Wu
2016-10-14
Our perceptual abilities significantly improve with practice. This phenomenon, known as perceptual learning, offers an ideal window for understanding use-dependent changes in the adult brain. Different experimental approaches have revealed a diversity of behavioral and cortical changes associated with perceptual learning, and different interpretations have been given with respect to the cortical loci and neural processes responsible for the learning. Accumulated evidence has begun to put together a coherent picture of the neural substrates underlying perceptual learning. The emerging view is that perceptual learning results from a complex interplay between bottom-up and top-down processes, causing a global reorganization across cortical areas specialized for sensory processing, engaged in top-down attentional control, and involved in perceptual decision making. Future studies should focus on the interactions among cortical areas for a better understanding of the general rules and mechanisms underlying various forms of skill learning.
Li, Jie
2017-01-01
It is well established that sensory afferents innervating muscle are more effective at inducing hyperexcitability within spinal cord circuits compared with skin afferents, which likely contributes to the higher prevalence of chronic musculoskeletal pain compared with pain of cutaneous origin. However, the mechanisms underlying these differences in central nociceptive signaling remain incompletely understood, as nothing is known about how superficial dorsal horn neurons process sensory input from muscle versus skin at the synaptic level. Using a novel ex vivo spinal cord preparation, here we identify the functional organization of muscle and cutaneous afferent synapses onto immature rat lamina I spino-parabrachial neurons, which serve as a major source of nociceptive transmission to the brain. Stimulation of the gastrocnemius nerve and sural nerve revealed significant convergence of muscle and cutaneous afferent synaptic input onto individual projection neurons. Muscle afferents displayed a higher probability of glutamate release, although short-term synaptic plasticity was similar between the groups. Importantly, muscle afferent synapses exhibited greater relative expression of Ca2+-permeable AMPARs compared with cutaneous inputs. In addition, the prevalence and magnitude of spike timing-dependent long-term potentiation were significantly higher at muscle afferent synapses, where it required Ca2+-permeable AMPAR activation. Collectively, these results provide the first evidence for afferent-specific properties of glutamatergic transmission within the superficial dorsal horn. A larger propensity for activity-dependent strengthening at muscle afferent synapses onto developing spinal projection neurons could contribute to the enhanced ability of these sensory inputs to sensitize central nociceptive networks and thereby evoke persistent pain in children following injury. SIGNIFICANCE STATEMENT The neurobiological mechanisms underlying the high prevalence of chronic musculoskeletal pain remain poorly understood, in part because little is known about why sensory neurons innervating muscle appear more capable of sensitizing nociceptive pathways in the CNS compared with skin afferents. The present study identifies, for the first time, the functional properties of muscle and cutaneous afferent synapses onto immature lamina I projection neurons, which convey nociceptive information to the brain. Despite many similarities, an enhanced relative expression of Ca2+-permeable AMPA receptors at muscle afferent synapses drives greater LTP following repetitive stimulation. A preferential ability of the dorsal horn synaptic network to amplify nociceptive input arising from muscle is predicted to favor the generation of musculoskeletal pain following injury. PMID:28069928
The concept of peripheral modulation of bladder sensation
Eastham, Jane E; Gillespie, James I
2013-01-01
It is recognized that, as the bladder fills, there is a corresponding increase in sensation. This awareness of the volume in the bladder is then used in a complex decision making process to determine if there is a need to void. It is also part of everyday experience that, when the bladder is full and sensations strong, these sensations can be suppressed and the desire to void postponed. The obvious explanation for such altered perceptions is that they occur centrally. However, this may not be the only mechanism. There are data to suggest that descending neural influences and local factors might regulate the sensitivity of the systems within the bladder wall generating afferent activity. Specifically, evidence is accumulating to suggest that the motor-sensory system within the bladder wall is influenced in this way. The motor-sensory system, first described over 100 years ago, appears to be a key component in the afferent outflow, the afferent “noise,” generated within the bladder wall. However, the presence and possible importance of this complex system in the generation of bladder sensation has been overlooked in recent years. As the bladder fills the motor activity increases, driven by cholinergic inputs and modulated, possibly, by sympathetic inputs. In this way information on bladder volume can be transmitted to the CNS. It can be argued that the ability to alter the sensitivity of the mechanisms generating the motor component of this motor-sensory system represents a possible indirect way to influence afferent activity and so the perception of bladder volume centrally. Furthermore, it is emerging that the apparent modulation of sensation by drugs to alleviate the symptoms of overactive bladder (OAB), the anti-cholinergics and the new generation of drugs the β3 sympathomimetics, may be the result of their ability to modulate the motor component of the motor sensory system. The possibility of controlling sensation, physiologically and pharmacologically, by influencing afferent firing at its point of origin is a “new” concept in bladder physiology. It is one that deserves careful consideration as it might have wider implications for our understanding of bladder pathology and in the development of new therapeutic drugs. In this overview, evidence for the concept peripheral modulation of bladder afferent outflow is explored. PMID:23917648
Late development of cue integration is linked to sensory fusion in cortex.
Dekker, Tessa M; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I; Welchman, Andrew E; Nardini, Marko
2015-11-02
Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3-5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7-9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6-12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3-5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Late Development of Cue Integration Is Linked to Sensory Fusion in Cortex
Dekker, Tessa M.; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I.; Welchman, Andrew E.; Nardini, Marko
2015-01-01
Summary Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3, 4, 5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7, 8, 9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6–12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3, 4, 5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. PMID:26480841
Auditory perception in the aging brain: the role of inhibition and facilitation in early processing.
Stothart, George; Kazanina, Nina
2016-11-01
Aging affects the interplay between peripheral and cortical auditory processing. Previous studies have demonstrated that older adults are less able to regulate afferent sensory information and are more sensitive to distracting information. Using auditory event-related potentials we investigated the role of cortical inhibition on auditory and audiovisual processing in younger and older adults. Across puretone, auditory and audiovisual speech paradigms older adults showed a consistent pattern of inhibitory deficits, manifested as increased P50 and/or N1 amplitudes and an absent or significantly reduced N2. Older adults were still able to use congruent visual articulatory information to aid auditory processing but appeared to require greater neural effort to resolve conflicts generated by incongruent visual information. In combination, the results provide support for the Inhibitory Deficit Hypothesis of aging. They extend previous findings into the audiovisual domain and highlight older adults' ability to benefit from congruent visual information during speech processing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Uncertainty of sensory signal explains variation of color constancy.
Witzel, Christoph; van Alphen, Carlijn; Godau, Christoph; O'Regan, J Kevin
2016-12-01
Color constancy is the ability to recognize the color of an object (or more generally of a surface) under different illuminations. Without color constancy, surface color as a perceptual attribute would not be meaningful in the visual environment, where illumination changes all the time. Nevertheless, it is not obvious how color constancy is possible in the light of metamer mismatching. Surfaces that produce exactly the same sensory color signal under one illumination (metamerism) may produce utterly different sensory signals under another illumination (metamer mismatching). Here we show that this phenomenon explains to a large extent the variation of color constancy across different colors. For this purpose, color constancy was measured for different colors in an asymmetric matching task with photorealistic images. Color constancy performance was strongly correlated to the size of metamer mismatch volumes, which describe the uncertainty of the sensory signal due to metamer mismatching for a given color. The higher the uncertainty of the sensory signal, the lower the observers' color constancy. At the same time, sensory singularities, color categories, and cone ratios did not affect color constancy. The present findings do not only provide considerable insight into the determinants of color constancy, they also show that metamer mismatch volumes must be taken into account when investigating color as a perceptual property of objects and surfaces.