Sample records for sensory processing disorders

  1. Sensory Processing in Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Crane, Laura; Goddard, Lorna; Pring, Linda

    2009-01-01

    Unusual sensory processing has been widely reported in autism spectrum disorders (ASDs); however, the majority of research in this area has focused on children. The present study assessed sensory processing in adults with ASD using the Adult/Adolescent Sensory Profile (AASP), a 60-item self-report questionnaire assessing levels of sensory…

  2. Sensory processing disorder: any of a nurse practitioner's business?

    PubMed

    Byrne, Mary W

    2009-06-01

    Children who exhibit the confusing symptom patterns associated with sensory processing deficits are often seen first by primary care providers, including family and pediatric nurse practitioners (NPs). The purpose of this article is to alert NPs to the state of the science for these disorders and to the roles NPs could play in filling the knowledge gaps in assessment, treatment, education, and research. Literature searches using PubMed and MedLine databases and clinical practice observations. Sensory integration disorders have only begun to be defined during the past 35 years. They are not currently included in the DSM IV standard terminology, and are not yet substantively incorporated into most health disciplines' curricula or practice, including those of the NP. NPs are in a unique position to test hypothesized terminology for Sensory Processing Disorder (SPD) by contributing precise clinical descriptions of children who match as well as deviate from the criteria for three proposed diagnostic groups: Sensory Modulation Disorder (SMD), Sensory Discrimination Disorder (SDD), and Sensory-Based Motor Disorder (SBMD). Beyond the SPD diagnostic debate, for children with sensory deficit patterns the NP role can incorporate participating in interdisciplinary treatment plans, refining differential diagnoses, providing frontline referral and support for affected children and their families, and making both secondary prevention and critical causal research possible through validation of consistently accepted diagnostic criteria.

  3. Developmental coordination disorders and sensory processing and integration: Incidence, associations and co-morbidities.

    PubMed

    Allen, Susan; Casey, Jackie

    2017-09-01

    Children with developmental coordination disorder or sensory processing and integration difficulties face challenges to participation in daily living. To date there has been no exploration of the co-occurrence of developmental coordination disorders and sensory processing and integration difficulties. Records of children meeting Diagnostic and Statistical Manual - V criteria for developmental coordination disorder ( n  = 93) age 5 to 12 years were examined. Data on motor skills (Movement Assessment Battery for Children - 2) and sensory processing and integration (Sensory Processing Measure) were interrogated. Of the total sample, 88% exhibited some or definite differences in sensory processing and integration. No apparent relationship was observed between motor coordination and sensory processing and integration. The full sample showed high rates of some difficulties in social participation, hearing, body awareness, balance and motion, and planning and ideation. Further, children with co-morbid autistic spectrum disorder showed high rates of difficulties with touch and vision. Most, but not all, children with developmental coordination disorder presented with some difficulties in sensory processing and integration that impacted on their participation in everyday activities. Sensory processing and integration difficulties differed significantly between those with and without co-morbid autistic spectrum disorder.

  4. Sensory reactivity, empathizing and systemizing in autism spectrum conditions and sensory processing disorder.

    PubMed

    Tavassoli, Teresa; Miller, Lucy Jane; Schoen, Sarah A; Jo Brout, Jennifer; Sullivan, Jillian; Baron-Cohen, Simon

    2018-01-01

    Although the DSM-5 added sensory symptoms as a criterion for ASC, there is a group of children who display sensory symptoms but do not have ASC; children with sensory processing disorder (SPD). To be able to differentiate these two disorders, our aim was to evaluate whether children with ASC show more sensory symptomatology and/or different cognitive styles in empathy and systemizing compared to children with SPD and typically developing (TD) children. The study included 210 participants: 68 children with ASC, 79 with SPD and 63 TD children. The Sensory Processing Scale Inventory was used to measure sensory symptoms, the Autism Spectrum Quotient (AQ) to measure autistic traits, and the Empathy Quotient (EQ) and Systemizing Quotient (SQ) to measure cognitive styles. Across groups, a greater sensory symptomatology was associated with lower empathy. Further, both the ASC and SPD groups showed more sensory symptoms than TD children. Children with ASC and SPD only differed on sensory under-reactivity. The ASD group did, however, show lower empathy and higher systemizing scores than the SPD group. Together, this suggest that sensory symptoms alone may not be adequate to differentiate children with ASC and SPD but that cognitive style measures could be used for differential diagnosis. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Visual perception of ADHD children with sensory processing disorder.

    PubMed

    Jung, Hyerim; Woo, Young Jae; Kang, Je Wook; Choi, Yeon Woo; Kim, Kyeong Mi

    2014-04-01

    The aim of the present study was to investigate the visual perception difference between ADHD children with and without sensory processing disorder, and the relationship between sensory processing and visual perception of the children with ADHD. Participants were 47 outpatients, aged 6-8 years, diagnosed with ADHD. After excluding those who met exclusion criteria, 38 subjects were clustered into two groups, ADHD children with and without sensory processing disorder (SPD), using SSP reported by their parents, then subjects completed K-DTVP-2. Spearman correlation analysis was run to determine the relationship between sensory processing and visual perception, and Mann-Whitney-U test was conducted to compare the K-DTVP-2 score of two groups respectively. The ADHD children with SPD performed inferiorly to ADHD children without SPD in the on 3 quotients of K-DTVP-2. The GVP of K-DTVP-2 score was related to Movement Sensitivity section (r=0.368(*)) and Low Energy/Weak section of SSP (r=0.369*). The result of the present study suggests that among children with ADHD, the visual perception is lower in those children with co-morbid SPD. Also, visual perception may be related to sensory processing, especially in the reactions of vestibular and proprioceptive senses. Regarding academic performance, it is necessary to consider how sensory processing issues affect visual perception in children with ADHD.

  6. Helping Children with Sensory Processing Disorders: The Role of Occupational Therapy

    ERIC Educational Resources Information Center

    Sweet, Margarita

    2010-01-01

    Normally functioning sensory systems develop through sensory experiences. Children are stimulated through their senses in many different ways. Even though a person's sensory system is intact, he or she may have a sensory processing disorder (SPD), also known as sensory integration dysfunction. This means the person's brain does not correctly…

  7. Perspectives on Sensory Processing Disorder: A Call for Translational Research

    PubMed Central

    Miller, Lucy J.; Nielsen, Darci M.; Schoen, Sarah A.; Brett-Green, Barbara A.

    2009-01-01

    This article explores the convergence of two fields, which have similar theoretical origins: a clinical field originally known as sensory integration and a branch of neuroscience that conducts research in an area also called sensory integration. Clinically, the term was used to identify a pattern of dysfunction in children and adults, as well as a related theory, assessment, and treatment method for children who have atypical responses to ordinary sensory stimulation. Currently the term for the disorder is sensory processing disorder (SPD). In neuroscience, the term sensory integration refers to converging information in the brain from one or more sensory domains. A recent subspecialty in neuroscience labeled multisensory integration (MSI) refers to the neural process that occurs when sensory input from two or more different sensory modalities converge. Understanding the specific meanings of the term sensory integration intended by the clinical and neuroscience fields and the term MSI in neuroscience is critical. A translational research approach would improve exploration of crucial research questions in both the basic science and clinical science. Refinement of the conceptual model of the disorder and the related treatment approach would help prioritize which specific hypotheses should be studied in both the clinical and neuroscience fields. The issue is how we can facilitate a translational approach between researchers in the two fields. Multidisciplinary, collaborative studies would increase knowledge of brain function and could make a significant contribution to alleviating the impairments of individuals with SPD and their families. PMID:19826493

  8. Sensory-processing sensitivity in social anxiety disorder: Relationship to harm avoidance and diagnostic subtypes

    PubMed Central

    Hofmann, Stefan G.; Bitran, Stella

    2007-01-01

    Sensory-processing sensitivity is assumed to be a heritable vulnerability factor for shyness. The present study is the first to examine sensory-processing sensitivity among individuals with social anxiety disorder. The results showed that the construct is separate from social anxiety, but it is highly correlated with harm avoidance and agoraphobic avoidance. Individuals with a generalized subtype of social anxiety disorder reported higher levels of sensory-processing sensitivity than individuals with a non-generalized subtype. These preliminary findings suggest that sensory-processing sensitivity is uniquely associated with the generalized subtype of social anxiety disorder. Recommendations for future research are discussed. PMID:17241764

  9. The Experience of Children Living with Sensory Processing Disorder

    ERIC Educational Resources Information Center

    Scotch, Melissa Dawn

    2017-01-01

    Sensory processing disorder (SPD) is a neurological condition that alters the way an individual perceives sensory information. Although the condition has been studied for more than 40 years, SPD remains a difficult condition to diagnose, treat, and live with because it affects individuals uniquely, and the symptoms can change from childhood to…

  10. The Applicability of the Short Sensory Profile for Screening Sensory Processing Disorders among Israeli Children

    ERIC Educational Resources Information Center

    Engel-Yeger, Batya

    2010-01-01

    The objective of this study was to examine the applicability of the short sensory profile (SSP) for screening sensory processing disorders (SPDs) among typical children in Israel, and to evaluate the relationship between SPDs and socio-demographic parameters. Participants were 395 Israeli children, aged 3 years to 10 years 11 months, with typical…

  11. Can tactile sensory processing differentiate between children with autistic disorder and asperger's disorder?

    PubMed

    Ghanizadeh, Ahmad

    2011-05-01

    There are debates whether autistic disorder (autism) and Asperger's disorder are two distinct disorders. Moreover, interventional sensory occupational therapy should consider the clinical characteristics of patients. Already, commonalities and differences between Asperger's disorder and autistic disorder are not well studied. The aim of this study is to compare tactile sensory function of children with autistic disorder and children with Asperger's disorder. Tactile sensory function was compared between 36 children with autism and 19 children with Asperger's disorder. The two disorders were diagnosed based on Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision. The parent-reported Tactile Dysfunction Checklist was used to assess the three aspects of hypersensitivity, hyposensitivity, and poor tactile perception and discrimination. Developmental coordination was also assessed. Developmental coordination problems total score was not associated with group. The mean (standard deviation) score of tactile hyper-responsivity was not different between the groups. Tactile hyporesponsivity and poor tactile perception and discrimination scores were statistically higher in autistic disorder than Asperger's disorder group. These results for the first time indicated that at least some aspects of tactile perception can differentiate these two disorders. Children with autistic disorder have more tactile sensory seeking behaviors than children with Asperger's disorder. Moreover, the ability of children with autistic disorder for tactile discrimination and sensory perception is less than those with Asperger's disorder. Interventional sensory therapy in children with autistic disorder should have some characteristics that can be different and specific for children with Asperger's disorder. Formal intelligence quotient testing was not performed on all of the children evaluated, which is a limitation to this study. In some cases, a clinical estimation of

  12. A Systematic Review of Sensory Processing Interventions for Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Case-Smith, Jane; Weaver, Lindy L.; Fristad, Mary A.

    2015-01-01

    Children with autism spectrum disorders often exhibit co-occurring sensory processing problems and receive interventions that target self-regulation. In current practice, sensory interventions apply different theoretic constructs, focus on different goals, use a variety of sensory modalities, and involve markedly disparate procedures. Previous…

  13. Comparing and Exploring the Sensory Processing Patterns of Higher Education Students With Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder.

    PubMed

    Clince, Maria; Connolly, Laura; Nolan, Clodagh

    2016-01-01

    Research regarding sensory processing and adults with attention deficit hyperactivity disorder (ADHD) or autism spectrum disorder (ASD) is limited. This study aimed to compare sensory processing patterns of groups of higher education students with ADHD or ASD and to explore the implications of these disorders for their college life. The Adolescent/Adult Sensory Profile was administered to 28 students with ADHD and 27 students with ASD. Students and professionals were interviewed. The majority of students received scores that differed from those of the general population. Students with ADHD received significantly higher scores than students with ASD in relation to sensation seeking; however, there were no other major differences. Few differences exist between the sensory processing patterns of students with ADHD and ASD; however, both groups differ significantly from the general population. Occupational therapists should consider sensory processing patterns when designing supports for these groups. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  14. Can Tactile Sensory Processing Differentiate Between Children with Autistic Disorder and Asperger's Disorder?

    PubMed Central

    2011-01-01

    Objective There are debates whether autistic disorder (autism) and Asperger's disorder are two distinct disorders. Moreover, interventional sensory occupational therapy should consider the clinical characteristics of patients. Already, commonalities and differences between Asperger's disorder and autistic disorder are not well studied. The aim of this study is to compare tactile sensory function of children with autistic disorder and children with Asperger's disorder. Methods Tactile sensory function was compared between 36 children with autism and 19 children with Asperger's disorder. The two disorders were diagnosed based on Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision. The parent-reported Tactile Dysfunction Checklist was used to assess the three aspects of hypersensitivity, hyposensitivity, and poor tactile perception and discrimination. Developmental coordination was also assessed. Results Developmental coordination problems total score was not associated with group. The mean (standard deviation) score of tactile hyper-responsivity was not different between the groups. Tactile hyporesponsivity and poor tactile perception and discrimination scores were statistically higher in autistic disorder than Asperger's disorder group. Conclusion These results for the first time indicated that at least some aspects of tactile perception can differentiate these two disorders. Children with autistic disorder have more tactile sensory seeking behaviors than children with Asperger's disorder. Moreover, the ability of children with autistic disorder for tactile discrimination and sensory perception is less than those with Asperger's disorder. Interventional sensory therapy in children with autistic disorder should have some characteristics that can be different and specific for children with Asperger's disorder. Formal intelligence quotient testing was not performed on all of the children evaluated, which is a limitation to this study. In

  15. Sensory aspects of movement disorders

    PubMed Central

    Patel, Neepa; Jankovic, Joseph; Hallett, Mark

    2016-01-01

    Movement disorders, which include disorders such as Parkinson’s disease, dystonia, Tourette’s syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed. PMID:24331796

  16. [Treatment of sensory information in neurodevelopmental disorders].

    PubMed

    Zoenen, D; Delvenne, V

    2018-01-01

    The processing of information coming from the elementary sensory systems conditions the development and fulfilment of a child's abilities. A dysfunction in the sensory stimuli processing may generate behavioural patterns that might affect a child's learning capacities as well as his relational sphere. The DSM-5 recognizes the sensory abnormalities as part of the symptomatology of Autism Spectrum Disorders. However, similar features are observed in other neurodevelopmental disorders. Over the years, these conditions have been the subject of numerous controversies. Nowadays, they are all grouped together under the term of Neurodevelopmental Disorders in DSM-5. The semiology of these disorders is rich and complex due to the frequent presence of comorbidities and their impact on cognitive, behavioural, and sensorimotor organization but also on a child's personality, as well as his family, his school, or his social relationships. We carried out a review of the literature on the alterations in the treatment of sensory information in ASD but also on the different neurodevelopmental clinical panels in order to show their impact on child development. Atypical sensory profiles have been demonstrated in several neurodevelopmental clinical populations such as Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorders, Dysphasia and Intellectual Disability. Abnomalies in the processing of sensory information should be systematically evaluated in child developmental disorders.

  17. White matter correlates of sensory processing in autism spectrum disorders

    PubMed Central

    Pryweller, Jennifer R.; Schauder, Kimberly B.; Anderson, Adam W.; Heacock, Jessica L.; Foss-Feig, Jennifer H.; Newsom, Cassandra R.; Loring, Whitney A.; Cascio, Carissa J.

    2014-01-01

    Autism spectrum disorder (ASD) has been characterized by atypical socio-communicative behavior, sensorimotor impairment and abnormal neurodevelopmental trajectories. DTI has been used to determine the presence and nature of abnormality in white matter integrity that may contribute to the behavioral phenomena that characterize ASD. Although atypical patterns of sensory responding in ASD are well documented in the behavioral literature, much less is known about the neural networks associated with aberrant sensory processing. To address the roles of basic sensory, sensory association and early attentional processes in sensory responsiveness in ASD, our investigation focused on five white matter fiber tracts known to be involved in these various stages of sensory processing: superior corona radiata, centrum semiovale, inferior longitudinal fasciculus, posterior limb of the internal capsule, and splenium. We acquired high angular resolution diffusion images from 32 children with ASD and 26 typically developing children between the ages of 5 and 8. We also administered sensory assessments to examine brain-behavior relationships between white matter integrity and sensory variables. Our findings suggest a modulatory role of the inferior longitudinal fasciculus and splenium in atypical sensorimotor and early attention processes in ASD. Increased tactile defensiveness was found to be related to reduced fractional anisotropy in the inferior longitudinal fasciculus, which may reflect an aberrant connection between limbic structures in the temporal lobe and the inferior parietal cortex. Our findings also corroborate the modulatory role of the splenium in attentional orienting, but suggest the possibility of a more diffuse or separable network for social orienting in ASD. Future investigation should consider the use of whole brain analyses for a more robust assessment of white matter microstructure. PMID:25379451

  18. Sensory Processing in Low-Functioning Adults with Autism Spectrum Disorder: Distinct Sensory Profiles and Their Relationships with Behavioral Dysfunction

    ERIC Educational Resources Information Center

    Gonthier, Corentin; Longuépée, Lucie; Bouvard, Martine

    2016-01-01

    Sensory processing abnormalities are relatively universal in individuals with autism spectrum disorder, and can be very disabling. Surprisingly, very few studies have investigated these abnormalities in low-functioning adults with autism. The goals of the present study were (a) to characterize distinct profiles of sensory dysfunction, and (b) to…

  19. Brief Report: Assessment of Early Sensory Processing in Infants at High-Risk of Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Germani, Tamara; Zwaigenbaum, Lonnie; Bryson, Susan; Brian, Jessica; Smith, Isabel; Roberts, Wendy; Szatmari, Peter; Roncadin, Caroline; Sacrey, Lori Ann R.; Garon, Nancy; Vaillancourt, Tracy

    2014-01-01

    This study assessed sensory processing differences between 24-month infants at high-risk of autism spectrum disorder (ASD), each with an older sibling with ASD, and low-risk infants with no family history of ASD. Sensory processing differences were assessed using the Infant/Toddler Sensory Profile, a parent-reported measure. Groups were compared…

  20. The influence of posttraumatic stress disorder, depression, and sensory processing patterns on occupational engagement: a case study.

    PubMed

    Champagne, Tina

    2011-01-01

    The purpose of this article is to provide a brief overview of how Posttraumatic Stress Disorder (PTSD), Depression, and Sensory Processing patterns influence occupational engagement, including work performance. Interventions and outcomes of the Sensory Modulation Program and approaches from Cognitive Behavior Therapy (CBT) are reviewed through single case exploration with a 42 year-old woman in outpatient services. The marked increase in occupational engagement and improved work performance in this single case review demonstrates the need for more research on the use of the Sensory Modulation Program and approaches from CBT with populations with PTSD, Depression, and Sensory Processing disorder.

  1. Attention Deficit Hyperactivity Disorder and Sensory Modulation Disorder: A Comparison of Behavior and Physiology

    ERIC Educational Resources Information Center

    Miller, Lucy Jane; Nielsen, Darci M.; Schoen, Sarah A.

    2012-01-01

    Children with attention deficit hyperactivity disorder (ADHD) are impulsive, inattentive and hyperactive, while children with sensory modulation disorder (SMD), one subtype of Sensory Processing Disorder, have difficulty responding adaptively to daily sensory experiences. ADHD and SMD are often difficult to distinguish. To differentiate these…

  2. Attention deficit hyperactivity disorder and sensory modulation disorder: a comparison of behavior and physiology.

    PubMed

    Miller, Lucy Jane; Nielsen, Darci M; Schoen, Sarah A

    2012-01-01

    Children with attention deficit hyperactivity disorder (ADHD) are impulsive, inattentive and hyperactive, while children with sensory modulation disorder (SMD), one subtype of Sensory Processing Disorder, have difficulty responding adaptively to daily sensory experiences. ADHD and SMD are often difficult to distinguish. To differentiate these disorders in children, clinical ADHD, SMD, and dual diagnoses were assessed. All groups had significantly more sensory, attention, activity, impulsivity, and emotional difficulties than typical children, but with distinct profiles. Inattention was greater in ADHD compared to SMD. Dual diagnoses had more sensory-related behaviors than ADHD and more attentional difficulties than SMD. SMD had more sensory issues, somatic complaints, anxiety/depression, and difficulty adapting than ADHD. SMD had greater physiological/electrodermal reactivity to sensory stimuli than ADHD and typical controls. Parent-report measures identifying sensory, attentional, hyperactive, and impulsive difficulties varied in agreement with clinician's diagnoses. Evidence suggests ADHD and SMD are distinct diagnoses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Restless 'rest': intrinsic sensory hyperactivity and disinhibition in post-traumatic stress disorder.

    PubMed

    Clancy, Kevin; Ding, Mingzhou; Bernat, Edward; Schmidt, Norman B; Li, Wen

    2017-07-01

    Post-traumatic stress disorder is characterized by exaggerated threat response, and theoretical accounts to date have focused on impaired threat processing and dysregulated prefrontal-cortex-amygdala circuitry. Nevertheless, evidence is accruing for broad, threat-neutral sensory hyperactivity in post-traumatic stress disorder. As low-level, sensory processing impacts higher-order operations, such sensory anomalies can contribute to widespread dysfunctions, presenting an additional aetiological mechanism for post-traumatic stress disorder. To elucidate a sensory pathology of post-traumatic stress disorder, we examined intrinsic visual cortical activity (based on posterior alpha oscillations) and bottom-up sensory-driven causal connectivity (Granger causality in the alpha band) during a resting state (eyes open) and a passive, serial picture viewing state. Compared to patients with generalized anxiety disorder (n = 24) and healthy control subjects (n = 20), patients with post-traumatic stress disorder (n = 25) demonstrated intrinsic sensory hyperactivity (suppressed posterior alpha power, source-localized to the visual cortex-cuneus and precuneus) and bottom-up inhibition deficits (reduced posterior→frontal Granger causality). As sensory input increased from resting to passive picture viewing, patients with post-traumatic stress disorder failed to demonstrate alpha adaptation, highlighting a rigid, set mode of sensory hyperactivity. Interestingly, patients with post-traumatic stress disorder also showed heightened frontal processing (augmented frontal gamma power, source-localized to the superior frontal gyrus and dorsal cingulate cortex), accompanied by attenuated top-down inhibition (reduced frontal→posterior causality). Importantly, not only did suppressed alpha power and bottom-up causality correlate with heightened frontal gamma power, they also correlated with increased severity of sensory and executive dysfunctions (i.e. hypervigilance and impulse control

  4. Sensory Processing Subtypes in Autism: Association with Adaptive Behavior

    ERIC Educational Resources Information Center

    Lane, Alison E.; Young, Robyn L.; Baker, Amy E. Z.; Angley, Manya T.

    2010-01-01

    Children with autism are frequently observed to experience difficulties in sensory processing. This study examined specific patterns of sensory processing in 54 children with autistic disorder and their association with adaptive behavior. Model-based cluster analysis revealed three distinct sensory processing subtypes in autism. These subtypes…

  5. Sensory processing in autism spectrum disorders and Fragile X syndrome—From the clinic to animal models

    PubMed Central

    Sinclair, D.; Oranje, B.; Razak, K.A.; Siegel, S.J.; Schmid, S.

    2017-01-01

    Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics. PMID:27235081

  6. Measuring Sensory Reactivity in Autism Spectrum Disorder: Application and Simplification of a Clinician-Administered Sensory Observation Scale

    ERIC Educational Resources Information Center

    Tavassoli, Teresa; Bellesheim, Katherine; Siper, Paige M.; Wang, A. Ting; Halpern, Danielle; Gorenstein, Michelle; Grodberg, David; Kolevzon, Alexander; Buxbaum, Joseph D.

    2016-01-01

    Sensory reactivity is a new DSM-5 criterion for autism spectrum disorder (ASD). The current study aims to validate a clinician-administered sensory observation in ASD, the Sensory Processing Scale Assessment (SPS). The SPS and the Short Sensory Profile (SSP) parent-report were used to measure sensory reactivity in children with ASD (n = 35) and…

  7. Auditory-prosodic processing in bipolar disorder; from sensory perception to emotion.

    PubMed

    Van Rheenen, Tamsyn E; Rossell, Susan L

    2013-12-01

    Accurate emotion processing is critical to understanding the social world. Despite growing evidence of facial emotion processing impairments in patients with bipolar disorder (BD), comprehensive investigations of emotional prosodic processing is limited. The existing (albeit sparse) literature is inconsistent at best, and confounded by failures to control for the effects of gender or low level sensory-perceptual impairments. The present study sought to address this paucity of research by utilizing a novel behavioural battery to comprehensively investigate the auditory-prosodic profile of BD. Fifty BD patients and 52 healthy controls completed tasks assessing emotional and linguistic prosody, and sensitivity for discriminating tones that deviate in amplitude, duration and pitch. BD patients were less sensitive than their control counterparts in discriminating amplitude and durational cues but not pitch cues or linguistic prosody. They also demonstrated impaired ability to recognize happy intonations; although this was specific to male's with the disorder. The recognition of happy in the patient group was correlated with pitch and amplitude sensitivity in female patients only. The small sample size of patients after stratification by current mood state prevented us from conducting subgroup comparisons between symptomatic, euthymic and control participants to explicitly examine the effects of mood. Our findings indicate the existence of a female advantage for the processing of emotional prosody in BD, specifically for the processing of happy. Although male BD patients were impaired in their ability to recognize happy prosody, this was unrelated to reduced tone discrimination sensitivity. This study indicates the importance of examining both gender and low order sensory perceptual capacity when examining emotional prosody. © 2013 Elsevier B.V. All rights reserved.

  8. Sensory Sensitivity and Food Selectivity in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Chistol, Liem T.; Bandini, Linda G.; Must, Aviva; Phillips, Sarah; Cermak, Sharon A.; Curtin, Carol

    2018-01-01

    Few studies have compared atypical sensory characteristics and food selectivity between children with and without autism spectrum disorder (ASD). We compared oral sensory processing between children with (n = 53) and without ASD (n = 58), ages 3-11 years. We also examined the relationships between atypical oral sensory processing, food…

  9. Relationships between atypical sensory processing patterns, maladaptive behaviour and maternal stress in Spanish children with autism spectrum disorder.

    PubMed

    Nieto, C; López, B; Gandía, H

    2017-12-01

    This study investigated sensory processing in a sample of Spanish children with autism spectrum disorder (ASD). Specifically, the study aimed to explore (1) the prevalence and distribution of atypical sensory processing patterns, (2) the relationship between adaptive and maladaptive behaviour with atypical sensory processing and (3) the possible relationship between sensory subtype and maternal stress. The short sensory profile 2 (Dunn 2014) and the vineland adaptive behavior scale (Sparrow et al. 1984) were administered to examine the sensory processing difficulties and maladaptive behaviours of 45 children with ASD aged 3 to 14; their mothers also completed the parenting stress index-short form (Abidin 1995). Atypical sensory features were found in 86.7% of the children; avoider and sensor being the two most common patterns. No significant relationship was found between atypical sensory processing and adaptive behaviour. However, the analysis showed a strong relationship between sensory processing and maladaptive behaviour. Both maladaptive behaviour and sensory processing difficulties correlated significantly with maternal stress although maternal stress was predicted only by the sensory variable, and in particular by the avoider pattern. The findings suggest that sensory features in ASD may be driving the high prevalence of parental stress in carers. They also suggest that the effect on parental stress that has been attributed traditionally to maladaptive behaviours may be driven by sensory difficulties. The implications of these findings are discussed in relation to the development of interventions and the need to explore contextual and cultural variables as possible sources of variability. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  10. Can Sensory Gallery Guides for Children with Sensory Processing Challenges Improve Their Museum Experience?

    ERIC Educational Resources Information Center

    Fletcher, Tina S.; Blake, Amanda B.; Shelffo, Kathleen E.

    2018-01-01

    Children routinely visit art museums as part of their educational experience and family time, many of them having special needs. The number of children diagnosed with autism and sensory processing disorders is increasing. These conditions may include heightened sensory "avoiding" or "seeking" behaviors that can interfere with a…

  11. Atypical Sensory Processing in Adolescents with an Autism Spectrum Disorder and Their Non-Affected Siblings

    ERIC Educational Resources Information Center

    De la Marche, Wouter; Steyaert, Jean; Noens, Ilse

    2012-01-01

    Atypical sensory processing is common in autism spectrum disorders (ASD). Specific profiles have been proposed in different age groups, but no study has focused specifically on adolescents. Identifying traits of ASD that are shared by individuals with ASD and their non-affected family members can shed light on the genetic underpinnings of ASD.…

  12. A Comparison of Patterns of Sensory Processing in Children with and without Developmental Disabilities

    ERIC Educational Resources Information Center

    Cheung, Phoebe P. P.; Siu, Andrew M. H.

    2009-01-01

    This study compared the patterns of sensory processing among children with autism spectrum disorder (ASD), attention deficit and hyperactivity disorder (ADHD), and children without disabilities. Parents reported on the frequency of sensory processing issues by completing the Chinese Sensory Profile (CSP). Children with disabilities (ASD or ADHD)…

  13. Sensory Subtypes in Preschool Aged Children with Autism Spectrum Disorder.

    PubMed

    Tomchek, Scott D; Little, Lauren M; Myers, John; Dunn, Winnie

    2018-06-01

    Given the heterogeneity of autism spectrum disorder (ASD), research has investigated how sensory features elucidate subtypes that enhance our understanding of etiology and tailored treatment approaches. Previous studies, however, have not integrated core developmental behaviors with sensory features in investigations of subtypes in ASD. Therefore, we used latent profile analysis to examine subtypes in a preschool aged sample considering sensory processing patterns in combination with social-communication skill, motor performance, and adaptive behavior. Results showed four subtypes that differed by degree and quality of sensory features, age and differential presentation of developmental skills. Findings partially align with previous literature on sensory subtypes and extends our understanding of how sensory processing aligns with other developmental domains in young children with ASD.

  14. Behavioral, Perceptual, and Neural Alterations in Sensory and Multisensory Function in Autism Spectrum Disorder

    PubMed Central

    Baum, Sarah H.; Stevenson, Ryan A.; Wallace, Mark T.

    2015-01-01

    Although sensory processing challenges have been noted since the first clinical descriptions of autism, it has taken until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 for sensory problems to be included as part of the core symptoms of autism spectrum disorder (ASD) in the diagnostic profile. Because sensory information forms the building blocks for higher-order social and cognitive functions, we argue that sensory processing is not only an additional piece of the puzzle, but rather a critical cornerstone for characterizing and understanding ASD. In this review we discuss what is currently known about sensory processing in ASD, how sensory function fits within contemporary models of ASD, and what is understood about the differences in the underlying neural processing of sensory and social communication observed between individuals with and without ASD. In addition to highlighting the sensory features associated with ASD, we also emphasize the importance of multisensory processing in building perceptual and cognitive representations, and how deficits in multisensory integration may also be a core characteristic of ASD. PMID:26455789

  15. Evaluating Sensory Processing in Fragile X Syndrome: Psychometric Analysis of the Brain Body Center Sensory Scales (BBCSS).

    PubMed

    Kolacz, Jacek; Raspa, Melissa; Heilman, Keri J; Porges, Stephen W

    2018-06-01

    Individuals with fragile X syndrome (FXS), especially those co-diagnosed with autism spectrum disorder (ASD), face many sensory processing challenges. However, sensory processing measures informed by neurophysiology are lacking. This paper describes the development and psychometric properties of a parent/caregiver report, the Brain-Body Center Sensory Scales (BBCSS), based on Polyvagal Theory. Parents/guardians reported on 333 individuals with FXS, 41% with ASD features. Factor structure using a split-sample exploratory-confirmatory design conformed to neurophysiological predictions. Internal consistency, test-retest, and inter-rater reliability were good to excellent. BBCSS subscales converged with the Sensory Profile and Sensory Experiences Questionnaire. However, data also suggest that BBCSS subscales reflect unique features related to sensory processing. Individuals with FXS and ASD features displayed more sensory challenges on most subscales.

  16. SENSORY PROCESSING DURING CHILDHOOD IN PRETERM INFANTS: A SYSTEMATIC REVIEW.

    PubMed

    Machado, Ana Carolina Cabral de Paula; Oliveira, Suelen Rosa de; Magalhães, Lívia de Castro; Miranda, Débora Marques de; Bouzada, Maria Cândida Ferrarez

    2017-01-01

    To conduct a systematic search for grounded and quality evidence of sensory processing in preterm infants during childhood. The search of the available literature on the theme was held in the following electronic databases: Medical Literature Analysis and Retrieval System Online (Medline)/PubMed, Latin American and Caribbean Literature in Health Sciences (Lilacs)/Virtual Library in Health (BVS), Índice Bibliográfico Español de Ciencias de la Salud (IBECS)/BVS, Scopus, and Web of Science. We included only original indexed studies with a quantitative approach, which were available in full text on digital media, published in Portuguese, English, or Spanish between 2005 and 2015, involving children aged 0-9years. 581 articles were identified and eight were included. Six studies (75%) found high frequency of dysfunction in sensory processing in preterm infants. The association of sensory processing with developmental outcomes was observed in three studies (37.5%). The association of sensory processing with neonatal characteristics was observed in five studies (62.5%), and the sensory processing results are often associated with gestational age, male gender, and white matter lesions. The current literature suggests that preterm birth affects the sensory processing, negatively. Gestational age, male gender, and white matter lesions appear as risk factors for sensoryprocessing disorders in preterm infants. The impairment in the ability to receivesensory inputs, to integrateand to adapt to them seems to have a negative effect on motor, cognitive, and language development of these children. We highlight the feasibility of identifying sensory processing disorders early in life, favoring early clinical interventions.

  17. Assessing Sensory Processing Dysfunction in Adults and Adolescents with Autism Spectrum Disorder: A Scoping Review

    PubMed Central

    DuBois, Denise; Desarkar, Pushpal

    2017-01-01

    Sensory reactivity is a diagnostic criterion for Autism Spectrum Disorder (ASD), and has been associated with poorer functional outcomes, behavioral difficulties, and autism severity across the lifespan. Yet, there is little consensus on best practice approaches to assessing sensory processing dysfunction in adolescents and adults with ASD. Despite growing evidence that sensory symptoms persist into adolescence and adulthood, there is a lack of norms for older age groups, and pediatric assessments may not target appropriate functional outcomes or environments. This review identified approaches used to measure sensory processing in the scientific literature, and to describe and compare these approaches to current best practice guidelines that can be incorporated into evidence-based practice. Method and Analysis: A search of scientific databases and grey literature (professional association and ASD society websites), from January 1987–May 2017, uncovered 4769 articles and 12 clinical guidelines. Study and sample characteristics were extracted, charted, and categorized according to assessment approach. Results: There were 66 articles included after article screening. Five categories of assessment approaches were identified: Self- and Proxy-Report Questionnaires, Psychophysical Assessment, Direct Behavioral Observation, Qualitative Interview Techniques, and Neuroimaging/EEG. Sensory research to date has focused on individuals with high-functioning ASD, most commonly through the use of self-report questionnaires. The Adolescent and Adult Sensory Profile (AASP) is the most widely used assessment measure (n = 22), however, a number of other assessment approaches may demonstrate strengths specific to the ASD population. Multi-method approaches to assessment (e.g., combining psychophysical or observation with questionnaires) may have clinical applicability to interdisciplinary clinical teams serving adolescents and adults with ASD. Contribution: A comprehensive knowledge

  18. Abnormal Sensory Experiences, Synaesthesia, and Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Fluegge, Keith

    2017-01-01

    Preliminary evidence suggests that sensory processing may be affected in autism spectrum disorders (ASD). The purpose of this letter is to highlight a few recent studies on the topic and tie the findings to a recently identified epidemiological risk factor for ASD, principally environmental exposure to the air pollutant, nitrous oxide (N[subscript…

  19. Sensory Symptoms and Processing of Nonverbal Auditory and Visual Stimuli in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Stewart, Claire R.; Sanchez, Sandra S.; Grenesko, Emily L.; Brown, Christine M.; Chen, Colleen P.; Keehn, Brandon; Velasquez, Francisco; Lincoln, Alan J.; Müller, Ralph-Axel

    2016-01-01

    Atypical sensory responses are common in autism spectrum disorder (ASD). While evidence suggests impaired auditory-visual integration for verbal information, findings for nonverbal stimuli are inconsistent. We tested for sensory symptoms in children with ASD (using the Adolescent/Adult Sensory Profile) and examined unisensory and bisensory…

  20. SENSORY PROCESSING DURING CHILDHOOD IN PRETERM INFANTS: A SYSTEMATIC REVIEW

    PubMed Central

    Machado, Ana Carolina Cabral de Paula; de Oliveira, Suelen Rosa; Magalhães, Lívia de Castro; de Miranda, Débora Marques; Bouzada, Maria Cândida Ferrarez

    2017-01-01

    ABSTRACT Objective: To conduct a systematic search for grounded and quality evidence of sensory processing in preterm infants during childhood. Data source: The search of the available literature on the theme was held in the following electronic databases: Medical Literature Analysis and Retrieval System Online (Medline)/PubMed, Latin American and Caribbean Literature in Health Sciences (Lilacs)/Virtual Library in Health (BVS), Índice Bibliográfico Español de Ciencias de la Salud (IBECS)/BVS, Scopus, and Web of Science. We included only original indexed studies with a quantitative approach, which were available in full text on digital media, published in Portuguese, English, or Spanish between 2005 and 2015, involving children aged 0-9years. Data synthesis: 581 articles were identified and eight were included. Six studies (75%) found high frequency of dysfunction in sensory processing in preterm infants. The association of sensory processing with developmental outcomes was observed in three studies (37.5%). The association of sensory processing with neonatal characteristics was observed in five studies (62.5%), and the sensory processing results are often associated with gestational age, male gender, and white matter lesions. Conclusions: The current literature suggests that preterm birth affects the sensory processing, negatively. Gestational age, male gender, and white matter lesions appear as risk factors for sensoryprocessing disorders in preterm infants. The impairment in the ability to receivesensory inputs, to integrateand to adapt to them seems to have a negative effect on motor, cognitive, and language development of these children. We highlight the feasibility of identifying sensory processing disorders early in life, favoring early clinical interventions. PMID:28977307

  1. Sensory Processing in Children with Autism Spectrum Disorder and/or Attention Deficit Hyperactivity Disorder in the Home and Classroom Contexts

    PubMed Central

    Sanz-Cervera, Pilar; Pastor-Cerezuela, Gemma; González-Sala, Francisco; Tárraga-Mínguez, Raúl; Fernández-Andrés, Maria-Inmaculada

    2017-01-01

    Children with neurodevelopmental disorders often show impairments in sensory processing (SP) and higher functions. The main objective of this study was to compare SP, praxis and social participation (SOC) in four groups of children: ASD Group (n = 21), ADHD Group (n = 21), ASD+ADHD Group (n = 21), and Comparison Group (n = 27). Participants were the parents and teachers of these children who were 5–8 years old (M = 6.32). They completed the Sensory Processing Measure (SPM) to evaluate the sensory profile, praxis and SOC of the children in both the home and classroom contexts. In the home context, the most affected was the ASD+ADHD group. The ADHD group obtained higher scores than the ASD group on the Body Awareness (BOD) subscale, indicating a higher level of dysfunction. The ASD group, however, did not obtain higher scores than the ADHD group on any subscale. In the classroom context, the most affected were the two ASD groups: the ASD+ADHD group obtained higher scores than the ADHD group on the Hearing (HEA) and Social Participation (SOC) subscales, and the ASD group obtained higher scores than the ADHD group on the SOC subscale. Regarding sensory modalities, difficulties in proprioception seem to be more characteristic to the ADHD condition. As for higher-level functioning, social difficulties seem to be more characteristic to the ASD condition. Differences between the two contexts were only found in the ASD group, which could be related to contextual hyperselectivity, an inherent autistic feature. Despite possible individual differences, specific intervention programs should be developed to improve the sensory challenges faced by children with different diagnoses. PMID:29075217

  2. Pathophysiology of Migraine: A Disorder of Sensory Processing

    PubMed Central

    Holland, Philip R.; Martins-Oliveira, Margarida; Hoffmann, Jan; Schankin, Christoph; Akerman, Simon

    2017-01-01

    Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the “humors” through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology. PMID:28179394

  3. The Sensory Environment and Participation of Preschool Children With Autism Spectrum Disorder.

    PubMed

    Piller, Aimee; Pfeiffer, Beth

    2016-07-01

    Sensory processing is recognized as impacting participation for preschool children with autism spectrum disorder (ASD). Little research exists to examine the impact of the sensory environment on the participation patterns of children with ASD, specifically from a contextual standpoint. The researchers in this study examined the viewpoint of teachers and occupational therapists on the sensory-related environmental barriers to participation within the preschool context. Qualitative descriptive methodology was used for data collection and analysis. Thirteen preschool teachers and occupational therapists were interviewed. Sensory aspects of the environment both inhibited and enhanced participation. Physical and temporal components of the environment are identified as being the most influential. Modifications of the environment are identified as increasing participation. It is important to consider the sensory aspects of the environment, in addition to the sensory processing patterns of the person in assessment and intervention planning within the preschool environment. © The Author(s) 2016.

  4. Toward an Interdisciplinary Understanding of Sensory Dysfunction in Autism Spectrum Disorder: An Integration of the Neural and Symptom Literatures

    PubMed Central

    Schauder, Kimberly B.; Bennetto, Loisa

    2016-01-01

    Sensory processing differences have long been associated with autism spectrum disorder (ASD), and they have recently been added to the diagnostic criteria for the disorder. The focus on sensory processing in ASD research has increased substantially in the last decade. This research has been approached from two different perspectives: the first focuses on characterizing the symptoms that manifest in response to real world sensory stimulation, and the second focuses on the neural pathways and mechanisms underlying sensory processing. The purpose of this paper is to integrate the empirical literature on sensory processing in ASD from the last decade, including both studies characterizing sensory symptoms and those that investigate neural response to sensory stimuli. We begin with a discussion of definitions to clarify some of the inconsistencies in terminology that currently exist in the field. Next, the sensory symptoms literature is reviewed with a particular focus on developmental considerations and the relationship of sensory symptoms to other core features of the disorder. Then, the neuroscience literature is reviewed with a focus on methodological approaches and specific sensory modalities. Currently, these sensory symptoms and neuroscience perspectives are largely developing independently from each other leading to multiple, but separate, theories and methods, thus creating a multidisciplinary approach to sensory processing in ASD. In order to progress our understanding of sensory processing in ASD, it is now critical to integrate these two research perspectives and move toward an interdisciplinary approach. This will inevitably aid in a better understanding of the underlying biological basis of these symptoms and help realize the translational value through its application to early identification and treatment. The review ends with specific recommendations for future research to help bridge these two research perspectives in order to advance our understanding

  5. Sensory Processing Abilities and Their Relation to Participation in Leisure Activities among Children with High-Functioning Autism Spectrum Disorder (HFASD)

    ERIC Educational Resources Information Center

    Hochhauser, Michal; Engel-Yeger, Batya

    2010-01-01

    Children with autism may have atypical sensory processing abilities, which are known to impact child's performance and participation. However, lack of information exists regarding the expression of these abilities in specific groups on the spectrum, as children with high-functioning autism spectrum disorder (HFASD). This study aimed to…

  6. The Relationship between Sensory Processing Difficulties and Behaviour in Children Aged 5-9 Who Are at Risk of Developing Conduct Disorder

    ERIC Educational Resources Information Center

    Fox, Cara; Snow, Pamela C.; Holland, Kerry

    2014-01-01

    Behavioural problems in childhood are common, with significant and wide-ranging implications for individuals, families and the community. There is some evidence that sensory processing difficulties are associated with behavioural problems in children with disabilities such as autism spectrum disorders (ASDs) and attention-deficit/hyperactivity…

  7. Quantitative Sensory Testing in Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Fründt, Odette; Grashorn, Wiebke; Schöttle, Daniel; Peiker, Ina; David, Nicole; Engel, Andreas K.; Forkmann, Katarina; Wrobel, Nathalie; Münchau, Alexander; Bingel, Ulrike

    2017-01-01

    Altered sensory perception has been found in patients with autism spectrum disorders (ASD) and might be related to aberrant sensory perception thresholds. We used the well-established, standardized Quantitative sensory testing (QST) protocol of the German Research Network on Neuropathic Pain to investigate 13 somatosensory parameters including…

  8. System of Attitudes in Parents of Young People Having Sensory Disorders

    ERIC Educational Resources Information Center

    Posokhova, Svetlana; Konovalova, Natalia; Sorokin, Victor; Demyanov, Yuri; Kolosova, Tatyana; Didenko, Elena

    2016-01-01

    The objective of the research was to identify the system of attitudes in parents of young people having sensory disorders. The survey covered parents of children aged 17 and older having hearing disorders, visual disorders, and no sensory disorders. The parents' system of attitudes united the attitude of the parents to themselves, to the child and…

  9. Extreme sensory processing patterns show a complex association with depression, and impulsivity, alexithymia, and hopelessness.

    PubMed

    Serafini, Gianluca; Gonda, Xenia; Canepa, Giovanna; Pompili, Maurizio; Rihmer, Zoltan; Amore, Mario; Engel-Yeger, Batya

    2017-03-01

    The involvement of extreme sensory processing patterns, impulsivity, alexithymia, and hopelessness was hypothesized to contribute to the complex pathophysiology of major depression and bipolar disorder. However, the nature of the relation between these variables has not been thoroughly investigated. This study aimed to explore the association between extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness. We recruited 281 euthymic participants (mean age=47.4±12.1) of which 62.3% with unipolar major depression and 37.7% with bipolar disorder. All participants completed the Adolescent/Adult Sensory Profile (AASP), Toronto Alexithymia Scale (TAS-20), second version of the Beck Depression Inventory (BDI-II), Barratt Impulsivity Scale (BIS), and Beck Hopelessness Scale (BHS). Lower registration of sensory input showed a significant correlation with depression, impulsivity, attentional/motor impulsivity, and alexithymia. It was significantly more frequent among participants with elevated hopelessness, and accounted for 22% of the variance in depression severity, 15% in greater impulsivity, 36% in alexithymia, and 3% in hopelessness. Elevated sensory seeking correlated with enhanced motor impulsivity and decreased non-planning impulsivity. Higher sensory sensitivity and sensory avoiding correlated with depression, impulsivity, and alexithymia. The study was limited by the relatively small sample size and cross-sectional nature of the study. Furthermore, only self-report measures that may be potentially biased by social desirability were used. Extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness may show a characteristic pattern in patients with major affective disorders. The careful assessment of sensory profiles may help in developing targeted interventions and improve functional/adaptive strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Sensory Responsiveness in Siblings of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Hilton, Claudia L.; Babb-Keeble, Alison; Westover, Erin Eitzmann; Zhang, Yi; Adams, Claire; Collins, Diane M.; Karmarkar, Amol; Reistetter, Timothy A.; Constantino, John N.

    2016-01-01

    This study examined sensory responsiveness in unaffected siblings of children with autism spectrum disorder (ASD) and associations between sensory responsiveness and social severity. Sensory Profile Caregiver Questionnaires and Social Responsiveness Scales were completed by parents of 185 children between age 4 and 10.95 years. Significant…

  11. Vasopressin Proves Es-sense-tial: Vasopressin and the Modulation of Sensory Processing in Mammals

    PubMed Central

    Bester-Meredith, Janet K.; Fancher, Alexandria P.; Mammarella, Grace E.

    2015-01-01

    As mammals develop, they encounter increasing social complexity in the surrounding world. In order to survive, mammals must show appropriate behaviors toward their mates, offspring, and same-sex conspecifics. Although the behavioral effects of the neuropeptide arginine vasopressin (AVP) have been studied in a variety of social contexts, the effects of this neuropeptide on multimodal sensory processing have received less attention. AVP is widely distributed through sensory regions of the brain and has been demonstrated to modulate olfactory, auditory, gustatory, and visual processing. Here, we review the evidence linking AVP to the processing of social stimuli in sensory regions of the brain and explore how sensory processing can shape behavioral responses to these stimuli. In addition, we address the interplay between hormonal and neural AVP in regulating sensory processing of social cues. Because AVP pathways show plasticity during development, early life experiences may shape life-long processing of sensory information. Furthermore, disorders of social behavior such as autism and schizophrenia that have been linked with AVP also have been linked with dysfunctions in sensory processing. Together, these studies suggest that AVP’s diversity of effects on social behavior across a variety of mammalian species may result from the effects of this neuropeptide on sensory processing. PMID:25705203

  12. Sensory atypicalities in dyads of children with autism spectrum disorder (ASD) and their parents.

    PubMed

    Glod, Magdalena; Riby, Deborah M; Honey, Emma; Rodgers, Jacqui

    2017-03-01

    Sensory atypicalities are a common feature of autism spectrum disorder (ASD). To date, the relationship between sensory atypicalities in dyads of children with ASD and their parents has not been investigated. Exploring these relationships can contribute to an understanding of how phenotypic profiles may be inherited, and the extent to which familial factors might contribute towards children's sensory profiles and constitute an aspect of the broader autism phenotype (BAP). Parents of 44 children with ASD and 30 typically developing (TD) children, aged between 3 and 14 years, participated. Information about children's sensory experiences was collected through parent report using the Sensory Profile questionnaire. Information about parental sensory experiences was collected via self-report using the Adolescent/Adult Sensory Profile. Parents of children with ASD had significantly higher scores than parents of TD children in relation to low registration, over responsivity, and taste/smell sensory processing. Similar levels of agreement were obtained within ASD and TD parent-child dyads on a number of sensory atypicalities; nevertheless significant correlations were found between parents and children in ASD families but not TD dyads for sensation avoiding and auditory, visual, and vestibular sensory processing. The findings suggest that there are similarities in sensory processing profiles between parents and their children in both ASD and TD dyads. Familial sensory processing factors are likely to contribute towards the BAP. Further work is needed to explore genetic and environmental influences on the developmental pathways of the sensory atypicalities in ASD. Autism Res 2017, 10: 531-538. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  13. Brief Report: Exploring the Relationship between Sensory Processing and Repetitive Behaviours in Williams Syndrome

    ERIC Educational Resources Information Center

    Riby, Deborah M.; Janes, Emily; Rodgers, Jacqui

    2013-01-01

    This study explored the relationship between sensory processing abnormalities and repetitive behaviours in children with Williams Syndrome (WS; n = 21). This is a novel investigation bringing together two clinical phenomena for the first time in this neuro-developmental disorder. Parents completed the Sensory Profile (Short Form; Dunn in The…

  14. Efficacy of a sound-based intervention with a child with an autism spectrum disorder and auditory sensory over-responsivity.

    PubMed

    Gee, Bryan M; Thompson, Kelly; St John, Holly

    2014-03-01

    Sound-based interventions (SBIs) are being used by paediatric occupational therapists to help children with autism spectrum disorders and co-morbid sensory processing disorders. A limited yet growing body of evidence is emerging related to the efficacy of SBIs in reducing sensory processing deficits among paediatric clients with co-morbid conditions. The current study employed an ABA single-subject case-controlled design, implementing The Listening Program® with a 7-year-old child diagnosed with autism spectrum disorder who demonstrated auditory sensory over-responsivity (SOR). The intervention consisted of 10 weeks of psycho-acoustically modified classical music that was delivered using specialized headphones and amplifier and a standard CD player. Repeated measures were conducted during the A(1), B and A(2) phases of the study using the Sensory Processing Measure, a subjective caregiver questionnaire, and the Sensory Over-Responsivity Scales, an examiner-based assessment measure to track changes of the participant's auditory SOR-related behaviours. The results indicated that the participant exhibited a decrease in the number of negative (avoidant, verbal and physical negative) and self-stimulatory behaviours. The decreases in negative and self-stimulatory behaviour may have been due to the therapeutic effect of the repeated exposure to the Sensory Over-Responsivity Scales or The Listening Program SBI. Copyright © 2013 John Wiley & Sons, Ltd.

  15. [Sensory integration: benefits and effectiveness of therapeutic management in sensory processing disorders].

    PubMed

    Tudela-Torras, M; Abad-Mas, L; Tudela-Torras, E

    2017-02-24

    Today, the fact that sensory integration difficulties with a neurological basis exist and that they seriously condition the development of those individuals who suffer from them is widely accepted and acknowledged as being obvious by the vast majority of professionals working in the field of community healthcare. However, less is known and there is more controversy about effective treatments that can be applied to them. This is because many professionals criticise the fact that there is not enough scientific evidence to prove, both quantitatively and empirically, the outcomes of the interventions implemented as alternatives to pharmacological therapy. Consequently, when the symptoms and repercussions on the quality of life deriving from a distorted sensory integration are really disabling for the person, pharmacological treatment is used as the only possible approach, with the side effects that this entails. The reason for this is largely the fact that little is known about other effective therapeutic approaches, such as occupational therapy based on sensory integration.

  16. Dysfunction of sensory oscillations in Autism Spectrum Disorder

    PubMed Central

    Simon, David M.; Wallace, Mark T.

    2016-01-01

    Autism Spectrum Disorder (ASD) is a highly prevalent developmental disability characterized by deficits in social communication and interaction, restricted interests, and repetitive behaviors. Recently, anomalous sensory and perceptual function has gained an increased level of recognition as an important feature of ASD. A specific impairment in the ability to integrate information across brain networks has been proposed to contribute to these disruptions. A crucial mechanism for these integrative processes is the rhythmic synchronization of neuronal excitability across neural populations; collectively known as oscillations. In ASD there is believed to be a deficit in the ability to efficiently couple functional neural networks using these oscillations. This review discusses evidence for disruptions in oscillatory synchronization in ASD, and how disturbance of this neural mechanism contributes to alterations in sensory and perceptual function. The review also frames oscillatory data from the perspective of prevailing neurobiologically-inspired theories of ASD. PMID:27451342

  17. The functional highly sensitive brain: a review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders.

    PubMed

    Acevedo, Bianca; Aron, Elaine; Pospos, Sarah; Jessen, Dana

    2018-04-19

    During the past decade, research on the biological basis of sensory processing sensitivity (SPS)-a genetically based trait associated with greater sensitivity and responsivity to environmental and social stimuli-has burgeoned. As researchers try to characterize this trait, it is still unclear how SPS is distinct from seemingly related clinical disorders that have overlapping symptoms, such as sensitivity to the environment and hyper-responsiveness to incoming stimuli. Thus, in this review, we compare the neural regions implicated in SPS with those found in fMRI studies of-Autism Spectrum Disorder (ASD), Schizophrenia (SZ) and Post-Traumatic Stress Disorder (PTSD) to elucidate the neural markers and cardinal features of SPS versus these seemingly related clinical disorders. We propose that SPS is a stable trait that is characterized by greater empathy, awareness, responsivity and depth of processing to salient stimuli. We conclude that SPS is distinct from ASD, SZ and PTSD in that in response to social and emotional stimuli, SPS differentially engages brain regions involved in reward processing, memory, physiological homeostasis, self-other processing, empathy and awareness. We suggest that this serves species survival via deep integration and memory for environmental and social information that may subserve well-being and cooperation.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Authors.

  18. Anxiety, Sensory Over-Responsivity, and Gastrointestinal Problems in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Mazurek, Micah O.; Vasa, Roma A.; Kalb, Luther G.; Kanne, Stephen M.; Rosenberg, Daniel; Keefer, Amy; Murray, Donna S.; Freedman, Brian; Lowery, Lea Ann

    2013-01-01

    Children with autism spectrum disorders (ASD) experience high rates of anxiety, sensory processing problems, and gastrointestinal (GI) problems; however, the associations among these symptoms in children with ASD have not been previously examined. The current study examined bivariate and multivariate relations among anxiety, sensory…

  19. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  20. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.

  1. Brief Report: DSM-5 Sensory Behaviours in Children with and without an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Green, Dido; Chandler, Susie; Charman, Tony; Simonoff, Emily; Baird, Gillian

    2016-01-01

    Atypical responses to sensory stimuli are a new criterion in DSM-5 for the diagnosis of an autism spectrum disorder (ASD) but are also reported in other developmental disorders. Using the Short Sensory profile (SSP) and Autism Diagnostic Interview-Revised we compared atypical sensory behaviour (hyper- or hypo-reactivity to sensory input or unusual…

  2. Sensory Guillain-Barré syndrome and related disorders: an attempt at systematization.

    PubMed

    Uncini, Antonino; Yuki, Nobuhiro

    2012-04-01

    The possibility that some patients diagnosed with an acute sensory neuropathy could actually have Guillain-Barré syndrome (GBS) has been repeatedly advanced in the literature, but the number of cases reported is small. The reports have shown different clinical presentations and electrophysiological findings and are variously named, thus generating terminological and nosological confusion. We operatively defined sensory GBS as an acute, monophasic, widespread neuropathy characterized clinically by exclusive sensory symptoms and signs that reach their nadir in a maximum of 6 weeks without related systemic disorders and other diseases or conditions. We reviewed the literature through searches of PubMed from 1980 to March 2011 and our own files. On the basis of the size of fibers involved and the possible site of primary damage, we propose tentatively classifying sensory GBS and related disorders into three subtypes: acute sensory demyelinating polyneuropathy; acute sensory large-fiber axonopathy-ganglionopathy; and acute sensory small-fiber neuropathy-ganglionopathy. Copyright © 2011 Wiley Periodicals, Inc.

  3. Sensory processing patterns predict the integration of information held in visual working memory.

    PubMed

    Lowe, Matthew X; Stevenson, Ryan A; Wilson, Kristin E; Ouslis, Natasha E; Barense, Morgan D; Cant, Jonathan S; Ferber, Susanne

    2016-02-01

    Given the limited resources of visual working memory, multiple items may be remembered as an averaged group or ensemble. As a result, local information may be ill-defined, but these ensemble representations provide accurate diagnostics of the natural world by combining gist information with item-level information held in visual working memory. Some neurodevelopmental disorders are characterized by sensory processing profiles that predispose individuals to avoid or seek-out sensory stimulation, fundamentally altering their perceptual experience. Here, we report such processing styles will affect the computation of ensemble statistics in the general population. We identified stable adult sensory processing patterns to demonstrate that individuals with low sensory thresholds who show a greater proclivity to engage in active response strategies to prevent sensory overstimulation are less likely to integrate mean size information across a set of similar items and are therefore more likely to be biased away from the mean size representation of an ensemble display. We therefore propose the study of ensemble processing should extend beyond the statistics of the display, and should also consider the statistics of the observer. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Sensory Responsiveness in Siblings of Children with Autism Spectrum Disorders.

    PubMed

    Hilton, Claudia L; Babb-Keeble, Alison; Westover, Erin Eitzmann; Zhang, Yi; Adams, Claire; Collins, Diane M; Karmarkar, Amol; Reistetter, Timothy A; Constantino, John N

    2016-12-01

    This study examined sensory responsiveness in unaffected siblings of children with autism spectrum disorder (ASD) and associations between sensory responsiveness and social severity. Sensory Profile Caregiver Questionnaires and Social Responsiveness Scales were completed by parents of 185 children between age 4 and 10.95 years. Significant differences were found between participants with ASD and controls, and between participants with ASD and unaffected siblings for all sensory quadrants and domains, but not between controls and unaffected siblings. Social responsiveness scores were significantly correlated with scores from most sensory profile categories. Sensory responsiveness as an endophenotype of ASD is not indicated from these findings; however, studies with larger numbers of unaffected siblings and controls are needed to confirm the null hypothesis.

  5. Measurement in Sensory Modulation: The Sensory Processing Scale Assessment

    PubMed Central

    Miller, Lucy J.; Sullivan, Jillian C.

    2014-01-01

    OBJECTIVE. Sensory modulation issues have a significant impact on participation in daily life. Moreover, understanding phenotypic variation in sensory modulation dysfunction is crucial for research related to defining homogeneous groups and for clinical work in guiding treatment planning. We thus evaluated the new Sensory Processing Scale (SPS) Assessment. METHOD. Research included item development, behavioral scoring system development, test administration, and item analyses to evaluate reliability and validity across sensory domains. RESULTS. Items with adequate reliability (internal reliability >.4) and discriminant validity (p < .01) were retained. Feedback from the expert panel also contributed to decisions about retaining items in the scale. CONCLUSION. The SPS Assessment appears to be a reliable and valid measure of sensory modulation (scale reliability >.90; discrimination between group effect sizes >1.00). This scale has the potential to aid in differential diagnosis of sensory modulation issues. PMID:25184464

  6. Sensory experiences of children with autism spectrum disorder: In their own words

    PubMed Central

    Kirby, Anne V; Dickie, Virginia A; Baranek, Grace T

    2015-01-01

    First-person perspectives of children with autism spectrum disorder (ASD) are rarely included in research, yet their voices may help more clearly illuminate their needs. This study involved phenomenological interviews with children with ASD (n=12, ages 4-13) used to gain insights about their sensory experiences. This article addresses two study aims: determining the feasibility of interviewing children with ASD and exploring how they share information about their sensory experiences during the qualitative interview process. With the described methods, children as young as four and across a broad range of autism severity scores successfully participated in the interviews. The manner with which children shared information about their sensory experiences included themes of normalizing, storytelling, and describing responses. The interviews also revealed the importance of context and the multisensory nature of children's experiences. These findings contribute strategies for understanding the sensory experiences of children with ASD with implications for practice and future research. PMID:24519585

  7. Sensory Symptoms in Children with Autism Spectrum Disorder, Other Developmental Disorders and Typical Development: A Longitudinal Study

    ERIC Educational Resources Information Center

    McCormick, Carolyn; Hepburn, Susan; Young, Gregory S.; Rogers, Sally J.

    2016-01-01

    Sensory symptoms are prevalent in autism spectrum disorder but little is known about the early developmental patterns of these symptoms. This study examined the development of sensory symptoms and the relationship between sensory symptoms and adaptive functioning during early childhood. Three groups of children were followed across three time…

  8. Sensory Responsiveness in Siblings of Children with Autism Spectrum Disorders

    PubMed Central

    Hilton, Claudia L.; Babb-Keeble, Alison; Westover, Erin Eitzmann; Zhang, Yi; Adams, Claire; Collins, Diane M.; Karmarkar, Amol; Reistetter, Timothy A.; Constantino, John N.

    2017-01-01

    This study examined sensory responsiveness in unaffected siblings of children with autism spectrum disorder (ASD) and associations between sensory responsiveness and social severity. Sensory Profile Caregiver Questionnaires and Social Responsiveness Scales were completed by parents of 185 children between age 4 and 10.95 years. Significant differences were found between participants with ASD and controls, and between participants with ASD and unaffected siblings for all sensory quadrants and domains, but not between controls and unaffected siblings. Social responsiveness scores were significantly correlated with scores from most sensory profile categories. Sensory responsiveness as an endophenotype of ASD is not indicated from these findings; however, studies with larger numbers of unaffected siblings and controls are needed to confirm the null hypothesis. PMID:27704293

  9. Timing of Moderate Level Prenatal Alcohol Exposure Influences Gene Expression of Sensory Processing Behavior in Rhesus Monkeys

    PubMed Central

    Schneider, Mary L.; Moore, Colleen F.; Larson, Julie A.; Barr, Christina S.; DeJesus, Onofre T.; Roberts, Andrew D.

    2009-01-01

    Sensory processing disorder, characterized by over- or under-responsivity to non-noxious environmental stimuli, is a common but poorly understood disorder. We examined the role of prenatal alcohol exposure, serotonin transporter gene polymorphic region variation (rh5-HTTLPR), and striatal dopamine (DA) function on behavioral measures of sensory responsivity to repeated non-noxious sensory stimuli in macaque monkeys. Results indicated that early gestation alcohol exposure induced behavioral under-responsivity to environmental stimuli in monkeys carrying the short (s) rh5-HTTLPR allele compared to both early-exposed monkeys homozygous for the long (l) allele and monkeys from middle-to-late exposed pregnancies and controls, regardless of genotype. Moreover, prenatal timing of alcohol exposure altered the relationship between sensory scores and DA D2R availability. In early-exposed monkeys, a positive relationship was shown between sensory scores and DA D2R availability, with low or blunted DA function associated with under-responsive sensory function. The opposite pattern was found for the middle-to-late gestation alcohol-exposed group. These findings raise questions about how the timing of prenatal perturbation and genotype contributes to effects on neural processing and possibly alters neural connections. PMID:19936317

  10. Toward an interdisciplinary approach to understanding sensory function in autism spectrum disorder.

    PubMed

    Cascio, Carissa J; Woynaroski, Tiffany; Baranek, Grace T; Wallace, Mark T

    2016-09-01

    Heightened interest in sensory function in persons with autism spectrum disorder (ASD) presents an unprecedented opportunity for impactful, interdisciplinary work between neuroscientists and clinical practitioners for whom sensory processing is a focus. In spite of this promise, and a number of overlapping perspectives on sensory function in persons with ASD, neuroscientists and clinical practitioners are faced with significant practical barriers to transcending disciplinary silos. These barriers include divergent goals, values, and approaches that shape each discipline, as well as different lexical conventions. This commentary is itself an interdisciplinary effort to describe the shared perspectives, and to conceptualize a framework that may guide future investigation in this area. We summarize progress to date and issue a call for clinical practitioners and neuroscientists to expand cross-disciplinary dialogue and to capitalize on the complementary strengths of each field to unveil the links between neural and behavioral manifestations of sensory differences in persons with ASD. Joining forces to face these challenges in a truly interdisciplinary way will lead to more clinically informed neuroscientific investigation of sensory function, and better translation of those findings to clinical practice. Likewise, a more coordinated effort may shed light not only on how current approaches to treating sensory processing differences affect brain and behavioral responses to sensory stimuli in individuals with ASD, but also on whether such approaches translate to gains in broader characteristics associated with ASD. It is our hope that such interdisciplinary undertakings will ultimately converge to improve assessment and interventions for persons with ASD. Autism Res 2016, 9: 920-925. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  11. Increased Sensory Processing Atypicalities in Parents of Multiplex ASD Families versus Typically Developing and Simplex ASD Families

    ERIC Educational Resources Information Center

    Donaldson, Chelsea K.; Stauder, Johannes E. A.; Donkers, Franc C. L.

    2017-01-01

    Recent studies have suggested that sensory processing atypicalities may share genetic influences with autism spectrum disorder (ASD). To further investigate this, the adolescent/adult sensory profile (AASP) questionnaire was distributed to 85 parents of typically developing children (P-TD), 121 parents from simplex ASD families (SPX), and 54…

  12. Esophageal motor and sensory disorders: presentation, evaluation, and treatment.

    PubMed

    Massey, Benson T

    2007-09-01

    Esophageal motor and sensory disorders are relatively rare conditions in the general population and afflicted patients are often initially misdiagnosed as having gastroesophageal reflux disease. Tests for these disorders have imperfect gold standards and are adjuncts to sound diagnostic reasoning. Treatments are palliative and have not been rigorously evaluated for some disorders. Symptoms and complications from disease progression and relapse are common, so that patients need continued follow-up.

  13. Lessons learned: a pilot study on occupational therapy effectiveness for children with sensory modulation disorder.

    PubMed

    Miller, Lucy Jane; Schoen, Sarah A; James, Katherine; Schaaf, Roseann C

    2007-01-01

    The purpose of this pilot study was to prepare for a randomized controlled study of the effectiveness of occupational therapy using a sensory integration approach (OT-SI) with children who have sensory processing disorders (SPD). A one-group pretest, posttest design with 30 children was completed with a subset of children with SPD, those with sensory modulation disorder. Lessons learned relate to (a) identifying a homogeneous sample with quantifiable inclusion criteria, (b) developing an intervention manual for study replication and a fidelity to treatment measure, (c) determining which outcomes are sensitive to change and relate to parents' priorities, and (d) clarifying rigorous methodologies (e.g., blinded examiners, randomization, power). A comprehensive program of research is needed, including multiple pilot studies to develop enough knowledge that high-quality effectiveness research in occupational therapy can be completed. Previous effectiveness studies in OT-SI have been single projects not based on a unified long-term program of research.

  14. Activity Participation and Sensory Features among Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Little, Lauren M.; Ausderau, Karla; Sideris, John; Baranek, Grace T.

    2015-01-01

    Sensory features are highly prevalent among children with autism spectrum disorders (ASD) and have been shown to cluster into four patterns of response, including hyperresponsiveness, hyporesponsiveness, enhanced perception, and sensory interests, repetitions and seeking behaviors. Given the lack of large-scale research on the differential effects…

  15. Amyotrophic lateral sclerosis with sensory neuropathy: part of a multisystem disorder?

    PubMed Central

    Isaacs, Jeremy D; Dean, Andrew F; Shaw, Christopher E; Al‐Chalabi, Ammar; Mills, Kerry R; Leigh, P Nigel

    2007-01-01

    Sensory involvement is thought not to be a feature of amyotrophic lateral sclerosis (ALS). However, in the setting of a specialist motor neuron disease clinic, we have identified five patients with sporadic ALS and a sensory neuropathy for which an alternative cause could not be identified. In three individuals, sensory nerve biopsy was performed, demonstrating axonal loss without features of an alternative aetiology. These findings support the hypothesis that ALS is a multisystem neurodegenerative disorder that may occasionally include sensory neuropathy among its non‐motor features. PMID:17575021

  16. Ecological aspects of pain in sensory modulation disorder.

    PubMed

    Bar-Shalita, T; Deutsch, L; Honigman, L; Weissman-Fogel, I

    2015-01-01

    Sensory Modulation Disorder (SMD) interferes with the daily life participation of otherwise healthy individuals and is characterized by over-, under- or seeking responsiveness to naturally occurring sensory stimuli. Previous laboratory findings indicate pain hyper-sensitivity in SMD individuals suggesting CNS alteration in pain processing and modulation. However, laboratory studies lack ecological validity, and warrant clinical completion in order to elicit a sound understanding of the phenomenon studied. Thus, this study explored the association between sensory modulation and pain in a daily life context in a general population sample. Daily life context of pain and sensations were measured in 250 adults (aged 23-40 years; 49.6% males) using 4 self-report questionnaires: Pain Sensitivity Questionnaire (PSQ) and Pain Catastrophizing Scale (PCS) to evaluate the sensory and cognitive aspects of pain; the Sensory Responsiveness Questionnaire (SRQ) to appraise SMD; and the Short Form - 36 Health Survey, version 2 (SF36) to assess health related Quality of Life (QoL). Thirty two individuals (12.8%) were found with over-responsiveness type of SMD, forming the SOR-SMD group. While no group differences (SOR-SMD vs. Non-SMD) were found, low-to-moderate total sample correlations were demonstrated between the SRQ-Aversive sub-scale and i) PSQ total (r=0.31, p<0.01) and sub-scales scores (r=0.27-0.28, p<0.01), as well as ii) PCS total and the sub-scales of Rumination and Helplessness scores (r=0.15, p<0.05). PSQ total and sub-scale scores were more highly correlated with SRQ-Aversive in the SOR-SMD group (r=0.57-0.68, p=0.03-<0.01) compared to Non-SMD group. The Physical Health - Total score (but not the Mental Health - Total) of the SF36 was lower for the SOR-SMD group (p=0.03), mainly due to the difference in the Body pain sub-scale (p=0.04). Results suggest that SOR-SMD is strongly associated with the sensory aspect of pain but weakly associated with the cognitive aspect

  17. Sensory Clusters of Toddlers with Autism Spectrum Disorders: Differences in Affective Symptoms

    ERIC Educational Resources Information Center

    Ben-Sasson, A.; Cermak, S. A.; Orsmond, G. I.; Tager-Flusberg, H.; Kadlec, M. B.; Carter, A. S.

    2008-01-01

    Background: Individuals with autism spectrum disorders (ASDs) show variability in their sensory behaviors. In this study we identified clusters of toddlers with ASDs who shared sensory profiles and examined differences in affective symptoms across these clusters. Method: Using cluster analysis 170 toddlers with ASDs were grouped based on parent…

  18. The presence of migraines and its association with sensory hyperreactivity and anxiety symptomatology in children with autism spectrum disorder.

    PubMed

    Sullivan, Jillian C; Miller, Lucy J; Nielsen, Darcy M; Schoen, Sarah A

    2014-08-01

    Migraine headaches are associated with sensory hyperreactivity and anxiety in the general population, but it is unknown whether this is also the case in autism spectrum disorders. This pilot study asked parents of 81 children (aged 7-17 years) with autism spectrum disorders to report their child's migraine occurrence, sensory hyperreactivity (Sensory Over-Responsivity Inventory), and anxiety symptoms (Spence Child Anxiety Scale). Children with autism spectrum disorders who experienced migraine headaches showed greater sensory hyperreactivity and anxiety symptomatology (p < 0.01; medium effect size for both) than those without migraines. Sensory hyperreactivity and anxiety symptomatology were additionally correlated (ρ = 0.31, p = 0.005). This study provides preliminary evidence for a link between migraine headaches, sensory hyperreactivity, and anxiety symptomatology in autism spectrum disorders, which may suggest strategies for subtyping and exploring a common pathogenesis. © The Author(s) 2013.

  19. Meal time behavior difficulties but not nutritional deficiencies correlate with sensory processing in children with autism spectrum disorder.

    PubMed

    Shmaya, Yael; Eilat-Adar, Sigal; Leitner, Yael; Reif, Shimon; Gabis, Lidia V

    2017-07-01

    Food aversion and nutritional difficulties are common in children with autism spectrum disorder. To compare meal time behavior of children with autism to their typically developing siblings and to typical controls and to examine if sensory profiles can predict meal time behavior or nutritional deficiencies in the autism group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Relationship between Clinical Presentation and Unusual Sensory Interests in Autism Spectrum Disorders: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Zachor, Ditza A.; Ben-Itzchak, Esther

    2014-01-01

    Unusual responses to sensory stimuli have been described in autism spectrum disorder (ASD).The study examined the frequencies of "unusual sensory interests" and "negative sensory responses" and their relation to functioning in a large ASD population (n = 679). Having "unusual sensory interests" was reported in 70.4%…

  1. Sensory modulation disorder symptoms in anorexia nervosa and bulimia nervosa: A pilot study.

    PubMed

    Brand-Gothelf, Ayelet; Parush, Shula; Eitan, Yehudith; Admoni, Shai; Gur, Eitan; Stein, Daniel

    2016-01-01

    Individuals with anorexia nervosa (AN) and bulimia nervosa (BN) may exhibit reduced ability to modulate sensory, physiological, and affective responses. The aim of the present study is to assess sensory modulation disorder (SMD) symptoms in patients with AN and BN. We assessed female adolescent and young adult inpatients with restrictive type anorexia nervosa (AN-R; n = 20) and BN (n = 20) evaluated in the acute stage of their illness, and 27 female controls. Another group of 20 inpatients with AN-R was assessed on admission and discharge, upon achieving their required weight. Participants completed standardized questionnaires assessing the severity of their eating disorder (ED) and the sensory responsiveness questionnaire (SRQ). Inpatients with AN-R demonstrated elevated overall sensory over-responsiveness as well as elevated scores on the taste/gustatory, vestibular/kinesthetic and somatosensory/tactile SRQ modalities compared with patients with BN and controls. Significant correlations between the severity of sensory over-responsiveness and ED-related symptomatology were found in acutely-ill patients with AN-R and to a lesser extent, following weight restoration. Elevated sensory over-responsiveness was retained in weight-restored inpatients with AN-R. Inpatients with BN demonstrated greater sensory under-responsiveness in the intensity subscale of the SRQ, but not in the frequency and combined SRQ dimensions. Female inpatients with AN-R exhibited sensory over-responsiveness both in the acute stage of their illness and following weight restoration, suggesting that sensory over-responsiveness may represent a trait related to the illness itself above and beyond the influence of malnutrition. The finding for sensory under-responsiveness in BN is less consistent. © 2015 Wiley Periodicals, Inc.

  2. A Meta-Analysis of Sensory Modulation Symptoms in Individuals with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Ben-Sasson, Ayelet; Hen, Liat; Fluss, Ronen; Cermak, Sharon A.; Engel-Yeger, Batya; Gal, Eynat

    2009-01-01

    Sensory modulation symptoms are common in persons with autism spectrum disorders (ASD); however have a heterogeneous presentation. Results from 14 studies indicated a significant high difference between ASD and typical groups in the presence/frequency of sensory symptoms, with the greatest difference in under-responsivity, followed by…

  3. Sensory and Repetitive Behaviors among Children with Autism Spectrum Disorder at Home

    PubMed Central

    Kirby, Anne V.; Boyd, Brian A.; Williams, Kathryn; Faldowski, Richard A.; Baranek, Grace T.

    2017-01-01

    Atypical sensory and repetitive behaviors are defining features of autism spectrum disorder (ASD) and are thought to be influenced by environmental factors; however, there is a lack of naturalistic research exploring contexts surrounding these behaviors. The current study involved video recording observations of 32 children with ASD (2 – 12 years of age) engaging in sensory and repetitive behaviors during home activities. Behavioral coding was used to determine what activity contexts, sensory modalities, and stimulus characteristics were associated with specific behavior types: hyperresponsive, hyporesponsive, sensory seeking, and repetitive/stereotypic. Results indicated that hyperresponsive behaviors were most associated with activities of daily living and family-initiated stimuli, whereas sensory seeking behaviors were associated with free play activities and child-initiated stimuli. Behaviors associated with multiple sensory modalities simultaneously were common, emphasizing the multi-sensory nature of children’s behaviors in natural contexts. Implications for future research more explicitly considering context are discussed. PMID:27091950

  4. Age effects on sensory-processing abilities and their impact on handwriting.

    PubMed

    Engel-Yeger, Batya; Hus, Sari; Rosenblum, Sara

    2012-12-01

    Sensory-processing abilities are known to deteriorate in the elderly. As a result, daily activities such as handwriting may be impaired. Yet, knowledge about sensory-processing involvement in handwriting characteristics among older persons is limited. To examine how age influences sensory-processing abilities and the impact on handwriting as a daily performance. The study participants were 118 healthy, independently functioning adults divided into four age groups: 31-45, 46-60, 61-75 and 76+ years. All participants completed the Adolescent/ Adult Sensory Profile (AASP). Handwriting process was documented using the Computerized Handwriting Penmanship Evaluation Tool (ComPET). Age significantly affects sensory processing and handwriting pressure as well as temporal and spatial measures. Both handwriting time and spatial organization of the written product were predicted by sensory seeking. When examining age contribution to the prediction of handwriting by sensory processing, sensory seeking showed a tendency for predicting handwriting pressure (p = .06), while sensory sensitivity significantly predicted handwriting velocity. Age appears to influence sensory-processing abilities and affect daily performance tasks, such as handwriting, for which sensitivity and seeking for sensations are essential. Awareness of clinicians to sensory-processing deficits among older adults and examining their impact on broader daily activities are essential to improve daily performance and quality of life.

  5. Sensory Processing in Preterm Preschoolers and Its Association with Executive Function

    PubMed Central

    Adams, Jenna N.; Feldman, Heidi M.; Huffman, Lynne C.; Loe, Irene M.

    2015-01-01

    Background Symptoms of abnormal sensory processing have been related to preterm birth, but have not yet been studied specifically in preterm preschoolers. The degree of association between sensory processing and other domains is important for understanding the role of sensory processing symptoms in the development of preterm children. Aims To test two related hypotheses: (1) preterm preschoolers have more sensory processing symptoms than full term preschoolers and (2) sensory processing is associated with both executive function and adaptive function in preterm preschoolers. Study Design Cross-sectional study Subjects Preterm children (≤34 weeks of gestation; n = 54) and full term controls (≥37 weeks of gestation; n = 73) ages 3-5 years. Outcome Measures Sensory processing was assessed with the Short Sensory Profile. Executive function was assessed with (1) parent ratings on the Behavior Rating Inventory of Executive Function- Preschool version and (2) a performance-based battery of tasks. Adaptive function was assessed with the Vineland Adaptive Behavior Scales-II. Results Preterm preschoolers showed significantly more sensory symptoms than full term controls. A higher percentage of preterm than full term preschoolers had elevated numbers of sensory symptoms (37% vs. 12%). Sensory symptoms in preterm preschoolers were associated with scores on executive function measures, but were not significantly associated with adaptive function. Conclusions Preterm preschoolers exhibited more sensory symptoms than full term controls. Preterm preschoolers with elevated numbers of sensory symptoms also showed executive function impairment. Future research should further examine whether sensory processing and executive function should be considered independent or overlapping constructs. PMID:25706317

  6. Sensory Experiences of Children with Autism Spectrum Disorder: In Their Own Words

    ERIC Educational Resources Information Center

    Kirby, Anne V.; Dickie, Virginia A.; Baranek, Grace T.

    2015-01-01

    First-person perspectives of children with autism spectrum disorder are rarely included in research, yet their voices may help more clearly illuminate their needs. This study involved phenomenological interviews with children with autism spectrum disorder (n = 12, ages 4-13) used to gain insights about their sensory experiences. This article…

  7. Sensory and Repetitive Behaviors among Children with Autism Spectrum Disorder at Home

    ERIC Educational Resources Information Center

    Kirby, Anne V.; Boyd, Brian A.; Williams, Kathryn L.; Faldowski, Richard A.; Baranek, Grace T.

    2017-01-01

    Atypical sensory and repetitive behaviors are defining features of autism spectrum disorder and are thought to be influenced by environmental factors; however, there is a lack of naturalistic research exploring contexts surrounding these behaviors. This study involved video recording observations of 32 children with autism spectrum disorder (2-12…

  8. Sensori-Motor and Daily Living Skills of Preschool Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jasmin, Emmanuelle; Couture, Melanie; McKinley, Patricia; Reid, Greg; Fombonne, Eric; Gisel, Erika

    2009-01-01

    Sensori-motor development and performance of daily living skills (DLS) remain little explored in children with autism spectrum disorders (ASD). The objective of this study was to determine the impact of sensori-motor skills on the performance of DLS in preschool children with ASD. Thirty-five children, 3-4 years of age, were recruited and assessed…

  9. The Relationship between Sensory Sensitivity and Autistic Traits in the General Population

    ERIC Educational Resources Information Center

    Robertson, Ashley E.; Simmons, David R.

    2013-01-01

    Individuals with Autism Spectrum Disorders (ASDs) tend to have sensory processing difficulties (Baranek et al. in J Child Psychol Psychiatry 47:591-601, 2006). These difficulties include over- and under-responsiveness to sensory stimuli, and problems modulating sensory input (Ben-Sasson et al. in J Autism Dev Disorders 39:1-11, 2009). As those…

  10. Classifying sensory profiles of children in the general population.

    PubMed

    Little, L M; Dean, E; Tomchek, S D; Dunn, W

    2017-01-01

    The aim of this study was to subtype groups of children in a community sample with and without developmental conditions, based on sensory processing patterns. We used latent profile analysis to determine the number of sensory subtypes in a sample of n = 1132 children aged 3-14 years with typical development and developmental conditions, including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder and learning disabilities. A five-subtype solution was found to best characterize the sample, which differed on overall degree and differential presentation of sensory processing patterns. Children with and without developmental conditions presented across subtypes, and one subtype was significantly younger in age than others (P < 0.05). Our results show that sensory subtypes include both children with typical development and those with developmental conditions. Sensory subtypes have previously been investigated in ASD only, and our results suggest that similar sensory subtypes are present in a sample reflective of the general population of children including those largely with typical development. Elevated scores on sensory processing patterns are not unique to ASD but rather are reflections of children's abilities to respond to environmental demands. © 2016 John Wiley & Sons Ltd.

  11. Perceptual load interacts with stimulus processing across sensory modalities.

    PubMed

    Klemen, J; Büchel, C; Rose, M

    2009-06-01

    According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.

  12. Brief Report: Further Evidence of Sensory Subtypes in Autism

    ERIC Educational Resources Information Center

    Lane, Alison E.; Dennis, Simon J.; Geraghty, Maureen E.

    2011-01-01

    Distinct sensory processing (SP) subtypes in autism have been reported previously. This study sought to replicate the previous findings in an independent sample of thirty children diagnosed with an Autism Spectrum Disorder. Model-based cluster analysis of parent-reported sensory functioning (measured using the Short Sensory Profile) confirmed the…

  13. Sensory processing and world modeling for an active ranging device

    NASA Technical Reports Server (NTRS)

    Hong, Tsai-Hong; Wu, Angela Y.

    1991-01-01

    In this project, we studied world modeling and sensory processing for laser range data. World Model data representation and operation were defined. Sensory processing algorithms for point processing and linear feature detection were designed and implemented. The interface between world modeling and sensory processing in the Servo and Primitive levels was investigated and implemented. In the primitive level, linear features detectors for edges were also implemented, analyzed and compared. The existing world model representations is surveyed. Also presented is the design and implementation of the Y-frame model, a hierarchical world model. The interfaces between the world model module and the sensory processing module are discussed as well as the linear feature detectors that were designed and implemented.

  14. Omega-3 and -6 fatty acid supplementation and sensory processing in toddlers with ASD symptomology born preterm: A randomized controlled trial.

    PubMed

    Boone, Kelly M; Gracious, Barbara; Klebanoff, Mark A; Rogers, Lynette K; Rausch, Joseph; Coury, Daniel L; Keim, Sarah A

    2017-12-01

    Despite advances in the health and long-term survival of infants born preterm, they continue to face developmental challenges including higher risk for autism spectrum disorder (ASD) and atypical sensory processing patterns. This secondary analysis aimed to describe sensory profiles and explore effects of combined dietary docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and gamma-linolenic acid (GLA) supplementation on parent-reported sensory processing in toddlers born preterm who were exhibiting ASD symptoms. 90-day randomized, double blinded, placebo-controlled trial. 31 children aged 18-38months who were born at ≤29weeks' gestation. Mixed effects regression analyses followed intent to treat and explored effects on parent-reported sensory processing measured by the Infant/Toddler Sensory Profile (ITSP). Baseline ITSP scores reflected atypical sensory processing, with the majority of atypical scores falling below the mean. Sensory processing sections: auditory (above=0%, below=65%), vestibular (above=13%, below=48%), tactile (above=3%, below=35%), oral sensory (above=10%; below=26%), visual (above=10%, below=16%); sensory processing quadrants: low registration (above=3%; below=71%), sensation avoiding (above=3%; below=39%), sensory sensitivity (above=3%; below=35%), and sensation seeking (above=10%; below=19%). Twenty-eight of 31 children randomized had complete outcome data. Although not statistically significant (p=0.13), the magnitude of the effect for reduction in behaviors associated with sensory sensitivity was medium to large (effect size=0.57). No other scales reflected a similar magnitude of effect size (range: 0.10 to 0.32). The findings provide support for larger randomized trials of omega fatty acid supplementation for children at risk of sensory processing difficulties, especially those born preterm. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Neural Correlates of Sensory Hyporesponsiveness in Toddlers at High Risk for Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Simon, David M.; Damiano, Cara R.; Woynaroski, Tiffany G.; Ibañez, Lisa V.; Murias, Michael; Stone, Wendy L.; Wallace, Mark T.; Cascio, Carissa J.

    2017-01-01

    Altered patterns of sensory responsiveness are a frequently reported feature of Autism Spectrum Disorder (ASD). Younger siblings of individuals with ASD are at a greatly elevated risk of a future diagnosis of ASD, but little is known about the neural basis of sensory responsiveness patterns in this population. Younger siblings (n = 20) of children…

  16. Analysis of sensory processing in preterm infants.

    PubMed

    Cabral, Thais Invenção; da Silva, Louise Gracelli Pereira; Martinez, Cláudia Maria Simões; Tudella, Eloisa

    2016-12-01

    Premature birth suggests condition of biological vulnerability, predisposing to neurological injuries, requiring hospitalization in Neonatal Intensive Care Units, which, while contributing to increase the survival rates, expose infants to sensory stimuli harmful to the immature organism. To evaluate the sensory processing at 4 and 6months' corrected age. This was a descriptive cross-sectional study with a sample of 30 infants divided into an experimental group composed of preterm infants (n=15), and a control group composed of full-term infants (n=15). The infants were assessed using the Test of Sensory Functions in Infants. The preterm infants showed poor performance in the total score of the test in reactivity to tactile deep pressure and reactivity to vestibular stimulation. When groups were compared, significant differences in the total score (p=0.0113) and in the reactivity to tactile deep pressure (p<0.0001) were found. At 4 and 6months of corrected age, the preterm infants showed alterations in sensory processing. These changes were most evident in reactivity to tactile deep pressure and vestibular stimulation. Copyright © 2016. Published by Elsevier Ireland Ltd.

  17. Reliability of the Participation and Sensory Environment Questionnaire: Teacher Version

    ERIC Educational Resources Information Center

    Piller, Aimee; Fletcher, Tina; Pfeiffer, Beth; Dunlap, Karen; Pickens, Noralyn

    2017-01-01

    The Participation and Sensory Environment Questionnaire-Teacher Version (PSEQ-TV) is a teacher-report questionnaire to assess the impact of the sensory environment on participation of preschool children with autism spectrum disorder (ASD). Many children with ASD have sensory processing differences, although these differences are frequently…

  18. The relationship between sensory-processing patterns and occupational engagement among older persons.

    PubMed

    Engel-Yeger, Batya; Rosenblum, Sara

    2017-02-01

    Meaningful occupational engagement is essential for successful aging. Sensory-processing abilities that are known to deteriorate with age may reduce occupational engagement. However, the relationship between sensory-processing abilities and occupational engagement among older persons in daily life is unknown. This study examined the relationship between sensory-processing patterns and occupational engagement among older persons. Participants were 180 people, ages 50 to 73 years, in good health, who lived in their homes. All participants completed the Adolescent/Adult Sensory Profile and the Activity Card Sort. Better registration of sensory input and greater sensory seeking were related to greater occupational engagement. Sensory-processing abilities among older persons and their relation to occupational engagement in various life settings should receive attention in research and practice. Occupational therapists should encourage older people to seek sensory input and provide them with rich sensory environments for enhancing meaningful engagement in real life.

  19. Caregiver Strain and Sensory Features in Children with Autism Spectrum Disorder and Other Developmental Disabilities

    ERIC Educational Resources Information Center

    Kirby, Anne V.; White, Tamira J.; Baranek, Grace T.

    2015-01-01

    Caring for children with disabilities contributes to increased levels of parent stress or caregiver strain. However, the potential relationship of sensory features to strain among caregivers of children with autism spectrum disorder (ASD) and other developmental disabilities (DD) is unknown. Sensory features include overreactions, underreactions,…

  20. A Community-Based Sensory Training Program Leads to Improved Experience at a Local Zoo for Children with Sensory Challenges.

    PubMed

    Kong, Michele; Pritchard, Mallory; Dean, Lara; Talley, Michele; Torbert, Roger; Maha, Julian

    2017-01-01

    Sensory processing difficulties are common among many special needs children, especially those with autism spectrum disorder (ASD). The sensory sensitivities often result in interference of daily functioning and can lead to social isolation for both the individual and family unit. A quality improvement (QI) project was undertaken within a local zoo to systematically implement a sensory training program targeted at helping special needs individuals with sensory challenges, including those with ASD, Down's syndrome, attention-deficit/hyperactivity disorder, and speech delay. We piloted the program over a 2-year period. The program consisted of staff training, provision of sensory bags and specific social stories, as well as creation of quiet zones. Two hundred family units were surveyed before and after implementation of the sensory training program. In this pilot QI study, families reported increased visitation to the zoo, improved interactions with staff members, and the overall quality of their experience. In conclusion, we are able to demonstrate that a sensory training program within the community zoo is feasible, impactful, and has the potential to decrease social isolation for special needs individuals and their families.

  1. Sensory Processing in Rhesus Monkeys: Developmental Continuity, Prenatal Treatment, and Genetic Influences

    PubMed Central

    Schneider, Mary L.; Moore, Colleen F.; Adkins, Miriam; Barr, Christina S.; Larson, Julie A.; Resch, Leslie M.; Roberts, Andrew

    2017-01-01

    Neonatal sensory processing (tactile and vestibular function) was tested in 78 rhesus macaques from two experiments. At ages 4–5 years, striatal dopamine D2 receptor binding was examined using positron emission tomography. At ages 5–7 years, adult sensory processing was assessed. Findings were: (a) prenatal stress exposure yielded less optimal neonatal sensory processing; (b) animals carrying the short rh5-HTTLPR allele had less optimal neonatal sensory scores than monkeys homozygous for the long allele; (c) neonatal sensory processing was significantly related to striatal D2 receptor binding for carriers of the short allele, but not for animals homozygous for the long allele; and (d) there was moderate developmental continuity in sensory processing from the neonatal period to adulthood. PMID:27338151

  2. Sensory Contributions to Balance in Boys with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Deconinck, Frederik J. A.; De Clercq, Dirk; Van Coster, Rudy; Oostra, Ann; Dewitte, Griet; Savelsbergh, Geert J. P.; Cambier, Dirk; Lenoir, Matthieu

    2008-01-01

    This study examined and compared the control of posture during bilateral stance in ten boys with Developmental Coordination Disorder (DCD) of 6-8 years old and ten matched typically developing boys in four sensory conditions (with or without vision, on a firm or complaint surface). In all conditions mean postural sway velocity was larger for the…

  3. Autonomic Dysregulation during Sensory Stimulation in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Schaaf, Roseann C.; Benevides, Teal W.; Leiby, Benjamin E.; Sendecki, Jocelyn A.

    2015-01-01

    Autonomic nervous system (ANS) activity during sensory stimulation was measured in 59 children with autism spectrum disorder (ASD) ages 6-9 in comparison to 30 typically developing controls. Multivariate comparisons revealed significant differences between groups in the respiratory sinus arrhythmia (parasympathetic measure) vector of means across…

  4. The Presence of Migraines and Its Association with Sensory Hyperreactivity and Anxiety Symptomatology in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Sullivan, Jillian C.; Miller, Lucy J.; Nielsen, Darcy M.; Schoen, Sarah A.

    2014-01-01

    Migraine headaches are associated with sensory hyperreactivity and anxiety in the general population, but it is unknown whether this is also the case in autism spectrum disorders. This pilot study asked parents of 81 children (aged 7-17 years) with autism spectrum disorders to report their child's migraine occurrence, sensory hyperreactivity…

  5. Sensory Organization of Balance Control in Children with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Fong, Shirley S. M.; Lee, Velma Y. L.; Pang, Marco Y. C.

    2011-01-01

    This study aimed to (1) compare functional balance performance and sensory organization of postural control between children with and without developmental coordination disorder (DCD) and (2) determine the association between postural control and participation diversity among children with DCD. We recruited 81 children with DCD and 67 typically…

  6. Hurst revisited: Are symptoms and signs of functional motor and sensory disorders "dependent on idea"?

    PubMed

    Stone, Jon; Mutch, Jennifer; Giannokous, Denis; Hoeritzauer, Ingrid; Carson, Alan

    2017-10-15

    Symptoms and signs of functional (psychogenic) motor and sensory disorder are often said to be dependent on the patients' idea of what symptoms should be, rather than anatomy and physiology. This hypothesis has however rarely been tested. Inspired by a brief experiment carried out in 1919 by neurologist Arthur Hurst we aimed to assess the views of healthy non-medical adults towards paralysis and numbness and their response to tests for functional disorders when asked to pretend to have motor and sensory symptoms. When subjects were asked to pretend they had a paralysed arm 80% thought there would be sensory loss. Of these 60% thought it would have a circumferential (functional) distribution at the wrist, elbow or shoulder. Hoover's sign of functional weakness was only positive in 75% of patients pretending to have leg paralysis with 23% maintaining weakness of hip extension in the feigned weak leg, a rare finding in neurological practice. 20% of subjects managed to continue having their feigned tremor during the entrainment test. 52% of subjects thought there was asymmetry of a tuning fork across their forehead even when no prior instruction had been given. The study confirmed Hurst's finding that non-medical people generally expect sensory loss to go along with paralysis, especially if the examiner suggests it. When present, it usually conforms to functional patterns of sensory loss. Clinical tests for functional and motor disorders appear to behave somewhat differently in patients asked to pretend to have symptoms suggesting that larger more detailed studies would be worthwhile. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making.

    PubMed

    Rungratsameetaweemana, Nuttida; Itthipuripat, Sirawaj; Salazar, Annalisa; Serences, John T

    2018-06-13

    Two factors play important roles in shaping perception: the allocation of selective attention to behaviorally relevant sensory features, and prior expectations about regularities in the environment. Signal detection theory proposes distinct roles of attention and expectation on decision-making such that attention modulates early sensory processing, whereas expectation influences the selection and execution of motor responses. Challenging this classic framework, recent studies suggest that expectations about sensory regularities enhance the encoding and accumulation of sensory evidence during decision-making. However, it is possible, that these findings reflect well documented attentional modulations in visual cortex. Here, we tested this framework in a group of male and female human participants by examining how expectations about stimulus features (orientation and color) and expectations about motor responses impacted electroencephalography (EEG) markers of early sensory processing and the accumulation of sensory evidence during decision-making (the early visual negative potential and the centro-parietal positive potential, respectively). We first demonstrate that these markers are sensitive to changes in the amount of sensory evidence in the display. Then we show, counter to recent findings, that neither marker is modulated by either feature or motor expectations, despite a robust effect of expectations on behavior. Instead, violating expectations about likely sensory features and motor responses impacts posterior alpha and frontal theta oscillations, signals thought to index overall processing time and cognitive conflict. These findings are inconsistent with recent theoretical accounts and suggest instead that expectations primarily influence decisions by modulating post-perceptual stages of information processing. SIGNIFICANCE STATEMENT Expectations about likely features or motor responses play an important role in shaping behavior. Classic theoretical

  8. Sensory Dysfunction

    MedlinePlus

    ... article was contributed by: familydoctor.org editorial staff Categories: Men, Seniors, WomenTags: ageusia, anosmia, chemosensory disorders, decreased appetite, dysgeusia, flavor, olfactory dysfunction, overseasoning food, senses, sensory dysfunction, sensory impairment, smell, taste September ...

  9. A Community-Based Sensory Training Program Leads to Improved Experience at a Local Zoo for Children with Sensory Challenges

    PubMed Central

    Kong, Michele; Pritchard, Mallory; Dean, Lara; Talley, Michele; Torbert, Roger; Maha, Julian

    2017-01-01

    Sensory processing difficulties are common among many special needs children, especially those with autism spectrum disorder (ASD). The sensory sensitivities often result in interference of daily functioning and can lead to social isolation for both the individual and family unit. A quality improvement (QI) project was undertaken within a local zoo to systematically implement a sensory training program targeted at helping special needs individuals with sensory challenges, including those with ASD, Down’s syndrome, attention-deficit/hyperactivity disorder, and speech delay. We piloted the program over a 2-year period. The program consisted of staff training, provision of sensory bags and specific social stories, as well as creation of quiet zones. Two hundred family units were surveyed before and after implementation of the sensory training program. In this pilot QI study, families reported increased visitation to the zoo, improved interactions with staff members, and the overall quality of their experience. In conclusion, we are able to demonstrate that a sensory training program within the community zoo is feasible, impactful, and has the potential to decrease social isolation for special needs individuals and their families. PMID:28966920

  10. The synaptic pharmacology underlying sensory processing in the superior colliculus.

    PubMed

    Binns, K E

    1999-10-01

    The superior colliculus (SC) is one of the most ancient regions of the vertebrate central sensory system. In this hub afferents from several sensory pathways converge, and an extensive range of neural circuits enable primary sensory processing, multi-sensory integration and the generation of motor commands for orientation behaviours. The SC has a laminar structure and is usually considered in two parts; the superficial visual layers and the deep multi-modal/motor layers. Neurones in the superficial layers integrate visual information from the retina, cortex and other sources, while the deep layers draw together data from many cortical and sub-cortical sensory areas, including the superficial layers, to generate motor commands. Functional studies in anaesthetized subjects and in slice preparations have used pharmacological tools to probe some of the SC's interacting circuits. The studies reviewed here reveal important roles for ionotropic glutamate receptors in the mediation of sensory inputs to the SC and in transmission between the superficial and deep layers. N-methyl-D-aspartate receptors appear to have special responsibility for the temporal matching of retinal and cortical activity in the superficial layers and for the integration of multiple sensory data-streams in the deep layers. Sensory responses are shaped by intrinsic inhibitory mechanisms mediated by GABA(A) and GABA(B) receptors and influenced by nicotinic acetylcholine receptors. These sensory and motor-command activities of SC neurones are modulated by levels of arousal through extrinsic connections containing GABA, serotonin and other transmitters. It is possible to naturally stimulate many of the SC's sensory and non-sensory inputs either independently or simultaneously and this brain area is an ideal location in which to study: (a) interactions between inputs from the same sensory system; (b) the integration of inputs from several sensory systems; and (c) the influence of non-sensory systems on

  11. Temperament and Sensory Features of Children with Autism

    ERIC Educational Resources Information Center

    Brock, M. E.; Freuler, A.; Baranek, G. T.; Watson, L. R.; Poe, M. D.; Sabatino, A.

    2012-01-01

    This study sought to characterize temperament traits in a sample of children with autism spectrum disorder (ASD), ages 3-7 years old, and to determine the potential association between temperament and sensory features in ASD. Individual differences in sensory processing may form the basis for aspects of temperament and personality, and aberrations…

  12. Reported Sensory Processing of Children with Down Syndrome

    ERIC Educational Resources Information Center

    Bruni, Maryanne; Cameron, Debra; Dua, Shelly; Noy, Sarah

    2010-01-01

    Investigators have identified delays and differences in cognitive, language, motor, and sensory development in children with Down syndrome (DS). The purpose of this study was to determine the parent-reported frequency of sensory processing issues in children with DS aged 3-10 years, and the parent-reported functional impact of those sensory…

  13. Fast Synaptic Inhibition in Spinal Sensory Processing and Pain Control

    PubMed Central

    Zeilhofer, Hanns Ulrich; Wildner, Hendrik; Yevenes, Gonzalo E.

    2013-01-01

    The two amino acids γ-amino butyric acid (GABA) and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes. PMID:22298656

  14. Sensory Responsiveness as a Predictor of Social Severity in Children with High Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Hilton, Claudia L.; Harper, Jacquelyn D.; Kueker, Rachel Holmes; Lang, Andrea Runzi; Abbacchi, Anna M.; Todorov, Alexandre; LaVesser, Patricia D.

    2010-01-01

    This study examines the relationship between sensory responsiveness and social severity in children with high functioning autism spectrum disorders (HFASD; N = 36) and age-matched controls (N = 26) between 6 and 10 years old. Significant relationships were found between social responsiveness scale scores and each of the six sensory profile sensory…

  15. Sensory Behaviors in Minimally Verbal Children with Autism Spectrum Disorder: How and When Do Caregivers Respond?

    ERIC Educational Resources Information Center

    Harrop, Clare; Tu, Nicole; Landa, Rebecca; Kasier, Ann; Kasari, Connie

    2018-01-01

    Sensory behaviors are widely reported in autism spectrum disorder (ASD). However, the impact of these behaviors on families remains largely unknown. This study explored how caregivers of minimally verbal children with ASD responded to their child's sensory behaviors. Using a mixed-methods approach, we examined two variables for each endorsed child…

  16. Specific Sensory Techniques and Sensory Environmental Modifications for Children and Youth With Sensory Integration Difficulties: A Systematic Review.

    PubMed

    Bodison, Stefanie C; Parham, L Diane

    This systematic review examined the effectiveness of specific sensory techniques and sensory environmental modifications to improve participation of children with sensory integration (SI) difficulties. Abstracts of 11,436 articles published between January 2007 and May 2015 were examined. Studies were included if designs reflected high levels of evidence, participants demonstrated SI difficulties, and outcome measures addressed function or participation. Eight studies met inclusion criteria. Seven studies evaluated effects of specific sensory techniques for children with autism spectrum disorder (ASD) or attention deficit hyperactivity disorder: Qigong massage, weighted vests, slow swinging, and incorporation of multisensory activities into preschool routines. One study of sensory environmental modifications examined adaptations to a dental clinic for children with ASD. Strong evidence supported Qigong massage, moderate evidence supported sensory modifications to the dental care environment, and limited evidence supported weighted vests. The evidence is insufficient to draw conclusions regarding slow linear swinging and incorporation of multisensory activities into preschool settings. Copyright © 2018 by the American Occupational Therapy Association, Inc.

  17. Using animal models of enriched environments to inform research on sensory integration intervention for the rehabilitation of neurodevelopmental disorders.

    PubMed

    Reynolds, Stacey; Lane, Shelly J; Richards, Lorie

    2010-09-01

    The field of behavioral neuroscience has been successful in using an animal model of enriched environments for over five decades to measure the rehabilitative and preventative effects of sensory, cognitive and motor stimulation in animal models. Several key principles of enriched environments match those used in sensory integration therapy, a treatment used for children with neurodevelopmental disorders. This paper reviews the paradigm of environmental enrichment, compares animal models of enriched environments to principles of sensory integration treatment, and discusses applications for the rehabilitation of neurodevelopmental disorders. Based on this review, the essential features in the enriched environment paradigm which should be included in sensory integration treatment are multiple sensory experiences, novelty in the environment, and active engagement in challenging cognitive, sensory, and motor tasks. Use of sensory integration treatment may be most applicable for children with anxiety, hypersensitivity, repetitive behaviors or heightened levels of stress. Additionally, individuals with deficits in social behavior, social participation, or impairments in learning and memory may show gains with this type of treatment.

  18. [Contemporary approach to evaluation of sensory disorders in polyneuropathy due to vibration].

    PubMed

    Nepershina, C P; Lagutina, G N; Kuzmina, L P; Skrypnik, O V; Ryabininal, S N; Lagutina, A P

    2016-08-01

    Recently, the studies search possibilities to visualize and objectify sensory disorders in polyneuropathy caused by vibration. Special attention is paid on studies of injuried structures responsible for temperature and pain sensitivity. Examination covered 92 patients with vibration disease, aged 34 to 73 years. Methods used are: pallesthesiometry, quantitative sensory tests, questionnaires and s 'cales of pain (visual analog scale (VAS) of pain, Pain-Detect, MPQ DN-, HADS). Correlation was found between.temperature, pain thresholds and VAS and pallesthesiometry parameters. The obtained results analysis indicates formation distal polyneuropathy syndrome of upper limbs with concomitant pain during vibration disease.

  19. Investigation of the Relationship Between Sensory Processing and Motor Development in Preterm Infants.

    PubMed

    Celik, Halil Ibrahim; Elbasan, Bulent; Gucuyener, Kivilcim; Kayihan, Hulya; Huri, Meral

    The aim of this study was to analyze the correlation between sensory processing and motor development in preterm infants. We included 30 preterm and 30 term infants with corrected and chronological ages between 10 and 12 mo. We used the Test of Sensory Functions in Infants to evaluate sensory processing and the Alberta Infant Motor Scale to evaluate motor development. The Spearman correlation test indicated a strong positive relationship between sensory processing and motor development in preterm infants (r = .63, p < .001). Given the relationship between sensory processing and motor development in the preterm group, the evaluation of sensory processing and motor development in preterm infants was considered necessary for the effective implementation of physiotherapy assessment and interventions. Copyright © 2018 by the American Occupational Therapy Association, Inc.

  20. The Postnatal Development of Spinal Sensory Processing

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Maria; Jennings, Ernest

    1999-07-01

    The mechanisms by which infants and children process pain should be viewed within the context of a developing sensory nervous system. The study of the neurophysiological properties and connectivity of sensory neurons in the developing spinal cord dorsal horn of the intact postnatal rat has shed light on the way in which the newborn central nervous system analyzes cutaneous innocuous and noxious stimuli. The receptive field properties and evoked activity of newborn dorsal horn cells to single repetitive and persistent innocuous and noxious inputs are developmentally regulated and reflect the maturation of excitatory transmission within the spinal cord. These changes will have an important influence on pain processing in the postnatal period.

  1. Dissociating sensory from decision processes in human perceptual decision making.

    PubMed

    Mostert, Pim; Kok, Peter; de Lange, Floris P

    2015-12-15

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.

  2. Dissociating sensory from decision processes in human perceptual decision making

    PubMed Central

    Mostert, Pim; Kok, Peter; de Lange, Floris P.

    2015-01-01

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393

  3. On the dependence of response inhibition processes on sensory modality.

    PubMed

    Bodmer, Benjamin; Beste, Christian

    2017-04-01

    The ability to inhibit responses is a central sensorimotor function but only recently the importance of sensory processes for motor inhibition mechanisms went more into the research focus. In this regard it is elusive, whether there are differences between sensory modalities to trigger response inhibition processes. Due to functional neuroanatomical considerations strong differences may exist, for example, between the visual and the tactile modality. In the current study we examine what neurophysiological mechanisms as well as functional neuroanatomical networks are modulated during response inhibition. Therefore, a Go/NoGo-paradigm employing a novel combination of visual, tactile, and visuotactile stimuli was used. The data show that the tactile modality is more powerful than the visual modality to trigger response inhibition processes. However, the tactile modality loses its efficacy to trigger response inhibition processes when being combined with the visual modality. This may be due to competitive mechanisms leading to a suppression of certain sensory stimuli and the response selection level. Variations in sensory modalities specifically affected conflict monitoring processes during response inhibition by modulating activity in a frontal parietal network including the right inferior frontal gyrus, anterior cingulate cortex and the temporoparietal junction. Attentional selection processes are not modulated. The results suggest that the functional neuroanatomical networks involved in response inhibition critically depends on the nature of the sensory input. Hum Brain Mapp 38:1941-1951, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Automatic Neural Processing of Disorder-Related Stimuli in Social Anxiety Disorder: Faces and More

    PubMed Central

    Schulz, Claudia; Mothes-Lasch, Martin; Straube, Thomas

    2013-01-01

    It has been proposed that social anxiety disorder (SAD) is associated with automatic information processing biases resulting in hypersensitivity to signals of social threat such as negative facial expressions. However, the nature and extent of automatic processes in SAD on the behavioral and neural level is not entirely clear yet. The present review summarizes neuroscientific findings on automatic processing of facial threat but also other disorder-related stimuli such as emotional prosody or negative words in SAD. We review initial evidence for automatic activation of the amygdala, insula, and sensory cortices as well as for automatic early electrophysiological components. However, findings vary depending on tasks, stimuli, and neuroscientific methods. Only few studies set out to examine automatic neural processes directly and systematic attempts are as yet lacking. We suggest that future studies should: (1) use different stimulus modalities, (2) examine different emotional expressions, (3) compare findings in SAD with other anxiety disorders, (4) use more sophisticated experimental designs to investigate features of automaticity systematically, and (5) combine different neuroscientific methods (such as functional neuroimaging and electrophysiology). Finally, the understanding of neural automatic processes could also provide hints for therapeutic approaches. PMID:23745116

  5. Incidence of oral health in paediatric patients with disabilities: Sensory disorders and autism spectrum disorder. Systematic review II

    PubMed Central

    Bartolomé-Villar, Begona; Diéguez-Pérez, Montserrat; de Nova-García, Manuel-Joaquín

    2016-01-01

    Introduction We are currently witnessing an increase in the number of disabled patients, creating the need for knowledge of each of the pathologies and of the different oral and dental conditions they present, in order to achieve efficient management and treatment. Objectives To analyse the existing scientific literature on the oral conditions of children with autism spectrum disorder (ASD) and children with sensory deficits (SD), in comparison with the healthy child population. Material and Methods The bibliographic search was carried out in Pubmed/Medline, Scopus and Cochrane Library and included articles taking a sample of children between 0 and 18 years of age diagnosed with the abovementioned disorders and including at least one of the following oral hygiene conditions - oral hygiene, dental caries, malocclusion, oral habits, dental trauma, and gingival-periodontal status - comparing them with a healthy population. Results A total of 10 articles were obtained for autism spectrum disorder and six for sensory deficits. Conclusions Of all the variables studied, only the state of oral, gingival and/or periodontal hygiene can be considered worse in patients with ASD and SD, although we believe a larger number of research studies is needed to corroborate these results. Key words:Oral health, dental caries, malocclusion, oral habits, dental trauma, oral hygiene, disabled child, autism, autism spectrum disorder, deaf, blind. PMID:27398188

  6. Startle habituation, sensory, and sensorimotor gating in trauma-affected refugees with posttraumatic stress disorder.

    PubMed

    Meteran, Hanieh; Vindbjerg, Erik; Uldall, Sigurd Wiingaard; Glenthøj, Birte; Carlsson, Jessica; Oranje, Bob

    2018-05-17

    Impairments in mechanisms underlying early information processing have been reported in posttraumatic stress disorder (PTSD); however, findings in the existing literature are inconsistent. This current study capitalizes on technological advancements of research on electroencephalographic event-related potential and applies it to a novel PTSD population consisting of trauma-affected refugees. A total of 25 trauma-affected refugees with PTSD and 20 healthy refugee controls matched on age, gender, and country of origin completed the study. In two distinct auditory paradigms sensory gating, indexed as P50 suppression, and sensorimotor gating, indexed as prepulse inhibition (PPI), startle reactivity, and habituation of the eye-blink startle response were examined. Within the P50 paradigm, N100 and P200 amplitudes were also assessed. In addition, correlations between psychophysiological and clinical measures were investigated. PTSD patients demonstrated significantly elevated stimuli responses across the two paradigms, reflected in both increased amplitude of the eye-blink startle response, and increased N100 and P200 amplitudes relative to healthy refugee controls. We found a trend toward reduced habituation in the patients, while the groups did not differ in PPI and P50 suppression. Among correlations, we found that eye-blink startle responses were associated with higher overall illness severity and lower levels of functioning. Fundamental gating mechanisms appeared intact, while the pattern of deficits in trauma-affected refugees with PTSD point toward a different form of sensory overload, an overall neural hypersensitivity and disrupted the ability to down-regulate stimuli responses. This study represents an initial step toward elucidating sensory processing deficits in a PTSD subgroup.

  7. Brief Report: Assessment of Sensory Abnormalities in People with Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Harrison, James; Hare, Dougal Julian

    2004-01-01

    Sensory functioning has long been considered crucial in the life of people with autistic spectrum disorders (ASD) (Gillberg, C., & Coleman, M. (1992). "The Biology of Autistic Syndromes" (2nd ed.). London: Mac Keith press.) However, much of the research is methodologically flawed and based on child populations and adults' retrospective accounts (O…

  8. Relationship Between Sensory Processing and Pretend Play in Typically Developing Children.

    PubMed

    Roberts, Tara; Stagnitti, Karen; Brown, Ted; Bhopti, Anoo

    We sought to investigate the relationship between sensory processing and pretend play in typically developing children. Forty-two typically developing children ages 5-7 yr were assessed with the Child Initiated Pretend Play Assessment and the Home and Main Classroom forms of the Sensory Processing Measure (SPM). There were significant relationships between elaborate pretend play and body awareness (r = .62, p < .01), balance (r = .42, p < .01), and touch (r = .47, p < .01). Object substitution was associated with social participation (r = .42, p < .05). The sensory processing factors (from the SPM)-namely, Body Awareness, Balance, Touch, and Social Participation-were predictive of the quality of children's engagement in pretend play in the home environment. The results indicated that, to engage and participate in play, children are involving sensory processing abilities, especially body awareness, balance, and touch. Copyright © 2018 by the American Occupational Therapy Association, Inc.

  9. Autistic Traits and Abnormal Sensory Experiences in Adults

    ERIC Educational Resources Information Center

    Horder, Jamie; Wilson, C. Ellie; Mendez, M. Andreina; Murphy, Declan G.

    2014-01-01

    Sensory processing abnormalities are common in autism spectrum disorders (ASD), and now form part of the "Diagnostic and Statistical Manual 5th Edition" (DSM-5) diagnostic criteria, but it is unclear whether they characterize the "broader phenotype" of the disorder. We recruited adults (n = 772) with and without an ASD and…

  10. Brain structural correlates of sensory phenomena in patients with obsessive–compulsive disorder

    PubMed Central

    Subirà, Marta; Sato, João R.; Alonso, Pino; do Rosário, Maria C.; Segalàs, Cinto; Batistuzzo, Marcelo C.; Real, Eva; Lopes, Antonio C.; Cerrillo, Ester; Diniz, Juliana B.; Pujol, Jesús; Assis, Rachel O.; Menchón, José M.; Shavitt, Roseli G.; Busatto, Geraldo F.; Cardoner, Narcís; Miguel, Euripedes C.; Hoexter, Marcelo Q.; Soriano-Mas, Carles

    2015-01-01

    Background Sensory phenomena (SP) are uncomfortable feelings, including bodily sensations, sense of inner tension, “just-right” perceptions, feelings of incompleteness, or “urge-only” phenomena, which have been described to precede, trigger or accompany repetitive behaviours in individuals with obsessive–compulsive disorder (OCD). Sensory phenomena are also observed in individuals with tic disorders, and previous research suggests that sensorimotor cortex abnormalities underpin the presence of SP in such patients. However, to our knowledge, no studies have assessed the neural correlates of SP in patients with OCD. Methods We assessed the presence of SP using the University of São Paulo Sensory Phenomena Scale in patients with OCD and healthy controls from specialized units in São Paulo, Brazil, and Barcelona, Spain. All participants underwent a structural magnetic resonance examination, and brain images were examined using DARTEL voxel-based morphometry. We evaluated grey matter volume differences between patients with and without SP and healthy controls within the sensorimotor and premotor cortices. Results We included 106 patients with OCD and 87 controls in our study. Patients with SP (67% of the sample) showed grey matter volume increases in the left sensorimotor cortex in comparison to patients without SP and bilateral sensorimotor cortex grey matter volume increases in comparison to controls. No differences were observed between patients without SP and controls. Limitations Most patients were medicated. Participant recruitment and image acquisition were performed in 2 different centres. Conclusion We have identified a structural correlate of SP in patients with OCD involving grey matter volume increases within the sensorimotor cortex; this finding is in agreement with those of tic disorder studies showing that abnormal activity and volume increases within this region are associated with the urges preceding tic onset. PMID:25652753

  11. Neurobiology of Sensory Overresponsivity in Youth With Autism Spectrum Disorders.

    PubMed

    Green, Shulamite A; Hernandez, Leanna; Tottenham, Nim; Krasileva, Kate; Bookheimer, Susan Y; Dapretto, Mirella

    2015-08-01

    More than half of youth with autism spectrum disorders (ASDs) have sensory overresponsivity (SOR), an extreme negative reaction to sensory stimuli. However, little is known about the neurobiological basis of SOR, and there are few effective treatments. Understanding whether SOR is due to an initial heightened sensory response or to deficits in regulating emotional reactions to stimuli has important implications for intervention. To determine differences in brain responses, habituation, and connectivity during exposure to mildly aversive sensory stimuli in youth with ASDs and SOR compared with youth with ASDs without SOR and compared with typically developing control subjects. Functional magnetic resonance imaging was used to examine brain responses and habituation to mildly aversive auditory and tactile stimuli in 19 high-functioning youths with ASDs and 19 age- and IQ-matched, typically developing youths (age range, 9-17 years). Brain activity was related to parents' ratings of children's SOR symptoms. Functional connectivity between the amygdala and orbitofrontal cortex was compared between ASDs subgroups with and without SOR and typically developing controls without SOR. The study dates were March 2012 through February 2014. Relative increases in blood oxygen level-dependent signal response across the whole brain and within the amygdala during exposure to sensory stimuli compared with fixation, as well as correlation between blood oxygen level-dependent signal change in the amygdala and orbitofrontal cortex. The mean age in both groups was 14 years and the majority in both groups (16 of 19 each) were male. Compared with neurotypical control participants, participants with ASDs displayed stronger activation in primary sensory cortices and the amygdala (P < .05, corrected). This activity was positively correlated with SOR symptoms after controlling for anxiety. The ASDs with SOR subgroup had decreased neural habituation to stimuli in sensory cortices and the

  12. Auditory Processing in Infancy: Do Early Abnormalities Predict Disorders of Language and Cognitive Development?

    ERIC Educational Resources Information Center

    Guzzetta, Francesco; Conti, Guido; Mercuri, Eugenio

    2011-01-01

    Increasing attention has been devoted to the maturation of sensory processing in the first year of life. While the development of cortical visual function has been thoroughly studied, much less information is available on auditory processing and its early disorders. The aim of this paper is to provide an overview of the assessment techniques for…

  13. The relationship between children's sensory processing patterns and their leisure preferences and participation patterns.

    PubMed

    Ismael, Noor T; Lawson, Lisa A Mische; Cox, Jane A

    2015-12-01

    Sensory processing patterns may be associated with children's preferences for different activities; however, knowledge about how different sensory processing patterns may relate to children's participation in leisure activities is scarce. This study investigated in what leisure activities children with extreme sensory processing patterns participate and if relationships exist between children's sensory processing patterns and their leisure preferences and participation patterns. This correlational study analyzed data from children's Sensory Profiles and reported play and leisure preferences. All 91 children in the sample completed the Children's Assessment for Participation and Enjoyment (CAPE) and the Preferences for Activities of Children (PAC). Parents of children ages 6 to 10 years completed the Sensory Profile, and children ages 11 to 14 years completed the Adolescent/Adult Sensory Profile. Children with different sensory processing patterns preferred both similar and distinct leisure activities. Low-registration quadrant summary z scores negatively correlated with CAPE overall diversity scores (rs=-.23, p=.03), sensitivity quadrant summary z scores negatively correlated with preferences for social activities (rs=-.23, p=.03) and preferences for skill-based activities (rs=-.22, p=.04), and avoiding quadrant summary z scores negatively correlated with preferences for social activities (rs=-.26, p=.01). Children's sensory preferences are related to leisure preferences and participation. © CAOT 2015.

  14. The Role of Sensory Modulation Deficits and Behavioral Symptoms in a Diagnosis for Early Childhood

    ERIC Educational Resources Information Center

    Perez-Robles, Ruth; Doval, Eduardo; Jane, Ma Claustre; da Silva, Pedro Caldeira; Papoila, Ana Luisa; Virella, Daniel

    2013-01-01

    To contribute to the validation of the sensory and behavioral criteria for Regulation Disorders of Sensory Processing (RDSP) (DC:0-3R, 2005), this study examined a sample of toddlers in a clinical setting to analyze: (1) the severity of sensory modulation deficits and the behavioral symptoms of RDSP; (2) the associations between sensory and…

  15. Sensory, Emotional and Cognitive Contributions to Anxiety in Autism Spectrum Disorders

    PubMed Central

    South, Mikle; Rodgers, Jacqui

    2017-01-01

    Severe symptoms of anxiety add substantial additional burden to many individuals diagnosed with Autism Spectrum Disorder (ASD). Improved understanding of specific factors that contribute to anxiety in ASD can aid research regarding the causes of autism and also provide targets for more effective intervention. This mini-review article focuses on emerging evidence for three concepts that appear to be related to each other and which also strongly predict anxiety in ASD samples. Atypical sensory function is included in the diagnostic criteria for ASD and is likely an important contributor to anxiety. Difficulties in understanding and labeling emotions (alexithymia), although a co-morbidity, may arise in part from atypical sensory function and can lead to confusion and uncertainty about how to respond to social and emotional situations. Intolerance of uncertainty (IU) describes people who have a particularly hard time with ambiguity and is known to be a key mechanism underlying some anxiety disorders. While evidence for linking these ideas is to date incomplete, we put forward a model including each concept as a framework for future studies. Specifically, we propose that IU is a critical mediator for anxiety in ASD, and explore the relationships between sensory function, alexithymia and IU. We further explore the role of the medial prefrontal cortex (mPFC) in regulating emotional response, in connection with limbic and insula-based networks, and suggest that disrupted integration in these networks underlies difficulties with habituation to strong emotional stimuli, which results in an enhanced perception of threat in many people with ASD. Behavioral and biologically-based treatments for anxiety in ASD will benefit from attending to these specific mechanisms as adjunct to traditional interventions. PMID:28174531

  16. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    PubMed Central

    Demopoulos, Carly; Yu, Nina; Tripp, Jennifer; Mota, Nayara; Brandes-Aitken, Anne N.; Desai, Shivani S.; Hill, Susanna S.; Antovich, Ashley D.; Harris, Julia; Honma, Susanne; Mizuiri, Danielle; Nagarajan, Srikantan S.; Marco, Elysa J.

    2017-01-01

    This study compared magnetoencephalographic (MEG) imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18), those with sensory processing dysfunction (SPD; N = 13) who do not meet ASD criteria, and typically developing control (TDC; N = 19) participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain. PMID:28603492

  17. Optimizing participation of children with autism spectrum disorder experiencing sensory challenges: a clinical reasoning framework.

    PubMed

    Ashburner, Jill K; Rodger, Sylvia A; Ziviani, Jenny M; Hinder, Elizabeth A

    2014-02-01

    Remedial sensory interventions currently lack supportive evidence and can be challenging to implement for families and clinicians. It may be timely to shift the focus to optimizing participation of children with autism spectrum disorders (ASD) through accommodation and self-regulation of their sensory differences. A framework to guide practitioners in selecting strategies is proposed based on clinical reasoning considerations, including (a) research evidence, (b) client- and family-centredness, (c) practice contexts, (d) occupation-centredness, and (e) risks. Information-sharing with families and coaching constitute the basis for intervention. Specific strategies are identified where sensory aversions or seeking behaviours, challenges with modulation of arousal, or sensory-related behaviours interfere with participation. Self-regulatory strategies are advocated. The application of universal design principles to shared environments is also recommended. The implications of this framework for future research, education, and practice are discussed. The clinical utility of the framework now needs to be tested.

  18. Increased Prevalence of Unusual Sensory Behaviors in Infants at Risk for, and Teens with, Autism Spectrum Disorder.

    PubMed

    Van Etten, Hannah M; Kaur, Maninderjit; Srinivasan, Sudha M; Cohen, Shereen J; Bhat, Anjana; Dobkins, Karen R

    2017-11-01

    The current study investigated the prevalence and pattern of unusual sensory behaviors (USBs) in teens with Autism Spectrum Disorder (ASD) and infants (3-36 months) at risk for ASD. From two different sites (UCSD and UConn), caregivers of infants at high (n = 32) and low risk (n = 33) for ASD, and teenagers with (n = 12) and without ASD (n = 11), completed age-appropriate Sensory Profile questionnaires (Infant/Toddler Sensory Profile; Dunn 2002; Adolescent/Adult Sensory Profile; Brown and Dunn 2002). The results show that high-risk infants and teenagers with ASD exhibit higher-than-typical prevalence of USBs. Results of our distribution analyses investigating the direction of sensory atypicalities (greater-than-typical vs. less-than-typical) revealed a fair degree of consistency amongst teens, however, USB patterns were more varied in high-risk infants.

  19. Thermodynamic Costs of Information Processing in Sensory Adaptation

    PubMed Central

    Sartori, Pablo; Granger, Léo; Lee, Chiu Fan; Horowitz, Jordan M.

    2014-01-01

    Biological sensory systems react to changes in their surroundings. They are characterized by fast response and slow adaptation to varying environmental cues. Insofar as sensory adaptive systems map environmental changes to changes of their internal degrees of freedom, they can be regarded as computational devices manipulating information. Landauer established that information is ultimately physical, and its manipulation subject to the entropic and energetic bounds of thermodynamics. Thus the fundamental costs of biological sensory adaptation can be elucidated by tracking how the information the system has about its environment is altered. These bounds are particularly relevant for small organisms, which unlike everyday computers, operate at very low energies. In this paper, we establish a general framework for the thermodynamics of information processing in sensing. With it, we quantify how during sensory adaptation information about the past is erased, while information about the present is gathered. This process produces entropy larger than the amount of old information erased and has an energetic cost bounded by the amount of new information written to memory. We apply these principles to the E. coli's chemotaxis pathway during binary ligand concentration changes. In this regime, we quantify the amount of information stored by each methyl group and show that receptors consume energy in the range of the information-theoretic minimum. Our work provides a basis for further inquiries into more complex phenomena, such as gradient sensing and frequency response. PMID:25503948

  20. Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia

    PubMed Central

    Javitt, Daniel C.; Freedman, Robert

    2015-01-01

    Sensory processing deficits, first investigated by Kraeplin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being re-characterized in the context of modern understanding of the involved molecular and neurobiological brain mechanisms. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia such as hallucinations. The pre-pulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slightly different stimuli that elicits the cortical Mismatch Negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and, vice versa, are affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of the illness and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients’ sensory perception of the surrounding world, even during treatment sessions, may differ considerable from others’ perceptions. A person’s ability to understand and interact effectively with surrounding world ultimately depends upon an underlying sensory experience of it. PMID:25553496

  1. Sensory Processing Disorder in a Primate Model: Evidence from a Longitudinal Study of Prenatal Alcohol and Prenatal Stress Effects

    ERIC Educational Resources Information Center

    Schneider, Mary L.; Moore, Colleen F.; Gajewski, Lisa L.; Larson, Julie A.; Roberts, Andrew D.; Converse, Alexander K.; DeJesus, Onofre T.

    2008-01-01

    Disrupted sensory processing, characterized by over- or underresponsiveness to environmental stimuli, has been reported in children with a variety of developmental disabilities. This study examined the effects of prenatal stress and moderate-level prenatal alcohol exposure on tactile sensitivity and its relationship to striatal dopamine system…

  2. Reduced modulation of thalamocortical connectivity during exposure to sensory stimuli in ASD.

    PubMed

    Green, Shulamite A; Hernandez, Leanna; Bookheimer, Susan Y; Dapretto, Mirella

    2017-05-01

    Recent evidence for abnormal thalamic connectivity in autism spectrum disorders (ASD) and sensory processing disorders suggests the thalamus may play a role in sensory over-responsivity (SOR), an extreme negative response to sensory stimuli, which is common in ASD. However, there is yet little understanding of changes in thalamic connectivity during exposure to aversive sensory inputs in individuals with ASD. In particular, the pulvinar nucleus of the thalamus is implicated in atypical sensory processing given its role in selective attention, regulation, and sensory integration. This study aimed to examine the role of pulvinar connectivity in ASD during mildly aversive sensory input. Functional magnetic resonance imaging was used to examine connectivity with the pulvinar during exposure to mildly aversive auditory and tactile stimuli in 38 youth (age 9-17; 19 ASD, 19 IQ-matched typically developing (TD)). Parents rated children's SOR severity on two standard scales. Compared to TD, ASD participants displayed aberrant modulation of connectivity between pulvinar and cortex (including sensory-motor and prefrontal regions) during sensory stimulation. In ASD participants, pulvinar-amygdala connectivity was correlated with severity of SOR symptoms. Deficits in modulation of thalamocortical connectivity in youth with ASD may reflect reduced thalamo-cortical inhibition in response to sensory stimulation, which could lead to difficulty filtering out and/or integrating sensory information. An increase in amygdala connectivity with the pulvinar might be partially responsible for deficits in selective attention as the amygdala signals the brain to attend to distracting sensory stimuli. Autism Res 2017, 10: 801-809. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  3. Prestimulus influences on auditory perception from sensory representations and decision processes

    PubMed Central

    McNair, Steven W.

    2016-01-01

    The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task. PMID:27071110

  4. Prestimulus influences on auditory perception from sensory representations and decision processes.

    PubMed

    Kayser, Stephanie J; McNair, Steven W; Kayser, Christoph

    2016-04-26

    The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task.

  5. Anxiety Disorders and Sensory Over-Responsivity in Children with Autism Spectrum Disorders: Is There a Causal Relationship?

    PubMed Central

    Ben-Sasson, Ayelet

    2010-01-01

    Anxiety disorders and sensory over-responsivity (SOR) are common in children with autism spectrum disorders (ASD), and there is evidence for an association between these two conditions. Currently, it is unclear what causal mechanisms may exist between SOR and anxiety. We propose three possible theories to explain the association between anxiety and SOR: (a) SOR is caused by anxiety; (b) Anxiety is caused by SOR; or (c) SOR and anxiety are causally unrelated but are associated through a common risk factor or diagnostic overlap. In this paper, we examine support for each theory in the existing anxiety, autism, and neuroscience literature, and discuss how each theory informs choice of interventions and implications for future studies. PMID:20383658

  6. Sensory integration dysfunction affects efficacy of speech therapy on children with functional articulation disorders.

    PubMed

    Tung, Li-Chen; Lin, Chin-Kai; Hsieh, Ching-Lin; Chen, Ching-Chi; Huang, Chin-Tsan; Wang, Chun-Hou

    2013-01-01

    Articulation disorders in young children are due to defects occurring at a certain stage in sensory and motor development. Some children with functional articulation disorders may also have sensory integration dysfunction (SID). We hypothesized that speech therapy would be less efficacious in children with SID than in those without SID. Hence, the purpose of this study was to compare the efficacy of speech therapy in two groups of children with functional articulation disorders: those without and those with SID. A total of 30 young children with functional articulation disorders were divided into two groups, the no-SID group (15 children) and the SID group (15 children). The number of pronunciation mistakes was evaluated before and after speech therapy. There were no statistically significant differences in age, sex, sibling order, education of parents, and pretest number of mistakes in pronunciation between the two groups (P > 0.05). The mean and standard deviation in the pre- and post-test number of mistakes in pronunciation were 10.5 ± 3.2 and 3.3 ± 3.3 in the no-SID group, and 10.1 ± 2.9 and 6.9 ± 3.5 in the SID group, respectively. Results showed great changes after speech therapy treatment (F = 70.393; P < 0.001) and interaction between the pre/post speech therapy treatment and groups (F = 11.119; P = 0.002). Speech therapy can improve the articulation performance of children who have functional articulation disorders whether or not they have SID, but it results in significantly greater improvement in children without SID. SID may affect the treatment efficiency of speech therapy in young children with articulation disorders.

  7. Sensory integration dysfunction affects efficacy of speech therapy on children with functional articulation disorders

    PubMed Central

    Tung, Li-Chen; Lin, Chin-Kai; Hsieh, Ching-Lin; Chen, Ching-Chi; Huang, Chin-Tsan; Wang, Chun-Hou

    2013-01-01

    Background Articulation disorders in young children are due to defects occurring at a certain stage in sensory and motor development. Some children with functional articulation disorders may also have sensory integration dysfunction (SID). We hypothesized that speech therapy would be less efficacious in children with SID than in those without SID. Hence, the purpose of this study was to compare the efficacy of speech therapy in two groups of children with functional articulation disorders: those without and those with SID. Method: A total of 30 young children with functional articulation disorders were divided into two groups, the no-SID group (15 children) and the SID group (15 children). The number of pronunciation mistakes was evaluated before and after speech therapy. Results: There were no statistically significant differences in age, sex, sibling order, education of parents, and pretest number of mistakes in pronunciation between the two groups (P > 0.05). The mean and standard deviation in the pre- and post-test number of mistakes in pronunciation were 10.5 ± 3.2 and 3.3 ± 3.3 in the no-SID group, and 10.1 ± 2.9 and 6.9 ± 3.5 in the SID group, respectively. Results showed great changes after speech therapy treatment (F = 70.393; P < 0.001) and interaction between the pre/post speech therapy treatment and groups (F = 11.119; P = 0.002). Conclusions: Speech therapy can improve the articulation performance of children who have functional articulation disorders whether or not they have SID, but it results in significantly greater improvement in children without SID. SID may affect the treatment efficiency of speech therapy in young children with articulation disorders. PMID:23355780

  8. Comparing Sensory Information Processing and Alexithymia between People with Substance Dependency and Normal.

    PubMed

    Bashapoor, Sajjad; Hosseini-Kiasari, Seyyedeh Tayebeh; Daneshvar, Somayeh; Kazemi-Taskooh, Zeinab

    2015-01-01

    Sensory information processing and alexithymia are two important factors in determining behavioral reactions. Some studies explain the effect of the sensitivity of sensory processing and alexithymia in the tendency to substance abuse. Giving that, the aim of the current study was to compare the styles of sensory information processing and alexithymia between substance-dependent people and normal ones. The research method was cross-sectional and the statistical population of the current study comprised of all substance-dependent men who are present in substance quitting camps of Masal, Iran, in October 2013 (n = 78). 36 persons were selected randomly by simple randomly sampling method from this population as the study group, and 36 persons were also selected among the normal population in the same way as the comparison group. Both groups was evaluated by using Toronto alexithymia scale (TAS) and adult sensory profile, and the multivariate analysis of variance (MANOVA) test was applied to analyze data. The results showed that there are significance differences between two groups in low registration (P < 0.020, F = 5.66), sensation seeking (P < 0.050, F = 1.92), and sensory avoidance (P < 0.008, F = 7.52) as a components of sensory processing and difficulty in describing emotions (P < 0.001, F = 15.01) and difficulty in identifying emotions (P < 0.002, F = 10.54) as a components of alexithymia. However, no significant difference were found between two groups in components of sensory sensitivity (P < 0.170, F = 1.92) and external oriented thinking style (P < 0.060, F = 3.60). These results showed that substance-dependent people process sensory information in a different way than normal people and show more alexithymia features than them.

  9. Comparing Sensory Information Processing and Alexithymia between People with Substance Dependency and Normal

    PubMed Central

    Bashapoor, Sajjad; Hosseini-Kiasari, Seyyedeh Tayebeh; Daneshvar, Somayeh; Kazemi-Taskooh, Zeinab

    2015-01-01

    Background Sensory information processing and alexithymia are two important factors in determining behavioral reactions. Some studies explain the effect of the sensitivity of sensory processing and alexithymia in the tendency to substance abuse. Giving that, the aim of the current study was to compare the styles of sensory information processing and alexithymia between substance-dependent people and normal ones. Methods The research method was cross-sectional and the statistical population of the current study comprised of all substance-dependent men who are present in substance quitting camps of Masal, Iran, in October 2013 (n = 78). 36 persons were selected randomly by simple randomly sampling method from this population as the study group, and 36 persons were also selected among the normal population in the same way as the comparison group. Both groups was evaluated by using Toronto alexithymia scale (TAS) and adult sensory profile, and the multivariate analysis of variance (MANOVA) test was applied to analyze data. Findings The results showed that there are significance differences between two groups in low registration (P < 0.020, F = 5.66), sensation seeking (P < 0.050, F = 1.92), and sensory avoidance (P < 0.008, F = 7.52) as a components of sensory processing and difficulty in describing emotions (P < 0.001, F = 15.01) and difficulty in identifying emotions (P < 0.002, F = 10.54) as a components of alexithymia. However, no significant difference were found between two groups in components of sensory sensitivity (P < 0.170, F = 1.92) and external oriented thinking style (P < 0.060, F = 3.60). Conclusion These results showed that substance-dependent people process sensory information in a different way than normal people and show more alexithymia features than them. PMID:26885354

  10. Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways

    PubMed Central

    Alloway, Kevin D.; Smith, Jared B.; Mowery, Todd M.; Watson, Glenn D. R.

    2017-01-01

    The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS) region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS) region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R) associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf) nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm) nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson’s disease (PD) and related neurological disorders. PMID:28790899

  11. Caregiver Strain and Sensory Features in Children with Autism Spectrum Disorder and other Developmental Disabilities

    PubMed Central

    Kirby, Anne V.; White, Tamira J.; Baranek, Grace T.

    2015-01-01

    Caring for children with disabilities contributes to increased levels of parent stress, or caregiver strain. However, the potential relationship of sensory features to strain among caregivers of children with autism spectrum disorder (ASD) and other developmental disabilities (DD) is unknown. Sensory features include over-reactions, under-reactions, and unusual interests in sensations, which may negatively impact family functioning. This descriptive study confirmed three caregiver strain types (i.e., objective, subjective internalized, subjective externalized) and explored differences among ASD (n=71) and DD (n=36) groups, with the ASD group reporting higher levels. Furthermore, this study explored the contribution of sensory features to caregiver strain, finding differential contributions to strain in the ASD group and covariate contributions (i.e., child cognition, mother’s education) in the DD group. PMID:25551265

  12. Sequential sensory and decision processing in posterior parietal cortex

    PubMed Central

    Ibos, Guilhem; Freedman, David J

    2017-01-01

    Decisions about the behavioral significance of sensory stimuli often require comparing sensory inference of what we are looking at to internal models of what we are looking for. Here, we test how neuronal selectivity for visual features is transformed into decision-related signals in posterior parietal cortex (area LIP). Monkeys performed a visual matching task that required them to detect target stimuli composed of conjunctions of color and motion-direction. Neuronal recordings from area LIP revealed two main findings. First, the sequential processing of visual features and the selection of target-stimuli suggest that LIP is involved in transforming sensory information into decision-related signals. Second, the patterns of color and motion selectivity and their impact on decision-related encoding suggest that LIP plays a role in detecting target stimuli by comparing bottom-up sensory inputs (what the monkeys were looking at) and top-down cognitive encoding inputs (what the monkeys were looking for). DOI: http://dx.doi.org/10.7554/eLife.23743.001 PMID:28418332

  13. Sensory integration balance training in patients with multiple sclerosis: A randomized, controlled trial.

    PubMed

    Gandolfi, Marialuisa; Munari, Daniele; Geroin, Christian; Gajofatto, Alberto; Benedetti, Maria Donata; Midiri, Alessandro; Carla, Fontana; Picelli, Alessandro; Waldner, Andreas; Smania, Nicola

    2015-10-01

    Impaired sensory integration contributes to balance disorders in patients with multiple sclerosis (MS). The objective of this paper is to compare the effects of sensory integration balance training against conventional rehabilitation on balance disorders, the level of balance confidence perceived, quality of life, fatigue, frequency of falls, and sensory integration processing on a large sample of patients with MS. This single-blind, randomized, controlled trial involved 80 outpatients with MS (EDSS: 1.5-6.0) and subjective symptoms of balance disorders. The experimental group (n = 39) received specific training to improve central integration of afferent sensory inputs; the control group (n = 41) received conventional rehabilitation (15 treatment sessions of 50 minutes each). Before, after treatment, and at one month post-treatment, patients were evaluated by a blinded rater using the Berg Balance Scale (BBS), Activities-specific Balance Confidence Scale (ABC), Multiple Sclerosis Quality of Life-54, Fatigue Severity Scale (FSS), number of falls and the Sensory Organization Balance Test (SOT). The experimental training program produced greater improvements than the control group training on the BBS (p < 0.001), the FSS (p < 0.002), number of falls (p = 0.002) and SOT (p < 0.05). Specific training to improve central integration of afferent sensory inputs may ameliorate balance disorders in patients with MS. Clinical Trial Registration (NCT01040117). © The Author(s), 2015.

  14. Bayesian quantification of sensory reweighting in a familial bilateral vestibular disorder (DFNA9).

    PubMed

    Alberts, Bart B G T; Selen, Luc P J; Verhagen, Wim I M; Pennings, Ronald J E; Medendorp, W Pieter

    2018-03-01

    DFNA9 is a rare progressive autosomal dominantly inherited vestibulo-cochlear disorder, resulting in a homogeneous group of patients with hearing impairment and bilateral vestibular function loss. These patients suffer from a deteriorated sense of spatial orientation, leading to balance problems in darkness, especially on irregular surfaces. Both behavioral and functional imaging studies suggest that the remaining sensory cues could compensate for the loss of vestibular information. A thorough model-based quantification of this reweighting in individual patients is, however, missing. Here we psychometrically examined the individual patient's sensory reweighting of these cues after complete vestibular loss. We asked a group of DFNA9 patients and healthy control subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a rod presented within an oriented square frame (rod-in-frame task) in three different head-on-body tilt conditions. Our results show a cyclical frame-induced bias in perceived gravity direction across a 90° range of frame orientations. The magnitude of this bias was significantly increased in the patients compared with the healthy control subjects. Response variability, which increased with head-on-body tilt, was also larger for the patients. Reverse engineering of the underlying signal properties, using Bayesian inference principles, suggests a reweighting of sensory signals, with an increase in visual weight of 20-40% in the patients. Our approach of combining psychophysics and Bayesian reverse engineering is the first to quantify the weights associated with the different sensory modalities at an individual patient level, which could make it possible to develop personal rehabilitation programs based on the patient's sensory weight distribution. NEW & NOTEWORTHY It has been suggested that patients with vestibular deficits can compensate for this loss by increasing reliance on other sensory cues, although an actual

  15. Assessment of Sensory Processing Characteristics in Children between 3 and 11 Years Old: A Systematic Review.

    PubMed

    Jorquera-Cabrera, Sara; Romero-Ayuso, Dulce; Rodriguez-Gil, Gemma; Triviño-Juárez, José-Matías

    2017-01-01

    The assessment of sensory perception, discrimination, integration, modulation, praxis, and other motor skills, such as posture, balance, and bilateral motor coordination, is necessary to identify the sensory and motor factors influencing the development of personal autonomy. The aim of this work is to study the assessment tools currently available for identifying different patterns of sensory processing. There are 15 tests available that have psychometric properties, primarily for the US population. Nine of them apply to children in preschool and up to grade 12. The assessment of sensory processing is a process that includes the use of standardized tests, administration of caregiver questionnaires, and clinical observations. The review of different studies using PRISMA criteria or Osteba Critical Appraisal Cards reveals that the most commonly used tools are the Sensory Integration and Praxis Test, the Sensory Processing Measure, and the Sensory Profile.

  16. Assessment of Sensory Processing Characteristics in Children between 3 and 11 Years Old: A Systematic Review

    PubMed Central

    Jorquera-Cabrera, Sara; Romero-Ayuso, Dulce; Rodriguez-Gil, Gemma; Triviño-Juárez, José-Matías

    2017-01-01

    The assessment of sensory perception, discrimination, integration, modulation, praxis, and other motor skills, such as posture, balance, and bilateral motor coordination, is necessary to identify the sensory and motor factors influencing the development of personal autonomy. The aim of this work is to study the assessment tools currently available for identifying different patterns of sensory processing. There are 15 tests available that have psychometric properties, primarily for the US population. Nine of them apply to children in preschool and up to grade 12. The assessment of sensory processing is a process that includes the use of standardized tests, administration of caregiver questionnaires, and clinical observations. The review of different studies using PRISMA criteria or Osteba Critical Appraisal Cards reveals that the most commonly used tools are the Sensory Integration and Praxis Test, the Sensory Processing Measure, and the Sensory Profile. PMID:28424762

  17. Sensory Adapted Dental Environments to Enhance Oral Care for Children with Autism Spectrum Disorders: A Randomized Controlled Pilot Study

    ERIC Educational Resources Information Center

    Cermak, Sharon A.; Stein Duker, Leah I.; Williams, Marian E.; Dawson, Michael E.; Lane, Christianne J.; Polido, José C.

    2015-01-01

    This pilot and feasibility study examined the impact of a sensory adapted dental environment (SADE) to reduce distress, sensory discomfort, and perception of pain during oral prophylaxis for children with autism spectrum disorder (ASD). Participants were 44 children ages 6-12 (n = 22 typical, n = 22 ASD). In an experimental crossover design, each…

  18. A Motion-Sensing Game-Based Therapy to Foster the Learning of Children with Sensory Integration Dysfunction

    ERIC Educational Resources Information Center

    Chuang, Tsung-Yen; Kuo, Ming-Shiou

    2016-01-01

    Children with Sensory Integration Dysfunction (SID, also known as Sensory Processing Disorder, SPD) are also learners with disabilities with regard to responding adequately to the demands made by a learning environment. With problems of organizing and processing the sensation information coming from body modalities, children with SID (CwSID)…

  19. The Relationship between Sensory Processing Patterns and Behavioral Patterns in Children

    ERIC Educational Resources Information Center

    Nesayan, Abbas; Asadi Gandomani, Roghayeh; Movallali, Gita; Dunn, Winnie

    2018-01-01

    This study investigates the relationship between sensory processing patterns and behavioral patterns in children. The population consisted of all children in Tehran city. Participation included 229 school and 155 preschool children. We collected data using the Sensory Profile School Companion and Conners Teacher Rating Scale. Results showed that…

  20. Prenatal thalamic waves regulate cortical area size prior to sensory processing.

    PubMed

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M; López-Bendito, Guillermina

    2017-02-03

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing.

  1. Prenatal thalamic waves regulate cortical area size prior to sensory processing

    PubMed Central

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M.; López-Bendito, Guillermina

    2017-01-01

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. PMID:28155854

  2. Is Sensory Over-Responsivity Distinguishable from Childhood Behavior Problems? A Phenotypic and Genetic Analysis

    ERIC Educational Resources Information Center

    Van Hulle, Carol A.; Schmidt, Nicole L.; Goldsmith, H. Hill

    2012-01-01

    Background: Although impaired sensory processing accompanies various clinical conditions, the question of its status as an independent disorder remains open. Our goal was to delineate the comorbidity (or lack thereof) between childhood psychopathology and sensory over-responsivity (SOR) in middle childhood using phenotypic and behavior-genetic…

  3. Development of the Classroom Sensory Environment Assessment (CSEA).

    PubMed

    Kuhaneck, Heather Miller; Kelleher, Jaqueline

    2015-01-01

    The Classroom Sensory Environment Assessment (CSEA) is a tool that provides a means of understanding the impact of a classroom's sensory environment on student behavior. The purpose of the CSEA is to promote collaboration between occupational therapists and elementary education teachers. In particular, students with autism spectrum disorder included in general education classrooms may benefit from a suitable match created through this collaborative process between the sensory environment and their unique sensory preferences. The development of the CSEA has occurred in multiple stages over 2 yr. This article reports on descriptive results for 152 classrooms and initial reliability results. Descriptive information suggests that classrooms are environments with an enormous variety of sensory experiences that can be quantified. Visual experiences are most frequent. The tool has adequate internal consistency but requires further investigation of interrater reliability and validity. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  4. Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing.

    PubMed

    Stevenson, Ryan A; Segers, Magali; Ferber, Susanne; Barense, Morgan D; Camarata, Stephen; Wallace, Mark T

    2016-07-01

    A growing area of interest and relevance in the study of autism spectrum disorder (ASD) focuses on the relationship between multisensory temporal function and the behavioral, perceptual, and cognitive impairments observed in ASD. Atypical sensory processing is becoming increasingly recognized as a core component of autism, with evidence of atypical processing across a number of sensory modalities. These deviations from typical processing underscore the value of interpreting ASD within a multisensory framework. Furthermore, converging evidence illustrates that these differences in audiovisual processing may be specifically related to temporal processing. This review seeks to bridge the connection between temporal processing and audiovisual perception, and to elaborate on emerging data showing differences in audiovisual temporal function in autism. We also discuss the consequence of such changes, the specific impact on the processing of different classes of audiovisual stimuli (e.g. speech vs. nonspeech, etc.), and the presumptive brain processes and networks underlying audiovisual temporal integration. Finally, possible downstream behavioral implications, and possible remediation strategies are outlined. Autism Res 2016, 9: 720-738. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  5. Sensory profiles for dried fig (Ficus carica L.) cultivars commercially grown and processed in California.

    PubMed

    Haug, Megan T; King, Ellena S; Heymann, Hildegarde; Crisosto, Carlos H

    2013-08-01

    A trained sensory panel evaluated the 6 fig cultivars currently sold in the California dried fig market. The main flavor and aroma attributes determined by the sensory panel were "caramel," "honey," "raisin," and "fig," with additional aroma attributes: "common date," "dried plum," and "molasses." Sensory differences were observed between dried fig cultivars. All figs were processed by 2 commercial handlers. Processing included potassium sorbate as a preservative and SO2 application as an antibrowning agent for white cultivars. As a consequence of SO2 use during processing, high sulfite residues affected the sensory profiles of the white dried fig cultivars. Significant differences between dried fig cultivars and sources demonstrate perceived differences between processing and storage methods. The panel-determined sensory lexicon can help with California fig marketing. © 2013 The Regents of California, Davis Campus Department of Plant Sciences.

  6. Improving therapeutic outcomes in autism spectrum disorders: Enhancing social communication and sensory processing through the use of interactive robots.

    PubMed

    Sartorato, Felippe; Przybylowski, Leon; Sarko, Diana K

    2017-07-01

    For children with autism spectrum disorders (ASDs), social robots are increasingly utilized as therapeutic tools in order to enhance social skills and communication. Robots have been shown to generate a number of social and behavioral benefits in children with ASD including heightened engagement, increased attention, and decreased social anxiety. Although social robots appear to be effective social reinforcement tools in assistive therapies, the perceptual mechanism underlying these benefits remains unknown. To date, social robot studies have primarily relied on expertise in fields such as engineering and clinical psychology, with measures of social robot efficacy principally limited to qualitative observational assessments of children's interactions with robots. In this review, we examine a range of socially interactive robots that currently have the most widespread use as well as the utility of these robots and their therapeutic effects. In addition, given that social interactions rely on audiovisual communication, we discuss how enhanced sensory processing and integration of robotic social cues may underlie the perceptual and behavioral benefits that social robots confer. Although overall multisensory processing (including audiovisual integration) is impaired in individuals with ASD, social robot interactions may provide therapeutic benefits by allowing audiovisual social cues to be experienced through a simplified version of a human interaction. By applying systems neuroscience tools to identify, analyze, and extend the multisensory perceptual substrates that may underlie the therapeutic benefits of social robots, future studies have the potential to strengthen the clinical utility of social robots for individuals with ASD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas

    PubMed Central

    Sellers, Kristin K.; Bennett, Davis V.; Hutt, Axel; Williams, James H.

    2015-01-01

    During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers. PMID:25833839

  8. Processes to Preserve Spice and Herb Quality and Sensory Integrity During Pathogen Inactivation

    PubMed Central

    Moberg, Kayla; Amin, Kemia N.; Wright, Melissa; Newkirk, Jordan J.; Ponder, Monica A.; Acuff, Gary R.; Dickson, James S.

    2017-01-01

    Abstract Selected processing methods, demonstrated to be effective at reducing Salmonella, were assessed to determine if spice and herb quality was affected. Black peppercorn, cumin seed, oregano, and onion powder were irradiated to a target dose of 8 kGy. Two additional processes were examined for whole black peppercorns and cumin seeds: ethylene oxide (EtO) fumigation and vacuum assisted‐steam (82.22 °C, 7.5 psia). Treated and untreated spices/herbs were compared (visual, odor) using sensory similarity testing protocols (α = 0.20; β = 0.05; proportion of discriminators: 20%) to determine if processing altered sensory quality. Analytical assessment of quality (color, water activity, and volatile chemistry) was completed. Irradiation did not alter visual or odor sensory quality of black peppercorn, cumin seed, or oregano but created differences in onion powder, which was lighter (higher L *) and more red (higher a*) in color, and resulted in nearly complete loss of measured volatile compounds. EtO processing did not create detectable odor or appearance differences in black peppercorn; however visual and odor sensory quality differences, supported by changes in color (higher b *; lower L *) and increased concentrations of most volatiles, were detected for cumin seeds. Steam processing of black peppercorn resulted in perceptible odor differences, supported by increased concentration of monoterpene volatiles and loss of all sesquiterpenes; only visual differences were noted for cumin seed. An important step in process validation is the verification that no effect is detectable from a sensory perspective. PMID:28407236

  9. A Kinect-Based Motion-Sensing Game Therapy to Foster the Learning of Children with Sensory Integration Dysfunction

    ERIC Educational Resources Information Center

    Chuang, Tsung-Yen; Kuo, Ming-Shiou; Fan, Ping-Lin; Hsu, Yen-Wei

    2017-01-01

    Sensory integration dysfunction (SID, also known as sensory processing disorder, SPD) is a condition that exists when a person's multisensory integration fails to process and respond adequately to the demands of the environment. Children with SID (CwSID) are also learners with disabilities with regard to responding adequately to the demands made…

  10. Untangling syntactic and sensory processing: an ERP study of music perception.

    PubMed

    Koelsch, Stefan; Jentschke, Sebastian; Sammler, Daniela; Mietchen, Daniel

    2007-05-01

    The present study investigated music-syntactic processing with chord sequences that ended on either regular or irregular chord functions. Sequences were composed such that perceived differences in the cognitive processing between syntactically regular and irregular chords could not be due to the sensory processing of acoustic factors like pitch repetition, pitch commonality (the major component of "sensory dissonance"), or roughness. Three experiments with independent groups of subjects were conducted: a behavioral experiment and two experiments using electroencephalography. Irregular chords elicited an early right anterior negativity (ERAN) in the event-related brain potentials (ERPs) under both task-relevant and task-irrelevant conditions. Behaviorally, participants detected around 75% of the irregular chords, indicating that these chords were only moderately salient. Nevertheless, the irregular chords reliably elicited clear ERP effects. Amateur musicians were slightly more sensitive to musical irregularities than nonmusicians, supporting previous studies demonstrating effects of musical training on music-syntactic processing. The findings indicate that the ERAN is an index of music-syntactic processing and that the ERAN can be elicited even when irregular chords are not detectable based on acoustical factors such as pitch repetition, sensory dissonance, or roughness.

  11. Is There a Relationship between Restricted, Repetitive, Stereotyped Behaviors and Interests and Abnormal Sensory Response in Children with Autism Spectrum Disorders?

    ERIC Educational Resources Information Center

    Gabriels, Robin L.; Agnew, John A.; Miller, Lucy Jane; Gralla, Jane; Pan, Zhaoxing; Goldson, Edward; Ledbetter, James C.; Dinkins, Juliet P.; Hooks, Elizabeth

    2008-01-01

    This study examined the relation between restricted, repetitive, and stereotyped behaviors and interests (RBs) and sensory responses in a group of 70 children and adolescents diagnosed with an autism spectrum disorder (ASD). Caregivers completed the Repetitive Behavior Scale-Revised (RBS-R) and the Sensory Profile. Controlling for IQ and age,…

  12. Sensory shelf-life limiting factor of high hydrostatic pressure processed avocado paste.

    PubMed

    Jacobo-Velázquez, D A; Hernández-Brenes, C

    2011-08-01

    High hydrostatic pressure (HHP) processing pasteurizes avocado paste without a significant impact on flavor. Although HHP-treated avocado paste stored under refrigeration is safe for human consumption for months, sensory changes taking place during storage cause the rejection of the product by consumers within days. Although it is known that the shelf life of the product ends before its microbial counts are high, its sensory shelf life limiting factor remains unknown. The present study focused on the use of a trained panel and a consumer panel to determine the sensory shelf life limiting factor of HHP-treated avocado paste. The trained panel identified sour and rancid flavors as the main sensory descriptors (critical descriptors) that differentiated stored from freshly processed samples. Further data obtained from consumers identified sour flavor as the main cause for a significant decrease in the acceptability (shelf life limiting factor) of refrigerated HHP-treated avocado paste. The study allowed the elucidation of a proposed deterioration mechanism for HHP-treated avocado paste during its refrigerated shelf life. The information through this work enhances scientific knowledge of the product and proposes the sour flavor development during storage as a relevant sensory attribute that needs to be improved in order to enhance the product shelf life. At present, HHP is the most effective commercial nonthermal technology to process avocado paste when compared to thermal and chemical alternatives. HHP-treated avocado paste is a microbiologically stable food for a period of at least 45 d stored under refrigeration. However, previous published work indicated that consumers rejected the product after approximately 19 d of storage due to sensory changes. This manuscript presents a sensory study that permitted the identification of the critical sensory descriptor that is acting as the sensory shelf life limiting factor of the product. The data presented herein along with

  13. Nicotine-induced plasticity during development: modulation of the cholinergic system and long-term consequences for circuits involved in attention and sensory processing.

    PubMed

    Heath, Christopher J; Picciotto, Marina R

    2009-01-01

    Despite a great deal of progress, more than 10% of pregnant women in the USA smoke. Epidemiological studies have demonstrated correlations between developmental tobacco smoke exposure and sensory processing deficits, as well as a number of neuropsychiatric conditions, including attention deficit hyperactivity disorder. Significantly, data from animal models of developmental nicotine exposure have suggested that the nicotine in tobacco contributes significantly to the effects of developmental smoke exposure. Consequently, we hypothesize that nicotinic acetylcholine receptors (nAChRs) are important for setting and refining the strength of corticothalamic-thalamocortical loops during critical periods of development and that disruption of this process by developmental nicotine exposure can result in long-lasting dysregulation of sensory processing. The ability of nAChR activation to modulate synaptic plasticity is likely to underlie the effects of both endogenous cholinergic signaling and pharmacologically administered nicotine to alter cellular, physiological and behavioral processes during critical periods of development.

  14. Sensory Adapted Dental Environments to Enhance Oral Care for Children with Autism Spectrum Disorders: A Randomized Controlled Pilot Study

    PubMed Central

    Cermak, Sharon A.; Stein Duker, Leah I.; Williams, Marian E.; Dawson, Michael E.; Lane, Christianne J.; Polido, José C.

    2015-01-01

    This pilot and feasibility study examined the impact of a sensory adapted dental environment (SADE) to reduce distress, sensory discomfort, and perception of pain during oral prophylaxis for children with autism spectrum disorder (ASD). Participants were 44 children ages 6-12 (n=22 typical, n=22 ASD). In an experimental crossover design, each participant underwent two professional dental cleanings, one in a regular dental environment (RDE) and one in a SADE, administered in a randomized and counterbalanced order three to four months apart. Outcomes included measures of physiological anxiety, behavioral distress, pain intensity, and sensory discomfort. Both groups exhibited decreased physiological anxiety and reported lower pain and sensory discomfort in the SADE condition compared to RDE, indicating a beneficial effect of the SADE. PMID:25931290

  15. Sensory Gating and Alpha-7 Nicotinic Receptor Gene Allelic Variants in Schizoaffective Disorder, Bipolar Type

    PubMed Central

    Martin, Laura F.; Leonard, Sherry; Hall, Mei-Hua; Tregellas, Jason R.; Freedman, Robert; Olincy, Ann

    2011-01-01

    Objectives Single nucleotide allelic variants in the promoter region of the chromosome 15 alpha-7 acetylcholine nicotinic receptor gene (CHRNA7) are associated with both schizophrenia and the P50 auditory evoked potential sensory gating deficit. The purpose of this study was to determine if CHRNA7 promoter allelic variants are also associated with abnormal P50 ratios in persons with schizoaffective disorder, bipolar type. Methods P50 auditory evoked potentials were recorded in a paired stimulus paradigm in 17 subjects with schizoaffective disorder, bipolar type. The P50 test to conditioning ratio was used as the measure of sensory gating. Mutation screening of the CHRNA7 promoter region was performed on the subjects’ DNA samples. Comparisons to previously obtained data from persons with schizophrenia and controls were made. Results Subjects with schizophrenia, regardless of allele status, had an abnormal mean P50 ratio. Subjects with schizoaffective disorder, bipolar type and a variant allele had an abnormal mean P50 ratio, whereas those schizoaffective subjects with the common alleles had a normal mean P50 ratio. Normal control subjects had a normal mean ratio, but controls with variant alleles had higher P50 ratios. Conclusions In persons with bipolar type schizoaffective disorder, CHRNA7 promoter region allelic variants are linked to the capacity to inhibit the P50 auditory evoked potential and thus are associated with a type of illness genetically and biologically more similar to schizophrenia. PMID:17192894

  16. Sensory processing issues in young children presenting to an outpatient feeding clinic.

    PubMed

    Davis, Ann M; Bruce, Amanda S; Khasawneh, Rima; Schulz, Trina; Fox, Catherine; Dunn, Winifred

    2013-02-01

    The aim of the study was to describe the relation between sensory issues and medical complexity in a series of patients presenting to an outpatient multidisciplinary feeding team for evaluation, by a standardized measure of sensory-processing abilities. A retrospective chart review of all of the patients seen from 2004 to 2009 on 2 key variables: medical diagnostic category and short sensory profile (SSP) score. On the SSP, 67.6% of children scored in the clinical ("definite difference") range. The most common diagnostic categories were developmental (n = 23), gastrointestinal (n = 16), and neurological (n = 13). Behavioral and cardiorespiratory medical diagnostic categories were significantly related to SSP total score and SSP definite difference score. Children who present for feeding evaluation do indeed tend to have clinically elevated scores regarding sensory processing, and these elevated scores are significantly related to certain medical diagnostic categories. Future research is needed to determine why these significant relations exist as well as their implications for treatment of feeding-related issues.

  17. Cerebral Palsy for the Pediatric Eye Care Team Part III: Diagnosis and Management of Associated Visual and Sensory Disorders.

    PubMed

    Arnoldi, Kyle A; Pendarvis, Lauren; Jackson, Jorie; Batra, Noopur Nikki Agarwal

    2006-01-01

    Cerebral palsy (CP) is a term used to describe a spectrum of deficits of muscle tone and posture resulting from damage to the developing nervous system. Though considered a motor disorder, CP can be associated with disorders of the sensory visual pathway. This paper, the final in a series of three articles, will present frequency, diagnosis, and management of the visual and binocular vision deficits associated with CP. Topics for discussion will include the prevalence and etiology of decreased acuity, the effect of CP on sensory and motor fusion, and the response to treatment for these sensory deficits. A retrospective chart review of all cases of cerebral palsy referred to the St. Louis Children's Hospital Eye Center was done. Detailed data on the sensory and motor deficits documented in these children was collected. Also recorded was the management strategy and response to treatment. Of the 131 cases reviewed (mean age 5.2 years at presentation), 46% had decreased vision in at least one eye due to amblyopia (24%), optic nerve abnormality (16%), cortical visual impairment (14%), or a combination. Forty-nine (37%) had significant refractive error. Sixty-four percent of those with significant refractive error responded to spectacle correction. Forty-three percent of those with amblyopia responded to conventional therapies. Of the nonstrabismic patients, 89% demonstrated sensory fusion, 90% had stereopsis, and 91% had motor fusion. No patient lacking fusion or stereopsis prior to strabismus surgery gained these abilities with realignment of the eyes. While children with CP are capable of age-appropriate acuity and binocular vision, they are at increased risk for sensory visual deficits. These deficits are not the direct result of CP itself, but either share a common underlying cause, or occur as sequelae to the strabismus that is prevalent in CP. Most importantly, some sensory deficits may respond to standard treatment methods.

  18. Processes to Preserve Spice and Herb Quality and Sensory Integrity During Pathogen Inactivation.

    PubMed

    Duncan, Susan E; Moberg, Kayla; Amin, Kemia N; Wright, Melissa; Newkirk, Jordan J; Ponder, Monica A; Acuff, Gary R; Dickson, James S

    2017-05-01

    Selected processing methods, demonstrated to be effective at reducing Salmonella, were assessed to determine if spice and herb quality was affected. Black peppercorn, cumin seed, oregano, and onion powder were irradiated to a target dose of 8 kGy. Two additional processes were examined for whole black peppercorns and cumin seeds: ethylene oxide (EtO) fumigation and vacuum assisted-steam (82.22 °C, 7.5 psia). Treated and untreated spices/herbs were compared (visual, odor) using sensory similarity testing protocols (α = 0.20; β = 0.05; proportion of discriminators: 20%) to determine if processing altered sensory quality. Analytical assessment of quality (color, water activity, and volatile chemistry) was completed. Irradiation did not alter visual or odor sensory quality of black peppercorn, cumin seed, or oregano but created differences in onion powder, which was lighter (higher L * ) and more red (higher a * ) in color, and resulted in nearly complete loss of measured volatile compounds. EtO processing did not create detectable odor or appearance differences in black peppercorn; however visual and odor sensory quality differences, supported by changes in color (higher b * ; lower L * ) and increased concentrations of most volatiles, were detected for cumin seeds. Steam processing of black peppercorn resulted in perceptible odor differences, supported by increased concentration of monoterpene volatiles and loss of all sesquiterpenes; only visual differences were noted for cumin seed. An important step in process validation is the verification that no effect is detectable from a sensory perspective. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.

  19. A randomized controlled pilot study of the effectiveness of occupational therapy for children with sensory modulation disorder.

    PubMed

    Miller, Lucy Jane; Coll, Joseph R; Schoen, Sarah A

    2007-01-01

    A pilot randomized controlled trial (RCT) of the effectiveness of occupational therapy using a sensory integration approach (OT-SI) was conducted with children who had sensory modulation disorders (SMDs). This study evaluated the effectiveness of three treatment groups. In addition, sample size estimates for a large scale, multisite RCT were calculated. Twenty-four children with SMD were randomly assigned to one of three treatment conditions; OT-SI, Activity Protocol, and No Treatment. Pretest and posttest measures of behavior, sensory and adaptive functioning, and physiology were administered. The OT-SI group, compared to the other two groups, made significant gains on goal attainment scaling and on the Attention subtest and the Cognitive/Social composite of the Leiter International Performance Scale-Revised. Compared to the control groups, OT-SI improvement trends on the Short Sensory Profile, Child Behavior Checklist, and electrodermal reactivity were in the hypothesized direction. Findings suggest that OT-SI may be effective in ameliorating difficulties of children with SMD.

  20. Sensory Contributions to Impaired Emotion Processing in Schizophrenia

    PubMed Central

    Butler, Pamela D.; Abeles, Ilana Y.; Weiskopf, Nicole G.; Tambini, Arielle; Jalbrzikowski, Maria; Legatt, Michael E.; Zemon, Vance; Loughead, James; Gur, Ruben C.; Javitt, Daniel C.

    2009-01-01

    Both emotion and visual processing deficits are documented in schizophrenia, and preferential magnocellular visual pathway dysfunction has been reported in several studies. This study examined the contribution to emotion-processing deficits of magnocellular and parvocellular visual pathway function, based on stimulus properties and shape of contrast response functions. Experiment 1 examined the relationship between contrast sensitivity to magnocellular- and parvocellular-biased stimuli and emotion recognition using the Penn Emotion Recognition (ER-40) and Emotion Differentiation (EMODIFF) tests. Experiment 2 altered the contrast levels of the faces themselves to determine whether emotion detection curves would show a pattern characteristic of magnocellular neurons and whether patients would show a deficit in performance related to early sensory processing stages. Results for experiment 1 showed that patients had impaired emotion processing and a preferential magnocellular deficit on the contrast sensitivity task. Greater deficits in ER-40 and EMODIFF performance correlated with impaired contrast sensitivity to the magnocellular-biased condition, which remained significant for the EMODIFF task even when nonspecific correlations due to group were considered in a step-wise regression. Experiment 2 showed contrast response functions indicative of magnocellular processing for both groups, with patients showing impaired performance. Impaired emotion identification on this task was also correlated with magnocellular-biased visual sensory processing dysfunction. These results provide evidence for a contribution of impaired early-stage visual processing in emotion recognition deficits in schizophrenia and suggest that a bottom-up approach to remediation may be effective. PMID:19793797

  1. Sensory contributions to impaired emotion processing in schizophrenia.

    PubMed

    Butler, Pamela D; Abeles, Ilana Y; Weiskopf, Nicole G; Tambini, Arielle; Jalbrzikowski, Maria; Legatt, Michael E; Zemon, Vance; Loughead, James; Gur, Ruben C; Javitt, Daniel C

    2009-11-01

    Both emotion and visual processing deficits are documented in schizophrenia, and preferential magnocellular visual pathway dysfunction has been reported in several studies. This study examined the contribution to emotion-processing deficits of magnocellular and parvocellular visual pathway function, based on stimulus properties and shape of contrast response functions. Experiment 1 examined the relationship between contrast sensitivity to magnocellular- and parvocellular-biased stimuli and emotion recognition using the Penn Emotion Recognition (ER-40) and Emotion Differentiation (EMODIFF) tests. Experiment 2 altered the contrast levels of the faces themselves to determine whether emotion detection curves would show a pattern characteristic of magnocellular neurons and whether patients would show a deficit in performance related to early sensory processing stages. Results for experiment 1 showed that patients had impaired emotion processing and a preferential magnocellular deficit on the contrast sensitivity task. Greater deficits in ER-40 and EMODIFF performance correlated with impaired contrast sensitivity to the magnocellular-biased condition, which remained significant for the EMODIFF task even when nonspecific correlations due to group were considered in a step-wise regression. Experiment 2 showed contrast response functions indicative of magnocellular processing for both groups, with patients showing impaired performance. Impaired emotion identification on this task was also correlated with magnocellular-biased visual sensory processing dysfunction. These results provide evidence for a contribution of impaired early-stage visual processing in emotion recognition deficits in schizophrenia and suggest that a bottom-up approach to remediation may be effective.

  2. The value of 'positive' clinical signs for weakness, sensory and gait disorders in conversion disorder: a systematic and narrative review.

    PubMed

    Daum, Corinna; Hubschmid, Monica; Aybek, Selma

    2014-02-01

    Experts in the field of conversion disorder have suggested for the upcoming DSM-V edition to put less weight on the associated psychological factors and to emphasise the role of clinical findings. Indeed, a critical step in reaching a diagnosis of conversion disorder is careful bedside neurological examination, aimed at excluding organic signs and identifying 'positive' signs suggestive of a functional disorder. These positive signs are well known to all trained neurologists but their validity is still not established. The aim of this study is to provide current evidence regarding their sensitivity and specificity. We conducted a systematic search on motor, sensory and gait functional signs in Embase, Medline, PsycINfo from 1965 to June 2012. Studies in English, German or French reporting objective data on more than 10 participants in a controlled design were included in a systematic review. Other relevant signs are discussed in a narrative review. Eleven controlled studies (out of 147 eligible articles) describing 14 signs (7 motor, 5 sensory, 2 gait) reported low sensitivity of 8-100% but high specificity of 92-100%. Studies were evidence class III, only two had a blinded design and none reported on inter-rater reliability of the signs. Clinical signs for functional neurological symptoms are numerous but only 14 have been validated; overall they have low sensitivity but high specificity and their use should thus be recommended, especially with the introduction of the new DSM-V criteria.

  3. Contribution of intravestibular sensory conflict to motion sickness and dizziness in migraine disorders.

    PubMed

    Wang, Joanne; Lewis, Richard F

    2016-10-01

    Migraine is associated with enhanced motion sickness susceptibility and can cause episodic vertigo [vestibular migraine (VM)], but the mechanisms relating migraine to these vestibular symptoms remain uncertain. We tested the hypothesis that the central integration of rotational cues (from the semicircular canals) and gravitational cues (from the otolith organs) is abnormal in migraine patients. A postrotational tilt paradigm generated a conflict between canal cues (which indicate the head is rotating) and otolith cues (which indicate the head is tilted and stationary), and eye movements were measured to quantify two behaviors that are thought to minimize this conflict: suppression and reorientation of the central angular velocity signal, evidenced by attenuation ("dumping") of the vestibuloocular reflex and shifting of the rotational axis of the vestibuloocular reflex toward the earth vertical. We found that normal and migraine subjects, but not VM patients, displayed an inverse correlation between the extent of dumping and the size of the axis shift such that the net "conflict resolution" mediated through these two mechanisms approached an optimal value and that the residual sensory conflict in VM patients (but not migraine or normal subjects) correlated with motion sickness susceptibility. Our findings suggest that the brain normally controls the dynamic and spatial characteristics of central vestibular signals to minimize intravestibular sensory conflict and that this process is disrupted in VM, which may be responsible for the enhance motion intolerance and episodic vertigo that characterize this disorder. Copyright © 2016 the American Physiological Society.

  4. Sensory Processing Relates to Attachment to Childhood Comfort Objects of College Students

    ERIC Educational Resources Information Center

    Kalpidou, Maria

    2012-01-01

    The author tested the hypothesis that attachment to comfort objects is based on the sensory processing characteristics of the individual. Fifty-two undergraduate students with and without a childhood comfort object reported sensory responses and performed a tactile threshold task. Those with a comfort object described their object and rated their…

  5. Motor development and sensory processing: A comparative study between preterm and term infants.

    PubMed

    Cabral, Thais Invenção; Pereira da Silva, Louise Gracelli; Tudella, Eloisa; Simões Martinez, Cláudia Maria

    2014-10-16

    Infants born preterm and/or with low birth weight may present a clinical condition of organic instability and usually face a long period of hospitalization in the Neonatal Intensive Care Units, being exposed to biopsychosocial risk factors to their development due to decreased spontaneous movement and excessive sensory stimuli. This study assumes that there are relationships between the integration of sensory information of preterm infants, motor development and their subsequent effects. To evaluate the sensory processing and motor development in preterm infants aged 4-6 months and compare performance data with their peers born at term. This was a cross-sectional and comparative study consisting of a group of preterm infants (n=15) and a group of term infants (n=15), assessed using the Test of Sensory Functions in Infants (TSFI) and the Alberta Infant Motor Scale (AIMS). The results showed no significant association between motor performance on the AIMS scale (total score) and sensory processing in the TSFI (total score). However, all infants who scored abnormal in the total TSFI score, subdomain 1, and subdomain 5 presented motor performance at or below the 5th percentile on the AIMS scale. Since all infants who presented definite alteration in tolerating tactile deep pressure and poor postural control are at risk of delayed gross motor development, there may be peculiarities not detected by the tests used that seem to establish some relationship between sensory processing and motor development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Rheological and sensory behaviors of parboiled pasta cooked using a microwave pasteurization process.

    PubMed

    Joyner, Helen S; Jones, Kari E; Rasco, Barbara A

    2017-10-01

    Pasta hydration and cooking requirements make in-package microwave pasteurization of pasta a processing challenge. The objective of this study was to assess instrumental and sensory attributes of microwave-treated pasta in comparison to conventionally cooked pasta. Fettuccine pasta was parboiled for 0, 3, 6, 9, or 12 min, pasteurized by microwaves at 915 MHz, then stored under refrigeration for 1 week. Pastas were evaluated by a trained sensory panel and with rheometry. Total pasta heat treatment affected both rheological and sensory behaviors; these differences were attributed to ultrastructure differences. Significant nonlinear behavior and dominant fluid-like behavior was observed in all pastas at strains >1%. Sensory results suggested microwave pasteurization may intensify the attributes associated with the aging of pasta such as retrogradation. A clear trend between magnitude of heat treatment and attribute intensity was not observed for all sensory attributes tested. The microwave pasta with the longest parboil time showed rheological behavior most similar to conventionally cooked pasta. Principal component analysis revealed that no microwave-treated pasta was similar to the control pasta. However, pasta parboiled for 9 min before microwave treatment had the greatest number of similar sensory attributes, followed by pasta parboiled for 6 or 12 min. Further study is needed to determine overall consumer acceptance of microwave-treated pasta and whether the differences in sensory and rheological behavior would impact consumer liking. The results of this study may be applied to optimize microwave pasteurization processes for cooked pasta and similar products, such as rice. The measurement and analysis procedures can be used to evaluate processing effects on a variety of different foods to determine overall palatability. © 2017 Wiley Periodicals, Inc.

  7. Caregiver Burden Varies by Sensory Subtypes and Sensory Dimension Scores of Children with Autism

    ERIC Educational Resources Information Center

    Hand, Brittany N.; Lane, Alison E.; De Boeck, Paul; Basso, D. Michele; Nichols-Larsen, Deborah S.; Darragh, Amy R.

    2018-01-01

    Understanding characteristics associated with burden in caregivers of children with autism spectrum disorder (ASD) is critical due to negative health consequences. We explored the association between child sensory subtype, sensory dimension scores, and caregiver burden. A national survey of caregivers of children with ASD aged 5-13 years was…

  8. Sensory Processing in Internationally Adopted, Post-Institutionalized Children

    ERIC Educational Resources Information Center

    Wilbarger, Julia; Gunnar, Megan; Schneider, Mary; Pollak, Seth

    2010-01-01

    Background/Methods: Sensory processing capacities of 8-12-year-old internationally adopted (IA) children who experienced prolonged institutional care (greater than 12 months with 75% of pre-adoption lives in institutional care) prior to adoption into family environments (PI) were compared to a group of IA children who were adopted early (less than…

  9. National Survey of Sensory Features in Children with ASD: Factor Structure of the Sensory Experience Questionnaire (3.0)

    ERIC Educational Resources Information Center

    Ausderau, Karla; Sideris, John; Furlong, Melissa; Little, Lauren M.; Bulluck, John; Baranek, Grace T.

    2014-01-01

    This national online survey study characterized sensory features in 1,307 children with autism spectrum disorder (ASD) ages 2-12 years using the Sensory Experiences Questionnaire Version 3.0 (SEQ-3.0). Using the SEQ-3.0, a confirmatory factor analytic model with four substantive factors of hypothesized sensory response patterns (i.e.,…

  10. The Glasgow Sensory Questionnaire: Validation of a French Language Version and Refinement of Sensory Profiles of People with High Autism-Spectrum Quotient

    ERIC Educational Resources Information Center

    Sapey-Triomphe, Laurie-Anne; Moulin, Annie; Sonié, Sandrine; Schmitz, Christina

    2018-01-01

    Sensory sensitivity peculiarities represent an important characteristic of Autism Spectrum Disorders (ASD). We first validated a French language version of the Glasgow Sensory Questionnaire (GSQ) (Robertson and Simmons in "J Autism Dev Disord" 43(4):775-784, 2013). The GSQ score was strongly positively correlated with the Autism-Spectrum…

  11. The Effects of Sensory Processing and Behavior of Toddlers on Parent Participation: A Pilot Study

    ERIC Educational Resources Information Center

    DaLomba, Elaina; Baxter, Mary Frances; Fingerhut, Patricia; O'Donnell, Anne

    2017-01-01

    Occupational therapists treat children with sensory processing and behavioral concerns, however, little information exists on how these issues affect parent participation. This pilot study examined the sensory processing and behaviors of toddlers with developmental delays and correlated these with parents' perceived ability to participate in…

  12. Perceptual processing advantages for trauma-related visual cues in post-traumatic stress disorder

    PubMed Central

    Kleim, B.; Ehring, T.; Ehlers, A.

    2012-01-01

    Background Intrusive re-experiencing in post-traumatic stress disorder (PTSD) comprises distressing sensory impressions from the trauma that seem to occur ‘out of the blue’. A key question is how intrusions are triggered. One possibility is that PTSD is characterized by a processing advantage for stimuli that resemble those that accompanied the trauma, which would lead to increased detection of such cues in the environment. Method We used a blurred picture identification task in a cross-sectional (n=99) and a prospective study (n=221) of trauma survivors. Results Participants with acute stress disorder (ASD) or PTSD, but not trauma survivors without these disorders, identified trauma-related pictures, but not general threat pictures, better than neutral pictures. There were no group differences in the rate of trauma-related answers to other picture categories. The relative processing advantage for trauma-related pictures correlated with re-experiencing and dissociation, and predicted PTSD at follow-up. Conclusions A perceptual processing bias for trauma-related stimuli may contribute to the involuntary triggering of intrusive trauma memories in PTSD. PMID:21733208

  13. Exploring the Influence of an E-Learning Sensory Processing-Based Module for Graduate Level Occupational Therapy Students on Clinical Reasoning: A Pilot Study.

    PubMed

    Gee, Bryan M; Strickland, Jane; Thompson, Kelly; Miller, Lucy Jane

    2017-01-01

    The purpose of this study was to explore the effectiveness of a series of online, module-based instructional reusable learning objects (RLOs) targeted at entry-level, 1st year, Master of Occupational Therapy students. The content of the RLOs addressed knowledge and implementation of A SECRET, a parental reasoning approach for children with a sensory processing disorder, specifically sensory over responsiveness. Nine RLOs were developed and embedded within a commonly used learning management system. Participants ( n = 8) were evaluated regarding their ability to discriminate between appropriate and inappropriate A SECRET strategies using a selected-response assessment. The participants' overall average score was 68%, a positive finding given the novelty of the instruction, assessment, and the content.

  14. Functionally Approached Body (FAB) Strategies for Young Children Who Have Behavioral and Sensory Processing Challenges

    ERIC Educational Resources Information Center

    Pagano, John

    2005-01-01

    Functionally Approached Body (FAB) Strategies offer a clinical approach to help parents of young children with behavioral and sensory processing strategies. This article introduces the FAB Strategies, clinical strategies developed by the author for understanding and addressing young children's behavioral and sensory processing challenges. The FAB…

  15. Temperament and Sensory Features of Children with Autism

    PubMed Central

    Brock, Matthew E.; Freuler, Ashley; Baranek, Grace T.; Watson, Linda R.; Poe, Michele D.; Sabatino, Antoinette

    2012-01-01

    Purpose This study sought to characterize temperament traits in a sample of children with autism spectrum disorder (ASD), ages 3–7 years old, and to determine the potential association between temperament and sensory features in ASD. Individual differences in sensory processing may form the basis for aspects of temperament and personality, and aberrations in sensory processing may inform why some temperamental traits are characteristic of specific clinical populations. Methods Nine dimensions of temperament from the Behavioral Style Questionnaire (McDevitt & Carey, 1996) were compared among groups of children with ASD (n = 54), developmentally delayed (DD; n = 33), and the original normative sample of typically developing children (Carey & McDevitt, 1978; n = 350) using an ANOVA to determine the extent to which groups differed in their temperament profiles. The hypothesized overlap between three dimensional constructs of sensory features (hyperresponsiveness, hyporesponsivness, and seeking) and the nine dimensions of temperament was analyzed in children with ASD using regression analyses. Results The ASD group displayed temperament scores distinct from norms for typically developing children on most dimensions of temperament (activity, rhythmicity, adaptability, approach, distractibility, intensity, persistence, and threshold) but differed from the DD group on only two dimensions (approach and distractibility). Analyses of associations between sensory constructs and temperament dimensions found that sensory hyporesponsiveness was associated with slowness to adapt, low reactivity, and low distractibility; a combination of increased sensory features (across all three patterns) was associated with increased withdrawal and more negative mood. Conclusions Although most dimensions of temperament distinguished children with ASD as a group, not all dimensions appear equally associated with sensory response patterns. Shared mechanisms underlying sensory responsiveness

  16. Processing of pictorial food stimuli in patients with eating disorders--a systematic review.

    PubMed

    Giel, Katrin Elisabeth; Teufel, Martin; Friederich, Hans-Christoph; Hautzinger, Martin; Enck, Paul; Zipfel, Stephan

    2011-03-01

    The processing of food cues in eating-disordered patients has recently been increasingly investigated. Outlined is current evidence from pictorial food stimuli studies. PubMed and PsychINFO were searched for quantitative pictorial food stimuli studies investigating healthy controls and expert-diagnosed eating-disordered patients. Patients with eating disorders (ED) demonstrated cue reactivity to food stimuli. Results from functional imaging suggest sensory disengagement and higher emotional involvement while self-reported data and facial EMG revealed that food pictures were perceived as less pleasurable. Different experimental paradigms have demonstrated an attentional bias for food cues in ED. Currently, psychophysiological data is widely inconclusive. Evidence suggests cue reactivity to food pictures in eating-disordered patients. However, the overall picture is inconclusive because methodological problems and the integration of findings from different experimental approaches pose a challenge to the research field. Copyright © 2009 Wiley Periodicals, Inc.

  17. [Sensory functions and Alzheimer's disease: a multi-disciplinary approach].

    PubMed

    Kenigsberg, Paul-Ariel; Aquino, Jean-Pierre; Berard, Alain; Boucart, Muriel; Bouccara, Didier; Brand, Gérard; Charras, Kevin; Garcia-Larrea, Luis; Gzil, Fabrice; Krolak-Salmon, Pierre; Madjlessi, Arach; Malaquin-Pavan, Évelyne; Penicaud, Luc; Platel, Hervé; Pozzo, Thierry; Reintjens, Christophe; Salmon, Éric; Vergnon, Laurent; Robert, Philippe

    2015-09-01

    Relations between sensory functions and Alzheimer's disease are still under-explored. To understand them better, the Fondation Médéric Alzheimer has brought together a multi-disciplinary expert group. Aristote's five senses must be enhanced by today's knowledge of proprioception, motor cognition and pain perception. When cognition breaks down, the person with dementia perceives the world around her with her sensory experience, yet is unable to integrate all this information to understand the context. The treatment of multiple sensory inputs by the brain is closely linked to cognitive processes. Sensory deficits reduce considerably the autonomy of people with dementia in their daily life and their relations with others, increase their social isolation and the risk of accidents. Professionals involved with neurodegenerative diseases remain poorly aware of sensory deficits, which can bias the results of cognitive tests. However, there are simple tools to detect these deficits, notably for vision, hearing and balance disorders, which can be corrected. Many interventions for cognitive rehabilitation or quality of life improvement are based on sensory functions. The environment of people with dementia must be adapted to become understandable, comfortable, safe and eventually therapeutic.

  18. Sensori-motor experience leads to changes in visual processing in the developing brain.

    PubMed

    James, Karin Harman

    2010-03-01

    Since Broca's studies on language processing, cortical functional specialization has been considered to be integral to efficient neural processing. A fundamental question in cognitive neuroscience concerns the type of learning that is required for functional specialization to develop. To address this issue with respect to the development of neural specialization for letters, we used functional magnetic resonance imaging (fMRI) to compare brain activation patterns in pre-school children before and after different letter-learning conditions: a sensori-motor group practised printing letters during the learning phase, while the control group practised visual recognition. Results demonstrated an overall left-hemisphere bias for processing letters in these pre-literate participants, but, more interestingly, showed enhanced blood oxygen-level-dependent activation in the visual association cortex during letter perception only after sensori-motor (printing) learning. It is concluded that sensori-motor experience augments processing in the visual system of pre-school children. The change of activation in these neural circuits provides important evidence that 'learning-by-doing' can lay the foundation for, and potentially strengthen, the neural systems used for visual letter recognition.

  19. The neurocognitive consequences of the wandering mind: a mechanistic account of sensory-motor decoupling

    PubMed Central

    Kam, Julia W. Y.; Handy, Todd C.

    2013-01-01

    A unique human characteristic is our ability to mind wander – a state in which we are free to engage in thoughts that are not directly tied to sensations and perceptions from our immediate physical environment. From a neurocognitive perspective, it has been proposed that during mind wandering, our executive resources are decoupled from the external environment and directed to these internal thoughts. In this review, we examine an underappreciated aspect of this phenomenon – attenuation of sensory-motor processing – from two perspectives. First, we describe the range of widespread sensory, cognitive and motor processes attenuated during mind wandering states, and how this impacts our neurocognitive processing of external events. We then consider sensory-motor attenuation in a class of clinical neurocognitive disorders that have ties to pathological patterns of decoupling, reviews suggesting that mind wandering and these clinical states may share a common mechanism of sensory-motor attenuation. Taken together, these observations suggest the sensory-motor consequences of decoupled thinking are integral to normal and pathological neurocognitive states. PMID:24133472

  20. Sensory-motor problems in Autism

    PubMed Central

    Whyatt, Caroline; Craig, Cathy

    2013-01-01

    Despite being largely characterized as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD). This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC2) to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with “hyperdexterity” witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardized assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being “secondary” level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential root of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis. PMID:23882194

  1. Differential relationships of impulsivity or antisocial symptoms on P50, N100, or P200 auditory sensory gating in controls and antisocial personality disorder

    PubMed Central

    Lijffijt, Marijn; Cox, Blake; Acas, Michelle D.; Lane, Scott D.; Moeller, F. Gerard; Swann, Alan C.

    2013-01-01

    Limited information is available on the relationship between antisocial personality disorder (ASPD) and early filtering, or gating, of information, even though this could contribute to the repeatedly reported impairment in ASPD of higher-order information processing. In order to investigate early filtering in ASPD, we compared electrophysiological measures of auditory sensory gating assessed by the paired-click paradigm in males with ASPD (n = 37) to healthy controls (n = 28). Stimulus encoding was measured by P50, N100, and P200 auditory evoked potentials; auditory sensory gating (ASG) was measured by a reduction in amplitude of evoked potentials following click repetition. Effects were studied of co-existing past alcohol or drug use disorders, ASPD symptom counts, and trait impulsivity. Controls and ASPD did not differ in P50, N100, or P200 amplitude or ASG. Past alcohol or drug use disorders had no effect. In controls, impulsivity related to improved P50 and P200 gating. In ASPD, P50 or N100 gating was impaired with more symptoms or increased impulsivity, respectively, suggesting impaired early filtering of irrelevant information. In controls the relationship between P50 and P200 gating and impulsivity was reversed, suggesting better gating with higher impulsivity scores. This could reflect different roles of ASG in behavioral regulation in controls versus ASPD. PMID:22464943

  2. Sensory aspects in myasthenia gravis: A translational approach.

    PubMed

    Leon-Sarmiento, Fidias E; Leon-Ariza, Juan S; Prada, Diddier; Leon-Ariza, Daniel S; Rizzo-Sierra, Carlos V

    2016-09-15

    Myasthenia gravis is a paradigmatic muscle disorder characterized by abnormal fatigue and muscle weakness that worsens with activities and improves with rest. Clinical and research studies done on nicotinic acetylcholine receptors have advanced our knowledge of the muscle involvement in myasthenia. Current views still state that sensory deficits are not "features of myasthenia gravis". This article discusses the gap that exists on sensory neural transmission in myasthenia that has remained after >300years of research in this neurological disorder. We outline the neurobiological characteristics of sensory and motor synapses, reinterpret the nanocholinergic commonalities that exist in both sensory and motor pathways, discuss the clinical findings on altered sensory pathways in myasthenia, and propose a novel way to score anomalies resulting from multineuronal inability associated sensory troubles due to eugenic nanocholinergic instability and autoimmunity. This medicine-based evidence could serve as a template to further identify novel targets for studying new medications that may offer a better therapeutic benefit in both sensory and motor dysfunction for patients. Importantly, this review may help to re-orient current practices in myasthenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Variable sensory perception in autism.

    PubMed

    Haigh, Sarah M

    2018-03-01

    Autism is associated with sensory and cognitive abnormalities. Individuals with autism generally show normal or superior early sensory processing abilities compared to healthy controls, but deficits in complex sensory processing. In the current opinion paper, it will be argued that sensory abnormalities impact cognition by limiting the amount of signal that can be used to interpret and interact with environment. There is a growing body of literature showing that individuals with autism exhibit greater trial-to-trial variability in behavioural and cortical sensory responses. If multiple sensory signals that are highly variable are added together to process more complex sensory stimuli, then this might destabilise later perception and impair cognition. Methods to improve sensory processing have shown improvements in more general cognition. Studies that specifically investigate differences in sensory trial-to-trial variability in autism, and the potential changes in variability before and after treatment, could ascertain if trial-to-trial variability is a good mechanism to target for treatment in autism. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Parallel processing streams for motor output and sensory prediction during action preparation

    PubMed Central

    Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.

    2014-01-01

    Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available. PMID:25540223

  5. Parallel processing streams for motor output and sensory prediction during action preparation.

    PubMed

    Stenner, Max-Philipp; Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J

    2015-03-15

    Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available. Copyright © 2015 the American Physiological Society.

  6. Taekwondo Training Improves Sensory Organization and Balance Control in Children with Developmental Coordination Disorder: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Fong, Shirley S. M.; Tsang, William W. N.; Ng, Gabriel Y. F.

    2012-01-01

    Children with developmental coordination disorder (DCD) have poorer postural control and are more susceptible to falls and injuries than their healthy counterparts. Sports training may improve sensory organization and balance ability in this population. This study aimed to evaluate the effects of three months of Taekwondo (TKD) training on the…

  7. Neuromorphic sensory systems.

    PubMed

    Liu, Shih-Chii; Delbruck, Tobi

    2010-06-01

    Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.

  8. Listening to teachers: Views on delivery of a classroom based sensory intervention for students with autism.

    PubMed

    Mills, Caroline; Chapparo, Christine

    2018-02-01

    Occupational therapists consider the impact of autism spectrum disorder on occupational performance at school. Occupational therapists work with teachers to support student participation. Atypical sensory processing is common in children with autism. Therefore, collaborating with teachers to enable students with autism to appropriately process sensory information within classrooms may be necessary. This qualitative pilot study aimed to capture teachers' perceptions of using a Sensory Activity Schedule, a sensory based intervention, in the classroom. A qualitative descriptive approach was used to analyse semi-structured interview responses from 19 qualified teachers who taught children with autism from seven different autism specific special schools in NSW. Teachers were asked about their motivation to complete the intervention as well as helpful and difficult aspects of the intervention. Three main categories and eight sub-categories were identified from the 19 respondents who reported that helping their students was an important motivation for using a Sensory Activity Schedule as well as the opportunity to evaluate whether sensory based intervention was beneficial. Teachers reported that learning new ideas, working with an occupational therapist and seeing an increase in concentration and a reduction in undesired behaviours were positive aspects of utilising the intervention. Timing, staffing and fidelity of the intervention were areas of concern. Collaboration with classroom teachers is an essential part of school-based occupational therapy. Insights from teachers who implemented a sensory based intervention in the classroom assist occupational therapists to better support students with autism spectrum disorder in schools. © 2017 Occupational Therapy Australia.

  9. Examining Sensory Quadrants in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Garver, Carolyn R.; Carmody, Thomas; Andrews, Alonzo A.; Trivedi, Madhukar H.; Mehta, Jyutika A.

    2007-01-01

    The purpose of this study was to examine sensory quadrants in autism based on Dunn's Theory of Sensory Processing. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to 103 age- and gender-matched community…

  10. Early Sensory Over-Responsivity in Toddlers with Autism Spectrum Disorders as a Predictor of Family Impairment and Parenting Stress

    ERIC Educational Resources Information Center

    Ben-Sasson, A.; Soto, T. W.; Martinez-Pedraza, F.; Carter, A. S.

    2013-01-01

    Background: Sensory over-responsivity (SOR) affects many individuals with autism spectrum disorders (ASD), often leading to stressful encounters during daily routines. Methods: This study describes the associations between early SOR symptoms and the longitudinal course of restrictions in family life activities and parenting stress across three…

  11. Increased Prevalence of Unusual Sensory Behaviors in Infants at Risk For, and Teens With, Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Van Etten, Hannah M.; Kaur, Maninderjit; Srinivasan, Sudha M.; Cohen, Shereen J.; Bhat, Anjana; Dobkins, Karen R.

    2017-01-01

    The current study investigated the prevalence and pattern of unusual sensory behaviors (USBs) in teens with Autism Spectrum Disorder (ASD) and infants (3-36 months) at risk for ASD. From two different sites (UCSD and UConn), caregivers of infants at high (n = 32) and low risk (n = 33) for ASD, and teenagers with (n = 12) and without ASD (n = 11),…

  12. Sensory neuropathy in two Border collie puppies.

    PubMed

    Vermeersch, K; Van Ham, L; Braund, K G; Bhatti, S; Tshamala, M; Chiers, K; Schrauwen, E

    2005-06-01

    A peripheral sensory neuropathy was diagnosed in two Border collie puppies. Neurological, electrophysiological and histopathological examinations suggested a purely sensory neuropathy with mainly distal involvement. Urinary incontinence was observed in one of the puppies and histological examination of the vagus nerve revealed degenerative changes. An inherited disorder was suspected.

  13. Saliency Detection as a Reactive Process: Unexpected Sensory Events Evoke Corticomuscular Coupling

    PubMed Central

    Kilintari, Marina; Srinivasan, Mandayam; Haggard, Patrick

    2018-01-01

    Survival in a fast-changing environment requires animals not only to detect unexpected sensory events, but also to react. In humans, these salient sensory events generate large electrocortical responses, which have been traditionally interpreted within the sensory domain. Here we describe a basic physiological mechanism coupling saliency-related cortical responses with motor output. In four experiments conducted on 70 healthy participants, we show that salient substartle sensory stimuli modulate isometric force exertion by human participants, and that this modulation is tightly coupled with electrocortical activity elicited by the same stimuli. We obtained four main results. First, the force modulation follows a complex triphasic pattern consisting of alternating decreases and increases of force, time-locked to stimulus onset. Second, this modulation occurs regardless of the sensory modality of the eliciting stimulus. Third, the magnitude of the force modulation is predicted by the amplitude of the electrocortical activity elicited by the same stimuli. Fourth, both neural and motor effects are not reflexive but depend on contextual factors. Together, these results indicate that sudden environmental stimuli have an immediate effect on motor processing, through a tight corticomuscular coupling. These observations suggest that saliency detection is not merely perceptive but reactive, preparing the animal for subsequent appropriate actions. SIGNIFICANCE STATEMENT Salient events occurring in the environment, regardless of their modalities, elicit large electrical brain responses, dominated by a widespread “vertex” negative-positive potential. This response is the largest synchronization of neural activity that can be recorded from a healthy human being. Current interpretations assume that this vertex potential reflects sensory processes. Contrary to this general assumption, we show that the vertex potential is strongly coupled with a modulation of muscular activity

  14. Abnormal brain processing of affective and sensory pain descriptors in chronic pain patients.

    PubMed

    Sitges, Carolina; García-Herrera, Manuel; Pericás, Miquel; Collado, Dolores; Truyols, Magdalena; Montoya, Pedro

    2007-12-01

    Previous research has suggested that chronic pain patients might be particularly vulnerable to the effects of negative mood during information processing. However, there is little evidence for abnormal brain processing of affective and sensory pain-related information in chronic pain. Behavioral and brain responses, to pain descriptors and pleasant words, were examined in chronic pain patients and healthy controls during a self-endorsement task. Eighteen patients with fibromyalgia (FM), 18 patients with chronic musculoskeletal pain due to identifiable physical injury (MSK), and 16 healthy controls were asked to decide whether word targets described their current or past experience of pain. The number of self-endorsed words, elapsed time to endorse the words, and event-related potentials (ERPs) elicited by words, were recorded. Data revealed that chronic pain patients used more affective and sensory pain descriptors, and were slower in responding to self-endorsed pain descriptors than to pleasant words. In addition, it was found that affective pain descriptors elicited significantly more enhanced positive ERP amplitudes than pleasant words in MSK pain patients; whereas sensory pain descriptors elicited greater positive ERP amplitudes than affective pain words in healthy controls. These data support the notion of abnormal information processing in chronic pain patients, which might be characterized by a lack of dissociation between sensory and affective components of pain-related information, and by an exaggerated rumination over word meaning during the encoding of self-referent information about pain.

  15. Susceptibility of Primary Sensory Cortex to Spreading Depolarizations.

    PubMed

    Bogdanov, Volodymyr B; Middleton, Natalie A; Theriot, Jeremy J; Parker, Patrick D; Abdullah, Osama M; Ju, Y Sungtaek; Hartings, Jed A; Brennan, K C

    2016-04-27

    Spreading depolarizations (SDs) are recognized as actors in neurological disorders as diverse as migraine and traumatic brain injury (TBI). Migraine aura involves sensory percepts, suggesting that sensory cortices might be intrinsically susceptible to SDs. We used optical imaging, MRI, and field potential and potassium electrode recordings in mice and electrocorticographic recordings in humans to determine the susceptibility of different brain regions to SDs. Optical imaging experiments in mice under isoflurane anesthesia showed that both cortical spreading depression and terminal anoxic depolarization arose preferentially in the whisker barrel region of parietal sensory cortex. MRI recordings under isoflurane, ketamine/xylazine, ketamine/isoflurane, and urethane anesthesia demonstrated that the depolarizations did not propagate from a subcortical source. Potassium concentrations showed larger increases in sensory cortex, suggesting a mechanism of susceptibility. Sensory stimulation biased the timing but not the location of depolarization onset. In humans with TBI, there was a trend toward increased incidence of SDs in parietal/temporal sensory cortex compared with other regions. In conclusion, SDs are inducible preferentially in primary sensory cortex in mice and most likely in humans. This tropism can explain the predominant sensory phenomenology of migraine aura. It also demonstrates that sensory cortices are vulnerable in brain injury. Spreading depolarizations (SDs) are involved in neurologic disorders as diverse as migraine and traumatic brain injury. In migraine, the nature of aura symptoms suggests that sensory cortex may be preferentially susceptible. In brain injury, SDs occur at a vulnerable time, during which the issue of sensory stimulation is much debated. We show, in mouse and human, that sensory cortex is more susceptible to SDs. We find that sensory stimulation biases the timing but not the location of the depolarizations. Finally, we show a

  16. Susceptibility of Primary Sensory Cortex to Spreading Depolarizations

    PubMed Central

    Bogdanov, Volodymyr B.; Middleton, Natalie A.; Theriot, Jeremy J.; Parker, Patrick D.; Abdullah, Osama M.; Ju, Y. Sungtaek; Hartings, Jed A.

    2016-01-01

    Spreading depolarizations (SDs) are recognized as actors in neurological disorders as diverse as migraine and traumatic brain injury (TBI). Migraine aura involves sensory percepts, suggesting that sensory cortices might be intrinsically susceptible to SDs. We used optical imaging, MRI, and field potential and potassium electrode recordings in mice and electrocorticographic recordings in humans to determine the susceptibility of different brain regions to SDs. Optical imaging experiments in mice under isoflurane anesthesia showed that both cortical spreading depression and terminal anoxic depolarization arose preferentially in the whisker barrel region of parietal sensory cortex. MRI recordings under isoflurane, ketamine/xylazine, ketamine/isoflurane, and urethane anesthesia demonstrated that the depolarizations did not propagate from a subcortical source. Potassium concentrations showed larger increases in sensory cortex, suggesting a mechanism of susceptibility. Sensory stimulation biased the timing but not the location of depolarization onset. In humans with TBI, there was a trend toward increased incidence of SDs in parietal/temporal sensory cortex compared with other regions. In conclusion, SDs are inducible preferentially in primary sensory cortex in mice and most likely in humans. This tropism can explain the predominant sensory phenomenology of migraine aura. It also demonstrates that sensory cortices are vulnerable in brain injury. SIGNIFICANCE STATEMENT Spreading depolarizations (SDs) are involved in neurologic disorders as diverse as migraine and traumatic brain injury. In migraine, the nature of aura symptoms suggests that sensory cortex may be preferentially susceptible. In brain injury, SDs occur at a vulnerable time, during which the issue of sensory stimulation is much debated. We show, in mouse and human, that sensory cortex is more susceptible to SDs. We find that sensory stimulation biases the timing but not the location of the depolarizations

  17. Brain size and visual environment predict species differences in paper wasp sensory processing brain regions (hymenoptera: vespidae, polistinae).

    PubMed

    O'Donnell, Sean; Clifford, Marie R; DeLeon, Sara; Papa, Christopher; Zahedi, Nazaneen; Bulova, Susan J

    2013-01-01

    The mosaic brain evolution hypothesis predicts that the relative volumes of functionally distinct brain regions will vary independently and correlate with species' ecology. Paper wasp species (Hymenoptera: Vespidae, Polistinae) differ in light exposure: they construct open versus enclosed nests and one genus (Apoica) is nocturnal. We asked whether light environments were related to species differences in the size of antennal and optic processing brain tissues. Paper wasp brains have anatomically distinct peripheral and central regions that process antennal and optic sensory inputs. We measured the volumes of 4 sensory processing brain regions in paper wasp species from 13 Neotropical genera including open and enclosed nesters, and diurnal and nocturnal species. Species differed in sensory region volumes, but there was no evidence for trade-offs among sensory modalities. All sensory region volumes correlated with brain size. However, peripheral optic processing investment increased with brain size at a higher rate than peripheral antennal processing investment. Our data suggest that mosaic and concerted (size-constrained) brain evolution are not exclusive alternatives. When brain regions increase with brain size at different rates, these distinct allometries can allow for differential investment among sensory modalities. As predicted by mosaic evolution, species ecology was associated with some aspects of brain region investment. Nest architecture variation was not associated with brain investment differences, but the nocturnal genus Apoica had the largest antennal:optic volume ratio in its peripheral sensory lobes. Investment in central processing tissues was not related to nocturnality, a pattern also noted in mammals. The plasticity of neural connections in central regions may accommodate evolutionary shifts in input from the periphery with relatively minor changes in volume. © 2013 S. Karger AG, Basel.

  18. Enhanced and bilateralized visual sensory processing in the ventral stream may be a feature of normal aging.

    PubMed

    De Sanctis, Pierfilippo; Katz, Richard; Wylie, Glenn R; Sehatpour, Pejman; Alexopoulos, George S; Foxe, John J

    2008-10-01

    Evidence has emerged for age-related amplification of basic sensory processing indexed by early components of the visual evoked potential (VEP). However, since these age-related effects have been incidental to the main focus of these studies, it is unclear whether they are performance dependent or alternately, represent intrinsic sensory processing changes. High-density VEPs were acquired from 19 healthy elderly and 15 young control participants who viewed alphanumeric stimuli in the absence of any active task. The data show both enhanced and delayed neural responses within structures of the ventral visual stream, with reduced hemispheric asymmetry in the elderly that may be indicative of a decline in hemispheric specialization. Additionally, considerably enhanced early frontal cortical activation was observed in the elderly, suggesting frontal hyper-activation. These age-related differences in early sensory processing are discussed in terms of recent proposals that normal aging involves large-scale compensatory reorganization. Our results suggest that such compensatory mechanisms are not restricted to later higher-order cognitive processes but may also be a feature of early sensory-perceptual processes.

  19. The Relationship between Sensory Processing Difficulties and Leisure Activity Preference of Children with Different Types of ADHD

    ERIC Educational Resources Information Center

    Engel-Yeger, Batya; Ziv-On, Daniella

    2011-01-01

    Sensory processing difficulties (SPD) are prevalent among children with ADHD. Yet, the question whether different SPD characterize children with different types of ADHD has not received enough attention in the literature. The current study characterized sensory processing difficulties (SPD) of children with different types of ADHD and explored the…

  20. Emotional facilitation of sensory processing in the visual cortex.

    PubMed

    Schupp, Harald T; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2003-01-01

    A key function of emotion is the preparation for action. However, organization of successful behavioral strategies depends on efficient stimulus encoding. The present study tested the hypothesis that perceptual encoding in the visual cortex is modulated by the emotional significance of visual stimuli. Event-related brain potentials were measured while subjects viewed pleasant, neutral, and unpleasant pictures. Early selective encoding of pleasant and unpleasant images was associated with a posterior negativity, indicating primary sources of activation in the visual cortex. The study also replicated previous findings in that affective cues also elicited enlarged late positive potentials, indexing increased stimulus relevance at higher-order stages of stimulus processing. These results support the hypothesis that sensory encoding of affective stimuli is facilitated implicitly by natural selective attention. Thus, the affect system not only modulates motor output (i.e., favoring approach or avoidance dispositions), but already operates at an early level of sensory encoding.

  1. Sensory perception in autism.

    PubMed

    Robertson, Caroline E; Baron-Cohen, Simon

    2017-11-01

    Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.

  2. From Sensory Perception to Lexical-Semantic Processing: An ERP Study in Non-Verbal Children with Autism.

    PubMed

    Cantiani, Chiara; Choudhury, Naseem A; Yu, Yan H; Shafer, Valerie L; Schwartz, Richard G; Benasich, April A

    2016-01-01

    This study examines electrocortical activity associated with visual and auditory sensory perception and lexical-semantic processing in nonverbal (NV) or minimally-verbal (MV) children with Autism Spectrum Disorder (ASD). Currently, there is no agreement on whether these children comprehend incoming linguistic information and whether their perception is comparable to that of typically developing children. Event-related potentials (ERPs) of 10 NV/MV children with ASD and 10 neurotypical children were recorded during a picture-word matching paradigm. Atypical ERP responses were evident at all levels of processing in children with ASD. Basic perceptual processing was delayed in both visual and auditory domains but overall was similar in amplitude to typically-developing children. However, significant differences between groups were found at the lexical-semantic level, suggesting more atypical higher-order processes. The results suggest that although basic perception is relatively preserved in NV/MV children with ASD, higher levels of processing, including lexical- semantic functions, are impaired. The use of passive ERP paradigms that do not require active participant response shows significant potential for assessment of non-compliant populations such as NV/MV children with ASD.

  3. From Sensory Perception to Lexical-Semantic Processing: An ERP Study in Non-Verbal Children with Autism

    PubMed Central

    Cantiani, Chiara; Choudhury, Naseem A.; Yu, Yan H.; Shafer, Valerie L.; Schwartz, Richard G.; Benasich, April A.

    2016-01-01

    This study examines electrocortical activity associated with visual and auditory sensory perception and lexical-semantic processing in nonverbal (NV) or minimally-verbal (MV) children with Autism Spectrum Disorder (ASD). Currently, there is no agreement on whether these children comprehend incoming linguistic information and whether their perception is comparable to that of typically developing children. Event-related potentials (ERPs) of 10 NV/MV children with ASD and 10 neurotypical children were recorded during a picture-word matching paradigm. Atypical ERP responses were evident at all levels of processing in children with ASD. Basic perceptual processing was delayed in both visual and auditory domains but overall was similar in amplitude to typically-developing children. However, significant differences between groups were found at the lexical-semantic level, suggesting more atypical higher-order processes. The results suggest that although basic perception is relatively preserved in NV/MV children with ASD, higher levels of processing, including lexical- semantic functions, are impaired. The use of passive ERP paradigms that do not require active participant response shows significant potential for assessment of non-compliant populations such as NV/MV children with ASD. PMID:27560378

  4. Evidence for Diminished Multisensory Integration in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Stevenson, Ryan A.; Siemann, Justin K.; Woynaroski, Tiffany G.; Schneider, Brittany C.; Eberly, Haley E.; Camarata, Stephen M.; Wallace, Mark T.

    2014-01-01

    Individuals with autism spectrum disorders (ASD) exhibit alterations in sensory processing, including changes in the integration of information across the different sensory modalities. In the current study, we used the sound-induced flash illusion to assess multisensory integration in children with ASD and typically-developing (TD) controls.…

  5. The pattern and diagnostic criteria of sensory neuronopathy: a case–control study

    PubMed Central

    Camdessanché, Jean-Philippe; Jousserand, Guillemette; Ferraud, Karine; Vial, Christophe; Petiot, Philippe; Honnorat, Jérôme

    2009-01-01

    Acquired sensory neuronopathies encompass a group of paraneoplastic, dysimmune, toxic or idiopathic disorders characterized by degeneration of peripheral sensory neurons in dorsal root ganglia. As dorsal root ganglia cannot easily be explored, the clinical diagnosis of these disorders may be difficult. The question as to whether there exists a common clinical pattern of sensory neuronopathies, allowing the establishment of validated and easy-to-use diagnostic criteria, has not yet been addressed. In this study, logistic regression was used to construct diagnostic criteria on a retrospective study population of 78 patients with sensory neuronopathies and 56 with other sensory neuropathies. For this, sensory neuronopathy was provisionally considered as unambiguous in 44 patients with paraneoplastic disorder or cisplatin treatment and likely in 34 with a dysimmune or idiopathic setting who may theoretically have another form of neuropathy. To test the homogeneity of the sensory neuronopathy population, likely candidates were compared with unambiguous cases and then the whole population was compared with the other sensory neuropathies population. Criteria accuracy was checked on 37 prospective patients referred for diagnosis of sensory neuropathy. In the study population, sensory neuronopathy showed a common clinical and electrophysiological pattern that was independent of the underlying cause, including unusual forms with only patchy sensory loss, mild electrical motor nerve abnormalities and predominant small fibre or isolated lower limb involvement. Logistic regression allowed the construction of a set of criteria that gave fair results with the following combination: ataxia in the lower or upper limbs + asymmetrical distribution + sensory loss not restricted to the lower limbs + at least one sensory action potential absent or three sensory action potentials <30% of the lower limit of normal in the upper limbs + less than two nerves with abnormal motor nerve

  6. Sensory subtypes in children with autism spectrum disorder: latent profile transition analysis using a national survey of sensory features.

    PubMed

    Ausderau, Karla K; Furlong, Melissa; Sideris, John; Bulluck, John; Little, Lauren M; Watson, Linda R; Boyd, Brian A; Belger, Aysenil; Dickie, Virginia A; Baranek, Grace T

    2014-08-01

    Sensory features are highly prevalent and heterogeneous among children with ASD. There is a need to identify homogenous groups of children with ASD based on sensory features (i.e., sensory subtypes) to inform research and treatment. Sensory subtypes and their stability over 1 year were identified through latent profile transition analysis (LPTA) among a national sample of children with ASD. Data were collected from caregivers of children with ASD ages 2-12 years at two time points (Time 1 N = 1294; Time 2 N = 884). Four sensory subtypes (Mild; Sensitive-Distressed; Attenuated-Preoccupied; Extreme-Mixed) were identified, which were supported by fit indices from the LPTA as well as current theoretical models that inform clinical practice. The Mild and Extreme-Mixed subtypes reflected quantitatively different sensory profiles, while the Sensitive-Distressed and Attenuated-Preoccupied subtypes reflected qualitatively different profiles. Further, subtypes reflected differential child (i.e., gender, developmental age, chronological age, autism severity) and family (i.e., income, mother's education) characteristics. Ninety-one percent of participants remained stable in their subtypes over 1 year. Characterizing the nature of homogenous sensory subtypes may facilitate assessment and intervention, as well as potentially inform biological mechanisms. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.

  7. CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders.

    PubMed

    Mercati, O; Huguet, G; Danckaert, A; André-Leroux, G; Maruani, A; Bellinzoni, M; Rolland, T; Gouder, L; Mathieu, A; Buratti, J; Amsellem, F; Benabou, M; Van-Gils, J; Beggiato, A; Konyukh, M; Bourgeois, J-P; Gazzellone, M J; Yuen, R K C; Walker, S; Delépine, M; Boland, A; Régnault, B; Francois, M; Van Den Abbeele, T; Mosca-Boidron, A L; Faivre, L; Shimoda, Y; Watanabe, K; Bonneau, D; Rastam, M; Leboyer, M; Scherer, S W; Gillberg, C; Delorme, R; Cloëz-Tayarani, I; Bourgeron, T

    2017-04-01

    Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6 W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6 P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.

  8. Sensory Processing Sensitivity as a Marker of Differential Susceptibility to Parenting

    ERIC Educational Resources Information Center

    Slagt, Meike; Dubas, Judith Semon; van Aken, Marcel A. G.; Ellis, Bruce J.; Dekovic, Maja

    2018-01-01

    In this longitudinal multiinformant study negative emotionality and sensory processing sensitivity were compared as susceptibility markers among kindergartners. Participating children (N = 264, 52.9% boys) were Dutch kindergartners (M[subscript age] = 4.77, SD = 0.60), followed across three waves, spaced seven months apart. Results show that…

  9. Sensory Integration Therapy for Autism Spectrum Disorders: A Systematic Review

    ERIC Educational Resources Information Center

    Lang, Russell; O'Reilly, Mark; Healy, Olive; Rispoli, Mandy; Lydon, Helena; Streusand, William; Davis, Tonya; Kang, Soyeon; Sigafoos, Jeff; Lancioni, Giulio; Didden, Robert; Giesbers, Sanne

    2012-01-01

    Intervention studies involving the use of sensory integration therapy (SIT) were systematically identified and analyzed. Twenty-five studies were described in terms of: (a) participant characteristics, (b) assessments used to identify sensory deficits or behavioral functions, (c) dependent variables, (d) intervention procedures, (e) intervention…

  10. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    PubMed

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Virtually-induced threat in Parkinson's: Dopaminergic interactions between anxiety and sensory-perceptual processing while walking.

    PubMed

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-12-01

    Research evidence has suggested that anxiety influences gait in PD, with an identified dopa-sensitive gait response in highly anxious PD. It has been well-established that accurate perception of the environment and sensory feedback is essential for gait. Arguably since sensory and perceptual deficits have been noted in PD, anxiety has the potential to exacerbate movement impairments, since one might expect that reducing resources needed to overcome or compensate for sensory-perceptual deficits may lead to even more severe gait impairments. It is possible that anxiety in threatening situations might consume more processing resources, limiting the ability to process information about the environment or one's own movement (sensory feedback) especially in highly anxious PD. Therefore, the current study aimed to (i) evaluate whether processing of threat-related aspects of the environment was influenced by anxiety, (ii) evaluate whether anxiety influences the ability to utilize sensory feedback in PD while walking in threatening situations, and (iii) further understand the role of dopaminergic medication on these processes in threatening situations in PD. Forty-eight participants (24 HC; 12 Low Anxious [LA-PD], 12 Highly Anxious [HA-PD]) completed 20 walking trials in virtual reality across a plank that was (i) located on the ground (GROUND) (ii) located above a deep pit (ELEVATED); while provided with or without visual feedback about their lower limbs (+VF; -VF). After walking across the plank, participants were asked to judge the width of the plank they had just walked across. The plank varied in size from 60-100 cm. Both ON and OFF dopaminergic medication states were evaluated in PD. Gait parameters, judgment error and self-reported anxiety levels were measured. Results showed that HA-PD reported greater levels of anxiety overall (p<0.001) compared to HC and LA-PD, and all participants reported greater anxiety during the ELEVATED condition compared to GROUND (p=0

  12. The trait of sensory processing sensitivity and neural responses to changes in visual scenes

    PubMed Central

    Xu, Xiaomeng; Aron, Arthur; Aron, Elaine; Cao, Guikang; Feng, Tingyong; Weng, Xuchu

    2011-01-01

    This exploratory study examined the extent to which individual differences in sensory processing sensitivity (SPS), a temperament/personality trait characterized by social, emotional and physical sensitivity, are associated with neural response in visual areas in response to subtle changes in visual scenes. Sixteen participants completed the Highly Sensitive Person questionnaire, a standard measure of SPS. Subsequently, they were tested on a change detection task while undergoing functional magnetic resonance imaging (fMRI). SPS was associated with significantly greater activation in brain areas involved in high-order visual processing (i.e. right claustrum, left occipitotemporal, bilateral temporal and medial and posterior parietal regions) as well as in the right cerebellum, when detecting minor (vs major) changes in stimuli. These findings remained strong and significant after controlling for neuroticism and introversion, traits that are often correlated with SPS. These results provide the first evidence of neural differences associated with SPS, the first direct support for the sensory aspect of this trait that has been studied primarily for its social and affective implications, and preliminary evidence for heightened sensory processing in individuals high in SPS. PMID:20203139

  13. Through the Lens of Sensory Integration: A Different Way of Analyzing Challenging Behavior.

    ERIC Educational Resources Information Center

    Bakley, Sue

    2001-01-01

    Examines how sensory integration disorders contribute to behavioral difficulties in young children and how considering the neurological underpinnings to behavior problems can help to clarify their origins and lead to obtaining appropriate and effective help. Lists signs of sensory integration disorders. Delineates techniques to use when a child…

  14. Increased risk of developing psychiatric disorders in children with attention deficit and hyperactivity disorder (ADHD) receiving sensory integration therapy: a population-based cohort study.

    PubMed

    Tzang, Ruu-Fen; Chang, Yue-Cune; Kao, Kai-Liang; Huang, Yu-Hsin; Huang, Hui-Chun; Wang, Yu-Chiao; Muo, Chih-Hsin; Wu, Shu-I; Sung, Fung-Chang; Stewart, Robert

    2018-06-05

    Parents of children with attention deficit hyperactivity disorder (ADHD) have been found to prefer sensory integration (SI) training rather than guideline-recommended ADHD treatment. This study investigated whether SI intervention for children with ADHD was associated with a reduced risk of subsequent mental disorders. From children < 8-years-old newly diagnosed with ADHD in a nationwide population-based dataset, we established a SI cohort and a non-SI cohort (N =  1945) matched by propensity score. Incidence and hazard ratios of subsequent psychiatric disorders were compared after a maximum follow-up of 9 years. The incidence of psychiatric disorders was 1.4-fold greater in the SI cohort, with an adjusted hazard ratio of 1.41 (95% confidence interval 1.20-1.67), comparing to the non-SI cohort. Risks were elevated for emotional disturbances, conduct disorders, and adjustment disorders independent of age, gender, or comorbidity. Among children with only psychosocial intervention, the incidence of psychiatric disorders was 3.5-fold greater in the SI cohort than in the non-SI cohort. To our knowledge, this is the first study to report an increased risk of developing psychiatric disorders for children with ADHD who received SI compared to those who did not. Potential adverse effects of SI for ADHD children should be carefully examined and discussed before practice.

  15. Self-Injury in Autism Spectrum Disorder and Intellectual Disability: Exploring the Role of Reactivity to Pain and Sensory Input

    PubMed Central

    Summers, Jane; Shahrami, Ali; Cali, Stefanie; D’Mello, Chantelle; Kako, Milena; Palikucin-Reljin, Andjelka; Savage, Melissa; Shaw, Olivia; Lunsky, Yona

    2017-01-01

    This paper provides information about the prevalence and topography of self-injurious behavior in children and adults with autism spectrum disorder and intellectual disability. Dominant models regarding the etiology of self-injury in this population are reviewed, with a focus on the role of reactivity to pain and sensory input. Neuroimaging studies are presented and suggestions are offered for future research. PMID:29072583

  16. Sensory texture analysis of thickened liquids during ingestion.

    PubMed

    Chambers, Edgar; Jenkins, Alicia; Mertz Garcia, Jane

    2017-12-01

    Practitioners support the use of thickened liquids for many patients with disordered swallowing. Although physical measures have highlighted differences among products there are questions about the ability of the measures to fully explain the sensory texture effects during swallowing of thickened liquids. This study used a trained sensory panel to describe the textural aspects of liquids during ingestion and swallowing. The lexicon was able to characterize differences in beverages, thickeners, and thickness levels with the most important attribute being viscosity, which loaded heavily in the almost one-dimensional space that resulted from the sensory analysis of these beverages. Other effects, such as slipperiness provided some minimal additional information on the products. Trained sensory panelists were shown to be useful in the measurement of differences in thickened liquid products prescribed for patients with dysphagia. They were able to differentiate products based on perceived differences related to flow speed, viscosity, and other parameters suggesting their use in further studies of swallowing behavior and for development of products for disordered swallowing should be considered. Understanding how these variables might relate to clinical decision making about product selection or modification to best meet the nutritional needs of a person with disordered swallowing could be helpful. This is especially true given the difficulties in measuring texture instrumentally in these products. © 2017 Wiley Periodicals, Inc.

  17. Chemical and sensory quality of processed carrot puree as influenced by stress-induced phenolic compounds.

    PubMed

    Talcott, S T; Howard, L R

    1999-04-01

    Physicochemical analysis of processed strained product was performed on 10 carrot genotypes grown in Texas (TX) and Georgia (GA). Carrots from GA experienced hail damage during growth, resulting in damage to their tops. Measurements included pH, moisture, soluble phenolics, total carotenoids, sugars, organic acids, and isocoumarin (6-MM). Sensory analysis was conducted using a trained panel to evaluate relationships between chemical and sensory attributes of the genotypes and in carrots spiked with increasing levels of 6-MM. Preharvest stress conditions in GA carrots seemed to elicit a phytoalexic response, producing compounds that impacted the perception of bitter and sour flavors. Spiking 6-MM into strained carrots demonstrated the role bitter compounds have in lowering sweetness scores while increasing the perception of sour flavor. Screening fresh carrots for the phytoalexin 6-MM has the potential to significantly improve the sensory quality of processed products.

  18. Integration of sensory force feedback is disturbed in CRPS-related dystonia.

    PubMed

    Mugge, Winfred; van der Helm, Frans C T; Schouten, Alfred C

    2013-01-01

    Complex regional pain syndrome (CRPS) is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. The origin of this movement disorder is poorly understood, although recent insights suggest involvement of disturbed force feedback. Assessment of sensorimotor integration may provide insight into the pathophysiology of fixed dystonia. Sensory weighting is the process of integrating and weighting sensory feedback channels in the central nervous system to improve the state estimate. It was hypothesized that patients with CRPS-related dystonia bias sensory weighting of force and position toward position due to the unreliability of force feedback. The current study provides experimental evidence for dysfunctional sensory integration in fixed dystonia, showing that CRPS-patients with fixed dystonia weight force and position feedback differently than controls do. The study shows reduced force feedback weights in CRPS-patients with fixed dystonia, making it the first to demonstrate disturbed integration of force feedback in fixed dystonia, an important step towards understanding the pathophysiology of fixed dystonia.

  19. Neurophysiological Indices of Atypical Auditory Processing and Multisensory Integration Are Associated with Symptom Severity in Autism

    ERIC Educational Resources Information Center

    Brandwein, Alice B.; Foxe, John J.; Butler, John S.; Frey, Hans-Peter; Bates, Juliana C.; Shulman, Lisa H.; Molholm, Sophie

    2015-01-01

    Atypical processing and integration of sensory inputs are hypothesized to play a role in unusual sensory reactions and social-cognitive deficits in autism spectrum disorder (ASD). Reports on the relationship between objective metrics of sensory processing and clinical symptoms, however, are surprisingly sparse. Here we examined the relationship…

  20. Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus

    PubMed Central

    Zhao, Jing-Bo; Frøkjær, Jens Brøndum; Drewes, Asbjørn Mohr; Ejskjaer, Niels

    2006-01-01

    Gastrointestinal (GI) sensory-motor abnormalities are common in patients with diabetes mellitus and may involve any part of the GI tract. Abnormalities are frequently sub-clinical, and fortunately only rarely do severe and life-threatening problems occur. The pathogenesis of abnormal upper GI sensory-motor function in diabetes is incompletely understood and is most likely multi-factorial of origin. Diabetic autonomic neuropathy as well as acute suboptimal control of diabetes has been shown to impair GI motor and sensory function. Morphological and biomechanical remodeling of the GI wall develops during the duration of diabetes, and may contribute to motor and sensory dysfunction. In this review sensory and motility disorders of the upper GI tract in diabetes is discussed; and the morphological changes and biomechanical remodeling related to the sensory-motor dysfunction is also addressed. PMID:16718808

  1. Dissociation of motor and sensory inhibition processes in normal aging.

    PubMed

    Anguera, Joaquin A; Gazzaley, Adam

    2012-04-01

    Age-related cognitive impairments have been attributed to deficits in inhibitory processes that mediate both motor restraint and sensory filtering. However, behavioral studies have failed to show an association between tasks that measure these distinct types of inhibition. In the present study, we hypothesized neural markers reflecting each type of inhibition may reveal a relationship across inhibitory domains in older adults. Electroencephalography (EEG) and behavioral measures were used to explore whether there was an across-participant correlation between sensory suppression and motor inhibition. Sixteen healthy older adult participants (65-80 years) engaged in two separate experimental paradigms: a selective attention, delayed-recognition task and a stop-signal task. Findings revealed no significant relationship existed between neural markers of sensory suppression (P1 amplitude; N170 latency) and markers of motor inhibition (N2 and P3 amplitude and latency) in older adults. These distinct inhibitory domains are differentially impacted in normal aging, as evidenced by previous behavioral work and the current neural findings. Thus a generalized inhibitory deficit may not be a common impairment in cognitive aging. Given that some theories of cognitive aging suggest age-related failure of inhibitory mechanisms may span different modalities, the present findings contribute to an alternative view where age-related declines within each inhibitory modality are unrelated. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Using a Multifaceted Approach to Working With Children Who Have Differences in Sensory Processing and Integration

    PubMed Central

    Glennon, Tara J.; Ausderau, Karla; Bendixen, Roxanna M.; Kuhaneck, Heather Miller; Pfeiffer, Beth; Watling, Renee; Wilkinson, Kimberly; Bodison, Stefanie C.

    2017-01-01

    Pediatric occupational therapy practitioners frequently provide interventions for children with differences in sensory processing and integration. Confusion exists regarding how best to intervene with these children and about how to describe and document methods. Some practitioners hold the misconception that Ayres Sensory Integration intervention is the only approach that can and should be used with this population. The issue is that occupational therapy practitioners must treat the whole client in varied environments; to do so effectively, multiple approaches to intervention often are required. This article presents a framework for conceptualizing interventions for children with differences in sensory processing and integration that incorporates multiple evidence-based approaches. To best meet the needs of the children and families seeking occupational therapy services, interventions must be focused on participation and should be multifaceted. PMID:28218599

  3. Stabilisation of red fruit-based smoothies by high-pressure processing. Part II: effects on sensory quality and selected nutrients.

    PubMed

    Hurtado, Adriana; Guàrdia, Maria Dolors; Picouet, Pierre; Jofré, Anna; Ros, José María; Bañón, Sancho

    2017-02-01

    Non-thermal pasteurisation by high-pressure processing (HPP) is increasingly replacing thermal processing (TP) to maintain the properties of fresh fruit products. The resulting products need to be validated from a sensory and nutritional standpoint. The objective was to assess a mild HPP treatment to stabilise red fruit-based smoothies in a wide (sensory quality and major nutrients) study. HPP (350 MPa/ 10 °C/ 5 min) provided 'fresh-like' smoothies, free of cooked-fruit flavours, for at least 14 days at 4 °C, although their sensory stability was low compared with the TP-smoothies (85 °C/ 7 min). In HPP-smoothies, the loss of fresh fruit flavour and reduced sliminess were the clearest signs of sensory deterioration during storage. Furthermore, HPP permitted the higher initial retention of vitamin C, although this vitamin and, to a lesser extent, total phenols, had a higher degradation rate during storage. The content of sugar present was not affected by either processing treatment. Mild HPP treatment did not alter the sensory and nutritional properties of smoothies. The sensory and nutritional losses during storage were less than might be expected, probably due to the high antioxidant content and the natural turbidity provided by red fruits. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Parallel processing of afferent olfactory sensory information

    PubMed Central

    Vaaga, Christopher E.

    2016-01-01

    afferent input to mitral cells depends on the strength of odorant stimulation. The enhanced spiking that we observed in response to brief afferent input provides a mechanism for amplifying sensory information and contrasts with the transient response in external tufted cells. These parallel input paths may have discrete functions in processing olfactory sensory input. PMID:27377344

  5. Search asymmetries: parallel processing of uncertain sensory information.

    PubMed

    Vincent, Benjamin T

    2011-08-01

    What is the mechanism underlying search phenomena such as search asymmetry? Two-stage models such as Feature Integration Theory and Guided Search propose parallel pre-attentive processing followed by serial post-attentive processing. They claim search asymmetry effects are indicative of finding pairs of features, one processed in parallel, the other in serial. An alternative proposal is that a 1-stage parallel process is responsible, and search asymmetries occur when one stimulus has greater internal uncertainty associated with it than another. While the latter account is simpler, only a few studies have set out to empirically test its quantitative predictions, and many researchers still subscribe to the 2-stage account. This paper examines three separate parallel models (Bayesian optimal observer, max rule, and a heuristic decision rule). All three parallel models can account for search asymmetry effects and I conclude that either people can optimally utilise the uncertain sensory data available to them, or are able to select heuristic decision rules which approximate optimal performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Functional Neuroanatomy and Neurophysiology of Functional Neurological Disorders (Conversion Disorder).

    PubMed

    Voon, Valerie; Cavanna, Andrea E; Coburn, Kerry; Sampson, Shirlene; Reeve, Alya; LaFrance, W Curt

    2016-01-01

    Much is known regarding the physical characteristics, comorbid symptoms, psychological makeup, and neuropsychological performance of patients with functional neurological disorders (FNDs)/conversion disorders. Gross neurostructural deficits do not account for the patients' deficits or symptoms. This review describes the literature focusing on potential neurobiological (i.e. functional neuroanatomic/neurophysiological) findings among individuals with FND, examining neuroimaging and neurophysiological studies of patients with the various forms of motor and sensory FND. In summary, neural networks and neurophysiologic mechanisms may mediate "functional" symptoms, reflecting neurobiological and intrapsychic processes.

  7. Survival analysis applied to the sensory shelf-life dating of high hydrostatic pressure processed avocado and mango pulps.

    PubMed

    Jacobo-Velázquez, D A; Ramos-Parra, P A; Hernández-Brenes, C

    2010-08-01

    High hydrostatic pressure (HHP) pasteurized and refrigerated avocado and mango pulps contain lower microbial counts and thus are safer and acceptable for human consumption for a longer period of time, when compared to fresh unprocessed pulps. However, during their commercial shelf life, changes in their sensory characteristics take place and eventually produce the rejection of these products by consumers. Therefore, in the present study, the use of sensory evaluation was proposed for the shelf-life determinations of HHP-processed avocado and mango pulps. The study focused on evaluating the feasibility of applying survival analysis methodology to the data generated by consumers in order to determine the sensory shelf lives of both HHP-treated pulps of avocado and mango. Survival analysis proved to be an effective methodology for the estimation of the sensory shelf life of avocado and mango pulps processed with HHP, with potential application for other pressurized products. Practical Application: At present, HHP processing is one of the most effective alternatives for the commercial nonthermal pasteurization of fresh tropical fruits. HHP processing improves the microbial stability of the fruit pulps significantly; however, the products continue to deteriorate during their refrigerated storage mainly due to the action of residual detrimental enzymes. This article proposes the application of survival analysis methodology for the determination of the sensory shelf life of HHP-treated avocado and mango pulps. Results demonstrated that the procedure appears to be simple and practical for the sensory shelf-life determination of HHP-treated foods when their main mode of failure is not caused by increases in microbiological counts that can affect human health.

  8. Neurobehavioural assessment and diagnosis in disorders of consciousness: a preliminary study of the Sensory Tool to Assess Responsiveness (STAR).

    PubMed

    Stokes, Verity; Gunn, Sarah; Schouwenaars, Katie; Badwan, Derar

    2018-09-01

    The Sensory Tool to Assess Responsiveness (STAR) is an interdisciplinary neurobehavioural diagnostic tool for individuals with prolonged disorders of consciousness. It utilises current diagnostic criteria and is intended to improve upon the high misdiagnosis rate in this population. This study assesses the inter-rater reliability of the STAR and its diagnostic validity in comparison with the Coma Recovery Scale-Revised (CRS-R) and the Wessex Head Injury Matrix (WHIM). Participants were patients with severe acquired brain injury resulting in a disorder of consciousness, who were admitted to the Royal Leamington Spa Rehabilitation Hospital between 1999 and 2009. Patients underwent sensory stimulation sessions during their period of admission, which were recorded on video. Using this footage, patients were re-assessed for this study using the STAR, WHIM and CRS-R criteria. The STAR demonstrated "moderate" inter-rater reliability, "substantial" diagnostic agreement with the CRS-R, and "moderate" agreement with the WHIM. There were no significant differences between diagnoses assigned by the different assessments. The STAR demonstrated a good degree of inter-rater reliability in identification of diagnoses for patients with disorders of consciousness. The diagnostic outcomes of the STAR agreed at a good level with the CRS-R, moderately with the WHIM, and did not significantly differ from either. This demonstrates the reliability and validity of the STAR, showing its appropriateness for clinical use. Future longitudinal studies and research into the STAR's applicability in long-stay rehabilitation are indicated.

  9. Auditory Processing Disorder in Children

    MedlinePlus

    ... News & Events NIDCD News Inside NIDCD Newsletter Shareable Images ... Info » Hearing, Ear Infections, and Deafness Auditory Processing Disorder Auditory processing disorder (APD) describes a condition ...

  10. Sensory Metrics of Neuromechanical Trust.

    PubMed

    Softky, William; Benford, Criscillia

    2017-09-01

    Today digital sources supply a historically unprecedented component of human sensorimotor data, the consumption of which is correlated with poorly understood maladies such as Internet addiction disorder and Internet gaming disorder. Because both natural and digital sensorimotor data share common mathematical descriptions, one can quantify our informational sensorimotor needs using the signal processing metrics of entropy, noise, dimensionality, continuity, latency, and bandwidth. Such metrics describe in neutral terms the informational diet human brains require to self-calibrate, allowing individuals to maintain trusting relationships. With these metrics, we define the trust humans experience using the mathematical language of computational models, that is, as a primitive statistical algorithm processing finely grained sensorimotor data from neuromechanical interaction. This definition of neuromechanical trust implies that artificial sensorimotor inputs and interactions that attract low-level attention through frequent discontinuities and enhanced coherence will decalibrate a brain's representation of its world over the long term by violating the implicit statistical contract for which self-calibration evolved. Our hypersimplified mathematical understanding of human sensorimotor processing as multiscale, continuous-time vibratory interaction allows equally broad-brush descriptions of failure modes and solutions. For example, we model addiction in general as the result of homeostatic regulation gone awry in novel environments (sign reversal) and digital dependency as a sub-case in which the decalibration caused by digital sensorimotor data spurs yet more consumption of them. We predict that institutions can use these sensorimotor metrics to quantify media richness to improve employee well-being; that dyads and family-size groups will bond and heal best through low-latency, high-resolution multisensory interaction such as shared meals and reciprocated touch; and

  11. Electrophysiological assessments of cognition and sensory processing in TBI: applications for diagnosis, prognosis and rehabilitation.

    PubMed

    Folmer, Robert L; Billings, Curtis J; Diedesch-Rouse, Anna C; Gallun, Frederick J; Lew, Henry L

    2011-10-01

    Traumatic brain injuries are often associated with damage to sensory and cognitive processing pathways. Because evoked potentials (EPs) and event-related potentials (ERPs) are generated by neuronal activity, they are useful for assessing the integrity of neural processing capabilities in patients with traumatic brain injury (TBI). This review of somatosensory, auditory and visual ERPs in assessments of TBI patients is provided with the hope that it will be of interest to clinicians and researchers who conduct or interpret electrophysiological evaluations of this population. Because this article reviews ERP studies conducted in three different sensory modalities, involving patients with a wide range of TBI severity ratings and circumstances, it is difficult to provide a coherent summary of findings. However, some general trends emerge that give rise to the following observations and recommendations: 1) bilateral absence of somatosensory evoked potentials (SEPs) is often associated with poor clinical prognosis and outcome; 2) the presence of normal ERPs does not guarantee favorable outcome; 3) ERPs evoked by a variety of sensory stimuli should be used to evaluate TBI patients, especially those with severe injuries; 4) time since onset of injury should be taken into account when conducting ERP evaluations of TBI patients or interpreting results; 5) because sensory deficits (e.g., vision impairment or hearing loss) affect ERP results, tests of peripheral sensory integrity should be conducted in conjunction with ERP recordings; and 6) patients' state of consciousness, physical and cognitive abilities to respond and follow directions should be considered when conducting or interpreting ERP evaluations. Published by Elsevier B.V.

  12. Sensory Processing and Its Relationship with Children's Daily Life Participation.

    PubMed

    Chien, Chi-Wen; Rodger, Sylvia; Copley, Jodie; Branjerdporn, Grace; Taggart, Caitlin

    2016-01-01

    To investigate whether children with probable or definite differences in sensory processing (SP) had participation restrictions, and the relationship between Short Sensory Profile (SSP) scores and children's participation. The participants were parents of 64 children (mean age 8 years 1 month); 36 with potential impairments in regulating sensory input and filtering out unnecessary stimuli (29 boys, 7 girls) and 28 with typical SP abilities (25 boys, 3 girls). Parents' completed the SSP and Participation in Childhood Occupations Questionnaire (PICO-Q). The SSP score was used to categorize children as potential SP impairment group and typical SP ability group. Children categorized as having probable or definite differences in SP exhibited significantly lower participation levels and enjoyment than children categorized as having typical SP abilities. However, participation frequency between both groups was similar. Six out of the seven SP impairment types had small to moderate correlations with children's participation (r = 0.25-0.48, p < 0.05). Multiple regression analyses indicated that only three impairment types (Underresponsive/Seeks Sensation, Low Energy/Weak, and Visual/Auditory Sensitivity) were significant predictors of PICO-Q participation domains. The results suggest that children with potential SP impairments have restrictions in the degree of participation and enjoyment. Three SP types were related to specific participation domains, but they explained a small amount of variance or none in some participation domains. Other variables should be considered to identify determinants of children's participation.

  13. Cortical-Cortical Interactions And Sensory Information Processing in Autism

    DTIC Science & Technology

    2008-04-30

    Frith U: Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 2002, 125:1839-1849. 15...Methods The subjects were ten males clinically diagnosed with autism (i.e., Autistic Disorder or Asperger Disorder; DSM-IV-TR; [22]), all naïve both...Disordered visual processing and oscillatory brain activity in autism and Williams syndrome . Neuroreport 2001, 12:2697-2700. 18. Wilson TW, Rojas DC

  14. Autosomal recessive type II hereditary motor and sensory neuropathy with acrodystrophy.

    PubMed

    Thomas, P K; Claus, D; King, R H

    1999-02-01

    A family is described with presumed autosomal recessive inheritance in which three siblings developed a progressive neuropathy that combined limb weakness and severe distal sensory loss leading to prominent mutilating changes. Electrophysiological and nerve biopsy findings indicated an axonopathy. The disorder is therefore classifiable as type II hereditary motor and sensory neuropathy (HMSN II). The clinical features differ from those reported in previously described cases of autosomal recessive HMSN II. This disorder may therefore represent a new variant.

  15. A Two-Stage Process Model of Sensory Discrimination: An Alternative to Drift-Diffusion

    PubMed Central

    Landy, Michael S.

    2016-01-01

    Discrimination of the direction of motion of a noisy stimulus is an example of sensory discrimination under uncertainty. For stimuli that are extended in time, reaction time is quicker for larger signal values (e.g., discrimination of opposite directions of motion compared with neighboring orientations) and larger signal strength (e.g., stimuli with higher contrast or motion coherence, that is, lower noise). The standard model of neural responses (e.g., in lateral intraparietal cortex) and reaction time for discrimination is drift-diffusion. This model makes two clear predictions. (1) The effects of signal strength and value on reaction time should interact multiplicatively because the diffusion process depends on the signal-to-noise ratio. (2) If the diffusion process is interrupted, as in a cued-response task, the time to decision after the cue should be independent of the strength of accumulated sensory evidence. In two experiments with human participants, we show that neither prediction holds. A simple alternative model is developed that is consistent with the results. In this estimate-then-decide model, evidence is accumulated until estimation precision reaches a threshold value. Then, a decision is made with duration that depends on the signal-to-noise ratio achieved by the first stage. SIGNIFICANCE STATEMENT Sensory decision-making under uncertainty is usually modeled as the slow accumulation of noisy sensory evidence until a threshold amount of evidence supporting one of the possible decision outcomes is reached. Furthermore, it has been suggested that this accumulation process is reflected in neural responses, e.g., in lateral intraparietal cortex. We derive two behavioral predictions of this model and show that neither prediction holds. We introduce a simple alternative model in which evidence is accumulated until a sufficiently precise estimate of the stimulus is achieved, and then that estimate is used to guide the discrimination decision. This model is

  16. A Two-Stage Process Model of Sensory Discrimination: An Alternative to Drift-Diffusion.

    PubMed

    Sun, Peng; Landy, Michael S

    2016-11-02

    Discrimination of the direction of motion of a noisy stimulus is an example of sensory discrimination under uncertainty. For stimuli that are extended in time, reaction time is quicker for larger signal values (e.g., discrimination of opposite directions of motion compared with neighboring orientations) and larger signal strength (e.g., stimuli with higher contrast or motion coherence, that is, lower noise). The standard model of neural responses (e.g., in lateral intraparietal cortex) and reaction time for discrimination is drift-diffusion. This model makes two clear predictions. (1) The effects of signal strength and value on reaction time should interact multiplicatively because the diffusion process depends on the signal-to-noise ratio. (2) If the diffusion process is interrupted, as in a cued-response task, the time to decision after the cue should be independent of the strength of accumulated sensory evidence. In two experiments with human participants, we show that neither prediction holds. A simple alternative model is developed that is consistent with the results. In this estimate-then-decide model, evidence is accumulated until estimation precision reaches a threshold value. Then, a decision is made with duration that depends on the signal-to-noise ratio achieved by the first stage. Sensory decision-making under uncertainty is usually modeled as the slow accumulation of noisy sensory evidence until a threshold amount of evidence supporting one of the possible decision outcomes is reached. Furthermore, it has been suggested that this accumulation process is reflected in neural responses, e.g., in lateral intraparietal cortex. We derive two behavioral predictions of this model and show that neither prediction holds. We introduce a simple alternative model in which evidence is accumulated until a sufficiently precise estimate of the stimulus is achieved, and then that estimate is used to guide the discrimination decision. This model is consistent with the

  17. The influence of (central) auditory processing disorder in speech sound disorders.

    PubMed

    Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Vilela, Nadia; Carvallo, Renata Mota Mamede; Wertzner, Haydée Fiszbein

    2016-01-01

    Considering the importance of auditory information for the acquisition and organization of phonological rules, the assessment of (central) auditory processing contributes to both the diagnosis and targeting of speech therapy in children with speech sound disorders. To study phonological measures and (central) auditory processing of children with speech sound disorder. Clinical and experimental study, with 21 subjects with speech sound disorder aged between 7.0 and 9.11 years, divided into two groups according to their (central) auditory processing disorder. The assessment comprised tests of phonology, speech inconsistency, and metalinguistic abilities. The group with (central) auditory processing disorder demonstrated greater severity of speech sound disorder. The cutoff value obtained for the process density index was the one that best characterized the occurrence of phonological processes for children above 7 years of age. The comparison among the tests evaluated between the two groups showed differences in some phonological and metalinguistic abilities. Children with an index value above 0.54 demonstrated strong tendencies towards presenting a (central) auditory processing disorder, and this measure was effective to indicate the need for evaluation in children with speech sound disorder. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Behavioral and Functional Assays for Investigating Mechanisms of Noxious Cold Detection and Multimodal Sensory Processing in Drosophila Larvae

    PubMed Central

    Patel, Atit A.; Cox, Daniel N.

    2017-01-01

    To investigate cellular, molecular and behavioral mechanisms of noxious cold detection, we developed cold plate behavioral assays and quantitative means for evaluating the predominant noxious cold-evoked contraction behavior. To characterize neural activity in response to noxious cold, we implemented a GCaMP6-based calcium imaging assay enabling in vivo studies of intracellular calcium dynamics in intact Drosophila larvae. We identified Drosophila class III multidendritic (md) sensory neurons as multimodal sensors of innocuous mechanical and noxious cold stimuli and to dissect the mechanistic bases of multimodal sensory processing we developed two independent functional assays. First, we developed an optogenetic dose response assay to assess whether levels of neural activation contributes to the multimodal aspects of cold sensitive sensory neurons. Second, we utilized CaMPARI, a photo-switchable calcium integrator that stably converts fluorescence from green to red in presence of high intracellular calcium and photo-converting light, to assess in vivo functional differences in neural activation levels between innocuous mechanical and noxious cold stimuli. These novel assays enable investigations of behavioral and functional roles of peripheral sensory neurons and multimodal sensory processing in Drosophila larvae. PMID:28835907

  19. Extensive excitatory network interactions shape temporal processing of communication signals in a model sensory system.

    PubMed

    Ma, Xiaofeng; Kohashi, Tsunehiko; Carlson, Bruce A

    2013-07-01

    Many sensory brain regions are characterized by extensive local network interactions. However, we know relatively little about the contribution of this microcircuitry to sensory coding. Detailed analyses of neuronal microcircuitry are usually performed in vitro, whereas sensory processing is typically studied by recording from individual neurons in vivo. The electrosensory pathway of mormyrid fish provides a unique opportunity to link in vitro studies of synaptic physiology with in vivo studies of sensory processing. These fish communicate by actively varying the intervals between pulses of electricity. Within the midbrain posterior exterolateral nucleus (ELp), the temporal filtering of afferent spike trains establishes interval tuning by single neurons. We characterized pairwise neuronal connectivity among ELp neurons with dual whole cell recording in an in vitro whole brain preparation. We found a densely connected network in which single neurons influenced the responses of other neurons throughout the network. Similarly tuned neurons were more likely to share an excitatory synaptic connection than differently tuned neurons, and synaptic connections between similarly tuned neurons were stronger than connections between differently tuned neurons. We propose a general model for excitatory network interactions in which strong excitatory connections both reinforce and adjust tuning and weak excitatory connections make smaller modifications to tuning. The diversity of interval tuning observed among this population of neurons can be explained, in part, by each individual neuron receiving a different complement of local excitatory inputs.

  20. A Critical Review of Screening and Diagnostic Instruments for Autism Spectrum Disorders in People with Sensory Impairments in Addition to Intellectual Disabilities

    ERIC Educational Resources Information Center

    de Vaan, Gitta; Vervloed, Mathijs P. J.; Hoevenaars-van den Boom, Marella; Antonissen, Anneke; Knoors, Harry; Verhoeven, Ludo

    2016-01-01

    Instruments that are used for diagnosing of, or screening for, autism spectrum disorder (ASD) may not be applicable to people with sensory disabilities in addition to intellectual disabilities. First, because they do not account for equifinality, the possibility that different conditions may lead to the same outcome. Second, because they do not…

  1. Sensory overload: A concept analysis.

    PubMed

    Scheydt, Stefan; Müller Staub, Maria; Frauenfelder, Fritz; Nielsen, Gunnar H; Behrens, Johann; Needham, Ian

    2017-04-01

    In the context of mental disorders sensory overload is a widely described phenomenon used in conjunction with psychiatric interventions such as removal from stimuli. However, the theoretical foundation of sensory overload as addressed in the literature can be described as insufficient and fragmentary. To date, the concept of sensory overload has not yet been sufficiently specified or analyzed. The aim of the study was to analyze the concept of sensory overload in mental health care. A literature search was undertaken using specific electronic databases, specific journals and websites, hand searches, specific library catalogues, and electronic publishing databases. Walker and Avant's method of concept analysis was used to analyze the sources included in the analysis. All aspects of the method of Walker and Avant were covered in this concept analysis. The conceptual understanding has become more focused, the defining attributes, influencing factors and consequences are described and empirical referents identified. The concept analysis is a first step in the development of a middle-range descriptive theory of sensory overload based on social scientific and stress-theoretical approaches. This specification may serve as a fundament for further research, for the development of a nursing diagnosis or for guidelines. © 2017 Australian College of Mental Health Nurses Inc.

  2. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes.

    PubMed

    Mohajerani, Majid H; Aminoltejari, Khatereh; Murphy, Timothy H

    2011-05-31

    Most processing of sensation involves the cortical hemisphere opposite (contralateral) to the stimulated limb. Stroke patients can exhibit changes in the interhemispheric balance of sensory signal processing. It is unclear whether these changes are the result of poststroke rewiring and experience, or whether they could result from the immediate effect of circuit loss. We evaluated the effect of mini-strokes over short timescales (<2 h) where cortical rewiring is unlikely by monitoring sensory-evoked activity throughout much of both cortical hemispheres using voltage-sensitive dye imaging. Blockade of a single pial arteriole within the C57BL6J mouse forelimb somatosensory cortex reduced the response evoked by stimulation of the limb contralateral to the stroke. However, after stroke, the ipsilateral (uncrossed) forelimb response within the unaffected hemisphere was spared and became independent of the contralateral forelimb cortex. Within the unaffected hemisphere, mini-strokes in the opposite hemisphere significantly enhanced sensory responses produced by stimulation of either contralateral or ipsilateral pathways within 30-50 min of stroke onset. Stroke-induced enhancement of responses within the spared hemisphere was not reproduced by inhibition of either cortex or thalamus using pharmacological agents in nonischemic animals. I/LnJ acallosal mice showed similar rapid interhemispheric redistribution of sensory processing after stroke, suggesting that subcortical connections and not transcallosal projections were mediating the novel activation patterns. Thalamic inactivation before stroke prevented the bilateral rearrangement of sensory responses. These findings suggest that acute stroke, and not merely loss of activity, activates unique pathways that can rapidly redistribute function within the spared cortical hemisphere.

  3. The Relationship Between Autistic Traits and Atypical Sensory Functioning in Neurotypical and ASD Adults: A Spectrum Approach.

    PubMed

    Mayer, Jennifer L

    2017-02-01

    Sensory processing atypicalities are a common feature in Autism Spectrum Disorders (ASD) and have previously been linked to a range of behaviours in individuals with ASD and atypical neurological development. More recently research has demonstrated a relationship between autistic traits in the neurotypical (NT) population and increased levels of atypical sensory behaviours. The aim of the present study is to extend previous research by examining specific patterns across aspects of autistic traits and sensory behaviours within both ASD and NT populations. The present study recruited 580 NT adults and 42 high-functioning ASD adults with a confirmed diagnosis to investigate the relationship between specific aspects of autistic traits and sensory processing using the subscales of the autism spectrum quotient (AQ) and adult/adolescent sensory profile (AASP). Results showed a significant relationship between all subscales except for attention to detail and imagination on the AQ and provided the first evidence that the strength and pattern of this relationship is identical between NT and ASD adults. These data also provided support for the broader autism phenotype, uncovering a clear progression of sensory atypicalities in line with an increase in autistic traits, regardless of diagnostic status, which has potential implications for the spectrum approach to ASD and how sensory behaviours across the whole of the neurotypical population are conceptualised.

  4. Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait.

    PubMed

    Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas

    2014-12-01

    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.

  5. Early enhanced processing and delayed habituation to deviance sounds in autism spectrum disorder.

    PubMed

    Hudac, Caitlin M; DesChamps, Trent D; Arnett, Anne B; Cairney, Brianna E; Ma, Ruqian; Webb, Sara Jane; Bernier, Raphael A

    2018-06-01

    Children with autism spectrum disorder (ASD) exhibit difficulties processing and encoding sensory information in daily life. Cognitive response to environmental change in control individuals is naturally dynamic, meaning it habituates or reduces over time as one becomes accustomed to the deviance. The origin of atypical response to deviance in ASD may relate to differences in this dynamic habituation. The current study of 133 children and young adults with and without ASD examined classic electrophysiological responses (MMN and P3a), as well as temporal patterns of habituation (i.e., N1 and P3a change over time) in response to a passive auditory oddball task. Individuals with ASD showed an overall heightened sensitivity to change as exhibited by greater P3a amplitude to novel sounds. Moreover, youth with ASD showed dynamic ERP differences, including slower attenuation of the N1 response to infrequent tones and the P3a response to novel sounds. Dynamic ERP responses were related to parent ratings of auditory sensory-seeking behaviors, but not general cognition. As the first large-scale study to characterize temporal dynamics of auditory ERPs in ASD, our results provide compelling evidence that heightened response to auditory deviance in ASD is largely driven by early sensitivity and prolonged processing of auditory deviance. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Process optimization for sensory characteristics of seriales (Flacourtia jangomas) ready-to-drink (RTD) beverage

    NASA Astrophysics Data System (ADS)

    Cimafranca, L.; Dizon, E.

    2018-01-01

    Seriales (Flacourtia jangomas) is an underutilized fruit in the Philippines. The processing of the fruit into a RTD beverage was standardized by statistical methods. Plackett-Burman Design (PB) was used to determine the most significant factors that affect the sensory characteristics of the product. Response surface methodology (RSM) was applied based on the factorial Central Composite Design (CCD) to determine the optimum conditions for the maximum sensory acceptability of the seriales RTD beverage. Results of the PB revealed that the most significant factors were blanching time, level of seriales and TSS level. With different levels of blanching time (0.5, 1.0, and 1.5 min.), seriales level (10, 20, 30 %) and TSS value (12, 15, 18ºBrix), the optimum region for sensory acceptability was perceived at 0.7 to 1.4 minutes blanching time, seriales level of not beyond 27 %, and TSS at any level.

  7. Genes for Hereditary Sensory and Autonomic Neuropathies: A Genotype-Phenotype Correlation

    ERIC Educational Resources Information Center

    Rotthier, Annelies; Baets, Jonathan; De Vriendt, Els; Jacobs, An; Auer-Grumbach, Michaela; Levy, Nicolas; Bonello-Palot, Nathalie; Kilic, Sara Sebnem; Weis, Joachim; Nascimento, Andres; Swinkels, Marielle; Kruyt, Moyo C.; Jordanova, Albena; De Jonghe, Peter; Timmerman, Vincent

    2009-01-01

    Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant ("SPTLC1"…

  8. Impact of Sensory Sensitivity on Physiological Stress Response and Novel Peer Interaction in Children with and without Autism Spectrum Disorder.

    PubMed

    Corbett, Blythe A; Muscatello, Rachael A; Blain, Scott D

    2016-01-01

    For many children with Autism Spectrum Disorder (ASD), social interactions can be stressful. Previous research shows that youth with ASD exhibit greater physiological stress response during peer interaction, compared to typically developing (TD) peers. Heightened sensory sensitivity may contribute to maladaptive patterns of stress and anxiety. The current study investigated between-group differences in stress response to peer interaction, as well as the role of sensory sensitivity. Participants included 80 children (40 ASD) between 8 and 12 years. Children participated in the peer interaction paradigm (PIP), an ecologically valid protocol that simulates real-world social interaction. Salivary cortisol was collected before and after the 20 min PIP. Parents completed questionnaires pertaining to child stress (Stress Survey Schedule) and sensory sensitivity (Short Sensory Profile). Statistical analyses included t-tests and ANCOVA models to examine between-group differences in cortisol and play; Pearson correlations to determine relations between cortisol, play, and questionnaire scores; and moderation analyses to investigate interactions among variables. Controlling for baseline cortisol values, children with ASD showed significantly higher cortisol levels than TD peers, in response to the PIP [F (1, 77) = 5.77, p = 0.02]. Cortisol during play was negatively correlated with scores on the SSP (r = -0.242, p = 0.03), and positively correlated with SSS (r = 0.273, p = 0.02) indicating that higher cortisol was associated with greater sensory sensitivity (lower SSP reflects more impairment) and enhanced stress in various contexts (higher SSS reflects more stress). Furthermore, diagnosis was a significant moderator of the relation between cortisol and SSP, at multiple time points during the PIP (p < 0.05). The current study extends previous findings by showing that higher physiological arousal during play is associated with heightened sensory sensitivity and a pattern of

  9. A clinician-administered observation and corresponding caregiver interview capturing DSM-5 sensory reactivity symptoms in children with ASD.

    PubMed

    Siper, Paige M; Kolevzon, Alexander; Wang, A Ting; Buxbaum, Joseph D; Tavassoli, Teresa

    2017-06-01

    Sensory reactivity is a new criterion for autism spectrum disorder (ASD) in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). However, there is no consensus on how to reliably measure sensory reactivity, particularly in minimally verbal individuals. The current study is an initial validation of the Sensory Assessment for Neurodevelopmental Disorders (SAND), a novel clinician-administered observation and corresponding caregiver interview that captures sensory symptoms based on DSM-5 criteria for ASD. Eighty children between the ages of 2 and 12 participated in this study; 44 children with ASD and 36 typically developing (TD) children. Sensory reactivity symptoms were measured using the SAND and the already validated Short Sensory Profile (SSP). Initial psychometric properties of the SAND were examined including reliability, validity, sensitivity and specificity. Children with ASD showed significantly more sensory reactivity symptoms compared to TD children across sensory domains (visual, tactile, and auditory) and within sensory subtypes (hyperreactivity, hyporeactivity and seeking). The SAND showed strong internal consistency, inter-rater reliability and test-retest reliability, high sensitivity (95.5%) and specificity (91.7%), and strong convergent validity with the SSP. The SAND provides a novel method to characterize sensory reactivity symptoms based on DSM-5 criteria for ASD. This is the first known sensory assessment that combines a clinician-administered observation and caregiver interview to optimally capture sensory phenotypes characteristic of individuals with neurodevelopmental disorders. The SAND offers a beneficial new tool for both research and clinical purposes and has the potential to meaningfully enhance gold-standard assessment of ASD. Autism Res 2017, 10: 1133-1140. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  10. Motor-Perceptual Function in Children with Developmental Reading Disorders: Neuropsychophysiological Analysis.

    ERIC Educational Resources Information Center

    Chiarenza, Giuseppe Augusto

    1990-01-01

    Eight reading-disordered and 9 nondisabled males (age 10) performed a skilled motor-perceptual task. The children with reading disorders were slower, less accurate, and achieved a smaller number of target performances. Their brain macropotentials associated with motor programing, processing of sensory information, and evaluation of the results…

  11. Deficits in auditory processing contribute to impairments in vocal affect recognition in autism spectrum disorders: A MEG study.

    PubMed

    Demopoulos, Carly; Hopkins, Joyce; Kopald, Brandon E; Paulson, Kim; Doyle, Lauren; Andrews, Whitney E; Lewine, Jeffrey David

    2015-11-01

    The primary aim of this study was to examine whether there is an association between magnetoencephalography-based (MEG) indices of basic cortical auditory processing and vocal affect recognition (VAR) ability in individuals with autism spectrum disorder (ASD). MEG data were collected from 25 children/adolescents with ASD and 12 control participants using a paired-tone paradigm to measure quality of auditory physiology, sensory gating, and rapid auditory processing. Group differences were examined in auditory processing and vocal affect recognition ability. The relationship between differences in auditory processing and vocal affect recognition deficits was examined in the ASD group. Replicating prior studies, participants with ASD showed longer M1n latencies and impaired rapid processing compared with control participants. These variables were significantly related to VAR, with the linear combination of auditory processing variables accounting for approximately 30% of the variability after controlling for age and language skills in participants with ASD. VAR deficits in ASD are typically interpreted as part of a core, higher order dysfunction of the "social brain"; however, these results suggest they also may reflect basic deficits in auditory processing that compromise the extraction of socially relevant cues from the auditory environment. As such, they also suggest that therapeutic targeting of sensory dysfunction in ASD may have additional positive implications for other functional deficits. (c) 2015 APA, all rights reserved).

  12. Higher sensory processing sensitivity, introversion and ectomorphism: New biomarkers for human creativity in developing rural areas

    PubMed Central

    Rizzo-Sierra, Carlos V; Leon-S, Martha E; Leon-Sarmiento, Fidias E

    2012-01-01

    The highly sensitive trait present in animals, has also been proposed as a human neurobiological trait. People having such trait can process larger amounts of sensory information than usual, making it an excellent attribute that allows to pick up subtle environmental details and cues. Furthermore, this trait correlates to some sort of giftedness such as higher perception, inventiveness, imagination and creativity. We present evidences that support the existance of key neural connectivity between the mentioned trait, higher sensory processing sensitivity, introversion, ectomorphism and creativity. The neurobiological and behavioral implications that these biomarkers have in people living in developing rural areas are discussed as well. PMID:22865969

  13. Sensory description of marine oils through development of a sensory wheel and vocabulary.

    PubMed

    Larssen, W E; Monteleone, E; Hersleth, M

    2018-04-01

    The Omega-3 industry lacks a defined methodology and a vocabulary for evaluating the sensory quality of marine oils. This study was conducted to identify the sensory descriptors of marine oils and organize them in a sensory wheel for use as a tool in quality assessment. Samples of marine oils were collected from six of the largest producers of omega-3 products in Norway. The oils were selected to cover as much variation in sensory characteristics as possible, i.e. oils with different fatty acid content originating from different species. Oils were evaluated by six industry expert panels and one trained sensory panel to build up a vocabulary through a series of language sessions. A total of 184 aroma (odor by nose), flavor, taste and mouthfeel descriptors were generated. A sensory wheel based on 60 selected descriptors grouped together in 21 defined categories was created to form a graphical presentation of the sensory vocabulary. A selection of the oil samples was also evaluated by a trained sensory panel using descriptive analysis. Chemical analysis showed a positive correlation between primary and secondary oxidation products and sensory properties such as rancidity, chemical flavor and process flavor and a negative correlation between primary oxidation products and acidic. This research is a first step towards the broader objective of standardizing the sensory terminology related to marine oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Conversion disorder: towards a neurobiological understanding

    PubMed Central

    Harvey, Samuel B; Stanton, Biba R; David, Anthony S

    2006-01-01

    Conversion disorders are a common cause of neurological disability, but the diagnosis remains controversial and the mechanism by which psychological stress can result in physical symptoms “unconsciously” is poorly understood. This review summarises research examining conversion disorder from a neurobiological perspective. Early observations suggesting a role for hemispheric specialization have not been replicated consistently. Patients with sensory conversion symptoms have normal evoked responses in primary and secondary somatosensory cortex but a reduction in the P300 potential, which is thought to reflect a lack of conscious processing of sensory stimuli. The emergence of functional imaging has provided the greatest opportunity for understanding the neural basis of conversion symptoms. Studies have been limited by small patient numbers and failure to control for confounding variables. The evidence available would suggest a broad hypothesis that frontal cortical and limbic activation associated with emotional stress may act via inhibitory basal ganglia–thalamocortical circuits to produce a deficit of conscious sensory or motor processing. The conceptual difficulties that have limited progress in this area are discussed. A better neuropsychiatric understanding of the mechanisms of conversion symptoms may improve our understanding of normal attention and volition and reduce the controversy surrounding this diagnosis. PMID:19412442

  15. A Pilot Study of Integrated Listening Systems for Children with Sensory Processing Problems

    ERIC Educational Resources Information Center

    Schoen, Sarah A.; Miller, Lucy J.; Sullivan, Jillian

    2015-01-01

    This pilot study explored the effects of Integrated Listening Systems (iLs) Focus Series on individualized parent goals for children with sensory processing impairments. A nonconcurrent multiple baseline, repeated measure across participants, single-case study design was employed (n = 7). The 40-session intervention was delivered at home and in…

  16. Are Sensory Processing Features Associated with Depressive Symptoms in Boys with an ASD?

    ERIC Educational Resources Information Center

    Bitsika, Vicki; Sharpley, Christopher F.; Mills, Richard

    2016-01-01

    The association between Sensory Processing Features (SPF) and depressive symptoms was investigated at two levels in 150 young males (6-18 years) with an ASD. First, a significant correlation was found between SPF and total depressive symptom scores. Second, different aspects of SPF significantly predicted different depressive symptom factors, with…

  17. Stochastic characterization of small-scale algorithms for human sensory processing

    NASA Astrophysics Data System (ADS)

    Neri, Peter

    2010-12-01

    Human sensory processing can be viewed as a functional H mapping a stimulus vector s into a decisional variable r. We currently have no direct access to r; rather, the human makes a decision based on r in order to drive subsequent behavior. It is this (typically binary) decision that we can measure. For example, there may be two external stimuli s[0] and s[1], mapped onto r[0] and r[1] by the sensory apparatus H; the human chooses the stimulus associated with largest r. This kind of decisional transduction poses a major challenge for an accurate characterization of H. In this article, we explore a specific approach based on a behavioral variant of reverse correlation techniques, where the input s contains a target signal corrupted by a controlled noisy perturbation. The presence of the target signal poses an additional challenge because it distorts the otherwise unbiased nature of the noise source. We consider issues arising from both the decisional transducer and the target signal, their impact on system identification, and ways to handle them effectively for system characterizations that extend to second-order functional approximations with associated small-scale cascade models.

  18. Brief Report: Sensory Reactivity in Children with Phelan-McDermid Syndrome

    ERIC Educational Resources Information Center

    Mieses, A. M.; Tavassoli, T.; Li, E.; Soorya, L.; Lurie, S.; Wang, A. T.; Siper, P. M.; Kolevzon, A.

    2016-01-01

    Phelan-McDermid syndrome (PMS), a monogenic form of autism spectrum disorder (ASD), results from deletion or mutation of the "SHANK3" gene. Atypical sensory reactivity is now included in the diagnostic criteria for ASD. Examining the sensory phenotype in monogenic forms of ASD, such as PMS, may help identify underlying mechanisms of…

  19. Is Attentional Resource Allocation Across Sensory Modalities Task-Dependent?

    PubMed

    Wahn, Basil; König, Peter

    2017-01-01

    Human information processing is limited by attentional resources. That is, via attentional mechanisms, humans select a limited amount of sensory input to process while other sensory input is neglected. In multisensory research, a matter of ongoing debate is whether there are distinct pools of attentional resources for each sensory modality or whether attentional resources are shared across sensory modalities. Recent studies have suggested that attentional resource allocation across sensory modalities is in part task-dependent. That is, the recruitment of attentional resources across the sensory modalities depends on whether processing involves object-based attention (e.g., the discrimination of stimulus attributes) or spatial attention (e.g., the localization of stimuli). In the present paper, we review findings in multisensory research related to this view. For the visual and auditory sensory modalities, findings suggest that distinct resources are recruited when humans perform object-based attention tasks, whereas for the visual and tactile sensory modalities, partially shared resources are recruited. If object-based attention tasks are time-critical, shared resources are recruited across the sensory modalities. When humans perform an object-based attention task in combination with a spatial attention task, partly shared resources are recruited across the sensory modalities as well. Conversely, for spatial attention tasks, attentional processing does consistently involve shared attentional resources for the sensory modalities. Generally, findings suggest that the attentional system flexibly allocates attentional resources depending on task demands. We propose that such flexibility reflects a large-scale optimization strategy that minimizes the brain's costly resource expenditures and simultaneously maximizes capability to process currently relevant information.

  20. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat.

    PubMed

    Omer, M K; Prieto, B; Rendueles, E; Alvarez-Ordoñez, A; Lunde, K; Alvseike, O; Prieto, M

    2015-10-01

    The aim of this trial was to describe physicochemical, microbiological and organoleptic characteristics of dry fermented sausages produced from high hydrostatic pressure (HHP) pre-processed trimmings. During ripening of the meat products pH, weight, water activity (aw), and several microbiological parameters were measured at zero, eight, fifteen days and after 6weeks. Sensory characteristics were estimated at day 15 and after six weeks by a test panel by using several sensory tests. Enterobacteriaceae were not detected in sausages from HHP-processed trimmings. Fermentation was little affected, but weight and aw of the HHP-processed sausages decreased faster during ripening. HHP-treated sausages were consistently less favoured than non HHP-treated sausages, but the strategy may be an alternative approach if the process is optimized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Conceptual issues in autism spectrum disorders.

    PubMed

    Gallagher, Shaun; Varga, Somogy

    2015-03-01

    To provide an update on recent studies concerning social cognition in autism spectrum disorders (ASDs), to compare different theoretical approaches used to interpret empirical data, and to highlight a number of conceptual issues. In regard to social cognition in ASDs, there is an emerging emphasis on early-onset and prolonged sensory-motor problems. Such sensory-motor problems may fit with the theories of social cognition that emphasize the importance of embodied interaction rather than deficits in mindreading, or they may reflect more general aspects of developmental disorders. Different theoretical frameworks offer alternative perspectives on the central characteristics in ASDs and motivate different ways of conceptualizing diagnosis and intervention. Theory-of-mind approaches continue to appeal to false-belief paradigms, and debate continues about the performance of individuals with autism. Likewise, there is continuing debate and renewed skepticism about the role of simulation and deficits in the mirror system in ASDs. Growing evidence concerning sensory-motor problems, specifically disrupted patterns in re-entrant (afferent and proprioceptive) sensory feedback across the autistic spectrum, may not only provide support for more embodied interactive approaches, but also suggests that a single approach is unlikely able to explain all social cognition problems in autism. A pluralist approach understands ASDs as involving a variant range of cascading disrupted processes.

  2. Development of auditory sensory memory from 2 to 6 years: an MMN study.

    PubMed

    Glass, Elisabeth; Sachse, Steffi; von Suchodoletz, Waldemar

    2008-08-01

    Short-term storage of auditory information is thought to be a precondition for cognitive development, and deficits in short-term memory are believed to underlie learning disabilities and specific language disorders. We examined the development of the duration of auditory sensory memory in normally developing children between the ages of 2 and 6 years. To probe the lifetime of auditory sensory memory we elicited the mismatch negativity (MMN), a component of the late auditory evoked potential, with tone stimuli of two different frequencies presented with various interstimulus intervals between 500 and 5,000 ms. Our findings suggest that memory traces for tone characteristics have a duration of 1-2 s in 2- and 3-year-old children, more than 2 s in 4-year-olds and 3-5 s in 6-year-olds. The results provide insights into the maturational processes involved in auditory sensory memory during the sensitive period of cognitive development.

  3. A COMPARISON OF SENSORY INTEGRATIVE AND BEHAVIORAL THERAPIES AS TREATMENT FOR PEDIATRIC FEEDING DISORDERS

    PubMed Central

    Addison, Laura R; Piazza, Cathleen C; Patel, Meeta R; Bachmeyer, Melanie H; Rivas, Kristi M; Milnes, Suzanne M; Oddo, Jackie

    2012-01-01

    We compared the effects of escape extinction (EE) plus noncontingent reinforcement (NCR) with sensory integration therapy as treatment for the feeding problems of 2 children. Results indicated that EE plus NCR was more effective in increasing acceptance, decreasing inappropriate behavior, and increasing amount consumed relative to sensory integration for both children. The results are discussed in terms of the challenges of evaluating sensory-integration-based treatments, and the reasons why component analyses of multicomponent treatments like sensory integration are important. PMID:23060661

  4. Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing.

    PubMed

    Sulaiman, Alifdalino; Farid, Mohammed; Silva, Filipa Vm

    2017-04-01

    Worldwide, apple juice is the second most popular juice, after orange juice. It is susceptible to enzymatic browning spoilage by polyphenoloxidase, an endogenous enzyme. In this study, Royal Gala apple juice was treated by thermosonication (TS: 1.3 W/mL, 58 ℃, 10 min), pulsed electric field (PEF: 24.8 kV/cm, 60 pulses, 169 µs treatment time, 53.8 ℃) and heat (75 ℃, 20 min) and stored at 3.0 ℃ and 20.0 ℃ for 30 days. A sensory analysis was carried out after processing. The polyphenoloxidase activity, antioxidant activity and total color difference of the apple juice were determined before and after processing and during storage. The sensory analysis revealed that thermosonication and pulsed electric field juices tasted differently from the thermally treated juice. Apart from the pulsed electric field apple juice stored at room temperature, the processed juice was stable during storage, since the pH and soluble solids remained constant and fermentation was not observed. Polyphenoloxidase did not reactivate during storage. Along storage, the juices' antioxidant activity decreased and total color difference increased (up to 6.8). While the antioxidant activity increased from 86 to 103% with thermosonication and was retained after pulsed electric field, thermal processing reduced it to 67%. The processing increased the total color difference slightly. No differences in the total color difference of the juices processed by the three methods were registered after storage. Thermosonication and pulsed electric field could possibly be a better alternative to thermal preservation of apple juice, but refrigerated storage is recommended for pulsed electric field apple juice.

  5. Magnetoencephalography reveals altered auditory information processing in youth with obsessive-compulsive disorder.

    PubMed

    Korostenskaja, Milena; Harris, Elana; Giovanetti, Cathy; Horn, Paul; Wang, Yingying; Rose, Douglas; Fujiwara, Hisako; Xiang, Jing

    2013-05-30

    Patients with obsessive-compulsive disorder (OCD) often report sensory intolerances which may lead to significant functional impairment. This study used auditory evoked fields (AEFs) to address the question of whether neural correlates of sensory auditory information processing differ in youth with OCD compared with healthy comparison subjects (HCS). AEFs, recorded with a whole head 275-channel magnetoencephalography system, were elicited in response to binaural auditory stimuli from 10 pediatric subjects with OCD (ages 8-13, mean 11 years, 6 males) and 10 age- and gender-matched HCS. Three major neuromagnetic responses were studied: M70 (60-80 ms), M100 (90-120 ms), and M150 (130-190 ms). When compared with HCS, subjects with OCD demonstrated delayed latency of the M100 response. In subjects with OCD the amplitude of the M100 and M150 responses was significantly greater in the right hemisphere compared with the left hemisphere. Current results suggest that when compared with HCS, subjects with OCD have altered auditory information processing, evident from the delayed latency of the M100 response, which is thought to be associated with the encoding of physical stimulus characteristics. Interhemispheric asymmetry with increased M100 and M150 amplitudes over the right hemisphere compared with the left hemisphere was found in young OCD subjects. These results should be interpreted with caution due to the high variability rate of responses in both HCS and OCD subjects, as well as the possible effect of medication in OCD subjects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Sensory Intolerance: Latent Structure and Psychopathologic Correlates

    PubMed Central

    Taylor, Steven; Conelea, Christine A.; McKay, Dean; Crowe, Katherine B.; Abramowitz, Jonathan S.

    2014-01-01

    Background Sensory intolerance refers to high levels of distress evoked by everyday sounds (e.g., sounds of people chewing) or commonplace tactile sensations (e.g., sticky or greasy substances). Sensory intolerance may be associated with obsessive-compulsive (OC) symptoms, OC-related phenomena, and other forms of psychopathology. Sensory intolerance is not included as a syndrome in current diagnostic systems, although preliminary research suggests that it might be a distinct syndrome. Objectives First, to investigate the latent structure of sensory intolerance in adults; that is, to investigate whether it is syndrome-like in nature, in which auditory and tactile sensory intolerance co-occur and are associated with impaired functioning. Second, to investigate the psychopathologic correlates of sensory intolerance. In particular, to investigate whether sensory intolerance is associated with OC-related phenomena, as suggested by previous research. Method A sample of 534 community-based participants were recruited via Amazon.com’s Mechanical Turk program. Participants completed measures of sensory intolerance, OC-related phenomena, and general psychopathology. Results Latent class analysis revealed two classes of individuals: Those who were intolerant of both auditory and tactile stimuli (n = 150), and those who were relatively undisturbed by auditory or tactile stimuli (n = 384). Sensory intolerant individuals, compared to those who were comparatively sensory tolerant, had greater scores on indices of general psychopathology, more severe OC symptoms, a higher likelihood of meeting caseness criteria for OC disorder, elevated scores on measures of OC-related dysfunctional beliefs, a greater tendency to report OC-related phenomena (e.g., a greater frequency of tics), and more impairment on indices of social and occupational functioning. Sensory intolerant individuals had significantly higher scores on OC symptoms even after controlling for general psychopathology

  7. Evidence of sensory conflict and recovery in carp exposed to prolonged weightlessness.

    PubMed

    Mori, S; Mitarai, G; Takabayashi, A; Usui, S; Sakakibara, M; Nagatomo, M; von Baumgarten, R J

    1996-03-01

    Evidence in support of the sensory conflict hypothesis for space motion sickness (SMS) is still needed. We hypothesized that sensory conflict and recovery processes should be demonstrated in intact fish during initial days of microgravity exposure, as a disturbance and restoration of the dorsal light response (DLR; a functional model of visual-graviceptor interaction), respectively. We also expected that this would be true in an otolith-removed fish if it had been fully compensated for dysfunction before the exposure. The DLR of carp (Cyprinus carpio) was examined intermittently during the 8-d mission of Spacelab-J. Two carp, normal and labyrinthectomized (LB), made the flight. In the normal carp, the DLR was unstable for the first 3 d inflight but gradually recovered thereafter. The recovery was characterized by gradual restoration of the DLR tilt speed. The LB fish whose otoliths had been removed 2 mo before the flight maintained DLR at the first inflight test session (22 h after launch), but DLR was disrupted at 2 d as in normal fish. The recovery process could not be evaluated in this fish, because the EEG cable which was attached to the fish for supplementary study became tightly twisted and thus immobilized the fish for the remainder of the experiment. These findings provided additional evidence in fish for sensory-motor disorder and readjustment during the early phase of microgravity, thus supporting the sensory conflict hypothesis for SMS.

  8. Auditory Processing Disorders

    MedlinePlus

    ... Loss Hearing Loss in Seniors Hearing Aids General Information Types Features Fittings Assistive Listening & Alerting Devices Cochlear Implants Aural Rehabilitation Auditory Processing Disorders (APDs) Common Conditions Dizziness Tinnitus Who Are ...

  9. Postural Control Deficits in Autism Spectrum Disorder: The Role of Sensory Integration

    ERIC Educational Resources Information Center

    Doumas, Michail; McKenna, Roisin; Murphy, Blain

    2016-01-01

    We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were…

  10. Motor-sensory confluence in tactile perception.

    PubMed

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  11. Sensory Processing Dysfunctions as Expressed among Children with Different Severities of Intellectual Developmental Disabilities

    ERIC Educational Resources Information Center

    Engel-Yeger, Batya; Hardal-Nasser, Reem; Gal, Eynat

    2011-01-01

    High frequency of sensory processing dysfunctions (SPD) is prevalent among children with intellectual developmental disabilities and contributes to their maladaptive behaviors. However, the knowledge about the expressions of SPD in different levels of IDD severity is limited. As SPD may reduce adaptive responses and limit participation, this…

  12. Affective and Sensory Correlates of Hair Pulling in Pediatric Trichotillomania

    ERIC Educational Resources Information Center

    Meunier, Suzanne A.; Tolin, David F.; Franklin, Martin

    2009-01-01

    Hair pulling in pediatric populations has not received adequate empirical study. Investigations of the affective and sensory states contributing to the etiology and maintenance of hair pulling may help to elucidate the classification of trichotillomania (TTM) as an impulse control disorder or obsessive-compulsive spectrum disorder. The current…

  13. Impaired downregulation of visual cortex during auditory processing is associated with autism symptomatology in children and adolescents with autism spectrum disorder.

    PubMed

    Jao Keehn, R Joanne; Sanchez, Sandra S; Stewart, Claire R; Zhao, Weiqi; Grenesko-Stevens, Emily L; Keehn, Brandon; Müller, Ralph-Axel

    2017-01-01

    Autism spectrum disorders (ASD) are pervasive developmental disorders characterized by impairments in language development and social interaction, along with restricted and stereotyped behaviors. These behaviors often include atypical responses to sensory stimuli; some children with ASD are easily overwhelmed by sensory stimuli, while others may seem unaware of their environment. Vision and audition are two sensory modalities important for social interactions and language, and are differentially affected in ASD. In the present study, 16 children and adolescents with ASD and 16 typically developing (TD) participants matched for age, gender, nonverbal IQ, and handedness were tested using a mixed event-related/blocked functional magnetic resonance imaging paradigm to examine basic perceptual processes that may form the foundation for later-developing cognitive abilities. Auditory (high or low pitch) and visual conditions (dot located high or low in the display) were presented, and participants indicated whether the stimuli were "high" or "low." Results for the auditory condition showed downregulated activity of the visual cortex in the TD group, but upregulation in the ASD group. This atypical activity in visual cortex was associated with autism symptomatology. These findings suggest atypical crossmodal (auditory-visual) modulation linked to sociocommunicative deficits in ASD, in agreement with the general hypothesis of low-level sensorimotor impairments affecting core symptomatology. Autism Res 2017, 10: 130-143. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  14. Desynchronizing electrical and sensory coordinated reset neuromodulation

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2012-01-01

    Coordinated reset (CR) stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS), to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling). Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated) excitatory and inhibitory stimulation. Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronal synchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals) and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers) of deep brain CR neuromodulation may be similar or even identical. Furthermore, our results indicate that an effective desynchronization and anti-kindling can even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders. PMID:22454622

  15. Desynchronizing electrical and sensory coordinated reset neuromodulation.

    PubMed

    Popovych, Oleksandr V; Tass, Peter A

    2012-01-01

    Coordinated reset (CR) stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS), to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling). Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated) excitatory and inhibitory stimulation. Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronal synchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals) and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers) of deep brain CR neuromodulation may be similar or even identical. Furthermore, our results indicate that an effective desynchronization and anti-kindling can even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders.

  16. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles

    NASA Astrophysics Data System (ADS)

    Verdú, José R.; Cortez, Vieyle; Ortiz, Antonio J.; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M.; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-09-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

  17. Effect of combination processing on the microbial, chemical and sensory quality of ready-to-eat (RTE) vegetable pulav

    NASA Astrophysics Data System (ADS)

    Kumar, R.; George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S. N.; Bawa, A. S.

    2011-12-01

    Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with 60Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F0 value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities.

  18. Identification of Linear and Nonlinear Sensory Processing Circuits from Spiking Neuron Data.

    PubMed

    Florescu, Dorian; Coca, Daniel

    2018-03-01

    Inferring mathematical models of sensory processing systems directly from input-output observations, while making the fewest assumptions about the model equations and the types of measurements available, is still a major issue in computational neuroscience. This letter introduces two new approaches for identifying sensory circuit models consisting of linear and nonlinear filters in series with spiking neuron models, based only on the sampled analog input to the filter and the recorded spike train output of the spiking neuron. For an ideal integrate-and-fire neuron model, the first algorithm can identify the spiking neuron parameters as well as the structure and parameters of an arbitrary nonlinear filter connected to it. The second algorithm can identify the parameters of the more general leaky integrate-and-fire spiking neuron model, as well as the parameters of an arbitrary linear filter connected to it. Numerical studies involving simulated and real experimental recordings are used to demonstrate the applicability and evaluate the performance of the proposed algorithms.

  19. Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory.

    PubMed

    Liu, Xiaolin; Lauer, Kathryn K; Ward, Barney D; Rao, Stephen M; Li, Shi-Jiang; Hudetz, Anthony G

    2012-10-01

    Current theories suggest that disrupting cortical information integration may account for the mechanism of general anesthesia in suppressing consciousness. Human cognitive operations take place in hierarchically structured neural organizations in the brain. The process of low-order neural representation of sensory stimuli becoming integrated in high-order cortices is also known as cognitive binding. Combining neuroimaging, cognitive neuroscience, and anesthetic manipulation, we examined how cognitive networks involved in auditory verbal memory are maintained in wakefulness, disrupted in propofol-induced deep sedation, and re-established in recovery. Inspired by the notion of cognitive binding, an functional magnetic resonance imaging-guided connectivity analysis was utilized to assess the integrity of functional interactions within and between different levels of the task-defined brain regions. Task-related responses persisted in the primary auditory cortex (PAC), but vanished in the inferior frontal gyrus (IFG) and premotor areas in deep sedation. For connectivity analysis, seed regions representing sensory and high-order processing of the memory task were identified in the PAC and IFG. Propofol disrupted connections from the PAC seed to the frontal regions and thalamus, but not the connections from the IFG seed to a set of widely distributed brain regions in the temporal, frontal, and parietal lobes (with exception of the PAC). These later regions have been implicated in mediating verbal comprehension and memory. These results suggest that propofol disrupts cognition by blocking the projection of sensory information to high-order processing networks and thus preventing information integration. Such findings contribute to our understanding of anesthetic mechanisms as related to information and integration in the brain. Copyright © 2011 Wiley Periodicals, Inc.

  20. Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex.

    PubMed

    Sikandar, Shafaq; West, Steven J; McMahon, Stephen B; Bennett, David L; Dickenson, Anthony H

    2017-07-01

    Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes. © 2017 University College London. Physiological Reports published by Wiley Periodicals

  1. No Proprioceptive Deficits in Autism despite Movement-Related Sensory and Execution Impairments

    ERIC Educational Resources Information Center

    Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.

    2011-01-01

    Autism spectrum disorder (ASD) often involves sensory and motor problems, yet the proprioceptive sense of limb position has not been directly assessed. We used three tasks to assess proprioception in adolescents with ASD who had motor and sensory perceptual abnormalities, and compared them to age- and IQ-matched controls. Results showed no group…

  2. A biophysical signature of network affiliation and sensory processing in mitral cells

    PubMed Central

    Angelo, Kamilla; Rancz, Ede A.; Pimentel, Diogo; Hundahl, Christian; Hannibal, Jens; Fleischmann, Alexander; Pichler, Bruno; Margrie, Troy W.

    2012-01-01

    One defining characteristic of the mammalian brain is its neuronal diversity1. For a given region, substructure or layer and even cell type2, variability in neuronal morphology and connectivity2-5 persists. While it is well established that such cellular properties vary considerably according to neuronal type, the significant biophysical diversity of neurons of the same morphological class is typically averaged out and ignored. Here we show that the amplitude of hyperpolarization-evoked membrane potential sag recorded in olfactory bulb mitral cells is an emergent, homotypic property of local networks and sensory information processing. Simultaneous whole-cell recordings from pairs of cells reveal that the amount of hyperpolarization-evoked sag potential and current6 is stereotypic for mitral cells belonging to the same glomerular circuit. This is corroborated by a mosaic, glomerulus-based pattern of expression of the HCN2 subunit of the hyperpolarization-activated current (Ih) channel. Furthermore, inter-glomerular differences in both membrane potential sag and HCN2 protein are diminished when sensory input to glomeruli is genetically and globally altered so only one type of odorant receptor is universally expressed7. We therefore suggest that population diversity in the intrinsic profile of mitral cells reflect functional adaptations of distinct local circuits dedicated to processing subtly different odor-related information. PMID:22820253

  3. Hereditary motor and sensory neuropathy with agenesis of the corpus callosum.

    PubMed

    Dupré, Nicolas; Howard, Heidi C; Mathieu, Jean; Karpati, George; Vanasse, Michel; Bouchard, Jean-Pierre; Carpenter, Stirling; Rouleau, Guy A

    2003-07-01

    Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (OMIM 218000) is an autosomal recessive disease of early onset characterized by a delay in developmental milestones, a severe sensory-motor polyneuropathy with areflexia, a variable degree of agenesis of the corpus callosum, amyotrophy, hypotonia, and cognitive impairment. Although this disorder has rarely been reported worldwide, it has a high prevalence in the Saguenay-Lac-St-Jean region of the province of Quebec (Canada) predominantly because of a founder effect. The gene defect responsible for this disorder recently has been identified, and it is a protein-truncating mutation in the SLC12A6 gene, which codes for a cotransporter protein known as KCC3. Herein, we provide the first extensive review of this disorder, covering epidemiological, clinical, and molecular genetic studies.

  4. Oral processing characteristics of solid savoury meal components, and relationship with food composition, sensory attributes and expected satiation.

    PubMed

    Forde, C G; van Kuijk, N; Thaler, T; de Graaf, C; Martin, N

    2013-01-01

    The modern food supply is often dominated by a large variety of energy dense, softly textured foods that can be eaten quickly. Previous studies suggest that particular oral processing characteristics such as large bite size and lack of chewing activity contribute to the low satiating efficiency of these foods. To better design meals that promote greater feelings of satiation, we need an accurate picture of the oral processing characteristics of a range of solid food items that could be used to replace softer textures during a normal hot meal. The primary aim of this study was to establish an accurate picture of the oral processing characteristics of a set of solid savoury meal components. The secondary aim was to determine the associations between oral processing characteristics, food composition, sensory properties, and expected satiation. In a within subjects design, 15 subjects consumed 50 g of 35 different savoury food items over 5 sessions. The 35 foods represented various staples, vegetables and protein rich foods such a meat and fish. Subjects were video-recorded during consumption and measures included observed number of bites, number of chews, number of swallows and derived measures such as chewing rate, eating rate, bite size, and oral exposure time. Subjects rated expected satiation for a standard 200 g portion of each food using a 100mm and the sensory differences between foods were quantified using descriptive analysis with a trained sensory panel. Statistical analysis focussed on the oral processing characteristics and associations between nutritional, sensory and expected satiation parameters of each food. Average number of chews for 50 g of food varied from 27 for mashed potatoes to 488 for tortilla chips. Oral exposure time was highly correlated with the total number of chews, and varied from 27 s for canned tomatoes to 350 s for tortilla chips. Chewing rate was relatively constant with an overall average chewing rate of approximately 1 chew

  5. Effectiveness and Usability of the Sensory Processing Measure-Preschool Quick Tips: Data-Driven Intervention Following the Use of the SPM-Preschool in an Early Childhood, Multiple-Case Study

    ERIC Educational Resources Information Center

    Olson, Carol H.; Henry, Diana A.; Kliner, Ashley Peck; Kyllo, Alissa; Richter, Chelsea Munson; Charley, Jane; Whitcher, Meagan Chapman; Reinke, Katherine Roth; Tysver, Chelsay Horner; Wagner, Lacey; Walworth, Jessica

    2016-01-01

    This pre- and posttest multiple-case study examined the effectiveness and usability of the Sensory Processing Measure-Preschool Quick Tips (SPM-P QT) by key stakeholders (parents and teachers) for implementing data-driven intervention to address sensory processing challenges. The Sensory Processing Measure-Preschool (SPM-P) was administered as an…

  6. Hereditary motor and sensory neuropathy with proximal predominance (HMSN-P).

    PubMed

    Campellone, Joseph V

    2013-06-01

    Hereditary motor and sensory neuropathy with proximal predominance (HMSN-P) is a rare disorder inherited in an autosomal dominant fashion. Patients present with slowly progressive proximal-predominant weakness, painful muscle cramps, fasciculations, large-fiber sensory loss, and areflexia. Electrodiagnostic (EDX) studies typically reveal abnormalities consistent with a sensorimotor neuronopathy. A patient with HMSN-P underwent EDX studies, revealing ongoing and chronic neurogenic denervation, motor unit instability, and neuromyotonic discharges, further defining the spectrum of EDX findings in HMSN-P. The clinical, pathological, and genetic features are also reviewed. The appearance of HMSN-P in the United States and elsewhere calls for clinicians in nonendemic regions to be familiar with this rare disorder, which has typically been geographically confined.

  7. Auditory-musical processing in autism spectrum disorders: a review of behavioral and brain imaging studies.

    PubMed

    Ouimet, Tia; Foster, Nicholas E V; Tryfon, Ana; Hyde, Krista L

    2012-04-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by atypical social and communication skills, repetitive behaviors, and atypical visual and auditory perception. Studies in vision have reported enhanced detailed ("local") processing but diminished holistic ("global") processing of visual features in ASD. Individuals with ASD also show enhanced processing of simple visual stimuli but diminished processing of complex visual stimuli. Relative to the visual domain, auditory global-local distinctions, and the effects of stimulus complexity on auditory processing in ASD, are less clear. However, one remarkable finding is that many individuals with ASD have enhanced musical abilities, such as superior pitch processing. This review provides a critical evaluation of behavioral and brain imaging studies of auditory processing with respect to current theories in ASD. We have focused on auditory-musical processing in terms of global versus local processing and simple versus complex sound processing. This review contributes to a better understanding of auditory processing differences in ASD. A deeper comprehension of sensory perception in ASD is key to better defining ASD phenotypes and, in turn, may lead to better interventions. © 2012 New York Academy of Sciences.

  8. Common computational properties found in natural sensory systems

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey

    2009-05-01

    Throughout the animal kingdom there are many existing sensory systems with capabilities desired by the human designers of new sensory and computational systems. There are a few basic design principles constantly observed among these natural mechano-, chemo-, and photo-sensory systems, principles that have been proven by the test of time. Such principles include non-uniform sampling and processing, topological computing, contrast enhancement by localized signal inhibition, graded localized signal processing, spiked signal transmission, and coarse coding, which is the computational transformation of raw data using broadly overlapping filters. These principles are outlined here with references to natural biological sensory systems as well as successful biomimetic sensory systems exploiting these natural design concepts.

  9. Sensorimotor integration and psychopathology: motor control abnormalities related to psychiatric disorders.

    PubMed

    Velasques, Bruna; Machado, Sergio; Paes, Flávia; Cunha, Marlo; Sanfim, Antonio; Budde, Henning; Cagy, Mauricio; Anghinah, Renato; Basile, Luis F; Piedade, Roberto; Ribeiro, Pedro

    2011-12-01

    Recent evidence is reviewed to examine relationships among sensorimotor and cognitive aspects in some important psychiatry disorders. This study reviews the theoretical models in the context of sensorimotor integration and the abnormalities reported in the most common psychiatric disorders, such as Alzheimer's disease, autism spectrum disorder and squizophrenia. The bibliographical search used Pubmed/Medline, ISI Web of Knowledge, Cochrane data base and Scielo databases. The terms chosen for the search were: Alzheimer's disease, AD, autism spectrum disorder, and Squizophrenia in combination with sensorimotor integration. Fifty articles published in English and were selected conducted from 1989 up to 2010. We found that the sensorimotor integration process plays a relevant role in elementary mechanisms involved in occurrence of abnormalities in most common psychiatric disorders, participating in the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of consciously goal-directed motor outputs. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but some studies support a central mechanism. Sensorimotor integration seems to play a significant role in the disturbances of motor control, like deficits in the feedforward mechanism, typically seen in AD, autistic and squizophrenic patients.

  10. A magnetoencephalography study of multi-modal processing of pain anticipation in primary sensory cortices.

    PubMed

    Gopalakrishnan, R; Burgess, R C; Plow, E B; Floden, D P; Machado, A G

    2015-09-24

    Pain anticipation plays a critical role in pain chronification and results in disability due to pain avoidance. It is important to understand how different sensory modalities (auditory, visual or tactile) may influence pain anticipation as different strategies could be applied to mitigate anticipatory phenomena and chronification. In this study, using a countdown paradigm, we evaluated with magnetoencephalography the neural networks associated with pain anticipation elicited by different sensory modalities in normal volunteers. When encountered with well-established cues that signaled pain, visual and somatosensory cortices engaged the pain neuromatrix areas early during the countdown process, whereas the auditory cortex displayed delayed processing. In addition, during pain anticipation, the visual cortex displayed independent processing capabilities after learning the contextual meaning of cues from associative and limbic areas. Interestingly, cross-modal activation was also evident and strong when visual and tactile cues signaled upcoming pain. Dorsolateral prefrontal cortex and mid-cingulate cortex showed significant activity during pain anticipation regardless of modality. Our results show pain anticipation is processed with great time efficiency by a highly specialized and hierarchical network. The highest degree of higher-order processing is modulated by context (pain) rather than content (modality) and rests within the associative limbic regions, corroborating their intrinsic role in chronification. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Sensory Neuropathy Due to Loss of Bcl-w

    PubMed Central

    Courchesne, Stephanie L.; Karch, Christoph; Pazyra-Murphy, Maria F.; Segal, Rosalind A.

    2010-01-01

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w −/− mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w −/− sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w −/− mice as an animal model of small fiber sensory neuropathy, and provide new insight regarding the role of bcl-w and of mitochondria in preventing axonal degeneration. PMID:21289171

  12. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research.

    PubMed

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-08-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell-derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.

  13. Motor Skill Learning in Children with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Bo, Jin; Lee, Chi-Mei

    2013-01-01

    Children with Developmental Coordination Disorder (DCD) are characterized as having motor difficulties and learning impairment that may last well into adolescence and adulthood. Although behavioral deficits have been identified in many domains such as visuo-spatial processing, kinesthetic perception, and cross-modal sensory integration, recent…

  14. Contributions of spectral frequency analyses to the study of P50 ERP amplitude and suppression in bipolar disorder with or without a history of psychosis.

    PubMed

    Carroll, Christine A; Kieffaber, Paul D; Vohs, Jenifer L; O'Donnell, Brian F; Shekhar, Anantha; Hetrick, William P

    2008-11-01

    The present study investigated event-related brain potential (ERP) indices of auditory processing and sensory gating in bipolar disorder and subgroups of bipolar patients with or without a history of psychosis using the P50 dual-click procedure. Auditory-evoked activity in two discrete frequency bands also was explored to distinguish between sensory registration and selective attention deficits. Thirty-one individuals with bipolar disorder and 28 non-psychiatric controls were compared on ERP indices of auditory processing using a dual-click procedure. In addition to conventional P50 ERP peak-picking techniques, quantitative frequency analyses were applied to the ERP data to isolate stages of information processing associated with sensory registration (20-50 Hz; gamma band) and selective attention (0-20 Hz; low-frequency band). Compared to the non-psychiatric control group, patients with bipolar disorder exhibited reduced S1 response magnitudes for the conventional P50 peak-picking and low-frequency response analyses. A bipolar subgroup effect suggested that the attenuated S1 magnitudes from the P50 peak-picking and low-frequency analyses were largely attributable to patients without a history of psychosis. The analysis of distinct frequency bands of the auditory-evoked response elicited during the dual-click procedure allowed further specification of the nature of auditory sensory processing and gating deficits in bipolar disorder with or without a history of psychosis. The observed S1 effects in the low-frequency band suggest selective attention deficits in bipolar patients, especially those patients without a history of psychosis, which may reflect a diminished capacity to selectively attend to salient stimuli as opposed to impairments of inhibitory sensory processes.

  15. Sensory over-responsivity in adults with autism spectrum conditions.

    PubMed

    Tavassoli, Teresa; Miller, Lucy J; Schoen, Sarah A; Nielsen, Darci M; Baron-Cohen, Simon

    2014-05-01

    Anecdotal reports and empirical evidence suggest that sensory processing issues are a key feature of autism spectrum conditions. This study set out to investigate whether adults with autism spectrum conditions report more sensory over-responsivity than adults without autism spectrum conditions. Another goal of the study was to identify whether autistic traits in adults with and without autism spectrum conditions were associated with sensory over-responsivity. Adults with (n = 221) and without (n = 181) autism spectrum conditions participated in an online survey. The Autism Spectrum Quotient, the Raven Matrices and the Sensory Processing Scale were used to characterize the sample. Adults with autism spectrum conditions reported more sensory over-responsivity than control participants across various sensory domains (visual, auditory, tactile, olfactory, gustatory and proprioceptive). Sensory over-responsivity correlated positively with autistic traits (Autism Spectrum Quotient) at a significant level across groups and within groups. Adults with autism spectrum conditions experience sensory over-responsivity to daily sensory stimuli to a high degree. A positive relationship exists between sensory over-responsivity and autistic traits. Understanding sensory over-responsivity and ways of measuring it in adults with autism spectrum conditions has implications for research and clinical settings.

  16. The Psychometric Properties of a New Measure of Sensory Behaviors in Autistic Children

    ERIC Educational Resources Information Center

    Neil, Louise; Green, Dido; Pellicano, Elizabeth

    2017-01-01

    Unusual reactions to sensory input became part of the diagnostic criteria for autism spectrum disorder in the DSM-5. Measures accurately assessing these symptoms are important for clinical decisions. This study examined the reliability and validity of the Sensory Behavior Questionnaire, a parent-report scale designed to assess frequency and impact…

  17. Art Therapy with a Child Experiencing Sensory Integration Difficulty. Brief Report

    ERIC Educational Resources Information Center

    Kearns, Diane

    2004-01-01

    An increasing number of students diagnosed with difficulties such as attention deficit hyperactivity disorder and Asperger?s syndrome are being seen in schools. Sensory integration difficulties may be part of the symptomatology of these disorders. These difficulties may result in difficulties with both classroom behaviors and academic performance.…

  18. The Duration of Auditory Sensory Memory for Vowel Processing: Neurophysiological and Behavioral Measures.

    PubMed

    Yu, Yan H; Shafer, Valerie L; Sussman, Elyse S

    2018-01-01

    Speech perception behavioral research suggests that rates of sensory memory decay are dependent on stimulus properties at more than one level (e.g., acoustic level, phonemic level). The neurophysiology of sensory memory decay rate has rarely been examined in the context of speech processing. In a lexical tone study, we showed that long-term memory representation of lexical tone slows the decay rate of sensory memory for these tones. Here, we tested the hypothesis that long-term memory representation of vowels slows the rate of auditory sensory memory decay in a similar way to that of lexical tone. Event-related potential (ERP) responses were recorded to Mandarin non-words contrasting the vowels /i/ vs. /u/ and /y/ vs. /u/ from first-language (L1) Mandarin and L1 American English participants under short and long interstimulus interval (ISI) conditions (short ISI: an average of 575 ms, long ISI: an average of 2675 ms). Results revealed poorer discrimination of the vowel contrasts for English listeners than Mandarin listeners, but with different patterns for behavioral perception and neural discrimination. As predicted, English listeners showed the poorest discrimination and identification for the vowel contrast /y/ vs. /u/, and poorer performance in the long ISI condition. In contrast to Yu et al. (2017), however, we found no effect of ISI reflected in the neural responses, specifically the mismatch negativity (MMN), P3a and late negativity ERP amplitudes. We did see a language group effect, with Mandarin listeners generally showing larger MMN and English listeners showing larger P3a. The behavioral results revealed that native language experience plays a role in echoic sensory memory trace maintenance, but the failure to find an effect of ISI on the ERP results suggests that vowel and lexical tone memory traces decay at different rates. Highlights : We examined the interaction between auditory sensory memory decay and language experience. We compared MMN, P3a, LN

  19. The Collaborative Study on Cerebral Palsy, Mental Retardation, and Other Neurological and Sensory Disorders of Infancy and Childhood. Bibliography No. 8. July 1974 through June 1975.

    ERIC Educational Resources Information Center

    National Inst. of Neurological and Communicative Disorders and Stroke (NIH), Bethesda, MD.

    The eighth in a series of annual bibliographies of the Collaborative Perinatal Project lists 30 manuscripts and journal articles from studies on cerebral palsy, mental retardation, and other neurological and sensory disorders of infancy and childhood. Entries are grouped under the categories of core and non-core data publications (based on…

  20. Adaptation to sensory input tunes visual cortex to criticality

    NASA Astrophysics Data System (ADS)

    Shew, Woodrow L.; Clawson, Wesley P.; Pobst, Jeff; Karimipanah, Yahya; Wright, Nathaniel C.; Wessel, Ralf

    2015-08-01

    A long-standing hypothesis at the interface of physics and neuroscience is that neural networks self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory information processing. This idea is partially supported by strong evidence for critical dynamics observed in the cerebral cortex, but the impact of sensory input on these dynamics is largely unknown. Thus, the foundations of this hypothesis--the self-organization process and how it manifests during strong sensory input--remain unstudied experimentally. Here we show in visual cortex and in a computational model that strong sensory input initially elicits cortical network dynamics that are not critical, but adaptive changes in the network rapidly tune the system to criticality. This conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality. Our findings establish sensory adaptation as a self-organizing mechanism that maintains criticality in visual cortex during sensory information processing.

  1. Cascading effects of attention disengagement and sensory seeking on social symptoms in a community sample of infants at-risk for a future diagnosis of autism spectrum disorder.

    PubMed

    Baranek, Grace T; Woynaroski, Tiffany G; Nowell, Sallie; Turner-Brown, Lauren; DuBay, Michaela; Crais, Elizabeth R; Watson, Linda R

    2018-01-01

    Recent work suggests sensory seeking predicts later social symptomatology through reduced social orienting in infants who are at high-risk for autism spectrum disorder (ASD) based on their status as younger siblings of children diagnosed with ASD. We drew on extant longitudinal data from a community sample of at-risk infants who were identified at 12 months using the First Year Inventory, and followed to 3-5 years. We replicate findings of Damiano et al. (in this issue) that a) high-risk infants who go on to be diagnosed with ASD show heightened sensory seeking in the second year of life relative to those who do not receive a diagnosis, and b) increased sensory seeking indirectly relates to later social symptomatology via reduced social orienting. We extend previous findings to show that sensory seeking has more clinical utility later in the second year of life (20-24 months) than earlier (13-15 months). Further, this study suggests that diminished attention disengagement at 12-15 months may precede and predict increased sensory seeking at 20-24 months. Findings add support for the notion that sensory features produce cascading effects on social development in infants at risk for ASD, and suggest that reduced attention disengagement early in life may set off this cascade. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Thalamic control of sensory selection in divided attention.

    PubMed

    Wimmer, Ralf D; Schmitt, L Ian; Davidson, Thomas J; Nakajima, Miho; Deisseroth, Karl; Halassa, Michael M

    2015-10-29

    How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.

  3. Sensory processing during viewing of cinematographic material: Computational modeling and functional neuroimaging

    PubMed Central

    Bordier, Cecile; Puja, Francesco; Macaluso, Emiliano

    2013-01-01

    The investigation of brain activity using naturalistic, ecologically-valid stimuli is becoming an important challenge for neuroscience research. Several approaches have been proposed, primarily relying on data-driven methods (e.g. independent component analysis, ICA). However, data-driven methods often require some post-hoc interpretation of the imaging results to draw inferences about the underlying sensory, motor or cognitive functions. Here, we propose using a biologically-plausible computational model to extract (multi-)sensory stimulus statistics that can be used for standard hypothesis-driven analyses (general linear model, GLM). We ran two separate fMRI experiments, which both involved subjects watching an episode of a TV-series. In Exp 1, we manipulated the presentation by switching on-and-off color, motion and/or sound at variable intervals, whereas in Exp 2, the video was played in the original version, with all the consequent continuous changes of the different sensory features intact. Both for vision and audition, we extracted stimulus statistics corresponding to spatial and temporal discontinuities of low-level features, as well as a combined measure related to the overall stimulus saliency. Results showed that activity in occipital visual cortex and the superior temporal auditory cortex co-varied with changes of low-level features. Visual saliency was found to further boost activity in extra-striate visual cortex plus posterior parietal cortex, while auditory saliency was found to enhance activity in the superior temporal cortex. Data-driven ICA analyses of the same datasets also identified “sensory” networks comprising visual and auditory areas, but without providing specific information about the possible underlying processes, e.g., these processes could relate to modality, stimulus features and/or saliency. We conclude that the combination of computational modeling and GLM enables the tracking of the impact of bottom–up signals on brain

  4. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  5. An evaluation of the use and efficacy of a sensory room within an adolescent psychiatric inpatient unit.

    PubMed

    West, Monique; Melvin, Glenn; McNamara, Francis; Gordon, Michael

    2017-06-01

    The introduction of sensory rooms within acute psychiatric settings provides a therapeutic space that promotes emotional self-regulation and reduces distress and disruptive behaviours. The current research investigated the clinical benefit of a sensory room within an adolescent psychiatric unit. It examined whether guided sensory room use can reduce distress for adolescents and identified characteristics of sensory room users. Seclusion rates 12 months pre- and post-sensory room introduction were compared. The matched sample comprised 56 sensory room users and 56 sensory room non-users, aged 12-18 years (M = 15.35, SD = 1.35). Sensory room users were administered a pre- and post-measure of distress. Further demographic and clinical data were collected from hospital files and results analysed. Adolescents' distress was reduced following sensory room use. The greatest reduction of distress was predicted by a history of aggression. Female gender was associated with sensory room use, as was the presence of an anxiety disorder. There was no significant difference in seclusion rates after introducing the sensory room. Sensory rooms could provide occupational therapists with a valuable tool for reducing distress for adolescents in psychiatric units, especially for those with a history of aggression. Results suggested that female adolescents or adolescents with anxiety disorders may be particularly receptive to using the sensory room. This research provides evidence that can inform occupational therapists when tailoring therapeutic treatment strategies and guide the development of prevention and management of emotional dysregulation and aggression within adolescent psychiatric settings. © 2017 Occupational Therapy Australia.

  6. Electrotactile and vibrotactile displays for sensory substitution systems

    NASA Technical Reports Server (NTRS)

    Kaczmarek, Kurt A.; Webster, John G.; Bach-Y-rita, Paul; Tompkins, Willis J.

    1991-01-01

    Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used or with the information processed in some useful way. The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). The relevant sensory physiology of the skin, including the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile, or electrocutaneous, stimulation), is reviewed. The information-processing ability of the tactile sense and its relevance to sensory substitution is briefly summarized. The limitations of current tactile display technologies are discussed.

  7. High pressure processing with hot sauce flavoring enhances sensory quality for raw oysters (Crassostrea virginica)

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the feasibility of flavoring raw oysters by placing them under pressure in the presence of selected flavorings. Hand-shucked raw oysters were processed at high pressure (600 MPa), in the presence or absence of (Sriracha®) flavoring, and evaluated by a trained sensory panel 3 an...

  8. Emerging Role of Sensory Perception in Aging and Metabolism.

    PubMed

    Riera, Celine E; Dillin, Andrew

    2016-05-01

    Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues. Here we review how these findings are redefining metabolic signaling and establish a prominent role of sensory neuroendocrine processes in controlling health span and lifespan, with a goal of translating this knowledge towards managing age-associated diseases. Copyright © 2016. Published by Elsevier Ltd.

  9. Sensory Abnormalities in Autism: A Brief Report

    ERIC Educational Resources Information Center

    Klintwall Lars; Holm, Anette; Eriksson, Mats; Carlsson, Lotta Hoglund; Olsson, Martina Barnevik; Hedvall, Asa; Gillberg, Christopher; Fernell, Elisabeth

    2011-01-01

    Sensory abnormalities were assessed in a population-based group of 208 20-54-month-old children, diagnosed with autism spectrum disorder (ASD) and referred to a specialized habilitation centre for early intervention. The children were subgrouped based upon degree of autistic symptoms and cognitive level by a research team at the centre. Parents…

  10. Pathobiology of Christianson Syndrome: Linking Disrupted Endosomal-Lysosomal Function with Intellectual Disability and Sensory Impairments.

    PubMed

    Kerner-Rossi, Mallory; Gulinello, Maria; Walkley, Steven; Dobrenis, Kostantin

    2018-05-14

    Christianson syndrome (CS) is a recently described rare neurogenetic disorder presenting early in life with a broad range of neurological symptoms, including severe intellectual disability with nonverbal status, hyperactivity, epilepsy, and progressive ataxia due to cerebellar atrophy. CS is due to loss-of-function mutations in SLC9A6, encoding NHE6, a sodium-hydrogen exchanger involved in the regulation of early endosomal pH. Here we review what is currently known about the neuropathogenesis of CS, based on insights from experimental models, which to date have focused on mechanisms that affect the CNS, specifically the brain. In addition, parental reports of sensory disturbances in their children with CS, including an apparent insensitivity to pain, led us to explore sensory function and related neuropathology in Slc9a6 KO mice. We present new data showing sensory deficits in Slc9a6 KO mice, which had reduced behavioral responses to noxious thermal and mechanical stimuli (Hargreaves and Von Frey assays, respectively) compared to wild type (WT) littermates. Immunohistochemical and ultrastructural analysis of the spinal cord and peripheral nervous system revealed intracellular accumulation of the glycosphingolipid GM2 ganglioside in KO but not WT mice. This cellular storage phenotype was most abundant in neurons of lamina I-II of the dorsal horn, a major relay site in the processing of painful stimuli. Spinal cords of KO mice also exhibited changes in astroglial and microglial populations throughout the gray matter suggestive of a neuroinflammatory process. Our findings establish the Slc9a6 KO mouse as a relevant tool for studying the sensory deficits in CS, and highlight selective vulnerabilities in relevant cell populations that may contribute to this phenotype. How NHE6 loss of function leads to such a multifaceted neurological syndrome is still undefined, and it is likely that NHE6 is involved with many cellular processes critical to normal nervous system

  11. Characterizing Human Stem Cell–derived Sensory Neurons at the Single-cell Level Reveals Their Ion Channel Expression and Utility in Pain Research

    PubMed Central

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-01-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell–derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders. PMID:24832007

  12. Predictions interact with missing sensory evidence in semantic processing areas.

    PubMed

    Scharinger, Mathias; Bendixen, Alexandra; Herrmann, Björn; Henry, Molly J; Mildner, Toralf; Obleser, Jonas

    2016-02-01

    Human brain function draws on predictive mechanisms that exploit higher-level context during lower-level perception. These mechanisms are particularly relevant for situations in which sensory information is compromised or incomplete, as for example in natural speech where speech segments may be omitted due to sluggish articulation. Here, we investigate which brain areas support the processing of incomplete words that were predictable from semantic context, compared with incomplete words that were unpredictable. During functional magnetic resonance imaging (fMRI), participants heard sentences that orthogonally varied in predictability (semantically predictable vs. unpredictable) and completeness (complete vs. incomplete, i.e. missing their final consonant cluster). The effects of predictability and completeness interacted in heteromodal semantic processing areas, including left angular gyrus and left precuneus, where activity did not differ between complete and incomplete words when they were predictable. The same regions showed stronger activity for incomplete than for complete words when they were unpredictable. The interaction pattern suggests that for highly predictable words, the speech signal does not need to be complete for neural processing in semantic processing areas. Hum Brain Mapp 37:704-716, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Tic disorders.

    PubMed

    Martino, Davide; Mink, Jonathan W

    2013-10-01

    Primary tic disorders are complex, multifactorial disorders in which tics are accompanied by other sensory features and an array of comorbid behavioral disorders. Secondary tics are proportionally much less frequent, but their etiology is diverse. This review aims to guide clinicians in the recognition of the phenomenology, pathophysiology, and treatment of these disorders. Advances include greater phenomenologic insights, particularly of nonmotor (sensory) features; increased knowledge of disease mechanisms, particularly coming from neuropsychological, functional imaging, pathologic, and animal model studies; growing evidence on the efficacy of alpha-2 agonists and the newer generation of dopamine-modulating agents; and recent strides in the evaluation of cognitive-behavioral therapy and deep brain stimulation surgery. The correct diagnostic approach to tic disorders requires accurate historical gathering, a thorough neurologic examination, and detailed definition of the patient's psychopathologic profile. Treatment should always begin with individualized psychoeducational strategies. Although pharmacologic treatments remain beneficial for most patients, cognitive-behavioral treatments have thus far shown promising efficacy. Deep brain stimulation surgery should still be limited to adult patients refractory to pharmacotherapy and cognitive-behavioral therapy.

  14. Effects of instant controlled pressure drop process on physical and sensory properties of puffed wheat snack.

    PubMed

    Yağcı, Sibel

    2017-04-01

    In this study, research on the development of a puffed wheat snack using the instant controlled pressure drop (DIC) process was carried out. Snack products were produced by expanding moistened wheat under various DIC processing conditions in order to obtain adequate puffing, followed by drying in a hot air dryer. The effects of operational variables such as wheat initial moisture content (11-23% w/w, wet basis), processing pressure (3-5 × 10 2 kPa) and processing time (3-11 min) on the physical (density, color and textural characteristics) and sensory properties of the product were investigated. The physical properties of the wheat snack were most affected by changes in processing pressure, followed by processing time and wheat moisture content. Increasing processing pressure and time often improved expansion and textural properties but led to darkening of the raw wheat color. The most acceptable snack in terms of physical properties was obtained at the lowest wheat moisture content. Sensory analysis suggested that consumer acceptability was optimal for wheat snacks produced at higher processing pressure, medium processing time and lower moisture content. The most desirable conditions for puffed wheat snack production using the DIC process were determined as 11% (w/w) of wheat moisture content, 5 × 10 2 kPa of processing pressure and 7 min of processing time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Sensory Transduction in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  16. The neural exploitation hypothesis and its implications for an embodied approach to language and cognition: Insights from the study of action verbs processing and motor disorders in Parkinson's disease.

    PubMed

    Gallese, Vittorio; Cuccio, Valentina

    2018-03-01

    As it is widely known, Parkinson's disease is clinically characterized by motor disorders such as the loss of voluntary movement control, including resting tremor, postural instability, and bradykinesia (Bocanegra et al., 2015; Helmich, Hallett, Deuschl, Toni, & Bloem, 2012; Liu et al., 2006; Rosin, Topka, & Dichgans, 1997). In the last years, many empirical studies (e.g., Bocanegra et al., 2015; Spadacenta et al., 2012) have also shown that the processing of action verbs is selectively impaired in patients affected by this neurodegenerative disorder. In the light of these findings, it has been suggested that Parkinson disorder can be interpreted within an embodied cognition framework (e.g., Bocanegra et al., 2015). The central tenet of any embodied approach to language and cognition is that high order cognitive functions are grounded in the sensory-motor system. With regard to this point, Gallese (2008) proposed the neural exploitation hypothesis to account for, at the phylogenetic level, how key aspects of human language are underpinned by brain mechanisms originally evolved for sensory-motor integration. Glenberg and Gallese (2012) also applied the neural exploitation hypothesis to the ontogenetic level. On the basis of these premises, they developed a theory of language acquisition according to which, sensory-motor mechanisms provide a neurofunctional architecture for the acquisition of language, while retaining their original functions as well. The neural exploitation hypothesis is here applied to interpret the profile of patients affected by Parkinson's disease. It is suggested that action semantic impairments directly tap onto motor disorders. Finally, a discussion of what theory of language is needed to account for the interactions between language and movement disorders is presented. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The influence of (central) auditory processing disorder on the severity of speech-sound disorders in children.

    PubMed

    Vilela, Nadia; Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Sanches, Seisse Gabriela Gandolfi; Wertzner, Haydée Fiszbein; Carvallo, Renata Mota Mamede

    2016-02-01

    To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central) auditory processing disorder . Language, audiological and (central) auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central) auditory processing evaluation results. When a (central) auditory processing disorder was present in association with a speech disorder, the children tended to have lower scores on phonological assessments. A greater severity of speech disorder was related to a greater probability of the child having a (central) auditory processing disorder. The use of a cutoff value for the Percentage of Consonants Correct-Revised index successfully distinguished between children with and without a (central) auditory processing disorder. The severity of speech-sound disorder in children was influenced by the presence of (central) auditory processing disorder. The attempt to identify a cutoff value based on a severity index was successful.

  18. P50 Sensory Gating and Attentional Performance

    PubMed Central

    Wan, Li; Friedman, Bruce H.; Boutros, Nash N.; Crawford, Helen J.

    2008-01-01

    Sensory gating refers to the preattentional filtering of irrelevant sensory stimuli. This process may be impaired in schizotypy, which is a trait also associated with cigarette smoking. This association may in part stem from the positive effects of smoking on sensory gating and attention. The relationship among sensory gating, smoking, schizotypy and attention was examined in 39 undergraduates. Sensory gating was indexed by the P50 suppression paradigm, and attention was measured by the Attention Network Test (ANT) and a Stroop task. Results showed sensory gating to be positively correlated with performances on ANT and Stroop reflected in better alerting, less conflict between stimuli, faster reaction time, and greater accuracy. Smokers showed a pattern of a greater number of significant correlations between sensory gating and attention in comparison to non-smokers, although the relationship between sensory gating and attention was not affected by schizotypy. The majority of significant correlations were found in the region surrounding Cz. These findings are discussed relative to the potential modifying influence of smoking and schizotypy on sensory gating and attention. PMID:18036692

  19. Differential associations between sensory response patterns and language, social, and communication measures in children with autism or other developmental disabilities.

    PubMed

    Watson, Linda R; Patten, Elena; Baranek, Grace T; Poe, Michele; Boyd, Brian A; Freuler, Ashley; Lorenzi, Jill

    2011-12-01

    To examine patterns of sensory responsiveness (i.e., hyperresponsiveness, hyporesponsiveness, and sensory seeking) as factors that may account for variability in social-communicative symptoms of autism and variability in language, social, and communication skill development in children with autism or other developmental disabilities (DDs). Children with autistic disorder (AD; n = 72, mean age = 52.3 months) and other DDs (n = 44, mean age = 48.1 months) participated in a protocol measuring sensory response patterns; social-communicative symptoms of autism; and language, social, and communication skills. Hyporesponsiveness was positively associated with social-communicative symptom severity, with no significant group difference in the association. Hyperresponsiveness was not significantly associated with social-communicative symptom severity. A group difference emerged for sensory seeking and social-communicative symptom severity, with a positive association for the AD group only. For the 2 groups of children combined, hyporesponsiveness was negatively associated with language skills and social adaptive skills. Sensory seeking also was negatively associated with language skills. These associations did not differ between the 2 groups. Aberrant sensory processing may play an important role in the pathogenesis of autism and other DDs as well as in the rate of acquisition of language, social, and communication skills.

  20. The importance of sensory integration processes for action cascading

    PubMed Central

    Gohil, Krutika; Stock, Ann-Kathrin; Beste, Christian

    2015-01-01

    Dual tasking or action cascading is essential in everyday life and often investigated using tasks presenting stimuli in different sensory modalities. Findings obtained with multimodal tasks are often broadly generalized, but until today, it has remained unclear whether multimodal integration affects performance in action cascading or the underlying neurophysiology. To bridge this gap, we asked healthy young adults to complete a stop-change paradigm which presented different stimuli in either one or two modalities while recording behavioral and neurophysiological data. Bimodal stimulus presentation prolonged response times and affected bottom-up and top-down guided attentional processes as reflected by the P1 and N1, respectively. However, the most important effect was the modulation of response selection processes reflected by the P3 suggesting that a potentially different way of forming task goals operates during action cascading in bimodal vs. unimodal tasks. When two modalities are involved, separate task goals need to be formed while a conjoint task goal may be generated when all stimuli are presented in the same modality. On a systems level, these processes seem to be related to the modulation of activity in fronto-polar regions (BA10) as well as Broca's area (BA44). PMID:25820681

  1. Food intake is influenced by sensory sensitivity.

    PubMed

    Naish, Katherine R; Harris, Gillian

    2012-01-01

    Wide availability of highly palatable foods is often blamed for the rising incidence of obesity. As palatability is largely determined by the sensory properties of food, this study investigated how sensitivity to these properties affects how much we eat. Forty females were classified as either high or low in sensory sensitivity based on their scores on a self-report measure of sensory processing (the Adult Sensory Profile), and their intake of chocolate during the experiment was measured. Food intake was significantly higher for high-sensitivity compared to low-sensitivity individuals. Furthermore, individual scores of sensory sensitivity were positively correlated with self-reported emotional eating. These data could indicate that individuals who are more sensitive to the sensory properties of food have a heightened perception of palatability, which, in turn, leads to a greater food intake.

  2. Music and speech listening enhance the recovery of early sensory processing after stroke.

    PubMed

    Särkämö, Teppo; Pihko, Elina; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Mikkonen, Mikko; Autti, Taina; Silvennoinen, Heli M; Erkkilä, Jaakko; Laine, Matti; Peretz, Isabelle; Hietanen, Marja; Tervaniemi, Mari

    2010-12-01

    Our surrounding auditory environment has a dramatic influence on the development of basic auditory and cognitive skills, but little is known about how it influences the recovery of these skills after neural damage. Here, we studied the long-term effects of daily music and speech listening on auditory sensory memory after middle cerebral artery (MCA) stroke. In the acute recovery phase, 60 patients who had middle cerebral artery stroke were randomly assigned to a music listening group, an audio book listening group, or a control group. Auditory sensory memory, as indexed by the magnetic MMN (MMNm) response to changes in sound frequency and duration, was measured 1 week (baseline), 3 months, and 6 months after the stroke with whole-head magnetoencephalography recordings. Fifty-four patients completed the study. Results showed that the amplitude of the frequency MMNm increased significantly more in both music and audio book groups than in the control group during the 6-month poststroke period. In contrast, the duration MMNm amplitude increased more in the audio book group than in the other groups. Moreover, changes in the frequency MMNm amplitude correlated significantly with the behavioral improvement of verbal memory and focused attention induced by music listening. These findings demonstrate that merely listening to music and speech after neural damage can induce long-term plastic changes in early sensory processing, which, in turn, may facilitate the recovery of higher cognitive functions. The neural mechanisms potentially underlying this effect are discussed.

  3. Sensory system plasticity in a visually specialized, nocturnal spider.

    PubMed

    Stafstrom, Jay A; Michalik, Peter; Hebets, Eileen A

    2017-04-21

    The interplay between an animal's environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.

  4. Sensory signals during active versus passive movement.

    PubMed

    Cullen, Kathleen E

    2004-12-01

    Our sensory systems are simultaneously activated as the result of our own actions and changes in the external world. The ability to distinguish self-generated sensory events from those that arise externally is thus essential for perceptual stability and accurate motor control. Recently, progress has been made towards understanding how this distinction is made. It has been proposed that an internal prediction of the consequences of our actions is compared to the actual sensory input to cancel the resultant self-generated activation. Evidence in support of this hypothesis has been obtained for early stages of sensory processing in the vestibular, visual and somatosensory systems. These findings have implications for the sensory-motor transformations that are needed to guide behavior.

  5. Bladder sensory physiology: neuroactive compounds and receptors, sensory transducers, and target-derived growth factors as targets to improve function

    PubMed Central

    Gonzalez, Eric J.; Merrill, Liana

    2014-01-01

    Urinary bladder dysfunction presents a major problem in the clinical management of patients suffering from pathological conditions and neurological injuries or disorders. Currently, the etiology underlying altered visceral sensations from the urinary bladder that accompany the chronic pain syndrome, bladder pain syndrome (BPS)/interstitial cystitis (IC), is not known. Bladder irritation and inflammation are histopathological features that may underlie BPS/IC that can change the properties of lower urinary tract sensory pathways (e.g., peripheral and central sensitization, neurochemical plasticity) and contribute to exaggerated responses of peripheral bladder sensory pathways. Among the potential mediators of peripheral nociceptor sensitization and urinary bladder dysfunction are neuroactive compounds (e.g., purinergic and neuropeptide and receptor pathways), sensory transducers (e.g., transient receptor potential channels) and target-derived growth factors (e.g., nerve growth factor). We review studies related to the organization of the afferent limb of the micturition reflex and discuss neuroplasticity in an animal model of urinary bladder inflammation to increase the understanding of functional bladder disorders and to identify potential novel targets for development of therapeutic interventions. Given the heterogeneity of BPS/IC and the lack of consistent treatment benefits, it is unlikely that a single treatment directed at a single target in micturition reflex pathways will have a mass benefit. Thus, the identification of multiple targets is a prudent approach, and use of cocktail treatments directed at multiple targets should be considered. PMID:24760999

  6. The Rubber Hand Illusion Reveals Proprioceptive and Sensorimotor Differences in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Paton, Bryan; Hohwy, Jakob; Enticott, Peter G.

    2012-01-01

    Autism spectrum disorder (ASD) is characterised by differences in unimodal and multimodal sensory and proprioceptive processing, with complex biases towards local over global processing. Many of these elements are implicated in versions of the rubber hand illusion (RHI), which were therefore studied in high-functioning individuals with ASD and a…

  7. Hereditary sensory neuropathy type I.

    PubMed

    Auer-Grumbach, Michaela

    2008-03-18

    Hereditary sensory neuropathy type I (HSN I) is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances) are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7) identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN), especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra neuropathy, or decaying skin

  8. Hereditary sensory neuropathy type I

    PubMed Central

    Auer-Grumbach, Michaela

    2008-01-01

    Hereditary sensory neuropathy type I (HSN I) is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances) are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7) identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN), especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra neuropathy, or decaying skin

  9. Supplementary effects of higher levels of various disaccharides on processing yield, quality properties and sensory attributes of Chinese - style pork jerky.

    PubMed

    Chen, Chih-Ming; Lin, Hsien-Tang

    2017-12-01

    This study evaluated the supplementary effect of higher concentrations of various disaccharides on processing yield, major physicochemical properties, and sensory attributes of Chinese-style pork jerky (CSPJ). CSPJ samples were prepared by marinating sliced ham (4 mm) with three dissaccharides, including sucrose, lactose, and maltose, at 0%, 15%, 18%, 21%, and 24%. Subsequently, the CSPJ samples were dried and roasted. The moisture content, water activity, crude protein, moisture-to-protein ratio, pH, processing yield, shear force, color, and sensory attributes of the CSPJ samples were evaluated. The quality characteristics of CSPJ samples prepared with sucrose were more acceptable. By contrast, CSPJ samples prepared with lactose showed the lowest scores. However, the processing yield and moisture content were the highest for CSPJ samples prepared with lactose, which may be associated with improved benefits for cost reduction. Furthermore, sucrose and lactose supplementation resulted in contrasting quality characteristics; for example, CSPJ samples with sucrose and maltose supplementation had higher sensory scores for color than samples with lactose supplementation. Additionally, most quality characteristics of CSPJ samples with sucrose supplementation contrasted with those of the samples with lactose supplementation; for example, the samples with sucrose supplementation had higher scores for sensory attributes than those with lactose supplementation. Sucrose supplementation up to 21% to 24% was associated with the highest overall acceptability scores (5.19 to 5.80), enhanced quality characteristics, increased processing yield, and reduced production cost.

  10. Do early sensory cortices integrate cross-modal information?

    PubMed

    Kayser, Christoph; Logothetis, Nikos K

    2007-09-01

    Our different senses provide complementary evidence about the environment and their interaction often aids behavioral performance or alters the quality of the sensory percept. A traditional view defers the merging of sensory information to higher association cortices, and posits that a large part of the brain can be reduced into a collection of unisensory systems that can be studied in isolation. Recent studies, however, challenge this view and suggest that cross-modal interactions can already occur in areas hitherto regarded as unisensory. We review results from functional imaging and electrophysiology exemplifying cross-modal interactions that occur early during the evoked response, and at the earliest stages of sensory cortical processing. Although anatomical studies revealed several potential origins of these cross-modal influences, there is yet no clear relation between particular functional observations and specific anatomical connections. In addition, our view on sensory integration at the neuronal level is coined by many studies on subcortical model systems of sensory integration; yet, the patterns of cross-modal interaction in cortex deviate from these model systems in several ways. Consequently, future studies on cortical sensory integration need to leave the descriptive level and need to incorporate cross-modal influences into models of the organization of sensory processing. Only then will we be able to determine whether early cross-modal interactions truly merit the label sensory integration, and how they increase a sensory system's ability to scrutinize its environment and finally aid behavior.

  11. Occupational Therapy and Sensory Integration for Children with Autism: A Feasibility, Safety, Acceptability and Fidelity Study

    ERIC Educational Resources Information Center

    Schaaf, Roseann C.; Benevides, Teal W.; Kelly, Donna; Mailloux-Maggio, Zoe

    2012-01-01

    Objective: To examine the feasibility, safety, and acceptability of a manualized protocol of occupational therapy using sensory integration principles for children with autism. Methods: Ten children diagnosed with autism spectrum disorder ages 4-8 years received intensive occupational therapy intervention using sensory integration principles…

  12. Validity of Sensory Systems as Distinct Constructs

    PubMed Central

    Su, Chia-Ting

    2014-01-01

    This study investigated the validity of sensory systems as distinct measurable constructs as part of a larger project examining Ayres’s theory of sensory integration. Confirmatory factor analysis (CFA) was conducted to test whether sensory questionnaire items represent distinct sensory system constructs. Data were obtained from clinical records of two age groups, 2- to 5-yr-olds (n = 231) and 6- to 10-yr-olds (n = 223). With each group, we tested several CFA models for goodness of fit with the data. The accepted model was identical for each group and indicated that tactile, vestibular–proprioceptive, visual, and auditory systems form distinct, valid factors that are not age dependent. In contrast, alternative models that grouped items according to sensory processing problems (e.g., over- or underresponsiveness within or across sensory systems) did not yield valid factors. Results indicate that distinct sensory system constructs can be measured validly using questionnaire data. PMID:25184467

  13. Volatile, anthocyanidin, quality and sensory changes in rabbiteye blueberry from whole fruit through pilot plant juice processing.

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: High antioxidant content and keen marketing have increased blueberry demand and increased local production which in turn mandates new uses for abundant harvests. Pilot scale processes were employed to investigate the anthocyanidin profiles, qualitative volatile compositions, and sensori...

  14. A unified model of the excitability of mouse sensory and motor axons.

    PubMed

    Makker, Preet G S; Matamala, José Manuel; Park, Susanna B; Lees, Justin G; Kiernan, Matthew C; Burke, David; Moalem-Taylor, Gila; Howells, James

    2018-06-19

    Non-invasive nerve excitability techniques have provided valuable insight into the understanding of neurological disorders. The widespread use of mice in translational research on peripheral nerve disorders and by pharmaceutical companies during drug development requires valid and reliable models that can be compared to humans. This study established a novel experimental protocol that enables comparative assessment of the excitability properties of motor and sensory axons at the same site in mouse caudal nerve, compared the mouse data to data for motor and sensory axons in human median nerve at the wrist, and constructed a mathematical model of the excitability of mouse axons. In a separate study, ischaemia was employed as an experimental manoeuvre to test the translational utility of this preparation. The patterns of mouse sensory and motor excitability were qualitatively similar to human studies under normal and ischaemic conditions. The most conspicuous differences between mouse and human studies were observed in the recovery cycle and the response to hyperpolarization. Modelling showed that an increase in temperature in mouse axons could account for most of the differences in the recovery cycle. The modelling also suggested a larger hyperpolarization-activated conductance in mouse axons. The kinetics of this conductance appeared to be much slower raising the possibility that an additional or different hyperpolarization-activated cyclic-nucleotide gated (HCN) channel isoform underlies the accommodation to hyperpolarization in mouse axons. Given a possible difference in HCN isoforms, caution should be exercised in extrapolating from studies of mouse motor and sensory axons to human nerve disorders. This article is protected by copyright. All rights reserved.

  15. Structural and Functional Recovery of Sensory Cilia in C. elegans IFT Mutants upon Aging.

    PubMed

    Cornils, Astrid; Maurya, Ashish K; Tereshko, Lauren; Kennedy, Julie; Brear, Andrea G; Prahlad, Veena; Blacque, Oliver E; Sengupta, Piali

    2016-12-01

    The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies.

  16. Auditory Processing Disorder and Foreign Language Acquisition

    ERIC Educational Resources Information Center

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  17. Neuroglial modulation in peripheral sensory systems.

    PubMed

    Pack, Adam K; Pawson, Lorraine J

    2010-08-01

    Glia are increasingly appreciated as active participants in central neural processing via calcium waves, electrical coupling, and even synaptic-like release of "neuro"-transmitters. In some sensory organs (e.g., retina, olfactory bulb), glia have been shown to interact with neurons in the same manner, although their role in perception has yet to be elucidated. In the organ of Corti, synapses occur between supporting cells and neurons. In one sensory organ, the Pacinian corpuscle (fine touch), glia have been shown to play just as important a role in sensory transduction as they do in neural processing in the brain, and the functional role is quite clear; the modified Schwann cells of the capsule are responsible for the rapid adaptation process of the PCs, integral to its function as a vibration detector. This complex glial/neuronal relationship may be a recent evolutionary phenomenon and may account for much of the relative sophistication of vertebrate nervous systems.

  18. Sensor Selection and Chemo-Sensory Optimization: Toward an Adaptable Chemo-Sensory System

    PubMed Central

    Vergara, Alexander; Llobet, Eduard

    2011-01-01

    Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to “adapt” in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve. PMID

  19. Sensor selection and chemo-sensory optimization: toward an adaptable chemo-sensory system.

    PubMed

    Vergara, Alexander; Llobet, Eduard

    2011-01-01

    Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to "adapt" in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve.

  20. Neural correlates of abnormal sensory discrimination in laryngeal dystonia.

    PubMed

    Termsarasab, Pichet; Ramdhani, Ritesh A; Battistella, Giovanni; Rubien-Thomas, Estee; Choy, Melissa; Farwell, Ian M; Velickovic, Miodrag; Blitzer, Andrew; Frucht, Steven J; Reilly, Richard B; Hutchinson, Michael; Ozelius, Laurie J; Simonyan, Kristina

    2016-01-01

    Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder.

  1. Latent constructs underlying sensory subtypes in children with autism: A preliminary study.

    PubMed

    Hand, Brittany N; Dennis, Simon; Lane, Alison E

    2017-08-01

    Recent reports identify sensory subtypes in ASD based on shared patterns of responses to daily sensory stimuli [Ausderau et al., 2014; Lane, Molloy, & Bishop, 2014]. Lane et al. propose that two broad sensory dimensions, sensory reactivity and multisensory integration, best explain the differences between subtypes, however this has yet to be tested. The present study tests this hypothesis by examining the latent constructs underlying Lane's sensory subtypes. Participants for this study were caregivers of children with autism spectrum disorder (ASD) aged 2-12 years. Caregiver responses on the Short Sensory Profile (SSP), used to establish Lane's sensory subtypes, were extracted from two existing datasets (total n = 287). Independent component analyses were conducted to test the fit and interpretability of a two-construct structure underlying the SSP, and therefore, the sensory subtypes. The first construct was largely comprised of the taste/smell sensitivity domain, which describes hyper-reactivity to taste and smell stimuli. The second construct had a significant contribution from the low energy/weak domain, which describes behaviors that may be indicative of difficulties with multisensory integration. Findings provide initial support for our hypothesis that sensory reactivity and multisensory integration underlie Lane's sensory subtypes in ASD. Autism Res 2017, 10: 1364-1371. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  2. The 5% difference: early sensory processing predicts sarcasm perception in schizophrenia and schizo-affective disorder.

    PubMed

    Kantrowitz, J T; Hoptman, M J; Leitman, D I; Silipo, G; Javitt, D C

    2014-01-01

    Intact sarcasm perception is a crucial component of social cognition and mentalizing (the ability to understand the mental state of oneself and others). In sarcasm, tone of voice is used to negate the literal meaning of an utterance. In particular, changes in pitch are used to distinguish between sincere and sarcastic utterances. Schizophrenia patients show well-replicated deficits in auditory function and functional connectivity (FC) within and between auditory cortical regions. In this study we investigated the contributions of auditory deficits to sarcasm perception in schizophrenia. Auditory measures including pitch processing, auditory emotion recognition (AER) and sarcasm detection were obtained from 76 patients with schizophrenia/schizo-affective disorder and 72 controls. Resting-state FC (rsFC) was obtained from a subsample and was analyzed using seeds placed in both auditory cortex and meta-analysis-defined core-mentalizing regions relative to auditory performance. Patients showed large effect-size deficits across auditory measures. Sarcasm deficits correlated significantly with general functioning and impaired pitch processing both across groups and within the patient group alone. Patients also showed reduced sensitivity to alterations in mean pitch and variability. For patients, sarcasm discrimination correlated exclusively with the level of rsFC within primary auditory regions whereas for controls, correlations were observed exclusively within core-mentalizing regions (the right posterior superior temporal gyrus, anterior superior temporal sulcus and insula, and left posterior medial temporal gyrus). These findings confirm the contribution of auditory deficits to theory of mind (ToM) impairments in schizophrenia, and demonstrate that FC within auditory, but not core-mentalizing, regions is rate limiting with respect to sarcasm detection in schizophrenia.

  3. Sensory v.s. Symbolic Aspects of Imagery Processes.

    ERIC Educational Resources Information Center

    Fleming, Malcolm L.

    A central theoretical issue is that of the cognitive status of imagery. Detractors emphasize the merely-sensory aspects while proponents emphasize the also-symbolic aspects. Examined with reference to this issue are the theories of Piaget and Bruner, recent studies of concept learning and representation, and studies related to the Craik and…

  4. Sensory Integration Dysfunction: Implications for Counselors Working with Children

    ERIC Educational Resources Information Center

    Withrow, Rebecca L.

    2007-01-01

    Sensory Integration Dysfunction (SID), a sensory processing problem that afflicts about 15% of children, sets many children on a developmental trajectory of emotional and social problems. Children with SID often unintentionally alienate parents, peers, and teachers in their efforts to modify the amounts of sensory stimulation they receive. They…

  5. Cognitive Risk Factors for Specific Learning Disorder: Processing Speed, Temporal Processing, and Working Memory.

    PubMed

    Moll, Kristina; Göbel, Silke M; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J

    2016-01-01

    High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD: processing speed, temporal processing, and working memory. Since attention problems frequently co-occur with learning disorders, the study examined whether these three factors, which are known to be associated with attention problems, account for the comorbidity between these disorders. The sample comprised 99 primary school children in four groups: children with RD, children with MD, children with both disorders (RD+MD), and typically developing children (TD controls). Measures of processing speed, temporal processing, and memory were analyzed in a series of ANCOVAs including attention ratings as covariate. All three risk factors were associated with poor attention. After controlling for attention, associations with RD and MD differed: Although deficits in verbal memory were associated with both RD and MD, reduced processing speed was related to RD, but not MD; and the association with RD was restricted to processing speed for familiar nameable symbols. In contrast, impairments in temporal processing and visuospatial memory were associated with MD, but not RD. © Hammill Institute on Disabilities 2014.

  6. The Role of Sensory Perception, Emotionality and "Lifeworld" in Auditory Word Processing: Evidence from Congenital Blindness and Synesthesia

    ERIC Educational Resources Information Center

    Papadopoulos, Judith; Domahs, Frank; Kauschke, Christina

    2017-01-01

    Although it has been established that human beings process concrete and abstract words differently, it is still a matter of debate what factors contribute to this difference. Since concrete concepts are closely tied to sensory perception, perceptual experience seems to play an important role in their processing. The present study investigated the…

  7. Sensory tricks and brain excitability in cervical dystonia: a transcranial magnetic stimulation study.

    PubMed

    Amadio, Stefano; Houdayer, Elise; Bianchi, Francesca; Tesfaghebriel Tekle, Habtom; Urban, Ivan Pietro; Butera, Calogera; Guerriero, Roberta; Cursi, Marco; Leocani, Letizia; Comi, Giancarlo; Del Carro, Ubaldo

    2014-08-01

    Sensory tricks such as touching the face with fingertips often improve cervical dystonia [CD]. This study is to determine whether sensory tricks modulate motor cortex excitability, assessed by paired-pulse transcranial magnetic stimulation [p-pTMS]. Eight patients with rotational CD underwent p-pTMS, at rest and when the sensory trick was applied. To test intracortical inhibition [ICI] and facilitation [ICF], the amplitude ratio between conditioned and unconditioned cortical motor evoked potentials was measured at several interstimulus intervals (ISI 1, 3, 15, and 20 ms) and compared with controls mimicking patients' sensory tricks. At rest, a significant ICF enhancement was found at ISIs 15 through 20 in patients compared with controls, whereas no significant ICI changes were observed. Sensory tricks significantly reduced the abnormal ICF in patients and did not induce any change in controls. In our CD patients, sensory tricks seem to improve dystonia through an inhibitory effect on motor cortex excitability. © 2014 International Parkinson and Movement Disorder Society.

  8. Hereditary sensory ataxic neuropathy associated with proximal muscle weakness in the lower extremities.

    PubMed

    Murakami, Tatsufumi; Fukai, Yuta; Rikimaru, Mitsue; Henmi, Shoji; Ohsawa, Yutaka; Sunada, Yoshihide

    2010-04-15

    We describe three patients from the same family with hereditary sensory ataxic neuropathy followed by proximal muscle weakness in the lower extremities. Sensory ataxic gait began as an initial symptom when patients were in their 50s. Mild proximal weakness in the lower extremities appeared several years later. Serum creatine kinase was mildly elevated. Nerve conduction studies revealed sensory dominant axonal neuropathy, and short sensory evoked potentials showed involvement of the sensory nerve axon, dorsal root ganglia and posterior funiculus of the spinal cord. Needle electromyography showed fibrillation, positive sharp waves, and multiple giant motor unit potentials, suggesting the involvement of anterior horn motor neurons or the anterior root. Autosomal recessive inheritance was considered, because of consanguinity. The disorder described here may be a new clinical entity with unique clinical manifestations. Copyright 2009 Elsevier B.V. All rights reserved.

  9. EFFECTS OF SENSORI-MOTOR LEARNING ON MELODY PROCESSING ACROSS DEVELOPMENT

    PubMed Central

    WAKEFIELD, Elizabeth M.; JAMES, Karin H.

    2014-01-01

    Actions influence perceptions, but how this occurs may change across the lifespan. Studies have investigated how object-directed actions (e.g., learning about objects through manipulation) affect subsequent perception, but how abstract actions affect perception, and how this may change across development, have not been well studied. In the present study, we address this question, teaching children (4–7 year-olds) and adults sung melodies, with or without an abstract motor component, and using functional Magnetic Resonance Imaging (fMRI) to determine how these melodies are subsequently processed. Results demonstrated developmental change in the motor cortices and Middle Temporal Gyrus. Results have implications for understanding sensori-motor integration in the developing brain, and may provide insight into motor learning use in some music education techniques. PMID:25653926

  10. Sensory-processing sensitivity and its relation to introversion and emotionality.

    PubMed

    Aron, E N; Aron, A

    1997-08-01

    Over a series of 7 studies that used diverse samples and measures, this research identified a unidimensional core variable of high sensory-processing sensitivity and demonstrated its partial independence from social introversion and emotionality, variables with which it had been confused or subsumed in most previous theorizing by personality researchers. Additional findings were that there appear to be 2 distinct clusters of highly sensitive individuals (a smaller group with an unhappy childhood and related variables, and a larger group similar to nonhighly sensitive individuals except for their sensitivity) and that sensitivity moderates, at least for men; the relation of parental environment to reporting having had an unhappy childhood. This research also demonstrated adequate reliability and content, convergent, and discriminant validity for a 27-item Highly Sensitive Person Scale.

  11. Peripheral Neuropathy, Sensory Processing, and Balance in Survivors of Acute Lymphoblastic Leukemia.

    PubMed

    Varedi, Mitra; Lu, Lu; Howell, Carrie R; Partin, Robyn E; Hudson, Melissa M; Pui, Ching-Hon; Krull, Kevin R; Robison, Leslie L; Ness, Kirsten K; McKenna, Raymond F

    2018-05-29

    Purpose To compare peripheral nervous system function and balance between adult survivors of childhood acute lymphoblastic leukemia (ALL) and matched controls and to determine associations between peripheral neuropathy (PN) and limitations in static balance, mobility, walking endurance, and quality of life (QoL) among survivors. Patients and Methods Three hundred sixty-five adult survivors of childhood ALL and 365 controls with no cancer history completed assessments of PN (modified Total Neuropathy Score [mTNS]), static balance (Sensory Organization Test [SOT]), mobility (Timed Up and Go), walking endurance (6-minute walk test), QoL (Medical Outcomes Study 36-Item Short Form Survey), and visual-motor processing speed (Wechsler Adult Intelligence Scale). Results PN, but not impairments, in performance on SOT was more common in survivors than controls (41.4% v 9.5%, respectively; P < .001). In multivariable models, higher mTNS scores were associated with longer time to complete the Timed Up and Go (β = 0.15; 95% CI, 0.06 to 0.23; P < .001), shorter distance walked in 6 minutes (β = -4.39; 95% CI, -8.63 to -0.14; P = .04), and reduced QoL (β = -1.33; 95% CI, -1.79 to -0.87; P < .001 for physical functioning; β = -1.16; 95% CI, -1.64 to -0.67; P < .001 for role physical; and β = -0.88; 95% CI, -1.34 to -0.42; P < .001 for general health). Processing speed (β = 1.69; 95% CI, 0.98 to 2.40; P < .001), but not mTNS score, was associated with anterior-posterior sway on the SOT. Conclusion PN in long-term ALL survivors is associated with movement, including mobility and walking endurance, but not with static standing balance. The association between processing speed and sway suggests that static balance impairment in ALL survivors may be influenced by problems with CNS function, including the processing of sensory information.

  12. Differential Associations between Sensory Response Patterns and Language, Social, and Communication Measures in Children with Autism or Other Developmental Disabilities

    PubMed Central

    Watson, Linda R.; Patten, Elena; Baranek, Grace T.; Poe, Michele; Boyd, Brian A.; Freuler, Ashley; Lorenzi, Jill

    2012-01-01

    Purpose Examine patterns of sensory responsiveness (i.e., hyperresponsiveness, hyporesponsiveness, and sensory seeking) as factors that may account for variability in social-communicative symptoms of autism and variability in language, social, and communication skill development in children with autism or other developmental disabilities. Method Children with autistic disorder (AD; n = 72, mean age = 52.3 months) and other developmental disabilities (DD; n = 44, mean age = 48.1 months) participated in a protocol measuring sensory response patterns, social-communicative symptoms of autism, and language, social, and communication skills. Results Hyporesponsiveness was positively associated with social-communicative symptom severity, with no significant group difference in the association. Hyperresponsiveness was not significantly associated with social-communicative symptom severity. A group difference emerged for sensory seeking and social-communicative symptom severity, with a positive association for the AD group only. For the two groups of children combined, hyporesponsiveness was negatively associated with language skills and social adaptive skills. Sensory seeking also was negatively associated with language skills. These associations did not differ between the two groups. Conclusions Aberrant sensory processing may play an important role in the pathogenesis of autism and other developmental disabilities, as well as in the rate of acquisition of language, social, and communication skills. PMID:21862675

  13. Sensory exploitation and sexual conflict

    PubMed Central

    Arnqvist, Göran

    2006-01-01

    Much of the literature on male–female coevolution concerns the processes by which male traits and female preferences for these can coevolve and be maintained by selection. There has been less explicit focus on the origin of male traits and female preferences. Here, I argue that it is important to distinguish origin from subsequent coevolution and that insights into the origin can help us appreciate the relative roles of various coevolutionary processes for the evolution of diversity in sexual dimorphism. I delineate four distinct scenarios for the origin of male traits and female preferences that build on past contributions, two of which are based on pre-existing variation in quality indicators among males and two on exploitation of pre-existing sensory biases among females. Recent empirical research, and theoretical models, suggest that origin by sensory exploitation has been widespread. I argue that this points to a key, but perhaps transient, role for sexually antagonistic coevolution (SAC) in the subsequent evolutionary elaboration of sexual traits, because (i) sensory exploitation is often likely to be initially costly for individuals of the exploited sex and (ii) the subsequent evolution of resistance to sensory exploitation should often be associated with costs due to selective constraints. A review of a few case studies is used to illustrate these points. Empirical data directly relevant to the costs of being sensory exploited and the costs of evolving resistance is largely lacking, and I stress that such data would help determining the general importance of sexual conflict and SAC for the evolution of sexual dimorphism. PMID:16612895

  14. Sensory rehabilitation in the plastic brain.

    PubMed

    Collignon, Olivier; Champoux, François; Voss, Patrice; Lepore, Franco

    2011-01-01

    The purpose of this review is to consider new sensory rehabilitation avenues in the context of the brain's remarkable ability to reorganize itself following sensory deprivation. Here, deafness and blindness are taken as two illustrative models. Mainly, two promising rehabilitative strategies based on opposing theoretical principles will be considered: sensory substitution and neuroprostheses. Sensory substitution makes use of the remaining intact senses to provide blind or deaf individuals with coded information of the lost sensory system. This technique thus benefits from added neural resources in the processing of the remaining senses resulting from crossmodal plasticity, which is thought to be coupled with behavioral enhancements in the intact senses. On the other hand, neuroprostheses represent an invasive approach aimed at stimulating the deprived sensory system directly in order to restore, at least partially, its functioning. This technique therefore relies on the neuronal integrity of the brain areas normally dedicated to the deprived sense and is rather hindered by the compensatory reorganization observed in the deprived cortex. Here, we stress that our understanding of the neuroplastic changes that occur in sensory-deprived individuals may help guide the design and the implementation of such rehabilitative methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Electrophysiological CNS-processes related to associative learning in humans.

    PubMed

    Christoffersen, Gert R J; Schachtman, Todd R

    2016-01-01

    The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Does a Sensory Processing Deficit Explain Counting Accuracy on Rapid Visual Sequencing Tasks in Adults with and without Dyslexia?

    ERIC Educational Resources Information Center

    Conlon, Elizabeth G.; Wright, Craig M.; Norris, Karla; Chekaluk, Eugene

    2011-01-01

    The experiments conducted aimed to investigate whether reduced accuracy when counting stimuli presented in rapid temporal sequence in adults with dyslexia could be explained by a sensory processing deficit, a general slowing in processing speed or difficulties shifting attention between stimuli. To achieve these aims, the influence of the…

  17. Structural and Functional Recovery of Sensory Cilia in C. elegans IFT Mutants upon Aging

    PubMed Central

    Kennedy, Julie; Brear, Andrea G.; Prahlad, Veena; Blacque, Oliver E.; Sengupta, Piali

    2016-01-01

    The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies. PMID:27906968

  18. Sensory modulation in preterm children: Theoretical perspective and systematic review

    PubMed Central

    Oostrom, Kim J.; Lafeber, Harrie N.; Jansma, Elise P.; Oosterlaan, Jaap

    2017-01-01

    Background Neurodevelopmental sequelae in preterm born children are generally considered to result from cerebral white matter damage and noxious effects of environmental factors in the neonatal intensive care unit (NICU). Cerebral white matter damage is associated with sensory processing problems in terms of registration, integration and modulation. However, research into sensory processing problems and, in particular, sensory modulation problems, is scarce in preterm children. Aim This review aims to integrate available evidence on sensory modulation problems in preterm infants and children (<37 weeks of gestation) and their association with neurocognitive and behavioral problems. Method Relevant studies were extracted from PubMed, EMBASE.com and PsycINFO following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Selection criteria included assessment of sensory modulation in preterm born children (<37 weeks of gestation) or with prematurity as a risk factor. Results Eighteen studies were included. Results of this review support the presence of sensory modulation problems in preterm children. Although prematurity may distort various aspects of sensory modulation, the nature and severity of sensory modulation problems differ widely between studies. Conclusions Sensory modulation problems may play a key role in understanding neurocognitive and behavioral sequelae in preterm children. Some support is found for a dose-response relationship between both white matter brain injury and length of NICU stay and sensory modulation problems. PMID:28182680

  19. Cortical Variability in the Sensory-Evoked Response in Autism

    ERIC Educational Resources Information Center

    Haigh, Sarah M.; Heeger, David J.; Dinstein, Ilan; Minshew, Nancy; Behrmann, Marlene

    2015-01-01

    Previous findings have shown that individuals with autism spectrum disorder (ASD) evince greater intra-individual variability (IIV) in their sensory-evoked fMRI responses compared to typical control participants. We explore the robustness of this finding with a new sample of high-functioning adults with autism. Participants were presented with…

  20. DIAGNOSIS AND APPRAISAL OF COMMUNICATION DISORDERS. PRENTICE-HALL FOUNDATIONS OF SPEECH PATHOLOGY SERIES.

    ERIC Educational Resources Information Center

    DARLEY, FREDERIC L.

    THIS TEXT GIVES THE STUDENT AN OUTLINE OF THE BASIC PRINCIPLES OF SCIENTIFIC METHODOLOGY WHICH UNDERLIE EVALUATIVE WORK IN SPEECH DISORDERS. RATIONALE AND ASSESSMENT TECHNIQUES ARE GIVEN FOR EXAMINATION OF THE BASIC COMMUNICATION PROCESSES OF SYMBOLIZATION, RESPIRATION, PHONATION, ARTICULATION-RESONANCE, PROSODY, ASSOCIATED SENSORY AND PERCEPTUAL…

  1. New Angles on Motor and Sensory Coordination in Learning Disabilities.

    ERIC Educational Resources Information Center

    Goldey, Ellen S.

    1998-01-01

    Provides an overview of presentations that were included in the Medical Symposium at the 1998 Learning Disabilities Association conference. The symposium addressed vestibular control and eye movement, postural sway and balance, cerebellar dysfunction, the role of the frontal lobe, developmental coordination disorder, and sensory integration…

  2. Sensory Symptom Profiles and Co-Morbidities in Painful Radiculopathy

    PubMed Central

    Gockel, Ulrich; Brosz, Mathias; Freynhagen, Rainer; Tölle, Thomas R.; Baron, Ralf

    2011-01-01

    Painful radiculopathies (RAD) and classical neuropathic pain syndromes (painful diabetic polyneuropathy, postherpetic neuralgia) show differences how the patients express their sensory perceptions. Furthermore, several clinical trials with neuropathic pain medications failed in painful radiculopathy. Epidemiological and clinical data of 2094 patients with painful radiculopathy were collected within a cross sectional survey (painDETECT) to describe demographic data and co-morbidities and to detect characteristic sensory abnormalities in patients with RAD and compare them with other neuropathic pain syndromes. Common co-morbidities in neuropathic pain (depression, sleep disturbance, anxiety) do not differ considerably between the three conditions. Compared to other neuropathic pain syndromes touch-evoked allodynia and thermal hyperalgesia are relatively uncommon in RAD. One distinct sensory symptom pattern (sensory profile), i.e., severe painful attacks and pressure induced pain in combination with mild spontaneous pain, mild mechanical allodynia and thermal hyperalgesia, was found to be characteristic for RAD. Despite similarities in sensory symptoms there are two important differences between RAD and other neuropathic pain disorders: (1) The paucity of mechanical allodynia and thermal hyperalgesia might be explained by the fact that the site of the nerve lesion in RAD is often located proximal to the dorsal root ganglion. (2) The distinct sensory profile found in RAD might be explained by compression-induced ectopic discharges from a dorsal root and not necessarily by nerve damage. These differences in pathogenesis might explain why medications effective in DPN and PHN failed to demonstrate efficacy in RAD. PMID:21573064

  3. Meaning and the Elimination of Sensory Interference

    ERIC Educational Resources Information Center

    Nelson, Douglas L.; And Others

    1976-01-01

    Research has indicated that interference produced by the sharing of sensory features of paired-associate stimulus words was not eliminated by processing the pairs at the meaning level. These experiments were intended to extend the range of conditions under which the sensory interference effect might persist, and to incorporate the findings within…

  4. Auditory-motor interactions in pediatric motor speech disorders: neurocomputational modeling of disordered development.

    PubMed

    Terband, H; Maassen, B; Guenther, F H; Brumberg, J

    2014-01-01

    Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Feasibility study and sensory test of turmeric tamarind traditional drink with various processing

    NASA Astrophysics Data System (ADS)

    Rudyatmi, E.; Bintari, S. H.; Iswari, R. S.

    2018-03-01

    Turmeric tamarind traditional drink as anti-oxidant, good for health, and has a potency to developed. The objectives of this study are to determine the feasibility and the favorite level of consumer towards two turmerics tamarind traditional drink which processed differently. Feasibility depended on sensory test and microbe's contamination according to a quality standard of BPOM and complemented with an anti-bacterial test. The anti-bacterial test is determined by a diameter of inhibition zone towards E coli and B subtilist. Consumer’s favorites level is determined by organoleptic test to 40 testers. Sensory test results to form, odor, taste, and color are normal. TPC first traditional drink 6,9 x 102 col/gr and TKK ≤1,0x10 col/gr, TPC second traditional drink 2,0 x 101 col/gr and TKK ≤1,0x10 col/gr; all tests toward E coli, Salmonella SP, Staphylococcus aureus, Pseudomonas aeruginosa, shigella sp negative/gr; inhibiting capabilities towards B.subtilis and E coli of first traditional drink > second traditional drink. Inhibiting capabilities towards B.subtilis > E coli. All parameters comply with BPOM standard. Most of the tester love the first method turmeric tamarind traditional drink.

  6. Parents' Perspectives of Using a Therapeutic Listening Program with Their Children with Sensory Processing Difficulties: A Qualitative Study

    ERIC Educational Resources Information Center

    Wink, Sarah; McKeown, Laura; Casey, Jackie

    2017-01-01

    This phenomenological study explored parents' perspectives of Therapeutic Listening (TL) implemented as a home program to treat their children with sensory processing difficulties. Ten parents participated in semistructured interviews. Interviews were transcribed verbatim and analyzed thematically. Parents were concerned about their child's…

  7. Disruption in the autophagic process underlies the sensory neuropathy in dystonia musculorum mice

    PubMed Central

    Ferrier, Andrew; De Repentigny, Yves; Lynch-Godrei, Anisha; Gibeault, Sabrina; Eid, Walaa; Kuo, Daniel; Zha, Xiaohui; Kothary, Rashmi

    2015-01-01

    A homozygous mutation in the DST (dystonin) gene causes a newly identified lethal form of hereditary sensory and autonomic neuropathy in humans (HSAN-VI). DST loss of function similarly leads to sensory neuron degeneration and severe ataxia in dystonia musculorum (Dstdt) mice. DST is involved in maintaining cytoskeletal integrity and intracellular transport. As autophagy is highly reliant upon stable microtubules and motor proteins, we assessed the influence of DST loss of function on autophagy using the Dstdt-Tg4 mouse model. Electron microscopy (EM) revealed an accumulation of autophagosomes in sensory neurons from these mice. Furthermore, we demonstrated that the autophagic flux was impaired. Levels of LC3-II, a marker of autophagosomes, were elevated. Consequently, Dstdt-Tg4 sensory neurons displayed impaired protein turnover of autophagosome substrate SQTSM1/p62 and of polyubiquitinated proteins. Interestingly, in a previously described Dstdt-Tg4 mouse model that is partially rescued by neuronal specific expression of the DST-A2 isoform, autophagosomes, autolysosomes, and damaged organelles were reduced when compared to Dstdt-Tg4 mutant mice. LC3-II, SQTSM1, polyubiquitinated proteins and autophagic flux were also restored to wild-type levels in the rescued mice. Finally, a significant decrease in DNAIC1 (dynein, axonemal, intermediate chain 1; the mouse ortholog of human DNAI1), a member of the DMC (dynein/dynactin motor complex), was noted in Dstdt-Tg4 dorsal root ganglia and sensory neurons. Thus, DST-A2 loss of function perturbs late stages of autophagy, and dysfunctional autophagy at least partially underlies Dstdt pathogenesis. We therefore conclude that the DST-A2 isoform normally facilitates autophagy within sensory neurons to maintain cellular homeostasis. PMID:26043942

  8. Deficient saccadic inhibition in Asperger's disorder and the social-emotional processing disorder

    PubMed Central

    Manoach, D; Lindgren, K; Barton, J

    2004-01-01

    Background: Both Asperger's disorder and the social-emotional processing disorder (SEPD), a form of non-verbal learning disability, are associated with executive function deficits. SEPD has been shown to be associated with deficient saccadic inhibition. Objective: To study two executive functions in Asperger's disorder and SEPD, inhibition and task switching, using a single saccadic paradigm. Methods: 22 control subjects and 27 subjects with developmental social processing disorders—SEPD, Asperger's disorder, or both syndromes—performed random sequences of prosaccades and antisaccades. This design resulted in four trial types, prosaccades and antisaccades, that were either repeated or switched. The design allowed the performance costs of inhibition and task switching to be isolated. Results: Subjects with both Asperger's disorder and SEPD showed deficient inhibition, as indicated by increased antisaccade errors and a disproportionate increase in latency for antisaccades relative to prosaccades. In contrast, task switching error and latency costs were normal and unrelated to the costs of inhibition. Conclusions: This study replicates the finding of deficient saccadic inhibition in SEPD, extends it to Asperger's disorder, and implicates prefrontal cortex dysfunction in these syndromes. The finding of intact task switching shows that executive function deficits in Asperger's disorder and SEPD are selective and suggests that inhibition and task switching are mediated by distinct neural networks. PMID:15548490

  9. Sensorimotor integration: basic concepts, abnormalities related to movement disorders and sensorimotor training-induced cortical reorganization.

    PubMed

    Machado, Sergio; Cunha, Marlo; Velasques, Bruna; Minc, Daniel; Teixeira, Silmar; Domingues, Clayton A; Silva, Julio G; Bastos, Victor H; Budde, Henning; Cagy, Mauricio; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro

    2010-10-01

    Sensorimotor integration is defined as the capability of the central nervous system to integrate different sources of stimuli, and parallelly, to transform such inputs in motor actions. To review the basic principles of sensorimotor integration, such as, its neural bases and its elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects, and the abnormalities reported in the most common movement disorders, such as, Parkinson' disease, dystonia and stroke, like the cortical reorganization-related mechanisms. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but most of the data support a central mechanism. We found that the sensorimotor integration process plays a potential role in elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects and in occurrence of abnormalities in most common movement disorders and, moreover, play a potential role on the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of motor outputs consciously goal-directed.

  10. Reward maximization justifies the transition from sensory selection at childhood to sensory integration at adulthood.

    PubMed

    Daee, Pedram; Mirian, Maryam S; Ahmadabadi, Majid Nili

    2014-01-01

    In a multisensory task, human adults integrate information from different sensory modalities--behaviorally in an optimal Bayesian fashion--while children mostly rely on a single sensor modality for decision making. The reason behind this change of behavior over age and the process behind learning the required statistics for optimal integration are still unclear and have not been justified by the conventional Bayesian modeling. We propose an interactive multisensory learning framework without making any prior assumptions about the sensory models. In this framework, learning in every modality and in their joint space is done in parallel using a single-step reinforcement learning method. A simple statistical test on confidence intervals on the mean of reward distributions is used to select the most informative source of information among the individual modalities and the joint space. Analyses of the method and the simulation results on a multimodal localization task show that the learning system autonomously starts with sensory selection and gradually switches to sensory integration. This is because, relying more on modalities--i.e. selection--at early learning steps (childhood) is more rewarding than favoring decisions learned in the joint space since, smaller state-space in modalities results in faster learning in every individual modality. In contrast, after gaining sufficient experiences (adulthood), the quality of learning in the joint space matures while learning in modalities suffers from insufficient accuracy due to perceptual aliasing. It results in tighter confidence interval for the joint space and consequently causes a smooth shift from selection to integration. It suggests that sensory selection and integration are emergent behavior and both are outputs of a single reward maximization process; i.e. the transition is not a preprogrammed phenomenon.

  11. Spontaneous Fluctuations in Sensory Processing Predict Within-Subject Reaction Time Variability.

    PubMed

    Ribeiro, Maria J; Paiva, Joana S; Castelo-Branco, Miguel

    2016-01-01

    When engaged in a repetitive task our performance fluctuates from trial-to-trial. In particular, inter-trial reaction time variability has been the subject of considerable research. It has been claimed to be a strong biomarker of attention deficits, increases with frontal dysfunction, and predicts age-related cognitive decline. Thus, rather than being just a consequence of noise in the system, it appears to be under the control of a mechanism that breaks down under certain pathological conditions. Although the underlying mechanism is still an open question, consensual hypotheses are emerging regarding the neural correlates of reaction time inter-trial intra-individual variability. Sensory processing, in particular, has been shown to covary with reaction time, yet the spatio-temporal profile of the moment-to-moment variability in sensory processing is still poorly characterized. The goal of this study was to characterize the intra-individual variability in the time course of single-trial visual evoked potentials and its relationship with inter-trial reaction time variability. For this, we chose to take advantage of the high temporal resolution of the electroencephalogram (EEG) acquired while participants were engaged in a 2-choice reaction time task. We studied the link between single trial event-related potentials (ERPs) and reaction time using two different analyses: (1) time point by time point correlation analyses thereby identifying time windows of interest; and (2) correlation analyses between single trial measures of peak latency and amplitude and reaction time. To improve extraction of single trial ERP measures related with activation of the visual cortex, we used an independent component analysis (ICA) procedure. Our ERP analysis revealed a relationship between the N1 visual evoked potential and reaction time. The earliest time point presenting a significant correlation of its respective amplitude with reaction time occurred 175 ms after stimulus onset

  12. Spontaneous Fluctuations in Sensory Processing Predict Within-Subject Reaction Time Variability

    PubMed Central

    Ribeiro, Maria J.; Paiva, Joana S.; Castelo-Branco, Miguel

    2016-01-01

    When engaged in a repetitive task our performance fluctuates from trial-to-trial. In particular, inter-trial reaction time variability has been the subject of considerable research. It has been claimed to be a strong biomarker of attention deficits, increases with frontal dysfunction, and predicts age-related cognitive decline. Thus, rather than being just a consequence of noise in the system, it appears to be under the control of a mechanism that breaks down under certain pathological conditions. Although the underlying mechanism is still an open question, consensual hypotheses are emerging regarding the neural correlates of reaction time inter-trial intra-individual variability. Sensory processing, in particular, has been shown to covary with reaction time, yet the spatio-temporal profile of the moment-to-moment variability in sensory processing is still poorly characterized. The goal of this study was to characterize the intra-individual variability in the time course of single-trial visual evoked potentials and its relationship with inter-trial reaction time variability. For this, we chose to take advantage of the high temporal resolution of the electroencephalogram (EEG) acquired while participants were engaged in a 2-choice reaction time task. We studied the link between single trial event-related potentials (ERPs) and reaction time using two different analyses: (1) time point by time point correlation analyses thereby identifying time windows of interest; and (2) correlation analyses between single trial measures of peak latency and amplitude and reaction time. To improve extraction of single trial ERP measures related with activation of the visual cortex, we used an independent component analysis (ICA) procedure. Our ERP analysis revealed a relationship between the N1 visual evoked potential and reaction time. The earliest time point presenting a significant correlation of its respective amplitude with reaction time occurred 175 ms after stimulus onset

  13. Multisensory integration, sensory substitution and visual rehabilitation.

    PubMed

    Proulx, Michael J; Ptito, Maurice; Amedi, Amir

    2014-04-01

    Sensory substitution has advanced remarkably over the past 35 years since first introduced to the scientific literature by Paul Bach-y-Rita. In this issue dedicated to his memory, we describe a collection of reviews that assess the current state of neuroscience research on sensory substitution, visual rehabilitation, and multisensory processes. Copyright © 2014. Published by Elsevier Ltd.

  14. The key to unlocking the virtual body: virtual reality in the treatment of obesity and eating disorders.

    PubMed

    Riva, Giuseppe

    2011-03-01

    Obesity and eating disorders are usually considered unrelated problems with different causes. However, various studies identify unhealthful weight-control behaviors (fasting, vomiting, or laxative abuse), induced by a negative experience of the body, as the common antecedents of both obesity and eating disorders. But how might negative body image--common to most adolescents, not only to medical patients--be behind the development of obesity and eating disorders? In this paper, I review the "allocentric lock theory" of negative body image as the possible antecedent of both obesity and eating disorders. Evidence from psychology and neuroscience indicates that our bodily experience involves the integration of different sensory inputs within two different reference frames: egocentric (first-person experience) and allocentric (third-person experience). Even though functional relations between these two frames are usually limited, they influence each other during the interaction between long- and short-term memory processes in spatial cognition. If this process is impaired either through exogenous (e.g., stress) or endogenous causes, the egocentric sensory inputs are unable to update the contents of the stored allocentric representation of the body. In other words, these patients are locked in an allocentric (observer view) negative image of their body, which their sensory inputs are no longer able to update even after a demanding diet and a significant weight loss. This article discusses the possible role of virtual reality in addressing this problem within an integrated treatment approach based on the allocentric lock theory. © 2011 Diabetes Technology Society.

  15. The Key to Unlocking the Virtual Body: Virtual Reality in the Treatment of Obesity and Eating Disorders

    PubMed Central

    Riva, Giuseppe

    2011-01-01

    Obesity and eating disorders are usually considered unrelated problems with different causes. However, various studies identify unhealthful weight-control behaviors (fasting, vomiting, or laxative abuse), induced by a negative experience of the body, as the common antecedents of both obesity and eating disorders. But how might negative body image—common to most adolescents, not only to medical patients—be behind the development of obesity and eating disorders? In this paper, I review the “allocentric lock theory” of negative body image as the possible antecedent of both obesity and eating disorders. Evidence from psychology and neuroscience indicates that our bodily experience involves the integration of different sensory inputs within two different reference frames: egocentric (first-person experience) and allocentric (third-person experience). Even though functional relations between these two frames are usually limited, they influence each other during the interaction between long- and short-term memory processes in spatial cognition. If this process is impaired either through exogenous (e.g., stress) or endogenous causes, the egocentric sensory inputs are unable to update the contents of the stored allocentric representation of the body. In other words, these patients are locked in an allocentric (observer view) negative image of their body, which their sensory inputs are no longer able to update even after a demanding diet and a significant weight loss. This article discusses the possible role of virtual reality in addressing this problem within an integrated treatment approach based on the allocentric lock theory. PMID:21527095

  16. Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology

    PubMed Central

    Oman, Charles M.; Cullen, Kathleen E.

    2014-01-01

    The origin of the internal “sensory conflict” stimulus causing motion sickness has been debated for more than four decades. Recent studies show a subclass of neurons in the vestibular nuclei and deep cerebellar nuclei that respond preferentially to passive head movements. During active movement, the semicircular canal and otolith input (“reafference”) to these neurons is cancelled by a mechanism comparing the expected consequences of self-generated movement (estimated with an internal model-presumably located in the cerebellum) with the actual sensory feedback. The un-cancelled component (“exafference”) resulting from passive movement normally helps compensate for unexpected postural disturbances. Notably, the existence of such vestibular “sensory conflict” neurons had been postulated as early as 1982, but their existence and putative role in posture control, motion sickness has been long debated. Here we review the development of “sensory conflict” theories in relation to recent evidence for brainstem and cerebellar reafference cancellation, and identify some open research questions. We propose that conditions producing persistent activity of these neurons, or their targets, stimulates nearby brainstem emetic centers – via an as yet unidentified mechanism. We discuss how such a mechanism is consistent with the notable difference in motion sickness susceptibility of drivers as opposed to passengers, human immunity to normal self-generated movement, and why head restraint or lying horizontal confers relative immunity. Finally, we propose that fuller characterization of these mechanisms, and their potential role in motion sickness could lead to more effective, scientifically based prevention and treatment for motion sickness. PMID:24838552

  17. The extended functional neuroanatomy of emotional processing biases for masked faces in major depressive disorder.

    PubMed

    Victor, Teresa A; Furey, Maura L; Fromm, Stephen J; Bellgowan, Patrick S F; Öhman, Arne; Drevets, Wayne C

    2012-01-01

    Major depressive disorder (MDD) is associated with a mood-congruent processing bias in the amygdala toward face stimuli portraying sad expressions that is evident even when such stimuli are presented below the level of conscious awareness. The extended functional anatomical network that maintains this response bias has not been established, however. To identify neural network differences in the hemodynamic response to implicitly presented facial expressions between depressed and healthy control participants. Unmedicated-depressed participants with MDD (n=22) and healthy controls (HC; n=25) underwent functional MRI as they viewed face stimuli showing sad, happy or neutral face expressions, presented using a backward masking design. The blood-oxygen-level dependent (BOLD) signal was measured to identify regions where the hemodynamic response to the emotionally valenced stimuli differed between groups. The MDD subjects showed greater BOLD responses than the controls to masked-sad versus masked-happy faces in the hippocampus, amygdala and anterior inferotemporal cortex. While viewing both masked-sad and masked-happy faces relative to masked-neutral faces, the depressed subjects showed greater hemodynamic responses than the controls in a network that included the medial and orbital prefrontal cortices and anterior temporal cortex. Depressed and healthy participants showed distinct hemodynamic responses to masked-sad and masked-happy faces in neural circuits known to support the processing of emotionally valenced stimuli and to integrate the sensory and visceromotor aspects of emotional behavior. Altered function within these networks in MDD may establish and maintain illness-associated differences in the salience of sensory/social stimuli, such that attention is biased toward negative and away from positive stimuli.

  18. Sensory empathy and enactment.

    PubMed

    Zanocco, Giorgio; De Marchi, Alessandra; Pozzi, Francesco

    2006-02-01

    The authors propose the concept of sensory empathy which emerges through contact between analyst and patient as they get in touch with an area concerning the primary bond. This area is not so much based on thoughts and fantasies as it is on physical sensations. Sensory empathy has to do with that instrument described by Freud as pertaining to the unconscious of any human, which enables one person to interpret unconscious communications of another person. The authors link this concept to that of enactment precisely because the latter concerns unconscious, early elements that fi nd in the act a fi rst meaningful expression. It involves both analyst and patient. In other words, the authors wish to emphasize the importance of the analytical process maintaining contact with that immense field of human interaction that can be defined as primary sensory area and which becomes intertwined with the evolution of affects. Clinical examples are provided to clarify these hypotheses.

  19. Functional neuroimaging of conversion disorder: the role of ancillary activation.

    PubMed

    Burke, Matthew J; Ghaffar, Omar; Staines, W Richard; Downar, Jonathan; Feinstein, Anthony

    2014-01-01

    Previous functional neuroimaging studies investigating the neuroanatomy of conversion disorder have yielded inconsistent results that may be attributed to small sample sizes and disparate methodologies. The objective of this study was to better define the functional neuroanatomical correlates of conversion disorder. Ten subjects meeting clinical criteria for unilateral sensory conversion disorder underwent fMRI during which a vibrotactile stimulus was applied to anesthetic and sensate areas. A block design was used with 4 s of stimulation followed by 26 s of rest, the pattern repeated 10 times. Event-related group averages of the BOLD response were compared between conditions. All subjects were right-handed females, with a mean age of 41. Group analyses revealed 10 areas that had significantly greater activation (p < .05) when stimulation was applied to the anesthetic body part compared to the contralateral sensate mirror region. They included right paralimbic cortices (anterior cingulate cortex and insula), right temporoparietal junction (angular gyrus and inferior parietal lobule), bilateral dorsolateral prefrontal cortex (middle frontal gyri), right orbital frontal cortex (superior frontal gyrus), right caudate, right ventral-anterior thalamus and left angular gyrus. There was a trend for activation of the somatosensory cortex contralateral to the anesthetic region to be decreased relative to the sensate side. Sensory conversion symptoms are associated with a pattern of abnormal cerebral activation comprising neural networks implicated in emotional processing and sensory integration. Further study of the roles and potential interplay of these networks may provide a basis for an underlying psychobiological mechanism of conversion disorder.

  20. Sensory ataxic neuropathy with ophthalmoparesis caused by POLG mutations.

    PubMed

    Milone, Margherita; Brunetti-Pierri, Nicola; Tang, Lin-Ya; Kumar, Neeraj; Mezei, Michelle M; Josephs, Keith; Powell, Suzanne; Simpson, Ericka; Wong, Lee-Jun C

    2008-08-01

    Mutations in POLG gene are responsible for a wide spectrum of clinical disorders with altered mitochondrial DNA (mtDNA) integrity, including mtDNA multiple deletions and depletion. Sensory ataxic neuropathy with ophthalmoparesis (SANDO) caused by mutations in POLG gene, fulfilling the clinical triad of sensory ataxic neuropathy, dysarthria and/or dysphagia and ophthalmoparesis, has described in a few reports. Here we described five cases of adult onset autosomal recessive sensory ataxic neuropathy with ophthalmoplegia. All patients had ataxia, neuropathy, myopathy, and progressive external ophthalmoplegia (PEO). The muscle pathology revealed ragged-red and cytochrome c oxidase (COX) negative fibers in three patients. However, deficiencies in the activities of mitochondrial respiratory chain enzyme complexes were not detected in any of the patients' muscle samples. Multiple deletions of mtDNA were detected in blood and muscle specimens but mtDNA depletion was not found. Due to these diagnostic difficulties, POLG-related syndromes are definitively diagnosed based on the presence of deleterious mutations in the POLG gene.

  1. Sensory coding and cognitive processing of sound in Veterans with blast exposure

    PubMed Central

    Bressler, Scott; Goldberg, Hannah; Shinn-Cunningham, Barbara

    2017-01-01

    Recent anecdotal reports from VA audiology clinics as well as a few published studies have identified a sub-population of Service Members seeking treatment for problems communicating in everyday, noisy listening environments despite having normal to near-normal hearing thresholds. Because of their increased risk of exposure to dangerous levels of prolonged noise and transient explosive blast events, communication problems in these soldiers could be due to either hearing loss (traditional or “hidden”) in the auditory sensory periphery or from blast-induced injury to cortical networks associated with attention. We found that out of the 14 blast-exposed Service Members recruited for this study, 12 had hearing thresholds in the normal to near-normal range. A majority of these participants reported having problems specifically related to failures with selective attention. Envelope following responses (EFRs) measuring neural coding fidelity of the auditory brainstem to suprathreshold sounds were similar between blast-exposed and non-blast controls. Blast-exposed subjects performed substantially worse than non-blast controls in an auditory selective attention task in which listeners classified the melodic contour (rising, falling, or “zig-zagging”) of one of three simultaneous, competing tone sequences. Salient pitch and spatial differences made for easy segregation of the three concurrent melodies. Poor performance in the blast-exposed subjects was associated with weaker evoked response potentials (ERPs) in frontal EEG channels, as well as a failure of attention to enhance the neural responses evoked by a sequence when it was the target compared to when it was a distractor. These results suggest that communication problems in these listeners cannot be explained by compromised sensory representations in the auditory periphery, but rather point to lingering blast-induced damage to cortical networks implicated in the control of attention. Because all study

  2. Foodborne Pathogens Prevention and Sensory Attributes Enhancement in Processed Cheese via Flavoring with Plant Extracts.

    PubMed

    Tayel, Ahmed A; Hussein, Heba; Sorour, Noha M; El-Tras, Wael F

    2015-12-01

    Cheese contaminations with foodborne bacterial pathogens, and their health outbreaks, are serious worldwide problems that could happen from diverse sources during cheese production or storage. Plants, and their derivatives, were always regarded as the potential natural and safe antimicrobial alternatives for food preservation and improvement. The extracts from many plants, which are commonly used as spices and flavoring agents, were evaluated as antibacterial agents against serious foodborne pathogens, for example Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus, and Escherichia coli O157:H7, using qualitative and quantitative assaying methods. Dairy-based media were also used for evaluating the practical application of plant extracts as antimicrobial agents. Most of the examined plant extracts exhibited remarkable antibacterial activity; the extracts of cinnamon, cloves, garden cress, and lemon grass were the most powerful, either in synthetic or in dairy-based media. Flavoring processed cheese with plant extracts resulted in the enhancement of cheese sensory attributes, for example odor, taste, color, and overall quality, especially in flavored samples with cinnamon, lemon grass, and oregano. It can be concluded that plant extracts are strongly recommended, as powerful and safe antibacterial and flavoring agents, for the preservation and sensory enhancement of processed cheese. © 2015 Institute of Food Technologists®

  3. Language-Universal Sensory Deficits in Developmental Dyslexia: English, Spanish, and Chinese

    ERIC Educational Resources Information Center

    Goswami, Usha; Wang, H.-L. Sharon; Cruz, Alicia; Fosker, Tim; Mead, Natasha; Huss, Martina

    2011-01-01

    Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of "phonological processing", the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific…

  4. Production and characterization of curcumin microcrystals and evaluation of the antimicrobial and sensory aspects in minimally processed carrots.

    PubMed

    Silva, Anderson Clayton da; Santos, Priscila Dayane de Freitas; Palazzi, Nicole Campezato; Leimann, Fernanda Vitória; Fuchs, Renata Hernandez Barros; Bracht, Lívia; Gonçalves, Odinei Hess

    2017-05-24

    Nontoxic conserving agents are in demand by the food industry due to consumers concern about synthetic conservatives, especially in minimally processed food. The antimicrobial activity of curcumin, a natural phenolic compound, has been extensively investigated but hydrophobicity is an issue when applying curcumin to foodstuff. The objective of this work was to evaluate curcumin microcrystals as an antimicrobial agent in minimally processed carrots. The antimicrobial activity of curcumin microcrystals was evaluated in vitro against Gram-positive (Bacillus cereus and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) microorganisms, showing a statistically significant (p < 0.05) decrease in the minimum inhibitory concentration compared to in natura, pristine curcumin. Curcumin microcrystals were effective in inhibiting psychrotrophic and mesophile microorganisms in minimally processed carrots. Sensory analyses were carried out showing no significant difference (p < 0.05) between curcumin microcrystal-treated carrots and non-treated carrots in triangular and tetrahedral discriminative tests. Sensory tests also showed that curcumin microcrystals could be added as a natural preservative in minimally processed carrots without causing noticeable differences that could be detected by the consumer. One may conclude that the analyses of the minimally processed carrots demonstrated that curcumin microcrystals are a suitable natural compound to inhibit the natural microbiota of carrots from a statistical point of view.

  5. Action-based touch observation in adults with high functioning autism: Can compromised self-other distinction abilities link social and sensory everyday problems?

    PubMed

    Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel

    2017-02-01

    Next to social problems, individuals with autism spectrum disorder (ASD) often report severe sensory difficulties. Altered processing of touch is however a stronger mediator of social symptoms' severity than altered processing of for instance vision or audition. Why is this the case? We reasoned that sensory difficulties may be linked to social problems in ASD through insufficient self-other distinction centred on touch. We investigated by means of EEG whether the brain of adults with ASD adequately signals when a tactile consequence of an observed action does not match own touch, as compared to the brain of matched controls. We employed the action-based somatosensory congruency paradigm. Participants observed a human or wooden hand touching a surface, combined with a tap-like tactile sensation that either matched or mismatched the tactile consequence of the observed movement. The ASD group showed a diminished congruency effect for human hands only in the P3-complex, suggesting difficulties with signalling observed action-based touch of others that does not match own touch experiences. Crucially, this effect reliably correlated with self-reported social and sensory everyday difficulties in ASD. The findings might denote a novel theoretical link between sensory and social impairments in the autism spectrum. © The Author (2016). Published by Oxford University Press.

  6. Action-based touch observation in adults with high functioning autism: Can compromised self-other distinction abilities link social and sensory everyday problems?

    PubMed Central

    Wiersema, Jan R.; Brass, Marcel

    2017-01-01

    Abstract Next to social problems, individuals with autism spectrum disorder (ASD) often report severe sensory difficulties. Altered processing of touch is however a stronger mediator of social symptoms’ severity than altered processing of for instance vision or audition. Why is this the case? We reasoned that sensory difficulties may be linked to social problems in ASD through insufficient self-other distinction centred on touch. We investigated by means of EEG whether the brain of adults with ASD adequately signals when a tactile consequence of an observed action does not match own touch, as compared to the brain of matched controls. We employed the action-based somatosensory congruency paradigm. Participants observed a human or wooden hand touching a surface, combined with a tap-like tactile sensation that either matched or mismatched the tactile consequence of the observed movement. The ASD group showed a diminished congruency effect for human hands only in the P3-complex, suggesting difficulties with signalling observed action-based touch of others that does not match own touch experiences. Crucially, this effect reliably correlated with self-reported social and sensory everyday difficulties in ASD. The findings might denote a novel theoretical link between sensory and social impairments in the autism spectrum. PMID:27613781

  7. Disruption in the autophagic process underlies the sensory neuropathy in dystonia musculorum mice.

    PubMed

    Ferrier, Andrew; De Repentigny, Yves; Lynch-Godrei, Anisha; Gibeault, Sabrina; Eid, Walaa; Kuo, Daniel; Zha, Xiaohui; Kothary, Rashmi

    2015-01-01

    A homozygous mutation in the DST (dystonin) gene causes a newly identified lethal form of hereditary sensory and autonomic neuropathy in humans (HSAN-VI). DST loss of function similarly leads to sensory neuron degeneration and severe ataxia in dystonia musculorum (Dst(dt)) mice. DST is involved in maintaining cytoskeletal integrity and intracellular transport. As autophagy is highly reliant upon stable microtubules and motor proteins, we assessed the influence of DST loss of function on autophagy using the Dst(dt-Tg4) mouse model. Electron microscopy (EM) revealed an accumulation of autophagosomes in sensory neurons from these mice. Furthermore, we demonstrated that the autophagic flux was impaired. Levels of LC3-II, a marker of autophagosomes, were elevated. Consequently, Dst(dt-Tg4) sensory neurons displayed impaired protein turnover of autophagosome substrate SQTSM1/p62 and of polyubiquitinated proteins. Interestingly, in a previously described Dst(dt-Tg4) mouse model that is partially rescued by neuronal specific expression of the DST-A2 isoform, autophagosomes, autolysosomes, and damaged organelles were reduced when compared to Dst(dt-Tg4) mutant mice. LC3-II, SQTSM1, polyubiquitinated proteins and autophagic flux were also restored to wild-type levels in the rescued mice. Finally, a significant decrease in DNAIC1 (dynein, axonemal, intermediate chain 1; the mouse ortholog of human DNAI1), a member of the DMC (dynein/dynactin motor complex), was noted in Dst(dt-Tg4) dorsal root ganglia and sensory neurons. Thus, DST-A2 loss of function perturbs late stages of autophagy, and dysfunctional autophagy at least partially underlies Dst(dt) pathogenesis. We therefore conclude that the DST-A2 isoform normally facilitates autophagy within sensory neurons to maintain cellular homeostasis.

  8. Effect of processing methods on nutritional, sensory, and physicochemical characteristics of biofortified bean flour.

    PubMed

    Nkundabombi, Marie Grace; Nakimbugwe, Dorothy; Muyonga, John H

    2016-05-01

    Common beans (Phaseolus vulgaris L.) are rich nutritious and affordable by vulnerable groups, thus a good choice for biofortification to address malnutrition. However, increasing micronutrients content of beans, without improving micronutrients bioavailability will not improve the micronutrients status of consumers. Effect of different processing methods on the physicochemical characteristics of biofortified bean flour was determined. Processing methods used in this study were malting (48 h), roasting (170°C/45 min), and extrusion cooking using a twin screw extruder with three heating sections, the first set at 60°C, the second at 130°C, and the last one at 150°C. The screw was set at a speed of 35 Hz (123g) and bean flour moisture content was 15%. Mineral extractability, in vitro protein digestibility, pasting properties, and sensory acceptability of porridge and sauce from processed flour were determined. All processing methods significantly increased (P < 0.05) mineral extractability, iron from 38.9% to 79.5% for K131 and from 40.7% to 83.4% for ROBA1, in vitro protein digestibility from 58.2% to 82% for ROBA1 and from 56.2% to 79% for K131. Pasting viscosities of both bean varieties reduced with processing. There was no significant difference (P < 0.05) between sensory acceptability of porridge or sauce from extruded biofortified bean flour and malted/roasted biofortified bean flour. Acceptability was also not affected by the bean variety used. Mineral bioavailability and in vitro protein digestibility increased more for extruded flour than for malted/roasted flours. Sauce and porridge prepared from processed biofortified bean flour had lower viscosity (extruded flour had the lowest viscosity), thus higher nutrient and energy density than those prepared from unprocessed biofortified bean flour. Estimated nutritional contribution of sauce and porridge made from processed ROBA1 flour to daily requirement of children below 5 years and women of

  9. Effect of sous vide processing on physicochemical, ultrastructural, microbial and sensory changes in vacuum packaged chicken sausages.

    PubMed

    Naveena, B M; Khansole, Panjab S; Shashi Kumar, M; Krishnaiah, N; Kulkarni, Vinayak V; Deepak, S J

    2017-01-01

    The processing of sous vide chicken sausages was optimized under vacuum packaging condition and cooking at 100 ℃ for 30 min (SV30), 60 min (SV60) and 120 min (SV120) and compared with aerobically cooked control at 100 ℃ for 30 min. Sous vide processing of chicken sausages (SV30) produced higher (p < 0.05) cooking yield, Hunterlab a* values and sensory attributes without affecting proximate composition and shear force values relative to control. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis and scanning electron microscopy results revealed no significant changes in protein quality and emulsion ultra-structure due to SV30 processing relative to control sausages. Sous vide processing of chicken sausages enriched with rosemary diterpene phenols retained the freshness and quality up to 120 days during storage at 4 ± 1 ℃ relative to control sausages that were spoiled on 20th day. Lipid oxidation and microbial growth remained below the spoilage levels for all the SV-processed sausages throughout the storage and addition of rosemary diterpene mixture at 0.02% v/w reduced the microbial growth and improved (p < 0.05) the sensory attributes. Our results demonstrate that sous vide processing minimizes lipid oxidation and microbial growth of chicken sausages with improved product quality and shelf-life at 4 ± 1 ℃. © The Author(s) 2016.

  10. Perceptual Decisions in the Presence of Relevant and Irrelevant Sensory Evidence

    PubMed Central

    Anders, Ursula M.; McLean, Charlotte S.; Ouyang, Bowen; Ditterich, Jochen

    2017-01-01

    Perceptual decisions in the presence of decision-irrelevant sensory information require a selection of decision-relevant sensory evidence. To characterize the mechanism that is responsible for separating decision-relevant from irrelevant sensory information we asked human subjects to make judgments about one of two simultaneously present motion components in a random dot stimulus. Subjects were able to ignore the decision-irrelevant component to a large degree, but their decisions were still influenced by the irrelevant sensory information. Computational modeling revealed that this influence was not simply the consequence of subjects forgetting at times which stimulus component they had been instructed to base their decision on. Instead, residual irrelevant information always seems to be leaking through, and the decision process is captured by a net sensory evidence signal being accumulated to a decision threshold. This net sensory evidence is a linear combination of decision-relevant and irrelevant sensory information. The selection process is therefore well-described by a strong linear gain modulation, which, in our experiment, resulted in the relevant sensory evidence having at least 10 times more impact on the decision than the irrelevant evidence. PMID:29176941

  11. Perceptual Decisions in the Presence of Relevant and Irrelevant Sensory Evidence.

    PubMed

    Anders, Ursula M; McLean, Charlotte S; Ouyang, Bowen; Ditterich, Jochen

    2017-01-01

    Perceptual decisions in the presence of decision-irrelevant sensory information require a selection of decision-relevant sensory evidence. To characterize the mechanism that is responsible for separating decision-relevant from irrelevant sensory information we asked human subjects to make judgments about one of two simultaneously present motion components in a random dot stimulus. Subjects were able to ignore the decision-irrelevant component to a large degree, but their decisions were still influenced by the irrelevant sensory information. Computational modeling revealed that this influence was not simply the consequence of subjects forgetting at times which stimulus component they had been instructed to base their decision on. Instead, residual irrelevant information always seems to be leaking through, and the decision process is captured by a net sensory evidence signal being accumulated to a decision threshold. This net sensory evidence is a linear combination of decision-relevant and irrelevant sensory information. The selection process is therefore well-described by a strong linear gain modulation, which, in our experiment, resulted in the relevant sensory evidence having at least 10 times more impact on the decision than the irrelevant evidence.

  12. Sensory integration: neuronal filters for polarized light patterns.

    PubMed

    Krapp, Holger G

    2014-09-22

    Animal and human behaviour relies on local sensory signals that are often ambiguous. A new study shows how tuning neuronal responses to celestial cues helps locust navigation, demonstrating a common principle of sensory information processing: the use of matched filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Multiscale neural connectivity during human sensory processing in the brain

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.

    2018-05-01

    Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.

  14. The functional BDNF Val66Met polymorphism affects functions of pre-attentive visual sensory memory processes.

    PubMed

    Beste, Christian; Schneider, Daniel; Epplen, Jörg T; Arning, Larissa

    2011-01-01

    The brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in nerve growth and survival. Especially, a single nucleotide polymorphism (SNP) in the BDNF gene, Val66Met, has gained a lot of attention, because of its effect on activity-dependent BDNF secretion and its link to impaired memory processes. We hypothesize that the BDNF Val66Met polymorphism may have modulatory effects on the visual sensory (iconic) memory performance. Two hundred and eleven healthy German students (106 female and 105 male) were included in the data analysis. Since BDNF is also discussed to be involved in the pathogenesis of depression, we additionally tested for possible interactions with depressive mood. The BDNF Val66Met polymorphism significantly influenced iconic-memory performance, with the combined Val/Met-Met/Met genotype group revealing less time stability of information stored in iconic memory than the Val/Val group. Furthermore, this stability was positively correlated with depressive mood exclusively in the Val/Val genotype group. Thus, these results show that the BDNF Val66Met polymorphism has an effect on pre-attentive visual sensory memory processes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    PubMed

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Outcomes of short-gap sensory nerve injuries reconstructed with processed nerve allografts from a multicenter registry study.

    PubMed

    Rinker, Brian D; Ingari, John V; Greenberg, Jeffrey A; Thayer, Wesley P; Safa, Bauback; Buncke, Gregory M

    2015-06-01

    Short-gap digital nerve injuries are a common surgical problem, but the optimal treatment modality is unknown. A multicenter database was queried and analyzed to determine the outcomes of nerve gap reconstructions between 5 and 15 mm with processed nerve allograft. The current RANGER registry is designed to continuously monitor and compile injury, repair, safety, and outcomes data. Centers followed their own standard of care for treatment and follow-up. The database was queried for digital nerve injuries with a gap between 5 and 15 mm reporting sufficient follow-up data to complete outcomes analysis. Available quantitative outcome measures were reviewed and reported. Meaningful recovery was defined by the Medical Research Council Classification (MRCC) scale at S3-S4 for sensory function. Sufficient follow-up data were available for 24 subjects (37 repairs) in the prescribed gap range. Mean age was 43 years (range, 23-81). Mean gap was 11 ± 3 (5-15) mm. Time to repair was 13 ± 42 (0-215) days. There were 25 lacerations, 8 avulsion/amputations, 2 gunshots, 1 crush injury, and 1 injury of unknown mechanism. Meaningful recovery, defined as S3-S4 on the MRCC scales, was reported in 92% of repairs. Sensory recovery of S3+ or S4 was observed in 84% of repairs. Static 2PD was 7.1 ± 2.9 mm (n = 19). Return to light touch was observed in 23 out of 32 repairs reporting Semmes-Weinstein monofilament outcomes (SWMF). There were no reported nerve adverse events. Sensory outcomes for processed nerve allografts were equivalent to historical controls for nerve autograft and exceed those of conduit. Processed nerve allografts provide an effective solution for short-gap digital nerve reconstructions. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Dynamic combination of sensory and reward information under time pressure

    PubMed Central

    Farashahi, Shiva; Kao, Chang-Hao

    2018-01-01

    When making choices, collecting more information is beneficial but comes at the cost of sacrificing time that could be allocated to making other potentially rewarding decisions. To investigate how the brain balances these costs and benefits, we conducted a series of novel experiments in humans and simulated various computational models. Under six levels of time pressure, subjects made decisions either by integrating sensory information over time or by dynamically combining sensory and reward information over time. We found that during sensory integration, time pressure reduced performance as the deadline approached, and choice was more strongly influenced by the most recent sensory evidence. By fitting performance and reaction time with various models we found that our experimental results are more compatible with leaky integration of sensory information with an urgency signal or a decision process based on stochastic transitions between discrete states modulated by an urgency signal. When combining sensory and reward information, subjects spent less time on integration than optimally prescribed when reward decreased slowly over time, and the most recent evidence did not have the maximal influence on choice. The suboptimal pattern of reaction time was partially mitigated in an equivalent control experiment in which sensory integration over time was not required, indicating that the suboptimal response time was influenced by the perception of imperfect sensory integration. Meanwhile, during combination of sensory and reward information, performance did not drop as the deadline approached, and response time was not different between correct and incorrect trials. These results indicate a decision process different from what is involved in the integration of sensory information over time. Together, our results not only reveal limitations in sensory integration over time but also illustrate how these limitations influence dynamic combination of sensory and reward

  18. The Inversion of Sensory Processing by Feedback Pathways: A Model of Visual Cognitive Functions.

    ERIC Educational Resources Information Center

    Harth, E.; And Others

    1987-01-01

    Explains the hierarchic structure of the mammalian visual system. Proposes a model in which feedback pathways serve to modify sensory stimuli in ways that enhance and complete sensory input patterns. Investigates the functioning of the system through computer simulations. (ML)

  19. Examining Sensory Modulation in Individuals with Autism as Compared to Community Controls

    ERIC Educational Resources Information Center

    Kern, Janet K.; Garver, Carolyn R.; Carmody, Thomas; Andrews, Alonzo A.; Mehta, Jyutika A.; Trivedi, Madhukar H.

    2008-01-01

    The purpose of the study was to examine sensory modulation items on the Sensory Profile in individuals with autism as compared to community controls. The data for this study were collected as part of a cross-sectional study that examined sensory processing, using the Sensory Profile, in 103 individuals with autism and/or pervasive developmental…

  20. Sensory shelf life estimation of minimally processed lettuce considering two stages of consumers' decision-making process.

    PubMed

    Ares, Gastón; Giménez, Ana; Gámbaro, Adriana

    2008-01-01

    The aim of the present work was to study the influence of context, particularly the stage of the decision-making process (purchase vs consumption stage), on sensory shelf life of minimally processed lettuce. Leaves of butterhead lettuce were placed in common polypropylene bags and stored at 5, 10 and 15 degrees C. Periodically, a panel of six assessors evaluated the appearance of the samples, and a panel of 40 consumers evaluated their appearance and answered "yes" or "no" to the questions: "Imagine you are in a supermarket, you want to buy a minimally processed lettuce, and you find a package of lettuce with leaves like this, would you normally buy it?" and "Imagine you have this leaf of lettuce stored in your refrigerator, would you normally consume it?". Survival analysis was used to calculate the shelf lives of minimally processed lettuce, considering both decision-making stages. Shelf lives estimated considering rejection to purchase were significantly lower than those estimated considering rejection to consume. Therefore, in order to be conservative and assure the products' quality, shelf life should be estimated considering consumers' rejection to purchase instead of rejection to consume, as traditionally has been done. On the other hand, results from logistic regressions of consumers' rejection percentage as a function of the evaluated appearance attributes suggested that consumers considered them differently while deciding whether to purchase or to consume minimally processed lettuce.

  1. Mapping sensory circuits by anterograde trans-synaptic transfer of recombinant rabies virus

    PubMed Central

    Zampieri, Niccolò; Jessell, Thomas M.; Murray, Andrew J.

    2014-01-01

    Summary Primary sensory neurons convey information from the external world to relay circuits within the central nervous system (CNS), but the identity and organization of the neurons that process incoming sensory information remains sketchy. Within the CNS viral tracing techniques that rely on retrograde trans-synaptic transfer provide a powerful tool for delineating circuit organization. Viral tracing of the circuits engaged by primary sensory neurons has, however, been hampered by the absence of a genetically tractable anterograde transfer system. In this study we demonstrate that rabies virus can infect sensory neurons in the somatosensory system, is subject to anterograde trans-synaptic transfer from primary sensory to spinal target neurons, and can delineate output connectivity with third-order neurons. Anterograde trans-synaptic transfer is a feature shared by other classes of primary sensory neurons, permitting the identification and potentially the manipulation of neural circuits processing sensory feedback within the mammalian CNS. PMID:24486087

  2. Association of visual sensory function and higher order visual processing skills with incident driving cessation

    PubMed Central

    Huisingh, Carrie; McGwin, Gerald; Owsley, Cynthia

    2017-01-01

    Background Many studies on vision and driving cessation have relied on measures of sensory function, which are insensitive to the higher order cognitive aspects of visual processing. The purpose of this study was to examine the association between traditional measures of visual sensory function and higher order visual processing skills with incident driving cessation in a population-based sample of older drivers. Methods Two thousand licensed drivers aged ≥70 were enrolled and followed-up for three years. Tests for central vision and visual processing were administered at baseline and included visual acuity, contrast sensitivity, sensitivity in the driving visual field, visual processing speed (Useful Field of View (UFOV) Subtest 2 and Trails B), and spatial ability measured by the Visual Closure Subtest of the Motor-free Visual Perception Test. Participants self-reported the month and year of driving cessation and provided a reason for cessation. Cox proportional hazards models were used to generate crude and adjusted hazard ratios with 95% confidence intervals between visual functioning characteristics and risk of driving cessation over a three-year period. Results During the study period, 164 participants stopped driving which corresponds to a cumulative incidence of 8.5%. Impaired contrast sensitivity, visual fields, visual processing speed (UFOVand Trails B), and spatial ability were significant risk factors for subsequent driving cessation after adjusting for age, gender, marital status, number of medical conditions, and miles driven. Visual acuity impairment was not associated with driving cessation. Medical problems (63%), specifically musculoskeletal and neurological problems, as well as vision problems (17%) were cited most frequently as the reason for driving cessation. Conclusion Assessment of cognitive and visual functioning can provide useful information about subsequent risk of driving cessation among older drivers. In addition, a variety of

  3. The effects of multiple antimicrobial interventions on processing, lipid, textural, instrumental color and sensory characteristics when used in a ground beef patty production system.

    PubMed

    Jimenez-Villarreal, J R; Pohlman, F W; Johnson, Z B; Brown, A H

    2003-11-01

    The impact of multiple antimicrobial interventions on ground beef processing, lipid, textural, instrumental color and sensory characteristics were evaluated. Beef trimmings were treated with 0.5% cetylpyridinium chloride followed by 10% trisodium phosphate (CT), 200-ppm chlorine dioxide followed by 0.5% cetylpyridinium chloride (CLC), 200-ppm chlorine dioxide followed by 10% trisodium phosphate (CLT), or 2% lactic acid followed by 0.5% cetylpyridinium chloride (LC) and compared to an untreated control (C). Sensory panelists found LC and CT treatments similar (P>0.05) in grinding ability to C. By day 2 of display, CT, CLT and LC patties were redder (a(∗); P<0.05) than C. Sensory panelists found CT patties redder (P<0.05) than C by day 2 of display. Sensory panelists found CT and CLT juicier than C. Therefore, the use of these multiple antimicrobial intervention agents on beef trimmings may improve sensory characteristics and shelf-life of ground beef patties.

  4. Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3.

    PubMed

    Kornak, Uwe; Mademan, Inès; Schinke, Marte; Voigt, Martin; Krawitz, Peter; Hecht, Jochen; Barvencik, Florian; Schinke, Thorsten; Gießelmann, Sebastian; Beil, F Timo; Pou-Serradell, Adolf; Vílchez, Juan J; Beetz, Christian; Deconinck, Tine; Timmerman, Vincent; Kaether, Christoph; De Jonghe, Peter; Hübner, Christian A; Gal, Andreas; Amling, Michael; Mundlos, Stefan; Baets, Jonathan; Kurth, Ingo

    2014-03-01

    Many neurodegenerative disorders present with sensory loss. In the group of hereditary sensory and autonomic neuropathies loss of nociception is one of the disease hallmarks. To determine underlying factors of sensory neurodegeneration we performed whole-exome sequencing in affected individuals with the disorder. In a family with sensory neuropathy with loss of pain perception and destruction of the pedal skeleton we report a missense mutation in a highly conserved amino acid residue of atlastin GTPase 3 (ATL3), an endoplasmic reticulum-shaping GTPase. The same mutation (p.Tyr192Cys) was identified in a second family with similar clinical outcome by screening a large cohort of 115 patients with hereditary sensory and autonomic neuropathies. Both families show an autosomal dominant pattern of inheritance and the mutation segregates with complete penetrance. ATL3 is a paralogue of ATL1, a membrane curvature-generating molecule that is involved in spastic paraplegia and hereditary sensory neuropathy. ATL3 proteins are enriched in three-way junctions, branch points of the endoplasmic reticulum that connect membranous tubules to a continuous network. Mutant ATL3 p.Tyr192Cys fails to localize to branch points, but instead disrupts the structure of the tubular endoplasmic reticulum, suggesting that the mutation exerts a dominant-negative effect. Identification of ATL3 as novel disease-associated gene exemplifies that long-term sensory neuronal maintenance critically depends on the structural organisation of the endoplasmic reticulum. It emphasizes that alterations in membrane shaping-proteins are one of the major emerging pathways in axonal degeneration and suggests that this group of molecules should be considered in neuroprotective strategies.

  5. A transfer of technology from engineering: use of ROC curves from signal detection theory to investigate information processing in the brain during sensory difference testing.

    PubMed

    Wichchukit, Sukanya; O'Mahony, Michael

    2010-01-01

    This article reviews a beneficial effect of technology transfer from Electrical Engineering to Food Sensory Science. Specifically, it reviews the recent adoption in Food Sensory Science of the receiver operating characteristic (ROC) curve, a tool that is incorporated in the theory of signal detection. Its use allows the information processing that takes place in the brain during sensory difference testing to be studied and understood. The review deals with how Signal Detection Theory, also called Thurstonian modeling, led to the adoption of a more sophisticated way of analyzing the data from sensory difference tests, by introducing the signal-to-noise ratio, d', as a fundamental measure of perceived small sensory differences. Generally, the method of computation of d' is a simple matter for some of the better known difference tests like the triangle, duo-trio and 2-AFC. However, there are occasions when these tests are not appropriate and other tests like the same-different and the A Not-A test are more suitable. Yet, for these, it is necessary to understand how the brain processes information during the test before d' can be computed. It is for this task that the ROC curve has a particular use. © 2010 Institute of Food Technologists®

  6. Analysis of the Sensory Profile in Children with Smith-Magenis Syndrome

    ERIC Educational Resources Information Center

    Hildenbrand, Hanna L.; Smith, Ann C. M.

    2012-01-01

    This study systematically assessed sensory processing in 34 children, aged 3-14 years, with Smith-Magenis syndrome (SMS) using the Sensory Profile Caregiver Questionnaire. Scores for the SMS cohort were significantly different from scores of the national sample of children with and without disabilities in all Sensory Profile categories and…

  7. Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons.

    PubMed

    Tsujikawa, Motokazu; Malicki, Jarema

    2004-06-10

    Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells.

  8. Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R

    2016-09-21

    The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and

  9. Altered visual sensory fusion in children with reading difficulties.

    PubMed

    González-Castro, P; Rodríguez, C; Núñez, J C; Vallejo, G; González-Pienda, J A

    2014-12-01

    Reading is a multi-sensory and multi-cognitive task, and its difficulties (e.g., dyslexia) are not a unitary disorder. There are probably a variety of manifestations that relate to the actual site of impairment. A randomized, pre-test/post-test nonequivalent-groups design was conducted over 4 months with three groups aged between 6 and 8 years. One group comprised 76 participants (34 boys, 42 girls) with reading difficulties and altered sensory fusion (RD+ASF), a second group was made up of 123 students (59 boys, 64 girls) with reading difficulties but without altered sensory fusion (RD), and a third group comprised 81 participants (39 boys, 42 girls) who were young readers (RL) without reading delay, paired with the RD group on reading level. The experimental groups received intervention in the skills of control, stimulus recognition, and phonological awareness during a 4-month period. Both pre-test and post-test measures of errors in reading mechanics and reading routes (word and pseudo-word) were obtained. Poorer results in mechanics and reading routes of the RD+ASF group suggest that the effectiveness of the intervention depended on the characteristics of the groups and on the presence of sensory fusion deficits in the RD students.

  10. Beliefs about the Minds of Others Influence How We Process Sensory Information

    PubMed Central

    Prosser, Aaron; Müller, Hermann J.

    2014-01-01

    Attending where others gaze is one of the most fundamental mechanisms of social cognition. The present study is the first to examine the impact of the attribution of mind to others on gaze-guided attentional orienting and its ERP correlates. Using a paradigm in which attention was guided to a location by the gaze of a centrally presented face, we manipulated participants' beliefs about the gazer: gaze behavior was believed to result either from operations of a mind or from a machine. In Experiment 1, beliefs were manipulated by cue identity (human or robot), while in Experiment 2, cue identity (robot) remained identical across conditions and beliefs were manipulated solely via instruction, which was irrelevant to the task. ERP results and behavior showed that participants' attention was guided by gaze only when gaze was believed to be controlled by a human. Specifically, the P1 was more enhanced for validly, relative to invalidly, cued targets only when participants believed the gaze behavior was the result of a mind, rather than of a machine. This shows that sensory gain control can be influenced by higher-order (task-irrelevant) beliefs about the observed scene. We propose a new interdisciplinary model of social attention, which integrates ideas from cognitive and social neuroscience, as well as philosophy in order to provide a framework for understanding a crucial aspect of how humans' beliefs about the observed scene influence sensory processing. PMID:24714419

  11. Neural Mechanisms of Qigong Sensory Training Massage for Children With Autism Spectrum Disorder: A Feasibility Study.

    PubMed

    Jerger, Kristin K; Lundegard, Laura; Piepmeier, Aaron; Faurot, Keturah; Ruffino, Amanda; Jerger, Margaret A; Belger, Aysenil

    2018-01-01

    Despite the enormous prevalence of autism spectrum disorder (ASD), its global impact has yet to be realized. Millions of families worldwide need effective treatments to help them get through everyday challenges like eating, sleeping, digestion, and social interaction. Qigong Sensory Training (QST) is a nonverbal, parent-delivered intervention recently shown to be effective at reducing these everyday challenges in children with ASD. This study tested the feasibility of a protocol for investigating QST's neural mechanism. During a single visit, 20 children, 4- to 7-year-old, with ASD viewed images of emotional faces before and after receiving QST or watching a video (controls). Heart rate variability was recorded throughout the visit, and power in the high frequency band (0.15-0.4 Hz) was calculated to estimate parasympathetic tone in 5-s nonoverlapping windows. Cerebral oximetry of prefrontal cortex was recorded during rest and while viewing emotional faces. 95% completion rate and 7.6% missing data met a priori standards confirming protocol feasibility for future studies. Preliminary data suggest: (1) during the intervention, parasympathetic tone increased more in children receiving massage (M = 2.9, SD = 0.3) versus controls (M = 2.5, SD = 0.5); (2) while viewing emotional faces post-intervention, parasympathetic tone was more affected (reduced) in the massage group ( p  = 0.036); and (3) prefrontal cortex response to emotional faces was greater after massage compared to controls. These results did not reach statistical significance in this small study powered to test feasibility. This study demonstrates solid protocol feasibility. If replicated in a larger sample, these findings would provide important clues to the neural mechanism of action underlying QST's efficacy for improving sensory, social, and communication difficulties in children with autism.

  12. Cortical variability in the sensory-evoked response in autism

    PubMed Central

    Haigh, Sarah M.; Heeger, David J.; Dinstein, Ilan; Minshew, Nancy; Behrmann, Marlene

    2016-01-01

    Previous findings have shown that individuals with autism spectrum disorder (ASD) evince greater intra-individual variability (IIV) in their sensory-evoked fMRI responses compared to typical control participants. We explore the robustness of this finding with a new sample of high-functioning adults with autism. Participants were presented with visual, somatosensory and auditory stimuli in the scanner whilst they completed a one-back task. While ASD and control participants were statistically indistinguishable with respect to behavioral responses, the new ASD group exhibited greater IIV relative to controls. We also show that the IIV was equivalent across hemispheres and remained stable over the duration of the experiment. This suggests that greater cortical IIV may be a replicable characteristic of sensory systems in autism. PMID:25326820

  13. Participation of primary motor cortex area 4a in complex sensory processing: 3.0-T fMRI study.

    PubMed

    Terumitsu, Makoto; Ikeda, Kotaro; Kwee, Ingrid L; Nakada, Tsutomu

    2009-05-06

    The precise movement of human fingers requires continuous and reciprocal interaction between motor and sensory systems. Similar to other primates, there is double representation of the digits and wrists within the human primary motor cortex (M1), which are generally referred to as area 4 anterior (M1-4a) and area 4 posterior (M1-4p). In this high-field (3.0 T) functional magnetic resonance imaging (fMRI) study, we hypothesized that M1-4p is more important for initiation of motion, whereas M1-4a is important for execution of a given motion involving more complex sensoriomotor interaction. We investigated M1-4a and M1-4p activation associated with two representative motor tasks, namely, finger tapping (voluntary motion, VM) and passive finger movement accomplished by continuous pressure (passive motor, PM), and two representative sensory stimulations, namely, simple stimulation of flutter vibration (simple sensory, SS), and complex stimulation by a row of pins moving either vertically or horizontally (complex sensory, CS). Both M1-4a and M1-4p were activated in both motor tasks, VM and PM. M1-4p was not activated by either of the two sensory tasks, whereas M1-4a was activated by CS but not by SS. Analysis of the center of gravities (COG) of the activated areas showed that VM and PM moved COG towards M1-4p and 3a. SS moved COG towards somatosensory cortex Brodmann areas 1, 2, and 3b, whereas CS towards M1-4a. The result clearly showed that M1-4a represents the area of secondary motor execution, which actively participates in CS processing.

  14. Designing sensory-substitution devices: Principles, pitfalls and potential1

    PubMed Central

    Kristjánsson, Árni; Moldoveanu, Alin; Jóhannesson, Ómar I.; Balan, Oana; Spagnol, Simone; Valgeirsdóttir, Vigdís Vala; Unnthorsson, Rúnar

    2016-01-01

    An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object. PMID:27567755

  15. Designing sensory-substitution devices: Principles, pitfalls and potential1.

    PubMed

    Kristjánsson, Árni; Moldoveanu, Alin; Jóhannesson, Ómar I; Balan, Oana; Spagnol, Simone; Valgeirsdóttir, Vigdís Vala; Unnthorsson, Rúnar

    2016-09-21

    An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object.

  16. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study

    PubMed Central

    Brownstone, Robert M.

    2015-01-01

    Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740

  17. Processing Speed in Children with Clinical Disorders

    ERIC Educational Resources Information Center

    Calhoun, Susan L.; Mayes, Susan Dickerson

    2005-01-01

    The Processing Speed Index (PSI) was first introduced on the Wechsler Intelligence Scale, Third Edition (WISC-III; D. Wechsler, 1991), and little is known about its clinical significance. In a referred sample (N = 980), children with neurological disorders (ADHD, autism, bipolar disorder, and LD) had mean PSI and Freedom from Distractibility Index…

  18. Analysis of the sensory profile in children with Smith-Magenis syndrome.

    PubMed

    Hildenbrand, Hanna L; Smith, Ann C M

    2012-02-01

    This study systematically assessed sensory processing in 34 children, aged 3-14 years, with Smith-Magenis syndrome (SMS) using the Sensory Profile Caregiver Questionnaire. Scores for the SMS cohort were significantly different from scores of the national sample of children with and without disabilities in all Sensory Profile categories and quadrants (p < .001). No main effects of age or gender were found, but an interaction effect of age by gender was found in Modulation of Sensory Input Affecting Emotional Responses, in which older females presented with the lowest scores. A significant decline over time was found in the Seeking pattern, reflecting increased vulnerability (p < .05). Nonsignificant trends suggest more vulnerabilities for older versus younger children, especially older females. The neurobehavioral phenotype in children with SMS is expanded by this description of sensory processing. How children with SMS experience and respond to everyday sensations informs multidisciplinary team decisions.

  19. Preservation of raw milk with CO2. Sensory evaluation of heat-processed milks.

    PubMed

    Amigo, L; Olano, A; Calvo, M M

    1995-04-01

    The effect of CO2 on the growth of psychrotrophic milk spoilage organisms was studied, both in raw fresh milk and in pure cultures of three species of Pseudomonas growing in sterilised milk. Changes of sensory properties of CO2-treated samples after heat treatment were also analysed. Inhibition of psychrotrophic growth at 7 degrees C in milk treated with CO2 to a pH 6.2 or 6.0 was impaired by a gradual reduction of the CO2 content during storage. Growth inhibition was considerably improved by pH adjustment at 24-h intervals. Sensory analysis showed significant differences between non-acidified and acidified samples after heat treatment at 75 degrees C for 20 s or 110 degrees C for 5 min. No sensory differences were found between non-acidified and acidified milks degassed before heat treatment.

  20. TACTILE RESPONSIVENESS PATTERNS AND THEIR ASSOCIATION WITH CORE FEATURES IN AUTISM SPECTRUM DISORDERS

    PubMed Central

    Foss-Feig, Jennifer H.; Heacock, Jessica L.; Cascio, Carissa J.

    2011-01-01

    Autism spectrum disorders (ASD) are often associated with aberrant responses to sensory stimuli, which are thought to contribute to the social, communication, and repetitive behavior deficits that define ASD. However, there are few studies that separate aberrant sensory responses by individual sensory modality to assess modality-specific associations between sensory features and core symptoms. Differences in response to tactile stimuli are prevalent in ASD, and tactile contact early in infancy is a foundation for the development of social and communication skills affected by ASD. We assessed the association between three aberrant patterns of tactile responsiveness (hyper-responsiveness, hypo-responsiveness, sensory seeking) and core symptoms of ASD. Both sensory and core features were measured with converging methods including both parent-report and direct observation. Our results demonstrate that for the tactile modality, sensory hypo-responsiveness correlates strongly with increased social and communication impairments, and to a lesser degree, repetitive behaviors. Sensory seeking was found to correlate strongly with social impairment, nonverbal communication impairment, and repetitive behaviors. Surprisingly, tactile hyper-responsiveness did not significantly correlate with any core features of ASD. This differential association between specific tactile processing patterns and core features provides an important step in defining the significance of sensory symptoms in ASD, and may be useful in the development of sensory–based approaches for early detection and intervention. PMID:22059092

  1. Flavor characteristics of the juices from fresh market tomatoes differentiated from those from processing tomatoes by combined analysis of volatile profiles with sensory evaluation.

    PubMed

    Iijima, Yoko; Iwasaki, Yumi; Otagiri, Yuji; Tsugawa, Hiroshi; Sato, Tsuneo; Otomo, Hiroe; Sekine, Yukio; Obata, Akio

    2016-12-01

    Various commercial tomato juices with different flavors are available at markets worldwide. To clarify the marker compounds related to the flavor characteristics of tomato juice, we analyzed 15 pure commercial tomato juices by a combination of volatile profiling and sensory evaluation. The correlations among volatiles and the relationship between volatiles and sensory descriptors were elucidated by multivariate analyses. Consequently, the tomato juices made from fresh market tomatoes (including the popular Japanese tomato variety "Momotaro") were clearly separated from other juices made from processing tomatoes, by both the volatile composition and sensory profiles. cis-3-Hexenol, hexanal, and apocarotenoids negatively contributed to the juices from fresh market tomatoes, whereas Strecker aldehydes and furfural showed positive contributions to the juices. Accordingly, the sensory characteristics of juices from fresh market tomatoes were related to cooked and fruity flavors but not to green or fresh notes.

  2. [Guitarist's cramp: management with sensory re-education].

    PubMed

    Chaná-Cuevas, P; Kunstmann-Rioseco, C; Rodríguez-Riquelme, T

    Dystonia is defined as a sustained co-contraction of agonistic and antagonistic muscles that can cause twisting, twitching and abnormal postures. Occupational dystonias are included in a special group of pathologies that are secondary to a repeated effort related to the professional activity carried out by the sufferer, as can occur in guitarists, violinists and trumpet players, for example. Its pathophysiology includes descriptions of disorders affecting the peripheral and central nervous systems. Studies conducted in monkeys have shown that, through sensory stimulation, repeated movements can give rise to central anomalies in the somatosensory cortex, with growth of the receptive fields that are stimulated and deformation of the separations between those fields. We describe the case of a professional guitarist with a seven-year history of symptoms. A neurological examination revealed a co-contraction in the right hand that triggered the extension of the index and little fingers, which made it difficult for him to play his instrument. The patient was submitted to sensory re-education therapy with the use of a splint and a two-month routine of exercises. The response was evaluated using a subjective scale of the patient's symptoms and measurements of the maximum angles of flexion and extension of the affected fingers. Both methods reduced the patient's discomfort and allowed him to exhibit greater skill when playing the guitar. Occupational dystonias produced by repeated stimulation present alterations in the sensory region of the cortex, with the involvement of motor performance that improves with sensory re-education therapy.

  3. Implicit Family Process Rules in Eating-Disordered and Non-Eating-Disordered Families

    ERIC Educational Resources Information Center

    Gillett, Kyle S.; Harper, James M.; Larson, Jeffry H.; Berrett, Michael E.; Hardman, Randy K.

    2009-01-01

    Family environment has been shown to be one of the factors related to the presence of eating disorders among young-adult females. Clinical experience and theories about eating disorders postulate that implicit family rules are an intricate part of family process that may have a great effect on the creation and maintenance of such problems. This…

  4. A Portable Sensory Augmentation Device for Balance Rehabilitation Using Fingertip Skin Stretch Feedback.

    PubMed

    Pan, Yi-Tsen; Yoon, Han U; Hur, P

    2017-01-01

    Neurological disorders are the leading causes of poor balance. Previous studies have shown that biofeedback can compensate for weak or missing sensory information in people with sensory deficits. These biofeedback inputs can be easily recognized and converted into proper information by the central nervous system (CNS), which integrates the appropriate sensorimotor information and stabilizes the human posture. In this study, we proposed a form of cutaneous feedback which stretches the fingertip pad with a rotational contactor, so-called skin stretch. Skin stretch at a fingertip pad can be simply perceived and its small contact area makes it favored for small wearable devices. Taking advantage of skin stretch feedback, we developed a portable sensory augmentation device (SAD) for rehabilitation of balance. SAD was designed to provide postural sway information through additional skin stretch feedback. To demonstrate the feasibility of the SAD, quiet standing on a force plate was evaluated while sensory deficits were simulated. Fifteen healthy young adults were asked to stand quietly under six sensory conditions: three levels of sensory deficits (normal, visual deficit, and visual + vestibular deficits) combined with and without augmented sensation provided by SAD. The results showed that augmented sensation via skin stretch feedback helped subjects correct their posture and balance, especially as the deficit level of sensory feedback increased. These findings demonstrate the potential use of skin stretch feedback in balance rehabilitation.

  5. Creativity and sensory gating indexed by the P50: selective versus leaky sensory gating in divergent thinkers and creative achievers.

    PubMed

    Zabelina, Darya L; O'Leary, Daniel; Pornpattananangkul, Narun; Nusslock, Robin; Beeman, Mark

    2015-03-01

    Creativity has previously been linked with atypical attention, but it is not clear what aspects of attention, or what types of creativity are associated. Here we investigated specific neural markers of a very early form of attention, namely sensory gating, indexed by the P50 ERP, and how it relates to two measures of creativity: divergent thinking and real-world creative achievement. Data from 84 participants revealed that divergent thinking (assessed with the Torrance Test of Creative Thinking) was associated with selective sensory gating, whereas real-world creative achievement was associated with "leaky" sensory gating, both in zero-order correlations and when controlling for academic test scores in a regression. Thus both creativity measures related to sensory gating, but in opposite directions. Additionally, divergent thinking and real-world creative achievement did not interact in predicting P50 sensory gating, suggesting that these two creativity measures orthogonally relate to P50 sensory gating. Finally, the ERP effect was specific to the P50 - neither divergent thinking nor creative achievement were related to later components, such as the N100 and P200. Overall results suggest that leaky sensory gating may help people integrate ideas that are outside of focus of attention, leading to creativity in the real world; whereas divergent thinking, measured by divergent thinking tests which emphasize numerous responses within a limited time, may require selective sensory processing more than previously thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Antidepressants May Mitigate the Effects of Prenatal Maternal Anxiety on Infant Auditory Sensory Gating

    PubMed Central

    Hunter, Sharon K.; Mendoza, Jordan H.; D’Anna, Kimberly; Zerbe, Gary O; McCarthy, LizBeth; Hoffman, Camille; Freedman, Robert; Ross, Randal G.

    2013-01-01

    Objective Prenatal maternal anxiety has detrimental effects on the resulting offspring’s neurocognitive development, including impaired attentional function. Antidepressants are commonly utilized during pregnancy, yet their impact on offspring attention and their interaction with maternal anxiety has not been assessed. Using P50 auditory sensory gating, a putative marker of early attentional processes measurable in young infants, the impact of maternal anxiety and antidepressant use are explored. Method Two hundred forty-two mother-infant dyads were classified relative to maternal history of anxiety and maternal prenatal antidepressant use. Infant P50 auditory sensory gating was recorded during active sleep at a mean± standard deviation of 76 ± 38 days of age. Results In the absence of prenatal antidepressant exposure, infants with mothers with a history of anxiety diagnoses had diminished P50 sensory gating (p<.001). Prenatal antidepressants mitigated the effect of anxiety (uncorrected p=.041). The effect of maternal anxiety was limited to amplitude of response to the second stimulus while antidepressants impacted the amplitude or response to both the first and second stimulus. Conclusion Maternal anxiety disorders are associated less inhibition during infant sensory gating, a performance deficit mitigated by prenatal antidepressant use. This effect may be important in considering the risks and benefits of prenatal antidepressant treatment. Cholinergic mechanisms are hypothesized for both anxiety and antidepressant effects; however the cholinergic receptors involved are likely different for anxiety and antidepressant effects. Additional work focused on understanding how treatment impacts the relationship between maternal prenatal illness and offspring neurocognitive development is indicated. PMID:22581104

  7. [Sensory system development and the physical environment of infants born very preterm].

    PubMed

    Kuhn, P; Zores, C; Astruc, D; Dufour, A; Casper, Ch

    2011-07-01

    The sensory systems develop in several sequences, with a process specific to each system and with a transnatal continuum. This development is based partly on interactions between the fetus and the newborn and their physical and human environments. These interactions are key drivers of the child development. The adaptation of the newborn's environment is crucial for his survival, his well-being and his development, especially if he is born prematurely. The physical environment of the hospital where immature infants are immersed differs greatly from the uterine environment from which they were extracted prematurely. There are discrepancies between their sensory expectations originating in the antenatal period and the atypical stimuli that newborns encounter in their postnatal nosocomial environment. These assertions are valid for all sensory modalities. Many studies have proven that very preterm infants are highly sensitive to this environment which can affect their physiological and behavioural well being. Moreover, it can alter their perception of important human sensory signals, particularly the ones coming from their mother. The long term impacts of this environment are more difficult to identify due to the multi-sensory nature of these stimuli and the multifactorial origin of the neurological disorders that these children may develop. However, the adaptation of their physical environment is one of the corner stones of specific developmental care programs, like the NIDCAP program that has been shown to be successful to improve their short and medium term outcomes. The architectural design, technical equipment and used health-care products, and the strategies and organizations of care are the main determinants of the physical environment of these children. Recommendations for the hospital environment, integrating a newborn's developmental perspective, have been made available. They should be applied more widely and should be completed. Technological equipment

  8. Sensory Over-Responsivity in Adults with Autism Spectrum Conditions

    ERIC Educational Resources Information Center

    Tavassoli, Teresa; Miller, Lucy J.; Schoen, Sarah A.; Nielsen, Darci M.; Baron-Cohen, Simon

    2014-01-01

    Anecdotal reports and empirical evidence suggest that sensory processing issues are a key feature of autism spectrum conditions. This study set out to investigate whether adults with autism spectrum conditions report more sensory over-responsivity than adults without autism spectrum conditions. Another goal of the study was to identify whether…

  9. Motor and sensory function of the esophagus: revelations through ultrasound imaging.

    PubMed

    Mittal, Ravinder K

    2005-04-01

    Catheter based high frequency intraluminal ultrasound (HFIUS) imaging is a powerful tool to study esophageal sensory and motor function and dysfunction in vivo in humans. It has provided a number of important insights into the longitudinal muscle function of the esophagus. Based on the ultrasound images and intraluminal pressure recordings, it is clear that there is synchrony in the timing as well as the amplitude of contraction between the circular and the longitudinal muscle layers of the esophagus in normal subjects. On the other hand, in patients with spastic disorders of the esophagus, there is an asynchrony of contraction related to the timing and amplitude of contraction of the two muscle layers during peristalsis. Achalasia, diffuse esophageal spasm, and nutcracker esophagus (spastic motor disorders of the esophagus) are associated with hypertrophy of the circular as well as longitudinal muscle layers. A sustained contraction of the longitudinal muscle of the esophagus is temporally related to chest pain and heartburn and may very well be the cause of symptoms. Longitudinal muscle function of the esophagus can be studied in vivo in humans using dynamic ultrasound imaging. Longitudinal muscle dysfunction appears to be important in the motor and sensory disorders of the esophagus.

  10. Toward a Best-Practice Protocol for Assessment of Sensory Features in ASD

    ERIC Educational Resources Information Center

    Schaaf, Roseann C.; Lane, Alison E.

    2015-01-01

    Sensory difficulties are a commonly occurring feature of autism spectrum disorders and are now included as one manifestation of the "restricted, repetitive patterns of behavior, interests, or activities" diagnostic criteria of the DSM5 necessitating guidelines for comprehensive assessment of these features. To facilitate the development…

  11. The Role of Sensory Perception, Emotionality and Lifeworld in Auditory Word Processing: Evidence from Congenital Blindness and Synesthesia.

    PubMed

    Papadopoulos, Judith; Domahs, Frank; Kauschke, Christina

    2017-12-01

    Although it has been established that human beings process concrete and abstract words differently, it is still a matter of debate what factors contribute to this difference. Since concrete concepts are closely tied to sensory perception, perceptual experience seems to play an important role in their processing. The present study investigated the processing of nouns during an auditory lexical decision task. Participants came from three populations differing in their visual-perceptual experience: congenitally blind persons, word-color synesthetes, and sighted non-synesthetes. Specifically, three features with potential relevance to concreteness were manipulated: sensory perception, emotionality, and Husserlian lifeworld, a concept related to the inner versus the outer world of the self. In addition to a classical concreteness effect, our results revealed a significant effect of lifeworld: words that are closely linked to the internal states of humans were processed faster than words referring to the outside world. When lifeworld was introduced as predictor, there was no effect of emotionality. Concerning participants' perceptual experience, an interaction between participant group and item characteristics was found: the effects of both concreteness and lifeworld were more pronounced for blind compared to sighted participants. We will discuss the results in the context of embodied semantics, and we will propose an approach to concreteness based on the individual's bodily experience and the relatedness of a given concept to the self.

  12. Risk Factors Associated with Self-Injurious Behaviors in Children and Adolescents with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Duerden, Emma G.; Oatley, Hannah K.; Mak-Fan, Kathleen M.; McGrath, Patricia A.; Taylor, Margot J.; Szatmari, Peter; Roberts, S. Wendy

    2012-01-01

    While self-injurious behaviors (SIB) can cause significant morbidity for children with autism spectrum disorders (ASD), little is known about its associated risk factors. We assessed 7 factors that may influence self-injury in a large cohort of children with ASD: (a) atypical sensory processing; (b) impaired cognitive ability; (c) abnormal…

  13. Examining psychological inflexibility as a transdiagnostic process across psychological disorders

    PubMed Central

    Levin, Michael E.; MacLane, Chelsea; Daflos, Susan; Seeley, John; Hayes, Steven C.; Biglan, Anthony; Pistorello, Jacqueline

    2017-01-01

    The current cross-sectional study examined psychological inflexibility, a process in which behavior is rigidly guided by psychological reactions rather than direct contingencies or personal values, as a transdiagnostic process relevant to a range of depressive, anxiety, substance use and eating disorders. A sample of 972 first-year college students between 17 and 20 years of age completed self-report measures of psychological inflexibility and psychological distress as well as a structured diagnostic interview. Psychological inflexibility was significantly higher across a range of current and lifetime depressive and anxiety disorders as well as lifetime history of eating disorders, relative to students with no disorder, even after controlling for general psychological distress. Findings were mixed for substance use disorders, with a more consistent pattern for lifetime history than for current disorders. Psychological inflexibility was also related to having comorbid depressive, anxiety, and substance use disorders relative to only having one of these diagnoses. Results are discussed in relation to research on psychological inflexibility as a transdiagnostic pathological process and target for interventions. PMID:29057212

  14. Effectiveness of therapy ball chairs on classroom participation in children with autism spectrum disorders.

    PubMed

    Bagatell, Nancy; Mirigliani, Gina; Patterson, Chrissa; Reyes, Yadira; Test, Lisa

    2010-01-01

    A single-subject design was used to assess the effectiveness of therapy ball chairs on classroom participation in 6 boys with autism spectrum disorder (ASD). The sensory processing pattern of each participant was assessed using the Sensory Processing Measure. Data on in-seat behavior and engagement were collected using digital video recordings during Circle Time. During baseline, participants sat on chairs. During intervention, participants sat on therapy ball chairs. Social validity was assessed by means of a questionnaire completed by the teacher. Each child demonstrated a unique response. The ball chair appeared to have a positive effect on in-seat behavior for the child who had the most extreme vestibular-proprioceptive-seeking behaviors. Children with poor postural stability were less engaged when sitting on the therapy ball chair. The results illuminate the complex nature of children with ASD and the importance of using sound clinical reasoning skills when recommending sensory strategies for the classroom.

  15. Prior activity of olfactory receptor neurons is required for proper sensory processing and behavior in Drosophila larvae.

    PubMed

    Utashiro, Nao; Williams, Claire R; Parrish, Jay Z; Emoto, Kazuo

    2018-06-05

    Animal responses to their environment rely on activation of sensory neurons by external stimuli. In many sensory systems, however, neurons display basal activity prior to the external stimuli. This prior activity is thought to modulate neural functions, yet its impact on animal behavior remains elusive. Here, we reveal a potential role for prior activity in olfactory receptor neurons (ORNs) in shaping larval olfactory behavior. We show that prior activity in larval ORNs is mediated by the olfactory receptor complex (OR complex). Mutations of Orco, an odorant co-receptor required for OR complex function, cause reduced attractive behavior in response to optogenetic activation of ORNs. Calcium imaging reveals that Orco mutant ORNs fully respond to optogenetic stimulation but exhibit altered temporal patterns of neural responses. These findings together suggest a critical role for prior activity in information processing upon ORN activation in Drosophila larvae, which in turn contributes to olfactory behavior control.

  16. Characterization, sensorial evaluation and moisturizing efficacy of nanolipidgel formulations.

    PubMed

    Estanqueiro, M; Conceição, J; Amaral, M H; Sousa Lobo, J M

    2014-04-01

    Nanostructured lipid carriers (NLC) have been widely studied for cosmetic and dermatological applications due to their favourable properties that include the formation of an occlusive film on the skin surface that reduces the transepidermal water loss (TEWL) and increase in water content in the skin which improves the appearance on healthy human skin and reduces symptoms of some skin disorders like eczema. The main objective of this study was the development of semisolid formulations based NLC with argan oil or jojoba oil as liquid lipids, by addition of Carbopol®934 or Carbopol®980 as gelling agents, followed by comparison between instrumental analysis and sensorial evaluation and in vivo efficacy evaluation. Nanostructured lipid carriers dispersions were produced by the ultrasound technique, and to obtain a semisolid formulation, gelling agents were dispersed in the aqueous dispersion. Particle size, polydispersity index and zeta potential were determined. Instrumental characterization was performed by rheological and textural analysis; the sensorial evaluation was also performed. Finally, skin hydration and TEWL were studied by capacitance and evaporimetry evaluation, respectively. Particles showed a nanometric size in all the analysed formulations. All the gels present pseudoplastic behaviour. There is a correspondence between the properties firmness and adhesiveness as determined by textural analysis and the sensory evaluation. The formulations that showed a greater increase in skin hydration also presented appropriate technological and sensorial attributes for skin application. Nanolipidgel formulations with the addition of humectants are promising systems for cosmetic application with good sensory and instrumental attributes and moisturizing efficacy.

  17. Sensory analysis of lipstick.

    PubMed

    Yap, K C S; Aminah, A

    2011-06-01

    Sensory analysis of lipstick product by trained panellists started with recruiting female panels who are lipstick users, in good health condition and willing to be a part of sensory members. This group of people was further scrutinized with duo-trio method using commercial lipstick samples that are commonly used among them. About 40% of the 15 panels recruited were unable to differentiate the lipstick samples they usually use better than chance. The balance of nine panels that were corrected at least with 65% across all trials in panels screening process was formed a working group to develop sensory languages as a means of describing product similarities and differences and a scoring system. Five sessions with each session took about 90 min were carried out using 10 types of lipsticks with different waxes mixture ratio in the formulation together with six commercial lipsticks that are the most common to the panels. First session was focus on listing out the panels' perception towards the characteristic of the lipstick samples after normal application on their lips. Second session was focus on the refining and categorizing the responses gathered from the first session and translated into sensory attributes with its definition. Third session was focus on the scoring system. Fourth and fifth sessions were repetition of the third session to ensure consistency. In a collective effort of the panels, sensory attributes developed for lipstick were Spreadability, Off flavour, Hardness, Smoothness, Moist, Not messy, Glossy and Greasy. Analysis of variance was able to provide ample evidence on gauging the panel performance. A proper panels selecting and training was able to produce a reliable and sensitive trained panel for evaluating the product based on the procedures being trained. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Sensation-to-Cognition Cortical Streams in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Carmona, Susana; Hoekzema, Elseline; Castellanos, Francisco X.; García-García, David; Lage-Castellanos, Agustín; Dijk, Koene R.A.Van; Navas-Sánchez, Francisco J.; Martínez, Kenia; Desco, Manuel; Sepulcre, Jorge

    2015-01-01

    We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120 children with ADHD and 120 age-matched typically developing children (TDC). Starting in unimodal primary cortex—visual, auditory, and somatosensory—we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link-step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention-regulatory areas is reduced. Third, at subsequent link-step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication-naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD. PMID:25821110

  19. Sensation-to-cognition cortical streams in attention-deficit/hyperactivity disorder.

    PubMed

    Carmona, Susana; Hoekzema, Elseline; Castellanos, Francisco X; García-García, David; Lage-Castellanos, Agustín; Van Dijk, Koene R A; Navas-Sánchez, Francisco J; Martínez, Kenia; Desco, Manuel; Sepulcre, Jorge

    2015-07-01

    We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120 children with ADHD and 120 age-matched typically developing children (TDC). Starting in unimodal primary cortex-visual, auditory, and somatosensory-we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link-step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention-regulatory areas is reduced. Third, at subsequent link-step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication-naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD. © 2015 Wiley Periodicals, Inc.

  20. Postnatal Ablation of Synaptic Retinoic Acid Signaling Impairs Cortical Information Processing and Sensory Discrimination in Mice.

    PubMed

    Park, Esther; Tjia, Michelle; Zuo, Yi; Chen, Lu

    2018-06-06

    Retinoic acid (RA) and its receptors (RARs) are well established essential transcriptional regulators during embryonic development. Recent findings in cultured neurons identified an independent and critical post-transcriptional role of RA and RARα in the homeostatic regulation of excitatory and inhibitory synaptic transmission in mature neurons. However, the functional relevance of synaptic RA signaling in vivo has not been established. Here, using somatosensory cortex as a model system and the RARα conditional knock-out mouse as a tool, we applied multiple genetic manipulations to delete RARα postnatally in specific populations of cortical neurons, and asked whether synaptic RA signaling observed in cultured neurons is involved in cortical information processing in vivo Indeed, conditional ablation of RARα in mice via a CaMKIIα-Cre or a layer 5-Cre driver line or via somatosensory cortex-specific viral expression of Cre-recombinase impaired whisker-dependent texture discrimination, suggesting a critical requirement of RARα expression in L5 pyramidal neurons of somatosensory cortex for normal tactile sensory processing. Transcranial two-photon imaging revealed a significant increase in dendritic spine elimination on apical dendrites of somatosensory cortical layer 5 pyramidal neurons in these mice. Interestingly, the enhancement of spine elimination is whisker experience-dependent as whisker trimming rescued the spine elimination phenotype. Additionally, experiencing an enriched environment improved texture discrimination in RARα-deficient mice and reduced excessive spine pruning. Thus, RA signaling is essential for normal experience-dependent cortical circuit remodeling and sensory processing. SIGNIFICANCE STATEMENT The importance of synaptic RA signaling has been demonstrated in in vitro studies. However, whether RA signaling mediated by RARα contributes to neural circuit functions in vivo remains largely unknown. In this study, using a RARα conditional

  1. TUTORIAL: Beyond sensory substitution—learning the sixth sense

    NASA Astrophysics Data System (ADS)

    Nagel, Saskia K.; Carl, Christine; Kringe, Tobias; Märtin, Robert; König, Peter

    2005-12-01

    Rapid advances in neuroscience have sparked numerous efforts to study the neural correlate of consciousness. Prominent subjects include higher sensory area, distributed assemblies bound by synchronization of neuronal activity and neurons in specific cortical laminae. In contrast, it has been suggested that the quality of sensory awareness is determined by systematic change of afferent signals resulting from behaviour and knowledge thereof. Support for such skill-based theories of perception is provided by experiments on sensory substitution. Here, we pursue this line of thought and create new sensorimotor contingencies and, hence, a new quality of perception. Adult subjects received orientation information, obtained by a magnetic compass, via vibrotactile stimulation around the waist. After six weeks of training we evaluated integration of the new input by a battery of tests. The results indicate that the sensory information provided by the belt (1) is processed and boosts performance, (2) if inconsistent with other sensory signals leads to variable performance, (3) does interact with the vestibular nystagmus and (4) in half of the experimental subjects leads to qualitative changes of sensory experience. These data support the hypothesis that new sensorimotor contingencies can be learned and integrated into behaviour and affect perceptual experience.

  2. Multistability in perception: binding sensory modalities, an overview.

    PubMed

    Schwartz, Jean-Luc; Grimault, Nicolas; Hupé, Jean-Michel; Moore, Brian C J; Pressnitzer, Daniel

    2012-04-05

    This special issue presents research concerning multistable perception in different sensory modalities. Multistability occurs when a single physical stimulus produces alternations between different subjective percepts. Multistability was first described for vision, where it occurs, for example, when different stimuli are presented to the two eyes or for certain ambiguous figures. It has since been described for other sensory modalities, including audition, touch and olfaction. The key features of multistability are: (i) stimuli have more than one plausible perceptual organization; (ii) these organizations are not compatible with each other. We argue here that most if not all cases of multistability are based on competition in selecting and binding stimulus information. Binding refers to the process whereby the different attributes of objects in the environment, as represented in the sensory array, are bound together within our perceptual systems, to provide a coherent interpretation of the world around us. We argue that multistability can be used as a method for studying binding processes within and across sensory modalities. We emphasize this theme while presenting an outline of the papers in this issue. We end with some thoughts about open directions and avenues for further research.

  3. Multistability in perception: binding sensory modalities, an overview

    PubMed Central

    Schwartz, Jean-Luc; Grimault, Nicolas; Hupé, Jean-Michel; Moore, Brian C. J.; Pressnitzer, Daniel

    2012-01-01

    This special issue presents research concerning multistable perception in different sensory modalities. Multistability occurs when a single physical stimulus produces alternations between different subjective percepts. Multistability was first described for vision, where it occurs, for example, when different stimuli are presented to the two eyes or for certain ambiguous figures. It has since been described for other sensory modalities, including audition, touch and olfaction. The key features of multistability are: (i) stimuli have more than one plausible perceptual organization; (ii) these organizations are not compatible with each other. We argue here that most if not all cases of multistability are based on competition in selecting and binding stimulus information. Binding refers to the process whereby the different attributes of objects in the environment, as represented in the sensory array, are bound together within our perceptual systems, to provide a coherent interpretation of the world around us. We argue that multistability can be used as a method for studying binding processes within and across sensory modalities. We emphasize this theme while presenting an outline of the papers in this issue. We end with some thoughts about open directions and avenues for further research. PMID:22371612

  4. Congenital sensory neuropathy

    PubMed Central

    Barry, J. E.; Hopkins, I. J.; Neal, B. W.

    1974-01-01

    Two infants with sporadic congenital sensory neuropathy are described. The criteria of generalized lack of superficial sensory appreciation, hypotonia, areflexia, together with histological evidence of abnormalities of sensory neural structures in skin and peripheral nerves have been met. No abnormality of motor or autonomic nerves was shown. ImagesFIG. PMID:4131674

  5. Cortico-Cortical Connections of Primary Sensory Areas and Associated Symptoms in Migraine.

    PubMed

    Hodkinson, Duncan J; Veggeberg, Rosanna; Kucyi, Aaron; van Dijk, Koene R A; Wilcox, Sophie L; Scrivani, Steven J; Burstein, Rami; Becerra, Lino; Borsook, David

    2016-01-01

    Migraine is a recurring, episodic neurological disorder characterized by headache, nausea, vomiting, and sensory disturbances. These events are thought to arise from the activation and sensitization of neurons along the trigemino-vascular pathway. From animal studies, it is known that thalamocortical projections play an important role in the transmission of nociceptive signals from the meninges to the cortex. However, little is currently known about the potential involvement of cortico-cortical feedback projections from higher-order multisensory areas and/or feedforward projections from principle primary sensory areas or subcortical structures. In a large cohort of human migraine patients ( N = 40) and matched healthy control subjects ( N = 40), we used resting-state intrinsic functional connectivity to examine the cortical networks associated with the three main sensory perceptual modalities of vision, audition, and somatosensation. Specifically, we sought to explore the complexity of the sensory networks as they converge and become functionally coupled in multimodal systems. We also compared self-reported retrospective migraine symptoms in the same patients, examining the prevalence of sensory symptoms across the different phases of the migraine cycle. Our results show widespread and persistent disturbances in the perceptions of multiple sensory modalities. Consistent with this observation, we discovered that primary sensory areas maintain local functional connectivity but express impaired long-range connections to higher-order association areas (including regions of the default mode and salience network). We speculate that cortico-cortical interactions are necessary for the integration of information within and across the sensory modalities and, thus, could play an important role in the initiation of migraine and/or the development of its associated symptoms.

  6. Sensory over responsivity and obsessive compulsive symptoms: A cluster analysis.

    PubMed

    Ben-Sasson, Ayelet; Podoly, Tamar Yonit

    2017-02-01

    Several studies have examined the sensory component in Obsesseive Compulsive Disorder (OCD) and described an OCD subtype which has a unique profile, and that Sensory Phenomena (SP) is a significant component of this subtype. SP has some commonalities with Sensory Over Responsivity (SOR) and might be in part a characteristic of this subtype. Although there are some studies that have examined SOR and its relation to Obsessive Compulsive Symptoms (OCS), literature lacks sufficient data on this interplay. First to further examine the correlations between OCS and SOR, and to explore the correlations between SOR modalities (i.e. smell, touch, etc.) and OCS subscales (i.e. washing, ordering, etc.). Second, to investigate the cluster analysis of SOR and OCS dimensions in adults, that is, to classify the sample using the sensory scores to find whether a sensory OCD subtype can be specified. Our third goal was to explore the psychometric features of a new sensory questionnaire: the Sensory Perception Quotient (SPQ). A sample of non clinical adults (n=350) was recruited via e-mail, social media and social networks. Participants completed questionnaires for measuring SOR, OCS, and anxiety. SOR and OCI-F scores were moderately significantly correlated (n=274), significant correlations between all SOR modalities and OCS subscales were found with no specific higher correlation between one modality to one OCS subscale. Cluster analysis revealed four distinct clusters: (1) No OC and SOR symptoms (NONE; n=100), (2) High OC and SOR symptoms (BOTH; n=28), (3) Moderate OC symptoms (OCS; n=63), (4) Moderate SOR symptoms (SOR; n=83). The BOTH cluster had significantly higher anxiety levels than the other clusters, and shared OC subscales scores with the OCS cluster. The BOTH cluster also reported higher SOR scores across tactile, vision, taste and olfactory modalities. The SPQ was found reliable and suitable to detect SOR, the sample SPQ scores was normally distributed (n=350). SOR is a

  7. Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System

    NASA Technical Reports Server (NTRS)

    Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.

  8. Sensory Over-Responsivity, Psychopathology, and Family Impairment in School-Aged Children

    ERIC Educational Resources Information Center

    Carter, Alice S.; Ben-Sasson, Ayelet; Briggs-Gowan, Margaret J.

    2011-01-01

    Objective: To establish the diagnostic validity of sensory overresponsivity (SOR), there is a need to document rates of SOR and the co-occurrence of SOR with other psychiatric disorders. Although this was not a diagnostic study of SOR, this study was designed to investigate rates of elevated SOR symptoms and associations between elevated SOR…

  9. Tickle me, I think I might be dreaming! Sensory attenuation, self-other distinction, and predictive processing in lucid dreams

    PubMed Central

    Windt, Jennifer M.; Harkness, Dominic L.; Lenggenhager, Bigna

    2014-01-01

    The contrast between self- and other-produced tickles, as a special case of sensory attenuation for self-produced actions, has long been a target of empirical research. While in standard wake states it is nearly impossible to tickle oneself, there are interesting exceptions. Notably, participants awakened from REM (rapid eye movement-) sleep dreams are able to tickle themselves. So far, however, the question of whether it is possible to tickle oneself and be tickled by another in the dream state has not been investigated empirically or addressed from a theoretical perspective. Here, we report the results of an explorative web-based study in which participants were asked to rate their sensations during self-tickling and being tickled during wakefulness, imagination, and lucid dreaming. Our results, though highly preliminary, indicate that in the special case of lucid control dreams, the difference between self-tickling and being tickled by another is obliterated, with both self- and other produced tickles receiving similar ratings as self-tickling during wakefulness. This leads us to the speculative conclusion that in lucid control dreams, sensory attenuation for self-produced tickles spreads to those produced by non-self dream characters. These preliminary results provide the backdrop for a more general theoretical and metatheoretical discussion of tickling in lucid dreams in a predictive processing framework. We argue that the primary value of our study lies not so much in our results, which are subject to important limitations, but rather in the fact that they enable a new theoretical perspective on the relationship between sensory attenuation, the self-other distinction and agency, as well as suggest new questions for future research. In particular, the example of tickling during lucid dreaming raises the question of whether sensory attenuation and the self-other distinction can be simulated largely independently of external sensory input. PMID:25278861

  10. Tickle me, I think I might be dreaming! Sensory attenuation, self-other distinction, and predictive processing in lucid dreams.

    PubMed

    Windt, Jennifer M; Harkness, Dominic L; Lenggenhager, Bigna

    2014-01-01

    The contrast between self- and other-produced tickles, as a special case of sensory attenuation for self-produced actions, has long been a target of empirical research. While in standard wake states it is nearly impossible to tickle oneself, there are interesting exceptions. Notably, participants awakened from REM (rapid eye movement-) sleep dreams are able to tickle themselves. So far, however, the question of whether it is possible to tickle oneself and be tickled by another in the dream state has not been investigated empirically or addressed from a theoretical perspective. Here, we report the results of an explorative web-based study in which participants were asked to rate their sensations during self-tickling and being tickled during wakefulness, imagination, and lucid dreaming. Our results, though highly preliminary, indicate that in the special case of lucid control dreams, the difference between self-tickling and being tickled by another is obliterated, with both self- and other produced tickles receiving similar ratings as self-tickling during wakefulness. This leads us to the speculative conclusion that in lucid control dreams, sensory attenuation for self-produced tickles spreads to those produced by non-self dream characters. These preliminary results provide the backdrop for a more general theoretical and metatheoretical discussion of tickling in lucid dreams in a predictive processing framework. We argue that the primary value of our study lies not so much in our results, which are subject to important limitations, but rather in the fact that they enable a new theoretical perspective on the relationship between sensory attenuation, the self-other distinction and agency, as well as suggest new questions for future research. In particular, the example of tickling during lucid dreaming raises the question of whether sensory attenuation and the self-other distinction can be simulated largely independently of external sensory input.

  11. Sensory-motor deficits in children with fetal alcohol spectrum disorder assessed using a robotic virtual reality platform.

    PubMed

    Williams, Loriann; Jackson, Carl P T; Choe, Noreen; Pelland, Lucie; Scott, Stephen H; Reynolds, James N

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) is associated with a large number of cognitive and sensory-motor deficits. In particular, the accurate assessment of sensory-motor deficits in children with FASD is not always simple and relies on clinical assessment tools that may be coarse and subjective. Here we present a new approach: using robotic technology to accurately and objectively assess motor deficits of children with FASD in a center-out reaching task. A total of 152 typically developing children and 31 children with FASD, all aged between 5 and 18 were assessed using a robotic exoskeleton device coupled with a virtual reality projection system. Children made reaching movements to 8 peripheral targets in a random order. Reach trajectories were subsequently analyzed to extract 12 parameters that had been previously determined to be good descriptors of a reaching movement, and these parameters were compared for each child with FASD to a normative model derived from the performance of the typically developing population. Compared with typically developing children, the children with FASD were found to be significantly impaired on most of the parameters measured, with the greatest deficits found in initial movement direction error. Also, children with FASD tended to fail more parameters than typically developing children: 95% of typically developing children failed fewer than 3 parameters compared with 69% of children with FASD. These results were particularly pronounced for younger children. The current study has shown that robotic technology is a sensitive and powerful tool that provides increased specificity regarding the type of motor problems exhibited by children with FASD. The high frequency of motor deficits in children with FASD suggests that interventions aimed at stimulating and/or improving motor development should routinely be considered for this population. Copyright © 2013 by the Research Society on Alcoholism.

  12. Tactile Responsiveness Patterns and Their Association with Core Features in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Foss-Feig, Jennifer H.; Heacock, Jessica L.; Cascio, Carissa J.

    2012-01-01

    Autism spectrum disorders (ASD) are often associated with aberrant responses to sensory stimuli, which are thought to contribute to the social, communication, and repetitive behavior deficits that define ASD. However, there are few studies that separate aberrant sensory responses by individual sensory modality to assess modality-specific…

  13. Perturbed reward processing in pediatric bipolar disorder: an antisaccade study

    PubMed Central

    Mueller, Sven C; Ng, Pamela; Temple, Veronica; Hardin, Michael G; Pine, Daniel S; Leibenluft, Ellen; Ernst, Monique

    2010-01-01

    Pediatric bipolar disorder is a severe and impairing illness. Characterizing the impact of pediatric bipolar disorder on cognitive function might aid in understanding the phenomenology of the disorder. While previous studies of pediatric bipolar disorder have reported deficits in cognitive control and reward behavior, little is understood about how affective processes influence behavioral control. Relative to prior studies using manual-response paradigms, eye movement tasks provide a more precise assessment of reward sensitivity and cognitive and motor control. The current study compares 20 youths with bipolar disorder (mean age = 13.9 years ± 2.22) and 23 healthy subjects (mean age = 13.8 years ± 2.49) on a mixed pro–antisaccade task with monetary incentives. On both types of saccades, participants were presented with three types of incentives: those where subjects can win money, lose money, or neither win nor lose money. Impaired reward processing was found in youths with bipolar disorder relative to controls, particularly on antisaccades. This difference was reflected in lower error rates during incentive trials in the control but not in the bipolar disorder group. By comparison, no group differences were found on prosaccade trials. The results provide further evidence for deficits in cognitive and reward processing in bipolar disorder. PMID:20080923

  14. Action preparation modulates sensory perception in unseen personal space: An electrophysiological investigation.

    PubMed

    Job, Xavier E; de Fockert, Jan W; van Velzen, José

    2016-08-01

    Behavioural and electrophysiological evidence has demonstrated that preparation of goal-directed actions modulates sensory perception at the goal location before the action is executed. However, previous studies have focused on sensory perception in areas of peripersonal space. The present study investigated visual and tactile sensory processing at the goal location of upcoming movements towards the body, much of which is not visible, as well as visible peripersonal space. A motor task cued participants to prepare a reaching movement towards goals either in peripersonal space in front of them or personal space on the upper chest. In order to assess modulations of sensory perception during movement preparation, event-related potentials (ERPs) were recorded in response to task-irrelevant visual and tactile probe stimuli delivered randomly at one of the goal locations of the movements. In line with previous neurophysiological findings, movement preparation modulated visual processing at the goal of a movement in peripersonal space. Movement preparation also modulated somatosensory processing at the movement goal in personal space. The findings demonstrate that tactile perception in personal space is subject to similar top-down sensory modulation by motor preparation as observed for visual stimuli presented in peripersonal space. These findings show for the first time that the principles and mechanisms underlying adaptive modulation of sensory processing in the context of action extend to tactile perception in unseen personal space. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The State of the Science on Sensory Factors and Their Impact on Daily Life for Children: A Scoping Review.

    PubMed

    Dunn, Winnie; Little, Lauren; Dean, Evan; Robertson, Sara; Evans, Benjamin

    2016-04-01

    The objective of this study was to identify and synthesize research about how sensory factors affect daily life of children. We designed a conceptual model to guide a scoping review of research published from 2005 to October 2014 (10 years). We searched MEDLINE, CINAHL, and PsycINFO and included studies about sensory perception/processing; children, adolescents/young adults; and participation. We excluded studies about animals, adults, and review articles. Our process resulted in 261 articles meeting criteria. Research shows that children with conditions process sensory input differently than peers. Neuroscience evidence supports the relationship between sensory-related behaviors and brain activity. Studies suggest that sensory processing is linked to social participation, cognition, temperament, and participation. Intervention research illustrates the importance of contextually relevant practices. Future work can examine the developmental course of sensory processing aspects of behavior across the general population and focus on interventions that support children's sensory processing as they participate in their daily lives. © The Author(s) 2016.

  16. Crossmodal Connections of Primary Sensory Cortices Largely Vanish During Normal Aging

    PubMed Central

    Henschke, Julia U.; Ohl, Frank W.; Budinger, Eike

    2018-01-01

    During aging, human response times (RTs) to unisensory and crossmodal stimuli decrease. However, the elderly benefit more from crossmodal stimulus representations than younger people. The underlying short-latency multisensory integration process is mediated by direct crossmodal connections at the level of primary sensory cortices. We investigate the age-related changes of these connections using a rodent model (Mongolian gerbil), retrograde tracer injections into the primary auditory (A1), somatosensory (S1), and visual cortex (V1), and immunohistochemistry for markers of apoptosis (Caspase-3), axonal plasticity (Growth associated protein 43, GAP 43), and a calcium-binding protein (Parvalbumin, PV). In adult animals, primary sensory cortices receive a substantial number of direct thalamic inputs from nuclei of their matched, but also from nuclei of non-matched sensory modalities. There are also direct intracortical connections among primary sensory cortices and connections with secondary sensory cortices of other modalities. In very old animals, the crossmodal connections strongly decrease in number or vanish entirely. This is likely due to a retraction of the projection neuron axonal branches rather than ongoing programmed cell death. The loss of crossmodal connections is also accompanied by changes in anatomical correlates of inhibition and excitation in the sensory thalamus and cortex. Together, the loss and restructuring of crossmodal connections during aging suggest a shift of multisensory processing from primary cortices towards other sensory brain areas in elderly individuals. PMID:29551970

  17. Crossmodal Connections of Primary Sensory Cortices Largely Vanish During Normal Aging.

    PubMed

    Henschke, Julia U; Ohl, Frank W; Budinger, Eike

    2018-01-01

    During aging, human response times (RTs) to unisensory and crossmodal stimuli decrease. However, the elderly benefit more from crossmodal stimulus representations than younger people. The underlying short-latency multisensory integration process is mediated by direct crossmodal connections at the level of primary sensory cortices. We investigate the age-related changes of these connections using a rodent model (Mongolian gerbil), retrograde tracer injections into the primary auditory (A1), somatosensory (S1), and visual cortex (V1), and immunohistochemistry for markers of apoptosis (Caspase-3), axonal plasticity (Growth associated protein 43, GAP 43), and a calcium-binding protein (Parvalbumin, PV). In adult animals, primary sensory cortices receive a substantial number of direct thalamic inputs from nuclei of their matched, but also from nuclei of non-matched sensory modalities. There are also direct intracortical connections among primary sensory cortices and connections with secondary sensory cortices of other modalities. In very old animals, the crossmodal connections strongly decrease in number or vanish entirely. This is likely due to a retraction of the projection neuron axonal branches rather than ongoing programmed cell death. The loss of crossmodal connections is also accompanied by changes in anatomical correlates of inhibition and excitation in the sensory thalamus and cortex. Together, the loss and restructuring of crossmodal connections during aging suggest a shift of multisensory processing from primary cortices towards other sensory brain areas in elderly individuals.

  18. [Sensory loss and brain reorganization].

    PubMed

    Fortin, Madeleine; Voss, Patrice; Lassonde, Maryse; Lepore, Franco

    2007-11-01

    It is without a doubt that humans are first and foremost visual beings. Even though the other sensory modalities provide us with valuable information, it is vision that generally offers the most reliable and detailed information concerning our immediate surroundings. It is therefore not surprising that nearly a third of the human brain processes, in one way or another, visual information. But what happens when the visual information no longer reaches these brain regions responsible for processing it? Indeed numerous medical conditions such as congenital glaucoma, retinis pigmentosa and retinal detachment, to name a few, can disrupt the visual system and lead to blindness. So, do the brain areas responsible for processing visual stimuli simply shut down and become non-functional? Do they become dead weight and simply stop contributing to cognitive and sensory processes? Current data suggests that this is not the case. Quite the contrary, it would seem that congenitally blind individuals benefit from the recruitment of these areas by other sensory modalities to carry out non-visual tasks. In fact, our laboratory has been studying blindness and its consequences on both the brain and behaviour for many years now. We have shown that blind individuals demonstrate exceptional hearing abilities. This finding holds true for stimuli originating from both near and far space. It also holds true, under certain circumstances, for those who lost their sight later in life, beyond a period generally believed to limit the brain changes following the loss of sight. In the case of the early blind, we have shown their ability to localize sounds is strongly correlated with activity in the occipital cortex (the location of the visual processing), demonstrating that these areas are functionally engaged by the task. Therefore it would seem that the plastic nature of the human brain allows them to make new use of the cerebral areas normally dedicated to visual processing.

  19. Effects of Exogenous Enzymatic Treatment During Processing on the Sensory Quality of Summer Tieguanyin Oolong Tea from the Chinese Anxi County

    PubMed Central

    Zhang, Xue-Bo

    2015-01-01

    Summary In order to attenuate the bitter taste and improve the aroma of the summer tieguanyin oolong tea from the Chinese Anxi county, the effects of processing treatment with exogenous laccase and α-galactosidase on tea sensory quality and related compounds were investigated. The solutions of laccase and/or α-galactosidase were sprayed on the tea leaves before the first drying process. The sensory evaluation results showed that the sensory quality of the tea was significantly enhanced with the enzymatic treatment. The combined application of laccase at 8.25 and α-galactosidase at 22 U per kg of fresh tea shoots achieved the most satisfying sensory quality. Further analysis of flavour-related constituents was carried out by HPLC and GC-MS. The HPLC analysis showed that the contents of catechins and total polyphenols were reduced, compared to the untreated group, by 11.9 and 13.3% respectively, and the total soluble sugars and water extract content were increased by 19.4 and 6.6% respectively, after the treatment with both enzymes. The decrease of catechins and total polyphenols reduced the bitterness and astringency of the summer tea, while the increase of total soluble sugars and water extract content improved the sweetness and mellow taste. The aromatic compound data from GC-MS showed that the total essential oil content in these tea samples co-treated with laccase and α-galactosidase increased significantly, in which aldehydes, alcohols, esters and alkenes increased by 23.28, 37.05, 20.10 and 38.99%, respectively. Our data suggest that the exogenous enzymatic treatment can enhance the summer oolong tea quality, especially its taste and aroma. PMID:27904347

  20. Late development of cue integration is linked to sensory fusion in cortex.

    PubMed

    Dekker, Tessa M; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I; Welchman, Andrew E; Nardini, Marko

    2015-11-02

    Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3-5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7-9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6-12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3-5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.