Sensory Processing and Its Relationship with Children's Daily Life Participation.
Chien, Chi-Wen; Rodger, Sylvia; Copley, Jodie; Branjerdporn, Grace; Taggart, Caitlin
2016-01-01
To investigate whether children with probable or definite differences in sensory processing (SP) had participation restrictions, and the relationship between Short Sensory Profile (SSP) scores and children's participation. The participants were parents of 64 children (mean age 8 years 1 month); 36 with potential impairments in regulating sensory input and filtering out unnecessary stimuli (29 boys, 7 girls) and 28 with typical SP abilities (25 boys, 3 girls). Parents' completed the SSP and Participation in Childhood Occupations Questionnaire (PICO-Q). The SSP score was used to categorize children as potential SP impairment group and typical SP ability group. Children categorized as having probable or definite differences in SP exhibited significantly lower participation levels and enjoyment than children categorized as having typical SP abilities. However, participation frequency between both groups was similar. Six out of the seven SP impairment types had small to moderate correlations with children's participation (r = 0.25-0.48, p < 0.05). Multiple regression analyses indicated that only three impairment types (Underresponsive/Seeks Sensation, Low Energy/Weak, and Visual/Auditory Sensitivity) were significant predictors of PICO-Q participation domains. The results suggest that children with potential SP impairments have restrictions in the degree of participation and enjoyment. Three SP types were related to specific participation domains, but they explained a small amount of variance or none in some participation domains. Other variables should be considered to identify determinants of children's participation.
Sensory Correlates of Difficult Temperament Characteristics in Preschool Children with Autism
ERIC Educational Resources Information Center
Chuang, I-Ching; Tseng, Mei-Hui; Lu, Lu; Shieh, Jeng-Yi
2012-01-01
This study was aimed to investigate the rate of co-occurring sensory processing (SP) dysfunction in children with autism who had a difficult temperament characteristics, and the relationship between SP dysfunction and temperament characteristics in preschool children with autism. A total of 111 children aged 48-84 months, 67 children with autism…
Brief Report: Further Evidence of Sensory Subtypes in Autism
ERIC Educational Resources Information Center
Lane, Alison E.; Dennis, Simon J.; Geraghty, Maureen E.
2011-01-01
Distinct sensory processing (SP) subtypes in autism have been reported previously. This study sought to replicate the previous findings in an independent sample of thirty children diagnosed with an Autism Spectrum Disorder. Model-based cluster analysis of parent-reported sensory functioning (measured using the Short Sensory Profile) confirmed the…
Sensory Nerve Induced Inflammation Contributes to Heterotopic Ossification
Salisbury, Elizabeth; Rodenberg, Eric; Sonnet, Corinne; Hipp, John; Gannon, Francis H.; Vadakkan, Tegy J.; Dickinson, Mary E.; Olmsted-Davis, Elizabeth A.; Davis, Alan R.
2012-01-01
Heterotopic ossification (HO), or bone formation in soft tissues, is often the result of traumatic injury. Much evidence has linked the release of BMPs (bone morphogenetic proteins) upon injury to this process. HO was once thought to be a rare occurrence, but recent statistics from the military suggest that as many as 60% of traumatic injuries, resulting from bomb blasts, have associated HO. In this study, we attempt to define the role of peripheral nerves in this process. Since BMP2 has been shown previously to induce release of the neuroinflammatory molecules, substance P (SP) and calcitonin gene related peptide (CGRP), from peripheral, sensory neurons, we examined this process in vivo. SP and CGRP are rapidly expressed upon delivery of BMP2 and remain elevated throughout bone formation. In animals lacking functional sensory neurons (TRPV1−/−), BMP2-mediated increases in SP and CGRP were suppressed as compared to the normal animals, and HO was dramatically inhibited in these deficient mice, suggesting that neuroinflammation plays a functional role. Mast cells, known to be recruited by SP and CGRP, were elevated after BMP2 induction. These mast cells were localized to the nerve structures and underwent degranulation. When degranulation was inhibited using cromolyn, HO was again reduced significantly. Immunohistochemical analysis revealed nerves expressing the stem cell markers nanog and Klf4, as well as the osteoblast marker osterix, after BMP2 induction, in mice treated with cromolyn. The data collectively suggest that BMP2 can act directly on sensory neurons to induce neurogenic inflammation, resulting in nerve remodeling and the migration/release of osteogenic and other stem cells from the nerve. Further, blocking this process significantly reduces HO, suggesting that the stem cell population contributes to bone formation. PMID:21678472
Physicochemical properties and sensory characteristics of sausage formulated with surimi powder.
Santana, Palestina; Huda, Nurul; Yang, Tajul Aris
2015-03-01
The objectives of this study were to determine the physicochemical properties and sensory characteristics of fish sausage made with 100 % threadfin bream (Nemipterus japonicus) surimi powder (SP100), a mix of 50 % surimi powder and 50 % frozen surimi (SP50), and a control (100 % frozen surimi). No significant differences in protein content and folding test results (P > 0.05) were detected among the SP100 and SP50 samples and the control. Gel strength of SP100 was lower (P > 0.05) than that of the control. The texture profile analysis (TPA) values (hardness, cohesiveness, springiness, and chewiness) of SP100 were significantly lower (P < 0.05) than those of the control. However, the TPA values of SP100 and SP50 were still within the textural range of Malaysian commercial fish sausages. The water holding capacity, and emulsion stability of SP100 were significantly lower (P < 0.05) than those of SP50 and the control. Of the cooking properties measured, SP100 had lower (P < 0.05) cooking yield, moisture retention, and fat retention than the control. Quantitative descriptive analysis (QDA) performed by 12 trained panelists showed that sensory characteristic (hardness, cohesiveness, springiness, and chewiness) scores of SP100 were lower than those of SP50 and the control. The use of surimi powder in fish sausage did not differ with that of control in the term of color, odor, or oiliness scored by panelists. The drying process impacted the texture properties of surimi when it was used in fish sausage. However, the use of surimi powder in fish sausage formulation is still accepted since the TPA values of SP100 and SP50 were still within the textural range of Malaysian commercial fish sausages.
Wolff, J. Gerard
2016-01-01
The SP theory of intelligence, with its realization in the SP computer model, aims to simplify and integrate observations and concepts across artificial intelligence, mainstream computing, mathematics, and human perception and cognition, with information compression as a unifying theme. This paper describes how abstract structures and processes in the theory may be realized in terms of neurons, their interconnections, and the transmission of signals between neurons. This part of the SP theory—SP-neural—is a tentative and partial model for the representation and processing of knowledge in the brain. Empirical support for the SP theory—outlined in the paper—provides indirect support for SP-neural. In the abstract part of the SP theory (SP-abstract), all kinds of knowledge are represented with patterns, where a pattern is an array of atomic symbols in one or two dimensions. In SP-neural, the concept of a “pattern” is realized as an array of neurons called a pattern assembly, similar to Hebb's concept of a “cell assembly” but with important differences. Central to the processing of information in SP-abstract is information compression via the matching and unification of patterns (ICMUP) and, more specifically, information compression via the powerful concept of multiple alignment, borrowed and adapted from bioinformatics. Processes such as pattern recognition, reasoning and problem solving are achieved via the building of multiple alignments, while unsupervised learning is achieved by creating patterns from sensory information and also by creating patterns from multiple alignments in which there is a partial match between one pattern and another. It is envisaged that, in SP-neural, short-lived neural structures equivalent to multiple alignments will be created via an inter-play of excitatory and inhibitory neural signals. It is also envisaged that unsupervised learning will be achieved by the creation of pattern assemblies from sensory information and from the neural equivalents of multiple alignments, much as in the non-neural SP theory—and significantly different from the “Hebbian” kinds of learning which are widely used in the kinds of artificial neural network that are popular in computer science. The paper discusses several associated issues, with relevant empirical evidence. PMID:27857695
Wolff, J Gerard
2016-01-01
The SP theory of intelligence , with its realization in the SP computer model , aims to simplify and integrate observations and concepts across artificial intelligence, mainstream computing, mathematics, and human perception and cognition, with information compression as a unifying theme. This paper describes how abstract structures and processes in the theory may be realized in terms of neurons, their interconnections, and the transmission of signals between neurons. This part of the SP theory- SP-neural -is a tentative and partial model for the representation and processing of knowledge in the brain. Empirical support for the SP theory-outlined in the paper-provides indirect support for SP-neural. In the abstract part of the SP theory (SP-abstract), all kinds of knowledge are represented with patterns , where a pattern is an array of atomic symbols in one or two dimensions. In SP-neural, the concept of a "pattern" is realized as an array of neurons called a pattern assembly , similar to Hebb's concept of a "cell assembly" but with important differences. Central to the processing of information in SP-abstract is information compression via the matching and unification of patterns (ICMUP) and, more specifically, information compression via the powerful concept of multiple alignment , borrowed and adapted from bioinformatics. Processes such as pattern recognition, reasoning and problem solving are achieved via the building of multiple alignments, while unsupervised learning is achieved by creating patterns from sensory information and also by creating patterns from multiple alignments in which there is a partial match between one pattern and another. It is envisaged that, in SP-neural, short-lived neural structures equivalent to multiple alignments will be created via an inter-play of excitatory and inhibitory neural signals. It is also envisaged that unsupervised learning will be achieved by the creation of pattern assemblies from sensory information and from the neural equivalents of multiple alignments, much as in the non-neural SP theory-and significantly different from the "Hebbian" kinds of learning which are widely used in the kinds of artificial neural network that are popular in computer science. The paper discusses several associated issues, with relevant empirical evidence.
Kumar, G K; Kou, Y R; Overholt, J L; Prabhakar, N R
2000-01-01
Previously, we showed that carotid bodies express neutral endopeptidase (NEP)-like enzyme activity and that phosphoramidon, a potent inhibitor of NEP, potentiates the chemosensory response of the carotid body to hypoxia in vivo. NEP has been shown to hydrolyze methionine enkephalin (Met-Enk) and substance P (SP) in neuronal tissues. The purpose of the present study is to determine whether NEP hydrolyzes Met-Enk and SP in the carotid body and if so whether these peptides contribute to phosphoramidon-induced potentiation of the sensory response to hypoxia. Experiments were performed on carotid bodies excised from anesthetized adult cats (n = 72 carotid bodies). The hydrolysis of Met-Enk and SP was analyzed by HPLC. The results showed that both SP and Met-Enk were hydrolyzed by the carotid body, but the rate of Met-Enk hydrolysis was approximately fourfold higher than that of SP. Phosphoramidon (400 microM) markedly inhibited SP hydrolysis ( approximately 90%) but had only a marginal effect on Met-Enk hydrolysis ( approximately 15% inhibition). Hypoxia (PO(2), 68 +/- 6 Torr) as well as exogenous administration of SP (10 and 20 nmol) increased the sensory discharge of the carotid body in vitro. Sensory responses to hypoxia and SP (10 nmol) were potentiated by approximately 80 and approximately 275%, respectively (P < 0.01), in the presence of phosphoramidon. SP-receptor antagonists Spantide (peptidyl) and CP-96345 (nonpeptidyl) either abolished or markedly attenuated the phosphoramidon-induced potentiation of the sensory response of the carotid body to hypoxia as well as to SP. These results demonstrate that SP is a preferred substrate for NEP in the carotid body and that SP is involved in the potentiation of the hypoxic response of the carotid body by phosphoramidon.
Sensory integration functions of children with cochlear implants.
Koester, AnjaLi Carrasco; Mailloux, Zoe; Coleman, Gina Geppert; Mori, Annie Baltazar; Paul, Steven M; Blanche, Erna; Muhs, Jill A; Lim, Deborah; Cermak, Sharon A
2014-01-01
OBJECTIVE. We investigated sensory integration (SI) function in children with cochlear implants (CIs). METHOD. We analyzed deidentified records from 49 children ages 7 mo to 83 mo with CIs. Records included Sensory Integration and Praxis Tests (SIPT), Sensory Processing Measure (SPM), Sensory Profile (SP), Developmental Profile 3 (DP-3), and Peabody Developmental Motor Scales (PDMS), with scores depending on participants' ages. We compared scores with normative population mean scores and with previously identified patterns of SI dysfunction. RESULTS. One-sample t tests revealed significant differences between children with CIs and the normative population on the majority of the SIPT items associated with the vestibular and proprioceptive bilateral integration and sequencing (VPBIS) pattern. Available scores for children with CIs on the SPM, SP, DP-3, and PDMS indicated generally typical ratings. CONCLUSION. SIPT scores in a sample of children with CIs reflected the VPBIS pattern of SI dysfunction, demonstrating the need for further examination of SI functions in children with CIs during occupational therapy assessment and intervention planning. Copyright © 2014 by the American Occupational Therapy Association, Inc.
Role of substance P in neutral endopeptidase modulation of hypoxic response of the carotid body.
Kumar, G K; Yu, R K; Overholt, J L; Prabhakar, N R
2000-01-01
Carotid body expresses neutral endopeptidase (NEP)-like enzyme activity and phosphoramidon, an inhibitor of NEP augments sensory response of the carotid body to hypoxia (Kumar et al., 1990). NEP hydrolyzes substance P (SP) and methionine enkephalin (Met-ENK) in the nervous system. In the present study, we determined whether NEP hydrolyzes Met-ENK and SP in the carotid body and whether these peptides contribute to the phosphoramidon-induced potentiation of the sensory response to hypoxia. Experiments were performed on carotid bodies excised from anaesthetized adult cats. HPLC analysis showed that both SP and Met-ENK were hydrolyzed by the carotid body. Phosphoramidon (400 microM) markedly inhibited SP (approximately 90%) but had only marginal effect on Met-ENK hydrolysis (approximately 15%). Sensory responses of the carotid body in vitro to hypoxia (pO2, 68 +/- 6 mmHg) and SP (10 nmoles) were potentiated by phosphoramidon by approximately 80% and approximately 275% respectively (p < 0.01). SP-receptor antagonist abolished phosphoramidon-induced potentiation of the sensory response to hypoxia as well as to SP. These results demonstrate that SP is a preferred substrate for NEP in the carotid body and SP plays a major role in the potentiation of the hypoxic response of the carotid body by phosphoramidon.
Echevarria, Michael L; Wolfe, Gordon V; Taylor, Alison R
2016-02-01
Alveolate (ciliates and dinoflagellates) grazers are integral components of the marine food web and must therefore be able to sense a range of mechanical and chemical signals produced by prey and predators, integrating them via signal transduction mechanisms to respond with effective prey capture and predator evasion behaviors. However, the sensory biology of alveolate grazers is poorly understood. Using novel techniques that combine electrophysiological measurements and high-speed videomicroscopy, we investigated the sensory biology of Favella sp., a model alveolate grazer, in the context of its trophic ecology. Favella sp. produced frequent rhythmic depolarizations (∼500 ms long) that caused backward swimming and are responsible for endogenous swimming patterns relevant to foraging. Contact of both prey cells and non-prey polystyrene microspheres at the cilia produced immediate mechanostimulated depolarizations (∼500 ms long) that caused backward swimming, and likely underlie aggregative swimming patterns of Favella sp. in response to patches of prey. Contact of particles at the peristomal cavity that were not suitable for ingestion resulted in depolarizations after a lag of ∼600 ms, allowing time for particles to be processed before rejection. Ingestion of preferred prey particles was accompanied by transient hyperpolarizations (∼1 s) that likely regulate this step of the feeding process. Predation attempts by the copepod Acartia tonsa elicited fast (∼20 ms) animal-like action potentials accompanied by rapid contraction of the cell to avoid predation. We have shown that the sensory mechanisms of Favella sp. are finely tuned to the type, location, and intensity of stimuli from prey and predators. © 2016. Published by The Company of Biologists Ltd.
Ku, Yixuan; Zhao, Di; Hao, Ning; Hu, Yi; Bodner, Mark; Zhou, Yong-Di
2015-01-01
Both monkey neurophysiological and human EEG studies have shown that association cortices, as well as primary sensory cortical areas, play an essential role in sequential neural processes underlying cross-modal working memory. The present study aims to further examine causal and sequential roles of the primary sensory cortex and association cortex in cross-modal working memory. Individual MRI-based single-pulse transcranial magnetic stimulation (spTMS) was applied to bilateral primary somatosensory cortices (SI) and the contralateral posterior parietal cortex (PPC), while participants were performing a tactile-visual cross-modal delayed matching-to-sample task. Time points of spTMS were 300 ms, 600 ms, 900 ms after the onset of the tactile sample stimulus in the task. The accuracy of task performance and reaction time were significantly impaired when spTMS was applied to the contralateral SI at 300 ms. Significant impairment on performance accuracy was also observed when the contralateral PPC was stimulated at 600 ms. SI and PPC play sequential and distinct roles in neural processes of cross-modal associations and working memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Sanz-Cervera, Pilar; Pastor-Cerezuela, Gemma; González-Sala, Francisco; Tárraga-Mínguez, Raúl; Fernández-Andrés, Maria-Inmaculada
2017-01-01
Children with neurodevelopmental disorders often show impairments in sensory processing (SP) and higher functions. The main objective of this study was to compare SP, praxis and social participation (SOC) in four groups of children: ASD Group (n = 21), ADHD Group (n = 21), ASD+ADHD Group (n = 21), and Comparison Group (n = 27). Participants were the parents and teachers of these children who were 5–8 years old (M = 6.32). They completed the Sensory Processing Measure (SPM) to evaluate the sensory profile, praxis and SOC of the children in both the home and classroom contexts. In the home context, the most affected was the ASD+ADHD group. The ADHD group obtained higher scores than the ASD group on the Body Awareness (BOD) subscale, indicating a higher level of dysfunction. The ASD group, however, did not obtain higher scores than the ADHD group on any subscale. In the classroom context, the most affected were the two ASD groups: the ASD+ADHD group obtained higher scores than the ADHD group on the Hearing (HEA) and Social Participation (SOC) subscales, and the ASD group obtained higher scores than the ADHD group on the SOC subscale. Regarding sensory modalities, difficulties in proprioception seem to be more characteristic to the ADHD condition. As for higher-level functioning, social difficulties seem to be more characteristic to the ASD condition. Differences between the two contexts were only found in the ASD group, which could be related to contextual hyperselectivity, an inherent autistic feature. Despite possible individual differences, specific intervention programs should be developed to improve the sensory challenges faced by children with different diagnoses. PMID:29075217
Feasibility study and sensory test of turmeric tamarind traditional drink with various processing
NASA Astrophysics Data System (ADS)
Rudyatmi, E.; Bintari, S. H.; Iswari, R. S.
2018-03-01
Turmeric tamarind traditional drink as anti-oxidant, good for health, and has a potency to developed. The objectives of this study are to determine the feasibility and the favorite level of consumer towards two turmerics tamarind traditional drink which processed differently. Feasibility depended on sensory test and microbe's contamination according to a quality standard of BPOM and complemented with an anti-bacterial test. The anti-bacterial test is determined by a diameter of inhibition zone towards E coli and B subtilist. Consumer’s favorites level is determined by organoleptic test to 40 testers. Sensory test results to form, odor, taste, and color are normal. TPC first traditional drink 6,9 x 102 col/gr and TKK ≤1,0x10 col/gr, TPC second traditional drink 2,0 x 101 col/gr and TKK ≤1,0x10 col/gr; all tests toward E coli, Salmonella SP, Staphylococcus aureus, Pseudomonas aeruginosa, shigella sp negative/gr; inhibiting capabilities towards B.subtilis and E coli of first traditional drink > second traditional drink. Inhibiting capabilities towards B.subtilis > E coli. All parameters comply with BPOM standard. Most of the tester love the first method turmeric tamarind traditional drink.
Formalin produces depolarizations in human airway smooth muscle in vitro.
Richards, Ira S; DeHate, Robin B
2006-03-01
Respiratory irritants may result in airway smooth muscle (ASM) depolarization and bronchoconstriction. We examined the effect of formalin on membrane potentials in human ASM in two types of in vitro preparations: strip preparations, which contain functional sensory and motor nerve endings and cultured cells, which lack these nerve endings due to the tissue dissociation process. Depolarizations occurred in atropine-treated strip preparations in response to formalin exposures, but not in similarly-treated cultured cells, suggesting a role for non-cholinergic mediators in formalin-induced depolarization. It is suggested that formalin may act as an irritant to produce bronchoconstriction that is mediated by the release of endogenous substance P (SP) from peripheral sensory nerve endings. This is supported by our observation that exogenous SP produced depolarizations of a magnitude similar to those produced by formalin in both strip preparations and cultured cells. In addition, capsaicin, which releases endogenous SP from nerve endings, produced depolarizations of a magnitude similar to formalin in strip preparations, but was without effect in cultured cells.
Brain structural correlates of sensory phenomena in patients with obsessive–compulsive disorder
Subirà, Marta; Sato, João R.; Alonso, Pino; do Rosário, Maria C.; Segalàs, Cinto; Batistuzzo, Marcelo C.; Real, Eva; Lopes, Antonio C.; Cerrillo, Ester; Diniz, Juliana B.; Pujol, Jesús; Assis, Rachel O.; Menchón, José M.; Shavitt, Roseli G.; Busatto, Geraldo F.; Cardoner, Narcís; Miguel, Euripedes C.; Hoexter, Marcelo Q.; Soriano-Mas, Carles
2015-01-01
Background Sensory phenomena (SP) are uncomfortable feelings, including bodily sensations, sense of inner tension, “just-right” perceptions, feelings of incompleteness, or “urge-only” phenomena, which have been described to precede, trigger or accompany repetitive behaviours in individuals with obsessive–compulsive disorder (OCD). Sensory phenomena are also observed in individuals with tic disorders, and previous research suggests that sensorimotor cortex abnormalities underpin the presence of SP in such patients. However, to our knowledge, no studies have assessed the neural correlates of SP in patients with OCD. Methods We assessed the presence of SP using the University of São Paulo Sensory Phenomena Scale in patients with OCD and healthy controls from specialized units in São Paulo, Brazil, and Barcelona, Spain. All participants underwent a structural magnetic resonance examination, and brain images were examined using DARTEL voxel-based morphometry. We evaluated grey matter volume differences between patients with and without SP and healthy controls within the sensorimotor and premotor cortices. Results We included 106 patients with OCD and 87 controls in our study. Patients with SP (67% of the sample) showed grey matter volume increases in the left sensorimotor cortex in comparison to patients without SP and bilateral sensorimotor cortex grey matter volume increases in comparison to controls. No differences were observed between patients without SP and controls. Limitations Most patients were medicated. Participant recruitment and image acquisition were performed in 2 different centres. Conclusion We have identified a structural correlate of SP in patients with OCD involving grey matter volume increases within the sensorimotor cortex; this finding is in agreement with those of tic disorder studies showing that abnormal activity and volume increases within this region are associated with the urges preceding tic onset. PMID:25652753
Massari, V J; Shirahata, M; Johnson, T A; Lauenstein, J M; Gatti, P J
1998-03-02
Physiological and light microscopic evidence suggest that substance P (SP) may be a neurotransmitter contained in first-order sensory baroreceptor afferents; however, ultrastructural support for this hypothesis is lacking. We have traced the central projections of the carotid sinus nerve (CSN) in the cat by utilizing the transganglionic transport of horseradish peroxidase (HRP). The dorsolateral subnucleus of the nucleus tractus solitarius (dlNTS) was processed for the histochemical visualization of transganglionically labeled CSN afferents and for the immunocytochemical visualization of SP by dual labeling light and electron microscopic methods. Either HRP or SP was readily identified in single-labeled unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS. SP immunoreactivity was also identified in unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS, which were simultaneously identified as CSN primary afferents. However, only 15% of CSN terminals in the dlNTS were immunoreactive for SP. Therefore, while the ultrastructural data support the hypothesis that SP immunoreactive first-order neurons are involved in the origination of the baroreceptor reflex, they suggest that only a modest part of the total sensory input conveyed from the carotid sinus baroreceptors to the dlNTS is mediated by SP immunoreactive CSN terminals. Five types of axo-axonic synapses were observed in the dlNTS. SP immunoreactive CSN afferents were very rarely involved in these synapses. Furthermore, SP terminals were never observed to form the presynaptic element in an axo-axonic synapse with a CSN afferent. Therefore, SP does not appear to be involved in the modulation of the baroreceptor reflex in the dlNTS. Copyright 1998 Elsevier Science B.V.
Studies on the trigeminal antidromic vasodilatation and plasma extravasation in the rat.
Couture, R; Cuello, A C
1984-01-01
Antidromic stimulation of sensory peripheral branches of the trigeminal system (mental nerve) led to cutaneous vasodilatation and increased vascular permeability in rats anaesthetized with urethane. The antidromic vasodilatation observed in intact animals was not altered by decentralization or sympathectomy. Both antidromic vasodilatation and neurogenic plasma extravasation remained unaffected by pre-treatment with cimetidine, indomethacin, baclofen, guanethidine plus phentolamine and propranolol, but were significantly reduced by cimetidine plus mepyramine and atropine, suggesting that cholinergic and histaminergic components might be involved in the sensory neurogenic responses. Methysergide reduced only the extravasation, suggesting that probably serotonin liberated by mast cells upon sensory stimulation can contribute to the neurogenic responses. In tests using substance P (SP) antagonists (D-pro4, D- trp 7, 9, 10)-SP (4-11) and (D-pro2, D-trp 7, 9)-SP it was found that they are more active in reducing the neurogenic extravasation than the vasodilatation. In addition it was observed that (D-pro 4, D-trp 7, 9, 10)-SP (4-11) was the most potent substance P antagonist in reducing the plasma extravasation and antidromic vasodilatation resulting from sensory stimulation. PMID:6199494
Kessler, J A
1985-10-01
Interactions between peptidergic sensory nerves, noradrenergic sympathetic nerves, and cholinergic parasympathetic fibers were examined in the rat iris. The putative peptide neurotransmitter, substance P (SP), was used as an index of the trigeminal sensory innervation, tyrosine hydroxylase (TH) activity served to monitor the sympathetic fibers, and choline acetyltransferase (CAT) activity was used as an index of the parasympathetic innervation. Destruction of the sympathetic innervation by neonatal administration of 6-hydroxydopamine resulted in increased SP development and a smaller increase in CAT activity in the iris. Moreover, trigeminal ablation resulted in an increase in both TH and CAT activities. Finally, ciliary ganglionectomy resulted in increased SP and a smaller increase in TH activity in the iris. Administration of nerve growth factor (NGF) into the anterior chamber substantially increased both SP and TH activity in the iris and also increased CAT activity to a lesser extent. Moreover, administration of anti-NGF into the anterior chamber prevented both the sympathectomy-induced increases in SP and CAT, and the increases in TH and CAT activities after trigeminal ablation, suggesting that NGF mediated these increases. These observations suggest that the sympathetic, sensory, and parasympathetic innervations of the iris interact by altering availability of NGF elaborated by the iris. Regulation of iris CAT activity was examined in greater detail. Injection of the cholinergic toxin, AF64A, into the anterior chamber concurrently with ablation of the sympathetic and sensory innervations paradoxically increased CAT activity, whereas AF64A alone decreased CAT activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Paschoal, Fabiano; Pereira, Aldenice N; Luque, José Luis
2016-10-11
A new species of copepod, Colobomatus kimi sp. nov., belonging to the cyclopoid family Philichthyidae Vogt, 1877, is proposed based on female specimens collected from the pores of the cephalic sensory system of the dwarf goatfish, Upeneus parvus Poey from the southeastern Brazilian coastal zone. The new species can be distinguished from its closest congeners by the unique combination of characters displayed by the female, including the forked caudal rami, the position of the midventral cephalic process shorter in relation to the lateral cephalic processes, and the presence of paired genital processes. The new species is the first member of Colobomatus Hesse, 1873 found to parasitize mullids of the genus Upeneus.
Lundberg, J. M.; Saria, A.; Brodin, E.; Rosell, S.; Folkers, K.
1983-01-01
Electrical stimulation of the cervical vagus nerve in anesthetized guinea pigs induced a rapid increase in respiratory insufflation pressure, suggesting increased airway resistance. After intravenous administration of a substance P (SP) antagonist, [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP, the insufflation pressure response to vagal stimulation was reduced by 78% while the cardiovascular effects were unchanged. Histamine receptor-blocking agents were used to inhibit the effects of histamine release induced by the SP-antagonist. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP also reduced the increase in insufflation pressure caused by intravenous SP or capsaicin. The long-lasting noncholinergic contraction of the main and hilus bronchi induced by field stimulation in vitro, as well as the contractile effects of SP and capsaicin, were also blocked by the SP antagonist. The cholinergic contractions and the noncholinergic tracheal relaxation on field stimulation in vitro were, however, not blocked by the antagonist. Vagal stimulation in vivo also increased vascular permeability in the respiratory tract and esophagus, causing a subepithelial edema as indicated by Evans blue extravasation. Previous treatment with [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP inhibited the permeability increase induced by both vagus nerve stimulation and exogenous SP. SP release from vagal sensory nerves was indirectly shown by reduction in the bronchial levels of SP after nerve stimulation in vivo. The data suggest that a major portion of the vagally or capsaicin-induced increase in smooth muscle tone is caused by SP release from sensory neurons. In addition, activation of vagal SP-containing sensory nerves induces local edema. Tracheobronchial afferent SP-containing C fibers may thus exert local control of smooth muscle tone and vascular permeability in normal and pathophysiological conditions. Images PMID:6189120
Wei, E Q; Liu, J W; Zhang, L F; Zhang, W P; Bian, R L
1996-05-01
To study the effect of 4-oxo-8-[p-(4-phenylbutyloxy) benzoylamino]-2-(tetrazol-5-yl)-4H-1-benzopyran hemihydrate (ONO-1078), a specific leukotriene antagonist, on capsaicin (Cap)-sensitive sensory nerve functions in the airways, and clarify the modulating roles of endogenous peptido-leukotrienes. Changes in intrapulmonary pressure (IPP), Evans blue extravasation in airways, and contraction of bronchial smooth muscles of guinea pigs induced by Cap, substance P (SP) and leukotriene C4 (LTC4) were observed. Cap (0.05 mg.kg-1, i.v.), SP (1 microgram.kg-1, i.v.) and LTC4 (0.5 microgram.kg-1, i.v.) enhanced IPP, and Evans blue extravasation in bronchi and intrapulmonary airways. ONO-1078 0.03 mg.kg-1, i.v. completely blocked the responses to LTC4, attenuated those to Cap, but had no effect to SP. In isolated bronchial smooth muscles, ONO-1078 (1 mumol.L-1) inhibited the contractile response to Cap, but not to SP. ONO-1078 partly inhibits Cap-sensitive sensory nerve actions in airways, but has no direct effect on SP, a sensory neuropeptide.
Attenuated plasma extravasation to sensory neuropeptides in diabetic rats.
Mathison, R; Davison, J S
1993-01-01
The effects of either substance P (SP) or a metabolically stable SP analogue, [pGlu5,Me-Phe8,Sar9]SP(5-11), alone or in combination with calcitonin gene-related peptide (CGRP) on blood pressure (BP) and extravasation of serum albumin were examined in normal and diabetic rats. CGRP (12 ng/kg) modified neither BP nor vascular permeability in control and diabetic rats. Both SP and its analogue (74 ng/kg) produced hypotension, and increased plasma extravasation in the respiratory tissues, urinary bladder and skin. The simultaneous injection of CGRP and SP resulted in modest potentiation of the vascular permeability actions of SP in control and diabetic rats. However, extravasation induced by [pGlu5,Me-Phe8,Sar9]SP(5-11) was potentiated by CGRP in control animals, but not in diabetic rats. Defective neurogenic inflammatory responses in diabetic rats may result from decreased responses in the effector tissues of diabetic rats to the neuropeptides released from sensory nerves.
Biserova, Natalia M; Gordeev, Ilya I; Korneva, Janetta V
2016-01-01
The sensory organs in tegument of two trypanorhynchean species--Nybelinia surmenicola (plerocercoid) and adult Parachristianella sp. (Cestoda, Trypanorhyncha)--were studied with the aim of ultrastructural description and a comparative analysis. The Nybelinia surmenicola plerocercoid lacks papillae with sensory cilia on the bothria adhesive surface. We found an unciliated sensory organ within the median bothria fold. This unciliated free nerve ending contains the central electron-dense disc, three dense supporting rings, and broad root. The nerve ending locates in the basal matrix under the tegument. The tegument of N. surmenicola has a number of ultrastructural features which make it significantly different from other Trypanorhyncha: (i) the tegumental cytoplasm has a plicated constitution in a form of high apical and deep basal folds, (ii) numerous layers of the basal matrix are presented in the subtegument, and (iii) the squamiform and bristlelike microtriches N. surmenicola lack the base and the basal plate. In contrast, numerous ciliated and unciliated receptors were found in Parachristianella sp.: six types on the bothria and one type in the strobila tegument. Ultrastructural constitution of sensory organs in the form of ciliated free nerve endings as well as unciliated basal nerve endings of Parachristianella sp. has many common features inside Eucestoda. In comparison with other Trypanorhyncha, all Nybelinia species studied have less quantity of the bothrial sensory organs. This fact may reflect behavioral patterns of Nybelinia as well as phylogenetic position into Trypanorhyncha. Our observations of living animals conventionally demonstrate the ability of N. surmenicola plerocercoids to locomote in forward direction on the Petri dish surface. The participation of the bothrial microtriches in a parasite movement has been discussed.
Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds.
Huang, Anthony Y; Wu, Sandy Y
2018-04-01
Capsaicin-mediated modulation of taste nerve responses is thought to be produced indirectly by the actions of neuropeptides, for example, CGRP and substance P (SP), on taste cells implying they play a role in taste sensitivity. During the processing of gustatory information in taste buds, CGRP shapes peripheral taste signals via serotonergic signalling. The underlying assumption has been that SP exerts its effects on taste transmitter secretion in taste buds of mice. To test this assumption, we investigated the net effect of SP on taste-evoked ATP secretion from mouse taste buds, using functional calcium imaging with CHO cells expressing high-affinity transmitter receptors as cellular biosensors. Our results showed that SP elicited PLC activation-dependent intracellular Ca 2+ transients in taste cells via neurokinin 1 receptors, most likely on glutamate-aspartate transporter-expressing Type I cells. Furthermore, SP caused Type I cells to secrete GABA. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the current results indicate that SP elicited secretion of GABA, which provided negative feedback onto Type II (receptor) cells to reduce taste-evoked ATP secretion. These findings are consistent with a role for SP as an inhibitory transmitter that shapes the peripheral taste signals, via GABAergic signalling, during the processing of gustatory information in taste buds. Notably, the results suggest that SP is intimately associated with GABA in mammalian taste signal processing and demonstrate an unanticipated route for sensory information flow within the taste bud. © 2018 The British Pharmacological Society.
Jin, Sang-Keun; Kim, Yeong-Jung; Park, Jae Hong; Hur, In-Chul; Nam, Sang-Hae; Shin, Daekeun
2012-01-01
This study was conducted to evaluate the effects of adding purple-fleshed sweet potato (PFP) powder on the texture properties and sensory characteristics of cooked pork sausage. Sodium nitrite alone and sodium nitrite in combination with PFP were added to five different treatments sausages (CON (control) = 0.01% sodium nitrite, SP25 = 0.005% sodium nitrite and 0.25% purple-fleshed sweet potato powder combination, SP50 = 0.005% sodium nitrite and 0.5% purple-fleshed sweet potato powder combination, PP25 = 0.25% purple-fleshed sweet potato powder, PP50 = 0.5% purple-fleshed sweet potato powder). The sausages were cooked to 74°C, stored at 4°C for 6 wks, and used for chemical analysis, textural properties, and a sensory evaluation on 0, 2, 4 and 6 wks of storage, respectively. Similar CIE a* and b* values were determined in sausages from CON, SP25 and SP50 at the end of storage, and they were higher in CIE a* but lower in CIE b* than that of the PP25 and PP50 sausages. Significant differences were observed for brittleness and hardness when PFP was added to the sausages but were not confirmed after 4 wks of storage. The objective color score was influenced by adding PFP; however, the effect was not dose dependent. In overall acceptability, panelists favored the CON, SP25, SP50, and PP50 sausages but did not prefer PP25 sausages at the end of storage. Therefore, adding PFP to cooked pork sausages improved color and texture properties and sensory characteristics, but further study is needed to determine the proper ratio of sodium nitrite and PFP. PMID:25049698
Jin, Sang-Keun; Kim, Yeong-Jung; Park, Jae Hong; Hur, In-Chul; Nam, Sang-Hae; Shin, Daekeun
2012-09-01
This study was conducted to evaluate the effects of adding purple-fleshed sweet potato (PFP) powder on the texture properties and sensory characteristics of cooked pork sausage. Sodium nitrite alone and sodium nitrite in combination with PFP were added to five different treatments sausages (CON (control) = 0.01% sodium nitrite, SP25 = 0.005% sodium nitrite and 0.25% purple-fleshed sweet potato powder combination, SP50 = 0.005% sodium nitrite and 0.5% purple-fleshed sweet potato powder combination, PP25 = 0.25% purple-fleshed sweet potato powder, PP50 = 0.5% purple-fleshed sweet potato powder). The sausages were cooked to 74°C, stored at 4°C for 6 wks, and used for chemical analysis, textural properties, and a sensory evaluation on 0, 2, 4 and 6 wks of storage, respectively. Similar CIE a* and b* values were determined in sausages from CON, SP25 and SP50 at the end of storage, and they were higher in CIE a* but lower in CIE b* than that of the PP25 and PP50 sausages. Significant differences were observed for brittleness and hardness when PFP was added to the sausages but were not confirmed after 4 wks of storage. The objective color score was influenced by adding PFP; however, the effect was not dose dependent. In overall acceptability, panelists favored the CON, SP25, SP50, and PP50 sausages but did not prefer PP25 sausages at the end of storage. Therefore, adding PFP to cooked pork sausages improved color and texture properties and sensory characteristics, but further study is needed to determine the proper ratio of sodium nitrite and PFP.
USDA-ARS?s Scientific Manuscript database
This work aimed to characterize the sensory attributes of hot air-dried persimmon (Diospyros kaki) chips, correlate these attributes with consumer hedonic information, and, by doing so, present recommendations for cultivars that are most suitable for hot-air drying. A trained sensory panel evaluated...
VASS, Z.; DAI, C. F.; STEYGER, P. S.; JANCSÓ, G.; TRUNE, D. R.; NUTTALL, A. L.
2014-01-01
Evidence suggests that capsaicin-sensitive substance P (SP)-containing trigeminal ganglion neurons innervate the spiral modiolar artery (SMA), radiating arterioles, and the stria vascularis of the cochlea. Antidromic electrical or chemical stimulation of trigeminal sensory nerves results in neurogenic plasma extravasation in inner ear tissues. The primary aim of this study was to reveal the possible morphological basis of cochlear vascular changes mediated by capsaicin-sensitive sensory nerves. Therefore, the distribution of SP and capsaicin receptor (transient receptor potential vanilloid type 1—TRPV1) was investigated by double immunolabeling to demonstrate the anatomical relationships between the cochlear and vertebro-basilar blood vessels and the trigeminal sensory fiber system. Extensive TRPV1 and SP expression and co-localization were observed in axons within the adventitial layer of the basilar artery, the anterior inferior cerebellar artery, the SMA, and the radiating arterioles of the cochlea. There appears to be a functional relationship between the trigeminal ganglion and the cochlear blood vessels since electrical stimulation of the trigeminal ganglion induced significant plasma extravasation from the SMA and the radiating arterioles. The findings suggest that stimulation of paravascular afferent nerves may result in permeability changes in the basilar and cochlear vascular bed and may contribute to the mechanisms of vertebro-basilar type of headache through the release of SP and stimulation of TPVR1, respectively. We propose that vertigo, tinnitus, and hearing deficits associated with migraine may arise from perturbations of capsaicin-sensitive trigeminal sensory ganglion neurons projecting to the cochlea. PMID:15026132
Grider, J R; Heuckeroth, R O; Kuemmerle, J F; Murthy, K S
2010-07-01
Glial cell line-derived neurotrophic factor (GDNF) is present in adult gut although its role in the mature enteric nervous system is not well defined. The aim of the present study was to examine the role of GDNF as neuromodulator of the ascending phase of the peristaltic reflex. Colonic segments were prepared as flat sheets and placed in compartmented chambers so as to separate the sensory and motor limbs of the reflex. Ascending contraction was measured in the orad compartment and mucosal stroking stimuli (two to eight strokes) were applied in the caudad compartment. GDNF and substance P (SP) release were measured and the effects of GDNF and GDNF antibody on contraction and release were determined. Mice with reduced levels of GDNF (Gdnf(+/-)) and wild type littermates were also examined. GDNF was released in a stimulus-dependent manner into the orad motor but not caudad sensory compartment. Addition of GDNF to the orad motor but not caudad sensory compartment augmented ascending contraction and SP release. Conversely, addition of GDNF antibody to the orad motor but not caudad sensory compartment reduced ascending contraction and SP release. Similarly, the ascending contraction and SP release into the orad motor compartment was reduced in Gdnf(+/-) mice as compared to wild type littermates. The results suggest that endogenous GDNF is released during the ascending contraction component of the peristaltic reflex where it acts as a neuromodulator to augment SP release from motor neurons thereby augmenting contraction of circular muscle orad to the site of stimulation.
de Melo Pereira, Gilberto Vinícius; Soccol, Vanete Thomaz; Pandey, Ashok; Medeiros, Adriane Bianchi Pedroni; Andrade Lara, João Marcos Rodrigues; Gollo, André Luiz; Soccol, Carlos Ricardo
2014-10-01
During wet processing of coffee, the ripe cherries are pulped, then fermented and dried. This study reports an experimental approach for target identification and selection of indigenous coffee yeasts and their potential use as starter cultures during the fermentation step of wet processing. A total of 144 yeast isolates originating from spontaneously fermenting coffee beans were identified by molecular approaches and screened for their capacity to grow under coffee-associated stress conditions. According to ITS-rRNA gene sequencing, Pichia fermentans and Pichia kluyveri were the most frequent isolates, followed by Candida Candida glabrata, quercitrusa, Saccharomyces sp., Pichia guilliermondii, Pichia caribbica and Hanseniaspora opuntiae. Nine stress-tolerant yeast strains were evaluated for their ability to produce aromatic compounds in a coffee pulp simulation medium and for their pectinolytic activity. P. fermentans YC5.2 produced the highest concentrations of flavor-active ester compounds (viz., ethyl acetate and isoamyl acetate), while Saccharomyces sp. YC9.15 was the best pectinase-producing strain. The potential impact of these selected yeast strains to promote flavor development in coffee beverages was investigated for inoculating coffee beans during wet fermentation trials at laboratory scale. Inoculation of a single culture of P. fermentans YC5.2 and co-culture of P. fermentans YC5.2 and Saccharomyces sp. YC9.15 enhanced significantly the formation of volatile aroma compounds during the fermentation process compared to un-inoculated control. The sensory analysis indicated that the flavor of coffee beverages was influenced by the starter cultures, being rated as having the higher sensory scores for fruity, buttery and fermented aroma. This demonstrates a complementary role of yeasts associated with coffee quality through the synthesis of yeast-specific volatile constituents. The yeast strains P. fermentans YC5.2 and Saccharomyces sp. YC9.15 have a great potential for use as starter cultures in wet processing of coffee and may possibly help to control and standardize the fermentation process and produce coffee beverages with novel and desirable flavor profiles. Copyright © 2014. Published by Elsevier B.V.
Wu, Zhong-Xin; Satterfield, Brian E; Dey, Richard D
2003-08-01
Exposure to ozone (O3) induces airway hyperresponsiveness mediated partly through the release of substance P (SP) from nerve terminals in the airway wall. Although substantial evidence suggests that SP is released by sensory nerves, SP is also present in neurons of airway ganglia. The purpose of this study was to investigate the role of intrinsic airway neurons in O3-enhanced airway responsiveness in ferret trachea. To remove the effects of sensory innervation, segments of ferret trachea were maintained in culture conditions for 24 h before in vitro exposure to 2 parts/million of O3 or air for 1 h. Sensory nerve depletion was confirmed by showing that capsaicin did not affect tracheal smooth muscle responsiveness to cholinergic agonist or contractility responses to electrical field stimulation (EFS). Contractions of isolated tracheal smooth muscle to EFS were significantly increased after in vitro O3 exposure, but the constrictor response to cholinergic agonist was not altered. Pretreatment with CP-99994, an antagonist of the neurokinin 1 receptor, attenuated the increased contraction to EFS after O3 exposure but had no effect in the air exposure group. The number of SP-positive neurons in longitudinal trunk ganglia, the extent of SP innervation to superficial muscular plexus nerve cell bodies, and SP nerve fiber density in tracheal smooth muscle all increased significantly after O3 exposure. The results show that release of SP from intrinsic airway neurons contributes to O3-enhanced tracheal smooth muscle responsiveness by facilitating acetylcholine release from cholinergic nerve terminals.
Bossowska, Agnieszka; Lepiarczyk, Ewa; Mazur, Urszula; Janikiewicz, Paweł; Markiewicz, Włodzimierz
2015-11-16
Botulinum toxin (BTX) is a potent neurotoxin which blocks acetylcholine release from nerve terminals, and therefore leads to cessation of somatic motor and/or parasympathetic transmission. Recently it has been found that BTX also interferes with sensory transmission, thus, the present study was aimed at investigating the neurochemical characterization of substance P-immunoreactive (SP-IR) bladder-projecting sensory neurons (BPSN) after the toxin treatment. Investigated neurons were visualized with retrograde tracing method and their chemical profile was disclosed with double-labelling immunohistochemistry using antibodies against SP, calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP), neuronal nitric oxide synthase (nNOS), galanin (GAL), calbindin (CB), and somatostatin (SOM). In the control group (n = 6), 45% of the total population of BPSN were SP-IR. Nearly half of these neurons co-expressed PACAP or CGRP (45% and 35%, respectively), while co-localization of SP with GAL, nNOS, SOM or CB was found less frequently (3.7%, 1.8%, 1.2%, and 0.7%, respectively). In BTX-treated pigs (n = 6), toxin-injections caused a decrease in the number of SP-IR cells containing CGRP, SOM or CB (16.2%, 0.5%, and 0%, respectively) and a distinct increase in these nerve cells immunopositive to GAL (27.2%). The present study demonstrates that BTX significantly modifies the chemical phenotypes of SP-IR BPSN.
Fischer, A; McGregor, G P; Saria, A; Philippin, B; Kummer, W
1996-01-01
Substance P (SP), neurokinin A (NKA), and calcitonin gene-related peptide (CGRP) have potent proinflammatory effects in the airways. They are released from sensory nerve endings originating in jugular and dorsal root ganglia. However, the major sensory supply to the airways originates from the nodose ganglion. In this study, we evaluated changes in neuropeptide biosynthesis in the sensory airway innervation of ovalbumin-sensitized and -challenged guinea pigs at the mRNA and peptide level. In the airways, a three- to fourfold increase of SP, NKA, and CGRP, was seen 24 h following allergen challenge. Whereas no evidence of local tachykinin biosynthesis was found 12 h after challenge, increased levels of preprotachykinin (PPT)-A mRNA (encoding SP and NKA) were found in nodose ganglia. Quantitative in situ hybridization indicated that this increase could be accounted for by de novo induction of PPT-A mRNA in nodose ganglion neurons. Quantitative immunohistochemistry showed that 24 h after challenge, the number of tachykinin-immunoreactive nodose ganglion neurons had increased by 25%. Their projection to the airways was shown. Changes in other sensory ganglia innervating the airways were not evident. These findings suggest that an induction of sensory neuropeptides in nodose ganglion neurons is crucially involved in the increase of airway hyperreactivity in the late response to allergen challenge. PMID:8941645
Kim, Seung Mi; Lee, Myung Ho; Yang, Sun A; Choi, Young Sim; Jegal, Sung A; Sung, Chang Keun; Mo, Eun Kyoung
2012-01-01
This study was performed to increase the availability of Sedum sarmentosum (Dolnamul) and to improve the nutraceutical value of rice cakes (sulgitteok). The contents of crude protein, mineral, dietary fiber, water holding capacity, and hardness significantly and directly increased with lyophilized sedum powder (SP). Pore ratio and expansion rate decreased in samples containing more than 10% SP compared to the control. In a sensory evaluation, a positive correlation was detected between overall acceptability and taste (R2=0.99, p<0.01), and color (R2=0.72, p<0.05). Total polyphenol contents of the SP-treated groups were significantly elevated, accompanied by an increase in radical scavenging ability estimated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Replacing 10% of the rice powder with SP efficiently improved the antioxidant and nutritional values of sulgitteok as well as its the sensory quality. PMID:24471077
Chiba, Y; Misawa, M
1995-02-01
The effects of sensory neuropeptides on the airway responsiveness to acetylcholine (ACh) were investigated in normal nonsensitized rats. The airway responsiveness to inhaled ACh was significantly increased after treatment with neurokinin A (NKA; 0.001%) or substance P (SP; 0.01%) aerosol in the presence of the neutral endopeptidase (NEP) inhibitor. NKA had a more potent effect than SP. Interestingly, the intravenous treatment with NEP inhibitor alone also induced airway hyperresponsiveness (AHR) to inhaled ACh. This AHR was significantly attenuated by pretreatment with a nonselective NK-receptor antagonist, [D-Pro2,D-Trp7,9]SP, systemic capsaicin, or bilateral cervical vagotomy, indicating that decreased NEP activity results in accumulation of endogenous sensory neuropeptide(s) and enhancement of vagal reflex to cause AHR. The airway responsiveness to ACh of isolated left main bronchus was also increased after treatment with 10(-6) M NKA, but not SP, together with 10(-6) M phosphoramidon. This in vitro AHR to ACh induced by phosphoramidon plus NKA was significantly attenuated by pretreatment with 10(-6) M tetrodotoxin. These findings suggest that overaccumulated sensory neuropeptides, especially NKA, may enhance the probability of transmitter release, probably via NK2 receptors, and that the enhanced transmitter release might be involved in AHR in rats.
Sekizawa, K; Jia, Y X; Ebihara, T; Hirose, Y; Hirayama, Y; Sasaki, H
1996-01-01
The sensory neuropeptide, substance P (SP), is present in human airway nerves, beneath and within the epithelium where the condensed localization of neutral endopeptidase (NEP), the major enzyme degrading SP, is observed. To test the hypothesis whether SP stimulates the cough reflex and NEP modifies the cough reflex, we studied the cough response to various stimuli in awake guinea-pigs. Inhibition of NEP with phosphoramidon caused cough, which was inhibited by systemic capsaicin treatment and by aerosols of a specific NK1 receptor antagonist FK 888. Aerosols of FK 888 also inhibited cough induced by bronchoconstricting agents such as acetylcholine and histamine in non-sensitized animals and by ovalbumin antigen in animals sensitized to ovalbumin. The number of coughs induced by histamine aerosols was inhibited by systemic capsaicin treatment and enhanced by pretreatment with a NEP inhibitor phosphoramidon. Likewise, FK 888 inhibited the augmented cough response to aerosolized capsaicin in female guinea-pigs treated with a long-term medication of an angiotensin-converting enzyme inhibitor, cilazapril. In humans, aerosols of SP did not cause cough in normal subjects, whereas it did in patients with common colds. The SP fragment a major metabolite of SP produced by NEP, was less effective compared with SP in these patients, suggesting that damaged epithelium may facilitate the penetration of SP. These findings suggest that SP released from sensory nerves in response to stimuli may mediate cough and NEP may have a role in modulating SP-induced effects.
Three new Batillipes species (Arthrotardigrada: Batillipedidae) from the Brazilian coast.
Santos, Erika; Rocha, Clélia M C DA; Gomes, Edivaldo Jr; Fontoura, Paulo
2017-03-16
Three new tardigrade species, Batillipes brasiliensis sp. nov., Batillipes dandarae sp. nov. and Batillipes potiguarensis sp. nov., are described from shallow subtidal sediments of the Brazilian coast. B. brasiliensis sp. nov. and B. dandarae sp. nov. have toes 3 and 4 on leg IV different in length, so they can be included in the D group of species, while B. potiguarensis sp. nov., with toes 3 and 4 on leg IV equal in length belong to the A group. Batillipes brasiliensis sp. nov. is characterized by having an ala-like caudal expansion; cuticular projections on the coxal region of legs I-III, and lateral projections. The lateral projection located between the third and fourth legs is fringed with digit-shaped expansions. Batillipes dandarae sp. nov. has a dorsal blunt enlargement in the scapular region; a pointed triangular caudal appendage, and no lateral projections. The new species exhibits a sensorial spine on legs I inserted posteriorly and turning forward, and anus surrounded by a peculiar cuticular structure constituted by six platelets. Batillipes potiguarensis sp. nov. is characterized by a unique combination of characters: scapular region well developed, protruding laterally at the level of the first pair of legs; lateral blunt processes between legs, and prominent roundish caudal protrusion. In addition, the new species exhibits cephalic appendages with swollen tips, evident secondary clavae, and very short sense organs on the legs IV.
Weissner, Wendy; Winterson, Barbara J.; Stuart-Tilley, Alan; Devor, Marshall; Bove, Geoffrey M.
2008-01-01
Recent evidence suggests that substance P (SP) is upregulated in primary sensory neurons following axotomy, and that this change occurs in larger neurons that do not usually produce SP. If so, this upregulation may allow normally neighboring, uninjured, and non-nociceptive dorsal root ganglion (DRG) neurons to become effective in activating pain pathways. Using immunohistochemistry, we performed a unilateral L5 spinal nerve transection upon male Wistar rats, and measured SP expression in ipsilateral L4 and L5 DRGs and contralateral L5 DRGs, at 1 to 14 days postoperatively (dpo), and in control and sham operated rats. In normal and sham operated DRGs, SP was detectable almost exclusively in small neurons (≤ 800 μm2). Following surgery, the mean size of SP-positive neurons from the axotomized L5 ganglia was greater at 2, 4, 7 and 14 dpo. Among large neurons (> 800 μm2) from the axotomized L5, the percentage of SP-positive neurons increased at 2, 4, 7, and 14 dpo. Among small neurons from the axotomized L5, the percentage of SP-positive neurons was increased at 1 and 3 dpo, but was decreased at 7 and 14 dpo. Thus, SP expression is affected by axonal damage, and the time course of the expression is different between large and small DRG neurons. These data support a role of SP-producing, large DRG neurons in persistent sensory changes due to nerve injury. PMID:16680762
Autonomic regulation. i-NANC/e-NANC.
Widdicombe, J G
1998-11-01
The excitatory and inhibitory nonadrenergic/noncholinergic (e-NANC, i-NANC) systems have been extensively studied. The terms excitatory and inhibitory apply to airway smooth muscle, but the neurotransmitters also act on other targets-blood vessels, glands, the epithelium-where individual actions may be the opposite. Thus, the nomenclature is unsatisfactory. Of the dozen or more putative NANC transmitters, criteria to establish their roles have been met only for vasoactive intestinal polypeptide (VIP), nitric oxide (NO), and substance P/neurokinin A (SP/NKA). VIP and NO co-localize in vagal motor nerves, but they are also found in sympathetic and sensory nerves. In general they have similar actions on target tissues, and their relative importance may vary with species. SP/NKA, released from sensory nerves, is thought to mediate neurogenic inflammation, a process that may include airway smooth muscle contraction, at least in rodents. The evidence for neurogenic inflammation in humans is weak. On the motor side, and also possibly on the sensory, different nerves seem to contain different selections of neurotransmitters, but it is not known if there are different motor controls for these nerves. Cotransmission presents a major conceptual and experimental problem, since the two or more transmitters may give opposite instructions to the target tissue. Inevitably most of the studies on the NANC systems are on isolated rodent tissues, and although quantitative, they indicate little of what happens in vivo, and certainly not in humans. The cocktail of mediators that must be released from nerves and associated cells in airway tissues during pathophysiologic processes may refresh physiologists, but little is known about the concentrations of the ingredients or about the strength of their actions and their interactions on different target tissues in the mucosa.
Gajda, Mariusz; Litwin, Jan A; Cichocki, Tadeusz; Timmermans, Jean-Pierre; Adriaensen, Dirk
2005-01-01
The development of sensory innervation in long bones was investigated in rat tibia in fetuses on gestational days (GD) 16–21 and in neonates and juvenile individuals on postnatal days (PD) 1–28. A double immunostaining method was applied to study the co-localization of the neuronal growth marker growth-associated protein 43 (GAP-43) and the pan-neuronal marker protein gene product 9.5 (PGP 9.5) as well as that of two sensory fibre-associated neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP). The earliest, not yet chemically coded, nerve fibres were observed on GD17 in the perichondrium of the proximal epiphysis. Further development of the innervation was characterized by the successive appearance of nerve fibres in the perichondrium/periosteum of the shaft (GD19), the bone marrow cavity and intercondylar eminence (GD21), the metaphyses (PD1), the cartilage canals penetrating into the epiphyses (PD7), and finally in the secondary ossification centres (PD10) and epiphyseal bone marrow (PD14). Maturation of the fibres, manifested by their immunoreactivity for CGRP and SP, was visible on GD21 in the epiphyseal perichondrium, the periosteum of the shaft and the bone marrow, on PD1 in the intercondylar eminence and the metaphyses, on PD7 in the cartilage canals, on PD10 in the secondary ossification centres and on PD14 in the epiphyseal bone marrow. The temporal and topographic pattern of nerve fibre appearance corresponds with the development of regions characterized by active mineralization and bone remodelling, suggesting a possible involvement of the sensory innervation in these processes. PMID:16050900
In vitro differentiation of quail neural crest cells into sensory-like neuroblasts
NASA Technical Reports Server (NTRS)
Sieber-Blum, Maya; Kumar, Sanjiv R.; Riley, Danny A.
1988-01-01
Data are presented that demonstrate the ability of quail neural-crest embrionic cells grown as primary culture to differentiate in vitro into sensorylike neuroblasts. After 7-14 days of growth as primary culture, many of the putative sensory neuroblasts displayed substance P (SP)-like immunoreactivity and some exhibited histochemical carbonic anhydrase activity. Double staining experiments showed that the SP-like immunoreactive neuroblasts did not contain detectable levels of tyrosine hydroxylase or dopamine-beta-hydroxylase. The neuronal nature of the cultured sensorylike neuroblasts was further documented by double labeling for antibodies against the 68 kDa neurofilament polypeptide and substance P.
Khalil, Z; Helme, R D
1990-09-17
Using a blister model of inflammation in the rat hind footpad, the present study was undertaken to examine the ability of serotonin (5-HT) to modulate an inflammatory reaction manifested as plasma extravasation and vasodilatation induced by the neuropeptide substance P (SP). In addition, the role of primary afferent sensory nerve fibres in these modulatory effects was studied in capsaicin pretreated rats. Using a protocol of simultaneous perfusion of amine and peptide over the blister base, no major modulatory effect was observed. On the other hand, using a protocol of sequential perfusion, 5-HT was found to extend the plasma extravasation and vasodilatation responses to SP. 5-HT maintained the plasma extravasation response to SP after cessation of stimulation (during the post-stimulation period). On the other hand, it extended the vasodilatation response to SP during the actual stimulation period by preventing the occurrence of tachyphylaxis. These modulatory effects were absent in capsacin-pretreated rats. The present study provides evidence for the first time in vivo to suggest that serotonin can modulate an inflammatory response to SP via a mechanism that involves capsaicin-sensitive sensory fibres.
Akesowan, Adisak
2016-10-01
Formulated chicken nuggets which are low in fat and, high in dietary fiber and free from phosphate were developed by adding various levels of a konjac flour/xanthan gum (KF/XG) (3:1) mixture (0.2-1.5 %, w/w) and shiitake powder (SP) (1-4 %, w/w). A central composite rotatable design was used to investigate the influence of variables on the physical and sensory properties of nuggets and to optimize the formulated nugget formulation. The addition of the KF/XG mixture and SP was effective in improving nugget firmness and increasing hedonic scores for color, taste, flavor and overall acceptability. The nugget became darker with more SP was added. Optimal nuggets with 0.39 % KF/XG mixture and 1.84 % SP had reduced fat, higher dietary fiber and amino acids. After frozen (-18 ± 2 °C) storage, optimal formulated nuggets showed slower decreased in moisture, hardness and chewiness compared to standard nuggets. Konjac flour and SP also lowered lipid oxidation in frozen formulated nuggets. A slight change in sensory score was observed in both nuggets were microbiologically safe after frozen storage for 75 days.
Granato, Daniel; de Castro, I Alves; Ellendersen, L Souza Neves; Masson, M Lucia
2010-04-01
Desserts made with soy cream, which are oil-in-water emulsions, are widely consumed by lactose-intolerant individuals in Brazil. In this regard, this study aimed at using response surface methodology (RSM) to optimize the sensory attributes of a soy-based emulsion over a range of pink guava juice (GJ: 22% to 32%) and soy protein (SP: 1% to 3%). WHC and backscattering were analyzed after 72 h of storage at 7 degrees C. Furthermore, a rating test was performed to determine the degree of liking of color, taste, creaminess, appearance, and overall acceptability. The data showed that the samples were stable against gravity and storage. The models developed by RSM adequately described the creaminess, taste, and appearance of the emulsions. The response surface of the desirability function was used successfully in the optimization of the sensory properties of dairy-free emulsions, suggesting that a product with 30.35% GJ and 3% SP was the best combination of these components. The optimized sample presented suitable sensory properties, in addition to being a source of dietary fiber, iron, copper, and ascorbic acid.
The influence of yeast on chemical composition and sensory properties of dry white wines.
Puertas, B; Jimenez-Hierro, M J; Cantos-Villar, E; Marrufo-Curtido, A; Carbú, M; Cuevas, F J; Moreno-Rojas, J M; González-Rodríguez, V E; Cantoral, J M; Ruiz-Moreno, M J
2018-07-01
This study evaluates the impact on two varietal white wines from 'Chardonnay' and 'Verdejo' cultivars of different fermentative strategies: inoculation with Saccharomyces cerevisiae yeast (CT), sequential inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae) (SI), and spontaneous fermentation (SP). The wines' chemical composition was characterized by oenological parameters, organic acids, metals, major volatile compounds, ester compounds and sensory analyses. The fermentative strategy (CT, SI and SP) was found to be a key factor for assessing different styles of white wines. SI wines showed enhanced 'mature fruit' nuances and a chemical profile characterized by higher content of ethyl propanoate, ethyl isobutyrate and ethyl dihydrocinnamate. Meanwhile, the SP wines presented enhanced "stone fruit" nuances possible related to the higher contents of 2-phenyl acetate and isobutyl acetate. After a chemometric approach the above esters were identified as the markers of each fermentative strategy, independently of the variety. Copyright © 2018 Elsevier Ltd. All rights reserved.
Huang, Dongyang; Huang, Sha; Gao, Haixia; Liu, Yani; Qi, Jinlong; Chen, Pingping; Wang, Caixue; Scragg, Jason L; Vakurov, Alexander; Peers, Chris; Du, Xiaona; Zhang, Hailin; Gamper, Nikita
2016-08-10
Neuropeptide substance P (SP) is produced and released by a subset of peripheral sensory neurons that respond to tissue damage (nociceptors). SP exerts excitatory effects in the central nervous system, but peripheral SP actions are still poorly understood; therefore, here, we aimed at investigating these peripheral mechanisms. SP acutely inhibited T-type voltage-gated Ca(2+) channels in nociceptors. The effect was mediated by neurokinin 1 (NK1) receptor-induced stimulation of intracellular release of reactive oxygen species (ROS), as it can be prevented or reversed by the reducing agent dithiothreitol and mimicked by exogenous or endogenous ROS. This redox-mediated T-type Ca(2+) channel inhibition operated through the modulation of CaV3.2 channel sensitivity to ambient zinc, as it can be prevented or reversed by zinc chelation and mimicked by exogenous zinc. Elimination of the zinc-binding site in CaV3.2 rendered the channel insensitive to SP-mediated inhibition. Importantly, peripherally applied SP significantly reduced bradykinin-induced nociception in rats in vivo; knock-down of CaV3.2 significantly reduced this anti-nociceptive effect. This atypical signaling cascade shared the initial steps with the SP-mediated augmentation of M-type K(+) channels described earlier. Our study established a mechanism underlying the peripheral anti-nociceptive effect of SP whereby this neuropeptide produces ROS-dependent inhibition of pro-algesic T-type Ca(2+) current and concurrent enhancement of anti-algesic M-type K(+) current. These findings will lead to a better understanding of mechanisms of endogenous analgesia. SP modulates T-type channel activity in nociceptors by a redox-dependent tuning of channel sensitivity to zinc; this novel modulatory pathway contributes to the peripheral anti-nociceptive effect of SP. Antioxid. Redox Signal. 25, 233-251.
Li, Tu-Ping; Guo, Zheng; Liu, Chao-Jie; Sun, Tao; Chen, Lu; Zhao, Xin
2017-10-01
Diabetic patients present high co-morbidities of neuropathy and severer consequences of coronary heart disease. But the pathological mechanism is still unclear. Here we investigated a potential association of diabetic impairment of sensory nerves with increase of vulnerability of myocardium in acute myocardial ischemia/reperfusion. A rat model of diabetes mellitus was induced by high fat and sugar diet plus a small dose of streptozotocin. Impairment of sensory nerves was evaluated by measurement of changes in tail flick latency to noxious thermal stimulation and calcitonin gene-related peptide (CGRP) and substance P (SP) in the dorsal root ganglia (DRG) and the myocardium of the heart were examined. The myocardial injury was examined by infarct size, apoptosis ratio of cardiomyocytes and cardiac troponin I in the animals underwent acute myocardial ischemia (for 30min) and reperfusion (for 120min). The effects of CGRP and SP on cardiomyocyte injury induced by high glucose and hypoxia/reoxygenation were tested in cultured myocytes. The diabetic animals presented significant elevation of noxious thermal threshold with obvious reduction of the contents of CGRP and SP in the DRG and the myocardium. Importantly, the diabetic animals showed significant increases of infarct size, myocyte apoptosis and serum cardiac troponin I after acute myocardial ischemia/reperfusion, compared to the non-diabetic control. Furthermore, exogenously administered CGRP and SP attenuated the myocyte injury induced by the high concentration of glucose and hypoxia/reoxygenation. These findings suggested that impairment of sensory nerves with significant reduction of CGRP and SP in DRG, ventricular myocardium and serum may be associated with increase of myocardial vulnerability in acute myocardial ischemia/reperfusion in streptozotocin-induced diabetic rats. Copyright © 2017 Elsevier Inc. All rights reserved.
Ku, Yixuan; Zhao, Di; Bodner, Mark; Zhou, Yong-Di
2015-08-01
In the present study, causal roles of both the primary somatosensory cortex (SI) and the posterior parietal cortex (PPC) were investigated in a tactile unimodal working memory (WM) task. Individual magnetic resonance imaging-based single-pulse transcranial magnetic stimulation (spTMS) was applied, respectively, to the left SI (ipsilateral to tactile stimuli), right SI (contralateral to tactile stimuli) and right PPC (contralateral to tactile stimuli), while human participants were performing a tactile-tactile unimodal delayed matching-to-sample task. The time points of spTMS were 300, 600 and 900 ms after the onset of the tactile sample stimulus (duration: 200 ms). Compared with ipsilateral SI, application of spTMS over either contralateral SI or contralateral PPC at those time points significantly impaired the accuracy of task performance. Meanwhile, the deterioration in accuracy did not vary with the stimulating time points. Together, these results indicate that the tactile information is processed cooperatively by SI and PPC in the same hemisphere, starting from the early delay of the tactile unimodal WM task. This pattern of processing of tactile information is different from the pattern in tactile-visual cross-modal WM. In a tactile-visual cross-modal WM task, SI and PPC contribute to the processing sequentially, suggesting a process of sensory information transfer during the early delay between modalities. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Wu, Z-X; Satterfield, B E; Fedan, J S; Dey, R D
2002-11-01
Interleukin (IL)-1beta causes airway inflammation, enhances airway smooth muscle responsiveness, and alters neurotransmitter expression in sensory, sympathetic, and myenteric neurons. This study examines the role of intrinsic airway neurons in airway hyperresponsiveness (AHR) induced by IL-1beta. Ferrets were instilled intratracheally with IL-1beta (0.3 microg/0.3 ml) or saline (0.3 ml) once daily for 5 days. Tracheal smooth muscle contractility in vitro and substance P (SP) expression in tracheal neurons were assessed. Tracheal smooth muscle reactivity to acetylcholine (ACh) and methacholine (MCh) and smooth muscle contractions to electric field stimulation (EFS) both increased after IL-1beta. The IL-1beta-induced AHR was maintained in tracheal segments cultured for 24 h, a procedure that depletes SP from sensory nerves while maintaining viability of intrinsic airway neurons. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the IL-1beta-induced hyperreactivity to ACh and MCh and to EFS in cultured tracheal segments. SP-containing neurons in longitudinal trunk, SP innervation of superficial muscular plexus neurons, and SP nerve fiber density in tracheal smooth muscle all increased after treatment with IL-1beta. These results show that IL-1beta-enhanced cholinergic airway smooth muscle contractile responses are mediated by the actions of SP released from intrinsic airway neurons.
TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis
Liu, Boyi; Escalera, Jasmine; Balakrishna, Shrilatha; Fan, Lu; Caceres, Ana I.; Robinson, Eve; Sui, Aiwei; McKay, M. Craig; McAlexander, M. Allen; Herrick, Christina A.; Jordt, Sven E.
2013-01-01
Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten-challenged skin of TRPA1-deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1-deficient sensory neurons were defective in SP signaling, and SP-induced scratching behavior was abolished in Trpa1−/− mice. SP receptor antagonists, such as aprepitant inhibited both hapten-induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis.—Liu, B., Escalera, J., Balakrishna, S., Fan, L., Caceres, A. I., Robinson, E., Sui, A., McKay, M. C., McAlexander, M. A., Herrick, C. A., Jordt, S. E. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. PMID:23722916
Walsh, D T; Weg, V B; Williams, T J; Nourshargh, S
1995-01-01
1. The sensory neuropeptide substance P (SP), when released from sensory nerves, has been implicated in the development of neurogenic inflammation. In the present study, using an in vivo model system, we have characterized and investigated the mechanisms underlying SP-induced leukocyte accumulation and oedema formation in the guinea-pig. 2. Intradermally injected SP (i.d., 10(-13) - 10(-9) mol per site), induced a dose- and time-dependent accumulation of 111In-neutrophils, 111In-eosinophils and oedema formation as measured by the local accumulation of i.v. injected 125I-albumin. The leukocyte accumulation evoked by SP was significant at 10(-10) and 10(-9) mol per site, whereas oedema formation was significant at the lowest dose tested (10(-13) mol per site). 3. The NK1 receptor antagonists, CP-96,345 (1 mg kg-1, i.v.) and RP-67,580 (10 micrograms per site, i.d.), significantly attenuated the oedema formation induced by the lower doses of SP. Oedema formation and leukocyte accumulation induced by 10(-9) mol per site SP were unaffected by either antagonist. 4. SP-elicited responses were not significantly affected by the platelet activating factor (PAF) receptor antagonist, UK-74,505 (2.5 mg kg-1, i.v.) or the H1 histamine receptor antagonist, chlorpheniramine (10(-8) mol per site, i.d.). However, the 111In-eosinophil accumulation, but not the 111In-neutrophil accumulation or oedema formation, induced by SP was significantly inhibited by the specific 5-lipoxygenase (5-LO) inhibitor, ZM-230,487 (10(-8) mol per site, i.d.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7541689
MIPs are ancestral ligands for the sex peptide receptor.
Kim, Young-Joon; Bartalska, Katarina; Audsley, Neil; Yamanaka, Naoki; Yapici, Nilay; Lee, Ju-Youn; Kim, Yong-Chul; Markovic, Milica; Isaac, Elwyn; Tanaka, Yoshiaki; Dickson, Barry J
2010-04-06
Upon mating, females of many animal species undergo dramatic changes in their behavior. In Drosophila melanogaster, postmating behaviors are triggered by sex peptide (SP), which is produced in the male seminal fluid and transferred to female during copulation. SP modulates female behaviors via sex peptide receptor (SPR) located in a small subset of internal sensory neurons that innervate the female uterus and project to the CNS. Although required for postmating responses only in these female sensory neurons, SPR is expressed broadly in the CNS of both sexes. Moreover, SPR is also encoded in the genomes of insects that lack obvious SP orthologs. These observations suggest that SPR may have additional ligands and functions. Here, we identify myoinhibitory peptides (MIPs) as a second family of SPR ligands that is conserved across a wide range of invertebrate species. MIPs are potent agonists for Drosophila, Aedes, and Aplysia SPRs in vitro, yet are unable to trigger postmating responses in vivo. In contrast to SP, MIPs are not produced in male reproductive organs, and are not required for postmating behaviors in Drosophila females. We conclude that MIPs are evolutionarily conserved ligands for SPR, which are likely to mediate functions other than the regulation of female reproductive behaviors.
Spasmophilia comorbidity in fibromyalgia syndrome.
Bazzichi, L; Consensi, A; Rossi, A; Giacomelli, C; De Feo, F; Doveri, M; Sernissi, F; Calabrese, R; Consoli, G; Ciapparelli, A; Dell'Osso, L; Bombardieri, S
2010-01-01
To evaluate the role of spasmophilia (SP) in fibromyalgia syndrome (FM). Three hundred and fourteen patients (280 F, 34 M) with a diagnosis of FM or FM and spasmophilia (FM+SP) were recruited. Clinical assessment of patients and controls included the Questionnaires FIQ, HAQ and the tender point (TP) count. Life-time or ongoing psychiatric aspects were evaluated by trained psychiatrists by means of the classic scales: Structured Clinical Interview (SCID) for DSM-IV. The following analysis were evaluated: cytokine (IL1, IL2, IL6, IL8, IL10), TNF-α, cortisol, GH, ACTH, IGF1, 5HT, intracellular Mg, plasma calcium p(Ca), PTH, (25(OH)D) and thyroid functionality. Some typical symptoms were investigated. Eighty-one patients resulted positive for spamophilia (FM+SP), while 233 resulted negative for spasmophilia (FM). The mean TP number resulted higher in the FM group (15.33±3.88) with respect to FM+SP (12.88±6.17, p=0.016), while FIQ and HAQ did not differ between the two studied groups. FM patients exhibited a higher frequency of psychiatric disorders with respect to FM+SP patients (72% FM vs. 49% FM+SP, p<0.01). In particular the frequency of depression was 65.5% FM vs. 35% FM+SP (p<0.01). The presence of spasmophilia seems to influence psychiatric comorbidity which was less prevalent in FM+SP patients. FM is indeed characterised by an abnormal sensory processing of pain that seems to result from a combination of interactions between neurotransmitters, stress, hormones and the nervous system; spasmophilia would seem to be more linked to a dysfunction at the neuromuscular level.
Enríquez-Pérez, Iris A; Galindo-Ordoñez, Karla E; Pantoja-Ortíz, Christian E; Martínez-Martínez, Arisaí; Acosta-González, Rosa I; Muñoz-Islas, Enriqueta; Jiménez-Andrade, Juan M
2017-08-10
Type-1 diabetes mellitus (T1DM) results in loss of innervation in some tissues including epidermis and retina; however, the effect on bone innervation is unknown. Likewise, T1DM results in pathological bone loss and increased risk of fracture. Thus, we quantified the density of calcitonin gene-related peptide (CGRP + ) sensory and tyrosine hydroxylase (TH + ) sympathetic nerve fibers and determined the association between the innervation density and microarchitecture of trabecular bone at the mouse femoral neck. Ten weeks-old female mice received 5 daily administrations of streptozocin (i.p. 50mg/kg) or citrate (control group). Twenty weeks later, femurs were analyzed by microCT and processed for immunohistochemistry. Confocal microscopy analysis revealed that mice with T1DM had a significant loss of both CGRP + and TH + nerve fibers in the bone marrow at the femoral neck. Likewise, microCT analysis revealed a significant decrease in the trabecular bone mineral density (tBMD), bone volume/total volume ratio (BV/TB), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp) in mice with T1DM as compared to control mice. Analysis of correlation revealed a positive and significant association between density of CGRP + or TH + nerve fibers with tBMD, BV/TV, Tb.Th and Tb.Sp, but not with trabecular number (there was a positive association only for CGRP + ) and degree of anisotropy (DA). This study suggests an interaction between sensory and sympathetic nervous system and T1DM-induced bone loss. Identification of the factors involved in the loss of CGRP + sensory and TH + sympathetic fibers and how they regulate bone loss may result in new avenues to treat T1DM-related osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Pietrasik, Z; Gaudette, N J
2014-03-01
Two salt replacers (Ocean's Flavor - OF45, OF60) and one flavor enhancer [Fonterra™ 'Savoury Powder' (SP)] were evaluated for their ability to effectively reduce sodium, while maintaining the functional and sensory properties of restructured hams. Product functionality and safety were assessed using instrumental measures (yield, purge, pH, expressible moisture, proximate composition, sodium content, color, texture) and microbiological assessment. Sensory attributes were evaluated using consumer sensory panelists. All alternative formulations resulted in products with sodium contents below the Health Check(TM) Program guidelines, without detrimental effect on water binding and texture in treatments when NaCl was substituted with sea salt replacers (OF45, OF60). Sodium reduction had no effect on the shelf life of the cooked ham with up to 60 days of refrigerated storage. Consumer hedonics for flavor and aftertaste were lower for OF45 and OF60 compared to control, suggesting that these salt replacers may not be appropriate for inclusion in these products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Sang Yeub; Kim, Min Kyung; Shin, Chol; Shim, Jae Jeong; Kim, Han Kyeom; Kang, Kyung Ho; Yoo, Se Hwa; In, Kwang Ho
2003-01-01
Unlike classic asthma, cough-variant asthma does not show any evidence of airway obstruction. The main symptom is a dry cough with little known pathophysiology. Hypersensitivity of the cough receptors in cough-variant asthma and an increase in the sensory nerve density of the airway epithelium in persistent dry cough patients have been reported. Therefore, it is possible that there is a higher sensory nerve density in cough-variant asthma patients than in classic asthma patients. This study was undertaken to compare the substance P (SP)-immunoreactive nerve density in mucosal biopsies of cough-variant asthma patients, classic asthma patients, and in control subjects. Bronchoscopic biopsies were performed in 6 cough-variant asthma patients, 14 classic asthma patients, and 5 normal controls. The tissues obtained were stained immunohistochemically. The SP-immunoreactive nerve density was measured in the bronchial epithelium using a light microscope at 400 x magnification. SP- immunoreactive nerve density for the cough-variant asthma group was significantly higher than that of the classic asthma group (p = 0.001), and of the normal control group (p = 0.006). It is possible that a sensory nerve abnormality within the airway may be related to hypersensitivity of the cough receptor, and that this may be one of the pathophysiologies of cough-variant asthma. Copyright 2003 S. Karger AG, Basel
Yerrapragada, Shaila; Shukla, Animesh; Hallsworth-Pepin, Kymberlie; Choi, Kwangmin; Wollam, Aye; Clifton, Sandra; Qin, Xiang; Muzny, Donna; Raghuraman, Sriram; Ashki, Haleh; Uzman, Akif; Highlander, Sarah K.; Fryszczyn, Bartlomiej G.; Fox, George E.; Tirumalai, Madhan R.; Liu, Yamei; Kim, Sun
2015-01-01
Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions. Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 predicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any sequenced genome. PMID:25953173
Rytel, L; Calka, J
2016-03-23
Acetylsalicylic acid is a popular drug that is commonly used to treat fever and inflammation, but which can also negativity affect the mucosal layer of the stomach, although knowledge concerning its influence on gastric innervation is very scarce. Thus, the aim of the present study was to study the influence of prolonged acetylsalicylic acid supplementation on the extrinsic primary sensory neurons supplying the porcine stomach prepyloric region. Fast Blue (FB) was injected into the above-mentioned region of the stomach. Acetylsalicylic acid was then given orally to the experimental gilts from the seventh day after FB injection to the 27th day of the experiment. After euthanasia, the nodose ganglia (NG) and dorsal root ganglia (DRG) were collected. Sections of these ganglia were processed for routine double-labelling immunofluorescence technique for substance P (SP), calcitonine gene related peptide (CGRP), galanin (GAL), neuronal isoform of nitric oxide synthase (nNOS) and vasoactive intestinal polypeptide (VIP). Under physiological conditions within the nodose ganglia, the percentage of the FB-labeled neurons immunoreactive to particular substances ranged between 17.9 ± 2.7% (VIP-like immunoreactive (LI) neurons in the right NG) and 60.4 ± 1.7% (SP-LI cells within the left NG). Acetylsalicylic acid supplementation caused a considerable increase in the expression of all active substances studied within both left and right NG and the percentage of neurons positive to particular substances fluctuated from 47.2 ± 3.6% (GAL-LI neurons in the right NG) to 67.2 ± 2.0% (cells immunoreactive to SP in the left NG). All studied substances were also observed in DRG neurons supplying the prepyloric region of the stomach, but the number of immunoreactive neurons was too small to conduct a statistical analysis. The obtained results show that ASA may influence chemical coding of the sensory neurons supplying the porcine stomach, but the exact mechanisms of this action still remain unknown. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yerrapragada, Shaila; Shukla, Animesh; Hallsworth-Pepin, Kymberlie; Choi, Kwangmin; Wollam, Aye; Clifton, Sandra; Qin, Xiang; Muzny, Donna; Raghuraman, Sriram; Ashki, Haleh; Uzman, Akif; Highlander, Sarah K; Fryszczyn, Bartlomiej G; Fox, George E; Tirumalai, Madhan R; Liu, Yamei; Kim, Sun; Kehoe, David M; Weinstock, George M
2015-05-07
Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions. Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 predicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any sequenced genome. Copyright © 2015 Yerrapragada et al.
Expression of neuropeptides and their degrading enzymes in ACD.
Bak, H; Lee, W J; Lee, Y W; Chang, S-E; Choi, J-H; Kim, M N; Kim, B J; Choi, Y S; Suh, H S
2010-04-01
Sensory neuropeptides such as neurokinin A or substance P modulate skin and immune cells the functions of neurokinin receptor activation during neurogenic inflammation. Zinc metalloproteases, such as neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE), effectively control the bioavailability of these neuropeptide mediators, which are released from sensory nerves, immune and skin cells during cutaneous responses to endogenous or exogenous noxious stimuli. Recently, studies have suggested that neuropeptides are one of the major pathogenetic fact in many dermatoses, such as allergic contact dermatitis (ACD), atopic dermatitis and psoriasis. To investigate the expression of major neuropeptides, SP and its degrading enzymes such as NEP and ACE, in the lesions of ACD. A skin biopsy was obtained from 10 patients with ACD. We analysed the expression of these molecules by immunohistochemical staining, confocal laser scanning microscopy, western blotting and reverse transcription PCR. There was a significant increase in expression of SP in keratinocytes from ACD lesions compared with those in control skin. There was also increased expression of ACE but not NEP in ACD. Neuropeptides and their degrading enzymes, particularly SP and ACE, have a significant role in the pathogenesis of ACD.
Sensory over responsivity and obsessive compulsive symptoms: A cluster analysis.
Ben-Sasson, Ayelet; Podoly, Tamar Yonit
2017-02-01
Several studies have examined the sensory component in Obsesseive Compulsive Disorder (OCD) and described an OCD subtype which has a unique profile, and that Sensory Phenomena (SP) is a significant component of this subtype. SP has some commonalities with Sensory Over Responsivity (SOR) and might be in part a characteristic of this subtype. Although there are some studies that have examined SOR and its relation to Obsessive Compulsive Symptoms (OCS), literature lacks sufficient data on this interplay. First to further examine the correlations between OCS and SOR, and to explore the correlations between SOR modalities (i.e. smell, touch, etc.) and OCS subscales (i.e. washing, ordering, etc.). Second, to investigate the cluster analysis of SOR and OCS dimensions in adults, that is, to classify the sample using the sensory scores to find whether a sensory OCD subtype can be specified. Our third goal was to explore the psychometric features of a new sensory questionnaire: the Sensory Perception Quotient (SPQ). A sample of non clinical adults (n=350) was recruited via e-mail, social media and social networks. Participants completed questionnaires for measuring SOR, OCS, and anxiety. SOR and OCI-F scores were moderately significantly correlated (n=274), significant correlations between all SOR modalities and OCS subscales were found with no specific higher correlation between one modality to one OCS subscale. Cluster analysis revealed four distinct clusters: (1) No OC and SOR symptoms (NONE; n=100), (2) High OC and SOR symptoms (BOTH; n=28), (3) Moderate OC symptoms (OCS; n=63), (4) Moderate SOR symptoms (SOR; n=83). The BOTH cluster had significantly higher anxiety levels than the other clusters, and shared OC subscales scores with the OCS cluster. The BOTH cluster also reported higher SOR scores across tactile, vision, taste and olfactory modalities. The SPQ was found reliable and suitable to detect SOR, the sample SPQ scores was normally distributed (n=350). SOR is a dimensional feature that can influence the severity of OCS and may characterize a unique sensory OCD subtype. Copyright © 2016 Elsevier Inc. All rights reserved.
Erin, Nuray; Duymuş, Ozlem; Oztürk, Saffet; Demir, Necdet
2012-11-10
Chronic inflammation is involved in initiation as well as in progression of cancer. Semapimod, a tetravalent guanylhydrazon and formerly known as CNI-1493, inhibits the release of inflammatory cytokines from activated macrophages and this effect is partly mediated by the vagus nerve. Our previous findings demonstrated that inactivation of vagus nerve activity as well sensory neurons enhanced visceral metastasis of 4THM breast carcinoma. Hence semapimod by activating vagus nerve may inhibit breast cancer metastasis. Here, effects of semapimod on breast cancer metastasis, the role of vagal sensory neurons on this effect and changes in mediators of the neuroimmune connection, such as substance P (SP) as well as neprilysin-like activity, were examined. Vagotomy was performed on half of the control animals that were treated with semapimod following orthotopic injection of 4THM breast carcinoma cells. Semapimod decreased lung and liver metastases in control but not in vagotomized animals with an associated increased SP levels in sensory nerve endings. Semapimod also increased neprilysin-like activity in lung tissue of control animals but not in tumor-bearing animals. This is the first report demonstrating that semapimod enhances vagal sensory nerve activity and may have anti-tumoral effects under in-vivo conditions. Further studies, however, are required to elucidate the conditions and the mechanisms involved in anti-tumoral effects of semapimod. Copyright © 2012 Elsevier B.V. All rights reserved.
Baeumler, Petra I; Fleckenstein, Johannes; Benedikt, Franziska; Bader, Julia; Irnich, Dominik
2015-11-01
Our aim was to distinguish between spinal and supraspinal mechanisms in the intact nervous system by comparing homosegmental and heterosegmental effects of electroacupuncture (EA) and manual acupuncture (MA) on sensory perception in healthy volunteers by means of quantitative sensory testing. Seventy-two healthy volunteers were randomly assigned to receive either MA or EA at SP 6, SP 9, GB 39, and ST 36 at the left leg or relaxed for 30 minutes (control group [CG]). Blinded examiners assessed 13 sensory modalities (thermal and mechanical detection and pain thresholds) at the upper arms and lower legs before and after intervention by means of a standardized quantitative sensory testing battery. Change scores of all 13 sensory thresholds were compared between groups. The main outcome measure was the change score of the pressure pain threshold (PPT). There were no baseline differences between groups. Pressure pain threshold change scores at the lower left leg, in the same segment as the needling site, differed significantly (P = 0.008) between the EA (median: 103.01 kPa) and CG groups (median: 0.00 kPa) but not between the MA (median: 0.00 kPa) and CG groups. No further significant change score differences were found between one of the acupuncture groups and the CG. The PPT can be changed by EA. The PPT increase was confined to the segment of needling, which indicates that it is mainly mediated by segmental inhibition in the spinal cord. This underscores the importance of segmental needling and electrical stimulation in clinical practice.
Sun, Xin; Wu, Donghui
2012-01-01
Abstract A checklist of Chinese Oligaphorurini is given. Two new Chinese species, Micraphorura changbaiensis sp. n. and Oligaphorura pseudomontana sp. n., are described from Changbai Mountain Range. Micraphorura changbaiensis sp. n. has the same dorsal pseudocelli formula and number of papillae in Ant. III sensory organ as Micraphorura uralica, but they can be easily distinguished by number of chaetae in Ant. III sensory organ, ventral pseudocelli formula, ventral parapseudocelli formula, number of pseudocelli on subcoxa 1 of legs I–III, dorsal axial chaeta on Abd. V and number of chaetae on tibiotarsi. Oligaphorura pseudomontana sp. n. is very similar to the species Oligaphorura montana having an increased number of pseudocelli on body dorsally, well marked base of antenna with 1 pseudocellus and 3 pseudocelli outside, subcoxa 1 of legs I–III with 1 pseudocellus each, dorsally S-chaetae formula as 11/011/22211 from head to Abd. V, S-microchaeta present on Th. II–III, claw without inner teeth and with 1+1 lateral teeth, and unguiculus with basal lamella; but they can be separated easily by the number of pseudocelli on Abd. V and VI terga, parapseudocelli on the body, number of chaetae on Th. I tergum, and number of chaetae on tibiotarsi. A key to Chinese species of Oligaphorurini is provided in the present paper. PMID:22639536
Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin.
Levite, M; Cahalon, L; Hershkoviz, R; Steinman, L; Lider, O
1998-01-15
The ability of T cells to adhere to and interact with components of the blood vessel walls and the extracellular matrix is essential for their extravasation and migration into inflamed sites. We have found that the beta1 integrin-mediated adhesion of resting human T cells to fibronectin, a major glycoprotein component of the extracellular matrix, is induced by physiologic concentrations of three neuropeptides: calcitonin gene-related protein (CGRP), neuropeptide Y, and somatostatin; each acts via its own specific receptor on the T cell membrane. In contrast, substance P (SP), which coexists with CGRP in the majority of peripheral endings of sensory nerves, including those innervating the lymphoid organs, blocks T cell adhesion to fibronectin when induced by CGRP, neuropeptide Y, somatostatin, macrophage inflammatory protein-1beta, and PMA. Inhibition of T cell adhesion was obtained both by the intact SP peptide and by its 1-4 N-terminal and its 4-11, 5-11, and 6-11 C-terminal fragments, used at similar nanomolar concentrations. The inhibitory effects of the parent SP peptide and its fragments were abrogated by an SP NK-1 receptor antagonist, suggesting they all act through the same SP NK-1 receptor. These findings suggest that neuropeptides, by activating their specific T cell-expressed receptors, can provide the T cells with both positive (proadhesive) and negative (antiadhesive) signals and thereby regulate their function. Thus, neuropeptides may influence diverse physiologic processes involving integrins, including leukocyte-mediated migration and inflammation.
Lee, Juhyen; Choi, Eun Jung; Kim, Inwon; Lee, Minhe; Satheeshkumar, Chinnadurai; Song, Changsik
2017-01-01
Tuning the sensing properties of spiropyrans (SPs), which are one of the photochromic molecules useful for colorimetric sensing, is important for efficient analysis, but their synthetic modification is not always simple. Herein, we introduce an alkyne-functionalized SP, the modification of which would be easily achieved via Cu-catalyzed azide-alkyne cycloaddition (“click reaction”). The alkyne-SP was conjugated with a bis(triethylene glycol)-benzyl group (EG-BtSP) or a simple benzyl group (BtSP), forming a triazole linkage from the click reaction. The effects of auxiliary groups to SP were tested on metal-ion sensing and cyanide detection. We found that EG-BtSP was more Ca2+-sensitive than BtSP in acetonitrile, which were thoroughly examined by a continuous variation method (Job plot) and UV-VIS titrations, followed by non-linear regression analysis. Although both SPs showed similar, selective responses to cyanide in a water/acetonitrile co-solvent, only EG-BtSP showed a dramatic color change when fabricated on paper, highlighting the important contributions of the auxiliary groups. PMID:28783127
M2 receptors exert analgesic action on DRG sensory neurons by negatively modulating VR1 activity.
De Angelis, Federica; Marinelli, Sara; Fioretti, Bernard; Catacuzzeno, Luigi; Franciolini, Fabio; Pavone, Flaminia; Tata, Ada Maria
2014-06-01
The peripheral application of the M2 cholinergic agonist arecaidine on sensory nerve endings shows anti-nociceptive properties. In this work, we analyze in vitro, the mechanisms downstream M2 receptor activation causing the analgesic effects, and in vivo the effects produced by M2 agonist arecaidine administration on nociceptive responses in a murine model of nerve growth factor (NGF)-induced pain. Cultured DRG neurons treated with arecaidine showed a decreased level of VR1 and SP transcripts. Conversely, we found an increased expression of VR1 and SP transcripts in DRG from M2/M4(-/-) mice compared to WT and M1(-/-) mice, confirming the inhibitory effect in particular of M2 receptors on SP and VR1 expression. Patch-clamp experiments in the whole-cell configuration showed that arecaidine treatment caused a reduction of the fraction of capsaicin-responsive cells, without altering the mean capsaicin-activated current in responsive cells. We also demonstrated that arecaidine prevents PKCϵ translocation to the plasma membrane after inflammatory agent stimulation, mainly in medium-small sensory neurons. Finally, in mice, we have observed that intraperitoneal injection of arecaidine reduces VR1 expression blocking hyperalgesia and allodynia caused by NGF intraplantar administration. In conclusion, our data demonstrate that in vivo M2 receptor activation induces desensitization to mechanical and heat stimuli by a down-regulation of VR1 expression and by the inhibition of PKCϵ activity hindering its translocation to the plasma membrane, as suggested by in vitro experiments. © 2013 Wiley Periodicals, Inc.
The Sleep–Wake Cycle in the Nicotinic Alpha-9 Acetylcholine Receptor Subunit Knock-Out Mice
Madrid-López, Natalia; Estrada, Jorge; Díaz, Javier; Bassi, Alejandro; Délano, Paul H.; Ocampo-Garcés, Adrián
2017-01-01
There is a neural matrix controlling the sleep–wake cycle (SWC) embedded within high ranking integrative mechanisms in the central nervous system. Nicotinic alpha-9 acetylcholine receptor subunit (alpha-9 nAChR) participate in physiological processes occurring in sensory, endocrine and immune systems. There is a relationship between the SWC architecture, body homeostasis and sensory afferents so that disruption of afferent signaling is expected to affect the temporal organization of sleep and wake states. The analysis of the SWC of 9 nAChR knock-out animals may help to reveal the contribution of alpha-9 nAChR to sleep chronobiological determinants. Here we explore the polysomnogram in chronically implanted alpha-9 nAChR knock-out (KO) and wild-type (WT) individuals of the hybrid CBA/Sv129 mouse strain. Records were obtained in isolation chambers under a stable 12:12 light:dark cycle (LD). To unmask the 24-h modulation of the SWC a skeleton photoperiod (SP) protocol was performed. Under LD the daily quota (in %) of wakefulness (W), NREM sleep and REM sleep obtained in KO and WT animals were 45, 48 and 7, and 46, 46 and 8 respectively. Both groups exhibit nocturnal phase preference of W as well as diurnal and unimodal phase preference of NREM and REM sleep. The acrophase mean angles of KO vs. WT genotypes were not different (Zeitgeber Time: 6.5 vs. 14.9 for W, 4.3 vs. 2.8 for NREM sleep and 5.3 vs. 3.4 for REM sleep, respectively). Transference to SP do not affect daily state quotas, phase preferences and acrophases among genotypes. Unmasking phenomena of the SWC such as wake increment during the rest phase under SP was evident only among WT mice suggesting the involvement of retinal structures containing alpha-9 nAChR in masking processes. Furthermore, KO animals exhibit longer NREM and REM sleep episodes that is independent of illumination conditions. Consolidated diurnal NREM sleep contributed to obtain higher values of NREM sleep delta-EEG activity among KO mice during rest phase. In conclusion, circadian and sleep homeostatic aspects of the SWC are operative among alpha-9 nAChR KO animals. We propose that alpha-9 nAChR participate in retinal signaling processes responsible of the positive masking of sleep by light. PMID:29066952
Malykhina, Anna P; Lei, Qi; Chang, Shaohua; Pan, Xiao-Qing; Villamor, Antonio N; Smith, Ariana L; Seftel, Allen D
2013-05-15
Lower urinary tract symptoms (LUTS) and erectile dysfunction (ED) are common problems in aging males worldwide. The objective of this work was to evaluate the effects of bladder neck nerve damage induced by partial bladder outlet obstruction (PBOO) on sensory innervation of the corpus cavernosum (CC) and CC smooth muscle (CCSM) using a rat model of PBOO induced by a partial ligation of the bladder neck. Retrograde labeling technique was used to label dorsal root ganglion (DRG) neurons that innervate the urinary bladder and CC. Contractility and relaxation of the CCSM was studied in vitro, and expression of nitric oxide synthase (NOS) was evaluated by Western blotting. Concentration of the sensory neuropeptides substance P (SP) and calcitonin gene-related peptide was measured by ELISA. Partial obstruction of the bladder neck caused a significant hypertrophy of the urinary bladders (2.5-fold increase at 2 wk). Analysis of L6-S2 DRG sections determined that sensory ganglia received input from both the urinary bladder and CC with 5-7% of all neurons double labeled from both organs. The contractile responses of CC muscle strips to KCl and phenylephrine were decreased after PBOO, followed by a reduced relaxation response to nitroprusside. A significant decrease in neuronal NOS expression, but not in endothelial NOS or protein kinase G (PKG-1), was detected in the CCSM of the obstructed animals. Additionally, PBOO caused some impairment to sensory nerves as evidenced by a fivefold downregulation of SP in the CC (P ≤ 0.001). Our results provide evidence that PBOO leads to the impairment of bladder neck afferent innervation followed by a decrease in CCSM relaxation, downregulation of nNOS expression, and reduced content of sensory neuropeptides in the CC smooth muscle. These results suggest that nerve damage in PBOO may contribute to LUTS-ED comorbidity and trigger secondary changes in the contraction/relaxation mechanisms of CCSM.
Nutritional and sensory characteristics of sari tempe formulated from import soybean (glycine max)
NASA Astrophysics Data System (ADS)
Kurniadi, Muhamad; Andriani, Martina; Sari, Intan Indriana; Angwar, Mukhamad; Nurhayati, Rifa; Khasanah, Yuniar; Wiyono, Tri
2017-01-01
Tempe is traditional Indonesian food made from Rhizopus sp. fermentation of soybean. The aims of this research are to know the effect of the addition of water and CMC to nutritional and sensory characteristics of the sari tempe formulated from import soybean. The experimental design used in this study is entirely randomized design (CRD), which consists of two factors: variations addition of water with tempe (1:3, 1:5 and 1:7) and the variation of the addition of CMC concentration (0.05%; 0,10% and 0.15%). Sensory data were analyzed statistically using one-way ANOVA. If it showed significant results, then it is continued by real difference test using Duncan's Multiple Range Test (DMRT) at significance level α = 0.05. The results showed the best formula of sari tempe was F6 with 1:5 water ratio and 0.15% CMC concentration. Folate content and vitamin B6 decreased while processing sari tempe respectively 10.3 times and 2.7 times. Whereas, the vitamin B12 content is increased by 1.7 times. The best formula of sari tempe contains 90.96 % water content; 0.08 % ash content; 0.36 % fat content; 23.41 ppm vitamin B6; 337.49 ppm vitamin B12 and 17.31 ppm folate.
Zhao, Di; Ku, Yixuan
2018-05-01
Neural activity in the dorsolateral prefrontal cortex (DLPFC) has been suggested to integrate information from distinct sensory areas. However, how the DLPFC interacts with the bilateral primary somatosensory cortices (SIs) in tactile-visual cross-modal working memory has not yet been established. In the present study, we applied single-pulse transcranial magnetic stimulation (sp-TMS) over the contralateral DLPFC and bilateral SIs of human participants at various time points, while they performed a tactile-visual delayed matching-to-sample task with a 2-second delay. sp-TMS over the contralateral DLPFC or the contralateral SI at either an sensory encoding stage [i.e. 100 ms after the onset of a vibrotactile sample stimulus (200-ms duration)] or an early maintenance stage (i.e. 300 ms after the onset), significantly impaired the accuracy of task performance; sp-TMS over the contralateral DLPFC or the ipsilateral SI at a late maintenance stage (1600 ms and 1900 ms) also significantly disrupted the performance. Furthermore, at 300 ms after the onset of the vibrotactile sample stimulus, there was a significant correlation between the deteriorating effects of sp-TMS over the contralateral SI and the contralateral DLPFC. These results imply that the DLPFC and the bilateral SIs play causal roles at distinctive stages during cross-modal working memory, while the contralateral DLPFC communicates with the contralateral SI in the early delay, and cooperates with the ipsilateral SI in the late delay. Copyright © 2018 Elsevier B.V. All rights reserved.
SUSCEPTIBILITY TO POLLUTANT-INDUCED AIRWAY INFLAMMATION IS NEUROGENICALLY MEDIATED.
Neurogenic inflammation in the airways involves the activation of sensory irritant receptors (capsaicin, VR1) by noxious stimuli and the subsequent release of neuropeptides (e.g., SP, CGRP, NKA) from these fibers. Once released, these peptides initiate and sustain symptoms of ...
Wu, Z-X; Dey, R D
2006-07-01
Nerve growth factor (NGF), a member of the neurotrophin family, enhances synthesis of neuropeptides in sensory and sympathetic neurons. The aim of this study was to examine the effect of NGF on airway responsiveness and determine whether these effects are mediated through synthesis and release of substance P (SP) from the intrinsic airway neurons. Ferrets were instilled intratracheally with NGF or saline. Tracheal smooth muscle contractility to methacholine and electrical field stimulation (EFS) was assessed in vitro. Contractions of isolated tracheal smooth muscle to EFS at 10 and 30 Hz were significantly increased in the NGF treatment group (10 Hz: 33.57 +/- 2.44%; 30 Hz: 40.12 +/- 2.78%) compared with the control group (10 Hz: 27.24 +/- 2.14%; 30 Hz: 33.33 +/- 2.31%). However, constrictive response to cholinergic agonist was not significantly altered between the NGF treatment group and the control group. The NGF-induced modulation of airway smooth muscle to EFS was maintained in tracheal segments cultured for 24 h, a procedure that causes a significant anatomic and functional loss of SP-containing sensory fibers while maintaining viability of intrinsic airway neurons. The number of SP-containing neurons in longitudinal trunk and superficial muscular plexus and SP nerve fiber density in tracheal smooth muscle all increased significantly in cultured trachea treated with NGF. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the NGF-induced increased contraction to EFS in cultured segments but had no effect in saline controls. These results show that the NGF-enhanced airway smooth muscle contractile responses to EFS are mediated by the actions of SP released from intrinsic airway neurons.
Tachykinin antagonists have potent local anaesthetic actions.
Post, C; Butterworth, J F; Strichartz, G R; Karlsson, J A; Persson, C G
1985-11-19
Contrary to what would have been expected, an antagonist of substance P (SP) [Arg5,D-Trp7,9]SP-(5-11) inhibited the neurogenic contraction of isolated guinea-pig hilus bronchi more readily than a contraction produced by exogenous SP. Furthermore, it has previously been shown that a tachykinin antagonist given intrathecally produced motor blockade as do local anaesthetic drugs. We therefore examined whether tachykinin antagonists had a depressant action on axonal neurotransmission. The compound action potential (APc) of the frog isolated sciatic nerve was suppressed in a concentration-dependent manner by the tachykinin antagonists [D-Pro2,D-Trp7,9]SP and [Arg5,D-Trp7,9]Sp-(5-11), both being about 4 times more potent than lidocaine. SP itself was without effect. Similarly in the rat isolated sciatic nerve [D-Pro2,D-Trp7,9]SP suppressed the APc. It was more potent in the A alpha- than in the C-fibres. SP did not affect conduction in either fibre type. In conscious guinea-pigs [D-Pro2,D-Trp7,9]SP injected adjacent to the sciatic nerve was found to block motor but not sensory functions of the limb. Thus, commonly used tachykinin antagonists, but not SP itself, have potent local anaesthetic properties. This should be considered when these agents are employed as pharmacological tools.
Effect of condensed tannins addition on the astringency of red wines.
Soares, Susana; Sousa, André; Mateus, Nuno; de Freitas, Victor
2012-02-01
Astringency has been defined as a group of sensations involving dryness, tightening, and shrinking of the oral surface. It has been accepted that astringency is due to the tannin-induced interaction and/or precipitation of the salivary proline-rich proteins (PRPs) in the oral cavity, as a result of the ingestion of food products rich in tannins, for example, red wine. The sensory evaluation of astringency is difficult, and the existence of fast and reliable methods to its study in vitro is scarce. So, in this work, the astringency of red wine supplemented with oligomeric procyanidins (condensed tannins), and the salivary proteins (SP) involved in its development were evaluated by high-performance liquid chromatography analysis of human saliva after its interaction with red wine and by sensorial evaluation. The results show that for low concentration of tannins, the decrease of acidic PRPs and statherin is correlated with astringency intensity, with these families having a high relative complexation and precipitation toward condensed tannins comparatively to the other SP. However, for higher concentrations of tannins, the relative astringency between wines seems to correlate's to the glycosylated PRPs changes. This work shows for the first time that the several families of SP could be involved in different stages of the astringency development.
Early postnatal ozone exposure alters rat nodose and jugular sensory neuron development
Zellner, Leor C.; Brundage, Kathleen M.; Hunter, Dawn D.; Dey, Richard D.
2011-01-01
Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O3). Airway neurons can mediate airway inflammation through the release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O3 exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O3 exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O3 (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O3-exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O3 exposure significantly alters sensory neuron development. PMID:22140294
Neuroactive substances in the human vestibular end organs.
Usami, S; Matsubara, A; Shinkawa, H; Matsunaga, T; Kanzaki, J
1995-01-01
In order to evaluate the involvement of neuroactive substances in the human vestibular periphery, the immunocytochemical distribution of substance P (SP), calcitonin gene-related peptide (CGRP), and choline acetyltransferase (ChAT) was examined. SP-like immunoreactivity (LI) was present around and beneath sensory hair cells, probably corresponding to their afferent nerve endings. SP-LI was found predominantly in subpopulations of the primary afferents distributed in the peripheral region of the end organs. ChAT-LI and CGRP-LI were found throughout as small puncta below the hair cell layer, probably corresponding to efferent endings. The present results indicate that these neuroactive substances, previously described in animals, are also distributed in the human vestibular periphery, and almost certainly contribute to human vestibular function.
Balzamo, E; Joanny, P; Steinberg, J G; Oliver, C; Jammes, Y
1996-01-01
Substance P (SP), a neurotransmitter localized to primary sensory neurons, is found in the vagus nerve, nodose ganglion, sympathetic chain, and phrenic nerve in various animal species. However, the changes in endogeneous SP concentration under various circumstances that involve the participation of cardiorespiratory afferent nerves are still unexplored. In the present study, attention was focused on the variations in SP content measured by radioimmunoassay (RIA) in respiratory afferent nerves (vagus nerve, cervical sympathetic chain, phrenic nerve) and respiratory muscles (diaphragm, intercostal muscles) during positive inspiratory pressure (PIP) breathing alone or PIP with an expiratory threshold load (ETL) in rabbits. SP was found in all sampled structures in spontaneously breathing control animals, prevailing in the nodose ganglion. Left-versus right-sided differences were noticed in nerves. As compared with that in control animals, the SP concentration was markedly higher in vagal and sympathetic nervous structures during PIP or PIP with ETL, and also in the phrenic nerve during ETL breathing. The SP content did not vary in respiratory muscles. These observations suggest that two very common circumstances of mechanical ventilation are associated with an increased SP concentration in nervous structures participating in the control of breathing.
Xu, Guang-Yin; Huang, Li-Yen Mae; Zhao, Zhi-Qi
2000-01-01
The effect of inflammation on the excitability and the level of substance P (SP) in cat mechanoreceptive C and Aδ dorsal root ganglion (DRG) neurons were studied in vivo using intracellular recording and immunocytochemical techniques. Following injections of carrageenan (Carg) into the cat hindpaw, the percentage of C neurons exhibiting spontaneous activity increased from 7.2 to 20.7 % and the percentage of Aδ neurons increased from 6.9 to 18.6 %. In contrast to most cells from normal cats, which fired regularly below 10 Hz, many cells from Carg-treated cats fired at higher frequencies or in bursts. Inflammation (Carg treatment) also depolarized membrane potentials, increased membrane input resistance, caused the disappearance of inward rectifying currents and lowered the mean current thresholds of tibial nerve-evoked responses in DRG neurons. With inflammation, the percentage of C or Aδ neurons responding to low threshold mechanoreceptive stimuli increased (C neurons: normal, 13 %; inflamed, 41 %; Aδ neurons: normal, 13 %; inflamed, 39 %), while the percentage of C or Aδ neurons responding to high threshold mechanoreceptive stimuli remained unchanged. Some receptive field (RF)-responsive cells were injected with Lucifer Yellow and their SP immunoreactivity was determined. Following Carg treatment, substantially higher percentages of RF-responsive cells were SP positive (C neurons: normal, 35.7 %; inflamed, 60 %; Aδ neurons: normal, 18.2 %; inflamed, 66.7 %). These combined increases in the excitability of DRG neurons and SP-containing RF-responsive neurons could lead to sensitization of sensory neurons, thus contributing to the development of hyperalgesia. PMID:11034623
Karangwa, Eric; Murekatete, Nicole; Habimana, Jean de Dieu; Masamba, Kingsley; Duhoranimana, Emmanuel; Muhoza, Bertrand; Zhang, Xiaoming
2016-06-01
In this study, the flavour-enhancing properties of the Maillard reaction products (MRPs) for different systems consisted of different peptides (sunflower, SFP; corn, CP and soyabean SP) with, xylose and cysteine were investigated. Maillard systems from peptides of sunflower, corn and soyabean with xylose and cysteine were designated as PXC, MCP and MSP, respectively. The Maillard systems were prepared at pH of 7.4 using temperature of 120C for 2 h. Results showed that all systems were significantly different in all sensory attributes. The highest scores for mouthfulness and continuity were observed for MCP with the lowest peptides distribution between 1000 and 5000 Da, known as Maillard peptide. This revealed that the MCP with the lowest Maillard peptide content had the strongest "Kokumi" effect compared to the other MRPsand demonstrated that "kokumi effect" of MRPs was contributed by not only the "Maillard peptide" defined by the molecular weight (1000-5000 Da). Results on sensory evaluation after fractionation of PXC followed by enzymatic hydrolysis showed no significant differences between PXC, P-PXC and their hydrolysates. This observation therefore confirmed that the presence of other contributors attributed to the "Kokumi" effect rather than the Maillard peptide. It can be deduced that the unhydrolyzed crosslinking products might have contributed to the "Kokumi" effect of MRPs. The structures of four probable crosslinking compounds were proposed and the findings have provided new insights in the sensory characteristics of xylose, cysteine and sunflower peptide MRPs.
Meléndez, Giselle C.; Manteufel, Edward J.; Dehlin, Heather M.; Register, Thomas C.; Levick, Scott P.
2015-01-01
Background The sensory nerve neuropeptide substance P (SP) regulates cardiac fibrosis in rodents under pressure overload conditions. Interestingly, SP induces transient increase expression of specific genes in isolated rat cardiac fibroblasts, without resultant changes in cell function. This suggests that SP ‘primes’ fibroblasts, but does not directly activate them. We investigated whether these unusual findings are specific to rodent fibroblasts or are translatable to a larger animal model more closely related to humans. Methods We compared the effects of SP on genes associated with extracellular matrix (ECM) regulation, cell-cell adhesion, cell-matrix adhesion and ECM in cardiac fibroblasts isolated from a non-human primate and Sprague-Dawley rats. Results We found that rodent and non-human primate cardiac fibroblasts showed similar ECM regulation and cell adhesion gene expression responses to SP. There were, however, large discrepancies in ECM genes which did not result in collagen or laminin synthesis in rat or non-human primate fibroblasts in response to SP. Conclusions This study further supports the notion that SP serves as a ‘primer’ for fibroblasts rather than initiating direct effects and suggests that rodent fibroblasts are a suitable model for studying gene and functional responses to SP in the absence of human or non-human primate fibroblasts. PMID:25550118
Substance P in the midbrains of SIDS victims and its correlation with sleep apnea.
Sawaguchi, Toshiko; Ozawa, Yuri; Patricia, Franco; Kadhim, Hazim; Groswasser, Jose; Sottiaux, Martine; Takashima, Sachio; Nishida, Hiroshi; Kahn, Andre
2003-12-01
Substance P (SP) is a neuropeptide transmitter found in sensory neurons of the central nervous system and related to pain sensation and respiratory regulation. Some reports claim an increase in SP in the brains of SIDS victims, so the correlation between SP and sleep apnea was investigated here. Among 27,000 infants studied prospectively to characterize their sleep-wake behavior, 38 infants died under 6 months of age, which included 26 cases of Sudden Infant Death Syndrome (SIDS). All the infants had been recorded during one night in a pediatric sleep laboratory some 3 to 12 weeks before death. The frequency and duration of sleep apnea were analyzed. Brainstem material was collected and immunohistochemistry for SP was carried out. The density of SP positive fibers was measured in the nucleus spinal and mesencephalic nervi trigemini and nucleus parabranchialis in the brainstem of abovementioned cases. Correlation analyses were carried out between the density of SP and the data of sleep apnea. There was no SIDS specific correlation of SP through the above-listed parts of the midbrain with frequency and duration of sleep apnea. There was no significant association between the SP findings and apnea data in SIDS; this is not in agreement with the association of apnea in pathophysiology of SIDS.
The neuropeptide substance P stimulates the effector functions of platelets.
Damonneville, M; Monté, D; Auriault, C; Capron, A
1990-01-01
Sensory neuropeptides, such as substance P, appear as potent mediators of various immunological reactions, and inhibit or stimulate a wide range of functions of immune inflammatory cells. Platelets were recently shown to participate as effector cells in an IgE or lymphokine-dependent killing of parasites. Substance P and its carboxy-terminal fragment SP (4-11) induce the cytotoxic activity of platelets towards the larvae of Schistosoma mansoni, respectively, by 90% and 40%, whereas the modified C terminal SP, the SP-free acid, exhibits no effect on the platelets. The neuropeptide effects occur at low doses (10(-8) M), are specific as shown by inhibition studies with a substance P antagonist, the D-SP. Binding data obtained after flow cytofluorometry with FITC-SP lead to the conclusion that SP binds specifically to about 20% of the homogenous population of platelets. Moreover, IgE could modulate the SP-dependent functions of platelets since the pre-incubation with myeloma human IgE or with AP2 monoclonal antibodies--known to inhibit the IgE-dependent killing of these cells-leads to a dramatic decrease of the SP dependent cytotoxic activity of platelets towards the larvae. These findings identify a potent mechanism for nervous system regulation of host defence responses. PMID:1696868
Substance P and neurokinin A in human nasal mucosa.
Baraniuk, J N; Lundgren, J D; Okayama, M; Goff, J; Mullol, J; Merida, M; Shelhamer, J H; Kaliner, M A
1991-03-01
The tachykinins substance P (SP) and neurokinin A (NKA) were studied in human inferior turbinate nasal mucosa by radioimmunoassay, immunohistochemistry, and autoradiography and for their effect upon mucus release in an in vitro culture system in order to infer their potential functions in the upper respiratory tract. Similar amounts of SP (1.03 +/- 0.12 pmol/g wet weight; mean +/- SEM; n = 26) and NKA (0.76 +/- 0.23; n = 7) were found. NKA and SP immunoreactive nerve fibers were found in the walls of arterioles, venules, and sinusoids and as individual fibers in gland acini, near the basement membrane, and in the epithelium. [125I]SP bound to arterioles, venules, and glands. [125I]NKA bound only to arterioles. In short-term explant culture of fragments of human nasal mucosa, both 1 microM SP and 1 microM NKA stimulated release of [3H]glucosamine-labeled respiratory glycoconjugates. These results indicate that SP and NKA have similar distributions in nociceptive sensory nerves in human nasal mucosa. The distribution of [125I]SP binding sites is consistent with a role for SP as a vasodilator and mucous secretagogue. The presence of [125I] NKA binding sites on vessels suggests a primary role for NKA in regulating vasomotor tone.
The effect of aging on EEG brain oscillations related to sensory and sensorimotor functions.
Dushanova, Juliana; Christov, Mario
2014-03-01
The question of the present study is whether the brain as a system with gradually decreasing resources maximizes its performance by reorganizing neural networks for greater efficiency. Auditory event-related low frequency oscillations (delta δ - [2, 4]Hz; theta θ - [4.5, 7]Hz; alpha α - [7.5, 12]Hz) were examined during an auditory discrimination motor task (low-frequency tone - right hand movement, high-frequency tone - left hand movement) between two groups with mean age 26.3 and 55 years. The amplitudes of the phase-locked δ, θ and α activity were more pronounced with a progressive increase in age during the sensory processing, independent of tone type. The difference between the groups with respect to scalp distribution was tone-independent for delta/theta oscillations, but not for the alpha activity. Age-related and tone-dependent changes in α band activity were focused at frontal and sensorimotor areas. Neither functional brain specificity was observed for the amplitudes of the low-frequency (δ, θ, α) oscillations during the cognitive processing, which diminished with increasing age. The cognitive brain oscillatory specificity diminished with increasing age. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Grady, Eileen F; Yoshimi, Shandra K; Maa, John; Valeroso, Dahlia; Vartanian, Robert K; Rahim, Shamila; Kim, Edward H; Gerard, Craig; Gerard, Norma; Bunnett, Nigel W; Kirkwood, Kimberly S
2000-01-01
Pancreatic oedema occurs early in the development of acute pancreatitis, and the overall extent of fluid loss correlates with disease severity. The tachykinin substance P (SP) is released from sensory nerves, binds to the neurokinin-1 receptor (NK1-R) on endothelial cells and induces plasma extravasation, oedema, and neutrophil infiltration, a process termed neurogenic inflammation. We sought to determine the importance of neurogenic mechanisms in acute pancreatitis.Pancreatic plasma extravasation was measured using the intravascular tracers Evans blue and Monastral blue after administration of specific NK1-R agonists/antagonists in rats and NK1-R(+/+)/(−/−) mice. The effects of NK1-R genetic deletion/antagonism on pancreatic plasma extravasation, amylase, myeloperoxidase (MPO), and histology in cerulein-induced pancreatitis were characterized.In rats, both SP and the NK1-R selective agonist [Sar9 Met(O2)11]SP stimulated pancreatic plasma extravasation, and this response was blocked by the NK1-R antagonist CP 96,345. Selective agonists of the NK-2 or NK-3 receptors had no effect.In rats, cerulein stimulated pancreatic plasma extravasation and serum amylase. These responses were blocked by the NK1-R antagonist CP 96,345.In wildtype mice, SP induced plasma extravasation while SP had no effect in NK1-R knockout mice.In NK1-R knockout mice, the effects of cerulein on pancreatic plasma extravasation and hyperamylasemia were reduced by 60%, and pancreatic MPO by 75%, as compared to wildtype animals.Neurogenic mechanisms of inflammation are important in the development of inflammatory oedema in acute interstitial pancreatitis. PMID:10821777
Mustafa, Golam; Anderson, Ethan M; Bokrand-Donatelli, Yvonne; Neubert, John K; Caudle, Robert M
2013-11-01
Neuropathic pain is a debilitating condition resulting from damage to sensory transmission pathways in the peripheral and central nervous system. A potential new way of treating chronic neuropathic pain is to target specific pain-processing neurons based on their expression of particular receptor molecules. We hypothesized that a toxin-neuropeptide conjugate would alter pain by first being taken up by specific receptors for the neuropeptide expressed on the neuronal cells. Then, once inside the cell the toxin would inhibit the neurons' activity without killing the neurons, thereby providing pain relief without lesioning the nervous system. In an effort to inactivate the nociceptive neurons in the trigeminal nucleus caudalis in mice, we targeted the NK1 receptor (NK1R) using substance P (SP). The catalytically active light chain of botulinum neurotoxin type A (LC/A) was conjugated with SP. Our results indicate that the conjugate BoNT/A-LC:SP is internalized in cultured NK1R-expressing neurons and also cleaves the target of botulinum toxin, a component-docking motif necessary for release of neurotransmitters called SNAP-25. The conjugate was next tested in a murine model of Taxol-induced neuropathic pain. An intracisternal injection of BoNT/A-LC:SP decreased thermal hyperalgesia as measured by the operant orofacial nociception assay. These findings indicate that conjugates of the light chain of botulinum toxin are extremely promising agents for use in suppressing neuronal activity for extended time periods, and that BoNT/A-LC:SP may be a useful agent for treating chronic pain. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Yu, Y; Daly, D M; Adam, I J; Kitsanta, P; Hill, C J; Wild, J; Shorthouse, A; Grundy, D; Jiang, W
2016-10-01
Advanced age is associated with a reduction in clinical visceral pain perception. However, the underlying mechanisms remain largely unknown. Previous studies have suggested that an abnormal interplay between mast cells, enterochromaffin (EC) cells, and afferent nerves contribute to nociception in gastrointestinal disorders. The aim of this study was to investigate how aging affects afferent sensitivity and neuro-immune association in the human bowel. Mechanical and chemical sensitivity of human bowel afferents were examined by ex vivo afferent nerve recordings. Age-related changes in the density of mast cells, EC cells, sensory nerve terminals, and mast cell-nerve micro-anatomical association were investigated by histological and immune staining. Human afferents could be broadly classified into subpopulations displaying mechanical and chemical sensitivity, adaptation, chemo-sensitization, and recruitment. Interestingly human bowel afferent nerve sensitivity was attenuated with age. The density of substance P-immunoreactive (SP-IR) nerve varicosities was also reduced with age. In contrast, the density of ileal and colonic mucosal mast cells was increased with age, as was ileal EC cell number. An increased proportion of mast cells was found in close apposition to SP-IR nerves. Afferent sensitivity in human bowel was reduced with advancing age. Augmentation of mast cells and EC cell numbers and the mast cell-nerve association suggest a compensatory mechanism for sensory neurodegeneration. © 2016 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.
Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology
Grässel, Susanne; Muschter, Dominique
2017-01-01
The importance of the nociceptive nervous system for maintaining tissue homeostasis has been known for some time, and it has also been suggested that organogenesis and tissue repair are under neuronal control. Changes in peripheral joint innervation are supposed to be partly responsible for degenerative alterations in joint tissues which contribute to development of osteoarthritis. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters, allowing response to peripheral neuronal stimuli. Among them are mesenchymal stem cells, synovial fibroblasts, bone cells and chondrocytes of different origin, which express distinct subtypes of adrenoceptors (AR), receptors for vasoactive intestinal peptide (VIP), substance P (SP) and calcitonin gene-related peptide (CGRP). Some of these cell types synthesize and secrete neuropeptides such as SP, and they are positive for tyrosine-hydroxylase (TH), the rate limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters are involved in the pathology of inflammatory diseases such as rheumatoid arthritis (RA) which manifests mainly in the joints. In addition, they seem to play a role in pathogenesis of priori degenerative joint disorders such as osteoarthritis (OA). Altogether it is evident that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for joint tissue and bone homeostasis. They modulate articular cartilage, subchondral bone and synovial tissue properties in physiological and pathophysiological conditions, in addition to their classical neurological features. PMID:28452955
Yusuf, Mohamed S; Hassan, Marwa A; Abdel-Daim, Mohamed M; Nabtiti, Adel S El; Ahmed, Ali Meawad; Moawed, Sherief A; El-Sayed, Ahmed Kamel; Cui, Hengmi
2016-11-01
The growth promoting effect of the blue-green filamentous alga Spirulina platensis (SP) was observed on meat type Japanese quail with antibiotic growth promoter alternative and immune enhancing power. This study was conducted on 180 Japanese quail chicks for 4 weeks to find out the effect of diet type (vegetarian protein diet [VPD] and fish meal protein diet [FMPD])- Spirulina dose interaction (1 or 2 g/kg diet) on growth performance, gut microbiota, and sensory meat quality of growing Japanese quails (1-5 weeks old). Data revealed improvement (p<0.05) of weight gain, feed conversion ratio and European efficiency index due to 1, 2 g (SP)/kg VPD, and 2 g (SP)/kg FMPD, respectively. There was a significant decrease of ileum mean pH value by 1 g (SP)/kg VPD. Concerning gut microbiota, there was a trend toward an increase in Lactobacilli count in both 1; 2 g (SP)/kg VPD and 2 g (SP)/kg FMPD. It was concluded that 1 or 2 g (SP)/kg vegetarian diet may enhance parameters of performance without obvious effect on both meat quality and gut microbiota. Moreover, 1 and/or 2 g (SP) may not be invited to share fish meal based diet for growing Japanese quails. Using of SP will support the profitable production of Japanese quails fed vegetable protein diet.
Age effects on sensory-processing abilities and their impact on handwriting.
Engel-Yeger, Batya; Hus, Sari; Rosenblum, Sara
2012-12-01
Sensory-processing abilities are known to deteriorate in the elderly. As a result, daily activities such as handwriting may be impaired. Yet, knowledge about sensory-processing involvement in handwriting characteristics among older persons is limited. To examine how age influences sensory-processing abilities and the impact on handwriting as a daily performance. The study participants were 118 healthy, independently functioning adults divided into four age groups: 31-45, 46-60, 61-75 and 76+ years. All participants completed the Adolescent/ Adult Sensory Profile (AASP). Handwriting process was documented using the Computerized Handwriting Penmanship Evaluation Tool (ComPET). Age significantly affects sensory processing and handwriting pressure as well as temporal and spatial measures. Both handwriting time and spatial organization of the written product were predicted by sensory seeking. When examining age contribution to the prediction of handwriting by sensory processing, sensory seeking showed a tendency for predicting handwriting pressure (p = .06), while sensory sensitivity significantly predicted handwriting velocity. Age appears to influence sensory-processing abilities and affect daily performance tasks, such as handwriting, for which sensitivity and seeking for sensations are essential. Awareness of clinicians to sensory-processing deficits among older adults and examining their impact on broader daily activities are essential to improve daily performance and quality of life.
Rodríguez, Diana; Barrero, Marinela; Kodaira, Makie
2009-06-01
Salting fish in the south Venezuelan towns are still the main method of preserving fish including cutt, and salting fish process, storage and commercialization. As the result, salted-dried fish is particularly susceptible to spoilage by a number of factors, including lipid oxidation, browning meat. Packing salted fish product is an alternative increasing storage life time reducing lost of quality and enhancing the storage time. The present study evaluated the physic, chemist, and sensory quality of fish fillet from cat fish (Pseudoplatystoma sp.) from Apure state, Venezuela. Fillet fish were placed in brine solution at 36% of sodium chloride 1:2 fillet: brine solution; after, they were packed under followed conditions: vacuum, vacuum and storage under refrigeration condition, and room temperature. The results showed significant differences (p < 0.01) for moisture, salt content, and Aw. The fillets packed at vacuum and storage at 4 degrees C were significant different from the resting treatments; not significant differences were presented at room and refrigeration temperature after three moths. The best conditions treatment was vacuum packing and refrigeration at 4 degrees C.
Grouzmann, Eric; Bigliardi, Paul; Appenzeller, Monique; Pannatier, André; Buclin, Thierry
2011-03-01
Substance P (SP), an undecapeptide belonging to the tachykinin family, is released during the activation of sensory nerves, and causes vasodilation, edema and pain through activation of tissular Neurokinin 1 receptors. SP proinflammatory effects are terminated by angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP), while the aminopeptidase dipeptidylpeptidase IV (DPPIV) can also play a role. The aim of this randomized, crossover, double-blind study was to assess the cutaneous vasoreactivity (flare and wheal reaction, burning pain sensation) to intradermal injection of ascending doses of SP in six volunteers receiving a single therapeutic dose of the DPPIV inhibitor sitagliptin or a matching placebo. Cutaneous SP challenges produced the expected, dose-dependent flare and wheal response, while eliciting mild to moderate local pain sensation with little dose dependency. However, no differences were shown in the responses observed under sitagliptin compared with placebo, while the study would have been sufficiently powered to detect a clinically relevant increase in sensitivity to SP. The results of this pilot study are in line with proteolytic cleavage of SP by ACE and NEP compensating the blockade of DPPIV to prevent an augmentation of its proinflammatory action.
Avellán, Nina-Li; Sorsa, Timo; Tervahartiala, Taina; Forster, Clemens; Kemppainen, Pentti
2008-02-01
Tooth pain can induce a neurogenic inflammatory reaction in gingiva in association with local elevations of matrix metalloproteinase (MMP)-8, which is considered the major tissue destructive protease in gingival crevice fluid (GCF). The pro-inflammatory neuropeptides released by sensory nerves coordinate the activities of the immuno-effector cells and may influence the secretion of MMP-8. With this background, we studied whether experimental tooth pain can trigger changes in GCF levels of the neuropeptide substance P (SP) and MMP-8. The GCF SP levels of stimulated and non-stimulated teeth were analyzed for SP using a competitive enzyme immunoassay (EIA). The GCF MMP-8 levels were determined by quantitative immunofluorometric assay (IFMA). Painful stimulation of the upper central incisor caused significant elevations in GCF SP and MMP-8 levels of the stimulated tooth. At the same time, the GCF SP and MMP-8 levels of non-stimulated control teeth were unchanged. These data indicate that experimental tooth pain can induce local elevations of SP and MMP-8 levels in GCF simultaneously. This supports the possibility of a local neurogenic spread of inflammatory reactions from intrapulpal to surrounding periodontal tissues.
Substance P enhances electrical field stimulation-induced mast cell degranulation in rat trachea.
Hua, X Y; Back, S M; Tam, E K
1996-06-01
We previously demonstrated in an ex vivo rat tracheal model that chymotryptic activity is an index of mast cell degranulation and that substance P (SP) and electrical field stimulation (EFS) synergistically degranulate mucosal and connective tissue mast cells. In the current study, we found that the facilitatory effect of SP was apparent at concentrations as low as 10(-9) M. This effect was mimicked by 10(-7) M neurokinin A or by 10(-6) M capsaicin and was blocked by the NK1 receptor antagonist CP-96,345. SP + EFS-induced mast cell secretion was significantly attenuated by 10(-6) M tetrodotoxin. The response was also attenuated in tracheas from rats in which sensory nerves had been depleted by systemic pretreatment with capsaicin or in which sympathetic nerves had been depleted by systemic pretreatment with 6-hydroxy-dopamine. Atropine (10(-6) M) or indomethacin (10(-5) M) also attenuated SP + EFS-induced mast cell secretion. Our findings suggest the importance of a sensitizing rather than a direct stimulating effect of SP on mast cell degranulation. SP may increase the sensitivity of mast cells to EFS-discharged mediators or facilitate the release of mast cell-stimulating mediators from autonomic nerves.
Engel-Yeger, Batya; Rosenblum, Sara
2017-02-01
Meaningful occupational engagement is essential for successful aging. Sensory-processing abilities that are known to deteriorate with age may reduce occupational engagement. However, the relationship between sensory-processing abilities and occupational engagement among older persons in daily life is unknown. This study examined the relationship between sensory-processing patterns and occupational engagement among older persons. Participants were 180 people, ages 50 to 73 years, in good health, who lived in their homes. All participants completed the Adolescent/Adult Sensory Profile and the Activity Card Sort. Better registration of sensory input and greater sensory seeking were related to greater occupational engagement. Sensory-processing abilities among older persons and their relation to occupational engagement in various life settings should receive attention in research and practice. Occupational therapists should encourage older people to seek sensory input and provide them with rich sensory environments for enhancing meaningful engagement in real life.
Mhanna, M J; Dreshaj, I A; Haxhiu, M A; Martin, R J
1999-01-01
Release of substance P (SP) from sensory nerve endings of the tracheobronchial system modulates airway smooth muscle contraction and may cause relaxation of precontracted airways. We sought to elucidate the effect of postnatal maturation on SP-induced relaxation of precontracted airways and determine the roles of endogenously generated nitric oxide (NO) and prostaglandins (PGs). Cylindrical airway segments were isolated from the midtrachea of rats at four different ages, 1, 2, and 4 wk and 3 mo, and contracted to 50-75% of the maximum response induced by bethanechol. SP was then administered in the absence and presence of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the PG inhibitor indomethacin, or both. Relaxation of airways with SP decreased significantly with advancing postnatal age. SP-induced tracheal relaxation was consistently attenuated by pretreatment with L-NAME, indomethacin, or both. In a different group of animals, L-NAME significantly attenuated the relaxant response of airways to PGE2 exposure, but indomethacin had no significant effect on the relaxant response to exogenous NO. We conclude that SP induces a relaxant effect on precontracted airway smooth muscle, which decreases with advancing age and is mediated via SP-induced release of NO and/or PG.
Erin, Nuray; Türker, Sema; Elpek, Ozlem; Yıldırım, Bülent
2012-06-01
The protective effect of capsaicin-sensitive sensory nerve (CSSN) activation was recently demonstrated in human gastric mucosa. We here examined changes in neuropeptides, specifically Substance P (SP), calcitonin-gene related peptide (CGRP) and vasoactive intestinal peptide (VIP) in patients with chronic gastritis or ulcer. Furthermore changes in neprilysin levels, which hydrolyse these neuropeptides, were determined. Gastric biopsies were obtained from both lesion- and normal-appearing mucosa of 57 patients. The presence of H. pylori infection was verified with rapid urease assay. Neuronal and non-neuronal levels of SP, VIP, CGRP and neprilysin activity were determined in freshly frozen biopsies. Immunohistochemical localization of neprilysin was performed in 30 paraffin embedded specimens. We here found that neuronal SP levels decreased significantly in normally appearing mucosa of patients with gastritis while levels of non-neuronal SP increased in diseased areas of gastritis and ulcer. The presence of H. pylori led to further decreases of SP levels. The content of VIP in both disease-involved and uninvolved mucosa, and expression of neprilysin, markedly decreased in patients with gastritis or ulcer. Since VIP, as well as SP fragments, formed following hydrolysis with neprilysin is recognized to have gastroprotective effects, decreased levels of VIP, SP and neprilysin may predispose to cellular damage. Copyright © 2012 Elsevier Inc. All rights reserved.
Sensory Processing in Preterm Preschoolers and Its Association with Executive Function
Adams, Jenna N.; Feldman, Heidi M.; Huffman, Lynne C.; Loe, Irene M.
2015-01-01
Background Symptoms of abnormal sensory processing have been related to preterm birth, but have not yet been studied specifically in preterm preschoolers. The degree of association between sensory processing and other domains is important for understanding the role of sensory processing symptoms in the development of preterm children. Aims To test two related hypotheses: (1) preterm preschoolers have more sensory processing symptoms than full term preschoolers and (2) sensory processing is associated with both executive function and adaptive function in preterm preschoolers. Study Design Cross-sectional study Subjects Preterm children (≤34 weeks of gestation; n = 54) and full term controls (≥37 weeks of gestation; n = 73) ages 3-5 years. Outcome Measures Sensory processing was assessed with the Short Sensory Profile. Executive function was assessed with (1) parent ratings on the Behavior Rating Inventory of Executive Function- Preschool version and (2) a performance-based battery of tasks. Adaptive function was assessed with the Vineland Adaptive Behavior Scales-II. Results Preterm preschoolers showed significantly more sensory symptoms than full term controls. A higher percentage of preterm than full term preschoolers had elevated numbers of sensory symptoms (37% vs. 12%). Sensory symptoms in preterm preschoolers were associated with scores on executive function measures, but were not significantly associated with adaptive function. Conclusions Preterm preschoolers exhibited more sensory symptoms than full term controls. Preterm preschoolers with elevated numbers of sensory symptoms also showed executive function impairment. Future research should further examine whether sensory processing and executive function should be considered independent or overlapping constructs. PMID:25706317
Role of the vagal afferents in substance P-induced respiratory responses in anaesthetized rabbits.
Prabhakar, N R; Runold, M; Yamamoto, Y; Lagercrantz, H; Cherniack, N S; von Euler, C
1987-09-01
Since substance P (SP)-like immunoreactivity has been demonstrated in vagal sensory fibres of bronchopulmonary origin, it was considered of interest to (1) characterize the pattern of responses to SP injected into the pulmonary as well as the systemic arterial system, and (2) assess the types of vagal afferents that are affected by SP. Experiments were performed on 15 pentobarbital-anaesthetized, spontaneously breathing rabbits. Efferent phrenic nerve activity was monitored as an index of central respiratory neural output. Intra-atrial injections of SP into the pulmonary circulation (100 ng kg-1) increased the respiratory rate, and peak integrated phrenic amplitude by 47 +/- 8 and 40 +/- 4%, respectively, above the controls. In addition, SP elicited augmented breaths (ABs) within 2-3 s in 67% of the trials. In contrast to right atrial injections, no ABs and no significant changes in respiratory rate were observed in response to intra-aortic injections of SP (100 ng kg-1). Tidal phrenic activity rise after aortic injections of SP was significantly less as compared with right atrial administrations of SP. Since both routes of administration decreased the arterial blood pressure to the same extent, these respiratory responses were not likely secondary to cardiovascular changes. After administration of an SP antagonist (D-Arg-D-Trp7,9, Leu11, SP), respiratory responses to SP were significantly attenuated. Also, the rate of occurrence of ABs elicited by releasing the tracheal occlusions was reduced (control 95 vs. 14% SP antagonist). Bilateral vagotomy abolished the tachypnoeic response and reduced the magnitude of the phrenic nerve increments caused by right atrial injection of SP.(ABSTRACT TRUNCATED AT 250 WORDS)
Jin, Lingmin; Sun, Jinbo; Xu, Ziliang; Yang, Xuejuan; Liu, Peng; Qin, Wei
2018-02-01
To use a promising analytical method, namely intersubject synchronisation (ISS), to evaluate the brain activity associated with the instant effects of acupuncture and compare the findings with traditional general linear model (GLM) methods. 30 healthy volunteers were recruited for this study. Block-designed manual acupuncture stimuli were delivered at SP6, and de qi sensations were measured after acupuncture stimulation. All subjects underwent functional MRI (fMRI) scanning during the acupuncture stimuli. The fMRI data were separately analysed by ISS and traditional GLM methods. All subjects experienced de qi sensations. ISS analysis showed that the regions activated during acupuncture stimulation at SP6 were mainly divided into five clusters based on the time courses. The time courses of clusters 1 and 2 were in line with the acupuncture stimulation pattern, and the active regions were mainly involved in the sensorimotor system and salience network. Clusters 3, 4 and 5 displayed an almost contrary time course relative to the stimulation pattern. The brain regions activated included the default mode network, descending pain modulation pathway and visual cortices. GLM analysis indicated that the brain responses associated with the instant effects of acupuncture were largely implicated in sensory and motor processing and sensory integration. The ISS analysis considered the sustained effect of acupuncture and uncovered additional information not shown by GLM analysis. We suggest that ISS may be a suitable approach to investigate the brain responses associated with the instant effects of acupuncture. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Martínez-Martínez, Eduardo; Galván-Hernández, Claudio I.; Toscano-Márquez, Brenda; Gutiérrez-Ospina, Gabriel
2012-01-01
Background The bulge region of the hair follicle contains resident epithelial stem cells (SCs) that are activated and mobilized during hair growth and after epidermal wounding. However, little is known about the signals that modulate these processes. Clinical and experimental observations show that a reduced supply of sensory innervation is associated with delayed wound healing. Since axon terminals of sensory neurons are among the components of the bulge SC niche, we investigated whether these neurons are involved in the activation and mobilization of the hair stem cells during wound healing. Methodology/Principal Findings We used neonatal capsaicin treatment to reduce sensory terminals in the rat skin and performed morphometric analyses using design-based stereological methods. Epithelial proliferation was analyzed by quantifying the number of bromodeoxyuridine-labeled (BrdU+) nuclei in the epidermis and hair follicles. After wounding, the epidermis of capsaicin-treated rats presented fewer BrdU+ nuclei than in control rats. To assess SC progeny migration, we employed a double labeling protocol with iododeoxyuridine and chlorodeoxyuridine (IdU+/CldU+). The proportion of double-labeled cells was similar in the hair follicles of both groups at 32 h postwounding. IdU+/CldU+ cell proportion increased in the epidermis of control rats and decreased in treated rats at 61 h postwounding. The epidermal volume immunostained for keratin 6 was greater in treated rats at 61 h. Confocal microscopy analysis revealed that substance P (SP) and calcitonin gene-related peptide (CGRP) receptor immunoreactivity were both present in CD34+ and BrdU-retaining cells of the hair follicles. Conclusions/Significance Our results suggest that capsaicin denervation impairs SC progeny egress from the hair follicles, a circumstance associated with a greater epidermal activation. Altogether, these phenomena would explain the longer times for healing in denervated skin. Thus, sensory innervation may play a functional role in the modulation of hair SC physiology during wound healing. PMID:22574159
Martínez-Martínez, Eduardo; Galván-Hernández, Claudio I; Toscano-Márquez, Brenda; Gutiérrez-Ospina, Gabriel
2012-01-01
The bulge region of the hair follicle contains resident epithelial stem cells (SCs) that are activated and mobilized during hair growth and after epidermal wounding. However, little is known about the signals that modulate these processes. Clinical and experimental observations show that a reduced supply of sensory innervation is associated with delayed wound healing. Since axon terminals of sensory neurons are among the components of the bulge SC niche, we investigated whether these neurons are involved in the activation and mobilization of the hair stem cells during wound healing. We used neonatal capsaicin treatment to reduce sensory terminals in the rat skin and performed morphometric analyses using design-based stereological methods. Epithelial proliferation was analyzed by quantifying the number of bromodeoxyuridine-labeled (BrdU(+)) nuclei in the epidermis and hair follicles. After wounding, the epidermis of capsaicin-treated rats presented fewer BrdU(+) nuclei than in control rats. To assess SC progeny migration, we employed a double labeling protocol with iododeoxyuridine and chlorodeoxyuridine (IdU(+)/CldU(+)). The proportion of double-labeled cells was similar in the hair follicles of both groups at 32 h postwounding. IdU(+)/CldU(+) cell proportion increased in the epidermis of control rats and decreased in treated rats at 61 h postwounding. The epidermal volume immunostained for keratin 6 was greater in treated rats at 61 h. Confocal microscopy analysis revealed that substance P (SP) and calcitonin gene-related peptide (CGRP) receptor immunoreactivity were both present in CD34(+) and BrdU-retaining cells of the hair follicles. Our results suggest that capsaicin denervation impairs SC progeny egress from the hair follicles, a circumstance associated with a greater epidermal activation. Altogether, these phenomena would explain the longer times for healing in denervated skin. Thus, sensory innervation may play a functional role in the modulation of hair SC physiology during wound healing.
Yusuf, Mohamed S.; Hassan, Marwa A.; Abdel-Daim, Mohamed M.; Nabtiti, Adel S. El; Ahmed, Ali Meawad; Moawed, Sherief A.; El-Sayed, Ahmed Kamel; Cui, Hengmi
2016-01-01
Aim: The growth promoting effect of the blue-green filamentous alga Spirulina platensis (SP) was observed on meat type Japanese quail with antibiotic growth promoter alternative and immune enhancing power. Materials and Methods: This study was conducted on 180 Japanese quail chicks for 4 weeks to find out the effect of diet type (vegetarian protein diet [VPD] and fish meal protein diet [FMPD])- Spirulina dose interaction (1 or 2 g/kg diet) on growth performance, gut microbiota, and sensory meat quality of growing Japanese quails (1-5 weeks old). Results: Data revealed improvement (p<0.05) of weight gain, feed conversion ratio and European efficiency index due to 1, 2 g (SP)/kg VPD, and 2 g (SP)/kg FMPD, respectively. There was a significant decrease of ileum mean pH value by 1 g (SP)/kg VPD. Concerning gut microbiota, there was a trend toward an increase in Lactobacilli count in both 1; 2 g (SP)/kg VPD and 2 g (SP)/kg FMPD. It was concluded that 1 or 2 g (SP)/kg vegetarian diet may enhance parameters of performance without obvious effect on both meat quality and gut microbiota. Moreover, 1 and/or 2 g (SP) may not be invited to share fish meal based diet for growing Japanese quails. Conclusion: Using of SP will support the profitable production of Japanese quails fed vegetable protein diet. PMID:27956783
Allen, Susan; Casey, Jackie
2017-09-01
Children with developmental coordination disorder or sensory processing and integration difficulties face challenges to participation in daily living. To date there has been no exploration of the co-occurrence of developmental coordination disorders and sensory processing and integration difficulties. Records of children meeting Diagnostic and Statistical Manual - V criteria for developmental coordination disorder ( n = 93) age 5 to 12 years were examined. Data on motor skills (Movement Assessment Battery for Children - 2) and sensory processing and integration (Sensory Processing Measure) were interrogated. Of the total sample, 88% exhibited some or definite differences in sensory processing and integration. No apparent relationship was observed between motor coordination and sensory processing and integration. The full sample showed high rates of some difficulties in social participation, hearing, body awareness, balance and motion, and planning and ideation. Further, children with co-morbid autistic spectrum disorder showed high rates of difficulties with touch and vision. Most, but not all, children with developmental coordination disorder presented with some difficulties in sensory processing and integration that impacted on their participation in everyday activities. Sensory processing and integration difficulties differed significantly between those with and without co-morbid autistic spectrum disorder.
Nieto, C; López, B; Gandía, H
2017-12-01
This study investigated sensory processing in a sample of Spanish children with autism spectrum disorder (ASD). Specifically, the study aimed to explore (1) the prevalence and distribution of atypical sensory processing patterns, (2) the relationship between adaptive and maladaptive behaviour with atypical sensory processing and (3) the possible relationship between sensory subtype and maternal stress. The short sensory profile 2 (Dunn 2014) and the vineland adaptive behavior scale (Sparrow et al. 1984) were administered to examine the sensory processing difficulties and maladaptive behaviours of 45 children with ASD aged 3 to 14; their mothers also completed the parenting stress index-short form (Abidin 1995). Atypical sensory features were found in 86.7% of the children; avoider and sensor being the two most common patterns. No significant relationship was found between atypical sensory processing and adaptive behaviour. However, the analysis showed a strong relationship between sensory processing and maladaptive behaviour. Both maladaptive behaviour and sensory processing difficulties correlated significantly with maternal stress although maternal stress was predicted only by the sensory variable, and in particular by the avoider pattern. The findings suggest that sensory features in ASD may be driving the high prevalence of parental stress in carers. They also suggest that the effect on parental stress that has been attributed traditionally to maladaptive behaviours may be driven by sensory difficulties. The implications of these findings are discussed in relation to the development of interventions and the need to explore contextual and cultural variables as possible sources of variability. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Sensory Processing Subtypes in Autism: Association with Adaptive Behavior
ERIC Educational Resources Information Center
Lane, Alison E.; Young, Robyn L.; Baker, Amy E. Z.; Angley, Manya T.
2010-01-01
Children with autism are frequently observed to experience difficulties in sensory processing. This study examined specific patterns of sensory processing in 54 children with autistic disorder and their association with adaptive behavior. Model-based cluster analysis revealed three distinct sensory processing subtypes in autism. These subtypes…
Hertz, Uri; Amedi, Amir
2015-01-01
The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756
Hertz, Uri; Amedi, Amir
2015-08-01
The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.
Celik, Halil Ibrahim; Elbasan, Bulent; Gucuyener, Kivilcim; Kayihan, Hulya; Huri, Meral
The aim of this study was to analyze the correlation between sensory processing and motor development in preterm infants. We included 30 preterm and 30 term infants with corrected and chronological ages between 10 and 12 mo. We used the Test of Sensory Functions in Infants to evaluate sensory processing and the Alberta Infant Motor Scale to evaluate motor development. The Spearman correlation test indicated a strong positive relationship between sensory processing and motor development in preterm infants (r = .63, p < .001). Given the relationship between sensory processing and motor development in the preterm group, the evaluation of sensory processing and motor development in preterm infants was considered necessary for the effective implementation of physiotherapy assessment and interventions. Copyright © 2018 by the American Occupational Therapy Association, Inc.
Schneider, Mary L.; Moore, Colleen F.; Adkins, Miriam; Barr, Christina S.; Larson, Julie A.; Resch, Leslie M.; Roberts, Andrew
2017-01-01
Neonatal sensory processing (tactile and vestibular function) was tested in 78 rhesus macaques from two experiments. At ages 4–5 years, striatal dopamine D2 receptor binding was examined using positron emission tomography. At ages 5–7 years, adult sensory processing was assessed. Findings were: (a) prenatal stress exposure yielded less optimal neonatal sensory processing; (b) animals carrying the short rh5-HTTLPR allele had less optimal neonatal sensory scores than monkeys homozygous for the long allele; (c) neonatal sensory processing was significantly related to striatal D2 receptor binding for carriers of the short allele, but not for animals homozygous for the long allele; and (d) there was moderate developmental continuity in sensory processing from the neonatal period to adulthood. PMID:27338151
Kolacz, Jacek; Raspa, Melissa; Heilman, Keri J; Porges, Stephen W
2018-06-01
Individuals with fragile X syndrome (FXS), especially those co-diagnosed with autism spectrum disorder (ASD), face many sensory processing challenges. However, sensory processing measures informed by neurophysiology are lacking. This paper describes the development and psychometric properties of a parent/caregiver report, the Brain-Body Center Sensory Scales (BBCSS), based on Polyvagal Theory. Parents/guardians reported on 333 individuals with FXS, 41% with ASD features. Factor structure using a split-sample exploratory-confirmatory design conformed to neurophysiological predictions. Internal consistency, test-retest, and inter-rater reliability were good to excellent. BBCSS subscales converged with the Sensory Profile and Sensory Experiences Questionnaire. However, data also suggest that BBCSS subscales reflect unique features related to sensory processing. Individuals with FXS and ASD features displayed more sensory challenges on most subscales.
High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.
Zhu, Xiangbin; Qiu, Huiling
2016-01-01
Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.
High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections
2016-01-01
Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved. PMID:27893761
Helping Children with Sensory Processing Disorders: The Role of Occupational Therapy
ERIC Educational Resources Information Center
Sweet, Margarita
2010-01-01
Normally functioning sensory systems develop through sensory experiences. Children are stimulated through their senses in many different ways. Even though a person's sensory system is intact, he or she may have a sensory processing disorder (SPD), also known as sensory integration dysfunction. This means the person's brain does not correctly…
Boone, Kelly M; Gracious, Barbara; Klebanoff, Mark A; Rogers, Lynette K; Rausch, Joseph; Coury, Daniel L; Keim, Sarah A
2017-12-01
Despite advances in the health and long-term survival of infants born preterm, they continue to face developmental challenges including higher risk for autism spectrum disorder (ASD) and atypical sensory processing patterns. This secondary analysis aimed to describe sensory profiles and explore effects of combined dietary docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and gamma-linolenic acid (GLA) supplementation on parent-reported sensory processing in toddlers born preterm who were exhibiting ASD symptoms. 90-day randomized, double blinded, placebo-controlled trial. 31 children aged 18-38months who were born at ≤29weeks' gestation. Mixed effects regression analyses followed intent to treat and explored effects on parent-reported sensory processing measured by the Infant/Toddler Sensory Profile (ITSP). Baseline ITSP scores reflected atypical sensory processing, with the majority of atypical scores falling below the mean. Sensory processing sections: auditory (above=0%, below=65%), vestibular (above=13%, below=48%), tactile (above=3%, below=35%), oral sensory (above=10%; below=26%), visual (above=10%, below=16%); sensory processing quadrants: low registration (above=3%; below=71%), sensation avoiding (above=3%; below=39%), sensory sensitivity (above=3%; below=35%), and sensation seeking (above=10%; below=19%). Twenty-eight of 31 children randomized had complete outcome data. Although not statistically significant (p=0.13), the magnitude of the effect for reduction in behaviors associated with sensory sensitivity was medium to large (effect size=0.57). No other scales reflected a similar magnitude of effect size (range: 0.10 to 0.32). The findings provide support for larger randomized trials of omega fatty acid supplementation for children at risk of sensory processing difficulties, especially those born preterm. Copyright © 2017 Elsevier B.V. All rights reserved.
Vasopressin Proves Es-sense-tial: Vasopressin and the Modulation of Sensory Processing in Mammals
Bester-Meredith, Janet K.; Fancher, Alexandria P.; Mammarella, Grace E.
2015-01-01
As mammals develop, they encounter increasing social complexity in the surrounding world. In order to survive, mammals must show appropriate behaviors toward their mates, offspring, and same-sex conspecifics. Although the behavioral effects of the neuropeptide arginine vasopressin (AVP) have been studied in a variety of social contexts, the effects of this neuropeptide on multimodal sensory processing have received less attention. AVP is widely distributed through sensory regions of the brain and has been demonstrated to modulate olfactory, auditory, gustatory, and visual processing. Here, we review the evidence linking AVP to the processing of social stimuli in sensory regions of the brain and explore how sensory processing can shape behavioral responses to these stimuli. In addition, we address the interplay between hormonal and neural AVP in regulating sensory processing of social cues. Because AVP pathways show plasticity during development, early life experiences may shape life-long processing of sensory information. Furthermore, disorders of social behavior such as autism and schizophrenia that have been linked with AVP also have been linked with dysfunctions in sensory processing. Together, these studies suggest that AVP’s diversity of effects on social behavior across a variety of mammalian species may result from the effects of this neuropeptide on sensory processing. PMID:25705203
Jorquera-Cabrera, Sara; Romero-Ayuso, Dulce; Rodriguez-Gil, Gemma; Triviño-Juárez, José-Matías
2017-01-01
The assessment of sensory perception, discrimination, integration, modulation, praxis, and other motor skills, such as posture, balance, and bilateral motor coordination, is necessary to identify the sensory and motor factors influencing the development of personal autonomy. The aim of this work is to study the assessment tools currently available for identifying different patterns of sensory processing. There are 15 tests available that have psychometric properties, primarily for the US population. Nine of them apply to children in preschool and up to grade 12. The assessment of sensory processing is a process that includes the use of standardized tests, administration of caregiver questionnaires, and clinical observations. The review of different studies using PRISMA criteria or Osteba Critical Appraisal Cards reveals that the most commonly used tools are the Sensory Integration and Praxis Test, the Sensory Processing Measure, and the Sensory Profile.
Jorquera-Cabrera, Sara; Romero-Ayuso, Dulce; Rodriguez-Gil, Gemma; Triviño-Juárez, José-Matías
2017-01-01
The assessment of sensory perception, discrimination, integration, modulation, praxis, and other motor skills, such as posture, balance, and bilateral motor coordination, is necessary to identify the sensory and motor factors influencing the development of personal autonomy. The aim of this work is to study the assessment tools currently available for identifying different patterns of sensory processing. There are 15 tests available that have psychometric properties, primarily for the US population. Nine of them apply to children in preschool and up to grade 12. The assessment of sensory processing is a process that includes the use of standardized tests, administration of caregiver questionnaires, and clinical observations. The review of different studies using PRISMA criteria or Osteba Critical Appraisal Cards reveals that the most commonly used tools are the Sensory Integration and Praxis Test, the Sensory Processing Measure, and the Sensory Profile. PMID:28424762
Dunn, Winnie; Little, Lauren; Dean, Evan; Robertson, Sara; Evans, Benjamin
2016-04-01
The objective of this study was to identify and synthesize research about how sensory factors affect daily life of children. We designed a conceptual model to guide a scoping review of research published from 2005 to October 2014 (10 years). We searched MEDLINE, CINAHL, and PsycINFO and included studies about sensory perception/processing; children, adolescents/young adults; and participation. We excluded studies about animals, adults, and review articles. Our process resulted in 261 articles meeting criteria. Research shows that children with conditions process sensory input differently than peers. Neuroscience evidence supports the relationship between sensory-related behaviors and brain activity. Studies suggest that sensory processing is linked to social participation, cognition, temperament, and participation. Intervention research illustrates the importance of contextually relevant practices. Future work can examine the developmental course of sensory processing aspects of behavior across the general population and focus on interventions that support children's sensory processing as they participate in their daily lives. © The Author(s) 2016.
Variable sensory perception in autism.
Haigh, Sarah M
2018-03-01
Autism is associated with sensory and cognitive abnormalities. Individuals with autism generally show normal or superior early sensory processing abilities compared to healthy controls, but deficits in complex sensory processing. In the current opinion paper, it will be argued that sensory abnormalities impact cognition by limiting the amount of signal that can be used to interpret and interact with environment. There is a growing body of literature showing that individuals with autism exhibit greater trial-to-trial variability in behavioural and cortical sensory responses. If multiple sensory signals that are highly variable are added together to process more complex sensory stimuli, then this might destabilise later perception and impair cognition. Methods to improve sensory processing have shown improvements in more general cognition. Studies that specifically investigate differences in sensory trial-to-trial variability in autism, and the potential changes in variability before and after treatment, could ascertain if trial-to-trial variability is a good mechanism to target for treatment in autism. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Spatial Transformation of the Vestibulo-Ocular Reflex during Spaceflight
NASA Technical Reports Server (NTRS)
Clement, Gilles; Wood, Scott J.; Reschke, Millard F.
1996-01-01
It was hypothesized that the absence of the gravitational reference cues may be responsible for adaptive changes in the vestibulo-ocular reflex (VOR). These changes result in the alteration of the direction of the compensatory slow phase (SP) eye movements in microgravity. In order to test this hypothesis, the direction of the VOR SP relative to head motion was investigated in three astronauts during and after an eight-day orbital flight by passive sinusoidal pitch or yaw angular motion at two frequencies. The results of the inflight and postflight testing are considered. The observed deviation between VOR SP and head motion suggests that spatial transformation in the VOR occurred during adaptation to microgravity. It is considered that, although this spatial transformation might be due to a sensory bias, it may reflect central changes in the reference system used for spatial orientation in microgravity.
Schauder, Kimberly B.; Bennetto, Loisa
2016-01-01
Sensory processing differences have long been associated with autism spectrum disorder (ASD), and they have recently been added to the diagnostic criteria for the disorder. The focus on sensory processing in ASD research has increased substantially in the last decade. This research has been approached from two different perspectives: the first focuses on characterizing the symptoms that manifest in response to real world sensory stimulation, and the second focuses on the neural pathways and mechanisms underlying sensory processing. The purpose of this paper is to integrate the empirical literature on sensory processing in ASD from the last decade, including both studies characterizing sensory symptoms and those that investigate neural response to sensory stimuli. We begin with a discussion of definitions to clarify some of the inconsistencies in terminology that currently exist in the field. Next, the sensory symptoms literature is reviewed with a particular focus on developmental considerations and the relationship of sensory symptoms to other core features of the disorder. Then, the neuroscience literature is reviewed with a focus on methodological approaches and specific sensory modalities. Currently, these sensory symptoms and neuroscience perspectives are largely developing independently from each other leading to multiple, but separate, theories and methods, thus creating a multidisciplinary approach to sensory processing in ASD. In order to progress our understanding of sensory processing in ASD, it is now critical to integrate these two research perspectives and move toward an interdisciplinary approach. This will inevitably aid in a better understanding of the underlying biological basis of these symptoms and help realize the translational value through its application to early identification and treatment. The review ends with specific recommendations for future research to help bridge these two research perspectives in order to advance our understanding of sensory processing in ASD. PMID:27378838
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogeley, Lutz; Luecke, Hartmut, E-mail: hudel@uci.edu
2006-04-01
Crystals of Anabaena sensory rhodopsin transducer, the transducer for the cyanobacterial photosensor Anabaena sensory rhodopsin, obtained in the space groups P4, C2 and P2{sub 1}2{sub 1}2{sub 1} diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for these crystal forms were obtained by SIRAS phasing using an iodide quick-soak derivative (P4) and molecular replacement (C2 and P2{sub 1}2{sub 1}2{sub 1}). Anabaena sensory rhodopsin transducer (ASRT) is a 14.7 kDa soluble signaling protein associated with the membrane-embedded light receptor Anabaena sensory rhodopsin (ASR) from Anabaena sp., a freshwater cyanobacterium. Crystals of ASRT were obtained in three different space groups, P4, C2more » and P2{sub 1}2{sub 1}2{sub 1}, which diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for one of these crystal forms (P4) were obtained by SIRAS phasing using an iodide quick-soak derivative and a partial model was built. Phases for the remaining crystal forms were obtained by molecular replacement using the partial model from the P4 crystal form.« less
Giello, Marina; La Storia, Antonietta; Masucci, Felicia; Di Francia, Antonio; Ercolini, Danilo; Villani, Francesco
2017-05-01
Traditional Caciocavallo of Castelfranco is a semi-hard "pasta-filata" cheese produced from raw cows' milk in Campania region. The aim of the present research is mainly focused on the study, by 16S rRNA gene pyrosequencing and viable counts, of the dynamics of bacterial communities during manufacture and ripening of traditional Caciocavallo cheese. Moreover, the possible correlation between cheese microbiota and cows' feeding based on silage or hay was also evaluated. In general, except for enterococci, the technological process significantly affected all the microbial groups. According to 16S rRNA, raw cows' milk was dominated by Streptococcus thermophilus, L. lactis and Pseudomonas sp. in hay cheese production, whereas Lactococcus lactis and Acinetobacter sp. dominated silage production. Differences in the taxonomic structure of the milk's microbiota within diet groups were not related to silage and hay cows' feeding. Moreover, S. thermophilus was the unique species that dominate from raw milks to fermented intermediates and cheese in both hay and silage cheese productions. Feeding and ripening time influenced significantly sensory characteristics of the cheeses. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of substance P in inflammatory disease.
O'Connor, Terence M; O'Connell, Joseph; O'Brien, Darren I; Goode, Triona; Bredin, Charles P; Shanahan, Fergus
2004-11-01
The diffuse neuroendocrine system consists of specialised endocrine cells and peptidergic nerves and is present in all organs of the body. Substance P (SP) is secreted by nerves and inflammatory cells such as macrophages, eosinophils, lymphocytes, and dendritic cells and acts by binding to the neurokinin-1 receptor (NK-1R). SP has proinflammatory effects in immune and epithelial cells and participates in inflammatory diseases of the respiratory, gastrointestinal, and musculoskeletal systems. Many substances induce neuropeptide release from sensory nerves in the lung, including allergen, histamine, prostaglandins, and leukotrienes. Patients with asthma are hyperresponsive to SP and NK-1R expression is increased in their bronchi. Neurogenic inflammation also participates in virus-associated respiratory infection, non-productive cough, allergic rhinitis, and sarcoidosis. SP regulates smooth muscle contractility, epithelial ion transport, vascular permeability, and immune function in the gastrointestinal tract. Elevated levels of SP and upregulated NK-1R expression have been reported in the rectum and colon of patients with inflammatory bowel disease (IBD), and correlate with disease activity. Increased levels of SP are found in the synovial fluid and serum of patients with rheumatoid arthritis (RA) and NK-1R mRNA is upregulated in RA synoviocytes. Glucocorticoids may attenuate neurogenic inflammation by decreasing NK-1R expression in epithelial and inflammatory cells and increasing production of neutral endopeptidase (NEP), an enzyme that degrades SP. Preventing the proinflammatory effects of SP using tachykinin receptor antagonists may have therapeutic potential in inflammatory diseases such as asthma, sarcoidosis, chronic bronchitis, IBD, and RA. In this paper, we review the role that SP plays in inflammatory disease. Copyright 2004 Wiley-Liss, Inc.
Sensory Processing in Adults with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Crane, Laura; Goddard, Lorna; Pring, Linda
2009-01-01
Unusual sensory processing has been widely reported in autism spectrum disorders (ASDs); however, the majority of research in this area has focused on children. The present study assessed sensory processing in adults with ASD using the Adult/Adolescent Sensory Profile (AASP), a 60-item self-report questionnaire assessing levels of sensory…
Ismael, Noor T; Lawson, Lisa A Mische; Cox, Jane A
2015-12-01
Sensory processing patterns may be associated with children's preferences for different activities; however, knowledge about how different sensory processing patterns may relate to children's participation in leisure activities is scarce. This study investigated in what leisure activities children with extreme sensory processing patterns participate and if relationships exist between children's sensory processing patterns and their leisure preferences and participation patterns. This correlational study analyzed data from children's Sensory Profiles and reported play and leisure preferences. All 91 children in the sample completed the Children's Assessment for Participation and Enjoyment (CAPE) and the Preferences for Activities of Children (PAC). Parents of children ages 6 to 10 years completed the Sensory Profile, and children ages 11 to 14 years completed the Adolescent/Adult Sensory Profile. Children with different sensory processing patterns preferred both similar and distinct leisure activities. Low-registration quadrant summary z scores negatively correlated with CAPE overall diversity scores (rs=-.23, p=.03), sensitivity quadrant summary z scores negatively correlated with preferences for social activities (rs=-.23, p=.03) and preferences for skill-based activities (rs=-.22, p=.04), and avoiding quadrant summary z scores negatively correlated with preferences for social activities (rs=-.26, p=.01). Children's sensory preferences are related to leisure preferences and participation. © CAOT 2015.
Baum, Sarah H.; Stevenson, Ryan A.; Wallace, Mark T.
2015-01-01
Although sensory processing challenges have been noted since the first clinical descriptions of autism, it has taken until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 for sensory problems to be included as part of the core symptoms of autism spectrum disorder (ASD) in the diagnostic profile. Because sensory information forms the building blocks for higher-order social and cognitive functions, we argue that sensory processing is not only an additional piece of the puzzle, but rather a critical cornerstone for characterizing and understanding ASD. In this review we discuss what is currently known about sensory processing in ASD, how sensory function fits within contemporary models of ASD, and what is understood about the differences in the underlying neural processing of sensory and social communication observed between individuals with and without ASD. In addition to highlighting the sensory features associated with ASD, we also emphasize the importance of multisensory processing in building perceptual and cognitive representations, and how deficits in multisensory integration may also be a core characteristic of ASD. PMID:26455789
Yamaoka, Junichi; Kawana, Seiji
2007-11-01
Skin-scratching is a commonly seen behavior in patients with pruritus which sometimes exacerbates original lesions. Substance P (SP) signaling may play a predominant role in the pathophysiology induced by skin-scratching, however, it has not been well-elucidated. To clarify changes in SP, its receptor NK-1R and a degradating enzyme neutral endopeptidase (NEP) induced by skin-scratching stimulation in mice. After skin-scratching stimulation was given to mice, changes in SP signaling were investigated as follows. Mast cell degranulation was examined with toluidine blue staining. SP-immunoreactive nerve fibers and the expressions of NK-1R and NEP were examined with immunofluorescence. Protein contents of SP and the enzymatic activity of NEP were examined with an ELISA and a colorimetric assay, respectively. After skin-scratching stimulation, mast cells significantly degranulated within several minutes. SP-immunoreactive nerve fibers disappeared immediately from sensory nerve fibers, indicating the quick secretion and the depletion of SP. Both protein contents of SP and NEP activity in skin decreased dramatically soon after skin-scratching stimulation and thereafter they returned to the basal level within a week. The expression of NK-1R was significantly upregulated in epidermal basal keratinocytes after several days, in which NEP and NK-1R were well-coexpressed. Blocking NK-1R by an NK-1R antagonist suppressed scratching-induced decreases in SP-immunoreactive nerve fibers and in NEP activity. The present study clarified changing patterns of factors involved in SP signaling and NEP induced by skin-scratching stimulation. These findings provide basic and useful information to understand the pathophysiology of scratching-associated pruritic skin diseases.
Ogino, Tetsuya; Maegawa, Shingo; Shigeno, Shuichi; Fujikura, Katsunori; Toyohara, Haruhiko
2018-01-01
The environments around deep-sea hydrothermal vents are very harsh conditions for organisms due to the possibility of exposure to highly toxic compounds and extremely hot venting there. Despite such extreme environments, some indigenous species have thrived there. Alvinellid worms (Annelida) are among the organisms best adapted to high-temperature and oxidatively stressful venting regions. Although intensive studies of the adaptation of these worms to the environments of hydrothermal vents have been made, little is known about the worms' sensory adaptation to the severe chemical conditions there. To examine the sensitivity of the vent-endemic worm Paralvinella hessleri to low pH and oxidative stress, we determined the concentration of acetic acid and hydrogen peroxide that induced avoidance behavior of this worm, and compared these concentrations to those obtained for related species inhabiting intertidal zones, Thelepus sp. The concentrations of the chemicals that induced avoidance behavior of P. hessleri were 10-100 times lower than those for Thelepus sp. To identify the receptors for these chemicals, chemical avoidance tests were performed with the addition of ruthenium red, a blocker of transient receptor potential (TRP) channels. This treatment suppressed the chemical avoidance behavior of P. hessleri, which suggests that TRP channels are involved in the chemical avoidance behavior of this species. Our results revealed for the first time hypersensitive detection systems for acid and for oxidative stress in the vent-endemic worm P. hessleri, possibly mediated by TRP channels, suggesting that such sensory systems may have facilitated the adaptation of this organism to harsh vent environments.
ERIC Educational Resources Information Center
Cheung, Phoebe P. P.; Siu, Andrew M. H.
2009-01-01
This study compared the patterns of sensory processing among children with autism spectrum disorder (ASD), attention deficit and hyperactivity disorder (ADHD), and children without disabilities. Parents reported on the frequency of sensory processing issues by completing the Chinese Sensory Profile (CSP). Children with disabilities (ASD or ADHD)…
Sellers, Kristin K.; Bennett, Davis V.; Hutt, Axel; Williams, James H.
2015-01-01
During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers. PMID:25833839
What motivates the consumer's food choice?
Jáuregui-Lobera, I; Bolaños Ríos, P
2011-01-01
The aim of the study was to analyse the psychometric properties of the Food Choice Questionnaire (FCQ) in Spanish population (FCQ-SP), its factor structure and internal consistency. In addition, the relationships between the FCQ-SP and the General Health Questionnaire (GHQ), the Irrational Food Beliefs Scale (IFBS), and the Eating Disorders Inventory-3 (EDI-3) were analysed in order to explore the validity of the FCQSP. Possible gender differences in the food choice pattern were analysed. The sample comprised 255 women and 50 men, ranged from 25 to 64 years. In order to get a better interpretation of the results associated with changes based on the age, the participants were grouped in four age intervals (25-34, 35-44, 45-54, and 55-64). All the participants were relatives of secondary and high school students in three schools of Seville and Cordoba. The factor analysis yields the seven following factors: mood, health and natural content, sensory appeal, weight control, convenience, familiarity, and price. The internal consistency was determined by means of the Cronbach's α coefficients, which ranged from 0.70 to 0.83 for the different components. With regards to the food choice profile, sensory appeal was the most motivating factor to choose food, followed by price and weight control. With respect to gender differences, women showed higher scores than men in all components except in the case of price. The FCQ-SP has adequate psychometric properties to be applied to Spanish population, and it is useful to explore the consumers' motivation with regards to food choice.
Hoover, Donald B.; Shepherd, Angela V.; Southerland, E. Marie; Armour, J. Andrew; Ardell, Jeffrey L.
2008-01-01
While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T3 DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T3 DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30–40% of ventricular afferent somata in T3 DRG). About 30% of the ventricular afferent neurons in T2 DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB4. Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters. PMID:18558516
Batista, Nádia Nara; Ramos, Cíntia Lacerda; Dias, Disney Ribeiro; Pinheiro, Ana Carla Marques; Schwan, Rosane Freitas
2016-02-01
Theobroma cacao seeds are the main raw material for chocolate production. During their fermentation, a succession of microorganisms are responsible for the physicochemical changes occurring in the pulp and inside the beans. The aim of this study was to investigate the effects of yeast inoculation (Saccharomyces cerevisiae UFLA CA11, Pichia kluivery CCMA0237, and Hanseniaspora uvarum CCMA0236) on the profile of the volatile compounds and microbial communities in cocoa fermentation. The resulting chocolate was also evaluated by temporal dominance of sensations (TDS) analyses. The dominant microorganisms during spontaneous fermentation were S. cerevisiae, H. uvarum, H. guilliermondii, Lactobacillus fermentum, Pediococcus sp., and Acetobacter pasteurianus. Similarly, S. cerevisiae, P. kluyveri, Candida sp., Pediococcus sp., and A. pasteurianus were the predominant microorganisms assessed by Denaturing Gradient Gel Electrophoresis (DGGE) in inoculated fermentation. Sixty-seven volatile compounds were detected and quantified by gas chromatography/mass spectrometry (GC/MS) at the end of fermentation and chocolates. The main group of volatile compound found after the inoculated and spontaneous fermentations was esters (41 and 39 %, respectively). In the chocolates, the main group was acids (73 and 44 % from the inoculated and spontaneous fermentations, respectively). The TDS analyses showed a dominance of bitter and cocoa attributes in both chocolates. However, in the inoculated chocolate, lingering fruity notes were more intense, while the chocolate produced by spontaneous fermentation was more astringent. Thus, the inoculation of yeast influenced the microbial profile, which likely affected the volatile compounds that affect sensory characteristics, resulting in chocolate with dominant bitter, cocoa, and fruity attributes.
Hoover, Donald B; Shepherd, Angela V; Southerland, E Marie; Armour, J Andrew; Ardell, Jeffrey L
2008-08-18
While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T(3) DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T(3) DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30-40% of ventricular afferent somata in T(3) DRG). About 30% of the ventricular afferent neurons in T(2) DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB(4). Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters.
ERIC Educational Resources Information Center
Olson, Carol H.; Henry, Diana A.; Kliner, Ashley Peck; Kyllo, Alissa; Richter, Chelsea Munson; Charley, Jane; Whitcher, Meagan Chapman; Reinke, Katherine Roth; Tysver, Chelsay Horner; Wagner, Lacey; Walworth, Jessica
2016-01-01
This pre- and posttest multiple-case study examined the effectiveness and usability of the Sensory Processing Measure-Preschool Quick Tips (SPM-P QT) by key stakeholders (parents and teachers) for implementing data-driven intervention to address sensory processing challenges. The Sensory Processing Measure-Preschool (SPM-P) was administered as an…
Examining Sensory Quadrants in Autism
ERIC Educational Resources Information Center
Kern, Janet K.; Garver, Carolyn R.; Carmody, Thomas; Andrews, Alonzo A.; Trivedi, Madhukar H.; Mehta, Jyutika A.
2007-01-01
The purpose of this study was to examine sensory quadrants in autism based on Dunn's Theory of Sensory Processing. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to 103 age- and gender-matched community…
Sensory Coordination of Insect Flight
2011-09-30
us to behaviorally alter the speed of the honey bees using their natural behavioral responses to visual patterns. These results reiterate our... honey bee flight. (9th International Congress of Neuroethology, Salamanca, Spain, August 2010). Sane, SP*. The tale of two mechanosensors: antennal...on the following main projects with reference to our work plan: Antennal positioning in moths and freely flying bees : 1. Latency studies: We had
Hofmann, Stefan G.; Bitran, Stella
2007-01-01
Sensory-processing sensitivity is assumed to be a heritable vulnerability factor for shyness. The present study is the first to examine sensory-processing sensitivity among individuals with social anxiety disorder. The results showed that the construct is separate from social anxiety, but it is highly correlated with harm avoidance and agoraphobic avoidance. Individuals with a generalized subtype of social anxiety disorder reported higher levels of sensory-processing sensitivity than individuals with a non-generalized subtype. These preliminary findings suggest that sensory-processing sensitivity is uniquely associated with the generalized subtype of social anxiety disorder. Recommendations for future research are discussed. PMID:17241764
Pietrasik, Zeb; Gaudette, Nicole J
2015-07-01
Producing high-quality processed meats that contain reduced amounts of sodium chloride is a major challenge facing industry owing to the importance of sodium chloride toward the functional, microbial stability and sensory properties of these products. In order to create reduced sodium alternatives, a number of commercial salt replacers and flavor enhancers have entered the market; however, their ability to be applied in processed meats requires investigation. In this study, two salt replacers (Ocean's Flavor - OF45, OF60) and one flavor enhancer (Fonterra™ Savoury Powder - SP) were evaluated for their ability to effectively reduce sodium while maintaining the functional and sensory properties of turkey sausages. Functionality via instrumental measures (yield, purge loss, pH, expressible moisture, proximate composition, sodium content, color, texture), safety (microbiological assessment) and consumer acceptability were obtained on all samples. All non-control treatments resulted in products with sodium chloride contents below Canada's Health Check™ Program target for processed meats. There was no detrimental effect on water binding and texture in treatments when NaCl was substituted with OF60 sea salt replacers. Sodium reduction had no negative effect on the shelf life of the turkey sausages with up to 60 days of refrigerated storage. Consumer acceptability for all attributes did not differ significantly, except for aftertaste, which scored lowest for OF45 compared with the control (regular NaCl content). This work demonstrated that salt replacers could potentially substitute for NaCl in smoked turkey sausages; however, further flavor optimization may be required to suppress undesirable levels of bitterness elicited by some of these ingredients. © 2014 Society of Chemical Industry.
Schotzinger, R J; Landis, S C
1990-05-01
Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in developing and adult rats receives an abundant sympathetic catecholaminergic and sensory innervation, but not a cholinergic innervation.
Barbara, G; De Giorgio, R; Stanghellini, V; Corinaldesi, R; Cremon, C; Gerard, N; Gerard, C; Grady, E F; Bunnett, N W; Blennerhassett, P A; Collins, S M
2003-10-01
Substance P (SP) release from sensory nerves induces neurogenic inflammation. Neutral endopeptidase (NEP) degrades SP, thereby limiting its proinflammatory effects. Intestinal inflammation following Trichinella spiralis infection markedly downregulates NEP, resulting in diminished SP degradation, with unknown functional consequences. We hypothesised that diminished expression of NEP would exacerbate T spiralis induced enteritis. NEP knockout (NEP-/-) and wild-type (NEP+/+) mice were infected with T spiralis and studied at 6, 12, 24, and 48 hours post infection (PI). Tissue inflammation was quantified by computerised cell counting and myeloperoxidase activity (MPO). The leucocyte adhesion molecule, intercellular adhesion molecule 1 (ICAM-1), and SP were assessed by immunohistochemistry. Before infection, the lack of NEP was not associated with changes in mucosal cellularity or MPO activity. Twelve hours PI, NEP-/- mice showed a 2.5-fold increase in MPO activity at a time when values in NEP+/+ mice were still within normal limits. MPO activity and cellularity peaked at 24 hours PI. This was accompanied by increased staining for both ICAM-1 and SP in NEP-/- mice. Infusion of rhNEP to NEP-/- mice significantly reduced MPO activity 24 hours PI. These findings demonstrate that NEP downregulates the early onset of nematode intestinal inflammation and that increased bioavailability of SP and overexpression of ICAM-1 in NEP-/- mice likely play a role in the earlier onset of intestinal inflammation.
ERIC Educational Resources Information Center
Germani, Tamara; Zwaigenbaum, Lonnie; Bryson, Susan; Brian, Jessica; Smith, Isabel; Roberts, Wendy; Szatmari, Peter; Roncadin, Caroline; Sacrey, Lori Ann R.; Garon, Nancy; Vaillancourt, Tracy
2014-01-01
This study assessed sensory processing differences between 24-month infants at high-risk of autism spectrum disorder (ASD), each with an older sibling with ASD, and low-risk infants with no family history of ASD. Sensory processing differences were assessed using the Infant/Toddler Sensory Profile, a parent-reported measure. Groups were compared…
Wu, Z.-X.; Barker, J. S.; Batchelor, T. P.; Dey, R.D.
2008-01-01
Exposure to ozone induces airway hyperresponsiveness (AHR) mediated partly by SP released from nerve terminals of intrinsic airway neurons. Our recent studies showed that IL-1, an important multifunctional proinflammatory cytokine, increases synthesis and release of SP from intrinsic airway neurons. The purpose of this study is to investigate the possible involvement of endogenous IL-1 in modulating neural responses associated with ozone-enhanced airway responsiveness. Ferrets were exposed to 2 ppm ozone or filtered air for 3 hrs. IL-1 in the bronchoalveolar lavage (BAL) fluid was significantly increased in ozone-exposed animals and responses of tracheal smooth muscle to methacholine (MCh) and electrical field stimulation (EFS) were elevated significantly. Both the SP nerve fiber density in tracheal smooth muscle and the number of SP-containing neurons in airway ganglia were significantly increased following ozone exposure. Pretreatment with IL-1 receptor antagonist (IL-1 Ra) significantly diminished ozone-enhanced airway responses to EFS as well as ozone-increased SP in the airway. To selectively investigate intrinsic airway neurons, segments of ferret trachea were maintained in culture conditions for 24 hrs to eliminate extrinsic contributions from sensory nerves. The segments were then exposed to 2 ppm ozone in vitro for 3 hrs. The changes of ozone-induced airway responses to MCh and EFS, and the SP levels in airway neurons paralleled those observed with in vivo ozone exposure. The ozone-enhanced airway responses and neuronal SP levels were inhibited by pretreatment with IL-1 Ra. These findings show that IL-1 is released during ozone exposure enhances airway responsiveness by modulating SP expression in airway neurons. PMID:18718561
Lötvall, J O; Skoogh, B E; Barnes, P J; Chung, K F
1990-05-01
1. We have examined in guinea-pigs, in vivo, the effects of inhibition of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) on the airway response to aerosolised substance P (SP). We aerosolised captopril (4.6 mM, 60 breaths; 210 nmol) to inhibit ACE and acetorphan (0.3, 1 and 3 mM, 60 breaths; 9 nmol, 33 nmol and 110 nmol respectively) to inhibit NEP. We also examined the effect of the highest dose of acetorphan (110 nmol) on the response to aerosolised acetylcholine (ACh). 2. Responsiveness to SP (or ACh) was measured as the change in lung resistance (RL) induced by nebulisation of increasing concentrations of SP (or ACh) before and after treatment with the inhibitor. PC200, defined as the provocative concentration inducing an increase in RL of 200% above baseline was calculated for each challenge. 3. Administration of acetorphan before the second SP-challenge induced a dose-dependent decrease in PC200 for SP amounting to 1.8 (+/- 0.3) log units after treatment with 11 nmol acetorphan. Treatment with vehicle before the second SP-challenge or with 3 mM acetorphan before the second ACh-challenge had no significant effect on PC200. 4. Treatment with captopril (21 nmol) induced only a small, nonsignificant leftward shift of PC200 to SP (0.3 +/- 0.2 log units). 5. We conclude that a NEP-like enzyme, but not ACE, regulates the response to aerosolised SP. We suggest that the same is true for SP released endogenously from sensory nerve endings in the airway epithelial layer.
Lötvall, J. O.; Skoogh, B. E.; Barnes, P. J.; Chung, K. F.
1990-01-01
1. We have examined in guinea-pigs, in vivo, the effects of inhibition of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) on the airway response to aerosolised substance P (SP). We aerosolised captopril (4.6 mM, 60 breaths; 210 nmol) to inhibit ACE and acetorphan (0.3, 1 and 3 mM, 60 breaths; 9 nmol, 33 nmol and 110 nmol respectively) to inhibit NEP. We also examined the effect of the highest dose of acetorphan (110 nmol) on the response to aerosolised acetylcholine (ACh). 2. Responsiveness to SP (or ACh) was measured as the change in lung resistance (RL) induced by nebulisation of increasing concentrations of SP (or ACh) before and after treatment with the inhibitor. PC200, defined as the provocative concentration inducing an increase in RL of 200% above baseline was calculated for each challenge. 3. Administration of acetorphan before the second SP-challenge induced a dose-dependent decrease in PC200 for SP amounting to 1.8 (+/- 0.3) log units after treatment with 11 nmol acetorphan. Treatment with vehicle before the second SP-challenge or with 3 mM acetorphan before the second ACh-challenge had no significant effect on PC200. 4. Treatment with captopril (21 nmol) induced only a small, nonsignificant leftward shift of PC200 to SP (0.3 +/- 0.2 log units). 5. We conclude that a NEP-like enzyme, but not ACE, regulates the response to aerosolised SP. We suggest that the same is true for SP released endogenously from sensory nerve endings in the airway epithelial layer. PMID:1695534
Sensory processing and world modeling for an active ranging device
NASA Technical Reports Server (NTRS)
Hong, Tsai-Hong; Wu, Angela Y.
1991-01-01
In this project, we studied world modeling and sensory processing for laser range data. World Model data representation and operation were defined. Sensory processing algorithms for point processing and linear feature detection were designed and implemented. The interface between world modeling and sensory processing in the Servo and Primitive levels was investigated and implemented. In the primitive level, linear features detectors for edges were also implemented, analyzed and compared. The existing world model representations is surveyed. Also presented is the design and implementation of the Y-frame model, a hierarchical world model. The interfaces between the world model module and the sensory processing module are discussed as well as the linear feature detectors that were designed and implemented.
NASA Technical Reports Server (NTRS)
Nashman, Marilyn; Chaconas, Karen J.
1988-01-01
The sensory processing system for the NASA/NBS Standard Reference Model (NASREM) for telerobotic control is described. This control system architecture was adopted by NASA of the Flight Telerobotic Servicer. The control system is hierarchically designed and consists of three parallel systems: task decomposition, world modeling, and sensory processing. The Sensory Processing System is examined, and in particular the image processing hardware and software used to extract features at low levels of sensory processing for tasks representative of those envisioned for the Space Station such as assembly and maintenance are described.
Is Attentional Resource Allocation Across Sensory Modalities Task-Dependent?
Wahn, Basil; König, Peter
2017-01-01
Human information processing is limited by attentional resources. That is, via attentional mechanisms, humans select a limited amount of sensory input to process while other sensory input is neglected. In multisensory research, a matter of ongoing debate is whether there are distinct pools of attentional resources for each sensory modality or whether attentional resources are shared across sensory modalities. Recent studies have suggested that attentional resource allocation across sensory modalities is in part task-dependent. That is, the recruitment of attentional resources across the sensory modalities depends on whether processing involves object-based attention (e.g., the discrimination of stimulus attributes) or spatial attention (e.g., the localization of stimuli). In the present paper, we review findings in multisensory research related to this view. For the visual and auditory sensory modalities, findings suggest that distinct resources are recruited when humans perform object-based attention tasks, whereas for the visual and tactile sensory modalities, partially shared resources are recruited. If object-based attention tasks are time-critical, shared resources are recruited across the sensory modalities. When humans perform an object-based attention task in combination with a spatial attention task, partly shared resources are recruited across the sensory modalities as well. Conversely, for spatial attention tasks, attentional processing does consistently involve shared attentional resources for the sensory modalities. Generally, findings suggest that the attentional system flexibly allocates attentional resources depending on task demands. We propose that such flexibility reflects a large-scale optimization strategy that minimizes the brain's costly resource expenditures and simultaneously maximizes capability to process currently relevant information.
A Systematic Review of Sensory Processing Interventions for Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Case-Smith, Jane; Weaver, Lindy L.; Fristad, Mary A.
2015-01-01
Children with autism spectrum disorders often exhibit co-occurring sensory processing problems and receive interventions that target self-regulation. In current practice, sensory interventions apply different theoretic constructs, focus on different goals, use a variety of sensory modalities, and involve markedly disparate procedures. Previous…
ERIC Educational Resources Information Center
Simmons, Karen; Miller, Lucy Jane
2008-01-01
Sensory processing refers to the way the brain takes incoming sensory messages, converts them into meaningful messages, then makes a response. If the responses are disorganized or inappropriate given the sensory input, sensory processing disorder (SPD) may co-exist with autism. If a child has an occasional atypical response to sensation, he or she…
Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making.
Rungratsameetaweemana, Nuttida; Itthipuripat, Sirawaj; Salazar, Annalisa; Serences, John T
2018-06-13
Two factors play important roles in shaping perception: the allocation of selective attention to behaviorally relevant sensory features, and prior expectations about regularities in the environment. Signal detection theory proposes distinct roles of attention and expectation on decision-making such that attention modulates early sensory processing, whereas expectation influences the selection and execution of motor responses. Challenging this classic framework, recent studies suggest that expectations about sensory regularities enhance the encoding and accumulation of sensory evidence during decision-making. However, it is possible, that these findings reflect well documented attentional modulations in visual cortex. Here, we tested this framework in a group of male and female human participants by examining how expectations about stimulus features (orientation and color) and expectations about motor responses impacted electroencephalography (EEG) markers of early sensory processing and the accumulation of sensory evidence during decision-making (the early visual negative potential and the centro-parietal positive potential, respectively). We first demonstrate that these markers are sensitive to changes in the amount of sensory evidence in the display. Then we show, counter to recent findings, that neither marker is modulated by either feature or motor expectations, despite a robust effect of expectations on behavior. Instead, violating expectations about likely sensory features and motor responses impacts posterior alpha and frontal theta oscillations, signals thought to index overall processing time and cognitive conflict. These findings are inconsistent with recent theoretical accounts and suggest instead that expectations primarily influence decisions by modulating post-perceptual stages of information processing. SIGNIFICANCE STATEMENT Expectations about likely features or motor responses play an important role in shaping behavior. Classic theoretical frameworks posit that expectations modulate decision-making by biasing late stages of decision-making including the selection and execution of motor responses. In contrast, recent accounts suggest that expectations also modulate decisions by improving the quality of early sensory processing. However, these effects could instead reflect the influence of selective attention. Here we examine the effect of expectations about sensory features and motor responses on a set of electroencephalography (EEG) markers that index early sensory processing and later post-perceptual processing. Counter to recent empirical results, expectations have little effect on early sensory processing but instead modulate EEG markers of time-on-task and cognitive conflict. Copyright © 2018 the authors 0270-6474/18/385632-17$15.00/0.
Haug, Megan T; King, Ellena S; Heymann, Hildegarde; Crisosto, Carlos H
2013-08-01
A trained sensory panel evaluated the 6 fig cultivars currently sold in the California dried fig market. The main flavor and aroma attributes determined by the sensory panel were "caramel," "honey," "raisin," and "fig," with additional aroma attributes: "common date," "dried plum," and "molasses." Sensory differences were observed between dried fig cultivars. All figs were processed by 2 commercial handlers. Processing included potassium sorbate as a preservative and SO2 application as an antibrowning agent for white cultivars. As a consequence of SO2 use during processing, high sulfite residues affected the sensory profiles of the white dried fig cultivars. Significant differences between dried fig cultivars and sources demonstrate perceived differences between processing and storage methods. The panel-determined sensory lexicon can help with California fig marketing. © 2013 The Regents of California, Davis Campus Department of Plant Sciences.
ERIC Educational Resources Information Center
Fletcher, Tina S.; Blake, Amanda B.; Shelffo, Kathleen E.
2018-01-01
Children routinely visit art museums as part of their educational experience and family time, many of them having special needs. The number of children diagnosed with autism and sensory processing disorders is increasing. These conditions may include heightened sensory "avoiding" or "seeking" behaviors that can interfere with a…
Sensory Sensitivity and Food Selectivity in Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Chistol, Liem T.; Bandini, Linda G.; Must, Aviva; Phillips, Sarah; Cermak, Sharon A.; Curtin, Carol
2018-01-01
Few studies have compared atypical sensory characteristics and food selectivity between children with and without autism spectrum disorder (ASD). We compared oral sensory processing between children with (n = 53) and without ASD (n = 58), ages 3-11 years. We also examined the relationships between atypical oral sensory processing, food…
Perceptual load interacts with stimulus processing across sensory modalities.
Klemen, J; Büchel, C; Rose, M
2009-06-01
According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.
Sensory atypicalities in dyads of children with autism spectrum disorder (ASD) and their parents.
Glod, Magdalena; Riby, Deborah M; Honey, Emma; Rodgers, Jacqui
2017-03-01
Sensory atypicalities are a common feature of autism spectrum disorder (ASD). To date, the relationship between sensory atypicalities in dyads of children with ASD and their parents has not been investigated. Exploring these relationships can contribute to an understanding of how phenotypic profiles may be inherited, and the extent to which familial factors might contribute towards children's sensory profiles and constitute an aspect of the broader autism phenotype (BAP). Parents of 44 children with ASD and 30 typically developing (TD) children, aged between 3 and 14 years, participated. Information about children's sensory experiences was collected through parent report using the Sensory Profile questionnaire. Information about parental sensory experiences was collected via self-report using the Adolescent/Adult Sensory Profile. Parents of children with ASD had significantly higher scores than parents of TD children in relation to low registration, over responsivity, and taste/smell sensory processing. Similar levels of agreement were obtained within ASD and TD parent-child dyads on a number of sensory atypicalities; nevertheless significant correlations were found between parents and children in ASD families but not TD dyads for sensation avoiding and auditory, visual, and vestibular sensory processing. The findings suggest that there are similarities in sensory processing profiles between parents and their children in both ASD and TD dyads. Familial sensory processing factors are likely to contribute towards the BAP. Further work is needed to explore genetic and environmental influences on the developmental pathways of the sensory atypicalities in ASD. Autism Res 2017, 10: 531-538. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Tavassoli, Teresa; Miller, Lucy Jane; Schoen, Sarah A; Jo Brout, Jennifer; Sullivan, Jillian; Baron-Cohen, Simon
2018-01-01
Although the DSM-5 added sensory symptoms as a criterion for ASC, there is a group of children who display sensory symptoms but do not have ASC; children with sensory processing disorder (SPD). To be able to differentiate these two disorders, our aim was to evaluate whether children with ASC show more sensory symptomatology and/or different cognitive styles in empathy and systemizing compared to children with SPD and typically developing (TD) children. The study included 210 participants: 68 children with ASC, 79 with SPD and 63 TD children. The Sensory Processing Scale Inventory was used to measure sensory symptoms, the Autism Spectrum Quotient (AQ) to measure autistic traits, and the Empathy Quotient (EQ) and Systemizing Quotient (SQ) to measure cognitive styles. Across groups, a greater sensory symptomatology was associated with lower empathy. Further, both the ASC and SPD groups showed more sensory symptoms than TD children. Children with ASC and SPD only differed on sensory under-reactivity. The ASD group did, however, show lower empathy and higher systemizing scores than the SPD group. Together, this suggest that sensory symptoms alone may not be adequate to differentiate children with ASC and SPD but that cognitive style measures could be used for differential diagnosis. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Childhood chronic gastritis and duodenitis: Role of altered sensory neuromediators.
Islek, Ali; Yilmaz, Aygen; Elpek, Gulsum Ozlem; Erin, Nuray
2016-10-07
To investigate the roles of the neuropeptides vasoactive intestinal peptide (VIP), substance P (SP), and calcitonin gene-related peptide (CGRP) in chronic gastritis and duodenitis in children. Biopsy samples from the gastric and duodenal mucosa of 52 patients and 30 control subjects were obtained. Samples were taken for pathological examination, immunohistochemical staining, enzyme activity measurements and quantitative measurements of tissue peptide levels. We observed differential effects of the disease on peptide levels, which were somewhat different from previously reported changes in chronic gastritis in adults. Specifically, SP was increased and CGRP and VIP were decreased in patients with gastritis. The changes were more prominent at sites where gastritis was severe, but significant changes were also observed in neighboring areas where gastritis was less severe. Furthermore, the degree of changes was correlated with the pathological grade of the disease. The expression of CD10, the enzyme primarily involved in SP hydrolysis, was also decreased in patients with duodenitis. Based on these findings, we propose that decreased levels of VIP and CGRP and increased levels of SP contribute to pathological changes in gastric mucosa. Hence, new treatments targeting these molecules may have therapeutic and preventive effects.
Childhood chronic gastritis and duodenitis: Role of altered sensory neuromediators
Islek, Ali; Yilmaz, Aygen; Elpek, Gulsum Ozlem; Erin, Nuray
2016-01-01
AIM To investigate the roles of the neuropeptides vasoactive intestinal peptide (VIP), substance P (SP), and calcitonin gene-related peptide (CGRP) in chronic gastritis and duodenitis in children. METHODS Biopsy samples from the gastric and duodenal mucosa of 52 patients and 30 control subjects were obtained. Samples were taken for pathological examination, immunohistochemical staining, enzyme activity measurements and quantitative measurements of tissue peptide levels. RESULTS We observed differential effects of the disease on peptide levels, which were somewhat different from previously reported changes in chronic gastritis in adults. Specifically, SP was increased and CGRP and VIP were decreased in patients with gastritis. The changes were more prominent at sites where gastritis was severe, but significant changes were also observed in neighboring areas where gastritis was less severe. Furthermore, the degree of changes was correlated with the pathological grade of the disease. The expression of CD10, the enzyme primarily involved in SP hydrolysis, was also decreased in patients with duodenitis. CONCLUSION Based on these findings, we propose that decreased levels of VIP and CGRP and increased levels of SP contribute to pathological changes in gastric mucosa. Hence, new treatments targeting these molecules may have therapeutic and preventive effects. PMID:27729741
Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism.
de Garavilla, L; Vergnolle, N; Young, S H; Ennes, H; Steinhoff, M; Ossovskaya, V S; D'Andrea, M R; Mayer, E A; Wallace, J L; Hollenberg, M D; Andrade-Gordon, P; Bunnett, N W
2001-08-01
Thrombin, generated in the circulation during injury, cleaves proteinase-activated receptor 1 (PAR1) to stimulate plasma extravasation and granulocyte infiltration. However, the mechanism of thrombin-induced inflammation in intact tissues is unknown. We hypothesized that thrombin cleaves PAR1 on sensory nerves to release substance P (SP), which interacts with the neurokinin 1 receptor (NK1R) on endothelial cells to cause plasma extravasation. PAR1 was detected in small diameter neurons known to contain SP in rat dorsal root ganglia by immunohistochemistry and in situ hybridization. Thrombin and the PAR1 agonist TFLLR-NH(2) (TF-NH(2)) increased [Ca(2+)](i) >50% of cultured neurons (EC(50)s 24 mu ml(-1) and 1.9 microM, respectively), assessed using Fura-2 AM. The PAR1 agonist completely desensitized responses to thrombin, indicating that thrombin stimulates neurons through PAR1. Injection of TF-NH(2) into the rat paw stimulated a marked and sustained oedema. An NK1R antagonist and ablation of sensory nerves with capsaicin inhibited oedema by 44% at 1 h and completely by 5 h. In wild-type but not PAR1(-/-) mice, TF-NH(2) stimulated Evans blue extravasation in the bladder, oesophagus, stomach, intestine and pancreas by 2 - 8 fold. Extravasation in the bladder, oesophagus and stomach was abolished by an NK1R antagonist. Thus, thrombin cleaves PAR1 on primary spinal afferent neurons to release SP, which activates the NK1R on endothelial cells to stimulate gap formation, extravasation of plasma proteins, and oedema. In intact tissues, neurogenic mechanisms are predominantly responsible for PAR1-induced oedema.
Protection of ischemic preconditioning on renal neural function in rats with acute renal failure.
Wu, Ming-Shiou; Chien, Chiang-Ting; Ma, Ming-Chieh; Chen, Chau-Fong
2009-11-30
We tested whether tolerance induced by ischemic preconditioning (IPC) in kidneys was related to renal nerves. Experimental acute renal failure (ARF) in a rat model was induced for 45 min of left renal arterial occlusion (RAO), followed by 6 or 24 h of reperfusion (ischemic reperfusion (I/R) group). The episode of IPC was four cycles of 4 min of RAO at 11 min intervals and then the I/R injury was treated as above (IPC-I/R group). After 6 h of reperfusion, polyuria was found in the I/R group associated with an enhancement of afferent renal nerve activity (ARNA) and a reflexive decrease in efferent renal nerve activity (ERNA). Changes in nerve responses were related with a reduction in neutral endopeptidase (NEP) activity and an increased release of substance P (SP). After 24 h of reperfusion, the I/R group showed oliguria which was associated with a lower ARNA, hyperactivity of ERNA and a nine-fold increase in SP release due to a further 52% loss in NEP activity. Prior IPC treatment did not affect the changed ischemia-induced excretory and nervous activity patterns during the first 6 h of reperfusion, but normalized both responses in the kidneys 24 h after ischemia. The IPC-mediated protection in oliguric ARF was related to the preservation of NEP activity to only 25% loss that caused an increase of SP amounts of only three-fold and a minor change in neurokinin 1 receptor (NK-1R) activities. Finally, both excretory and sensory responses in oliguric ARF after saline loading were significantly ameliorated by IPC. We conclude that IPC results in preservation of the renal sensory response in postischemic kidneys and has a beneficial effect on controlling efferent renal sympathetic nerve activity and excretion of solutes and water.
Tachykinins Stimulate a Subset of Mouse Taste Cells
Grant, Jeff
2012-01-01
The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca2+-imaging on isolated taste cells, it was observed that SP induces Ca2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca2+ responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods. PMID:22363709
An interoceptive model of bulimia nervosa: A neurobiological systematic review.
Klabunde, Megan; Collado, Danielle; Bohon, Cara
2017-11-01
The objective of our study was to examine the neurobiological support for an interoceptive sensory processing model of bulimia nervosa (BN). To do so, we conducted a systematic review of interoceptive sensory processing in BN, using the PRISMA guidelines. We searched PsychInfo, Pubmed, and Web of Knowledge databases to identify biological and behavioral studies that examine interoceptive detection in BN. After screening 390 articles for inclusion and conducting a quality assessment of articles that met inclusion criteria, we reviewed 41 articles. We found that global interoceptive sensory processing deficits may be present in BN. Specifically there is evidence of abnormal brain function, structure and connectivity in the interoceptive neural network, in addition to gastric and pain processing disturbances. These results suggest that there may be a neurobiological basis for global interoceptive sensory processing deficits in BN that remain after recovery. Data from taste and heart beat detection studies were inconclusive; some studies suggest interoceptive disturbances in these sensory domains. Discrepancies in findings appear to be due to methodological differences. In conclusion, interoceptive sensory processing deficits may directly contribute to and explain a variety of symptoms present in those with BN. Further examination of interoceptive sensory processing deficits could inform the development of treatments for those with BN. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barbara, G; De Giorgio, R; Stanghellini, V; Corinaldesi, R; Cremon, C; Gerard, N; Gerard, C; Grady, E F; Bunnett, N W; Blennerhassett, P A; Collins, S M
2003-01-01
Background and aims: Substance P (SP) release from sensory nerves induces neurogenic inflammation. Neutral endopeptidase (NEP) degrades SP, thereby limiting its proinflammatory effects. Intestinal inflammation following Trichinella spiralis infection markedly downregulates NEP, resulting in diminished SP degradation, with unknown functional consequences. We hypothesised that diminished expression of NEP would exacerbate T spiralis induced enteritis. Methods: NEP knockout (NEP−/−) and wild-type (NEP+/+) mice were infected with T spiralis and studied at 6, 12, 24, and 48 hours post infection (PI). Tissue inflammation was quantified by computerised cell counting and myeloperoxidase activity (MPO). The leucocyte adhesion molecule, intercellular adhesion molecule 1 (ICAM-1), and SP were assessed by immunohistochemistry. Results: Before infection, the lack of NEP was not associated with changes in mucosal cellularity or MPO activity. Twelve hours PI, NEP−/− mice showed a 2.5-fold increase in MPO activity at a time when values in NEP+/+ mice were still within normal limits. MPO activity and cellularity peaked at 24 hours PI. This was accompanied by increased staining for both ICAM-1 and SP in NEP−/− mice. Infusion of rhNEP to NEP−/− mice significantly reduced MPO activity 24 hours PI. Conclusions: These findings demonstrate that NEP downregulates the early onset of nematode intestinal inflammation and that increased bioavailability of SP and overexpression of ICAM-1 in NEP−/− mice likely play a role in the earlier onset of intestinal inflammation. PMID:12970139
Engel-Yeger, Batya; Darawsha Najjar, Sanaa; Darawsha, Mahmud
2017-08-13
(1) To profile sensory deficits examined in the ability to process sensory information from daily environment and discriminate between tactile stimuli among patients with controlled and un-controlled diabetes mellitus. (2) Examine the relationship between the sensory deficits and patients' health-related quality of life. This study included 115 participants aged 33-55 with uncontrolled (n = 22) or controlled (n = 24) glycemic levels together with healthy subjects (n = 69). All participants completed the brief World Health Organization Quality of Life Questionnaire, the Adolescent/Adult Sensory Profile and performed the tactile discrimination test. Sensory deficits were more emphasized among patients with uncontrolled glycemic levels as expressed in difficulties to register sensory input, lower sensation seeking in daily environments and difficulties to discriminate between tactile stimuli. They also reported the lowest physical and social quality of life as compared to the other two groups. Better sensory seeking and registration predicted better quality of life. Disease control and duration contributed to these predictions. Difficulties in processing sensory information from their daily environments are particularly prevalent among patients with uncontrolled glycemic levels, and significantly impacted their quality of life. Clinicians should screen for sensory processing difficulties among patients with diabetes mellitus and understand their impacts on patients' quality of life. Implications for Rehabilitation Patients with diabetes mellitus, and particularly those with uncontrolled glycemic levels, may have difficulties in processing sensory information from daily environment. A multidisciplinary intervention approach is recommended: clinicians should screen for sensory processing deficits among patients with diabetes mellitus and understand their impacts on patients' daily life. By providing the patients with environmental adaptations and coping strategies, clinicians may assist in optimizing sensory experiences in real life context and elevate patients' quality of life. Relating to quality of life and emphasizing a multidisciplinary approach is of major importance in broadening our understanding of health conditions and providing holistic treatment for patients.
Maggi, C A; Patacchini, R; Santicioli, P; Giuliani, S
1991-06-01
1. The possible involvement of tachykinins (TKs) in the contraction produced by capsaicin in the rat isolated urinary bladder was addressed on the hypothesis that co-release of substance P (SP) and neurokinin A (NKA) occurs from sensory nerve terminals. 2. A low concentration of SP (30 nM) produced a rapid contraction which faded to baseline within 10 min. A low concentration of NKA (10 nM) produced a slowly developing contraction which was still evident at 10 min. Capsaicin (1 microM) produced a rapid phasic response and a tonic response (late response to capsaicin). Co-administration of SP and NKA mimicked the response to capsaicin more than each TK alone. 3. Fading of the response to SP was not caused by receptor desensitization and was partially prevented by peptidase inhibitors. 4. Spantide (3 microM) selectively antagonized the SP-induced contraction while L-659,877 (3-10 microM) or MEN 10,376 (10-30 microM) which are NK2 receptor selective antagonists selectively blocked the response to NKA. Co-administration of spantide and L-659,877 inhibited the response to both SP and NKA by an amount not greater than that produced by each antagonist alone. 5. Spantide selectively reduced the peak response to capsaicin, while leaving the late response unaffected. L-659,877 (3 microM) and MEN 10,376 (10 microM) selectively inhibited the late response to capsaicin while, at higher concentrations, also reduced the peak response to capsaicin. Co-administration of spantide and L-659,877 reduced the peak response to capsaicin more than that produced by each antagonist alone. 6. Bombesin (10 nM) produced a tonic contraction similar to that induced by NKA. The response to bombesin was not affected by spantide, L-659,877 or MEN 10,376. 7 P2. purinoceptor desensitization by repeated administration of alpha,betal-methylene ATP depressed the twitch response to electrical stimulation of postganglionic nerves but did not affect the peak or the late response to capsaicin. 8. We conclude that multiple TKs are coreleased by capsaicin in the rat bladder and mediate the capsaicin-induced contraction by activating both NKI and NK2 receptors. Endogenous TK with preferential affinity for the NK, receptor (putatively SP) are selectively involved in the peak response to capsaicin while endogenous TK with preferential affinity for the NK2 receptor (putatively NKA) are selectively involved in the late response to capsaicin and partly contribute to the peak response. These findings provide pharmacological evidence for tachykinin-mediated cotransmission in the rat urinary bladder. ATP is unlikely to be involved in the efferent function of capsaicin-sensitive sensory nerves in the rat bladder.
Listening to Another Sense: Somatosensory Integration in the Auditory System
Wu, Calvin; Stefanescu, Roxana A.; Martel, David T.
2014-01-01
Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems, and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body, and the auditory cortex. In this review, we explore the process of multisensory integration from 1) anatomical (inputs and connections), 2) physiological (cellular responses), 3) functional, and 4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing, and offers a multisensory perspective regarding the understanding of sensory disorders. PMID:25526698
Clince, Maria; Connolly, Laura; Nolan, Clodagh
2016-01-01
Research regarding sensory processing and adults with attention deficit hyperactivity disorder (ADHD) or autism spectrum disorder (ASD) is limited. This study aimed to compare sensory processing patterns of groups of higher education students with ADHD or ASD and to explore the implications of these disorders for their college life. The Adolescent/Adult Sensory Profile was administered to 28 students with ADHD and 27 students with ASD. Students and professionals were interviewed. The majority of students received scores that differed from those of the general population. Students with ADHD received significantly higher scores than students with ASD in relation to sensation seeking; however, there were no other major differences. Few differences exist between the sensory processing patterns of students with ADHD and ASD; however, both groups differ significantly from the general population. Occupational therapists should consider sensory processing patterns when designing supports for these groups. Copyright © 2016 by the American Occupational Therapy Association, Inc.
Studies on the vascular permeability induced by intrathecal substance P and bradykinin in the rat.
Jacques, L; Couture, R
1990-08-02
The effects of substance P (SP), SP fragments, neurokinin A (NKA), neurokinin B (NKB) and selective agonists for neurokinin receptors were assessed on cutaneous vascular permeability after intrathecal (i.t.) administration in rats. Dose-dependent increases in plasma extravasation were observed with the following rank orders of potency ([p-Glu6]SP-(6-11) greater than SP greater than or equal to SP-(4-11) greater than [p-Glu5,MePhe8,Sar9]SP-(5-11) = [p-Glu5]SP-(5-11) greater than SP-(7-11) and SP greater than NKA greater than NKB). The N-terminal fragments SP-(1-4), SP-(1-7) and SP-(1-9) were inactive up to 65 nmol. The NK-1 receptor selective agonists [( beta-Ala4,Sar9,Met(O2)11]SP-(4-11) and [Pro9,Met(O2)11]SP) were more potent than the NK-2 ([Nle10]NKA-(4-10] and NK-3 ([beta-Asp4,MePhe7]NKB-(4-10) and [MePhe7]NKB) receptor-selective agonists. Plasma extravasation was also increased by i.t. bradykinin (BK, 8.1 nmol) while the fragment BK-(1-8), a potent B1-receptor-selective agonist, produced only a slight effect at 81 nmol. When BK was given after prior i.t. administration of 6.1 nmol of [Thi5.8,D-Phe7]BK, an antagonist of BK at the B2-receptor, the increase in vascular permeability was significantly attenuated. The analogue [Leu8]BK-(1-8) (10.3 nmol), an antagonist of BK at the B1-receptor, failed to modify the BK-induced plasma extravasation. Plasma extravasation induced by SP (6.5 nmol) and BK (8.1 nmol) was abolished in cervically vagotomized rats, and significantly reduced in both spinal rats and in capsaicin-treated animals. Conversely, bilateral adrenalectomy (48 h earlier) and intercollicular decerebration (30 min earlier) had no major effect on the response elicited either by SP or BK. The response to SP remained unaffected by methysergide and hexamethonium but was significantly reduced by methylnitrate atropine and diphenhydramine. Indomethacin significantly enhanced the plasma extravasation induced by SP. These results suggest that SP and BK may play a role as spinal mediators in peripheral vascular permeability through a sensory and cholinergic vagal mechanism involving a spinobulbar pathway. The receptors mediating the response to SP and BK in the spinal cord are of the NK-1 and B2 subtypes, respectively.
Adaptation to sensory input tunes visual cortex to criticality
NASA Astrophysics Data System (ADS)
Shew, Woodrow L.; Clawson, Wesley P.; Pobst, Jeff; Karimipanah, Yahya; Wright, Nathaniel C.; Wessel, Ralf
2015-08-01
A long-standing hypothesis at the interface of physics and neuroscience is that neural networks self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory information processing. This idea is partially supported by strong evidence for critical dynamics observed in the cerebral cortex, but the impact of sensory input on these dynamics is largely unknown. Thus, the foundations of this hypothesis--the self-organization process and how it manifests during strong sensory input--remain unstudied experimentally. Here we show in visual cortex and in a computational model that strong sensory input initially elicits cortical network dynamics that are not critical, but adaptive changes in the network rapidly tune the system to criticality. This conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality. Our findings establish sensory adaptation as a self-organizing mechanism that maintains criticality in visual cortex during sensory information processing.
SENSORY PROCESSING DURING CHILDHOOD IN PRETERM INFANTS: A SYSTEMATIC REVIEW.
Machado, Ana Carolina Cabral de Paula; Oliveira, Suelen Rosa de; Magalhães, Lívia de Castro; Miranda, Débora Marques de; Bouzada, Maria Cândida Ferrarez
2017-01-01
To conduct a systematic search for grounded and quality evidence of sensory processing in preterm infants during childhood. The search of the available literature on the theme was held in the following electronic databases: Medical Literature Analysis and Retrieval System Online (Medline)/PubMed, Latin American and Caribbean Literature in Health Sciences (Lilacs)/Virtual Library in Health (BVS), Índice Bibliográfico Español de Ciencias de la Salud (IBECS)/BVS, Scopus, and Web of Science. We included only original indexed studies with a quantitative approach, which were available in full text on digital media, published in Portuguese, English, or Spanish between 2005 and 2015, involving children aged 0-9years. 581 articles were identified and eight were included. Six studies (75%) found high frequency of dysfunction in sensory processing in preterm infants. The association of sensory processing with developmental outcomes was observed in three studies (37.5%). The association of sensory processing with neonatal characteristics was observed in five studies (62.5%), and the sensory processing results are often associated with gestational age, male gender, and white matter lesions. The current literature suggests that preterm birth affects the sensory processing, negatively. Gestational age, male gender, and white matter lesions appear as risk factors for sensoryprocessing disorders in preterm infants. The impairment in the ability to receivesensory inputs, to integrateand to adapt to them seems to have a negative effect on motor, cognitive, and language development of these children. We highlight the feasibility of identifying sensory processing disorders early in life, favoring early clinical interventions.
SENSORY PROCESSING DURING CHILDHOOD IN PRETERM INFANTS: A SYSTEMATIC REVIEW
Machado, Ana Carolina Cabral de Paula; de Oliveira, Suelen Rosa; Magalhães, Lívia de Castro; de Miranda, Débora Marques; Bouzada, Maria Cândida Ferrarez
2017-01-01
ABSTRACT Objective: To conduct a systematic search for grounded and quality evidence of sensory processing in preterm infants during childhood. Data source: The search of the available literature on the theme was held in the following electronic databases: Medical Literature Analysis and Retrieval System Online (Medline)/PubMed, Latin American and Caribbean Literature in Health Sciences (Lilacs)/Virtual Library in Health (BVS), Índice Bibliográfico Español de Ciencias de la Salud (IBECS)/BVS, Scopus, and Web of Science. We included only original indexed studies with a quantitative approach, which were available in full text on digital media, published in Portuguese, English, or Spanish between 2005 and 2015, involving children aged 0-9years. Data synthesis: 581 articles were identified and eight were included. Six studies (75%) found high frequency of dysfunction in sensory processing in preterm infants. The association of sensory processing with developmental outcomes was observed in three studies (37.5%). The association of sensory processing with neonatal characteristics was observed in five studies (62.5%), and the sensory processing results are often associated with gestational age, male gender, and white matter lesions. Conclusions: The current literature suggests that preterm birth affects the sensory processing, negatively. Gestational age, male gender, and white matter lesions appear as risk factors for sensoryprocessing disorders in preterm infants. The impairment in the ability to receivesensory inputs, to integrateand to adapt to them seems to have a negative effect on motor, cognitive, and language development of these children. We highlight the feasibility of identifying sensory processing disorders early in life, favoring early clinical interventions. PMID:28977307
Robertson, Caroline E; Baron-Cohen, Simon
2017-11-01
Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.
Champagne, Tina
2011-01-01
The purpose of this article is to provide a brief overview of how Posttraumatic Stress Disorder (PTSD), Depression, and Sensory Processing patterns influence occupational engagement, including work performance. Interventions and outcomes of the Sensory Modulation Program and approaches from Cognitive Behavior Therapy (CBT) are reviewed through single case exploration with a 42 year-old woman in outpatient services. The marked increase in occupational engagement and improved work performance in this single case review demonstrates the need for more research on the use of the Sensory Modulation Program and approaches from CBT with populations with PTSD, Depression, and Sensory Processing disorder.
ERIC Educational Resources Information Center
Engel-Yeger, Batya
2010-01-01
The objective of this study was to examine the applicability of the short sensory profile (SSP) for screening sensory processing disorders (SPDs) among typical children in Israel, and to evaluate the relationship between SPDs and socio-demographic parameters. Participants were 395 Israeli children, aged 3 years to 10 years 11 months, with typical…
ERIC Educational Resources Information Center
Gonthier, Corentin; Longuépée, Lucie; Bouvard, Martine
2016-01-01
Sensory processing abnormalities are relatively universal in individuals with autism spectrum disorder, and can be very disabling. Surprisingly, very few studies have investigated these abnormalities in low-functioning adults with autism. The goals of the present study were (a) to characterize distinct profiles of sensory dysfunction, and (b) to…
Liesenjohann, Thilo; Neuhaus, Birger; Schmidt-Rhaesa, Andreas
2006-08-01
The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha. Copyright 2006 Wiley-Liss, Inc.
The Effects of Sensory Processing and Behavior of Toddlers on Parent Participation: A Pilot Study
ERIC Educational Resources Information Center
DaLomba, Elaina; Baxter, Mary Frances; Fingerhut, Patricia; O'Donnell, Anne
2017-01-01
Occupational therapists treat children with sensory processing and behavioral concerns, however, little information exists on how these issues affect parent participation. This pilot study examined the sensory processing and behaviors of toddlers with developmental delays and correlated these with parents' perceived ability to participate in…
ERIC Educational Resources Information Center
Pagano, John
2005-01-01
Functionally Approached Body (FAB) Strategies offer a clinical approach to help parents of young children with behavioral and sensory processing strategies. This article introduces the FAB Strategies, clinical strategies developed by the author for understanding and addressing young children's behavioral and sensory processing challenges. The FAB…
Humes, Larry E
2015-06-01
The purpose of this article is to introduce the special research forum on sensory-processing changes in middle-aged adults. This is a brief written introduction to the special session, which included five presentations, each emphasizing a slightly different aspect of sensory perception. The effects of aging on sensory processing, including auditory processing and speech perception, are not confined to older adults but begin in middle age in many cases.
Campos, F S; Carvalho, G G P; Santos, E M; Araújo, G G L; Gois, G C; Rebouças, R A; Leão, A G; Santos, S A; Oliveira, J S; Leite, L C; Araújo, M L G M L; Cirne, L G A; Silva, R R; Carvalho, B M A
2017-02-01
Quality and sensory attributes of meat from 32 mixed-breed Santa Inês lambs fed diets composed of four silages with old man saltbush (Atriplex nummularia Lind), buffelgrass (Cenchrus ciliaris), Gliricidia (Gliricidia sepium), and Pornunça (Manihot sp.) were evaluated. Meat from lambs fed diet containing old man saltbush silage (P<0.05) showed greater values for cooking loss. Of the sensory attributes evaluated in the Longissimus lumborum muscle of the lambs, color and juiciness did not differ (P>0.05). However, the silages led to differences (P<0.05) in aroma, tenderness, and flavor values. The meat from animals fed the pornunça and Gliricidia silages was tenderer. Flavor scores were higher in meat from lambs that consumed old man saltbush silage and lower in the meat from those fed buffelgrass silage. Diets formulated with buffelgrass silage for sheep reduce meat production. Based on the results for carcass weight and meat quality, old man saltbush and pornunça are better silages for finishing sheep. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sinclair, D.; Oranje, B.; Razak, K.A.; Siegel, S.J.; Schmid, S.
2017-01-01
Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics. PMID:27235081
Visual perception of ADHD children with sensory processing disorder.
Jung, Hyerim; Woo, Young Jae; Kang, Je Wook; Choi, Yeon Woo; Kim, Kyeong Mi
2014-04-01
The aim of the present study was to investigate the visual perception difference between ADHD children with and without sensory processing disorder, and the relationship between sensory processing and visual perception of the children with ADHD. Participants were 47 outpatients, aged 6-8 years, diagnosed with ADHD. After excluding those who met exclusion criteria, 38 subjects were clustered into two groups, ADHD children with and without sensory processing disorder (SPD), using SSP reported by their parents, then subjects completed K-DTVP-2. Spearman correlation analysis was run to determine the relationship between sensory processing and visual perception, and Mann-Whitney-U test was conducted to compare the K-DTVP-2 score of two groups respectively. The ADHD children with SPD performed inferiorly to ADHD children without SPD in the on 3 quotients of K-DTVP-2. The GVP of K-DTVP-2 score was related to Movement Sensitivity section (r=0.368(*)) and Low Energy/Weak section of SSP (r=0.369*). The result of the present study suggests that among children with ADHD, the visual perception is lower in those children with co-morbid SPD. Also, visual perception may be related to sensory processing, especially in the reactions of vestibular and proprioceptive senses. Regarding academic performance, it is necessary to consider how sensory processing issues affect visual perception in children with ADHD.
ERIC Educational Resources Information Center
Engel-Yeger, Batya; Ziv-On, Daniella
2011-01-01
Sensory processing difficulties (SPD) are prevalent among children with ADHD. Yet, the question whether different SPD characterize children with different types of ADHD has not received enough attention in the literature. The current study characterized sensory processing difficulties (SPD) of children with different types of ADHD and explored the…
ERIC Educational Resources Information Center
Brandwein, Alice B.; Foxe, John J.; Butler, John S.; Frey, Hans-Peter; Bates, Juliana C.; Shulman, Lisa H.; Molholm, Sophie
2015-01-01
Atypical processing and integration of sensory inputs are hypothesized to play a role in unusual sensory reactions and social-cognitive deficits in autism spectrum disorder (ASD). Reports on the relationship between objective metrics of sensory processing and clinical symptoms, however, are surprisingly sparse. Here we examined the relationship…
ERIC Educational Resources Information Center
Tavassoli, Teresa; Bellesheim, Katherine; Siper, Paige M.; Wang, A. Ting; Halpern, Danielle; Gorenstein, Michelle; Grodberg, David; Kolevzon, Alexander; Buxbaum, Joseph D.
2016-01-01
Sensory reactivity is a new DSM-5 criterion for autism spectrum disorder (ASD). The current study aims to validate a clinician-administered sensory observation in ASD, the Sensory Processing Scale Assessment (SPS). The SPS and the Short Sensory Profile (SSP) parent-report were used to measure sensory reactivity in children with ASD (n = 35) and…
Sensory Subtypes in Preschool Aged Children with Autism Spectrum Disorder.
Tomchek, Scott D; Little, Lauren M; Myers, John; Dunn, Winnie
2018-06-01
Given the heterogeneity of autism spectrum disorder (ASD), research has investigated how sensory features elucidate subtypes that enhance our understanding of etiology and tailored treatment approaches. Previous studies, however, have not integrated core developmental behaviors with sensory features in investigations of subtypes in ASD. Therefore, we used latent profile analysis to examine subtypes in a preschool aged sample considering sensory processing patterns in combination with social-communication skill, motor performance, and adaptive behavior. Results showed four subtypes that differed by degree and quality of sensory features, age and differential presentation of developmental skills. Findings partially align with previous literature on sensory subtypes and extends our understanding of how sensory processing aligns with other developmental domains in young children with ASD.
Targeting of calcitonin gene-related peptide action as a new strategy for migraine treatment.
Kuzawińska, Olga; Lis, Krzysztof; Cessak, Grzegorz; Mirowska-Guzel, Dagmara; Bałkowiec-Iskra, Ewa
Migraine is a chronic, recurrent disorder, characterized by attacks of severe pain, affecting around 1% of adult population. Many studies suggest, that trigeminovascular system plays a key role in pathogenesis of migraine and other primary headaches. Calcitonin gene-related peptide (CGRP) is an endogenous substance, which is regarded a key mediator released from trigeminovascular system after stimulation of sensory nerve endings, responsible for dilatation of peripheral vessels and sensory transmission. CGRP is and extensively studied peptide as one of the most promising targets in migraine drug research. In the article we focus on the role of CGRP in the pathophysiology of migraine and present current data on CGRP antagonists and CGRP monoclonal antibodies. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Relationship Between Sensory Processing and Pretend Play in Typically Developing Children.
Roberts, Tara; Stagnitti, Karen; Brown, Ted; Bhopti, Anoo
We sought to investigate the relationship between sensory processing and pretend play in typically developing children. Forty-two typically developing children ages 5-7 yr were assessed with the Child Initiated Pretend Play Assessment and the Home and Main Classroom forms of the Sensory Processing Measure (SPM). There were significant relationships between elaborate pretend play and body awareness (r = .62, p < .01), balance (r = .42, p < .01), and touch (r = .47, p < .01). Object substitution was associated with social participation (r = .42, p < .05). The sensory processing factors (from the SPM)-namely, Body Awareness, Balance, Touch, and Social Participation-were predictive of the quality of children's engagement in pretend play in the home environment. The results indicated that, to engage and participate in play, children are involving sensory processing abilities, especially body awareness, balance, and touch. Copyright © 2018 by the American Occupational Therapy Association, Inc.
Bashapoor, Sajjad; Hosseini-Kiasari, Seyyedeh Tayebeh; Daneshvar, Somayeh; Kazemi-Taskooh, Zeinab
2015-01-01
Sensory information processing and alexithymia are two important factors in determining behavioral reactions. Some studies explain the effect of the sensitivity of sensory processing and alexithymia in the tendency to substance abuse. Giving that, the aim of the current study was to compare the styles of sensory information processing and alexithymia between substance-dependent people and normal ones. The research method was cross-sectional and the statistical population of the current study comprised of all substance-dependent men who are present in substance quitting camps of Masal, Iran, in October 2013 (n = 78). 36 persons were selected randomly by simple randomly sampling method from this population as the study group, and 36 persons were also selected among the normal population in the same way as the comparison group. Both groups was evaluated by using Toronto alexithymia scale (TAS) and adult sensory profile, and the multivariate analysis of variance (MANOVA) test was applied to analyze data. The results showed that there are significance differences between two groups in low registration (P < 0.020, F = 5.66), sensation seeking (P < 0.050, F = 1.92), and sensory avoidance (P < 0.008, F = 7.52) as a components of sensory processing and difficulty in describing emotions (P < 0.001, F = 15.01) and difficulty in identifying emotions (P < 0.002, F = 10.54) as a components of alexithymia. However, no significant difference were found between two groups in components of sensory sensitivity (P < 0.170, F = 1.92) and external oriented thinking style (P < 0.060, F = 3.60). These results showed that substance-dependent people process sensory information in a different way than normal people and show more alexithymia features than them.
Bashapoor, Sajjad; Hosseini-Kiasari, Seyyedeh Tayebeh; Daneshvar, Somayeh; Kazemi-Taskooh, Zeinab
2015-01-01
Background Sensory information processing and alexithymia are two important factors in determining behavioral reactions. Some studies explain the effect of the sensitivity of sensory processing and alexithymia in the tendency to substance abuse. Giving that, the aim of the current study was to compare the styles of sensory information processing and alexithymia between substance-dependent people and normal ones. Methods The research method was cross-sectional and the statistical population of the current study comprised of all substance-dependent men who are present in substance quitting camps of Masal, Iran, in October 2013 (n = 78). 36 persons were selected randomly by simple randomly sampling method from this population as the study group, and 36 persons were also selected among the normal population in the same way as the comparison group. Both groups was evaluated by using Toronto alexithymia scale (TAS) and adult sensory profile, and the multivariate analysis of variance (MANOVA) test was applied to analyze data. Findings The results showed that there are significance differences between two groups in low registration (P < 0.020, F = 5.66), sensation seeking (P < 0.050, F = 1.92), and sensory avoidance (P < 0.008, F = 7.52) as a components of sensory processing and difficulty in describing emotions (P < 0.001, F = 15.01) and difficulty in identifying emotions (P < 0.002, F = 10.54) as a components of alexithymia. However, no significant difference were found between two groups in components of sensory sensitivity (P < 0.170, F = 1.92) and external oriented thinking style (P < 0.060, F = 3.60). Conclusion These results showed that substance-dependent people process sensory information in a different way than normal people and show more alexithymia features than them. PMID:26885354
Fast Synaptic Inhibition in Spinal Sensory Processing and Pain Control
Zeilhofer, Hanns Ulrich; Wildner, Hendrik; Yevenes, Gonzalo E.
2013-01-01
The two amino acids γ-amino butyric acid (GABA) and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes. PMID:22298656
Qiao, Li-na; Liu, Jun-ling; Tan, Lian-hong; Yang, Hai-long; Zhai, Xu; Yang, Yong-sheng
2017-01-01
Objective Acupuncture therapy effectively reduces post-surgical pain, but its mechanism of action remains unclear. The aim of this study was to investigate whether expression of γ-aminobutyric acid (GABA) and the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) in the primary sensory neurons of cervical dorsal root ganglia (DRG) are involved in electroacupuncture (EA)-induced analgesia in a rat model of incisional neck pain. Methods The pain model was established by making a longitudinal midline neck incision in 60 rats. Another 15 rats underwent sham surgery (normal group). Post-incision, 15 rats remained untreated (model group) and 45 rats underwent EA (frequency 2/100 Hz, intensity 1 mA) at bilateral LI18, LI4-PC6 or ST36-GB34 (n=15 each) for 30 min at 4 hours, 24 hours, and 48 hours post-surgery, followed by thermal pain threshold (PT) measurement. 30 min later, the rats were euthanased and cervical (C3-6) DRGs removed for measurement of immunoreactivity and mRNA expression of SP/CGRP and the GABAergic neuronal marker glutamic acid decarboxylase 67 (GAD67). Results Thermal PT was significantly lower in the model group versus the normal group and increased in the LI18 and LI4-PC6 groups but not the ST36-GB34 group compared with the model group. Additionally, EA at LI18 and LI4-PC6 markedly suppressed neck incision-induced upregulation of mRNA/protein expression of SP/CGRP, and upregulated mRNA/protein expression of GAD67 in the DRGs of C3-6 segments. Conclusions EA at LI18/LI4-PC6 increases PT in rats with incisional neck pain, which is likely related to downregulation of pronociceptive mediators SP/CGRP and upregulation of the inhibitory transmitter GABA in the primary sensory neurons of cervical DRGs. PMID:28600329
Qiao, Li-Na; Liu, Jun-Ling; Tan, Lian-Hong; Yang, Hai-Long; Zhai, Xu; Yang, Yong-Sheng
2017-08-01
Acupuncture therapy effectively reduces post-surgical pain, but its mechanism of action remains unclear. The aim of this study was to investigate whether expression of γ-aminobutyric acid (GABA) and the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) in the primary sensory neurons of cervical dorsal root ganglia (DRG) are involved in electroacupuncture (EA)-induced analgesia in a rat model of incisional neck pain. The pain model was established by making a longitudinal midline neck incision in 60 rats. Another 15 rats underwent sham surgery (normal group). Post-incision, 15 rats remained untreated (model group) and 45 rats underwent EA (frequency 2/100 Hz, intensity 1 mA) at bilateral LI18, LI4-PC6 or ST36-GB34 (n=15 each) for 30 min at 4 hours, 24 hours, and 48 hours post-surgery, followed by thermal pain threshold (PT) measurement. 30 min later, the rats were euthanased and cervical (C3-6) DRGs removed for measurement of immunoreactivity and mRNA expression of SP/CGRP and the GABAergic neuronal marker glutamic acid decarboxylase 67 (GAD67). Thermal PT was significantly lower in the model group versus the normal group and increased in the LI18 and LI4-PC6 groups but not the ST36-GB34 group compared with the model group. Additionally, EA at LI18 and LI4-PC6 markedly suppressed neck incision-induced upregulation of mRNA/protein expression of SP/CGRP, and upregulated mRNA/protein expression of GAD67 in the DRGs of C3-6 segments. EA at LI18/LI4-PC6 increases PT in rats with incisional neck pain, which is likely related to downregulation of pronociceptive mediators SP/CGRP and upregulation of the inhibitory transmitter GABA in the primary sensory neurons of cervical DRGs. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Neuropeptide Levels as well as Neprilysin Activity Decrease in Renal Cell Carcinoma.
Erin, Nuray; İpekçi, Tümay; Akkaya, Bahar; Özbudak, İrem Hicran; Baykara, Mehmet
2016-12-01
Calcitonin Gene-related Peptide (CGRP), Vasoactive Intestinal Peptide (VIP) and Substance P (SP) are sensory neuropeptides which may alter cancer growth through modulation of chronic inflammation. We recently reported that SP suppresses breast cancer growth and metastasis through neuroimmune modulation. These neuropeptides are hydrolyzed by Neprilysin (NEP) to bioactive fragments. Decreased activity of NEP was reported in clear cell and chromophobe type renal cell carcinoma (RCC). It is however not known how the levels of neuropeptides hydrolyzed with NEP changes in RCC. Decrease activity of SP and CGRP containing sensory nerve endings was previously reported to increase cancer metastasis in animal models. It is however not known how peptidergic nerve endings are altered in RCC. Hence we here evaluated the levels of neuronal and non-neuronal neuropeptides and NEP activity in RCC including papillary type as well as neighboring uninvolved kidney. A cross-sectional study was conducted in 57 patients undergoing radical nephrectomy and diagnosed with RCC. NEP activity, levels and expression were determined using flourogenic substrate, western blot and qPCR respectively in freshly-frozen tissues. Immunohistochemical analyses were also performed. Neuronal and non-neuronal levels of CGRP, SP and VIP levels were determined using two-step acetic acid extraction. Levels and activity of NEP were markedly decreased in RCC regardless of subtype. Similar levels of VIP were detected in first and second extractions. VIP levels were higher in clear cell and papillary RCC compared to nearby kidney tissue. VIP levels of neighboring kidney tissue of papillary type RCC was significantly lower compared to kidney samples from clear cell RCC. CGRP levels were higher in second extraction. Similar to VIP levels, CGRP levels of neighboring kidney tissue from clear cell and chromophobe type RCC was significantly lower compared to corresponding tumor samples, an effect observed in the second extraction. VIP and CGRP levels of nearby kidney tissue varied subtype dependently demonstrating that different subtypes of RCC alter their local environment differently. Furthermore NEP-induce hydrolysis of VIP creates selective VPAC-1 receptor agonist which has anti-proliferative and anti-inflammatory effects. Hence loss of NEP activity may prevent anti-tumoral effects of VIP on RCC.
Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P.
Sturiale, S; Barbara, G; Qiu, B; Figini, M; Geppetti, P; Gerard, N; Gerard, C; Grady, E F; Bunnett, N W; Collins, S M
1999-09-28
Neurogenic inflammation is regulated by sensory nerves and characterized by extravasation of plasma proteins and infiltration of neutrophils from post-capillary venules and arteriolar vasodilatation. Although it is well established that substance P (SP) interacts with the neurokinin 1 receptor (NK1R) to initiate neurogenic inflammation, the mechanisms that terminate inflammation are unknown. We examined whether neutral endopeptidase (NEP), a cell-surface enzyme that degrades SP in the extracellular fluid, terminates neurogenic inflammation in the colon. In NEP knockout mice, the SP concentration in the colon was approximately 2.5-fold higher than in wild-type mice, suggesting increased bioavailability of SP. The extravasation of Evans blue-labeled plasma proteins in the colon of knockout mice under basal conditions was approximately 4-fold higher than in wild-type mice. This elevated plasma leak was attenuated by recombinant NEP or the NK1R antagonist SR140333, and is thus caused by diminished degradation of SP. To determine whether deletion of NEP predisposes mice to uncontrolled inflammation, we compared dinitrobenzene sulfonic acid-induced colitis in wild-type and knockout mice. The severity of colitis, determined by macroscopic and histologic scoring and by myeloperoxidase activity, was markedly worse in knockout than wild-type mice after 3 and 7 days. The exacerbated inflammation in knockout mice was prevented by recombinant NEP and SR140333. Thus, NEP maintains low levels of SP in the extracellular fluid under basal conditions and terminates its proinflammatory effects. Because we have previously shown that intestinal inflammation results in down-regulation of NEP and diminished degradation of SP, our present results suggest that defects in NEP expression contribute to uncontrolled inflammation.
Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P
Sturiale, S.; Barbara, G.; Qiu, B.; Figini, M.; Geppetti, P.; Gerard, N.; Gerard, C.; Grady, E. F.; Bunnett, N. W.; Collins, S. M.
1999-01-01
Neurogenic inflammation is regulated by sensory nerves and characterized by extravasation of plasma proteins and infiltration of neutrophils from post-capillary venules and arteriolar vasodilatation. Although it is well established that substance P (SP) interacts with the neurokinin 1 receptor (NK1R) to initiate neurogenic inflammation, the mechanisms that terminate inflammation are unknown. We examined whether neutral endopeptidase (NEP), a cell-surface enzyme that degrades SP in the extracellular fluid, terminates neurogenic inflammation in the colon. In NEP knockout mice, the SP concentration in the colon was ≈2.5-fold higher than in wild-type mice, suggesting increased bioavailability of SP. The extravasation of Evans blue-labeled plasma proteins in the colon of knockout mice under basal conditions was ≈4-fold higher than in wild-type mice. This elevated plasma leak was attenuated by recombinant NEP or the NK1R antagonist SR140333, and is thus caused by diminished degradation of SP. To determine whether deletion of NEP predisposes mice to uncontrolled inflammation, we compared dinitrobenzene sulfonic acid-induced colitis in wild-type and knockout mice. The severity of colitis, determined by macroscopic and histologic scoring and by myeloperoxidase activity, was markedly worse in knockout than wild-type mice after 3 and 7 days. The exacerbated inflammation in knockout mice was prevented by recombinant NEP and SR140333. Thus, NEP maintains low levels of SP in the extracellular fluid under basal conditions and terminates its proinflammatory effects. Because we have previously shown that intestinal inflammation results in down-regulation of NEP and diminished degradation of SP, our present results suggest that defects in NEP expression contribute to uncontrolled inflammation. PMID:10500232
Withrington, P. G.
1992-01-01
1. The two peptides, calcitonin gene-related peptide (CGRP) and substance P (SP) were administered individually as bolus injections into the separately perfused hepatic arterial and portal vascular beds of the anaesthetized dog to assess their actions and relative molar potencies at these sites. 2. CGRP caused an immediate dose-related increase in hepatic arterial flow when injected close-arterially, reflecting a fall in resistance. This vasodilator effect was slightly increased by the prior administration of the selective beta 2-adrenoceptor antagonist, ICI 118,551. 3. On a molar basis, CGRP was more potent as an hepatic arterial vasodilator than the non-selective beta-adrenoceptor agonist, isoprenaline (Iso). 4. Intra-portal injection of CGRP also evoked hepatic arterial vasodilatation unaccompanied by other cardiovascular changes. 5. CGRP in doses up to 10 nmol had no effect on portal vascular resistance when administered intra-portally. 6. SP evoked a rapid, dose-related increase in hepatic arterial flow when injected intra-arterially. The molar ED50 for this hepatic vasodilatation was 40.2 fmol, significantly less than the ED50 for either CGRP or Iso. SP was the most potent hepatic arterial vasodilator yet examined. The vasodilator effect of SP was slightly potentiated by prior beta 2-adrenoceptor blockade. 7. SP caused hepatic arterial vasodilatation when administered by intra-portal injection; its absolute and relative potency was much reduced. 8. SP when injected intra-portally caused a graded increase in hepatic portal inflow resistance. The molar potency for this portal vasoconstriction was significantly greater than that for noradrenaline (NA); however, the maximum increase in portal resistance was significantly less to SP than to NA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1384909
Measurement in Sensory Modulation: The Sensory Processing Scale Assessment
Miller, Lucy J.; Sullivan, Jillian C.
2014-01-01
OBJECTIVE. Sensory modulation issues have a significant impact on participation in daily life. Moreover, understanding phenotypic variation in sensory modulation dysfunction is crucial for research related to defining homogeneous groups and for clinical work in guiding treatment planning. We thus evaluated the new Sensory Processing Scale (SPS) Assessment. METHOD. Research included item development, behavioral scoring system development, test administration, and item analyses to evaluate reliability and validity across sensory domains. RESULTS. Items with adequate reliability (internal reliability >.4) and discriminant validity (p < .01) were retained. Feedback from the expert panel also contributed to decisions about retaining items in the scale. CONCLUSION. The SPS Assessment appears to be a reliable and valid measure of sensory modulation (scale reliability >.90; discrimination between group effect sizes >1.00). This scale has the potential to aid in differential diagnosis of sensory modulation issues. PMID:25184464
Cheyletiella infestation in cats.
Fox, J G; Hewes, K
1976-08-01
While routinely examining a fecal specimen of a cat for evidence of intestinal parasitism, large eggs (230 by 110 mu) were observed. tfurther examination of the fecal specimen revealed an adult Cheyletiella sp. mite. Of 42 cats received from the same source, 11 had Cheyletiella mites, found either on the skin or in fecal specimens. Grossly visible skin changes were not observed in any of the cats. The conically shaped sensory organ on genu I of the mite resembled that of Cheyletiella blakei.
1987-11-17
associated with stimulus intensities, sensory processes, encoding processes, perceptual mechanisms, memory systems, or response processes. Each possibility...has been proposed in the literature and the answer is not known. If SEs are due to a single mechanism, it is not stimulus intensity, a sensory ...on neural activities in the ear. Since the stimuli and the stimulus sequences were identical the ME and ME-with-feedback studies, sensory
Biasing the brain's attentional set: I. cue driven deployments of intersensory selective attention.
Foxe, John J; Simpson, Gregory V; Ahlfors, Seppo P; Saron, Clifford D
2005-10-01
Brain activity associated with directing attention to one of two possible sensory modalities was examined using high-density mapping of human event-related potentials. The deployment of selective attention was based on visually presented symbolic cue-words instructing subjects on a trial-by-trial basis, which sensory modality to attend. We measured the spatio-temporal pattern of activation in the approximately 1 second period between the cue-instruction and a subsequent compound auditory-visual imperative stimulus. This allowed us to assess the flow of processing across brain regions involved in deploying and sustaining inter-sensory selective attention, prior to the actual selective processing of the compound audio-visual target stimulus. Activity over frontal and parietal areas showed sensory specific increases in activation during the early part of the anticipatory period (~230 ms), probably representing the activation of fronto-parietal attentional deployment systems for top-down control of attention. In the later period preceding the arrival of the "to-be-attended" stimulus, sustained differential activity was seen over fronto-central regions and parieto-occipital regions, suggesting the maintenance of sensory-specific biased attentional states that would allow for subsequent selective processing. Although there was clear sensory biasing in this late sustained period, it was also clear that both sensory systems were being prepared during the cue-target period. These late sensory-specific biasing effects were also accompanied by sustained activations over frontal cortices that also showed both common and sensory specific activation patterns, suggesting that maintenance of the biased state includes top-down inputs from generators in frontal cortices, some of which are sensory-specific regions. These data support extensive interactions between sensory, parietal and frontal regions during processing of cue information, deployment of attention, and maintenance of the focus of attention in anticipation of impending attentionally relevant input.
Sensory over-responsivity in adults with autism spectrum conditions.
Tavassoli, Teresa; Miller, Lucy J; Schoen, Sarah A; Nielsen, Darci M; Baron-Cohen, Simon
2014-05-01
Anecdotal reports and empirical evidence suggest that sensory processing issues are a key feature of autism spectrum conditions. This study set out to investigate whether adults with autism spectrum conditions report more sensory over-responsivity than adults without autism spectrum conditions. Another goal of the study was to identify whether autistic traits in adults with and without autism spectrum conditions were associated with sensory over-responsivity. Adults with (n = 221) and without (n = 181) autism spectrum conditions participated in an online survey. The Autism Spectrum Quotient, the Raven Matrices and the Sensory Processing Scale were used to characterize the sample. Adults with autism spectrum conditions reported more sensory over-responsivity than control participants across various sensory domains (visual, auditory, tactile, olfactory, gustatory and proprioceptive). Sensory over-responsivity correlated positively with autistic traits (Autism Spectrum Quotient) at a significant level across groups and within groups. Adults with autism spectrum conditions experience sensory over-responsivity to daily sensory stimuli to a high degree. A positive relationship exists between sensory over-responsivity and autistic traits. Understanding sensory over-responsivity and ways of measuring it in adults with autism spectrum conditions has implications for research and clinical settings.
O'Donnell, Sean; Clifford, Marie R; DeLeon, Sara; Papa, Christopher; Zahedi, Nazaneen; Bulova, Susan J
2013-01-01
The mosaic brain evolution hypothesis predicts that the relative volumes of functionally distinct brain regions will vary independently and correlate with species' ecology. Paper wasp species (Hymenoptera: Vespidae, Polistinae) differ in light exposure: they construct open versus enclosed nests and one genus (Apoica) is nocturnal. We asked whether light environments were related to species differences in the size of antennal and optic processing brain tissues. Paper wasp brains have anatomically distinct peripheral and central regions that process antennal and optic sensory inputs. We measured the volumes of 4 sensory processing brain regions in paper wasp species from 13 Neotropical genera including open and enclosed nesters, and diurnal and nocturnal species. Species differed in sensory region volumes, but there was no evidence for trade-offs among sensory modalities. All sensory region volumes correlated with brain size. However, peripheral optic processing investment increased with brain size at a higher rate than peripheral antennal processing investment. Our data suggest that mosaic and concerted (size-constrained) brain evolution are not exclusive alternatives. When brain regions increase with brain size at different rates, these distinct allometries can allow for differential investment among sensory modalities. As predicted by mosaic evolution, species ecology was associated with some aspects of brain region investment. Nest architecture variation was not associated with brain investment differences, but the nocturnal genus Apoica had the largest antennal:optic volume ratio in its peripheral sensory lobes. Investment in central processing tissues was not related to nocturnality, a pattern also noted in mammals. The plasticity of neural connections in central regions may accommodate evolutionary shifts in input from the periphery with relatively minor changes in volume. © 2013 S. Karger AG, Basel.
Emerging Role of Sensory Perception in Aging and Metabolism.
Riera, Celine E; Dillin, Andrew
2016-05-01
Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues. Here we review how these findings are redefining metabolic signaling and establish a prominent role of sensory neuroendocrine processes in controlling health span and lifespan, with a goal of translating this knowledge towards managing age-associated diseases. Copyright © 2016. Published by Elsevier Ltd.
Abnormal afferent nerve endings in the soft palatal mucosa of sleep apnoics and habitual snorers.
Friberg, D; Gazelius, B; Hökfelt, T; Nordlander, B
1997-07-23
Habitual snoring precedes obstructive sleep apnea (OSA), but the pathophysiological mechanisms behind progression are still unclear. The patency of upper airways depends on a reflexogen mechanism reacting on negative intrapharyngeal pressure at inspiration, probably mediated by mucosal receptors, i.e., via afferent nerve endings. Such nerves contain a specific nerve protein, protein-gene product 9.5 (PGP 9.5) and in some cases substance P (SP) and calcitonin gene-related (CGRP). Biopsies of the soft palatial mucosa were obtained from non-smoking men ten OSA patients, 11 habitual snorers and 11 non-snoring controls. The specimens were immunohistochemically analyzed for PGP 9.5, SP and CGRP. As compared to controls, an increased number of PGP-, SP- and CGRP-immunoreactive nerves were demonstrated in the mucosa in 9/10 OSA patients and 4/11 snorers, in addition to varicose nerve endings in the papillae and epithelium. Using double staining methodology, it could be shown that SP- and CGRP-like immunoreactivities (LIs) often coexisted in these fibres, as did CGRP- and PGP 9.5-LIs. The increased density in sensory nerve terminals are interpreted to indicate an afferent nerve lesion. Our results support the hypothesis of a progressive neurogenic lesion as a contributory factor to the collapse of upper airways during sleep in OSA patients.
The synaptic pharmacology underlying sensory processing in the superior colliculus.
Binns, K E
1999-10-01
The superior colliculus (SC) is one of the most ancient regions of the vertebrate central sensory system. In this hub afferents from several sensory pathways converge, and an extensive range of neural circuits enable primary sensory processing, multi-sensory integration and the generation of motor commands for orientation behaviours. The SC has a laminar structure and is usually considered in two parts; the superficial visual layers and the deep multi-modal/motor layers. Neurones in the superficial layers integrate visual information from the retina, cortex and other sources, while the deep layers draw together data from many cortical and sub-cortical sensory areas, including the superficial layers, to generate motor commands. Functional studies in anaesthetized subjects and in slice preparations have used pharmacological tools to probe some of the SC's interacting circuits. The studies reviewed here reveal important roles for ionotropic glutamate receptors in the mediation of sensory inputs to the SC and in transmission between the superficial and deep layers. N-methyl-D-aspartate receptors appear to have special responsibility for the temporal matching of retinal and cortical activity in the superficial layers and for the integration of multiple sensory data-streams in the deep layers. Sensory responses are shaped by intrinsic inhibitory mechanisms mediated by GABA(A) and GABA(B) receptors and influenced by nicotinic acetylcholine receptors. These sensory and motor-command activities of SC neurones are modulated by levels of arousal through extrinsic connections containing GABA, serotonin and other transmitters. It is possible to naturally stimulate many of the SC's sensory and non-sensory inputs either independently or simultaneously and this brain area is an ideal location in which to study: (a) interactions between inputs from the same sensory system; (b) the integration of inputs from several sensory systems; and (c) the influence of non-sensory systems on sensory processing.
Mapping sensory circuits by anterograde trans-synaptic transfer of recombinant rabies virus
Zampieri, Niccolò; Jessell, Thomas M.; Murray, Andrew J.
2014-01-01
Summary Primary sensory neurons convey information from the external world to relay circuits within the central nervous system (CNS), but the identity and organization of the neurons that process incoming sensory information remains sketchy. Within the CNS viral tracing techniques that rely on retrograde trans-synaptic transfer provide a powerful tool for delineating circuit organization. Viral tracing of the circuits engaged by primary sensory neurons has, however, been hampered by the absence of a genetically tractable anterograde transfer system. In this study we demonstrate that rabies virus can infect sensory neurons in the somatosensory system, is subject to anterograde trans-synaptic transfer from primary sensory to spinal target neurons, and can delineate output connectivity with third-order neurons. Anterograde trans-synaptic transfer is a feature shared by other classes of primary sensory neurons, permitting the identification and potentially the manipulation of neural circuits processing sensory feedback within the mammalian CNS. PMID:24486087
Sensation during Active Behaviors
Cardin, Jessica A.; Chiappe, M. Eugenia; Halassa, Michael M.; McGinley, Matthew J.; Yamashita, Takayuki
2017-01-01
A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field. PMID:29118211
Common computational properties found in natural sensory systems
NASA Astrophysics Data System (ADS)
Brooks, Geoffrey
2009-05-01
Throughout the animal kingdom there are many existing sensory systems with capabilities desired by the human designers of new sensory and computational systems. There are a few basic design principles constantly observed among these natural mechano-, chemo-, and photo-sensory systems, principles that have been proven by the test of time. Such principles include non-uniform sampling and processing, topological computing, contrast enhancement by localized signal inhibition, graded localized signal processing, spiked signal transmission, and coarse coding, which is the computational transformation of raw data using broadly overlapping filters. These principles are outlined here with references to natural biological sensory systems as well as successful biomimetic sensory systems exploiting these natural design concepts.
Galileo Galilei's vision of the senses.
Piccolino, Marco; Wade, Nicholas J
2008-11-01
Neuroscientists have become increasingly aware of the complexities and subtleties of sensory processing. This applies particularly to the complex elaborations of nerve signals that occur in the sensory circuits, sometimes at the very initial stages of sensory pathways. Sensory processing is now known to be very different from a simple neural copy of the physical signal present in the external world, and this accounts for the intricacy of neural organization that puzzled great investigators of neuroanatomy such as Santiago Ramón Y Cajal a century ago. It will surprise present-day sensory neuroscientists, applying their many modern methods, that the conceptual basis of the contemporary approach to sensory function had been recognized four centuries ago by Galileo Galilei.
Liu, Shih-Chii; Delbruck, Tobi
2010-06-01
Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.
Gamma-aminobutyric acid (GABA) and neuropeptides in neural areas mediating motion-induced emesis
NASA Technical Reports Server (NTRS)
Damelio, F.; Daunton, Nancy G.; Fox, Robert A.
1991-01-01
Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid and the neuropeptides substance P and Met-enkephalin in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), dorsal motor nucleus of the vagus nerve (DMNV), and lateral vestibular nucleus (LVN). Glutamic acid decarboxylase immunoreactive (GAD-IR) terminals and fibers were observed in the AP and particularly in the ASP. A gradual decrease in the density of terminals was seen towards the solitary complex. The DMNV revealed irregularly scattered GAD-IR terminals within the neuropil or closely surrounding neuronal cell bodies. The LVN, particularly the dorsal division, showed numerous axon terminals which were mostly localize around large neurons and their proximal dendrites. Substance P immunoreactive (SP-IR) terminals and fibers showed high density in the solitary complex, in particular within the lateral division. The ASP showed medium to low density of SP-IR fibers and terminals. The AP exhibited a small number of fibers and terminals irregularly distributed. The DMNV revealed a high density of SP-IR terminals and fibers that were mainly concentrated in the periphery. Very few terminals were detected in the LVN. Met-enkephalin immunoreactive (Met-Enk-IR) fibers and terminals showed high density and uniform distribution in the DMNV. Scattered terminals and fibers were observed in the AP, ASP, and NTS (particularly the lateral division). The very few fibers were observed in the LVN surrounded the neuronal cell bodies. The present report is part of a study designed to investigate the interaction between neuropeptides and conventional neurotransmitters under conditions producing motion sickness and in the process of sensory-motor adaptation.
The Relationship between Sensory Processing Patterns and Behavioral Patterns in Children
ERIC Educational Resources Information Center
Nesayan, Abbas; Asadi Gandomani, Roghayeh; Movallali, Gita; Dunn, Winnie
2018-01-01
This study investigates the relationship between sensory processing patterns and behavioral patterns in children. The population consisted of all children in Tehran city. Participation included 229 school and 155 preschool children. We collected data using the Sensory Profile School Companion and Conners Teacher Rating Scale. Results showed that…
Clancy, Kevin; Ding, Mingzhou; Bernat, Edward; Schmidt, Norman B; Li, Wen
2017-07-01
Post-traumatic stress disorder is characterized by exaggerated threat response, and theoretical accounts to date have focused on impaired threat processing and dysregulated prefrontal-cortex-amygdala circuitry. Nevertheless, evidence is accruing for broad, threat-neutral sensory hyperactivity in post-traumatic stress disorder. As low-level, sensory processing impacts higher-order operations, such sensory anomalies can contribute to widespread dysfunctions, presenting an additional aetiological mechanism for post-traumatic stress disorder. To elucidate a sensory pathology of post-traumatic stress disorder, we examined intrinsic visual cortical activity (based on posterior alpha oscillations) and bottom-up sensory-driven causal connectivity (Granger causality in the alpha band) during a resting state (eyes open) and a passive, serial picture viewing state. Compared to patients with generalized anxiety disorder (n = 24) and healthy control subjects (n = 20), patients with post-traumatic stress disorder (n = 25) demonstrated intrinsic sensory hyperactivity (suppressed posterior alpha power, source-localized to the visual cortex-cuneus and precuneus) and bottom-up inhibition deficits (reduced posterior→frontal Granger causality). As sensory input increased from resting to passive picture viewing, patients with post-traumatic stress disorder failed to demonstrate alpha adaptation, highlighting a rigid, set mode of sensory hyperactivity. Interestingly, patients with post-traumatic stress disorder also showed heightened frontal processing (augmented frontal gamma power, source-localized to the superior frontal gyrus and dorsal cingulate cortex), accompanied by attenuated top-down inhibition (reduced frontal→posterior causality). Importantly, not only did suppressed alpha power and bottom-up causality correlate with heightened frontal gamma power, they also correlated with increased severity of sensory and executive dysfunctions (i.e. hypervigilance and impulse control deficits, respectively). Therefore, sensory aberrations help construct a vicious cycle in post-traumatic stress disorder that is in action even at rest, implicating dysregulated triangular sensory-prefrontal-cortex-amygdala circuitry: intrinsic sensory hyperactivity and disinhibition give rise to frontal overload and disrupt executive control, fuelling and perpetuating post-traumatic stress disorder symptoms. Absent in generalized anxiety disorder, these aberrations highlight a unique sensory pathology of post-traumatic stress disorder (ruling out effects merely reflecting anxious hyperarousal), motivating new interventions targeting sensory processing and the sensory brain in these patients. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas
2014-12-01
Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.
White matter correlates of sensory processing in autism spectrum disorders
Pryweller, Jennifer R.; Schauder, Kimberly B.; Anderson, Adam W.; Heacock, Jessica L.; Foss-Feig, Jennifer H.; Newsom, Cassandra R.; Loring, Whitney A.; Cascio, Carissa J.
2014-01-01
Autism spectrum disorder (ASD) has been characterized by atypical socio-communicative behavior, sensorimotor impairment and abnormal neurodevelopmental trajectories. DTI has been used to determine the presence and nature of abnormality in white matter integrity that may contribute to the behavioral phenomena that characterize ASD. Although atypical patterns of sensory responding in ASD are well documented in the behavioral literature, much less is known about the neural networks associated with aberrant sensory processing. To address the roles of basic sensory, sensory association and early attentional processes in sensory responsiveness in ASD, our investigation focused on five white matter fiber tracts known to be involved in these various stages of sensory processing: superior corona radiata, centrum semiovale, inferior longitudinal fasciculus, posterior limb of the internal capsule, and splenium. We acquired high angular resolution diffusion images from 32 children with ASD and 26 typically developing children between the ages of 5 and 8. We also administered sensory assessments to examine brain-behavior relationships between white matter integrity and sensory variables. Our findings suggest a modulatory role of the inferior longitudinal fasciculus and splenium in atypical sensorimotor and early attention processes in ASD. Increased tactile defensiveness was found to be related to reduced fractional anisotropy in the inferior longitudinal fasciculus, which may reflect an aberrant connection between limbic structures in the temporal lobe and the inferior parietal cortex. Our findings also corroborate the modulatory role of the splenium in attentional orienting, but suggest the possibility of a more diffuse or separable network for social orienting in ASD. Future investigation should consider the use of whole brain analyses for a more robust assessment of white matter microstructure. PMID:25379451
Spätzle-Processing Enzyme-independent Activation of the Toll Pathway in Drosophila Innate Immunity.
Yamamoto-Hino, Miki; Goto, Satoshi
2016-05-07
The Toll pathway regulates innate immunity in insects and vertebrates. The Drosophila Toll receptor is activated by a processed form of a ligand, Spätzle. Spätzle-processing enzyme (SPE) is the only enzyme identified to date that functions in converting Spätzle to an active form during the immune response. In the present study, Toll activation induced by immune challenge was almost suppressed in spätzle mutant larvae and adults, whereas it was present in SPE mutant larvae challenged with Micrococcus luteus and adults challenged with Bacillus subtilis. Our data suggest that an unidentified protease besides SPE processes Spätzle under conditions of microbial challenge.
Sensory system plasticity in a visually specialized, nocturnal spider.
Stafstrom, Jay A; Michalik, Peter; Hebets, Eileen A
2017-04-21
The interplay between an animal's environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.
Classifying sensory profiles of children in the general population.
Little, L M; Dean, E; Tomchek, S D; Dunn, W
2017-01-01
The aim of this study was to subtype groups of children in a community sample with and without developmental conditions, based on sensory processing patterns. We used latent profile analysis to determine the number of sensory subtypes in a sample of n = 1132 children aged 3-14 years with typical development and developmental conditions, including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder and learning disabilities. A five-subtype solution was found to best characterize the sample, which differed on overall degree and differential presentation of sensory processing patterns. Children with and without developmental conditions presented across subtypes, and one subtype was significantly younger in age than others (P < 0.05). Our results show that sensory subtypes include both children with typical development and those with developmental conditions. Sensory subtypes have previously been investigated in ASD only, and our results suggest that similar sensory subtypes are present in a sample reflective of the general population of children including those largely with typical development. Elevated scores on sensory processing patterns are not unique to ASD but rather are reflections of children's abilities to respond to environmental demands. © 2016 John Wiley & Sons Ltd.
Dissociating sensory from decision processes in human perceptual decision making.
Mostert, Pim; Kok, Peter; de Lange, Floris P
2015-12-15
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.
Dissociating sensory from decision processes in human perceptual decision making
Mostert, Pim; Kok, Peter; de Lange, Floris P.
2015-01-01
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393
Sensory processing patterns predict the integration of information held in visual working memory.
Lowe, Matthew X; Stevenson, Ryan A; Wilson, Kristin E; Ouslis, Natasha E; Barense, Morgan D; Cant, Jonathan S; Ferber, Susanne
2016-02-01
Given the limited resources of visual working memory, multiple items may be remembered as an averaged group or ensemble. As a result, local information may be ill-defined, but these ensemble representations provide accurate diagnostics of the natural world by combining gist information with item-level information held in visual working memory. Some neurodevelopmental disorders are characterized by sensory processing profiles that predispose individuals to avoid or seek-out sensory stimulation, fundamentally altering their perceptual experience. Here, we report such processing styles will affect the computation of ensemble statistics in the general population. We identified stable adult sensory processing patterns to demonstrate that individuals with low sensory thresholds who show a greater proclivity to engage in active response strategies to prevent sensory overstimulation are less likely to integrate mean size information across a set of similar items and are therefore more likely to be biased away from the mean size representation of an ensemble display. We therefore propose the study of ensemble processing should extend beyond the statistics of the display, and should also consider the statistics of the observer. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Five new species of jawfishes (Opistognathus: Opistognathidae) from the western Atlantic Ocean
Smith-Vaniz, W.F.
1997-01-01
Synonymies, diagnoses, descriptions, illustrations, and spot distribution maps are given for ten species of Opistognathus, including all western Atlantic species that have a cirrus on their anterior nostrils. Three deep-water species lacking nasal cirri are also treated, including O. leprocarus n. sp. (Bahamas and Lesser Antilles), O. melachasme (Yucatan), and O. nothus n. sp. (North Carolina, Gulf of Mexico and Cuba); the latter two species were originally thought to represent different sexes of the same species. The O. macrognathus species group is diagnosed primarily by having sexually dimorphic jaws and sexually dichromatic maxillary markings, and includes the eastern Pacific O. scops and the following five western Atlantic species: O. macrognathus (Florida, Gulf of Mexico, and Bahamas to northern South America), O. brasiliensis n. sp. (southern Brazil), O. cuverii (southern Brazil), O. robinsi n. sp. (South Carolina, Florida, Bahamas, and Gulf of Mexico), and O. signatus n. sp. (Nicaragua, Panama, and northern South America). Opistognathus robinsi and O. signatus are very similar morphologically and here recognized as allopatric sister-species but the possibility exists that their disjunct continental distributions may be a collecting artifact. The broadly distributed and shallow-water species Opistognathus whitehurstii and O. maxillosus are superficially similar to some members of the O. macrognathus species group, including having cirri on their anterior nostrils, but differ most obviously in having non-sexually dimorphic jaws and more numerous cephalic sensory pores. An identification key is provided for all known western Atlantic species of Opistognathus.
Reported Sensory Processing of Children with Down Syndrome
ERIC Educational Resources Information Center
Bruni, Maryanne; Cameron, Debra; Dua, Shelly; Noy, Sarah
2010-01-01
Investigators have identified delays and differences in cognitive, language, motor, and sensory development in children with Down syndrome (DS). The purpose of this study was to determine the parent-reported frequency of sensory processing issues in children with DS aged 3-10 years, and the parent-reported functional impact of those sensory…
The Experience of Children Living with Sensory Processing Disorder
ERIC Educational Resources Information Center
Scotch, Melissa Dawn
2017-01-01
Sensory processing disorder (SPD) is a neurological condition that alters the way an individual perceives sensory information. Although the condition has been studied for more than 40 years, SPD remains a difficult condition to diagnose, treat, and live with because it affects individuals uniquely, and the symptoms can change from childhood to…
Sensory Processing Relates to Attachment to Childhood Comfort Objects of College Students
ERIC Educational Resources Information Center
Kalpidou, Maria
2012-01-01
The author tested the hypothesis that attachment to comfort objects is based on the sensory processing characteristics of the individual. Fifty-two undergraduate students with and without a childhood comfort object reported sensory responses and performed a tactile threshold task. Those with a comfort object described their object and rated their…
ERIC Educational Resources Information Center
Riby, Deborah M.; Janes, Emily; Rodgers, Jacqui
2013-01-01
This study explored the relationship between sensory processing abnormalities and repetitive behaviours in children with Williams Syndrome (WS; n = 21). This is a novel investigation bringing together two clinical phenomena for the first time in this neuro-developmental disorder. Parents completed the Sensory Profile (Short Form; Dunn in The…
Low-level mechanisms for processing odor information in the behaving animal.
Wachowiak, Matt; Wesson, Daniel W; Pírez, Nicolás; Verhagen, Justus V; Carey, Ryan M
2009-07-01
Sensory processing is typically thought to act on representations of sensory stimuli that are relatively fixed at low levels in the nervous system and become increasingly complex and subject to modulation at higher levels. Here we present recent findings from our laboratory demonstrating that, in the olfactory system, odor representations in the behaving animal can be transformed at low levels--as early as the primary sensory neurons themselves--via a variety of mechanisms. First, changes in odor sampling behavior, such as sniffing, can dramatically and rapidly alter primary odor representations by changing the strength and temporal structure of sensory input to the olfactory bulb, effectively shaping which features of the olfactory landscape are emphasized and likely altering how information is processed by the olfactory bulb network. Second, neural substrates exist for presynaptically modulating the strength of sensory input to the bulb as a function of behavioral state. The systems most likely to be involved in this modulation--cholinergic and serotonergic centrifugal inputs to the bulb--are linked to attention and arousal effects in other brain areas. Together, sniffing behavior and presynaptic inhibition have the potential to mediate, or at least contribute to, sensory processing phenomena, such as figure-ground separation, intensity invariance, and context-dependent and attentional modulation of response properties. Thus, "high order" processing can occur even before sensory neurons transmit information to the brain.
Serafini, Gianluca; Gonda, Xenia; Canepa, Giovanna; Pompili, Maurizio; Rihmer, Zoltan; Amore, Mario; Engel-Yeger, Batya
2017-03-01
The involvement of extreme sensory processing patterns, impulsivity, alexithymia, and hopelessness was hypothesized to contribute to the complex pathophysiology of major depression and bipolar disorder. However, the nature of the relation between these variables has not been thoroughly investigated. This study aimed to explore the association between extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness. We recruited 281 euthymic participants (mean age=47.4±12.1) of which 62.3% with unipolar major depression and 37.7% with bipolar disorder. All participants completed the Adolescent/Adult Sensory Profile (AASP), Toronto Alexithymia Scale (TAS-20), second version of the Beck Depression Inventory (BDI-II), Barratt Impulsivity Scale (BIS), and Beck Hopelessness Scale (BHS). Lower registration of sensory input showed a significant correlation with depression, impulsivity, attentional/motor impulsivity, and alexithymia. It was significantly more frequent among participants with elevated hopelessness, and accounted for 22% of the variance in depression severity, 15% in greater impulsivity, 36% in alexithymia, and 3% in hopelessness. Elevated sensory seeking correlated with enhanced motor impulsivity and decreased non-planning impulsivity. Higher sensory sensitivity and sensory avoiding correlated with depression, impulsivity, and alexithymia. The study was limited by the relatively small sample size and cross-sectional nature of the study. Furthermore, only self-report measures that may be potentially biased by social desirability were used. Extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness may show a characteristic pattern in patients with major affective disorders. The careful assessment of sensory profiles may help in developing targeted interventions and improve functional/adaptive strategies. Copyright © 2016 Elsevier B.V. All rights reserved.
Pellegrini, Thais Giovannini; Ferreira, Rodrigo Lopes
2014-02-21
Coarazuphium caatinga sp. n. occurs in limestone caves located in Campo Formoso municipality, in the Brazilian Caatinga (Bahia, Brazil). The new species is close to C. formoso although they are morphologically distinct by the elytra sinuosity, which is more pronounced in C. caatinga; the aedeagus is more tapered at the tip in this last species. Important traits found in C. caatinga are the variable size presented by the eyes, and the remarkable variability of body pigmentation among specimens; both traits do not seem to be correlated. Coarazuphium Gnaspini, P., Vanin, S.A. & Godoy, N.M., 1998, species exhibit advanced troglomorphic characters in comparison to other Brazilian cave beetles, as are increased extra-optic sensory structures, presence of particular sensilla, and sensory and gustatory receptors. These characters are not detected under routine microscopy and thus require ultrastructural methods for their study.
Examining Sensory Modulation in Individuals with Autism as Compared to Community Controls
ERIC Educational Resources Information Center
Kern, Janet K.; Garver, Carolyn R.; Carmody, Thomas; Andrews, Alonzo A.; Mehta, Jyutika A.; Trivedi, Madhukar H.
2008-01-01
The purpose of the study was to examine sensory modulation items on the Sensory Profile in individuals with autism as compared to community controls. The data for this study were collected as part of a cross-sectional study that examined sensory processing, using the Sensory Profile, in 103 individuals with autism and/or pervasive developmental…
De Sanctis, Pierfilippo; Katz, Richard; Wylie, Glenn R; Sehatpour, Pejman; Alexopoulos, George S; Foxe, John J
2008-10-01
Evidence has emerged for age-related amplification of basic sensory processing indexed by early components of the visual evoked potential (VEP). However, since these age-related effects have been incidental to the main focus of these studies, it is unclear whether they are performance dependent or alternately, represent intrinsic sensory processing changes. High-density VEPs were acquired from 19 healthy elderly and 15 young control participants who viewed alphanumeric stimuli in the absence of any active task. The data show both enhanced and delayed neural responses within structures of the ventral visual stream, with reduced hemispheric asymmetry in the elderly that may be indicative of a decline in hemispheric specialization. Additionally, considerably enhanced early frontal cortical activation was observed in the elderly, suggesting frontal hyper-activation. These age-related differences in early sensory processing are discussed in terms of recent proposals that normal aging involves large-scale compensatory reorganization. Our results suggest that such compensatory mechanisms are not restricted to later higher-order cognitive processes but may also be a feature of early sensory-perceptual processes.
On the dependence of response inhibition processes on sensory modality.
Bodmer, Benjamin; Beste, Christian
2017-04-01
The ability to inhibit responses is a central sensorimotor function but only recently the importance of sensory processes for motor inhibition mechanisms went more into the research focus. In this regard it is elusive, whether there are differences between sensory modalities to trigger response inhibition processes. Due to functional neuroanatomical considerations strong differences may exist, for example, between the visual and the tactile modality. In the current study we examine what neurophysiological mechanisms as well as functional neuroanatomical networks are modulated during response inhibition. Therefore, a Go/NoGo-paradigm employing a novel combination of visual, tactile, and visuotactile stimuli was used. The data show that the tactile modality is more powerful than the visual modality to trigger response inhibition processes. However, the tactile modality loses its efficacy to trigger response inhibition processes when being combined with the visual modality. This may be due to competitive mechanisms leading to a suppression of certain sensory stimuli and the response selection level. Variations in sensory modalities specifically affected conflict monitoring processes during response inhibition by modulating activity in a frontal parietal network including the right inferior frontal gyrus, anterior cingulate cortex and the temporoparietal junction. Attentional selection processes are not modulated. The results suggest that the functional neuroanatomical networks involved in response inhibition critically depends on the nature of the sensory input. Hum Brain Mapp 38:1941-1951, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
Choi, Hyeongwon; Kim, Dong-Jin; Nam, Seungwoo; Lim, Sunki; Hwang, Jae-Sung; Park, Ki Sook; Hong, Hyun Sook; Won, Younsun; Shin, Min Kyung; Chung, Eunkyung; Son, Youngsook
2018-03-01
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by intense pruritus and eczematous lesion. Substance P (SP) is an 11-amino-acid endogenous neuropeptide that belongs to the tachykinin family and several reports recently have supported the anti-inflammatory and tissue repairing roles of SP. In this study, we investigated whether SP can improve AD symptoms, especially the impaired skin barrier function, in 2, 4, 6-trinitrochlorobenzene (TNCB)-induced chronic dermatitis of NC/Nga mice or not. AD-like dermatitis was induced in NC/Nga mice by repeated sensitization with TNCB for 5 weeks. The experimental group designations and topical treatments were as follows: vehicle group (AD-VE); SP group (AD-SP); and SP with NK1R antagonist CP99994 (AD-SP-A) group. Histological analysis was performed to evaluate epidermal differentiation, dermal integrity, and epidermal nerve innervation in AD-like lesions. The skin barrier functions and pruritus of NC/Nga mice were evaluated by measuring transepidermal water loss (TEWL) and scratching behavior, respectively. Topical SP treatment resulted in significant down-regulation of Ki67 and the abnormal-type keratins (K) K6, K16, and K17, restoration of filaggrin and claudin-1, marked reduction of TEWL, and restoration of basement membrane and dermal collagen deposition, even under continuous sensitization of low dose TNCB. In addition, SP significantly reduced innervation of itch-evoking nerve fibers, gelatinase activity and nerve growth factor (NGF) expression in the epidermis but upregulated semaphorin-3A (Sema3A) expression in the epidermis, along with reduced scratching behavior in TNCB-treated NC/Nga mice. All of these effects were completely reversed by co-treatment with the NK1R antagonist CP99994. In cultured human keratinocytes, SP treatment reduced expression of TGF-α, but upregulated TGF-β and Sema3A. Topically administered SP can restore normal skin barrier function, reduce epidermal infiltration of itch-evoking nerve fibers in the AD-like skin lesions, and alleviate scratching behavior. Thus, SP may be proposed as a potential medication for chronic dermatitis and AD. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia
Javitt, Daniel C.; Freedman, Robert
2015-01-01
Sensory processing deficits, first investigated by Kraeplin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being re-characterized in the context of modern understanding of the involved molecular and neurobiological brain mechanisms. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia such as hallucinations. The pre-pulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slightly different stimuli that elicits the cortical Mismatch Negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and, vice versa, are affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of the illness and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients’ sensory perception of the surrounding world, even during treatment sessions, may differ considerable from others’ perceptions. A person’s ability to understand and interact effectively with surrounding world ultimately depends upon an underlying sensory experience of it. PMID:25553496
Perspectives on Sensory Processing Disorder: A Call for Translational Research
Miller, Lucy J.; Nielsen, Darci M.; Schoen, Sarah A.; Brett-Green, Barbara A.
2009-01-01
This article explores the convergence of two fields, which have similar theoretical origins: a clinical field originally known as sensory integration and a branch of neuroscience that conducts research in an area also called sensory integration. Clinically, the term was used to identify a pattern of dysfunction in children and adults, as well as a related theory, assessment, and treatment method for children who have atypical responses to ordinary sensory stimulation. Currently the term for the disorder is sensory processing disorder (SPD). In neuroscience, the term sensory integration refers to converging information in the brain from one or more sensory domains. A recent subspecialty in neuroscience labeled multisensory integration (MSI) refers to the neural process that occurs when sensory input from two or more different sensory modalities converge. Understanding the specific meanings of the term sensory integration intended by the clinical and neuroscience fields and the term MSI in neuroscience is critical. A translational research approach would improve exploration of crucial research questions in both the basic science and clinical science. Refinement of the conceptual model of the disorder and the related treatment approach would help prioritize which specific hypotheses should be studied in both the clinical and neuroscience fields. The issue is how we can facilitate a translational approach between researchers in the two fields. Multidisciplinary, collaborative studies would increase knowledge of brain function and could make a significant contribution to alleviating the impairments of individuals with SPD and their families. PMID:19826493
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
Prenatal thalamic waves regulate cortical area size prior to sensory processing.
Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M; López-Bendito, Guillermina
2017-02-03
The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing.
The Sensory Environment and Participation of Preschool Children With Autism Spectrum Disorder.
Piller, Aimee; Pfeiffer, Beth
2016-07-01
Sensory processing is recognized as impacting participation for preschool children with autism spectrum disorder (ASD). Little research exists to examine the impact of the sensory environment on the participation patterns of children with ASD, specifically from a contextual standpoint. The researchers in this study examined the viewpoint of teachers and occupational therapists on the sensory-related environmental barriers to participation within the preschool context. Qualitative descriptive methodology was used for data collection and analysis. Thirteen preschool teachers and occupational therapists were interviewed. Sensory aspects of the environment both inhibited and enhanced participation. Physical and temporal components of the environment are identified as being the most influential. Modifications of the environment are identified as increasing participation. It is important to consider the sensory aspects of the environment, in addition to the sensory processing patterns of the person in assessment and intervention planning within the preschool environment. © The Author(s) 2016.
Prenatal thalamic waves regulate cortical area size prior to sensory processing
Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M.; López-Bendito, Guillermina
2017-01-01
The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. PMID:28155854
Perceptual Decisions in the Presence of Relevant and Irrelevant Sensory Evidence
Anders, Ursula M.; McLean, Charlotte S.; Ouyang, Bowen; Ditterich, Jochen
2017-01-01
Perceptual decisions in the presence of decision-irrelevant sensory information require a selection of decision-relevant sensory evidence. To characterize the mechanism that is responsible for separating decision-relevant from irrelevant sensory information we asked human subjects to make judgments about one of two simultaneously present motion components in a random dot stimulus. Subjects were able to ignore the decision-irrelevant component to a large degree, but their decisions were still influenced by the irrelevant sensory information. Computational modeling revealed that this influence was not simply the consequence of subjects forgetting at times which stimulus component they had been instructed to base their decision on. Instead, residual irrelevant information always seems to be leaking through, and the decision process is captured by a net sensory evidence signal being accumulated to a decision threshold. This net sensory evidence is a linear combination of decision-relevant and irrelevant sensory information. The selection process is therefore well-described by a strong linear gain modulation, which, in our experiment, resulted in the relevant sensory evidence having at least 10 times more impact on the decision than the irrelevant evidence. PMID:29176941
Perceptual Decisions in the Presence of Relevant and Irrelevant Sensory Evidence.
Anders, Ursula M; McLean, Charlotte S; Ouyang, Bowen; Ditterich, Jochen
2017-01-01
Perceptual decisions in the presence of decision-irrelevant sensory information require a selection of decision-relevant sensory evidence. To characterize the mechanism that is responsible for separating decision-relevant from irrelevant sensory information we asked human subjects to make judgments about one of two simultaneously present motion components in a random dot stimulus. Subjects were able to ignore the decision-irrelevant component to a large degree, but their decisions were still influenced by the irrelevant sensory information. Computational modeling revealed that this influence was not simply the consequence of subjects forgetting at times which stimulus component they had been instructed to base their decision on. Instead, residual irrelevant information always seems to be leaking through, and the decision process is captured by a net sensory evidence signal being accumulated to a decision threshold. This net sensory evidence is a linear combination of decision-relevant and irrelevant sensory information. The selection process is therefore well-described by a strong linear gain modulation, which, in our experiment, resulted in the relevant sensory evidence having at least 10 times more impact on the decision than the irrelevant evidence.
ERIC Educational Resources Information Center
Chuang, Tsung-Yen; Kuo, Ming-Shiou
2016-01-01
Children with Sensory Integration Dysfunction (SID, also known as Sensory Processing Disorder, SPD) are also learners with disabilities with regard to responding adequately to the demands made by a learning environment. With problems of organizing and processing the sensation information coming from body modalities, children with SID (CwSID)…
ERIC Educational Resources Information Center
Donaldson, Chelsea K.; Stauder, Johannes E. A.; Donkers, Franc C. L.
2017-01-01
Recent studies have suggested that sensory processing atypicalities may share genetic influences with autism spectrum disorder (ASD). To further investigate this, the adolescent/adult sensory profile (AASP) questionnaire was distributed to 85 parents of typically developing children (P-TD), 121 parents from simplex ASD families (SPX), and 54…
Process for biological material carbon-carbon bond formation
Hollingsworth, R.I.; Jung, S.; Mindock, C.A.
1998-12-22
A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures. 8 figs.
Process for biological material carbon-carbon bond formation
Hollingsworth, Rawle I.; Jung, Seunho; Mindock, Carol A.
1998-01-01
A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures.
Checkley, Mary Ann; Luttge, Benjamin G; Soheilian, Ferri; Nagashima, Kunio; Freed, Eric O
2010-04-25
The human immunodeficiency virus type 1 (HIV-1) maturation inhibitor bevirimat disrupts virus replication by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) Gag processing intermediate to mature CA. The observation that bevirimat delays but does not completely block CA-SP1 processing suggests that the presence of uncleaved CA-SP1 may disrupt the maturation process in trans. In this study, we validate this hypothesis by using a genetic approach to demonstrate that a non-cleavable CA-SP1 mutant exerts a dominant-negative effect on maturation of wild-type HIV-1. In contrast, a mutant in which cleavage can occur internally within SP1 is significantly less potent as a dominant-negative inhibitor. We also show that bevirimat blocks processing at both the major CA-SP1 cleavage site and the internal site. These data underscore the importance of full CA-SP1 processing for HIV-1 maturation and highlight the therapeutic potential of inhibitors that target this Gag cleavage event. Published by Elsevier Inc.
The Role of Sensory Modulation Deficits and Behavioral Symptoms in a Diagnosis for Early Childhood
ERIC Educational Resources Information Center
Perez-Robles, Ruth; Doval, Eduardo; Jane, Ma Claustre; da Silva, Pedro Caldeira; Papoila, Ana Luisa; Virella, Daniel
2013-01-01
To contribute to the validation of the sensory and behavioral criteria for Regulation Disorders of Sensory Processing (RDSP) (DC:0-3R, 2005), this study examined a sample of toddlers in a clinical setting to analyze: (1) the severity of sensory modulation deficits and the behavioral symptoms of RDSP; (2) the associations between sensory and…
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
Maggi, C. A.; Patacchini, R.; Santicioli, P.; Giuliani, S.
1991-01-01
1. The possible involvement of tachykinins (TKs) in the contraction produced by capsaicin in the rat isolated urinary bladder was addressed on the hypothesis that co-release of substance P (SP) and neurokinin A (NKA) occurs from sensory nerve terminals. 2. A low concentration of SP (30 nM) produced a rapid contraction which faded to baseline within 10 min. A low concentration of NKA (10 nM) produced a slowly developing contraction which was still evident at 10 min. Capsaicin (1 microM) produced a rapid phasic response and a tonic response (late response to capsaicin). Co-administration of SP and NKA mimicked the response to capsaicin more than each TK alone. 3. Fading of the response to SP was not caused by receptor desensitization and was partially prevented by peptidase inhibitors. 4. Spantide (3 microM) selectively antagonized the SP-induced contraction while L-659,877 (3-10 microM) or MEN 10,376 (10-30 microM) which are NK2 receptor selective antagonists selectively blocked the response to NKA. Co-administration of spantide and L-659,877 inhibited the response to both SP and NKA by an amount not greater than that produced by each antagonist alone. 5. Spantide selectively reduced the peak response to capsaicin, while leaving the late response unaffected. L-659,877 (3 microM) and MEN 10,376 (10 microM) selectively inhibited the late response to capsaicin while, at higher concentrations, also reduced the peak response to capsaicin. Co-administration of spantide and L-659,877 reduced the peak response to capsaicin more than that produced by each antagonist alone. 6. Bombesin (10 nM) produced a tonic contraction similar to that induced by NKA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1715797
Electrotactile and vibrotactile displays for sensory substitution systems
NASA Technical Reports Server (NTRS)
Kaczmarek, Kurt A.; Webster, John G.; Bach-Y-rita, Paul; Tompkins, Willis J.
1991-01-01
Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used or with the information processed in some useful way. The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). The relevant sensory physiology of the skin, including the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile, or electrocutaneous, stimulation), is reviewed. The information-processing ability of the tactile sense and its relevance to sensory substitution is briefly summarized. The limitations of current tactile display technologies are discussed.
Hurt, E; Zulewska, J; Newbold, M; Barbano, D M
2010-12-01
The production of serum protein (SP) and micellar casein from skim milk can be accomplished using microfiltration (MF). Potential commercial applications exist for both SP and micellar casein. Our research objective was to determine the total SP removal and SP removal for each stage, and the composition of retentates and permeates, for a 3×, continuous bleed-and-feed, 3-stage, uniform transmembrane pressure (UTP) system with 0.1-μm ceramic membranes, when processing pasteurized skim milk at 50°C with 2 stages of water diafiltration. For each of 4 replicates, about 1,100 kg of skim milk was pasteurized (72°C, 16s) and processed at 3× through the UTP MF system. Retentate from stage 1 was cooled to <4°C and stored until the next processing day, when it was diluted with reverse osmosis water back to a 1× concentration and again processed through the MF system (stage 2) to a 3× concentration. The retentate from stage 2 was stored at <4°C, and, on the next processing day, was diluted with reverse osmosis water back to a 1× concentration, before running through the MF system at 3× for a total of 3 stages. The retentate and permeate from each stage were analyzed for total nitrogen, noncasein nitrogen, and nonprotein nitrogen using Kjeldahl methods; sodium dodecyl sulfate-PAGE analysis was also performed on the retentates from each stage. Theoretically, a 3-stage, 3× MF process could remove 97% of the SP from skim milk, with a cumulative SP removal of 68 and 90% after the first and second stages, respectively. The cumulative SP removal using a 3-stage, 3× MF process with a UTP system with 0.01-μm ceramic membranes in this experiment was 64.8 ± 0.8, 87.8 ± 1.6, and 98.3 ± 2.3% for the first, second, and third stages, respectively, when calculated using the mass of SP removed in the permeate of each stage. Various methods of calculation of SP removal were evaluated. Given the analytical limitations in the various methods for measuring SP removal, calculation of SP removal based on the mass of SP in the skim milk (determined by Kjeldahl) and the mass SP present in all of the permeate produced by the process (determined by Kjeldahl) provided the best estimate of SP removal for an MF process. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sensory processing disorder: any of a nurse practitioner's business?
Byrne, Mary W
2009-06-01
Children who exhibit the confusing symptom patterns associated with sensory processing deficits are often seen first by primary care providers, including family and pediatric nurse practitioners (NPs). The purpose of this article is to alert NPs to the state of the science for these disorders and to the roles NPs could play in filling the knowledge gaps in assessment, treatment, education, and research. Literature searches using PubMed and MedLine databases and clinical practice observations. Sensory integration disorders have only begun to be defined during the past 35 years. They are not currently included in the DSM IV standard terminology, and are not yet substantively incorporated into most health disciplines' curricula or practice, including those of the NP. NPs are in a unique position to test hypothesized terminology for Sensory Processing Disorder (SPD) by contributing precise clinical descriptions of children who match as well as deviate from the criteria for three proposed diagnostic groups: Sensory Modulation Disorder (SMD), Sensory Discrimination Disorder (SDD), and Sensory-Based Motor Disorder (SBMD). Beyond the SPD diagnostic debate, for children with sensory deficit patterns the NP role can incorporate participating in interdisciplinary treatment plans, refining differential diagnoses, providing frontline referral and support for affected children and their families, and making both secondary prevention and critical causal research possible through validation of consistently accepted diagnostic criteria.
Multiple chitinases of an endophytic Serratia proteamaculans 568 generate chitin oligomers.
Purushotham, Pallinti; Sarma, P V S R N; Podile, Appa Rao
2012-05-01
Serratia proteamaculans 568 genome revealed the presence of four family 18 chitinases (Sp ChiA, Sp ChiB, Sp ChiC, and Sp ChiD). Heterologous expression and characterization of Sp ChiA, Sp ChiB, and Sp ChiC showed that these enzymes were optimally active at pH 6.0-7.0, and 40°C. The three Sp chitinases displayed highest activity/binding to β-chitin and showed broad range of substrate specificities, and released dimer as major end product from oligomeric and polymeric substrates. Longer incubation was required for hydrolysis of trimer for the three Sp chitinases. The three Sp chitinases released up to tetramers from colloidal chitin substrate. Sp ChiA and Sp ChiB were processive chitinases, while Sp ChiC was a non-processive chitinase. Based on the known structures of ChiA and ChiB from S. marcescens, 3D models of Sp ChiA and Sp ChiB were generated. Copyright © 2012 Elsevier Ltd. All rights reserved.
Language-Universal Sensory Deficits in Developmental Dyslexia: English, Spanish, and Chinese
ERIC Educational Resources Information Center
Goswami, Usha; Wang, H.-L. Sharon; Cruz, Alicia; Fosker, Tim; Mead, Natasha; Huss, Martina
2011-01-01
Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of "phonological processing", the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific…
Castillo, C; Norcini, M; Baquero-Buitrago, J; Levacic, D; Medina, R; Montoya-Gacharna, J V; Blanck, T J J; Dubois, M; Recio-Pinto, E
2011-03-17
The involvement of substance P (SP) in neuronal sensitization through the activation of the neurokinin-1-receptor (NK1r) in postsynaptic dorsal horn neurons has been well established. In contrast, the role of SP and NK1r in primary sensory dorsal root ganglion (DRG) neurons, in particular in the soma, is not well understood. In this study, we evaluated whether SP modulated the NMDA-evoked transient increase in cytoplasmic Ca2+ ([Ca2+]cyt) in the soma of dissociated adult DRG neurons. Cultures were treated with nerve growth factor (NGF), prostaglandin E2 (PGE2) or both NGF+PGE2. Treatment with NGF+PGE2 increased the percentage of N-methyl-D-aspartate (NMDA) responsive neurons. There was no correlation between the percentage of NMDA responsive neurons and the level of expression of the NR1 and NR2B subunits of the NMDA receptor or of the NK1r. Pretreatment with SP did not alter the percentage of NMDA responsive neurons; while it potentiated the NMDA-evoked [Ca2+]cyt transient by increasing its magnitude and by prolonging the period during which small- and some medium-sized neurons remained NMDA responsive. The SP-mediated potentiation was blocked by the SP-antagonist ([D-Pro4, D-Trp7,9]-SP (4-11)) and by the protein kinase C (PKC) blocker bisindolylmaleimide I (BIM); and correlated with the phosphorylation of PKCε. The Nk1r agonist [Sar9, Met(O2)11]-SP (SarMet-SP) also potentiated the NMDA-evoked [Ca2+]cyt transient. Exposure to SP or SarMet-SP produced a rapid increase in the labeling of phosphorylated-PKCε. In none of the conditions we detected phosphorylation of the NR2B subunit at Ser-1303. Phosphorylation of the NR2B subunit at Tyr1472 was enhanced to a similar extent in cells exposed to NMDA, SP or NMDA+SP, and that enhancement was blocked by BIM. Our findings suggest that NGF and PGE2 may contribute to the injury-evoked sensitization of DRG neurons in part by enhancing their NMDA-evoked [Ca2+]cyt transient in all sized DRG neurons; and that SP may further contribute to the DRG sensitization by enhancing and prolonging the NMDA-evoked increase in [Ca2+]cyt in small- and medium-sized DRG neurons. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
Measuring the effect of attention on simple visual search.
Palmer, J; Ames, C T; Lindsey, D T
1993-02-01
Set-size in visual search may be due to 1 or more of 3 factors: sensory processes such as lateral masking between stimuli, attentional processes limiting the perception of individual stimuli, or attentional processes affecting the decision rules for combining information from multiple stimuli. These possibilities were evaluated in tasks such as searching for a longer line among shorter lines. To evaluate sensory contributions, display set-size effects were compared with cuing conditions that held sensory phenomena constant. Similar effects for the display and cue manipulations suggested that sensory processes contributed little under the conditions of this experiment. To evaluate the contribution of decision processes, the set-size effects were modeled with signal detection theory. In these models, a decision effect alone was sufficient to predict the set-size effects without any attentional limitation due to perception.
USDA-ARS?s Scientific Manuscript database
Neonatal meningitis Escherichia coli isolates (SP-4, SP-5, SP-13, SP-16, SP-46, and SP-65) were recovered from infants in the Netherlands from 1989 to 1997. Here, we report the draft genome sequences for these six E. coli isolates, which are currently being used to validate food safety processing te...
Kulkarni, Shyamrao Gururao; Kudachikar, V B; Keshava Prakash, M N
2011-12-01
Banana (Musa sp var 'Robusta') fruits harvested at 75-80% maturity were dip treated with different concentrations of ethrel (250-1,000 ppm) solution for 5 min. Ethrel at 500 ppm induced uniform ripening without impairing taste and flavour of banana. Untreated control banana fruits remained shriveled, green and failed to ripen evenly even after 8 days of storage. Fruits treated with 500 ppm of ethrel ripened well in 6 days at 20 ± 1 °C. Changes in total soluble solids, acidity, total sugars and total carotenoids showed increasing trends up to 6 days during ripening whereas fruit shear force values, pulp pH and total chlorophyll in peel showed decreasing trends. Sensory quality of ethrel treated banana fruits (fully ripe) were excellent with respect to external colour, taste, flavour and overall quality.
Shifts in Audiovisual Processing in Healthy Aging.
Baum, Sarah H; Stevenson, Ryan
2017-09-01
The integration of information across sensory modalities into unified percepts is a fundamental sensory process upon which a multitude of cognitive processes are based. We review the body of literature exploring aging-related changes in audiovisual integration published over the last five years. Specifically, we review the impact of changes in temporal processing, the influence of the effectiveness of sensory inputs, the role of working memory, and the newer studies of intra-individual variability during these processes. Work in the last five years on bottom-up influences of sensory perception has garnered significant attention. Temporal processing, a driving factors of multisensory integration, has now been shown to decouple with multisensory integration in aging, despite their co-decline with aging. The impact of stimulus effectiveness also changes with age, where older adults show maximal benefit from multisensory gain at high signal-to-noise ratios. Following sensory decline, high working memory capacities have now been shown to be somewhat of a protective factor against age-related declines in audiovisual speech perception, particularly in noise. Finally, newer research is emerging focusing on the general intra-individual variability observed with aging. Overall, the studies of the past five years have replicated and expanded on previous work that highlights the role of bottom-up sensory changes with aging and their influence on audiovisual integration, as well as the top-down influence of working memory.
The associations between multisensory temporal processing and symptoms of schizophrenia.
Stevenson, Ryan A; Park, Sohee; Cochran, Channing; McIntosh, Lindsey G; Noel, Jean-Paul; Barense, Morgan D; Ferber, Susanne; Wallace, Mark T
2017-01-01
Recent neurobiological accounts of schizophrenia have included an emphasis on changes in sensory processing. These sensory and perceptual deficits can have a cascading effect onto higher-level cognitive processes and clinical symptoms. One form of sensory dysfunction that has been consistently observed in schizophrenia is altered temporal processing. In this study, we investigated temporal processing within and across the auditory and visual modalities in individuals with schizophrenia (SCZ) and age-matched healthy controls. Individuals with SCZ showed auditory and visual temporal processing abnormalities, as well as multisensory temporal processing dysfunction that extended beyond that attributable to unisensory processing dysfunction. Most importantly, these multisensory temporal deficits were associated with the severity of hallucinations. This link between atypical multisensory temporal perception and clinical symptomatology suggests that clinical symptoms of schizophrenia may be at least partly a result of cascading effects from (multi)sensory disturbances. These results are discussed in terms of underlying neural bases and the possible implications for remediation. Copyright © 2016 Elsevier B.V. All rights reserved.
... healthy lifestyle. Eat a balanced diet full of fruits and vegetables. Exercise regularly. Get plenty of sleep. ... SPD)Sensory processing disorder is a condition that affects how your brain processes sensory information: things you ...
ERIC Educational Resources Information Center
Donkers, Franc C. L.; Schipul, Sarah E.; Baranek, Grace T.; Cleary, Katherine M.; Willoughby, Michael T.; Evans, Anna M.; Bulluck, John C.; Lovmo, Jeanne E.; Belger, Aysenil
2015-01-01
Neurobiological underpinnings of unusual sensory features in individuals with autism are unknown. Event-related potentials elicited by task-irrelevant sounds were used to elucidate neural correlates of auditory processing and associations with three common sensory response patterns (hyperresponsiveness; hyporesponsiveness; sensory seeking).…
Reliability of the Participation and Sensory Environment Questionnaire: Teacher Version
ERIC Educational Resources Information Center
Piller, Aimee; Fletcher, Tina; Pfeiffer, Beth; Dunlap, Karen; Pickens, Noralyn
2017-01-01
The Participation and Sensory Environment Questionnaire-Teacher Version (PSEQ-TV) is a teacher-report questionnaire to assess the impact of the sensory environment on participation of preschool children with autism spectrum disorder (ASD). Many children with ASD have sensory processing differences, although these differences are frequently…
Sensory Integration Dysfunction: Implications for Counselors Working with Children
ERIC Educational Resources Information Center
Withrow, Rebecca L.
2007-01-01
Sensory Integration Dysfunction (SID), a sensory processing problem that afflicts about 15% of children, sets many children on a developmental trajectory of emotional and social problems. Children with SID often unintentionally alienate parents, peers, and teachers in their efforts to modify the amounts of sensory stimulation they receive. They…
ERIC Educational Resources Information Center
Miller, Lucy Jane; Nielsen, Darci M.; Schoen, Sarah A.
2012-01-01
Children with attention deficit hyperactivity disorder (ADHD) are impulsive, inattentive and hyperactive, while children with sensory modulation disorder (SMD), one subtype of Sensory Processing Disorder, have difficulty responding adaptively to daily sensory experiences. ADHD and SMD are often difficult to distinguish. To differentiate these…
ERIC Educational Resources Information Center
Chuang, Tsung-Yen; Kuo, Ming-Shiou; Fan, Ping-Lin; Hsu, Yen-Wei
2017-01-01
Sensory integration dysfunction (SID, also known as sensory processing disorder, SPD) is a condition that exists when a person's multisensory integration fails to process and respond adequately to the demands of the environment. Children with SID (CwSID) are also learners with disabilities with regard to responding adequately to the demands made…
Schneider, Mary L.; Moore, Colleen F.; Larson, Julie A.; Barr, Christina S.; DeJesus, Onofre T.; Roberts, Andrew D.
2009-01-01
Sensory processing disorder, characterized by over- or under-responsivity to non-noxious environmental stimuli, is a common but poorly understood disorder. We examined the role of prenatal alcohol exposure, serotonin transporter gene polymorphic region variation (rh5-HTTLPR), and striatal dopamine (DA) function on behavioral measures of sensory responsivity to repeated non-noxious sensory stimuli in macaque monkeys. Results indicated that early gestation alcohol exposure induced behavioral under-responsivity to environmental stimuli in monkeys carrying the short (s) rh5-HTTLPR allele compared to both early-exposed monkeys homozygous for the long (l) allele and monkeys from middle-to-late exposed pregnancies and controls, regardless of genotype. Moreover, prenatal timing of alcohol exposure altered the relationship between sensory scores and DA D2R availability. In early-exposed monkeys, a positive relationship was shown between sensory scores and DA D2R availability, with low or blunted DA function associated with under-responsive sensory function. The opposite pattern was found for the middle-to-late gestation alcohol-exposed group. These findings raise questions about how the timing of prenatal perturbation and genotype contributes to effects on neural processing and possibly alters neural connections. PMID:19936317
Francischi, Janetti N; Frade, Taíssa Iolanda C; Almeida, Marcella P A de; Queiroz, Bárbara F G de; Bakhle, Y S
2017-04-01
Ketamine+xylazine mixture is a widely used anaesthetic in animal experiments. In rats anaesthetized with this mixture, we have shown that injection of carrageenan, a standard proinflammatory stimulus, into the cheek (intra-oral injection) induced oedema. A likely mediator of this oedema is substance P (SP), a major transmitter of sensory nerves in orofacial tissue. We have assessed the effects of intra-oral injection of SP in rats. SP (50-1μg per rat) was injected intra-orally in male adult Holtzman or Wistar rats, anaesthetized with ketamine+xylazine. For comparison, histamine (50μg) and 5-HT (5μg) were similarly injected. Antagonists of SP (SR140333, 2mg/kg), of histamine (pyrilamine, 2mg/kg) or of 5-HT (pizotifen, 2mg/kg) were subcutaneously (s.c.) injected, 30min before the corresponding agonist. Oedema in the cheek was assessed by measuring tissue thickness with calipers. Intra-oral injection of SP (1-50μg per rat) in Holtzman or Wistar rats anaesthetized with ketamine+xylazine induced, dose-dependently, death within 15min, accompanied by signs of excessive salivation. Rats pretreated with SR140333 were protected against SP-induced lethality and the excessive salivation. However, intra-oral injection of either histamine or 5-HT did not induce death, only a characteristic cheek oedema. These doses of SP injected into the hindpaws of conscious Holtzman and Wistar rats only induced oedema with no deaths. In rats anaesthetized with inhaled isoflurane, intra-oral SP (50μg) induced only cheek oedema, with no deaths or excessive salivation. This oedema was prevented by pre-treating rats with SR140333, pyrilamine and pizotifen. It is likely that the deaths were due to excessive salivation induced by the particular combination of ketamine and SP. Our results are presented as a warning to other experimenters who might use these two otherwise non-toxic conditions and the consequent unexpected and needless loss of experimental animals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Processes to Preserve Spice and Herb Quality and Sensory Integrity During Pathogen Inactivation
Moberg, Kayla; Amin, Kemia N.; Wright, Melissa; Newkirk, Jordan J.; Ponder, Monica A.; Acuff, Gary R.; Dickson, James S.
2017-01-01
Abstract Selected processing methods, demonstrated to be effective at reducing Salmonella, were assessed to determine if spice and herb quality was affected. Black peppercorn, cumin seed, oregano, and onion powder were irradiated to a target dose of 8 kGy. Two additional processes were examined for whole black peppercorns and cumin seeds: ethylene oxide (EtO) fumigation and vacuum assisted‐steam (82.22 °C, 7.5 psia). Treated and untreated spices/herbs were compared (visual, odor) using sensory similarity testing protocols (α = 0.20; β = 0.05; proportion of discriminators: 20%) to determine if processing altered sensory quality. Analytical assessment of quality (color, water activity, and volatile chemistry) was completed. Irradiation did not alter visual or odor sensory quality of black peppercorn, cumin seed, or oregano but created differences in onion powder, which was lighter (higher L *) and more red (higher a*) in color, and resulted in nearly complete loss of measured volatile compounds. EtO processing did not create detectable odor or appearance differences in black peppercorn; however visual and odor sensory quality differences, supported by changes in color (higher b *; lower L *) and increased concentrations of most volatiles, were detected for cumin seeds. Steam processing of black peppercorn resulted in perceptible odor differences, supported by increased concentration of monoterpene volatiles and loss of all sesquiterpenes; only visual differences were noted for cumin seed. An important step in process validation is the verification that no effect is detectable from a sensory perspective. PMID:28407236
Properties of frozen dairy desserts processed by microfluidization of their mixes.
Olson, D W; White, C H; Watson, C E
2003-04-01
Sensory properties and rate of meltdown of nonfat (0% fat) and low-fat (2% fat) vanilla ice creams processed either by conventional valve homogenization or microfluidization of their mixes were compared with each other and to ice cream (10% fat) processed by conventional valve homogenization. Mixes for frozen dairy desserts containing 0, 2, and 10% fat were manufactured. Some of the nonfat and low-fat ice cream mixes were processed by microfluidization at 50, 100, 150, and 200 MPa, and the remaining nonfat and low-fat ice cream mixes and all of the ice cream mix were processed by conventional valve homogenization at 13.8 MPa, first stage, and 3.4 MPa, second stage. The finished frozen and hardened products were evaluated at d 1 and 45 for meltdown rate and for flavor and body and texture by preference testing. Nonfat and low-fat ice creams that usually had a slower meltdown were produced when processing their mixes by microfluidization instead of by conventional valve homogenization. Sensory scores for the ice cream were significantly higher than sensory scores for the nonfat and low-fat ice creams, but the sensory scores for the conventional valve homogenized controls for the nonfat ice cream and low-fat ice cream were not significantly different from the sensory scores for the nonfat ice cream and low-fat ice cream processed by microfluidization of the mixes, respectively. Microfluidization produced nonfat and low-fat ice creams that usually had a slower meltdown without affecting sensory properties.
van Lamsweerde, Amanda E; Johnson, Jeffrey S
2017-07-01
Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.
Job, Xavier E; de Fockert, Jan W; van Velzen, José
2016-08-01
Behavioural and electrophysiological evidence has demonstrated that preparation of goal-directed actions modulates sensory perception at the goal location before the action is executed. However, previous studies have focused on sensory perception in areas of peripersonal space. The present study investigated visual and tactile sensory processing at the goal location of upcoming movements towards the body, much of which is not visible, as well as visible peripersonal space. A motor task cued participants to prepare a reaching movement towards goals either in peripersonal space in front of them or personal space on the upper chest. In order to assess modulations of sensory perception during movement preparation, event-related potentials (ERPs) were recorded in response to task-irrelevant visual and tactile probe stimuli delivered randomly at one of the goal locations of the movements. In line with previous neurophysiological findings, movement preparation modulated visual processing at the goal of a movement in peripersonal space. Movement preparation also modulated somatosensory processing at the movement goal in personal space. The findings demonstrate that tactile perception in personal space is subject to similar top-down sensory modulation by motor preparation as observed for visual stimuli presented in peripersonal space. These findings show for the first time that the principles and mechanisms underlying adaptive modulation of sensory processing in the context of action extend to tactile perception in unseen personal space. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hurtado, Adriana; Guàrdia, Maria Dolors; Picouet, Pierre; Jofré, Anna; Ros, José María; Bañón, Sancho
2017-02-01
Non-thermal pasteurisation by high-pressure processing (HPP) is increasingly replacing thermal processing (TP) to maintain the properties of fresh fruit products. The resulting products need to be validated from a sensory and nutritional standpoint. The objective was to assess a mild HPP treatment to stabilise red fruit-based smoothies in a wide (sensory quality and major nutrients) study. HPP (350 MPa/ 10 °C/ 5 min) provided 'fresh-like' smoothies, free of cooked-fruit flavours, for at least 14 days at 4 °C, although their sensory stability was low compared with the TP-smoothies (85 °C/ 7 min). In HPP-smoothies, the loss of fresh fruit flavour and reduced sliminess were the clearest signs of sensory deterioration during storage. Furthermore, HPP permitted the higher initial retention of vitamin C, although this vitamin and, to a lesser extent, total phenols, had a higher degradation rate during storage. The content of sugar present was not affected by either processing treatment. Mild HPP treatment did not alter the sensory and nutritional properties of smoothies. The sensory and nutritional losses during storage were less than might be expected, probably due to the high antioxidant content and the natural turbidity provided by red fruits. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Trumpp, Natalie M; Traub, Felix; Pulvermüller, Friedemann; Kiefer, Markus
2014-02-01
Classical theories of semantic memory assume that concepts are represented in a unitary amodal memory system. In challenging this classical view, pure or hybrid modality-specific theories propose that conceptual representations are grounded in the sensory-motor brain areas, which typically process sensory and action-related information. Although neuroimaging studies provided evidence for a functional-anatomical link between conceptual processing of sensory or action-related features and the sensory-motor brain systems, it has been argued that aspects of such sensory-motor activation may not directly reflect conceptual processing but rather strategic imagery or postconceptual elaboration. In the present ERP study, we investigated masked effects of acoustic and action-related conceptual features to probe unconscious automatic conceptual processing in isolation. Subliminal feature-specific ERP effects at frontocentral electrodes were observed, which differed with regard to polarity, topography, and underlying brain electrical sources in congruency with earlier findings under conscious viewing conditions. These findings suggest that conceptual acoustic and action representations can also be unconsciously accessed, thereby excluding any postconceptual strategic processes. This study therefore further substantiates a grounding of conceptual and semantic processing in action and perception.
How to Care for Your Baby's Teeth
... information applies to you and to get more information on this subject. Featured ContentSecondary DrowningRead Article >>Secondary DrowningSensory Processing Disorder (SPD)Read Article >>Sensory Processing Disorder (SPD) ...
Olsson, Viktoria; Håkansson, Andreas
2018-01-01
Varying processing conditions can strongly affect the microstructure of mayonnaise, opening up new applications for the creation of products tailored to meet different consumer preferences. The aim of the study was to evaluate the effect of emulsification intensity on sensory and instrumental characteristics of full-fat mayonnaise. Mayonnaise, based on a standard recipe, was processed at low and high emulsification intensities, with selected sensory and instrumental properties then evaluated using an analytical panel and a back extrusion method. The evaluation also included a commercial reference mayonnaise. The overall effects of a higher emulsification intensity on the sensory and instrumental characteristics of full-fat mayonnaise were limited. However, texture was affected, with a more intense emulsification resulting in a firmer mayonnaise according to both back extrusion data and the analytical sensory panel. Appearance, taste and flavor attributes were not affected by processing. PMID:29342128
Liu, Junzhuo; Vyverman, Wim
2015-03-01
The N/P ratio of wastewater can vary greatly and directly affect algal growth and nutrient removal process. Three benthic filamentous algae species Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. were isolated from a periphyton bioreactor and cultured under laboratory conditions on varying N/P ratios to determine their ability to remove nitrate and phosphorus. The N/P ratio significantly influenced the algal growth and phosphorus uptake process. Appropriate N/P ratios for nitrogen and phosphorus removal were 5-15, 7-10 and 7-20 for Cladophora sp., Klebsormidium sp. and Pseudanabaena sp., respectively. Within these respective ranges, Cladophora sp. had the highest biomass production, while Pseudanabaena sp. had the highest nitrogen and phosphorus contents. This study indicated that Cladophora sp. had a high capacity of removing phosphorus from wastewaters of low N/P ratio, and Pseudanabaena sp. was highly suitable for removing nitrogen from wastewaters with high N/P ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.
False memory for context activates the parahippocampal cortex.
Karanian, Jessica M; Slotnick, Scott D
2014-01-01
Previous studies have reported greater activity in the parahippocampal cortex during true memory than false memory, which has been interpreted as reflecting greater sensory processing during true memory. However, in these studies, sensory detail and contextual information were confounded. In the present fMRI study, we employed a novel paradigm to dissociate these factors. During encoding, abstract shapes were presented in one of two contexts (i.e., moving or stationary). During retrieval, participants classified shapes as previously "moving" or "stationary." Critically, contextual processing was relatively greater during false memory ("moving" responses to stationary items), while sensory processing was relatively greater during true memory ("moving" responses to moving items). Within the medial temporal lobe, false memory versus true memory produced greater activity in the parahippocampal cortex, whereas true memory versus false memory produced greater activity in the hippocampus. The present results indicate that the parahippocampal cortex mediates contextual processing rather than sensory processing.
Silbande, Adèle; Adenet, Sandra; Chopin, Christine; Cornet, Josiane; Smith-Ravin, Juliette; Rochefort, Katia; Leroi, Françoise
2018-02-02
The effect of vacuum (VP - 4°C) and CO 2 /N 2 -atmosphere (MAP - 4°C) packaging on the quality of red drum fillets compared with whole gutted iced fish was investigated. A metagenomic approach, bacterial enumeration and isolation, biochemical and sensory analyses were carried out. The organoleptic rejection of whole fish was observed at day 15 whereas VP and MAP fillets appeared unacceptable only after 29days. At these dates, total mesophilic counts reached 10 7 -10 8 CFU g -1 . According to Illumina MiSeq sequencing, Arthrobacter, Chryseobacterium, Brevibacterium, Staphylococcus and Kocuria were the main genera of the fresh red drum fillets. At the sensory rejection time, lactic acid bacteria (LAB), particularly Carnobacterium sp., dominated the microbiota of both types of packaging. The pH value of fresh samples was between 5.96 and 6.37 and did not vary greatly in all trials. Total volatile basic nitrogen (TVBN) and trimethylamine (TMA) concentrations were low and not represent reliable indicators of the spoilage, contrary to some biogenic amines (cadaverine, putrescine and tyramine). Chilled packed fillets of red drum have an extended shelf-life compared to whole gutted iced fish. Overall, few differences in sensory and microbial quality were observed between the VP and MAP samples. Next-Generation Sequencing (NGS) provided data on the microbiota of a tropical fish. Copyright © 2017 Elsevier B.V. All rights reserved.
Demonstration of a sensory rhodopsin in eubacteria.
Jung, Kwang-Hwan; Trivedi, Vishwa D; Spudich, John L
2003-03-01
We report the first sensory rhodopsin observed in the eubacterial domain, a green light-activated photoreceptor in Anabaena (Nostoc) sp. PCC7120, a freshwater cyanobacterium. The gene encoding the membrane opsin protein of 261 residues (26 kDa) and a smaller gene encoding a soluble protein of 125 residues (14 kDa) are under the same promoter in a single operon. The opsin expressed heterologously in Escherichia coli membranes bound all-trans retinal to form a pink pigment (lambda max 543 nm) with a photochemical reaction cycle of 110 ms half-life (pH 6.8, 18 degrees C). Co-expression with the 14 kDa protein increased the rate of the photocycle, indicating physical interaction with the membrane-embedded rhodopsin, which we confirmed in vitro by affinity enrichment chromatography and Biacore interaction. The pigment lacks the proton donor carboxylate residue in helix C conserved in known retinylidene proton pumps and did not exhibit detectable proton ejection activity. We detected retinal binding to the protein in Anabaena membranes by SDS-PAGE and autofluorography of 3H-labelled all-trans retinal of reduced membranes from the organism. We conclude that Anabaena rhodopsin functions as a photosensory receptor in its natural environment, and suggest that the soluble 14 kDa protein transduces a signal from the receptor. Therefore, unlike the archaeal sensory rhodopsins, which transmit signals by transmembrane helix-helix interactions with membrane-embedded transducers, the Anabaena sensory rhodopsin may signal through a soluble cytoplasmic protein, analogous to higher animal visual pigments.
ERIC Educational Resources Information Center
Stewart, Claire R.; Sanchez, Sandra S.; Grenesko, Emily L.; Brown, Christine M.; Chen, Colleen P.; Keehn, Brandon; Velasquez, Francisco; Lincoln, Alan J.; Müller, Ralph-Axel
2016-01-01
Atypical sensory responses are common in autism spectrum disorder (ASD). While evidence suggests impaired auditory-visual integration for verbal information, findings for nonverbal stimuli are inconsistent. We tested for sensory symptoms in children with ASD (using the Adolescent/Adult Sensory Profile) and examined unisensory and bisensory…
Analysis of the Sensory Profile in Children with Smith-Magenis Syndrome
ERIC Educational Resources Information Center
Hildenbrand, Hanna L.; Smith, Ann C. M.
2012-01-01
This study systematically assessed sensory processing in 34 children, aged 3-14 years, with Smith-Magenis syndrome (SMS) using the Sensory Profile Caregiver Questionnaire. Scores for the SMS cohort were significantly different from scores of the national sample of children with and without disabilities in all Sensory Profile categories and…
Thalamic control of sensory selection in divided attention.
Wimmer, Ralf D; Schmitt, L Ian; Davidson, Thomas J; Nakajima, Miho; Deisseroth, Karl; Halassa, Michael M
2015-10-29
How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.
Kakita, Kaede; Tsubouchi, Hirona; Adachi, Mayu; Takehana, Shiori; Shimazu, Yoshihito; Takeda, Mamoru
2017-11-29
Acute administration of chlorogenic acid (CGA) in vitro was recently shown to modulate potassium channel conductance and acid-sensing ion channels (ASICs) in the primary sensory neurons; however, in vivo peripheral effects of CGA on the nociceptive mechanical stimulation of trigeminal neuronal activity remains to be determined. The present study investigated whether local administration of CGA in vivo attenuates mechanical stimulation-induced excitability of trigeminal spinal nucleus caudalis neuronal (SpVc) activity in rats. Extracellular single-unit recordings were made of SpVc wide-dynamic range (WDR) neuronal activity elicited by non-noxious and noxious orofacial mechanical stimulation in pentobarbital anesthetized rats. The mean number of SpVc WDR neuronal firings responding to both non-noxious and noxious mechanical stimuli were significantly and dose-dependently inhibited by local subcutaneous administration of CGA (0.1-10mM), with the maximal inhibition of discharge frequency revealed within 10min and reversed after approximately 30min. The mean frequency of SpVc neuronal discharge inhibition by CGA was comparable to that by a local anesthetic, the sodium channel blocker, 1% lidocaine. These results suggest that local CGA injection into the peripheral receptive field suppresses the excitability of SpVc neurons, possibly via the activation of voltage-gated potassium channels and modulation of ASICs in the nociceptive nerve terminal of trigeminal ganglion neurons. Therefore, local injection of CGA could contribute to local anesthetic agents for the treatment of trigeminal nociceptive pain. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Sun, Nina N; Wong, Simon S; Keith, Ingegerd; Witten, Mark L
2004-09-01
To evaluate the role of substance P (SP)-containing C-fiber nerves in the development of the inflammatory responses to sidestream cigarette smoke (SSCS), female Fischer 344 rats were randomly assigned into vehicle and capsaicin groups, respectively. Then, half the number in each group (N = 24) was nose-only exposed to air or 0.4 mg/m3 total particulate matter of SSCS for 4 h/day for 7 days. Exposure of the vehicle rats to SSCS induced obvious pulmonary neurogenic inflammation as indicated by elevations in plasma extravasation and proinflammatory cytokine secretions [interieukin (IL)-1beta and IL-12]. In addition, except for SP release, SSCS exposure significantly induced the tachykininergic toxicities at the gene level: upregulation of beta-preprotachykinin-I (beta-PPT-I) mRNA. However, neither SSCS exposure nor capsaicin pretreatment affects the immunolabeling density of neurokinin-1 receptor (NK-1R) in airway epithelium. SSCS also significantly inactivated pulmonary neutral endopeptidase (NEP) in lung tissue. Moreover, pretreatment with capsaicin significantly exacerbated the SSCS-induced inflammatory responses mentioned above as well as the release of plasma protein. Considering that capsaicin did not affect the normal control baselines of these parameters except for a decrease in NK-1R mRNA, we conclude that the degree of SSCS-induced inflammatory response was exacerbated because of the depletion of stored SP and/or inactivation of capsaicin-sensitive C-fiber nerves. Our data suggest the loss of afferent tachykinin SP signaling may lead to dysfunction of the sensory C-fiber nerve reflexes during exposure to SSCS, suggesting that SP serves a protective role.
Xu, Aixia; Johnson, James R.; Sheen, Shiowshuh
2018-01-01
ABSTRACT Neonatal meningitis-causing Escherichia coli isolates (SP-4, SP-5, SP-13, SP-46, and SP-65) were recovered between 1989 and 1997 from infants in the Netherlands. Here, we report the draft genome sequences of these five E. coli isolates, which are currently being used to validate food safety processing technologies. PMID:29674529
Sensory modulation in preterm children: Theoretical perspective and systematic review
Oostrom, Kim J.; Lafeber, Harrie N.; Jansma, Elise P.; Oosterlaan, Jaap
2017-01-01
Background Neurodevelopmental sequelae in preterm born children are generally considered to result from cerebral white matter damage and noxious effects of environmental factors in the neonatal intensive care unit (NICU). Cerebral white matter damage is associated with sensory processing problems in terms of registration, integration and modulation. However, research into sensory processing problems and, in particular, sensory modulation problems, is scarce in preterm children. Aim This review aims to integrate available evidence on sensory modulation problems in preterm infants and children (<37 weeks of gestation) and their association with neurocognitive and behavioral problems. Method Relevant studies were extracted from PubMed, EMBASE.com and PsycINFO following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Selection criteria included assessment of sensory modulation in preterm born children (<37 weeks of gestation) or with prematurity as a risk factor. Results Eighteen studies were included. Results of this review support the presence of sensory modulation problems in preterm children. Although prematurity may distort various aspects of sensory modulation, the nature and severity of sensory modulation problems differ widely between studies. Conclusions Sensory modulation problems may play a key role in understanding neurocognitive and behavioral sequelae in preterm children. Some support is found for a dose-response relationship between both white matter brain injury and length of NICU stay and sensory modulation problems. PMID:28182680
Kam, Julia W. Y.; Handy, Todd C.
2013-01-01
A unique human characteristic is our ability to mind wander – a state in which we are free to engage in thoughts that are not directly tied to sensations and perceptions from our immediate physical environment. From a neurocognitive perspective, it has been proposed that during mind wandering, our executive resources are decoupled from the external environment and directed to these internal thoughts. In this review, we examine an underappreciated aspect of this phenomenon – attenuation of sensory-motor processing – from two perspectives. First, we describe the range of widespread sensory, cognitive and motor processes attenuated during mind wandering states, and how this impacts our neurocognitive processing of external events. We then consider sensory-motor attenuation in a class of clinical neurocognitive disorders that have ties to pathological patterns of decoupling, reviews suggesting that mind wandering and these clinical states may share a common mechanism of sensory-motor attenuation. Taken together, these observations suggest the sensory-motor consequences of decoupled thinking are integral to normal and pathological neurocognitive states. PMID:24133472
The impact of systemic cortical alterations on perception
NASA Astrophysics Data System (ADS)
Zhang, Zheng
2011-12-01
Perception is the process of transmitting and interpreting sensory information, and the primary somatosensory (SI) area in the human cortex is the main sensory receptive area for the sensation of touch. The elaborate neuroanatomical connectivity that subserves the neuronal communication between adjacent and near-adjacent regions within sensory cortex has been widely recognized to be essential to normal sensory function. As a result, systemic cortical alterations that impact the cortical regional interaction, as associated with many neurological disorders, are expected to have significant impact on sensory perception. Recently, our research group has developed a novel sensory diagnostic system that employs quantitative sensory testing methods and is able to non-invasively assess central nervous system healthy status. The intent of this study is to utilize quantitative sensory testing methods that were designed to generate discriminable perception to objectively and quantitatively assess the impacts of different conditions on human sensory information processing capacity. The correlation between human perceptions with observations from animal research enables a better understanding of the underlying neurophysiology of human perception. Additional findings on different subject populations provide valuable insight of the underlying mechanisms for the development and maintenance of different neurological diseases. During the course of the study, several protocols were designed and utilized. And this set of sensory-based perceptual metrics was employed to study the effects of different conditions (non-noxious thermal stimulation, chronic pain stage, and normal aging) on sensory perception. It was found that these conditions result in significant deviations of the subjects' tactile information processing capacities from normal values. Although the observed shift of sensory detection sensitivity could be a result of enhanced peripheral activity, the changes in the effects of adaptation most likely reflect changes in central nervous system. The findings in this work provide valuable information for better understanding the underlying mechanisms involved in the development and maintenance of different neurological conditions.
The Role of Attention in Somatosensory Processing: A Multi-trait, Multi-method Analysis
Puts, Nicolaas A. J.; Mahone, E. Mark; Edden, Richard A. E.; Tommerdahl, Mark; Mostofsky, Stewart H.
2016-01-01
Sensory processing abnormalities in autism have largely been described by parent report. This study used a multi-method (parent-report and measurement), multi-trait (tactile sensitivity and attention) design to evaluate somatosensory processing in ASD. Results showed multiple significant within-method (e.g., parent report of different traits)/cross-trait (e.g., attention and tactile sensitivity) correlations, suggesting that parent-reported tactile sensory dysfunction and performance-based tactile sensitivity describe different behavioral phenomena. Additionally, both parent-reported tactile functioning and performance-based tactile sensitivity measures were significantly associated with measures of attention. Findings suggest that sensory (tactile) processing abnormalities in ASD are multifaceted, and may partially reflect a more global deficit in behavioral regulation (including attention). Challenges of relying solely on parent-report to describe sensory difficulties faced by children/families with ASD are also highlighted. PMID:27448580
Conway, Kevin W.; Stewart, Andrew L.; Summers, Adam P.
2018-01-01
Abstract A new species of clingfish, Dellichthys trnskii sp. n. is described on the basis of 27 specimens, 11.9–46.0 mm SL, collected from intertidal and shallow coastal waters of New Zealand. It is distinguished from its only congener, D. morelandi Briggs, 1955 by characters of the cephalic sensory system and oral jaws, snout shape, and colouration in life. A rediagnosis is provided for D. morelandi, which is shown to exhibit sexual dimorphism in snout shape. PMID:29674890
Zeppelini, D; Lima, E C A; Brito, R A; Soares, G A
2018-08-01
A second species of the genus Pararrhopalites is described from caves inserted in iron ore lithology. Both species present a particular sensory organ in the interantennal region. The new species, Pararrhopalites ubiquum n.sp., has a wider distribution and it is not restricted to a single cave, as it is the case of Pararrhopalites sideroicus Zeppelini & Brito, in Fla Entomol 97(4):1733-1744, 2014, being found even in the Mesovoid Shallow Substratum. An update to the previously published identification key is presented.
Analysis of the sensory profile in children with Smith-Magenis syndrome.
Hildenbrand, Hanna L; Smith, Ann C M
2012-02-01
This study systematically assessed sensory processing in 34 children, aged 3-14 years, with Smith-Magenis syndrome (SMS) using the Sensory Profile Caregiver Questionnaire. Scores for the SMS cohort were significantly different from scores of the national sample of children with and without disabilities in all Sensory Profile categories and quadrants (p < .001). No main effects of age or gender were found, but an interaction effect of age by gender was found in Modulation of Sensory Input Affecting Emotional Responses, in which older females presented with the lowest scores. A significant decline over time was found in the Seeking pattern, reflecting increased vulnerability (p < .05). Nonsignificant trends suggest more vulnerabilities for older versus younger children, especially older females. The neurobehavioral phenotype in children with SMS is expanded by this description of sensory processing. How children with SMS experience and respond to everyday sensations informs multidisciplinary team decisions.
Processes to Preserve Spice and Herb Quality and Sensory Integrity During Pathogen Inactivation.
Duncan, Susan E; Moberg, Kayla; Amin, Kemia N; Wright, Melissa; Newkirk, Jordan J; Ponder, Monica A; Acuff, Gary R; Dickson, James S
2017-05-01
Selected processing methods, demonstrated to be effective at reducing Salmonella, were assessed to determine if spice and herb quality was affected. Black peppercorn, cumin seed, oregano, and onion powder were irradiated to a target dose of 8 kGy. Two additional processes were examined for whole black peppercorns and cumin seeds: ethylene oxide (EtO) fumigation and vacuum assisted-steam (82.22 °C, 7.5 psia). Treated and untreated spices/herbs were compared (visual, odor) using sensory similarity testing protocols (α = 0.20; β = 0.05; proportion of discriminators: 20%) to determine if processing altered sensory quality. Analytical assessment of quality (color, water activity, and volatile chemistry) was completed. Irradiation did not alter visual or odor sensory quality of black peppercorn, cumin seed, or oregano but created differences in onion powder, which was lighter (higher L * ) and more red (higher a * ) in color, and resulted in nearly complete loss of measured volatile compounds. EtO processing did not create detectable odor or appearance differences in black peppercorn; however visual and odor sensory quality differences, supported by changes in color (higher b * ; lower L * ) and increased concentrations of most volatiles, were detected for cumin seeds. Steam processing of black peppercorn resulted in perceptible odor differences, supported by increased concentration of monoterpene volatiles and loss of all sesquiterpenes; only visual differences were noted for cumin seed. An important step in process validation is the verification that no effect is detectable from a sensory perspective. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.
The Relationship between Sensory Sensitivity and Autistic Traits in the General Population
ERIC Educational Resources Information Center
Robertson, Ashley E.; Simmons, David R.
2013-01-01
Individuals with Autism Spectrum Disorders (ASDs) tend to have sensory processing difficulties (Baranek et al. in J Child Psychol Psychiatry 47:591-601, 2006). These difficulties include over- and under-responsiveness to sensory stimuli, and problems modulating sensory input (Ben-Sasson et al. in J Autism Dev Disorders 39:1-11, 2009). As those…
ERIC Educational Resources Information Center
Mays, Nicole M.; Beal-Alvarez, Jennifer; Jolivette, Kristine
2011-01-01
This article outlines a three-step process to help teachers determine whether or not the function of a student's stereotypical behavior is sensory-based and if so, how to select and monitor an appropriate sensory intervention to promote instructional engagement. In particular, characteristics of students who are seeking to gain sensory input in…
[Treatment of sensory information in neurodevelopmental disorders].
Zoenen, D; Delvenne, V
2018-01-01
The processing of information coming from the elementary sensory systems conditions the development and fulfilment of a child's abilities. A dysfunction in the sensory stimuli processing may generate behavioural patterns that might affect a child's learning capacities as well as his relational sphere. The DSM-5 recognizes the sensory abnormalities as part of the symptomatology of Autism Spectrum Disorders. However, similar features are observed in other neurodevelopmental disorders. Over the years, these conditions have been the subject of numerous controversies. Nowadays, they are all grouped together under the term of Neurodevelopmental Disorders in DSM-5. The semiology of these disorders is rich and complex due to the frequent presence of comorbidities and their impact on cognitive, behavioural, and sensorimotor organization but also on a child's personality, as well as his family, his school, or his social relationships. We carried out a review of the literature on the alterations in the treatment of sensory information in ASD but also on the different neurodevelopmental clinical panels in order to show their impact on child development. Atypical sensory profiles have been demonstrated in several neurodevelopmental clinical populations such as Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorders, Dysphasia and Intellectual Disability. Abnomalies in the processing of sensory information should be systematically evaluated in child developmental disorders.
Prestimulus influences on auditory perception from sensory representations and decision processes.
Kayser, Stephanie J; McNair, Steven W; Kayser, Christoph
2016-04-26
The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task.
Prestimulus influences on auditory perception from sensory representations and decision processes
McNair, Steven W.
2016-01-01
The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task. PMID:27071110
Vecchio, Riccardo; Lisanti, Maria Tiziana; Caracciolo, Francesco; Cembalo, Luigi; Gambuti, Angelita; Moio, Luigi; Siani, Tiziana; Marotta, Giuseppe; Nazzaro, Concetta; Piombino, Paola
2018-05-28
The present research aims to analyse, by combining sensory and experimental economics techniques, to what extent production process, and the information about it, may affect consumer preferences. Sparkling wines produced by Champenoise and Charmat methods were the object of the study. A quantitative descriptive sensory analysis with a trained panel and non-hypothetical auctions combined with hedonic ratings involving young wine consumers (N=100), under different information scenarios(Blind, Info and Info Taste), were performed. Findings show that the production process impacts both the sensory profile of sparkling wines and consumer expectations. In particular, the hedonic ratings revealed that when tasting the products, both with no information on the production process (Blind) and with such information (Info Taste), the consumers preferred the Charmat wines. On the contrary, when detailed information on the production methods was given without tasting (Info), consumers liked more the two Champenoise wines. It can be concluded that sensory and non-sensory attributes of sparkling wines affect consumers' preferences. Specifically, the study suggests that production process information strongly impacts liking expectations, while not affecting informed liking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
How mechanisms of perceptual decision-making affect the psychometric function
Gold, Joshua I.; Ding, Long
2012-01-01
Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the “neurometric” sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. PMID:22609483
Motor development and sensory processing: A comparative study between preterm and term infants.
Cabral, Thais Invenção; Pereira da Silva, Louise Gracelli; Tudella, Eloisa; Simões Martinez, Cláudia Maria
2014-10-16
Infants born preterm and/or with low birth weight may present a clinical condition of organic instability and usually face a long period of hospitalization in the Neonatal Intensive Care Units, being exposed to biopsychosocial risk factors to their development due to decreased spontaneous movement and excessive sensory stimuli. This study assumes that there are relationships between the integration of sensory information of preterm infants, motor development and their subsequent effects. To evaluate the sensory processing and motor development in preterm infants aged 4-6 months and compare performance data with their peers born at term. This was a cross-sectional and comparative study consisting of a group of preterm infants (n=15) and a group of term infants (n=15), assessed using the Test of Sensory Functions in Infants (TSFI) and the Alberta Infant Motor Scale (AIMS). The results showed no significant association between motor performance on the AIMS scale (total score) and sensory processing in the TSFI (total score). However, all infants who scored abnormal in the total TSFI score, subdomain 1, and subdomain 5 presented motor performance at or below the 5th percentile on the AIMS scale. Since all infants who presented definite alteration in tolerating tactile deep pressure and poor postural control are at risk of delayed gross motor development, there may be peculiarities not detected by the tests used that seem to establish some relationship between sensory processing and motor development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jain, Deepak; D'Ugard, Carmen; Bello, Jose; Bancalari, Eduardo; Claure, Nelson
2018-01-01
Hypoxemia episodes (HE) occur frequently in ventilated preterm infants and hinder the achievement of arterial oxygen saturation (SpO2) targets. These episodes may increase the risk for retinopathy of prematurity and neurodevelopmental disability. There are no data on the variation in HE and SpO2 targeting between day and night. The aim of this study was to evaluate the difference between day and night on the frequency and severity of HE and achievement of SpO2 targets. Twenty-four mechanically ventilated preterm infants with ≥4 episodes of SpO2 <75% over an 8-h period were enrolled. The fraction of inspired oxygen (FiO2), SpO2, and ventilator parameters were recorded over 24 h. Data from the day (9 a.m. to 5 p.m.) were compared to the night (9 p.m. to 5 a.m.) for the frequency of HE and proportion of time within and outside the target SpO2 range (90-95%). The frequency of severe HE (SpO2 <75, ≥20 s) and prolonged severe HE (SpO2 <75, ≥60 s) was lower during the night compared to the day (1.6 ± 1.0 vs. 2.4 ± 1.3 episodes/h, p = 0.008, and 0.53 ± 0.35 vs. 0.90 ± 0.54 episodes/h, p = 0.018). There was no difference in mean episode duration. The frequency and duration of mild HE (SpO2 <85, ≥20 s) were lower during the night compared to the day (5.9 ± 2.7 vs. 7.1 ± 2.5 episodes/h, p = 0.003, and 72 ± 15 vs. 87 ± 25 s, p = 0.01, respectively). The proportion of time in severe hypoxemia (SpO2 <75%) was smaller, whereas time in hyperoxemia (SpO2 >95%) was greater, during the night compared to the day. The mean FiO2 did not differ between day and night. In this group of infants with frequent HE, nighttime was associated with fewer episodes when compared to daytime. This is likely due to less handling and sensory stimulation during the night. The increase in time spent with hyperoxemia during the night is likely to be due to more tolerance of high SpO2 with less proactive weaning of FiO2. © 2017 S. Karger AG, Basel.
Joyner, Helen S; Jones, Kari E; Rasco, Barbara A
2017-10-01
Pasta hydration and cooking requirements make in-package microwave pasteurization of pasta a processing challenge. The objective of this study was to assess instrumental and sensory attributes of microwave-treated pasta in comparison to conventionally cooked pasta. Fettuccine pasta was parboiled for 0, 3, 6, 9, or 12 min, pasteurized by microwaves at 915 MHz, then stored under refrigeration for 1 week. Pastas were evaluated by a trained sensory panel and with rheometry. Total pasta heat treatment affected both rheological and sensory behaviors; these differences were attributed to ultrastructure differences. Significant nonlinear behavior and dominant fluid-like behavior was observed in all pastas at strains >1%. Sensory results suggested microwave pasteurization may intensify the attributes associated with the aging of pasta such as retrogradation. A clear trend between magnitude of heat treatment and attribute intensity was not observed for all sensory attributes tested. The microwave pasta with the longest parboil time showed rheological behavior most similar to conventionally cooked pasta. Principal component analysis revealed that no microwave-treated pasta was similar to the control pasta. However, pasta parboiled for 9 min before microwave treatment had the greatest number of similar sensory attributes, followed by pasta parboiled for 6 or 12 min. Further study is needed to determine overall consumer acceptance of microwave-treated pasta and whether the differences in sensory and rheological behavior would impact consumer liking. The results of this study may be applied to optimize microwave pasteurization processes for cooked pasta and similar products, such as rice. The measurement and analysis procedures can be used to evaluate processing effects on a variety of different foods to determine overall palatability. © 2017 Wiley Periodicals, Inc.
Miller, Robert; Weckesser, Lisa J; Smolka, Michael N; Kirschbaum, Clemens; Plessow, Franziska
2015-03-01
A substantial amount of research documents the impact of glucocorticoids on higher-order cognitive functioning. By contrast, surprisingly little is known about the susceptibility of basic sensory processes to glucocorticoid exposure given that the glucocorticoid receptor density in the human visual cortex exceeds those observed in prefrontal and most hippocampal brain regions. As executive tasks also rely on these sensory processes, the present study investigates the impact of glucocorticoid exposure on different performance parameters characterizing the maintenance and transfer of sensory information from iconic memory (IM; the sensory buffer of the visual system) to working memory (WM). Using a crossover factorial design, we administered one out of three doses of hydrocortisone (0.06, 0.12, or 0.24mg/kg bodyweight) and a placebo to 18 healthy young men. Thereafter participants performed a partial report task, which was used to assess their individual ability to process sensory information. Blood samples were concurrently drawn to determine free and total cortisol concentrations. The compiled pharmacokinetic and psychophysical data demonstrates that free cortisol specifically accelerated the decay of sensory information (r=0.46) without significantly affecting the selective information transfer from IM to WM or the capacity limit of WM. Specifically, nonparametric regression revealed a sigmoid dose-response relationship between free cortisol levels during the testing period and the IM decay rates. Our findings highlight that glucocorticoid exposure may not only impact on the recruitment of top-down control for an active maintenance of sensory information, but alter their passive (stimulus-driven) maintenance thereby changing the availability of information prior to subsequent executive processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Do early sensory cortices integrate cross-modal information?
Kayser, Christoph; Logothetis, Nikos K
2007-09-01
Our different senses provide complementary evidence about the environment and their interaction often aids behavioral performance or alters the quality of the sensory percept. A traditional view defers the merging of sensory information to higher association cortices, and posits that a large part of the brain can be reduced into a collection of unisensory systems that can be studied in isolation. Recent studies, however, challenge this view and suggest that cross-modal interactions can already occur in areas hitherto regarded as unisensory. We review results from functional imaging and electrophysiology exemplifying cross-modal interactions that occur early during the evoked response, and at the earliest stages of sensory cortical processing. Although anatomical studies revealed several potential origins of these cross-modal influences, there is yet no clear relation between particular functional observations and specific anatomical connections. In addition, our view on sensory integration at the neuronal level is coined by many studies on subcortical model systems of sensory integration; yet, the patterns of cross-modal interaction in cortex deviate from these model systems in several ways. Consequently, future studies on cortical sensory integration need to leave the descriptive level and need to incorporate cross-modal influences into models of the organization of sensory processing. Only then will we be able to determine whether early cross-modal interactions truly merit the label sensory integration, and how they increase a sensory system's ability to scrutinize its environment and finally aid behavior.
NASA Technical Reports Server (NTRS)
Wallace, T. A.; Yamakov, V. I.; Hochhalter, J. D.; Leser, W. P.; Warner, J. E.; Newman, J. A.; Purja Pun, G. P.; Mishin, Y.
2015-01-01
Fundamental changes to aero-vehicle management require the utilization of automated health monitoring of vehicle structural components. A novel method is the use of self-sensing materials, which contain embedded sensory particles (SP). SPs are micron-sized pieces of shape-memory alloy that undergo transformation when the local strain reaches a prescribed threshold. The transformation is a result of a spontaneous rearrangement of the atoms in the crystal lattice under intensified stress near damaged locations, generating acoustic waves of a specific spectrum that can be detected by a suitably placed sensor. The sensitivity of the method depends on the strength of the emitted signal and its propagation through the material. To study the transition behavior of the sensory particle inside a metal matrix under load, a simulation approach based on a coupled atomistic-continuum model is used. The simulation results indicate a strong dependence of the particle's pseudoelastic response on its crystallographic orientation with respect to the loading direction and suggest possible ways of optimizing particle sensitivity. The technology of embedded sensory particles will serve as the key element in an autonomous structural health monitoring system that will constantly monitor for damage initiation in service, which will enable quick detection of unforeseen damage initiation in real-time and during onground inspections.
Perception as a closed-loop convergence process.
Ahissar, Ehud; Assa, Eldad
2016-05-09
Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception.
Perception as a closed-loop convergence process
Ahissar, Ehud; Assa, Eldad
2016-01-01
Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception. DOI: http://dx.doi.org/10.7554/eLife.12830.001 PMID:27159238
ERIC Educational Resources Information Center
O'Brien, Justin; Tsermentseli, Stella; Cummins, Omar; Happe, Francesca; Heaton, Pamela; Spencer, Janine
2009-01-01
In this article, we examine the extent to which children with autism and children with learning difficulties can be discriminated from their responses to different patterns of sensory stimuli. Using an adapted version of the Short Sensory Profile (SSP), sensory processing was compared in 34 children with autism to 33 children with typical…
Clay, Olivio J.; Edwards, Jerri D.; Ross, Lesley A.; Okonkwo, Ozioma; Wadley, Virginia G.; Roth, David L.; Ball, Karlene K.
2010-01-01
Objectives: To evaluate the relationship between sensory and cognitive decline, particularly with respect to speed of processing, memory span, and fluid intelligence. Additionally, the common cause, sensory degradation and speed of processing hypotheses were compared. Methods: Structural equation modeling was used to investigate the complex relationships among age-related decrements in these areas. Results: Cross-sectional data analyses included 842 older adult participants (M = 73 years). After accounting for age-related declines in vision and processing speed, the direct associations between age and memory span and between age and fluid intelligence were nonsignificant. Older age was associated with visual decline, which was associated with slower speed of processing, which in turn was associated with greater cognitive deficits. Discussion: The findings support both the sensory degradation and speed of processing accounts of age-related cognitive decline. Further, the findings highlight positive aspects of normal cognitive aging in that older age may not be associated with a loss of fluid intelligence if visual sensory functioning and processing speed can be maintained. PMID:19436063
Central Processing Dysfunctions in Children: A Review of Research.
ERIC Educational Resources Information Center
Chalfant, James C.; Scheffelin, Margaret A.
Research on central processing dysfunctions in children is reviewed in three major areas. The first, dysfunctions in the analysis of sensory information, includes auditory, visual, and haptic processing. The second, dysfunction in the synthesis of sensory information, covers multiple stimulus integration and short-term memory. The third area of…
Phenol induced by irradiation does not impair sensory quality of fenugreek and papaya
NASA Astrophysics Data System (ADS)
Chatterjee, Suchandra; Variyar, Prasad S.; Sharma, Arun
2013-11-01
The effect of radiation processing on the sensory quality of fenugreek and papaya exposed to doses in the range of 2.5-10 kGy and 100 Gy-2.5 kGy respectively was investigated. Despite an increase in the content of phenol in the volatile oil of these food products overall sensory quality of the irradiated and control samples was not significantly affected by radiation processing.
Frank, Damian; Eyres, Graham T; Piyasiri, Udayasika; Cochet-Broch, Maeva; Delahunty, Conor M; Lundin, Leif; Appelqvist, Ingrid M
2015-10-21
The density and composition of a food matrix affect the rates of oral breakdown and in-mouth flavor release as well as the overall sensory experience. Agar gels of increasing concentration (1.0, 1.7, 2.9, and 5% agarose) with and without added fat (0, 2, 5, and 10%) were spiked with seven aroma volatiles. Differences in oral processing and sensory perception were systematically measured by a trained panel using a discrete interval time intensity method. Volatile release was measured in vivo and in vitro by proton transfer reaction mass spectrometry. Greater oral processing was required as agar gel strength increased, and the intensity of flavor-related sensory attributes decreased. Volatile release was inversely related to gel strength, showing that physicochemical phenomena were the main mechanisms underlying the perceived sensory changes. Fat addition reduced the amount of oral processing and had differential effects on release, depending on the fat solubility or lipophilicity of the volatiles.
Sensory processing issues in young children presenting to an outpatient feeding clinic.
Davis, Ann M; Bruce, Amanda S; Khasawneh, Rima; Schulz, Trina; Fox, Catherine; Dunn, Winifred
2013-02-01
The aim of the study was to describe the relation between sensory issues and medical complexity in a series of patients presenting to an outpatient multidisciplinary feeding team for evaluation, by a standardized measure of sensory-processing abilities. A retrospective chart review of all of the patients seen from 2004 to 2009 on 2 key variables: medical diagnostic category and short sensory profile (SSP) score. On the SSP, 67.6% of children scored in the clinical ("definite difference") range. The most common diagnostic categories were developmental (n = 23), gastrointestinal (n = 16), and neurological (n = 13). Behavioral and cardiorespiratory medical diagnostic categories were significantly related to SSP total score and SSP definite difference score. Children who present for feeding evaluation do indeed tend to have clinically elevated scores regarding sensory processing, and these elevated scores are significantly related to certain medical diagnostic categories. Future research is needed to determine why these significant relations exist as well as their implications for treatment of feeding-related issues.
Gohel, Bakul; Lee, Peter; Jeong, Yong
2016-08-01
Brain regions that respond to more than one sensory modality are characterized as multisensory regions. Studies on the processing of shape or object information have revealed recruitment of the lateral occipital cortex, posterior parietal cortex, and other regions regardless of input sensory modalities. However, it remains unknown whether such regions show similar (modality-invariant) or different (modality-specific) neural oscillatory dynamics, as recorded using magnetoencephalography (MEG), in response to identical shape information processing tasks delivered to different sensory modalities. Modality-invariant or modality-specific neural oscillatory dynamics indirectly suggest modality-independent or modality-dependent participation of particular brain regions, respectively. Therefore, this study investigated the modality-specificity of neural oscillatory dynamics in the form of spectral power modulation patterns in response to visual and tactile sequential shape-processing tasks that are well-matched in terms of speed and content between the sensory modalities. Task-related changes in spectral power modulation and differences in spectral power modulation between sensory modalities were investigated at source-space (voxel) level, using a multivariate pattern classification (MVPC) approach. Additionally, whole analyses were extended from the voxel level to the independent-component level to take account of signal leakage effects caused by inverse solution. The modality-specific spectral dynamics in multisensory and higher-order brain regions, such as the lateral occipital cortex, posterior parietal cortex, inferior temporal cortex, and other brain regions, showed task-related modulation in response to both sensory modalities. This suggests modality-dependency of such brain regions on the input sensory modality for sequential shape-information processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Episodic Memory Retrieval Functionally Relies on Very Rapid Reactivation of Sensory Information.
Waldhauser, Gerd T; Braun, Verena; Hanslmayr, Simon
2016-01-06
Episodic memory retrieval is assumed to rely on the rapid reactivation of sensory information that was present during encoding, a process termed "ecphory." We investigated the functional relevance of this scarcely understood process in two experiments in human participants. We presented stimuli to the left or right of fixation at encoding, followed by an episodic memory test with centrally presented retrieval cues. This allowed us to track the reactivation of lateralized sensory memory traces during retrieval. Successful episodic retrieval led to a very early (∼100-200 ms) reactivation of lateralized alpha/beta (10-25 Hz) electroencephalographic (EEG) power decreases in the visual cortex contralateral to the visual field at encoding. Applying rhythmic transcranial magnetic stimulation to interfere with early retrieval processing in the visual cortex led to decreased episodic memory performance specifically for items encoded in the visual field contralateral to the site of stimulation. These results demonstrate, for the first time, that episodic memory functionally relies on very rapid reactivation of sensory information. Remembering personal experiences requires a "mental time travel" to revisit sensory information perceived in the past. This process is typically described as a controlled, relatively slow process. However, by using electroencephalography to measure neural activity with a high time resolution, we show that such episodic retrieval entails a very rapid reactivation of sensory brain areas. Using transcranial magnetic stimulation to alter brain function during retrieval revealed that this early sensory reactivation is causally relevant for conscious remembering. These results give first neural evidence for a functional, preconscious component of episodic remembering. This provides new insight into the nature of human memory and may help in the understanding of psychiatric conditions that involve the automatic intrusion of unwanted memories. Copyright © 2016 the authors 0270-6474/16/360251-10$15.00/0.
Jacobo-Velázquez, D A; Ramos-Parra, P A; Hernández-Brenes, C
2010-08-01
High hydrostatic pressure (HHP) pasteurized and refrigerated avocado and mango pulps contain lower microbial counts and thus are safer and acceptable for human consumption for a longer period of time, when compared to fresh unprocessed pulps. However, during their commercial shelf life, changes in their sensory characteristics take place and eventually produce the rejection of these products by consumers. Therefore, in the present study, the use of sensory evaluation was proposed for the shelf-life determinations of HHP-processed avocado and mango pulps. The study focused on evaluating the feasibility of applying survival analysis methodology to the data generated by consumers in order to determine the sensory shelf lives of both HHP-treated pulps of avocado and mango. Survival analysis proved to be an effective methodology for the estimation of the sensory shelf life of avocado and mango pulps processed with HHP, with potential application for other pressurized products. Practical Application: At present, HHP processing is one of the most effective alternatives for the commercial nonthermal pasteurization of fresh tropical fruits. HHP processing improves the microbial stability of the fruit pulps significantly; however, the products continue to deteriorate during their refrigerated storage mainly due to the action of residual detrimental enzymes. This article proposes the application of survival analysis methodology for the determination of the sensory shelf life of HHP-treated avocado and mango pulps. Results demonstrated that the procedure appears to be simple and practical for the sensory shelf-life determination of HHP-treated foods when their main mode of failure is not caused by increases in microbiological counts that can affect human health.
Reduced modulation of thalamocortical connectivity during exposure to sensory stimuli in ASD.
Green, Shulamite A; Hernandez, Leanna; Bookheimer, Susan Y; Dapretto, Mirella
2017-05-01
Recent evidence for abnormal thalamic connectivity in autism spectrum disorders (ASD) and sensory processing disorders suggests the thalamus may play a role in sensory over-responsivity (SOR), an extreme negative response to sensory stimuli, which is common in ASD. However, there is yet little understanding of changes in thalamic connectivity during exposure to aversive sensory inputs in individuals with ASD. In particular, the pulvinar nucleus of the thalamus is implicated in atypical sensory processing given its role in selective attention, regulation, and sensory integration. This study aimed to examine the role of pulvinar connectivity in ASD during mildly aversive sensory input. Functional magnetic resonance imaging was used to examine connectivity with the pulvinar during exposure to mildly aversive auditory and tactile stimuli in 38 youth (age 9-17; 19 ASD, 19 IQ-matched typically developing (TD)). Parents rated children's SOR severity on two standard scales. Compared to TD, ASD participants displayed aberrant modulation of connectivity between pulvinar and cortex (including sensory-motor and prefrontal regions) during sensory stimulation. In ASD participants, pulvinar-amygdala connectivity was correlated with severity of SOR symptoms. Deficits in modulation of thalamocortical connectivity in youth with ASD may reflect reduced thalamo-cortical inhibition in response to sensory stimulation, which could lead to difficulty filtering out and/or integrating sensory information. An increase in amygdala connectivity with the pulvinar might be partially responsible for deficits in selective attention as the amygdala signals the brain to attend to distracting sensory stimuli. Autism Res 2017, 10: 801-809. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Dynamic combination of sensory and reward information under time pressure
Farashahi, Shiva; Kao, Chang-Hao
2018-01-01
When making choices, collecting more information is beneficial but comes at the cost of sacrificing time that could be allocated to making other potentially rewarding decisions. To investigate how the brain balances these costs and benefits, we conducted a series of novel experiments in humans and simulated various computational models. Under six levels of time pressure, subjects made decisions either by integrating sensory information over time or by dynamically combining sensory and reward information over time. We found that during sensory integration, time pressure reduced performance as the deadline approached, and choice was more strongly influenced by the most recent sensory evidence. By fitting performance and reaction time with various models we found that our experimental results are more compatible with leaky integration of sensory information with an urgency signal or a decision process based on stochastic transitions between discrete states modulated by an urgency signal. When combining sensory and reward information, subjects spent less time on integration than optimally prescribed when reward decreased slowly over time, and the most recent evidence did not have the maximal influence on choice. The suboptimal pattern of reaction time was partially mitigated in an equivalent control experiment in which sensory integration over time was not required, indicating that the suboptimal response time was influenced by the perception of imperfect sensory integration. Meanwhile, during combination of sensory and reward information, performance did not drop as the deadline approached, and response time was not different between correct and incorrect trials. These results indicate a decision process different from what is involved in the integration of sensory information over time. Together, our results not only reveal limitations in sensory integration over time but also illustrate how these limitations influence dynamic combination of sensory and reward information. PMID:29584717
Individual differences in emotionality and peri-traumatic processing.
Logan, Shanna; O'Kearney, Richard
2012-06-01
Recent cognitive models propose that intrusive trauma memories arise and persist because high levels of emotional arousal triggered by the trauma disrupt conceptual processing of elements of the event, while enhancing sensory/perceptual processing. A trauma film analogue design was used to investigate if the predicted facilitating effects on intrusions from inhibiting conceptual processing and predicted attenuating effects on intrusions from inhibiting sensory processing are moderated by individual differences in emotionality. One hundred and five non-clinical participants viewed a traumatic film while undertaking a conceptual interference task, a sensory interference task, or no interference task. Participants recorded the frequency and intensity of intrusions over the following week. There was no facilitating effect for the conceptual interference task compared to no interference task. A significant attenuation of the frequency of intrusions was evident for those undertaking sensory interference (ŋ(2) = .04). This effect, however, was only present for those with high trait anxiety (d = .82) and not for those with low trait anxiety (d = .08). Relative to high trait anxious controls, high anxious participants who undertook sensory interference also reported lower intensity of intrusions (d = .66). This is the first trauma film analogue study to show that the attenuating effect of concurrent sensory/perceptual processing on the frequency and intensity of subsequent intrusions is evident only for people with high trait anxiety. The results have implications for conceptual models of intrusion development and for their application to the prevention of post traumatic distress. Copyright © 2011 Elsevier Ltd. All rights reserved.
Patel, Atit A.; Cox, Daniel N.
2017-01-01
To investigate cellular, molecular and behavioral mechanisms of noxious cold detection, we developed cold plate behavioral assays and quantitative means for evaluating the predominant noxious cold-evoked contraction behavior. To characterize neural activity in response to noxious cold, we implemented a GCaMP6-based calcium imaging assay enabling in vivo studies of intracellular calcium dynamics in intact Drosophila larvae. We identified Drosophila class III multidendritic (md) sensory neurons as multimodal sensors of innocuous mechanical and noxious cold stimuli and to dissect the mechanistic bases of multimodal sensory processing we developed two independent functional assays. First, we developed an optogenetic dose response assay to assess whether levels of neural activation contributes to the multimodal aspects of cold sensitive sensory neurons. Second, we utilized CaMPARI, a photo-switchable calcium integrator that stably converts fluorescence from green to red in presence of high intracellular calcium and photo-converting light, to assess in vivo functional differences in neural activation levels between innocuous mechanical and noxious cold stimuli. These novel assays enable investigations of behavioral and functional roles of peripheral sensory neurons and multimodal sensory processing in Drosophila larvae. PMID:28835907
Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.
Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R
2016-09-21
The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Copyright © 2016 the authors 0270-6474/16/369763-07$15.00/0.
Sensory shelf-life limiting factor of high hydrostatic pressure processed avocado paste.
Jacobo-Velázquez, D A; Hernández-Brenes, C
2011-08-01
High hydrostatic pressure (HHP) processing pasteurizes avocado paste without a significant impact on flavor. Although HHP-treated avocado paste stored under refrigeration is safe for human consumption for months, sensory changes taking place during storage cause the rejection of the product by consumers within days. Although it is known that the shelf life of the product ends before its microbial counts are high, its sensory shelf life limiting factor remains unknown. The present study focused on the use of a trained panel and a consumer panel to determine the sensory shelf life limiting factor of HHP-treated avocado paste. The trained panel identified sour and rancid flavors as the main sensory descriptors (critical descriptors) that differentiated stored from freshly processed samples. Further data obtained from consumers identified sour flavor as the main cause for a significant decrease in the acceptability (shelf life limiting factor) of refrigerated HHP-treated avocado paste. The study allowed the elucidation of a proposed deterioration mechanism for HHP-treated avocado paste during its refrigerated shelf life. The information through this work enhances scientific knowledge of the product and proposes the sour flavor development during storage as a relevant sensory attribute that needs to be improved in order to enhance the product shelf life. At present, HHP is the most effective commercial nonthermal technology to process avocado paste when compared to thermal and chemical alternatives. HHP-treated avocado paste is a microbiologically stable food for a period of at least 45 d stored under refrigeration. However, previous published work indicated that consumers rejected the product after approximately 19 d of storage due to sensory changes. This manuscript presents a sensory study that permitted the identification of the critical sensory descriptor that is acting as the sensory shelf life limiting factor of the product. The data presented herein along with previous reported data allows a better understanding of the deterioration mechanism that occurs during the storage of HHP-treated avocado paste. This information is relevant and useful for the elucidation of possible alternatives to enhance the shelf life of HHP-treated avocado paste. © 2011 Institute of Food Technologists®
Late development of cue integration is linked to sensory fusion in cortex.
Dekker, Tessa M; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I; Welchman, Andrew E; Nardini, Marko
2015-11-02
Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3-5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7-9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6-12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3-5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Late Development of Cue Integration Is Linked to Sensory Fusion in Cortex
Dekker, Tessa M.; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I.; Welchman, Andrew E.; Nardini, Marko
2015-01-01
Summary Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3, 4, 5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7, 8, 9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6–12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3, 4, 5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. PMID:26480841
Jadcherla, Sudarshan Rao; Hoffmann, Raymond G.; Shaker, Reza
2014-01-01
Objectives To investigate the effect of esophageal mechanosensitive and chemosensitive stimulation on the magnitude and recruitment of peristaltic reflexes and upper esophageal sphincter (UES)-contractile reflex in premature infants. Study design Esophageal manometry and provocation testing were performed in the same 18 neonates at 33 and 36 weeks postmenstrual age (PMA). Mechanoreceptor and chemoreceptor stimulation were performed using graded volumes of air, water, and apple juice (pH 3.7), respectively. The frequency and magnitude of the resulting esophago-deglutition response (EDR) or secondary peristalsis (SP), and esophago-UES-contractile reflex (EUCR) were quantified. Results Threshold volumes to evoke EDR, SP, or EUCR were similar. The recruitment and magnitude of SP and EUCR increased with volume increments of air and water in either study (P < .05). However, apple juice infusions resulted in increased recruitment of EDR in the 33 weeks group (P < .05), and SP in the 36 weeks group (P < .05). The magnitude of EUCR was also volume responsive (all media, P < .05), and significant differences between media were noted (P < .05). At maximal stimulation (1 mL, all media), sensory-motor characteristics of peristaltic and EUCR reflexes were different (P < .05) between media and groups. Conclusions Mechano- and chemosensitive stimuli evoke volume-dependent specific peristaltic and UES reflexes at 33 and 36 weeks PMA. The recruitment and magnitude of these reflexes are dependent on the physicochemical properties of the stimuli in healthy premature infants. PMID:16860132
Gee, Bryan M; Thompson, Kelly; St John, Holly
2014-03-01
Sound-based interventions (SBIs) are being used by paediatric occupational therapists to help children with autism spectrum disorders and co-morbid sensory processing disorders. A limited yet growing body of evidence is emerging related to the efficacy of SBIs in reducing sensory processing deficits among paediatric clients with co-morbid conditions. The current study employed an ABA single-subject case-controlled design, implementing The Listening Program® with a 7-year-old child diagnosed with autism spectrum disorder who demonstrated auditory sensory over-responsivity (SOR). The intervention consisted of 10 weeks of psycho-acoustically modified classical music that was delivered using specialized headphones and amplifier and a standard CD player. Repeated measures were conducted during the A(1), B and A(2) phases of the study using the Sensory Processing Measure, a subjective caregiver questionnaire, and the Sensory Over-Responsivity Scales, an examiner-based assessment measure to track changes of the participant's auditory SOR-related behaviours. The results indicated that the participant exhibited a decrease in the number of negative (avoidant, verbal and physical negative) and self-stimulatory behaviours. The decreases in negative and self-stimulatory behaviour may have been due to the therapeutic effect of the repeated exposure to the Sensory Over-Responsivity Scales or The Listening Program SBI. Copyright © 2013 John Wiley & Sons, Ltd.
Lakie, Martin; Loram, Ian D
2006-01-01
Ten subjects balanced their own body or a mechanically equivalent unstable inverted pendulum by hand, through a compliant spring linkage. Their balancing process was always characterized by repeated small reciprocating hand movements. These bias adjustments were an observable sign of intermittent alterations in neural output. On average, the adjustments occurred at intervals of ∼400 ms. To generate appropriate stabilizing bias adjustments, sensory information about body or load movement is needed. Subjects used visual, vestibular or proprioceptive sensation alone and in combination to perform the tasks. We first ask, is the time between adjustments (bias duration) sensory specific? Vision is associated with slow responses. Other senses involved with balance are known to be faster. Our second question is; does bias duration depend on sensory abundance? An appropriate bias adjustment cannot occur until unplanned motion is unambiguously perceived (a sensory threshold). The addition of more sensory data should therefore expedite action, decreasing the mean bias adjustment duration. Statistical analysis showed that (1) the mean bias adjustment duration was remarkably independent of the sensory modality and (2) the addition of one or two sensory modalities made a small, but significant, decrease in the mean bias adjustment duration. Thus, a threshold effect can alter only a very minor part of the bias duration. The bias adjustment duration in manual balancing must reflect something more than visual sensation and perceptual thresholds; our suggestion is that it is a common central motor planning process. We predict that similar processes may be identified in the control of standing. PMID:16959857
Fujimoto, Shinta
2015-01-01
Abstract Marine tardigrades of the family Halechiniscidae (Heterotardigrada: Arthrotardigrada) are reported from Oura Bay, Okinawajima, one of the Ryukyu Islands, Japan, including Dipodarctus sp., Florarctus wunai sp. n., Halechiniscus churakaagii sp. n., Halechiniscus yanakaagii sp. n. and Styraconyx sp. The attributes distinguishing Florarctus wunai sp. n. from its congeners is a combination of two characters, the smooth dorsal cuticle and two small projections of the caudal alae caestus. Halechiniscus churakaagii sp. n. is differentiated from its congeners by the combination of two characters, the robust cephalic cirrophores and the scapular processes with flat oval tips, while Halechiniscus yanakaagii sp. n. can be identified by the laterally protruded arched double processes with acute tips situated dorsally at the level of leg I. A list of marine tardigrades reported from the Ryukyu Islands is provided. PMID:25755627
Jazzar, Souhir; Quesada-Medina, Joaquín; Olivares-Carrillo, Pilar; Marzouki, Mohamed Néjib; Acién-Fernández, Francisco Gabriel; Fernández-Sevilla, José María; Molina-Grima, Emilio; Smaali, Issam
2015-08-01
A coupled process combining microalgae production with direct supercritical biodiesel conversion using a reduced number of operating steps is proposed in this work. Two newly isolated native microalgae strains, identified as Chlorella sp. and Nannochloris sp., were cultivated in both batch and continuous modes. Maximum productivities were achieved during continuous cultures with 318mg/lday and 256mg/lday for Chlorella sp. and Nannochloris sp., respectively. Microalgae were further characterized by determining their photosynthetic performance and nutrient removal efficiency. Biodiesel was produced by catalyst-free in situ supercritical methanol transesterification of wet unwashed algal biomass (75wt.% of moisture). Maximum biodiesel yields of 45.62wt.% and 21.79wt.% were reached for Chlorella sp. and Nannochloris sp., respectively. The analysis of polyunsaturated fatty acids of Chlorella sp. showed a decrease in their proportion when comparing conventional and supercritical transesterification processes (from 37.4% to 13.9%, respectively), thus improving the quality of the biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.
NPY2-receptor variation modulates iconic memory processes.
Arning, Larissa; Stock, Ann-Kathrin; Kloster, Eugen; Epplen, Jörg T; Beste, Christian
2014-08-01
Sensory memory systems are modality-specific buffers that comprise information about external stimuli, which represent the earliest stage of information processing. While these systems have been the subject of cognitive neuroscience research for decades, little is known about the neurobiological basis of sensory memory. However, accumulating evidence suggests that the glutamatergic system and systems influencing glutamatergic neural transmission are important. In the current study we examine if functional promoter variations in neuropeptide Y (NPY) and its receptor gene NPY2R affect iconic memory processes using a partial report paradigm. We found that iconic memory decayed much faster in individuals carrying the rare promoter NPY2R G allele which is associated with increased expression of the Y2 receptor. Possibly this effect is due to altered presynaptic inhibition of glutamate release, known to be modulated by Y2 receptors. Altogether, our results provide evidence that the functionally relevant single nucleotide polymorphism (SNP) in the NPY2R promoter gene affect circumscribed processes of early sensory processing, i.e. only the stability of information in sensory memory buffers. This leads us to suggest that especially the stability of information in sensory memory buffers depends on glutamatergic neural transmission and factors modulating glutamatergic turnover. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry
2010-01-01
Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. PMID:20580644
Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry
2010-08-06
Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. Copyright 2010 Elsevier Ltd. All rights reserved.
"Walking" through the sensory, cognitive, and temporal degradations of healthy aging.
Paraskevoudi, Nadia; Balcı, Fuat; Vatakis, Argiro
2018-05-09
As we age, there is a wide range of changes in motor, sensory, cognitive, and temporal processing due to alterations in the functioning of the central nervous and musculoskeletal systems. Specifically, aging is associated with degradations in gait; altered processing of the individual sensory systems; modifications in executive control, memory, and attention; and changes in temporal processing. These age-related alterations are often inter-related and have been suggested to result from shared neural substrates. Additionally, the overlap between these brain areas and those controlling walking raises the possibility of facilitating performance in several tasks by introducing protocols that can efficiently target all four domains. Attempts to counteract these negative effects of normal aging have been focusing on research to prevent falls and/or enhance cognitive processes, while ignoring the potential multisensory benefits accompanying old age. Research shows that the aging brain tends to increasingly rely on multisensory integration to compensate for degradations in individual sensory systems and for altered neural functioning. This review covers the age-related changes in the above-mentioned domains and the potential to exploit the benefits associated with multisensory integration in aging so as to improve one's mobility and enhance sensory, cognitive, and temporal processing. © 2018 New York Academy of Sciences.
Jimenez-Villarreal, J R; Pohlman, F W; Johnson, Z B; Brown, A H
2003-11-01
The impact of multiple antimicrobial interventions on ground beef processing, lipid, textural, instrumental color and sensory characteristics were evaluated. Beef trimmings were treated with 0.5% cetylpyridinium chloride followed by 10% trisodium phosphate (CT), 200-ppm chlorine dioxide followed by 0.5% cetylpyridinium chloride (CLC), 200-ppm chlorine dioxide followed by 10% trisodium phosphate (CLT), or 2% lactic acid followed by 0.5% cetylpyridinium chloride (LC) and compared to an untreated control (C). Sensory panelists found LC and CT treatments similar (P>0.05) in grinding ability to C. By day 2 of display, CT, CLT and LC patties were redder (a(∗); P<0.05) than C. Sensory panelists found CT patties redder (P<0.05) than C by day 2 of display. Sensory panelists found CT and CLT juicier than C. Therefore, the use of these multiple antimicrobial intervention agents on beef trimmings may improve sensory characteristics and shelf-life of ground beef patties.
A piece of the action: Modulation of sensory-motor regions by action idioms and metaphors
Desai, Rutvik H.; Conant, Lisa L.; Binder, Jeffrey R.; Park, Haeil; Seidenberg, Mark S.
2013-01-01
The idea that the conceptual system draws on sensory and motor systems has received considerable experimental support in recent years. Whether the tight coupling between sensory-motor and conceptual systems is modulated by factors such as context or task demands is a matter of controversy. Here, we tested the context sensitivity of this coupling by using action verbs in three different types of sentences in an fMRI study: literal action, apt but non-idiomatic action metaphors, and action idioms. Abstract sentences served as a baseline. The result showed involvement of sensory-motor areas for literal and metaphoric action sentences, but not for idiomatic ones. A trend of increasing sensory-motor activation from abstract to idiomatic to metaphoric to literal sentences was seen. These results support a gradual abstraction process whereby the reliance on sensory-motor systems is reduced as the abstractness of meaning as well as conventionalization is increased, highlighting the context sensitive nature of semantic processing. PMID:23891645
Habdank-Wojewódzki, Tadeusz; Habdank, Josef; Cwik, Przemyslaw; Zimowski, Slawomir
2016-01-01
CuO and V2O5 graphene quantum tunneling composites (GQTC) presented in this article were produced and their sensory properties were analyzed. The composites were synthesised using two stage high-power milling process, which resulted in materials that have good temeprature and pressure sensory properties. Described production process defines internal structure of materials such that when used as sensor in the desired range, it exhibits a strong percolation effect. The experiment, with controlled changing physical conditions during electrotribological measurement, enabled analyzing of the composites’ conductivity as a function of the sensory properties: applied temperature, pressure, tangential force and wear. The sensory characteristic was successfully modelled by invertible generalized equations, and used to create sensor capable of estimating temperature or pressure in the real time. The developed materials have the potential to be applied in the areas where miniaturization is essential, due to the materials exhibiting good sensory properties in mini and micro scale. PMID:26742044
Habdank-Wojewódzki, Tadeusz; Habdank, Josef; Cwik, Przemyslaw; Zimowski, Slawomir
2016-01-05
CuO and V₂O₅ graphene quantum tunneling composites (GQTC) presented in this article were produced and their sensory properties were analyzed. The composites were synthesised using two stage high-power milling process, which resulted in materials that have good temeprature and pressure sensory properties. Described production process defines internal structure of materials such that when used as sensor in the desired range, it exhibits a strong percolation effect. The experiment, with controlled changing physical conditions during electrotribological measurement, enabled analyzing of the composites' conductivity as a function of the sensory properties: applied temperature, pressure, tangential force and wear. The sensory characteristic was successfully modelled by invertible generalized equations, and used to create sensor capable of estimating temperature or pressure in the real time. The developed materials have the potential to be applied in the areas where miniaturization is essential, due to the materials exhibiting good sensory properties in mini and micro scale.
A piece of the action: modulation of sensory-motor regions by action idioms and metaphors.
Desai, Rutvik H; Conant, Lisa L; Binder, Jeffrey R; Park, Haeil; Seidenberg, Mark S
2013-12-01
The idea that the conceptual system draws on sensory and motor systems has received considerable experimental support in recent years. Whether the tight coupling between sensory-motor and conceptual systems is modulated by factors such as context or task demands is a matter of controversy. Here, we tested the context sensitivity of this coupling by using action verbs in three different types of sentences in an fMRI study: literal action, apt but non-idiomatic action metaphors, and action idioms. Abstract sentences served as a baseline. The result showed involvement of sensory-motor areas for literal and metaphoric action sentences, but not for idiomatic ones. A trend of increasing sensory-motor activation from abstract to idiomatic to metaphoric to literal sentences was seen. These results support a gradual abstraction process whereby the reliance on sensory-motor systems is reduced as the abstractness of meaning as well as conventionalization is increased, highlighting the context sensitive nature of semantic processing. © 2013.
How mechanisms of perceptual decision-making affect the psychometric function.
Gold, Joshua I; Ding, Long
2013-04-01
Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the "neurometric" sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mineralisation assays of some organic resources of aquatic systems.
Bitar, A L; Bianchini, Júnior I
2002-11-01
Assays were carried out to evaluate the consumption of dissolved oxygen resulting from mineralisation processes in resources usually found in aquatic systems. They were also aimed at estimating the oxygen uptake rate of each investigated process. Experiments were conducted using substrates from 3 different places. A fixed amount of substrate was added to 5 litres of water from Lagoa do Infernão that was previously filtered with glass wool. After adding the substrates the bottles were aired and the amount of dissolved oxygen and the temperature were monitored for 55 days. The occurrence of anaerobic processes was avoided by reoxygenating the bottles. The experimental results were fitted to a first order kinetics model, from which the consumption of dissolved oxygen owing to mineralisation processes was obtained. The amount of oxygen uptake from the mineralisation processes appeared in the following decreasing order: Wolffia sp., Cabomba sp., Lemna sp., DOM (Dissolved Organic Matter), Salvinia sp., Scirpus cubensis, stem, Eichhornia azurea, sediment and humic compounds. The deoxygenation rates (day-1) were: 0.267 (humic compounds), 0.230 (Lemna sp.), 0.199 (E. azurea), 0.166 (S. cubensis), 0.132 (sediment), 0.126 (DOM), 0.093 (Cabomba sp.), 0.091 (stem), 0.079 (Salvinia sp. and Wolffia sp.). From these results, 2 groups of resources could be identified: the first one consists of detritus with higher amounts of labile (ready to use) compounds, which show a higher global oxygen uptake during the mineralisation process; the second one consists mainly of resources that show refracting characteristics. However, when the consumption rates are analysed it is noted that the mineralised parts of the refracting substrates can be easier to process than the labile fractions of the less refracting resources.
Roh, Kyung-Baeg; Kim, Chan-Hee; Lee, Hanna; Kwon, Hyun-Mi; Park, Ji-Won; Ryu, Ji-Hwan; Kurokawa, Kenji; Ha, Nam-Chul; Lee, Won-Jae; Lemaitre, Bruno; Söderhäll, Kenneth; Lee, Bok-Luel
2009-01-01
The insect Toll signaling pathway is activated upon recognition of Gram-positive bacteria and fungi, resulting in the expression of antimicrobial peptides via NF-κB-like transcription factor. This activation is mediated by a serine protease cascade leading to the processing of Spätzle, which generates the functional ligand of the Toll receptor. Recently, we identified three serine proteases mediating Toll pathway activation induced by lysine-type peptidoglycan of Gram-positive bacteria. However, the identities of the downstream serine protease components of Gram-negative-binding protein 3 (GNBP3), a receptor for a major cell wall component β-1,3-glucan of fungi, and their order of activation have not been characterized yet. Here, we identified three serine proteases that are required for Toll activation by β-1,3-glucan in the larvae of a large beetle, Tenebrio molitor. The first one is a modular serine protease functioning immediately downstream of GNBP3 that proteolytically activates the second one, a Spätzle-processing enzyme-activating enzyme that in turn activates the third serine protease, a Spätzle-processing enzyme. The active form of Spätzle-processing enzyme then cleaves Spätzle into the processed Spätzle as Toll ligand. In addition, we show that injection of β-1,3-glucan into Tenebrio larvae induces production of two antimicrobial peptides, Tenecin 1 and Tenecin 2, which are also inducible by injection of the active form of Spätzle-processing enzyme-activating enzyme or processed Spätzle. These results demonstrate a three-step proteolytic cascade essential for the Toll pathway activation by fungal β-1,3-glucan in Tenebrio larvae, which is shared with lysine-type peptidoglycan-induced Toll pathway activation. PMID:19473968
Morphological and neurochemical differences in peptidergic nerve fibers of the mouse vagina.
Barry, Christine M; Ji, Esther; Sharma, Harman; Beukes, Lara; Vilimas, Patricia I; DeGraaf, Yvette C; Matusica, Dusan; Haberberger, Rainer V
2017-07-01
The vagina is innervated by a complex arrangement of sensory, sympathetic, and parasympathetic nerve fibers that contain classical transmitters plus an array of neuropeptides and enzymes known to regulate diverse processes including blood flow and nociception. The neurochemical characteristics and distributions of peptide-containing nerves in the mouse vagina are unknown. This study used multiple labeling immunohistochemistry, confocal maging and analysis to investigate the presence and colocalization of the peptides vasoactive intestinal polypeptide (VIP), calcitonin-gene related peptide (CGRP), substance P (SP), neuropeptide tyrosine (NPY), and the nitric oxide synthesizing enzyme neuronal nitric oxide synthase (nNOS) in nerve fibers of the murine vaginal wall. We compared cervical and vulvar areas of the vagina in young nullipara and older multipara C57Bl/6 mice, and identified differences including that small ganglia were restricted to cervical segments, epithelial fibers were mainly present in vulvar segments and most nerve fibers were found in the lamina propria of the cervical region of the vagina, where a higher number of fibers containing immunoreactivity for VIP, CGRP, SP, or nNOS were found. Two populations of VIP-containing fibers were identified: fibers containing CGRP and fibers containing VIP but not CGRP. Differences between young and older mice were present in multiple layers of the vaginal wall, with older mice showing overall loss of innervation of epithelium of the proximal vagina and reduced proportions of VIP, CGRP, and SP containing nerve fibers in the distal epithelium. The distal vagina also showed increased vascularization and perivascular fibers containing NPY. Immunolabeling of ganglia associated with the vagina indicated the likely origin of some peptidergic fibers. Our results reveal regional differences and age- or parity-related changes in innervation of the mouse vagina, effecting the distribution of neuropeptides with diverse roles in function of the female genital tract. © 2017 Wiley Periodicals, Inc.
Differential effects of ADORA2A gene variations in pre-attentive visual sensory memory subprocesses.
Beste, Christian; Stock, Ann-Kathrin; Ness, Vanessa; Epplen, Jörg T; Arning, Larissa
2012-08-01
The ADORA2A gene encodes the adenosine A(2A) receptor that is highly expressed in the striatum where it plays a role in modulating glutamatergic and dopaminergic transmission. Glutamatergic signaling has been suggested to play a pivotal role in cognitive functions related to the pre-attentive processing of external stimuli. Yet, the precise molecular mechanism of these processes is poorly understood. Therefore, we aimed to investigate whether ADORA2A gene variation has modulating effects on visual pre-attentive sensory memory processing. Studying two polymorphisms, rs5751876 and rs2298383, in 199 healthy control subjects who performed a partial-report paradigm, we find that ADORA2A variation is associated with differences in the efficiency of pre-attentive sensory memory sub-processes. We show that especially the initial visual availability of stimulus information is rendered more efficiently in the homozygous rare genotype groups. Processes related to the transfer of information into working memory and the duration of visual sensory (iconic) memory are compromised in the homozygous rare genotype groups. Our results show a differential genotype-dependent modulation of pre-attentive sensory memory sub-processes. Hence, we assume that this modulation may be due to differential effects of increased adenosine A(2A) receptor signaling on glutamatergic transmission and striatal medium spiny neuron (MSN) interaction. Copyright © 2011 Elsevier B.V. and ECNP. All rights reserved.
Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation.
Akolkar, A V; Durai, D; Desai, A J
2010-07-01
Application of Halobacterium sp. SP1(1) for the acceleration of fish sauce fermentation. Traditional fish sauce fermentation was mimicked using Halobacterium sp. SP1(1) as starter culture. Protease activity, peptide release and α-amino content (parameters used to monitor the progress of the fermentation) were high at day 10 in tests and day 20 in un-inoculated controls. The total protein and nitrogen contents were also high in tests compared with controls. The amino acid profile observed at the end of fermentation in experimental samples, when compared with the commercial sauce preparation, was found to be better with respect to flavour and aroma contributing amino acids as well as essential amino acid lysine. Microflora analysis of the final fish sauce revealed the absence of any nonhalophilic or halotolerant micro-organisms. The protease-producing halophilic isolates obtained from the fish sauce of eviscerated and uneviscerated controls were identified as Halobacterium sp. F1 and F2, respectively, by 16S rDNA sequence analysis. Exogenous augmentation of Halobacterium sp. SP1(1) accelerated the fish sauce fermentation process with an additive effect on the existing natural microflora present in the fish during fermentation. Halobacterium sp SP1(1), therefore, can be used as an important starter culture for accelerating the fish fermentation process, which is attributed to its extracellular protease. The present study is the first report on use of Halobacterium species as a starter culture for accelerating fish sauce fermentation. Use of halobacterial starter cultures may revolutionize the process in fish sauce industries by reducing the fermentation time and making the process more economical with improved nutritive value of product. Journal compilation © 2009 The Society for Applied Microbiology. No claim to Indian Government works.
Glennon, Tara J.; Ausderau, Karla; Bendixen, Roxanna M.; Kuhaneck, Heather Miller; Pfeiffer, Beth; Watling, Renee; Wilkinson, Kimberly; Bodison, Stefanie C.
2017-01-01
Pediatric occupational therapy practitioners frequently provide interventions for children with differences in sensory processing and integration. Confusion exists regarding how best to intervene with these children and about how to describe and document methods. Some practitioners hold the misconception that Ayres Sensory Integration intervention is the only approach that can and should be used with this population. The issue is that occupational therapy practitioners must treat the whole client in varied environments; to do so effectively, multiple approaches to intervention often are required. This article presents a framework for conceptualizing interventions for children with differences in sensory processing and integration that incorporates multiple evidence-based approaches. To best meet the needs of the children and families seeking occupational therapy services, interventions must be focused on participation and should be multifaceted. PMID:28218599
Metaphorically Feeling: Comprehending Textural Metaphors Activates Somatosensory Cortex
ERIC Educational Resources Information Center
Lacey, Simon; Stilla, Randall; Sathian, K.
2012-01-01
Conceptual metaphor theory suggests that knowledge is structured around metaphorical mappings derived from physical experience. Segregated processing of object properties in sensory cortex allows testing of the hypothesis that metaphor processing recruits activity in domain-specific sensory cortex. Using functional magnetic resonance imaging…
The Inversion of Sensory Processing by Feedback Pathways: A Model of Visual Cognitive Functions.
ERIC Educational Resources Information Center
Harth, E.; And Others
1987-01-01
Explains the hierarchic structure of the mammalian visual system. Proposes a model in which feedback pathways serve to modify sensory stimuli in ways that enhance and complete sensory input patterns. Investigates the functioning of the system through computer simulations. (ML)
Matak, Ivica; Tékus, Valéria; Bölcskei, Kata; Lacković, Zdravko; Helyes, Zsuzsanna
2017-09-01
The antinociceptive action of botulinum toxin type A (BoNT/A) has been demonstrated in behavioral animal studies and clinical settings. It was shown that this effect is associated with toxin activity in CNS, however, the mechanism is not fully understood. Substance P (SP) is one of the dominant neurotransmitters in primary afferent neurons transmitting pain and itch. Thus, here we examined association of SP-mediated transmission and BoNT/A antinociceptive action by employing gene knockouts. Antinociceptive activity of intraplantarly (i.pl.) injected BoNT/A was examined in mice lacking the gene encoding for SP/neurokinin A (tac1 -/- ) or SP-preferred receptor neurokinin 1 (tac1r -/- ), compared to control C57Bl/6J wild type animals. BoNT/A action was assessed in inflammatory pain induced by formalin and CFA, and neuropathic pain induced by partial sciatic nerve ligation. BoNT/A activity in CNS was examined by c-Fos and BoNT/A-cleaved SNAP-25 immunohistochemistry. In wild type mice, acute (formalin-evoked) and chronic pain (neuropathic and inflammatory) was reduced by peripherally injected BoNT/A. In tac1 -/- and tac1r -/- knockout mice, BoNT/A exerted no analgesic effect. In control animals BoNT/A reduced the formalin-evoked c-Fos expression in lumbar dorsal horn, while in knockout mice the c-Fos expression was not reduced. After peripheral toxin injection, cleaved SNAP-25 occurred in lumbar dorsal horn in all animal genotypes. BoNT/A antinociceptive activity is absent in animals lacking the SP and neurokinin 1 receptor encoding genes, in spite of presence of toxin's enzymatic activity in central sensory regions. Thus, we conclude that the integrity of SP-ergic system is necessary for the antinociceptive activity of BoNT/A. Copyright © 2017. Published by Elsevier Ltd.
Lemasson, B H; Anderson, J J; Goodwin, R A
2009-12-21
We explore mechanisms associated with collective animal motion by drawing on the neurobiological bases of sensory information processing and decision-making. The model uses simplified retinal processes to translate neighbor movement patterns into information through spatial signal integration and threshold responses. The structure provides a mechanism by which individuals can vary their sets of influential neighbors, a measure of an individual's sensory load. Sensory loads are correlated with group order and density, and we discuss their adaptive values in an ecological context. The model also provides a mechanism by which group members can identify, and rapidly respond to, novel visual stimuli.
N-cadherin expression in palisade nerve endings of rat vellus hairs.
Kaidoh, Toshiyuki; Inoué, Takao
2008-02-01
Palisade nerve endings (PNs) are mechanoreceptors around vellus hairs of mammals. Each lanceolate nerve ending (LN) of the PN is characterized by a sensory nerve ending symmetrically sandwiched by two processes of type II terminal Schwann cells (tSCIIs). However, the molecular mechanisms underlying the structural organization of the PN are poorly understood. Electron microscopy showed that adherens junctions appeared to adhere to the sensory nerve ending and tSCII processes, so we examined the location of the N-cadherin adhesion system in PNs of rat vellus hairs by using immunoelectron microscopy. N-cadherin localized near both ends of the cell boundary between sensory nerve ending and tSCII processes, which corresponded to the sites of adherens junctions. We further found cadherin-associated proteins, alpha- and beta-catenins, at the linings of adherens junctions. Three-dimensional reconstruction of immunoelectron microscopic serial thin sections showed four linear arrays of N-cadherin arranged longitudinally along the LN beneath the four longitudinal borders of two tSCII processes. In contrast, sensory nerve fibers just proximal to the LNs formed common unmyelinated nerve fibers, in which N-cadherin was located mainly at the mesaxon of type I terminal Schwann cells (tSCIs). These results suggest that the four linear arrays of N-cadherin-mediated junctions adhere the sensory nerve ending and tSCII processes side by side to form the characteristic structure of the LN, and the structural differences between the LNs and the proximal unmyelinated nerve fibers possibly are due to the difference in the pattern of N-cadherin expression between sensory nerve endings and tSCII or tSCI processes. (c) 2007 Wiley-Liss, Inc.
Fungi in spices and mycotoxigenic potential of some Aspergilli isolated.
Garcia, Marcelo Valle; Parussolo, Gilson; Moro, Camila Brombilla; Bernardi, Angélica Olivier; Copetti, Marina Venturini
2018-08-01
The aim of this study was to identify fungal species present in 200 samples of rosemary, fennel, cinnamon, clove, pepperoni, black and white pepper and oregano and evaluate the mycotoxigenic potential of the some Aspergilli isolated. Clove, black and white peppers were analyzed by direct plating. For rosemary, cinnamon, fennel, pepperoni pepper and oregano samples were used spread plate. Mycotoxigenic capacity was verified by the agar plug method. With the exception of clove, all the spices showed high fungal contamination, especially by Aspergillus sp., Penicillium sp. and Cladosporium sp. Frequency of toxigenic Aspergillus spp. was intense in white and black peppers, with presence of Aspergillus flavus (up to 32%), Aspergillus nomius (up to 12%), Aspergillus parasiticus (up to 4%), Aspergillus niger complex (up to 52%), Aspergillus ochraceus (up 12%) and Aspergillus carbonarius (up to 4%). 14,2% of A. flavus isolated from black pepper were aflatoxins producers. In the white pepper, 66.7% of A. flavus isolates and 100% of A. nomius were aflatoxigenic. Oregano showed the highest number of A. niger complex isolates (49), however, only 2.04% produced ochratoxin A. This study showed a huge fungal presence in spices, which could compromise the sensorial quality of these products and represent a hazard for consumers. Copyright © 2018. Published by Elsevier Ltd.
2017-10-01
networks of the brain responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased...4 For each subject, the rsFMRI voxel time-series were temporally shifted to account for differences in slice acquisition times...responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased connectivity in
Sensory integration: neuronal filters for polarized light patterns.
Krapp, Holger G
2014-09-22
Animal and human behaviour relies on local sensory signals that are often ambiguous. A new study shows how tuning neuronal responses to celestial cues helps locust navigation, demonstrating a common principle of sensory information processing: the use of matched filters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Developing Sense Perception in the Multicultural Classroom.
ERIC Educational Resources Information Center
Far West Lab. for Educational Research and Development, San Francisco, CA.
This guide provides group activities for teachers to aid in planning a multicultural curriculum for developing sensory perception in children. The guide emphasizes the cognitive processes involved in sorting out sensory data and the use of multicultural materials as resources for sensory experience. Activities are presented in six sections.…
Designing a Training Program for Understanding Sensory Losses in Aging
ERIC Educational Resources Information Center
Shore, Herbert
1976-01-01
Techniques have been developed for research and teaching purposes on the sensory losses that accompany the aging process. By experiencing the sensory loss, those working with the aged understand how the environment and professional interaction can assist, support, and enhance coping and functioning by the older person. (Author)
Sensory Over-Responsivity in Adults with Autism Spectrum Conditions
ERIC Educational Resources Information Center
Tavassoli, Teresa; Miller, Lucy J.; Schoen, Sarah A.; Nielsen, Darci M.; Baron-Cohen, Simon
2014-01-01
Anecdotal reports and empirical evidence suggest that sensory processing issues are a key feature of autism spectrum conditions. This study set out to investigate whether adults with autism spectrum conditions report more sensory over-responsivity than adults without autism spectrum conditions. Another goal of the study was to identify whether…
Meaning and the Elimination of Sensory Interference
ERIC Educational Resources Information Center
Nelson, Douglas L.; And Others
1976-01-01
Research has indicated that interference produced by the sharing of sensory features of paired-associate stimulus words was not eliminated by processing the pairs at the meaning level. These experiments were intended to extend the range of conditions under which the sensory interference effect might persist, and to incorporate the findings within…
Sanfratello, Lori; Aine, Cheryl; Stephen, Julia
2018-05-25
Impairments in auditory and visual processing are common in schizophrenia (SP). In the unisensory realm visual deficits are primarily noted for the dorsal visual stream. In addition, insensitivity to timing offsets between stimuli are widely reported for SP. The aim of the present study was to test at the physiological level differences in dorsal/ventral stream visual processing and timing sensitivity between SP and healthy controls (HC) using MEG and a simple auditory/visual task utilizing a variety of multisensory conditions. The paradigm included all combinations of synchronous/asynchronous and central/peripheral stimuli, yielding 4 task conditions. Both HC and SP groups showed activation in parietal areas (dorsal visual stream) during all multisensory conditions, with parietal areas showing decreased activation for SP relative to HC, and a significantly delayed peak of activation for SP in intraparietal sulcus (IPS). We also observed a differential effect of stimulus synchrony on HC and SP parietal response. Furthermore, a (negative) correlation was found between SP positive symptoms and activity in IPS. Taken together, our results provide evidence of impairment of the dorsal visual stream in SP during a multisensory task, along with an altered response to timing offsets between presented multisensory stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.
Closed-Loop Estimation of Retinal Network Sensitivity by Local Empirical Linearization
2018-01-01
Abstract Understanding how sensory systems process information depends crucially on identifying which features of the stimulus drive the response of sensory neurons, and which ones leave their response invariant. This task is made difficult by the many nonlinearities that shape sensory processing. Here, we present a novel perturbative approach to understand information processing by sensory neurons, where we linearize their collective response locally in stimulus space. We added small perturbations to reference stimuli and tested if they triggered visible changes in the responses, adapting their amplitude according to the previous responses with closed-loop experiments. We developed a local linear model that accurately predicts the sensitivity of the neural responses to these perturbations. Applying this approach to the rat retina, we estimated the optimal performance of a neural decoder and showed that the nonlinear sensitivity of the retina is consistent with an efficient encoding of stimulus information. Our approach can be used to characterize experimentally the sensitivity of neural systems to external stimuli locally, quantify experimentally the capacity of neural networks to encode sensory information, and relate their activity to behavior. PMID:29379871
Analysis of sensory processing in preterm infants.
Cabral, Thais Invenção; da Silva, Louise Gracelli Pereira; Martinez, Cláudia Maria Simões; Tudella, Eloisa
2016-12-01
Premature birth suggests condition of biological vulnerability, predisposing to neurological injuries, requiring hospitalization in Neonatal Intensive Care Units, which, while contributing to increase the survival rates, expose infants to sensory stimuli harmful to the immature organism. To evaluate the sensory processing at 4 and 6months' corrected age. This was a descriptive cross-sectional study with a sample of 30 infants divided into an experimental group composed of preterm infants (n=15), and a control group composed of full-term infants (n=15). The infants were assessed using the Test of Sensory Functions in Infants. The preterm infants showed poor performance in the total score of the test in reactivity to tactile deep pressure and reactivity to vestibular stimulation. When groups were compared, significant differences in the total score (p=0.0113) and in the reactivity to tactile deep pressure (p<0.0001) were found. At 4 and 6months of corrected age, the preterm infants showed alterations in sensory processing. These changes were most evident in reactivity to tactile deep pressure and vestibular stimulation. Copyright © 2016. Published by Elsevier Ireland Ltd.
Concept Representation Reflects Multimodal Abstraction: A Framework for Embodied Semantics
Fernandino, Leonardo; Binder, Jeffrey R.; Desai, Rutvik H.; Pendl, Suzanne L.; Humphries, Colin J.; Gross, William L.; Conant, Lisa L.; Seidenberg, Mark S.
2016-01-01
Recent research indicates that sensory and motor cortical areas play a significant role in the neural representation of concepts. However, little is known about the overall architecture of this representational system, including the role played by higher level areas that integrate different types of sensory and motor information. The present study addressed this issue by investigating the simultaneous contributions of multiple sensory-motor modalities to semantic word processing. With a multivariate fMRI design, we examined activation associated with 5 sensory-motor attributes—color, shape, visual motion, sound, and manipulation—for 900 words. Regions responsive to each attribute were identified using independent ratings of the attributes' relevance to the meaning of each word. The results indicate that these aspects of conceptual knowledge are encoded in multimodal and higher level unimodal areas involved in processing the corresponding types of information during perception and action, in agreement with embodied theories of semantics. They also reveal a hierarchical system of abstracted sensory-motor representations incorporating a major division between object interaction and object perception processes. PMID:25750259
Lindström, Eva G; Andersson, Rolf G G
1997-01-01
Our aim was to determine if antigen challenge stimulates sensory nerves and provokes the release of tachykinins. The involvement of histamine and bradykinin was studied by using specific receptor antagonists. Capsaicin-induced responses were also examined. Experiments were performed in vitro on tracheal and bronchial preparations from ovalbumin-sensitized guinea-pigs. Characterization of ovalbumin-induced contraction, with regard to histamine and bradykinin, was carried out on airway ring preparations in the presence of phosphoramidon. The histamine H1 receptor antagonist pyrilamine reduced allergen-induced bronchial contractions by about 30%, whereas the bradykinin B2 receptor antagonist icatibant (Hoe 140) did not significantly affect the response. Combined treatment with pyrilamine (1 μM) and icatibant (0.1 μM) reduced the contractions by about 80%, indicating a synergistic inhibitory action. Tracheal preparations were not significantly affected by treatments, neither were capsaicin-induced contractions. To study the outflow of tachykinins, we used a perfused bronchial-tube preparation, allowing simultaneous measurement of smooth muscle tension and mediator release. Neurokinin A-like immunoreactivity (NKA-LI) and substance P-like immunoreactivity (SP-LI) were determined by radioimmunoassay. The results of the perfusion study showed an increased outflow of NKA-LI into the perfusate in response to ovalbumin (127% of basal) challenge. SP-LI determined in some of the samples showed a much lower amount (40 to 70 times lower) of SP-LI than NKA-LI. Treatment with icatibant and pyrilamine, separately and in combination, significantly reduced the ovalbumin-induced NKA-LI outflow by 38%, 26% and 22%, respectively. Capsaicin-induced outflow (124% of basal) was not significantly affected by treatments (icatibant 121%, pyrilamine 107% and combined treatment 111% of basal). However, when pyrilamine was present the increased outflow was not statistically significant. In conclusion, we found that allergen provocation of guinea-pig bronchi caused an increased outflow of NKA-LI that was reduced by treatment with both pyrilamine and icatibant. These findings demonstrate that the allergen-induced release of histamine and bradykinin stimulate sensory nerves and thereby increase outflow of tachykinins that contribute to the allergic reaction. PMID:9351496
Wichchukit, Sukanya; O'Mahony, Michael
2010-01-01
This article reviews a beneficial effect of technology transfer from Electrical Engineering to Food Sensory Science. Specifically, it reviews the recent adoption in Food Sensory Science of the receiver operating characteristic (ROC) curve, a tool that is incorporated in the theory of signal detection. Its use allows the information processing that takes place in the brain during sensory difference testing to be studied and understood. The review deals with how Signal Detection Theory, also called Thurstonian modeling, led to the adoption of a more sophisticated way of analyzing the data from sensory difference tests, by introducing the signal-to-noise ratio, d', as a fundamental measure of perceived small sensory differences. Generally, the method of computation of d' is a simple matter for some of the better known difference tests like the triangle, duo-trio and 2-AFC. However, there are occasions when these tests are not appropriate and other tests like the same-different and the A Not-A test are more suitable. Yet, for these, it is necessary to understand how the brain processes information during the test before d' can be computed. It is for this task that the ROC curve has a particular use. © 2010 Institute of Food Technologists®
Stenner, Max-Philipp; Bauer, Markus; Haggard, Patrick; Heinze, Hans-Jochen; Dolan, Ray
2014-11-01
The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action-outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time-frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top-down control.
Iijima, Yoko; Iwasaki, Yumi; Otagiri, Yuji; Tsugawa, Hiroshi; Sato, Tsuneo; Otomo, Hiroe; Sekine, Yukio; Obata, Akio
2016-12-01
Various commercial tomato juices with different flavors are available at markets worldwide. To clarify the marker compounds related to the flavor characteristics of tomato juice, we analyzed 15 pure commercial tomato juices by a combination of volatile profiling and sensory evaluation. The correlations among volatiles and the relationship between volatiles and sensory descriptors were elucidated by multivariate analyses. Consequently, the tomato juices made from fresh market tomatoes (including the popular Japanese tomato variety "Momotaro") were clearly separated from other juices made from processing tomatoes, by both the volatile composition and sensory profiles. cis-3-Hexenol, hexanal, and apocarotenoids negatively contributed to the juices from fresh market tomatoes, whereas Strecker aldehydes and furfural showed positive contributions to the juices. Accordingly, the sensory characteristics of juices from fresh market tomatoes were related to cooked and fruity flavors but not to green or fresh notes.
Boeker, Martin; Vach, Werner; Motschall, Edith
2013-01-01
To quantitatively describe (1) differences between search results derived at consecutive time points with the PubMed and OvidSP literature search interfaces over a five day interval, and (2) the migration of citations through different subsets to estimate the timeliness of OvidSP. PubMed-Identifiers (PMIDs) of the following subsets were retrieved from PubMed and OvidSP simultaneously (within 8 h) at 11 days in March and April 2010 including 5 consecutive days: as supplied by publisher, in process, PubMed not MEDLINE, and OLDMEDLINE. Search results were compared for difference and intersection sets. The migration of citations on individual level was determined by comparison of corresponding sets over several days. The "in process" set was stable with about 446,000 - 452,000 citations; a small fraction of up to 3 % of the total subsets were in PubMed only and OvidSP only subsets. About 96 % of the ca. 10,500 citations in the OvidSP only subset migrated within 2 days out of the "in process" subset. The database of OvidSP is updated within a period of two days.
DuBois, Denise; Desarkar, Pushpal
2017-01-01
Sensory reactivity is a diagnostic criterion for Autism Spectrum Disorder (ASD), and has been associated with poorer functional outcomes, behavioral difficulties, and autism severity across the lifespan. Yet, there is little consensus on best practice approaches to assessing sensory processing dysfunction in adolescents and adults with ASD. Despite growing evidence that sensory symptoms persist into adolescence and adulthood, there is a lack of norms for older age groups, and pediatric assessments may not target appropriate functional outcomes or environments. This review identified approaches used to measure sensory processing in the scientific literature, and to describe and compare these approaches to current best practice guidelines that can be incorporated into evidence-based practice. Method and Analysis: A search of scientific databases and grey literature (professional association and ASD society websites), from January 1987–May 2017, uncovered 4769 articles and 12 clinical guidelines. Study and sample characteristics were extracted, charted, and categorized according to assessment approach. Results: There were 66 articles included after article screening. Five categories of assessment approaches were identified: Self- and Proxy-Report Questionnaires, Psychophysical Assessment, Direct Behavioral Observation, Qualitative Interview Techniques, and Neuroimaging/EEG. Sensory research to date has focused on individuals with high-functioning ASD, most commonly through the use of self-report questionnaires. The Adolescent and Adult Sensory Profile (AASP) is the most widely used assessment measure (n = 22), however, a number of other assessment approaches may demonstrate strengths specific to the ASD population. Multi-method approaches to assessment (e.g., combining psychophysical or observation with questionnaires) may have clinical applicability to interdisciplinary clinical teams serving adolescents and adults with ASD. Contribution: A comprehensive knowledge of approaches is critical in the clinical assessment of a population characterized by symptomatic heterogeneity and wide-ranging cognitive profiles. This review should inform future development of international interdisciplinary clinical guidelines on sensory processing assessment in ASD across the lifespan. PMID:28825635
A neuromorphic VLSI device for implementing 2-D selective attention systems.
Indiveri, G
2001-01-01
Selective attention is a mechanism used to sequentially select and process salient subregions of the input space, while suppressing inputs arriving from nonsalient regions. By processing small amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in parallel, this mechanism overcomes the problem of flooding limited processing capacity systems with sensory inputs. It is found in many biological systems and can be a useful engineering tool for developing artificial systems that need to process in real-time sensory data. In this paper we present a neuromorphic hardware model of a selective attention mechanism implemented on a very large scale integration (VLSI) chip, using analog circuits. The chip makes use of a spike-based representation for receiving input signals, transmitting output signals and for shifting the selection of the attended input stimulus over time. It can be interfaced to neuromorphic sensors and actuators, for implementing multichip selective attention systems. We describe the characteristics of the circuits used in the architecture and present experimental data measured from the system.
Sensori-motor experience leads to changes in visual processing in the developing brain.
James, Karin Harman
2010-03-01
Since Broca's studies on language processing, cortical functional specialization has been considered to be integral to efficient neural processing. A fundamental question in cognitive neuroscience concerns the type of learning that is required for functional specialization to develop. To address this issue with respect to the development of neural specialization for letters, we used functional magnetic resonance imaging (fMRI) to compare brain activation patterns in pre-school children before and after different letter-learning conditions: a sensori-motor group practised printing letters during the learning phase, while the control group practised visual recognition. Results demonstrated an overall left-hemisphere bias for processing letters in these pre-literate participants, but, more interestingly, showed enhanced blood oxygen-level-dependent activation in the visual association cortex during letter perception only after sensori-motor (printing) learning. It is concluded that sensori-motor experience augments processing in the visual system of pre-school children. The change of activation in these neural circuits provides important evidence that 'learning-by-doing' can lay the foundation for, and potentially strengthen, the neural systems used for visual letter recognition.
Motor-sensory confluence in tactile perception.
Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud
2012-10-03
Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.
The Postnatal Development of Spinal Sensory Processing
NASA Astrophysics Data System (ADS)
Fitzgerald, Maria; Jennings, Ernest
1999-07-01
The mechanisms by which infants and children process pain should be viewed within the context of a developing sensory nervous system. The study of the neurophysiological properties and connectivity of sensory neurons in the developing spinal cord dorsal horn of the intact postnatal rat has shed light on the way in which the newborn central nervous system analyzes cutaneous innocuous and noxious stimuli. The receptive field properties and evoked activity of newborn dorsal horn cells to single repetitive and persistent innocuous and noxious inputs are developmentally regulated and reflect the maturation of excitatory transmission within the spinal cord. These changes will have an important influence on pain processing in the postnatal period.
The functional neuroanatomy of language
NASA Astrophysics Data System (ADS)
Hickok, Gregory
2009-09-01
There has been substantial progress over the last several years in understanding aspects of the functional neuroanatomy of language. Some of these advances are summarized in this review. It will be argued that recognizing speech sounds is carried out in the superior temporal lobe bilaterally, that the superior temporal sulcus bilaterally is involved in phonological-level aspects of this process, that the frontal/motor system is not central to speech recognition although it may modulate auditory perception of speech, that conceptual access mechanisms are likely located in the lateral posterior temporal lobe (middle and inferior temporal gyri), that speech production involves sensory-related systems in the posterior superior temporal lobe in the left hemisphere, that the interface between perceptual and motor systems is supported by a sensory-motor circuit for vocal tract actions (not dedicated to speech) that is very similar to sensory-motor circuits found in primate parietal lobe, and that verbal short-term memory can be understood as an emergent property of this sensory-motor circuit. These observations are considered within the context of a dual stream model of speech processing in which one pathway supports speech comprehension and the other supports sensory-motor integration. Additional topics of discussion include the functional organization of the planum temporale for spatial hearing and speech-related sensory-motor processes, the anatomical and functional basis of a form of acquired language disorder, conduction aphasia, the neural basis of vocabulary development, and sentence-level/grammatical processing.
Talcott, S T; Howard, L R
1999-04-01
Physicochemical analysis of processed strained product was performed on 10 carrot genotypes grown in Texas (TX) and Georgia (GA). Carrots from GA experienced hail damage during growth, resulting in damage to their tops. Measurements included pH, moisture, soluble phenolics, total carotenoids, sugars, organic acids, and isocoumarin (6-MM). Sensory analysis was conducted using a trained panel to evaluate relationships between chemical and sensory attributes of the genotypes and in carrots spiked with increasing levels of 6-MM. Preharvest stress conditions in GA carrots seemed to elicit a phytoalexic response, producing compounds that impacted the perception of bitter and sour flavors. Spiking 6-MM into strained carrots demonstrated the role bitter compounds have in lowering sweetness scores while increasing the perception of sour flavor. Screening fresh carrots for the phytoalexin 6-MM has the potential to significantly improve the sensory quality of processed products.
NASA Technical Reports Server (NTRS)
Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.
1988-01-01
Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.
Neuroglial modulation in peripheral sensory systems.
Pack, Adam K; Pawson, Lorraine J
2010-08-01
Glia are increasingly appreciated as active participants in central neural processing via calcium waves, electrical coupling, and even synaptic-like release of "neuro"-transmitters. In some sensory organs (e.g., retina, olfactory bulb), glia have been shown to interact with neurons in the same manner, although their role in perception has yet to be elucidated. In the organ of Corti, synapses occur between supporting cells and neurons. In one sensory organ, the Pacinian corpuscle (fine touch), glia have been shown to play just as important a role in sensory transduction as they do in neural processing in the brain, and the functional role is quite clear; the modified Schwann cells of the capsule are responsible for the rapid adaptation process of the PCs, integral to its function as a vibration detector. This complex glial/neuronal relationship may be a recent evolutionary phenomenon and may account for much of the relative sophistication of vertebrate nervous systems.
Auditory and visual cortex of primates: a comparison of two sensory systems
Rauschecker, Josef P.
2014-01-01
A comparative view of the brain, comparing related functions across species and sensory systems, offers a number of advantages. In particular, it allows separating the formal purpose of a model structure from its implementation in specific brains. Models of auditory cortical processing can be conceived by analogy to the visual cortex, incorporating neural mechanisms that are found in both the visual and auditory systems. Examples of such canonical features on the columnar level are direction selectivity, size/bandwidth selectivity, as well as receptive fields with segregated versus overlapping on- and off-sub-regions. On a larger scale, parallel processing pathways have been envisioned that represent the two main facets of sensory perception: 1) identification of objects and 2) processing of space. Expanding this model in terms of sensorimotor integration and control offers an overarching view of cortical function independent of sensory modality. PMID:25728177
Selective attention to affective value alters how the brain processes taste stimuli.
Grabenhorst, Fabian; Rolls, Edmund T
2008-02-01
How does selective attention to affect influence sensory processing? In an fMRI investigation, when subjects were instructed to remember and rate the pleasantness of a taste stimulus, 0.1 M monosodium glutamate, activations were greater in the medial orbitofrontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the taste. When the subjects were instructed to remember and rate the intensity, activations were greater in the insular taste cortex. An interaction analysis showed that this dissociation of taste processing, depending on whether attention to pleasantness or intensity was relevant, was highly significant (P < 0.0002). Thus, depending on the context in which tastes are presented and whether affect is relevant, the brain responds to a taste differently. These findings show that, when attention is paid to affective value, the brain systems engaged to represent the sensory stimulus of taste are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus, depending on whether the cognitive demand is for affect-related vs. more sensory-related processing, may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of taste but also of other sensory stimuli.
Honeine, Jean-Louis; Schieppati, Marco
2014-01-01
Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system (CNS) continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a) subtract or integrate sensory inputs; (b) move from allocentric to egocentric reference or vice versa; and (c) adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1–2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift) in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training devices. PMID:25339872
NASA Astrophysics Data System (ADS)
Kumar, R.; George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S. N.; Bawa, A. S.
2011-12-01
Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with 60Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F0 value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities.
Predictive top-down integration of prior knowledge during speech perception.
Sohoglu, Ediz; Peelle, Jonathan E; Carlyon, Robert P; Davis, Matthew H
2012-06-20
A striking feature of human perception is that our subjective experience depends not only on sensory information from the environment but also on our prior knowledge or expectations. The precise mechanisms by which sensory information and prior knowledge are integrated remain unclear, with longstanding disagreement concerning whether integration is strictly feedforward or whether higher-level knowledge influences sensory processing through feedback connections. Here we used concurrent EEG and MEG recordings to determine how sensory information and prior knowledge are integrated in the brain during speech perception. We manipulated listeners' prior knowledge of speech content by presenting matching, mismatching, or neutral written text before a degraded (noise-vocoded) spoken word. When speech conformed to prior knowledge, subjective perceptual clarity was enhanced. This enhancement in clarity was associated with a spatiotemporal profile of brain activity uniquely consistent with a feedback process: activity in the inferior frontal gyrus was modulated by prior knowledge before activity in lower-level sensory regions of the superior temporal gyrus. In parallel, we parametrically varied the level of speech degradation, and therefore the amount of sensory detail, so that changes in neural responses attributable to sensory information and prior knowledge could be directly compared. Although sensory detail and prior knowledge both enhanced speech clarity, they had an opposite influence on the evoked response in the superior temporal gyrus. We argue that these data are best explained within the framework of predictive coding in which sensory activity is compared with top-down predictions and only unexplained activity propagated through the cortical hierarchy.
ERIC Educational Resources Information Center
Papadopoulos, Judith; Domahs, Frank; Kauschke, Christina
2017-01-01
Although it has been established that human beings process concrete and abstract words differently, it is still a matter of debate what factors contribute to this difference. Since concrete concepts are closely tied to sensory perception, perceptual experience seems to play an important role in their processing. The present study investigated the…
ERIC Educational Resources Information Center
Conlon, Elizabeth G.; Wright, Craig M.; Norris, Karla; Chekaluk, Eugene
2011-01-01
The experiments conducted aimed to investigate whether reduced accuracy when counting stimuli presented in rapid temporal sequence in adults with dyslexia could be explained by a sensory processing deficit, a general slowing in processing speed or difficulties shifting attention between stimuli. To achieve these aims, the influence of the…
Untangling syntactic and sensory processing: an ERP study of music perception.
Koelsch, Stefan; Jentschke, Sebastian; Sammler, Daniela; Mietchen, Daniel
2007-05-01
The present study investigated music-syntactic processing with chord sequences that ended on either regular or irregular chord functions. Sequences were composed such that perceived differences in the cognitive processing between syntactically regular and irregular chords could not be due to the sensory processing of acoustic factors like pitch repetition, pitch commonality (the major component of "sensory dissonance"), or roughness. Three experiments with independent groups of subjects were conducted: a behavioral experiment and two experiments using electroencephalography. Irregular chords elicited an early right anterior negativity (ERAN) in the event-related brain potentials (ERPs) under both task-relevant and task-irrelevant conditions. Behaviorally, participants detected around 75% of the irregular chords, indicating that these chords were only moderately salient. Nevertheless, the irregular chords reliably elicited clear ERP effects. Amateur musicians were slightly more sensitive to musical irregularities than nonmusicians, supporting previous studies demonstrating effects of musical training on music-syntactic processing. The findings indicate that the ERAN is an index of music-syntactic processing and that the ERAN can be elicited even when irregular chords are not detectable based on acoustical factors such as pitch repetition, sensory dissonance, or roughness.
Artificial organs: recent progress in artificial hearing and vision.
Ifukube, Tohru
2009-01-01
Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas.
Christov, Mario; Dushanova, Juliana
2016-01-01
The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.
Sensory signals during active versus passive movement.
Cullen, Kathleen E
2004-12-01
Our sensory systems are simultaneously activated as the result of our own actions and changes in the external world. The ability to distinguish self-generated sensory events from those that arise externally is thus essential for perceptual stability and accurate motor control. Recently, progress has been made towards understanding how this distinction is made. It has been proposed that an internal prediction of the consequences of our actions is compared to the actual sensory input to cancel the resultant self-generated activation. Evidence in support of this hypothesis has been obtained for early stages of sensory processing in the vestibular, visual and somatosensory systems. These findings have implications for the sensory-motor transformations that are needed to guide behavior.
ERIC Educational Resources Information Center
Hill, Franklin; Shiavi, Damaris
2012-01-01
Sensory experiences are the foundation of the learning process, regardless of cognitive ability. However, within the context of students with special needs, the sensory experience may focus on therapeutic and psychological relaxation without necessarily having clearly defined educational goals that directly improve learning. The frequently used…
USDA-ARS?s Scientific Manuscript database
Certain roasted peanut quality sensory attributes are important breeding objectives for peanut product manufacturers and consumers. Currently the only means of measuring these traits is the use of a trained sensory panel. This is a costly and time-consuming process. It is desirable, from a cost, ti...
ERIC Educational Resources Information Center
Van Hulle, Carol A.; Schmidt, Nicole L.; Goldsmith, H. Hill
2012-01-01
Background: Although impaired sensory processing accompanies various clinical conditions, the question of its status as an independent disorder remains open. Our goal was to delineate the comorbidity (or lack thereof) between childhood psychopathology and sensory over-responsivity (SOR) in middle childhood using phenotypic and behavior-genetic…
How Sensory Experiences Affect Adolescents with an Autistic Spectrum Condition within the Classroom
ERIC Educational Resources Information Center
Howe, Fiona E.; Stagg, Steven D.
2016-01-01
Sensory processing difficulties are consistently reported amongst individuals with an autistic spectrum condition (ASC); these have a significant impact on daily functioning. Evidence in this area comes from observer reports and first-hand accounts; both have limitations. The current study used the Adolescent/Adult Sensory Profile (AASP; Brown and…
Temperament and Sensory Features of Children with Autism
ERIC Educational Resources Information Center
Brock, M. E.; Freuler, A.; Baranek, G. T.; Watson, L. R.; Poe, M. D.; Sabatino, A.
2012-01-01
This study sought to characterize temperament traits in a sample of children with autism spectrum disorder (ASD), ages 3-7 years old, and to determine the potential association between temperament and sensory features in ASD. Individual differences in sensory processing may form the basis for aspects of temperament and personality, and aberrations…
Food intake is influenced by sensory sensitivity.
Naish, Katherine R; Harris, Gillian
2012-01-01
Wide availability of highly palatable foods is often blamed for the rising incidence of obesity. As palatability is largely determined by the sensory properties of food, this study investigated how sensitivity to these properties affects how much we eat. Forty females were classified as either high or low in sensory sensitivity based on their scores on a self-report measure of sensory processing (the Adult Sensory Profile), and their intake of chocolate during the experiment was measured. Food intake was significantly higher for high-sensitivity compared to low-sensitivity individuals. Furthermore, individual scores of sensory sensitivity were positively correlated with self-reported emotional eating. These data could indicate that individuals who are more sensitive to the sensory properties of food have a heightened perception of palatability, which, in turn, leads to a greater food intake.
Black, Karen R; Stevenson, Ryan A; Segers, Magali; Ncube, Busiswe L; Sun, Sol Z; Philipp-Muller, Aviva; Bebko, James M; Barense, Morgan D; Ferber, Susanne
2017-08-01
Sensory hypersensitivity and insistence on sameness (I/S) are common, co-occurring features of autism, yet the relationship between them is poorly understood. This study assessed the impact of sensory hypersensitivity on the clinical symptoms of specific phobia, separation anxiety, social anxiety and I/S for autistic and typically developing (TD) children. Parents of 79 children completed questionnaires on their child's difficulties related to sensory processing, I/S, and anxiety. Results demonstrated that sensory hypersensitivity mediated 67% of the relationship between symptoms of specific phobia and I/S and 57% of the relationship between separation anxiety and I/S. No relationship was observed between sensory hypersensitivity and social anxiety. These mediation effects of sensory hypersensitivity were found only in autistic children, not in TD children.
Krumins, S A; Kim, D C; Igwe, O J; Larson, A A
1993-01-01
Substance P (SP) appears to mediate many processes of the central nervous system, including pain. This report deals with modulation of opioid binding in the mouse brain by SP and SP fragments, as well as by salts and guanine nucleotides. Binding studies of the selective mu opioid receptor agonist [D-Ala2, MePhe4,Gly(ol)5]enkephalin (DAMGO) to mouse brain membrane preparations demonstrated that guanine nucleotide modulation of DAMGO binding affinity was modified by SP. However, SP had little or no influence on inhibition of DAMGO binding induced by salts, such as MgCl2, CaCl2, or NaCl. By replacing GTP with GppNHp, SP (0.1 nM) produced multiple affinity forms of the DAMGO receptor, while at a higher concentration (10 nM), SP lost its influence on DAMGO binding. Furthermore, 0.1 nM SP changed DAMGO binding parameters in a medium containing NaCl, CaCl2, and GppNHp such that the high- and low-affinity conformations of the receptor converted to a single site following the addition of SP to the incubation medium. While the C-terminal SP fragment SP(5-11) was without effect, the N-terminal SP fragments SP(1-9) and SP(1-7) appeared to imitate SP in modifying GppNHp-modulated DAMGO binding. These results suggest that SP functions as a modulator of opioid binding at the mu receptor and it appears that the N-terminus of SP plays a role in the modulatory process.
Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex.
Porter, Benjamin A; Khodaparast, Navid; Fayyaz, Tabbassum; Cheung, Ryan J; Ahmed, Syed S; Vrana, William A; Rennaker, Robert L; Kilgard, Michael P
2012-10-01
Although sensory and motor systems support different functions, both systems exhibit experience-dependent cortical plasticity under similar conditions. If mechanisms regulating cortical plasticity are common to sensory and motor cortices, then methods generating plasticity in sensory cortex should be effective in motor cortex. Repeatedly pairing a tone with a brief period of vagus nerve stimulation (VNS) increases the proportion of primary auditory cortex responding to the paired tone (Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake J, Sudanagunta SP, Borland MS, Kilgard MP. 2011. Reversing pathological neural activity using targeted plasticity. Nature. 470:101-104). In this study, we predicted that repeatedly pairing VNS with a specific movement would result in an increased representation of that movement in primary motor cortex. To test this hypothesis, we paired VNS with movements of the distal or proximal forelimb in 2 groups of rats. After 5 days of VNS movement pairing, intracranial microstimulation was used to quantify the organization of primary motor cortex. Larger cortical areas were associated with movements paired with VNS. Rats receiving identical motor training without VNS pairing did not exhibit motor cortex map plasticity. These results suggest that pairing VNS with specific events may act as a general method for increasing cortical representations of those events. VNS movement pairing could provide a new approach for treating disorders associated with abnormal movement representations.
Sensory Processing Sensitivity as a Marker of Differential Susceptibility to Parenting
ERIC Educational Resources Information Center
Slagt, Meike; Dubas, Judith Semon; van Aken, Marcel A. G.; Ellis, Bruce J.; Dekovic, Maja
2018-01-01
In this longitudinal multiinformant study negative emotionality and sensory processing sensitivity were compared as susceptibility markers among kindergartners. Participating children (N = 264, 52.9% boys) were Dutch kindergartners (M[subscript age] = 4.77, SD = 0.60), followed across three waves, spaced seven months apart. Results show that…
Disentangling Linguistic Modality Effects in Semantic Processing
ERIC Educational Resources Information Center
Moita, Mara; Nunes, Maria Vânia
2017-01-01
Sensory systems are essential for perceiving and conceptualizing our semantic knowledge about the world and the way we interact with it. Despite studies reporting neural changes to compensate for the absence of a given sensory modality, studies focusing on the assessment of semantic processing reveal poor performances by deaf individuals when…
USDA-ARS?s Scientific Manuscript database
BACKGROUND: High antioxidant content and keen marketing have increased blueberry demand and increased local production which in turn mandates new uses for abundant harvests. Pilot scale processes were employed to investigate the anthocyanidin profiles, qualitative volatile compositions, and sensori...
Modality-specific selective attention attenuates multisensory integration.
Mozolic, Jennifer L; Hugenschmidt, Christina E; Peiffer, Ann M; Laurienti, Paul J
2008-01-01
Stimuli occurring in multiple sensory modalities that are temporally synchronous or spatially coincident can be integrated together to enhance perception. Additionally, the semantic content or meaning of a stimulus can influence cross-modal interactions, improving task performance when these stimuli convey semantically congruent or matching information, but impairing performance when they contain non-matching or distracting information. Attention is one mechanism that is known to alter processing of sensory stimuli by enhancing perception of task-relevant information and suppressing perception of task-irrelevant stimuli. It is not known, however, to what extent attention to a single sensory modality can minimize the impact of stimuli in the unattended sensory modality and reduce the integration of stimuli across multiple sensory modalities. Our hypothesis was that modality-specific selective attention would limit processing of stimuli in the unattended sensory modality, resulting in a reduction of performance enhancements produced by semantically matching multisensory stimuli, and a reduction in performance decrements produced by semantically non-matching multisensory stimuli. The results from two experiments utilizing a cued discrimination task demonstrate that selective attention to a single sensory modality prevents the integration of matching multisensory stimuli that is normally observed when attention is divided between sensory modalities. Attention did not reliably alter the amount of distraction caused by non-matching multisensory stimuli on this task; however, these findings highlight a critical role for modality-specific selective attention in modulating multisensory integration.
Mayer, Jennifer L
2017-02-01
Sensory processing atypicalities are a common feature in Autism Spectrum Disorders (ASD) and have previously been linked to a range of behaviours in individuals with ASD and atypical neurological development. More recently research has demonstrated a relationship between autistic traits in the neurotypical (NT) population and increased levels of atypical sensory behaviours. The aim of the present study is to extend previous research by examining specific patterns across aspects of autistic traits and sensory behaviours within both ASD and NT populations. The present study recruited 580 NT adults and 42 high-functioning ASD adults with a confirmed diagnosis to investigate the relationship between specific aspects of autistic traits and sensory processing using the subscales of the autism spectrum quotient (AQ) and adult/adolescent sensory profile (AASP). Results showed a significant relationship between all subscales except for attention to detail and imagination on the AQ and provided the first evidence that the strength and pattern of this relationship is identical between NT and ASD adults. These data also provided support for the broader autism phenotype, uncovering a clear progression of sensory atypicalities in line with an increase in autistic traits, regardless of diagnostic status, which has potential implications for the spectrum approach to ASD and how sensory behaviours across the whole of the neurotypical population are conceptualised.
Crossmodal Connections of Primary Sensory Cortices Largely Vanish During Normal Aging
Henschke, Julia U.; Ohl, Frank W.; Budinger, Eike
2018-01-01
During aging, human response times (RTs) to unisensory and crossmodal stimuli decrease. However, the elderly benefit more from crossmodal stimulus representations than younger people. The underlying short-latency multisensory integration process is mediated by direct crossmodal connections at the level of primary sensory cortices. We investigate the age-related changes of these connections using a rodent model (Mongolian gerbil), retrograde tracer injections into the primary auditory (A1), somatosensory (S1), and visual cortex (V1), and immunohistochemistry for markers of apoptosis (Caspase-3), axonal plasticity (Growth associated protein 43, GAP 43), and a calcium-binding protein (Parvalbumin, PV). In adult animals, primary sensory cortices receive a substantial number of direct thalamic inputs from nuclei of their matched, but also from nuclei of non-matched sensory modalities. There are also direct intracortical connections among primary sensory cortices and connections with secondary sensory cortices of other modalities. In very old animals, the crossmodal connections strongly decrease in number or vanish entirely. This is likely due to a retraction of the projection neuron axonal branches rather than ongoing programmed cell death. The loss of crossmodal connections is also accompanied by changes in anatomical correlates of inhibition and excitation in the sensory thalamus and cortex. Together, the loss and restructuring of crossmodal connections during aging suggest a shift of multisensory processing from primary cortices towards other sensory brain areas in elderly individuals. PMID:29551970
Crossmodal Connections of Primary Sensory Cortices Largely Vanish During Normal Aging.
Henschke, Julia U; Ohl, Frank W; Budinger, Eike
2018-01-01
During aging, human response times (RTs) to unisensory and crossmodal stimuli decrease. However, the elderly benefit more from crossmodal stimulus representations than younger people. The underlying short-latency multisensory integration process is mediated by direct crossmodal connections at the level of primary sensory cortices. We investigate the age-related changes of these connections using a rodent model (Mongolian gerbil), retrograde tracer injections into the primary auditory (A1), somatosensory (S1), and visual cortex (V1), and immunohistochemistry for markers of apoptosis (Caspase-3), axonal plasticity (Growth associated protein 43, GAP 43), and a calcium-binding protein (Parvalbumin, PV). In adult animals, primary sensory cortices receive a substantial number of direct thalamic inputs from nuclei of their matched, but also from nuclei of non-matched sensory modalities. There are also direct intracortical connections among primary sensory cortices and connections with secondary sensory cortices of other modalities. In very old animals, the crossmodal connections strongly decrease in number or vanish entirely. This is likely due to a retraction of the projection neuron axonal branches rather than ongoing programmed cell death. The loss of crossmodal connections is also accompanied by changes in anatomical correlates of inhibition and excitation in the sensory thalamus and cortex. Together, the loss and restructuring of crossmodal connections during aging suggest a shift of multisensory processing from primary cortices towards other sensory brain areas in elderly individuals.
Validity of Sensory Systems as Distinct Constructs
Su, Chia-Ting
2014-01-01
This study investigated the validity of sensory systems as distinct measurable constructs as part of a larger project examining Ayres’s theory of sensory integration. Confirmatory factor analysis (CFA) was conducted to test whether sensory questionnaire items represent distinct sensory system constructs. Data were obtained from clinical records of two age groups, 2- to 5-yr-olds (n = 231) and 6- to 10-yr-olds (n = 223). With each group, we tested several CFA models for goodness of fit with the data. The accepted model was identical for each group and indicated that tactile, vestibular–proprioceptive, visual, and auditory systems form distinct, valid factors that are not age dependent. In contrast, alternative models that grouped items according to sensory processing problems (e.g., over- or underresponsiveness within or across sensory systems) did not yield valid factors. Results indicate that distinct sensory system constructs can be measured validly using questionnaire data. PMID:25184467
Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines
NASA Astrophysics Data System (ADS)
Kravats, Andrea N.; Tonddast-Navaei, Sam; Bucher, Ryan J.; Stan, George
2013-09-01
Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.
Vahaba, Daniel M; Macedo-Lima, Matheus; Remage-Healey, Luke
2017-01-01
Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor's song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM's established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E 2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches ( Taeniopygia guttata ) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E 2 administration on sensory processing. In sensory-aged subjects, E 2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E 2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E 2 sensitivity that each precisely track a key neural "switch point" from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds.
2017-01-01
Abstract Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor’s song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM’s established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches (Taeniopygia guttata) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E2 administration on sensory processing. In sensory-aged subjects, E2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E2 sensitivity that each precisely track a key neural “switch point” from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds. PMID:29255797
Miller, Lucy Jane; Nielsen, Darci M; Schoen, Sarah A
2012-01-01
Children with attention deficit hyperactivity disorder (ADHD) are impulsive, inattentive and hyperactive, while children with sensory modulation disorder (SMD), one subtype of Sensory Processing Disorder, have difficulty responding adaptively to daily sensory experiences. ADHD and SMD are often difficult to distinguish. To differentiate these disorders in children, clinical ADHD, SMD, and dual diagnoses were assessed. All groups had significantly more sensory, attention, activity, impulsivity, and emotional difficulties than typical children, but with distinct profiles. Inattention was greater in ADHD compared to SMD. Dual diagnoses had more sensory-related behaviors than ADHD and more attentional difficulties than SMD. SMD had more sensory issues, somatic complaints, anxiety/depression, and difficulty adapting than ADHD. SMD had greater physiological/electrodermal reactivity to sensory stimuli than ADHD and typical controls. Parent-report measures identifying sensory, attentional, hyperactive, and impulsive difficulties varied in agreement with clinician's diagnoses. Evidence suggests ADHD and SMD are distinct diagnoses. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mann, Zoe F; Chen, Ziqi; Chrysostomou, Elena; Żak, Magdalena; Kang, Miso; Canden, Elachumee
2017-01-01
The mechanisms of formation of the distinct sensory organs of the inner ear and the non-sensory domains that separate them are still unclear. Here, we show that several sensory patches arise by progressive segregation from a common prosensory domain in the embryonic chicken and mouse otocyst. This process is regulated by mutually antagonistic signals: Notch signalling and Lmx1a. Notch-mediated lateral induction promotes prosensory fate. Some of the early Notch-active cells, however, are normally diverted from this fate and increasing lateral induction produces misshapen or fused sensory organs in the chick. Conversely Lmx1a (or cLmx1b in the chick) allows sensory organ segregation by antagonizing lateral induction and promoting commitment to the non-sensory fate. Our findings highlight the dynamic nature of sensory patch formation and the labile character of the sensory-competent progenitors, which could have facilitated the emergence of new inner ear organs and their functional diversification in the course of evolution. PMID:29199954
A systematic review of sensory-based treatments for children with disabilities.
Barton, Erin E; Reichow, Brian; Schnitz, Alana; Smith, Isaac C; Sherlock, Daniel
2015-02-01
Sensory-based therapies are designed to address sensory processing difficulties by helping to organize and control the regulation of environmental sensory inputs. These treatments are increasingly popular, particularly with children with behavioral and developmental disabilities. However, empirical support for sensory-based treatments is limited. The purpose of this review was to conduct a comprehensive and methodologically sound evaluation of the efficacy of sensory-based treatments for children with disabilities. Methods for this review were registered with PROSPERO (CRD42012003243). Thirty studies involving 856 participants met our inclusion criteria and were included in this review. Considerable heterogeneity was noted across studies in implementation, measurement, and study rigor. The research on sensory-based treatments is limited due to insubstantial treatment outcomes, weak experimental designs, or high risk of bias. Although many people use and advocate for the use of sensory-based treatments and there is a substantial empirical literature on sensory-based treatments for children with disabilities, insufficient evidence exists to support their use. Copyright © 2014 Elsevier Ltd. All rights reserved.
Functional consortium for denitrifying sulfide removal process.
Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong
2010-03-01
Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10(-2) to 10(-6) dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10(-2) dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10(-4) dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10(-6) dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach.
Morphology and Neurochemistry of Rabbit Iris Innervation
He, Jiucheng; Bazan, Haydee E.P.
2016-01-01
The aim of this study was to map the entire nerve architecture and sensory neuropeptide content of the rabbit iris. Irises from New Zealand rabbits were stained with antibodies against neuronal-class βIII-tubulin, calcitonin gene-related peptide (CGRP) and substance P (SP), and whole-mount images were acquired to build a two-dimensional view of the iridal nerve architecture. After taking images in time-lapse mode, we observed thick nerves running in the iris stroma close to the anterior epithelia, forming four to five stromal nerve rings from the iris periphery to the pupillary margin and sub-branches that connected with each other, constituting the stromal nerve plexus. In the anterior side, fine divisions derivated from the stromal nerves, forming a nerve network-like structure to innervate the superficial anterior border layer, with the pupillary margin having the densest innervation. In the posterior side, the nerve bundles ran along with the pupil dilator muscle in a radial pattern. The morphology of the iris nerves on both sides changed with pupil size. To obtain the relative content of the neuropeptides in the iris, the specimens were double stained with βIII-tubulin and CGRP or SP antibodies. Relative nerve fiber densities for each fiber population were assessed quantitatively by computer-assisted analysis. On the anterior side, CGRP-positive nerve fibers constituted about 61%, while SP-positive nerves constitute about 30.5%, of the total nerve content, which was expressed as βIII tubulin-positive fibers. In addition, in the anterior stroma of the collarette region, there were non-neuronal cells that were positive for SP. On the posterior side, CGRP-positive nerve fibers were about 69% of total nerve content, while SP constituted only up to 20%. Similarly, in the trigeminal ganglia (TG), the number of CGRP-positive neurons significantly outnumbered those that were positive for SP. Also, all the SP-positive neurons were labeled with CGRP. This is the first study to provide a two-dimensional whole mount and a cross-sectional view of the entire iris nerve architecture. Considering the anatomical location, the high expression of CGRP and SP suggests that these neuropeptides may play a role in the pathogenesis of anterior uveitis, glaucoma, cataracts and chronic ocular pain. PMID:25752697
Morphology and neurochemistry of rabbit iris innervation.
He, Jiucheng; Bazan, Haydee E P
2015-06-01
The aim of this study was to map the entire nerve architecture and sensory neuropeptide content of the rabbit iris. Irises from New Zealand rabbits were stained with antibodies against neuronal-class βIII-tubulin, calcitonin gene-related peptide (CGRP) and substance P (SP), and whole-mount images were acquired to build a two-dimensional view of the iridal nerve architecture. After taking images in time-lapse mode, we observed thick nerves running in the iris stroma close to the anterior epithelia, forming four to five stromal nerve rings from the iris periphery to the pupillary margin and sub-branches that connected with each other, constituting the stromal nerve plexus. In the anterior side, fine divisions derivated from the stromal nerves, forming a nerve network-like structure to innervate the superficial anterior border layer, with the pupillary margin having the densest innervation. In the posterior side, the nerve bundles ran along with the pupil dilator muscle in a radial pattern. The morphology of the iris nerves on both sides changed with pupil size. To obtain the relative content of the neuropeptides in the iris, the specimens were double stained with βIII-tubulin and CGRP or SP antibodies. Relative nerve fiber densities for each fiber population were assessed quantitatively by computer-assisted analysis. On the anterior side, CGRP-positive nerve fibers constituted about 61%, while SP-positive nerves constitute about 30.5%, of the total nerve content, which was expressed as βIII tubulin-positive fibers. In addition, in the anterior stroma of the collarette region, there were non-neuronal cells that were positive for SP. On the posterior side, CGRP-positive nerve fibers were about 69% of total nerve content, while SP constituted only up to 20%. Similarly, in the trigeminal ganglia (TG), the number of CGRP-positive neurons significantly outnumbered those that were positive for SP. Also, all the SP-positive neurons were labeled with CGRP. This is the first study to provide a two-dimensional whole mount and a cross-sectional view of the entire iris nerve architecture. Considering the anatomical location, the high expression of CGRP and SP suggests that these neuropeptides may play a role in the pathogenesis of anterior uveitis, glaucoma, cataracts and chronic ocular pain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bennett-Levy, James; Lee, Nicole K
2014-01-01
Previous studies of self-practice/self-reflection (SP/SR) CBT training have found that trainees report significant benefits from practising CBT techniques on themselves (self-practice) and reflecting on their experience (self-reflection) as a formal part of their CBT training. However, not all trainees experience the same level of benefit from SP/SR and not all types of training course produce benefits to the same extent. This paper examines the question: What factors influence trainees' reported benefit from SP/SR? The aim was to develop a model to maximize the value of SP/SR training. The authors used a grounded theory analysis of four SP/SR training courses, varying along several dimensions, to derive a model that could account for the data. A model was derived comprising of seven elements: Two outcomes - "Experience of Benefit" and "Engagement with the Process" - that mutually influence one another; and five other influencing factors - "Course Structure and Requirements", "Expectation of Benefit", "Feeling of Safety with the Process", "Group Process", and "Available Personal Resources" - that mediate the impact on Engagement with the Process and Experience of Benefit from SP/SR. A model that provides guidance about the best ways to set up and develop SP/SR programs has been developed. This model may now be subject to empirical testing by trainers and researchers. Implications and recommendations for the design and development of future SP/SR programs are discussed.
Wang, L H; Ahmad, S; Benter, I F; Chow, A; Mizutani, S; Ward, P E
1991-01-01
In addition to plasma metabolism of substance P (SP) by angiotensin converting enzyme (ACE; EC 3.4.15.1) (less than 1.0 nmol/min/ml), the majority of SP hydrolysis by rat and human plasma was due to dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5) (3.15-5.91 nmol/min/ml), which sequentially converted SP to SP(3-11) and SP(5-11). In turn, the SP(5-11) metabolite was rapidly hydrolyzed by rat and human plasma aminopeptidase M (AmM; EC 3.4.11.2) (24.2-25.5 nmol/min/ml). The Km values of SP for DAP IV and of SP(5-11) for AmM ranged from 32.7 to 123 microM. In contrast, neurokinin A (NKA) was resistant to both ACE and DAP IV but was subject to N-terminal hydrolysis by AmM (3.76-10.8 nmol/min/ml; Km = 90.7 microM). These data demonstrate differential processing of SP and NKA by specific peptidases in rat and human plasma.
Physical and sensory quality of Java Arabica green coffee beans
NASA Astrophysics Data System (ADS)
Sunarharum, W. B.; Yuwono, S. S.; Pangestu, N. B. S. W.; Nadhiroh, H.
2018-03-01
Demand on high quality coffee for consumption is continually increasing not only in the consuming countries (importers) but also in the producing countries (exporters). Coffee quality could be affected by several factors from farm to cup including the post-harvest processing methods. This research aimed to investigate the influence of different post-harvest processing methods on physical and sensory quality of Java Arabica green coffee beans. The two factors being evaluated were three different post-harvest processing methods to produce green coffee beans (natural/dry, semi-washed and fully-washed processing) under sun drying. Physical quality evaluation was based on The Indonesian National Standard (SNI 01-2907-2008) while sensory quality was evaluated by five expert judges. The result shows that less defects observed in wet processed coffee as compared to the dry processing. The mechanical drying was also proven to yield a higher quality green coffee beans and minimise losses.
Omer, M K; Prieto, B; Rendueles, E; Alvarez-Ordoñez, A; Lunde, K; Alvseike, O; Prieto, M
2015-10-01
The aim of this trial was to describe physicochemical, microbiological and organoleptic characteristics of dry fermented sausages produced from high hydrostatic pressure (HHP) pre-processed trimmings. During ripening of the meat products pH, weight, water activity (aw), and several microbiological parameters were measured at zero, eight, fifteen days and after 6weeks. Sensory characteristics were estimated at day 15 and after six weeks by a test panel by using several sensory tests. Enterobacteriaceae were not detected in sausages from HHP-processed trimmings. Fermentation was little affected, but weight and aw of the HHP-processed sausages decreased faster during ripening. HHP-treated sausages were consistently less favoured than non HHP-treated sausages, but the strategy may be an alternative approach if the process is optimized. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rizzo-Sierra, Carlos V; Leon-S, Martha E; Leon-Sarmiento, Fidias E
2012-01-01
The highly sensitive trait present in animals, has also been proposed as a human neurobiological trait. People having such trait can process larger amounts of sensory information than usual, making it an excellent attribute that allows to pick up subtle environmental details and cues. Furthermore, this trait correlates to some sort of giftedness such as higher perception, inventiveness, imagination and creativity. We present evidences that support the existance of key neural connectivity between the mentioned trait, higher sensory processing sensitivity, introversion, ectomorphism and creativity. The neurobiological and behavioral implications that these biomarkers have in people living in developing rural areas are discussed as well. PMID:22865969
P50 Sensory Gating and Attentional Performance
Wan, Li; Friedman, Bruce H.; Boutros, Nash N.; Crawford, Helen J.
2008-01-01
Sensory gating refers to the preattentional filtering of irrelevant sensory stimuli. This process may be impaired in schizotypy, which is a trait also associated with cigarette smoking. This association may in part stem from the positive effects of smoking on sensory gating and attention. The relationship among sensory gating, smoking, schizotypy and attention was examined in 39 undergraduates. Sensory gating was indexed by the P50 suppression paradigm, and attention was measured by the Attention Network Test (ANT) and a Stroop task. Results showed sensory gating to be positively correlated with performances on ANT and Stroop reflected in better alerting, less conflict between stimuli, faster reaction time, and greater accuracy. Smokers showed a pattern of a greater number of significant correlations between sensory gating and attention in comparison to non-smokers, although the relationship between sensory gating and attention was not affected by schizotypy. The majority of significant correlations were found in the region surrounding Cz. These findings are discussed relative to the potential modifying influence of smoking and schizotypy on sensory gating and attention. PMID:18036692
Jakkamsetti, Vikram; Chang, Kevin Q.
2012-01-01
Environmental enrichment induces powerful changes in the adult cerebral cortex. Studies in primary sensory cortex have observed that environmental enrichment modulates neuronal response strength, selectivity, speed of response, and synchronization to rapid sensory input. Other reports suggest that nonprimary sensory fields are more plastic than primary sensory cortex. The consequences of environmental enrichment on information processing in nonprimary sensory cortex have yet to be studied. Here we examine physiological effects of enrichment in the posterior auditory field (PAF), a field distinguished from primary auditory cortex (A1) by wider receptive fields, slower response times, and a greater preference for slowly modulated sounds. Environmental enrichment induced a significant increase in spectral and temporal selectivity in PAF. PAF neurons exhibited narrower receptive fields and responded significantly faster and for a briefer period to sounds after enrichment. Enrichment increased time-locking to rapidly successive sensory input in PAF neurons. Compared with previous enrichment studies in A1, we observe a greater magnitude of reorganization in PAF after environmental enrichment. Along with other reports observing greater reorganization in nonprimary sensory cortex, our results in PAF suggest that nonprimary fields might have a greater capacity for reorganization compared with primary fields. PMID:22131375
Temperament and Sensory Features of Children with Autism
Brock, Matthew E.; Freuler, Ashley; Baranek, Grace T.; Watson, Linda R.; Poe, Michele D.; Sabatino, Antoinette
2012-01-01
Purpose This study sought to characterize temperament traits in a sample of children with autism spectrum disorder (ASD), ages 3–7 years old, and to determine the potential association between temperament and sensory features in ASD. Individual differences in sensory processing may form the basis for aspects of temperament and personality, and aberrations in sensory processing may inform why some temperamental traits are characteristic of specific clinical populations. Methods Nine dimensions of temperament from the Behavioral Style Questionnaire (McDevitt & Carey, 1996) were compared among groups of children with ASD (n = 54), developmentally delayed (DD; n = 33), and the original normative sample of typically developing children (Carey & McDevitt, 1978; n = 350) using an ANOVA to determine the extent to which groups differed in their temperament profiles. The hypothesized overlap between three dimensional constructs of sensory features (hyperresponsiveness, hyporesponsivness, and seeking) and the nine dimensions of temperament was analyzed in children with ASD using regression analyses. Results The ASD group displayed temperament scores distinct from norms for typically developing children on most dimensions of temperament (activity, rhythmicity, adaptability, approach, distractibility, intensity, persistence, and threshold) but differed from the DD group on only two dimensions (approach and distractibility). Analyses of associations between sensory constructs and temperament dimensions found that sensory hyporesponsiveness was associated with slowness to adapt, low reactivity, and low distractibility; a combination of increased sensory features (across all three patterns) was associated with increased withdrawal and more negative mood. Conclusions Although most dimensions of temperament distinguished children with ASD as a group, not all dimensions appear equally associated with sensory response patterns. Shared mechanisms underlying sensory responsiveness, temperament, and social withdrawal may be fruitful to explore in future studies. PMID:22366913
Ceponiene, R; Westerfield, M; Torki, M; Townsend, J
2008-06-18
Major accounts of aging implicate changes in processing external stimulus information. Little is known about differential effects of auditory and visual sensory aging, and the mechanisms of sensory aging are still poorly understood. Using event-related potentials (ERPs) elicited by unattended stimuli in younger (M=25.5 yrs) and older (M=71.3 yrs) subjects, this study examined mechanisms of sensory aging under minimized attention conditions. Auditory and visual modalities were examined to address modality-specificity vs. generality of sensory aging. Between-modality differences were robust. The earlier-latency responses (P1, N1) were unaffected in the auditory modality but were diminished in the visual modality. The auditory N2 and early visual N2 were diminished. Two similarities between the modalities were age-related enhancements in the late P2 range and positive behavior-early N2 correlation, the latter suggesting that N2 may reflect long-latency inhibition of irrelevant stimuli. Since there is no evidence for salient differences in neuro-biological aging between the two sensory regions, the observed between-modality differences are best explained by the differential reliance of auditory and visual systems on attention. Visual sensory processing relies on facilitation by visuo-spatial attention, withdrawal of which appears to be more disadvantageous in older populations. In contrast, auditory processing is equipped with powerful inhibitory capacities. However, when the whole auditory modality is unattended, thalamo-cortical gating deficits may not manifest in the elderly. In contrast, ERP indices of longer-latency, stimulus-level inhibitory modulation appear to diminish with age.
USDA-ARS?s Scientific Manuscript database
Certain roasted peanut quality sensory attributes are very important breeding objectives for peanut manufactory and consumers. Currently the only means of measuring these traits is the use of a trained sensory panel. This is a costly and time-consuming process. It is desirable, from a cost, time an...
ERIC Educational Resources Information Center
Roesler, Cynthia P.; Flax, Judy; MacRoy-Higgins, Michelle; Fermano, Zena; Morgan-Byrne, Julie; Benasich, April A.
2013-01-01
This study examined the effectiveness of sensory desensitization training for 12 nonverbal children with autism to facilitate participation in an electrophysiological study assessing linguistic processing. Sensory desensitization was achieved for 10 of the 12 children and thus allowed collection of usable data in a passive linguistic paradigm.…
Multisensory integration, sensory substitution and visual rehabilitation.
Proulx, Michael J; Ptito, Maurice; Amedi, Amir
2014-04-01
Sensory substitution has advanced remarkably over the past 35 years since first introduced to the scientific literature by Paul Bach-y-Rita. In this issue dedicated to his memory, we describe a collection of reviews that assess the current state of neuroscience research on sensory substitution, visual rehabilitation, and multisensory processes. Copyright © 2014. Published by Elsevier Ltd.
The Sensory Nature of Episodic Memory: Sensory Priming Effects Due to Memory Trace Activation
ERIC Educational Resources Information Center
Brunel, Lionel; Labeye, Elodie; Lesourd, Mathieu; Versace, Remy
2009-01-01
The aim of this study was to provide evidence that memory and perceptual processing are underpinned by the same mechanisms. Specifically, the authors conducted 3 experiments that emphasized the sensory aspect of memory traces. They examined their predictions with a short-term priming paradigm based on 2 distinct phases: a learning phase consisting…
Convergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster
Yagi, Ryosuke; Mabuchi, Yuta; Mizunami, Makoto; Tanaka, Nobuaki K.
2016-01-01
Detailed structural analyses of the mushroom body which plays critical roles in olfactory learning and memory revealed that it is directly connected with multiple primary sensory centers in Drosophila. Connectivity patterns between the mushroom body and primary sensory centers suggest that each mushroom body lobe processes information on different combinations of multiple sensory modalities. This finding provides a novel focus of research by Drosophila genetics for perception of the external world by integrating multisensory signals. PMID:27404960
Using joint ICA to link function and structure using MEG and DTI in schizophrenia
Stephen, JM; Coffman, BA; Jung, RE; Bustillo, JR; Aine, CJ; Calhoun, VD
2013-01-01
In this study we employed joint independent component analysis (jICA) to perform a novel multivariate integration of magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data to investigate the link between function and structure. This model-free approach allows one to identify covariation across modalities with different temporal and spatial scales [temporal variation in MEG and spatial variation in fractional anisotropy (FA) maps]. Healthy controls (HC) and patients with schizophrenia (SP) participated in an auditory/visual multisensory integration paradigm to probe cortical connectivity in schizophrenia. To allow direct comparisons across participants and groups, the MEG data were registered to an average head position and regional waveforms were obtained by calculating the local field power of the planar gradiometers. Diffusion tensor images obtained in the same individuals were preprocessed to provide FA maps for each participant. The MEG/FA data were then integrated using the jICA software (http://mialab.mrn.org/software/fit). We identified MEG/FA components that demonstrated significantly different (p < 0.05) covariation in MEG/FA data between diagnostic groups (SP vs. HC) and three components that captured the predominant sensory responses in the MEG data. Lower FA values in bilateral posterior parietal regions, which include anterior/posterior association tracts, were associated with reduced MEG amplitude (120-170 ms) of the visual response in occipital sensors in SP relative to HC. Additionally, increased FA in a right medial frontal region was linked with larger amplitude late MEG activity (300-400 ms) in bilateral central channels for SP relative to HC. Step-wise linear regression provided evidence that right temporal, occipital and late central components were significant predictors of reaction time and cognitive performance based on the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) cognitive assessment battery. These results point to dysfunction in a posterior visual processing network in schizophrenia, with reduced MEG amplitude, reduced FA and poorer overall performance on the MATRICS. Interestingly, the spatial location of the MEG activity and the associated FA regions are spatially consistent with white matter regions that subserve these brain areas. This novel approach provides evidence for significant pairing between function (electrophysiology) and structure (white matter integrity) and demonstrates the sensitivity of this multivariate, multimodal integration technique to group differences in function and structure. PMID:23777757
Parallel pathways for cross-modal memory retrieval in Drosophila.
Zhang, Xiaonan; Ren, Qingzhong; Guo, Aike
2013-05-15
Memory-retrieval processing of cross-modal sensory preconditioning is vital for understanding the plasticity underlying the interactions between modalities. As part of the sensory preconditioning paradigm, it has been hypothesized that the conditioned response to an unreinforced cue depends on the memory of the reinforced cue via a sensory link between the two cues. To test this hypothesis, we studied cross-modal memory-retrieval processing in a genetically tractable model organism, Drosophila melanogaster. By expressing the dominant temperature-sensitive shibire(ts1) (shi(ts1)) transgene, which blocks synaptic vesicle recycling of specific neural subsets with the Gal4/UAS system at the restrictive temperature, we specifically blocked visual and olfactory memory retrieval, either alone or in combination; memory acquisition remained intact for these modalities. Blocking the memory retrieval of the reinforced olfactory cues did not impair the conditioned response to the unreinforced visual cues or vice versa, in contrast to the canonical memory-retrieval processing of sensory preconditioning. In addition, these conditioned responses can be abolished by blocking the memory retrieval of the two modalities simultaneously. In sum, our results indicated that a conditioned response to an unreinforced cue in cross-modal sensory preconditioning can be recalled through parallel pathways.
Mohajerani, Majid H; Aminoltejari, Khatereh; Murphy, Timothy H
2011-05-31
Most processing of sensation involves the cortical hemisphere opposite (contralateral) to the stimulated limb. Stroke patients can exhibit changes in the interhemispheric balance of sensory signal processing. It is unclear whether these changes are the result of poststroke rewiring and experience, or whether they could result from the immediate effect of circuit loss. We evaluated the effect of mini-strokes over short timescales (<2 h) where cortical rewiring is unlikely by monitoring sensory-evoked activity throughout much of both cortical hemispheres using voltage-sensitive dye imaging. Blockade of a single pial arteriole within the C57BL6J mouse forelimb somatosensory cortex reduced the response evoked by stimulation of the limb contralateral to the stroke. However, after stroke, the ipsilateral (uncrossed) forelimb response within the unaffected hemisphere was spared and became independent of the contralateral forelimb cortex. Within the unaffected hemisphere, mini-strokes in the opposite hemisphere significantly enhanced sensory responses produced by stimulation of either contralateral or ipsilateral pathways within 30-50 min of stroke onset. Stroke-induced enhancement of responses within the spared hemisphere was not reproduced by inhibition of either cortex or thalamus using pharmacological agents in nonischemic animals. I/LnJ acallosal mice showed similar rapid interhemispheric redistribution of sensory processing after stroke, suggesting that subcortical connections and not transcallosal projections were mediating the novel activation patterns. Thalamic inactivation before stroke prevented the bilateral rearrangement of sensory responses. These findings suggest that acute stroke, and not merely loss of activity, activates unique pathways that can rapidly redistribute function within the spared cortical hemisphere.
Post-Event Processing in Children with Social Phobia
ERIC Educational Resources Information Center
Schmitz, Julian; Kramer, Martina; Blechert, Jens; Tuschen-Caffier, Brunna
2010-01-01
In the aftermath of a distressing social event, adults with social phobia (SP) engage in a review of this event with a focus on its negative aspects. To date, little is known about this post-event processing (PEP) and its relationship with perceived performance in SP children. We measured PEP in SP children (n = 24) and healthy controls (HC; n =…
A Pilot Study of Integrated Listening Systems for Children with Sensory Processing Problems
ERIC Educational Resources Information Center
Schoen, Sarah A.; Miller, Lucy J.; Sullivan, Jillian
2015-01-01
This pilot study explored the effects of Integrated Listening Systems (iLs) Focus Series on individualized parent goals for children with sensory processing impairments. A nonconcurrent multiple baseline, repeated measure across participants, single-case study design was employed (n = 7). The 40-session intervention was delivered at home and in…
ERIC Educational Resources Information Center
Wink, Sarah; McKeown, Laura; Casey, Jackie
2017-01-01
This phenomenological study explored parents' perspectives of Therapeutic Listening (TL) implemented as a home program to treat their children with sensory processing difficulties. Ten parents participated in semistructured interviews. Interviews were transcribed verbatim and analyzed thematically. Parents were concerned about their child's…
Construction and Updating of Event Models in Auditory Event Processing
ERIC Educational Resources Information Center
Huff, Markus; Maurer, Annika E.; Brich, Irina; Pagenkopf, Anne; Wickelmaier, Florian; Papenmeier, Frank
2018-01-01
Humans segment the continuous stream of sensory information into distinct events at points of change. Between 2 events, humans perceive an event boundary. Present theories propose changes in the sensory information to trigger updating processes of the present event model. Increased encoding effort finally leads to a memory benefit at event…
ERIC Educational Resources Information Center
Engel-Yeger, Batya; Hardal-Nasser, Reem; Gal, Eynat
2011-01-01
High frequency of sensory processing dysfunctions (SPD) is prevalent among children with intellectual developmental disabilities and contributes to their maladaptive behaviors. However, the knowledge about the expressions of SPD in different levels of IDD severity is limited. As SPD may reduce adaptive responses and limit participation, this…
ERIC Educational Resources Information Center
Yang, Jie; Shu, Hua; Bi, Yanchao; Liu, Youyi; Wang, Xiaoyi
2011-01-01
Embodied semantic theories suppose that representation of word meaning and actual sensory-motor processing are implemented in overlapping systems. According to this view, association and dissociation of different word meaning should correspond to dissociation and association of the described sensory-motor processing. Previous studies demonstrate…
ERIC Educational Resources Information Center
Strauss, Annika
2017-01-01
This article puts forward an experiential teaching method for becoming aware of, getting access to, and giving meaning to the sensory experiences that constitute and shape learning processes during social anthropological fieldwork. While social anthropologists use all their senses in the field, the preparation and processing of fieldwork are…
Sensory Processing in Internationally Adopted, Post-Institutionalized Children
ERIC Educational Resources Information Center
Wilbarger, Julia; Gunnar, Megan; Schneider, Mary; Pollak, Seth
2010-01-01
Background/Methods: Sensory processing capacities of 8-12-year-old internationally adopted (IA) children who experienced prolonged institutional care (greater than 12 months with 75% of pre-adoption lives in institutional care) prior to adoption into family environments (PI) were compared to a group of IA children who were adopted early (less than…
The trait of sensory processing sensitivity and neural responses to changes in visual scenes
Xu, Xiaomeng; Aron, Arthur; Aron, Elaine; Cao, Guikang; Feng, Tingyong; Weng, Xuchu
2011-01-01
This exploratory study examined the extent to which individual differences in sensory processing sensitivity (SPS), a temperament/personality trait characterized by social, emotional and physical sensitivity, are associated with neural response in visual areas in response to subtle changes in visual scenes. Sixteen participants completed the Highly Sensitive Person questionnaire, a standard measure of SPS. Subsequently, they were tested on a change detection task while undergoing functional magnetic resonance imaging (fMRI). SPS was associated with significantly greater activation in brain areas involved in high-order visual processing (i.e. right claustrum, left occipitotemporal, bilateral temporal and medial and posterior parietal regions) as well as in the right cerebellum, when detecting minor (vs major) changes in stimuli. These findings remained strong and significant after controlling for neuroticism and introversion, traits that are often correlated with SPS. These results provide the first evidence of neural differences associated with SPS, the first direct support for the sensory aspect of this trait that has been studied primarily for its social and affective implications, and preliminary evidence for heightened sensory processing in individuals high in SPS. PMID:20203139
Shapes, scents and sounds: quantifying the full multi-sensory basis of conceptual knowledge.
Hoffman, Paul; Lambon Ralph, Matthew A
2013-01-01
Contemporary neuroscience theories assume that concepts are formed through experience in multiple sensory-motor modalities. Quantifying the contribution of each modality to different object categories is critical to understanding the structure of the conceptual system and to explaining category-specific knowledge deficits. Verbal feature listing is typically used to elicit this information but has a number of drawbacks: sensory knowledge often cannot easily be translated into verbal features and many features are experienced in multiple modalities. Here, we employed a more direct approach in which subjects rated their knowledge of objects in each sensory-motor modality separately. Compared with these ratings, feature listing over-estimated the importance of visual form and functional knowledge and under-estimated the contributions of other sensory channels. An item's sensory rating proved to be a better predictor of lexical-semantic processing speed than the number of features it possessed, suggesting that ratings better capture the overall quantity of sensory information associated with a concept. Finally, the richer, multi-modal rating data not only replicated the sensory-functional distinction between animals and non-living things but also revealed novel distinctions between different types of artefact. Hierarchical cluster analyses indicated that mechanical devices (e.g., vehicles) were distinct from other non-living objects because they had strong sound and motion characteristics, making them more similar to animals in this respect. Taken together, the ratings align with neuroscience evidence in suggesting that a number of distinct sensory processing channels make important contributions to object knowledge. Multi-modal ratings for 160 objects are provided as supplementary materials. Copyright © 2012 Elsevier Ltd. All rights reserved.
Designing sensory-substitution devices: Principles, pitfalls and potential1
Kristjánsson, Árni; Moldoveanu, Alin; Jóhannesson, Ómar I.; Balan, Oana; Spagnol, Simone; Valgeirsdóttir, Vigdís Vala; Unnthorsson, Rúnar
2016-01-01
An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object. PMID:27567755
Designing sensory-substitution devices: Principles, pitfalls and potential1.
Kristjánsson, Árni; Moldoveanu, Alin; Jóhannesson, Ómar I; Balan, Oana; Spagnol, Simone; Valgeirsdóttir, Vigdís Vala; Unnthorsson, Rúnar
2016-09-21
An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object.
Rojas-Líbano, Daniel; Frederick, Donald E.; Egaña, José I.; Kay, Leslie M.
2014-01-01
Sensory-motor relationships are part of the normal operation of sensory systems. Sensing occurs in the context of active sensor movement, which in turn influences sensory processing. We address such a process in the rat olfactory system. Through recordings of the diaphragm electromyogram (EMG), we monitored the motor output of the respiratory circuit involved in sniffing behavior, simultaneously with the local field potential (LFP) of the olfactory bulb (OB) in rats moving freely in a familiar environment, where they display a wide range of respiratory frequencies. We show that the OB LFP represents the sniff cycle with high reliability at every sniff frequency and can therefore be used to study the neural representation of motor drive in a sensory cortex. PMID:24966821
Chen, Chih-Ming; Lin, Hsien-Tang
2017-12-01
This study evaluated the supplementary effect of higher concentrations of various disaccharides on processing yield, major physicochemical properties, and sensory attributes of Chinese-style pork jerky (CSPJ). CSPJ samples were prepared by marinating sliced ham (4 mm) with three dissaccharides, including sucrose, lactose, and maltose, at 0%, 15%, 18%, 21%, and 24%. Subsequently, the CSPJ samples were dried and roasted. The moisture content, water activity, crude protein, moisture-to-protein ratio, pH, processing yield, shear force, color, and sensory attributes of the CSPJ samples were evaluated. The quality characteristics of CSPJ samples prepared with sucrose were more acceptable. By contrast, CSPJ samples prepared with lactose showed the lowest scores. However, the processing yield and moisture content were the highest for CSPJ samples prepared with lactose, which may be associated with improved benefits for cost reduction. Furthermore, sucrose and lactose supplementation resulted in contrasting quality characteristics; for example, CSPJ samples with sucrose and maltose supplementation had higher sensory scores for color than samples with lactose supplementation. Additionally, most quality characteristics of CSPJ samples with sucrose supplementation contrasted with those of the samples with lactose supplementation; for example, the samples with sucrose supplementation had higher scores for sensory attributes than those with lactose supplementation. Sucrose supplementation up to 21% to 24% was associated with the highest overall acceptability scores (5.19 to 5.80), enhanced quality characteristics, increased processing yield, and reduced production cost.
Multisensory integration mechanisms during aging
Freiherr, Jessica; Lundström, Johan N.; Habel, Ute; Reetz, Kathrin
2013-01-01
The rapid demographical shift occurring in our society implies that understanding of healthy aging and age-related diseases is one of our major future challenges. Sensory impairments have an enormous impact on our lives and are closely linked to cognitive functioning. Due to the inherent complexity of sensory perceptions, we are commonly presented with a complex multisensory stimulation and the brain integrates the information from the individual sensory channels into a unique and holistic percept. The cerebral processes involved are essential for our perception of sensory stimuli and becomes especially important during the perception of emotional content. Despite ongoing deterioration of the individual sensory systems during aging, there is evidence for an increase in, or maintenance of, multisensory integration processing in aging individuals. Within this comprehensive literature review on multisensory integration we aim to highlight basic mechanisms and potential compensatory strategies the human brain utilizes to help maintain multisensory integration capabilities during healthy aging to facilitate a broader understanding of age-related pathological conditions. Further our goal was to identify where further research is needed. PMID:24379773
Sequential sensory and decision processing in posterior parietal cortex
Ibos, Guilhem; Freedman, David J
2017-01-01
Decisions about the behavioral significance of sensory stimuli often require comparing sensory inference of what we are looking at to internal models of what we are looking for. Here, we test how neuronal selectivity for visual features is transformed into decision-related signals in posterior parietal cortex (area LIP). Monkeys performed a visual matching task that required them to detect target stimuli composed of conjunctions of color and motion-direction. Neuronal recordings from area LIP revealed two main findings. First, the sequential processing of visual features and the selection of target-stimuli suggest that LIP is involved in transforming sensory information into decision-related signals. Second, the patterns of color and motion selectivity and their impact on decision-related encoding suggest that LIP plays a role in detecting target stimuli by comparing bottom-up sensory inputs (what the monkeys were looking at) and top-down cognitive encoding inputs (what the monkeys were looking for). DOI: http://dx.doi.org/10.7554/eLife.23743.001 PMID:28418332
Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu
2016-09-26
Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha-gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions.
Joffraud, J J; Leroi, F; Roy, C; Berdagué, J L
2001-06-15
This study investigated the volatile compounds produced by bacteria belonging to nine different bacterial groups: Lactobacillus sake, L. farciminis, L. alimentarius, Carnobacterium piscicola, Aeromonas sp., Shewanella putrefaciens, Brochothrix thermosphacta, Photobacterium phosphoreum and Enterobacteriaceae isolated from cold-smoked salmon. Each bacterial group was represented by several strains. In addition, combinations of the groups were examined as well. Sterile blocks of cold-smoked salmon were inoculated, vacuum-packed and stored at 6 degrees C. After 40 days of storage at 6 degrees C, aerobic viable count and pH were recorded, the volatile fraction of the samples was analysed by gas chromatography-mass spectrometry (GC-MS), and spoilage was assessed by sensory evaluation. Among the 81 volatile compounds identified by GC-MS, 30 appeared to be released as a result of bacterial metabolism. Some of the effects of inoculated bacterial strains on the composition of the volatile fraction seemed to be characteristic of certain bacterial species. Sensory analysis showed relationships between bacteria, the composition of the volatile fraction and the organoleptic quality of smoked salmon.
Selective attention to affective value alters how the brain processes olfactory stimuli.
Rolls, Edmund T; Grabenhorst, Fabian; Margot, Christian; da Silva, Maria A A P; Velazco, Maria Ines
2008-10-01
How does selective attention to affect influence sensory processing? In a functional magnetic resonance imaging investigation, when subjects were instructed to remember and rate the pleasantness of a jasmine odor, activations were greater in the medial orbito-frontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the odor. When the subjects were instructed to remember and rate the intensity, activations were greater in the inferior frontal gyrus. These top-down effects occurred not only during odor delivery but started in a preparation period after the instruction before odor delivery, and continued after termination of the odor in a short-term memory period. Thus, depending on the context in which odors are presented and whether affect is relevant, the brain prepares itself, responds to, and remembers an odor differently. These findings show that when attention is paid to affective value, the brain systems engaged to prepare for, represent, and remember a sensory stimulus are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus depending on whether the cognitive demand is for affect-related versus more sensory-related processing may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of olfactory but also of other sensory stimuli.
Qigong Sensory Training Pilot Study: A Tactile Home Program for Children with or At-Risk for Autism
ERIC Educational Resources Information Center
Tal-Atzili, Orit; Salls, Joyce
2017-01-01
This pilot study investigated the efficacy of Qigong Sensory Training, a parent-implemented tactile intervention, in improving sensory processing and self-regulation in children with or at-risk for autism who were enrolled in early intervention. A pretest-posttest, single-subject design was implemented with three families. After 5 months, atypical…
ERIC Educational Resources Information Center
Hughes, Gethin; Desantis, Andrea; Waszak, Florian
2013-01-01
Sensory processing of action effects has been shown to differ from that of externally triggered stimuli, with respect both to the perceived timing of their occurrence (intentional binding) and to their intensity (sensory attenuation). These phenomena are normally attributed to forward action models, such that when action prediction is consistent…
ERIC Educational Resources Information Center
Schaaf, Roseann C.; Toth-Cohen, Susan; Johnson, Stephanie L.; Outten, Gina; Benevides, Teal W.
2011-01-01
The purpose of this qualitative study was to explore the lived experience of how sensory-related behaviors of children with autism affected family routines. In-depth semi-structured interviews were conducted with four primary caregivers regarding the meaning and impact of their child's sensory-related behaviors on family routines that occurred…
ERIC Educational Resources Information Center
Piemonte, Maria Elisa Pimentel; Kopczynski, Marcos Cammarosano; Voos, Mariana Callil; Miranda, Camila Souza; Oliveira, Tatiana de Paula
2015-01-01
Background: Online sensory feedback has been considered fundamental for motor learning. The sensory inputs experienced in previous attempts can be processed and compared to allow the online refinement of subsequent attempts, resulting on performance improvement. However, numerous studies have provided direct and indirect evidence that learning new…
Modality distribution of sensory neurons in the feline caudate nucleus and the substantia nigra.
Márkus, Zita; Eördegh, Gabriella; Paróczy, Zsuzsanna; Benedek, G; Nagy, A
2008-09-01
Despite extensive analysis of the motor functions of the basal ganglia and the fact that multisensory information processing appears critical for the execution of their behavioral action, little is known concerning the sensory functions of the caudate nucleus (CN) and the substantia nigra (SN). In the present study, we set out to describe the sensory modality distribution and to determine the proportions of multisensory units within the CN and the SN. The separate single sensory modality tests demonstrated that a majority of the neurons responded to only one modality, so that they seemed to be unimodal. In contrast with these findings, a large proportion of these neurons exhibited significant multisensory cross-modal interactions. Thus, these neurons should also be classified as multisensory. Our results suggest that a surprisingly high proportion of sensory neurons in the basal ganglia are multisensory, and demonstrate that an analysis without a consideration of multisensory cross-modal interactions may strongly underrepresent the number of multisensory units. We conclude that a majority of the sensory neurons in the CN and SN process multisensory information and only a minority of these units are clearly unimodal.
Lanza, Barbara; Amoruso, Filomena
2018-02-02
A series of transformations occur in olive fruit both during ripening and processing. In particular, significant changes in the microstructural composition affect the flavour, texture, nutrients and overall quality of the end product. Texture is one of the sensory quality attributes of greatest importance to consumer acceptance. In the present work, kinaesthetic properties of in-brine table olives of three cultivars of Olea europaea L. (Bella di Cerignola, Peranzana and Taggiasca cvs) were provided by several measurements of olive tissue texture by sensory, rheological and microstructural approaches. Olives at the same stage of ripening and processed with the same technology, but belonging to different cultivars, showed significant differences at microstructural, sensorial and rheological levels. To describe the relationship between the three variables, multiple regression analysis and principal component analysis were chosen. Differences in microstructure were closely related both in terms of hardness measured by texture profile analysis and hardness measured by sensory analysis. The information provided could be an aid for screening and training of a sensory panel. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
The transformation of multi-sensory experiences into memories during sleep.
Rothschild, Gideon
2018-03-26
Our everyday lives present us with a continuous stream of multi-modal sensory inputs. While most of this information is soon forgotten, sensory information associated with salient experiences can leave long-lasting memories in our minds. Extensive human and animal research has established that the hippocampus is critically involved in this process of memory formation and consolidation. However, the underlying mechanistic details are still only partially understood. Specifically, the hippocampus has often been suggested to encode information during experience, temporarily store it, and gradually transfer this information to the cortex during sleep. In rodents, ample evidence has supported this notion in the context of spatial memory, yet whether this process adequately describes the consolidation of multi-sensory experiences into memories is unclear. Here, focusing on rodent studies, I examine how multi-sensory experiences are consolidated into long term memories by hippocampal and cortical circuits during sleep. I propose that in contrast to the classical model of memory consolidation, the cortex is a "fast learner" that has a rapid and instructive role in shaping hippocampal-dependent memory consolidation. The proposed model may offer mechanistic insight into memory biasing using sensory cues during sleep. Copyright © 2018 Elsevier Inc. All rights reserved.
Antinociceptive effect of vinpocetine--a comprehensive survey.
Csillik, Bertalan; Mihály, András; Knyihár-Csillik, Elizabeth
2010-05-30
Blockade of retrograde transport of nerve growth factor (NGF) in a peripheral sensory nerve is known to induce transganglionic degenerative atrophy (TDA) of central sensory terminals in the upper dorsal horn of the related, ipsilateral segments(s) of the spinal cord. The ensuing temporary blockade of transmission of nociceptive impulses has been utilized in the therapy of intractable pain, using transcutaneous iontophoresis of the microtubule inhibitors vincristin and vinblastin, drugs which inhibit retrograde transport of NGF. Since microtubule inhibition might inhibit (at least theoretically) mitotic processes in general, we sought to find a drug which inhibits retrograde transport of NGF without microtubule inhibition. Vinpocetine, a derivate of vincamine, which does not interfere with microtubular function, was found to inhibit retrograde axoplasmic transport of NGF in peripheral sensory nerves, similarly to vincristin and vinblastin. Blockade of NGF transport is followed by transganglionic degenerative atrophy in the segmentally related, ipsilateral superficial spinal dorsal horn, characterized by depletion of the marker enzymes of nociception, fluoride resistant acid phosphatase (FRAP) and thiamine monophosphatase (TMP) from the Rolando substance and by decrease of the pain-related neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) from lamina I-II-III. Based upon these findings, it has been suggested that vinpocetine may result in a locally restricted decrease of nociception. Herewith, the structural and behavioral effects of perineurally administered vinpocetine are discussed. Nociception, induced by intraplantar injection of formalin, was mitigated by perineural application of vinpocetine; also formalin-induced expression of c-fos in the ipsilateral, segmentally related superficial dorsal horn, was prevented by this treatment. Since vinpocetine is not a microtubule inhibitor, its mode of action is enigmatic. It is assumed that the effect of vinpocetine might be related to interaction with membrane-trafficking proteins, such as signalling endosomes and the endocytosis-mediating "pincher" protein, involved in retrograde axoplasmic transport of NGF, or to interaction with glial elements, recently reported to be involved in the modulation of pain in the spinal cord. Based on animal experiments it is assumed that the temporary, locally restricted decrease of nociception, induced by vinpocetine applied via transcutaneous iontophoresis, might open up new avenues in the clinical treatment of intractable pain.
Serum protein removal from skim milk with a 3-stage, 3× ceramic Isoflux membrane process at 50°C.
Adams, Michael C; Barbano, David M
2013-04-01
Small pore microfiltration (MF) can be used to remove serum proteins (SP) from skim milk. The process's SP removal efficiency directly influences the technology's economic feasibility. Our objective was to quantify the capacity of 0.14μm ceramic Isoflux MF membranes (TAMI, Nyons, France) to remove SP from skim milk. A 3-stage, 3×, feed-and-bleed MF study with diafiltration in the latter 2 stages was conducted at 50°C using Isoflux membranes to determine cumulative SP removal percentages and SP removal rates at each processing stage. The experiment was replicated 3 times starting with 3 separate lots of raw milk. In contrast to 3× MF theoretical cumulative SP removal percentages of 68, 90, and 97% after 1, 2, and 3 stages, respectively, the 3× Isoflux MF process removed only 39.5, 58.4, and 70.2% of SP after 1, 2, and 3 stages, respectively. Previous research has been published that provides the skim milk SP removal capacities of 3-stage, 3× 0.1μm ceramic Membralox (Pall Corp., Cortland, NY) uniform transmembrane pressure (UTP), 0.1μm ceramic Membralox graded permeability (GP), and 0.3μm polymeric polyvinylidene fluoride spiral-wound (PVDF-SW) MF systems (Parker-Hannifin, Process Advanced Filtration Division, Tell City, IN) at 50°C. No difference in cumulative SP removal percentage after 3 stages was detected between the Isoflux and previously published PVDF-SW values (70.3%), but SP removal was lower than published GP (96.5%) and UTP (98.3%) values. To remove 95% of SP from 1,000kg of skim milk in 12h it would take 7, 3, 3, and 7 stages with 6.86, 1.91, 2.82, and 17.98m(2) of membrane surface area for the Isoflux, GP, UTP, and PVDF-SW systems, respectively. The MF systems requiring more stages would produce additional permeate at lower protein concentrations. The ceramic MF systems requiring more surface area would incur higher capital costs. The authors hypothesize that SP removal with the Isoflux membranes was lower than theoretical for the following reasons: a range of membrane pore sizes existed (i.e., some pores were too small to pass SP), the selective layer modification and reverse flow conditions at the membrane outlet combined to reduce the effective membrane surface area, and the geometric shape of the Isoflux flow channels promoted early fouling of the membrane and rejection of SP by the foulant. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Anatomy and Neurophysiology of Cough
Canning, Brendan J.; Chang, Anne B.; Bolser, Donald C.; Smith, Jaclyn A.; Mazzone, Stuart B.; Adams, Todd M.; Altman, Kenneth W.; Barker, Alan F.; Birring, Surinder S.; Blackhall, Fiona; Bolser, Donald, C.; Boulet, Louis-Philippe; Braman, Sidney S.; Brightling, Christopher; Callahan-Lyon, Priscilla; Canning, Brendan; Chang, Anne Bernadette; Coeytaux, Remy; Cowley, Terrie; Davenport, Paul; Diekemper, Rebecca L.; Ebihara, Satoru; El Solh, Ali A.; Escalante, Patricio; Feinstein, Anthony; Field, Stephen K.; Fisher, Dina; French, Cynthia T.; Gibson, Peter; Gold, Philip; Grant, Cameron; Harding, Susan M.; Harnden, Anthony; Hill, Adam T.; Irwin, Richard S.; Kahrilas, Peter J.; Keogh, Karina A.; Lane, Andrew P.; Lewis, Sandra Zelman; Lim, Kaiser; Malesker, Mark A.; Mazzone, Peter; Mazzone, Stuart; Molasiotis, Alex; Murad, M. Hassan; Newcombe, Peter; Nguyen, Huong Q.; Oppenheimer, John; Prezant, David; Pringsheim, Tamara; Restrepo, Marcos I.; Rosen, Mark; Rubin, Bruce; Ryu, Jay H.; Smith, Jaclyn; Tarlo, Susan M.; Turner, Ronald B.; Vertigan, Anne; Wang, Gang; Weir, Kelly
2014-01-01
Bronchopulmonary C-fibers and a subset of mechanically sensitive, acid-sensitive myelinated sensory nerves play essential roles in regulating cough. These vagal sensory nerves terminate primarily in the larynx, trachea, carina, and large intrapulmonary bronchi. Other bronchopulmonary sensory nerves, sensory nerves innervating other viscera, as well as somatosensory nerves innervating the chest wall, diaphragm, and abdominal musculature regulate cough patterning and cough sensitivity. The responsiveness and morphology of the airway vagal sensory nerve subtypes and the extrapulmonary sensory nerves that regulate coughing are described. The brainstem and higher brain control systems that process this sensory information are complex, but our current understanding of them is considerable and increasing. The relevance of these neural systems to clinical phenomena, such as urge to cough and psychologic methods for treatment of dystussia, is high, and modern imaging methods have revealed potential neural substrates for some features of cough in the human. PMID:25188530
Membrane potential correlates of sensory perception in mouse barrel cortex.
Sachidhanandam, Shankar; Sreenivasan, Varun; Kyriakatos, Alexandros; Kremer, Yves; Petersen, Carl C H
2013-11-01
Neocortical activity can evoke sensory percepts, but the cellular mechanisms remain poorly understood. We trained mice to detect single brief whisker stimuli and report perceived stimuli by licking to obtain a reward. Pharmacological inactivation and optogenetic stimulation demonstrated a causal role for the primary somatosensory barrel cortex. Whole-cell recordings from barrel cortex neurons revealed membrane potential correlates of sensory perception. Sensory responses depended strongly on prestimulus cortical state, but both slow-wave and desynchronized cortical states were compatible with task performance. Whisker deflection evoked an early (<50 ms) reliable sensory response that was encoded through cell-specific reversal potentials. A secondary late (50-400 ms) depolarization was enhanced on hit trials compared to misses. Optogenetic inactivation revealed a causal role for late excitation. Our data reveal dynamic processing in the sensory cortex during task performance, with an early sensory response reliably encoding the stimulus and later secondary activity contributing to driving the subjective percept.
Sensory Perception and Aging in Model Systems: From the Outside In
Linford, Nancy J.; Kuo, Tsung-Han; Chan, Tammy P.; Pletcher, Scott D.
2014-01-01
Sensory systems provide organisms from bacteria to human with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organism lifespan, have opened the door for powerful new research into aging. While direct links between sensory perception and aging have been established only recently, here we discuss these initial discoveries and evaluate the potential for different forms of sensory processing to modulate lifespan across taxa. Harnessing the neurobiology of simple model systems to study the biological impact of sensory experiences will yield insights into the broad influence of sensory perception in mammals and may help uncover new mechanisms of healthy aging. PMID:21756108
Sensory perception and aging in model systems: from the outside in.
Linford, Nancy J; Kuo, Tsung-Han; Chan, Tammy P; Pletcher, Scott D
2011-01-01
Sensory systems provide organisms from bacteria to humans with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organismal lifespan, have opened the door for powerful new research into aging. Although direct links between sensory perception and aging have been established only recently, here we discuss these initial discoveries and evaluate the potential for different forms of sensory processing to modulate lifespan across taxa. Harnessing the neurobiology of simple model systems to study the biological impact of sensory experiences will yield insights into the broad influence of sensory perception in mammals and may help uncover new mechanisms of healthy aging.
Donkers, Franc C.L.; Schipul, Sarah E.; Baranek, Grace T.; Cleary, Katherine M.; Willoughby, Michael T.; Evans, Anna M.; Bulluck, John C.; Lovmo, Jeanne E.; Belger, Aysenil
2015-01-01
Neurobiological underpinnings of unusual sensory features in individuals with autism are unknown. Event-related potentials (ERPs) elicited by task-irrelevant sounds were used to elucidate neural correlates of auditory processing and associations with three common sensory response patterns (hyperresponsiveness; hyporesponsiveness; sensory seeking). Twenty-eight children with autism and 39 typically developing children (4–12 year-olds) completed an auditory oddball paradigm. Results revealed marginally attenuated P1 and N2 to standard tones and attenuated P3a to novel sounds in autism versus controls. Exploratory analyses suggested that within the autism group, attenuated N2 and P3a amplitudes were associated with greater sensory seeking behaviors for specific ranges of P1 responses. Findings suggest that attenuated early sensory as well as later attention-orienting neural responses to stimuli may underlie selective sensory features via complex mechanisms. PMID:24072639
Case Series: Sensory Intolerance as a Primary Symptom of Pediatric OCD
HAZEN, ERIC P.; REICHERT, ELIZABETH L.; PIACENTINI, JOHN C.; MIGUEL, EURÍPEDES CONSTANTINO; DO ROSARIO, MARIA CONCEIÇÃO; PAULS, DAVID; GELLER, DANIEL A.
2013-01-01
Introduction Marked intolerance or intrusive re-experiencing of ordinary sensory stimuli that in turn drive functionally impairing compulsive behaviors are occasionally seen in young children with OCD. Methods We describe a number of children with DSM-IV OCD ascertained from a family genetic study of pediatric OCD, whose intolerance of ordinary sensory stimuli created significant subjective distress and time-consuming ritualistic behavior that was clinically impairing. Results In each case, these sensory symptoms were the primary presenting symptoms and were experienced in the absence of intrusive thoughts, images, or ideas associated with “conventional” OCD symptoms. Conclusions These symptoms suggest abnormalities in sensory processing and integration in at least a subset of OCD patients. Recognition of these sensory symptoms and sensory-driven behaviors as part of the broad phenotypic variation in children with OCD could help clinicians more easily identify OCD patients and facilitate treatment. PMID:19034751
Timing Actions to Avoid Refractoriness: A Simple Solution for Streaming Sensory Signals
Nogueira, Javier; Caputi, Ángel Ariel
2011-01-01
Segmenting self- from allo-generated signals is crucial for active sensory processing. We report a dynamic filter used by South American pulse electric fish to distinguish active electro-sensory signals carried by their own electric discharges from other concomitant electrical stimuli (i.e. communication signals). The filter has a sensory component, consisting of an onset type central electro-sensory neuron, and a motor component, consisting of a change in the fish's discharge rate when allo-generated electrical events occur in temporal proximity to the fish's own discharge. We investigated the sensory component of the filter by in vitro mimicking synaptic inputs occurring during behavioral responses to allo-generated interfering signals. We found that active control of the discharge enhances self-generated over allo-generated responses by forcing allo-generated signals into a central refractory period. This hypothesis was confirmed by field potential recordings in freely discharging fish. Similar sensory-motor mechanisms may also contribute to signal segmentation in other sensory systems. PMID:21789228
Pa, Judy; Wilson, Stephen M; Pickell, Herbert; Bellugi, Ursula; Hickok, Gregory
2008-12-01
Despite decades of research, there is still disagreement regarding the nature of the information that is maintained in linguistic short-term memory (STM). Some authors argue for abstract phonological codes, whereas others argue for more general sensory traces. We assess these possibilities by investigating linguistic STM in two distinct sensory-motor modalities, spoken and signed language. Hearing bilingual participants (native in English and American Sign Language) performed equivalent STM tasks in both languages during functional magnetic resonance imaging. Distinct, sensory-specific activations were seen during the maintenance phase of the task for spoken versus signed language. These regions have been previously shown to respond to nonlinguistic sensory stimulation, suggesting that linguistic STM tasks recruit sensory-specific networks. However, maintenance-phase activations common to the two languages were also observed, implying some form of common process. We conclude that linguistic STM involves sensory-dependent neural networks, but suggest that sensory-independent neural networks may also exist.
ERIC Educational Resources Information Center
Villasenor, Romana F.; Smith, Sarah L.; Jewell, Vanessa D.
2018-01-01
This systematic review evaluates current evidence for using sound-based interventions (SBIs) to improve educational participation for children with challenges in sensory processing and integration. Databases searched included CINAHL, MEDLINE Complete, PsychINFO, ERIC, Web of Science, and Cochrane. No studies explicitly measured participation-level…
Are Sensory Processing Features Associated with Depressive Symptoms in Boys with an ASD?
ERIC Educational Resources Information Center
Bitsika, Vicki; Sharpley, Christopher F.; Mills, Richard
2016-01-01
The association between Sensory Processing Features (SPF) and depressive symptoms was investigated at two levels in 150 young males (6-18 years) with an ASD. First, a significant correlation was found between SPF and total depressive symptom scores. Second, different aspects of SPF significantly predicted different depressive symptom factors, with…
ERIC Educational Resources Information Center
Schneider, Mary L.; Moore, Colleen F.; Gajewski, Lisa L.; Larson, Julie A.; Roberts, Andrew D.; Converse, Alexander K.; DeJesus, Onofre T.
2008-01-01
Disrupted sensory processing, characterized by over- or underresponsiveness to environmental stimuli, has been reported in children with a variety of developmental disabilities. This study examined the effects of prenatal stress and moderate-level prenatal alcohol exposure on tactile sensitivity and its relationship to striatal dopamine system…
USDA-ARS?s Scientific Manuscript database
This study evaluated the feasibility of flavoring raw oysters by placing them under pressure in the presence of selected flavorings. Hand-shucked raw oysters were processed at high pressure (600 MPa), in the presence or absence of (Sriracha®) flavoring, and evaluated by a trained sensory panel 3 an...
ERIC Educational Resources Information Center
Fox, Cara; Snow, Pamela C.; Holland, Kerry
2014-01-01
Behavioural problems in childhood are common, with significant and wide-ranging implications for individuals, families and the community. There is some evidence that sensory processing difficulties are associated with behavioural problems in children with disabilities such as autism spectrum disorders (ASDs) and attention-deficit/hyperactivity…
Soekadar, Surjo R; Witkowski, Matthias; Mellinger, Jürgen; Ramos, Ander; Birbaumer, Niels; Cohen, Leonardo G
2011-10-01
Event-related desynchronization (ERD) of sensori-motor rhythms (SMR) can be used for online brain-machine interface (BMI) control, but yields challenges related to the stability of ERD and feedback strategy to optimize BMI learning.Here, we compared two approaches to this challenge in 20 right-handed healthy subjects (HS, five sessions each, S1-S5) and four stroke patients (SP, 15 sessions each, S1-S15). ERD was recorded from a 275-sensor MEG system. During daily training,motor imagery-induced ERD led to visual and proprioceptive feedback delivered through an orthotic device attached to the subjects' hand and fingers. Group A trained with a heterogeneous reference value (RV) for ERD detection with binary feedback and Group B with a homogenous RV and graded feedback (10 HS and 2 SP in each group). HS in Group B showed better BMI performance than Group A (p < 0.001) and improved BMI control from S1 to S5 (p = 0.012) while Group A did not. In spite of the small n, SP in Group B showed a trend for a higher BMI performance (p = 0.06) and learning was significantly better (p < 0.05). Using a homogeneous RV and graded feedback led to improved modulation of ipsilesional activity resulting in superior BMI learning relative to use of a heterogeneous RV and binary feedback.
Saidi, Mouna; Kamali, Soufiane; Beaudry, Francis
2016-10-01
Tachykinins are a family of pronociceptive neuropeptides with a specific role in pain and inflammation. Several mechanisms regulate endogenous tachykinins and Substance P (SP) levels, including the differential expression of protachykinin mRNA and the controlled secretion of tachykinins from neurons. Proteolysis is suspected to regulate extracellular SP concentrations but few studies were conducted on the metabolism of proneuropeptides and neuropeptides. Here, we provide evidence that proteolysis controls SP levels in the spinal cord leading to the formation of active C-terminal fragments. Using high-resolution mass spectrometry, specific tachykinins fragments were characterized and quantified. The metabolic stability of β-Tachykinin 58-71 and SP were very short resulting in half-life of 5.7 and 3.5min respectively. Several C-terminal fragments were identified, including SP 3-11 , SP 5-11 and SP 8-11 , which conserve affinity for the Neurokinin 1 receptor. Interestingly, the metabolic stability of C-terminal fragments was significantly superior. Two specific Prolyl endopeptidase inhibitors were used and showed a significant reduction in the rate of formation of SP 3-11 and SP 5-11 providing strong evidence that Prolyl endopeptidase is involved into N-terminal processing of SP in the spinal cord. Copyright © 2016 Elsevier Ltd. All rights reserved.
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1990-01-01
Three areas related to human orientation control are investigated: (1) reflexes associated with the control of eye movements and posture; (2) the perception of body rotation and position with respect to gravity; and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. This process is referred as sensory selection. This proposal will attempt to quantify subject's sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms.
Finke, Mareike; Sandmann, Pascale; Bönitz, Hanna; Kral, Andrej; Büchner, Andreas
2016-01-01
Single-sided deaf subjects with a cochlear implant (CI) provide the unique opportunity to compare central auditory processing of the electrical input (CI ear) and the acoustic input (normal-hearing, NH, ear) within the same individual. In these individuals, sensory processing differs between their two ears, while cognitive abilities are the same irrespectively of the sensory input. To better understand perceptual-cognitive factors modulating speech intelligibility with a CI, this electroencephalography study examined the central-auditory processing of words, the cognitive abilities, and the speech intelligibility in 10 postlingually single-sided deaf CI users. We found lower hit rates and prolonged response times for word classification during an oddball task for the CI ear when compared with the NH ear. Also, event-related potentials reflecting sensory (N1) and higher-order processing (N2/N4) were prolonged for word classification (targets versus nontargets) with the CI ear compared with the NH ear. Our results suggest that speech processing via the CI ear and the NH ear differs both at sensory (N1) and cognitive (N2/N4) processing stages, thereby affecting the behavioral performance for speech discrimination. These results provide objective evidence for cognition to be a key factor for speech perception under adverse listening conditions, such as the degraded speech signal provided from the CI. © 2016 S. Karger AG, Basel.
Top-down modulation of visual and auditory cortical processing in aging.
Guerreiro, Maria J S; Eck, Judith; Moerel, Michelle; Evers, Elisabeth A T; Van Gerven, Pascal W M
2015-02-01
Age-related cognitive decline has been accounted for by an age-related deficit in top-down attentional modulation of sensory cortical processing. In light of recent behavioral findings showing that age-related differences in selective attention are modality dependent, our goal was to investigate the role of sensory modality in age-related differences in top-down modulation of sensory cortical processing. This question was addressed by testing younger and older individuals in several memory tasks while undergoing fMRI. Throughout these tasks, perceptual features were kept constant while attentional instructions were varied, allowing us to devise all combinations of relevant and irrelevant, visual and auditory information. We found no top-down modulation of auditory sensory cortical processing in either age group. In contrast, we found top-down modulation of visual cortical processing in both age groups, and this effect did not differ between age groups. That is, older adults enhanced cortical processing of relevant visual information and suppressed cortical processing of visual distractors during auditory attention to the same extent as younger adults. The present results indicate that older adults are capable of suppressing irrelevant visual information in the context of cross-modal auditory attention, and thereby challenge the view that age-related attentional and cognitive decline is due to a general deficits in the ability to suppress irrelevant information. Copyright © 2014 Elsevier B.V. All rights reserved.
Genetically identified spinal interneurons integrating tactile afferents for motor control
Panek, Izabela; Farah, Carl
2015-01-01
Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supraspinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described. Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been used in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing. PMID:26445867
Saraf-Sinik, Inbar; Assa, Eldad; Ahissar, Ehud
2015-06-10
Tactile perception is obtained by coordinated motor-sensory processes. We studied the processes underlying the perception of object location in freely moving rats. We trained rats to identify the relative location of two vertical poles placed in front of them and measured at high resolution the motor and sensory variables (19 and 2 variables, respectively) associated with this whiskers-based perceptual process. We found that the rats developed stereotypic head and whisker movements to solve this task, in a manner that can be described by several distinct behavioral phases. During two of these phases, the rats' whiskers coded object position by first temporal and then angular coding schemes. We then introduced wind (in two opposite directions) and remeasured their perceptual performance and motor-sensory variables. Our rats continued to perceive object location in a consistent manner under wind perturbations while maintaining all behavioral phases and relatively constant sensory coding. Constant sensory coding was achieved by keeping one group of motor variables (the "controlled variables") constant, despite the perturbing wind, at the cost of strongly modulating another group of motor variables (the "modulated variables"). The controlled variables included coding-relevant variables, such as head azimuth and whisker velocity. These results indicate that consistent perception of location in the rat is obtained actively, via a selective control of perception-relevant motor variables. Copyright © 2015 the authors 0270-6474/15/358777-13$15.00/0.
Does hippotherapy effect use of sensory information for balance in people with multiple sclerosis?
Lindroth, Jodi L; Sullivan, Jessica L; Silkwood-Sherer, Debbie
2015-01-01
This case-series study aimed to determine if there were observable changes in sensory processing for postural control in individuals with multiple sclerosis (MS) following physical therapy using hippotherapy (HPOT), or changes in balance and functional gait. This pre-test non-randomized design study, with follow-up assessment at 6 weeks, included two females and one male (age range 37-60 years) with diagnoses of relapse-remitting or progressive MS. The intervention consisted of twelve 40-min physical therapy sessions which included HPOT twice a week for 6 weeks. Sensory organization and balance were assessed by the Sensory Organization Test (SOT) and Berg Balance Scale (BBS). Gait was assessed using the Functional Gait Assessment (FGA). Following the intervention period, all three participants showed improvements in SOT (range 1-8 points), BBS (range 2-6 points), and FGA (average 4 points) scores. These improvements were maintained or continued to improve at follow-up assessment. Two of the three participants no longer over-relied on vision and/or somatosensory information as the primary sensory input for postural control, suggesting improved use of sensory information for balance. The results indicate that HPOT may be a beneficial physical therapy treatment strategy to improve balance, functional gait, and enhance how some individuals with MS process sensory cues for postural control. Randomized clinical trials will be necessary to validate results of this study.
Korman, Maria; Herling, Zohar; Levy, Ishay; Egbarieh, Nebal; Engel-Yeger, Batya; Karni, Avi
2017-04-01
Although a ubiquitous situation, it is not clear how effective is a learning experience when task-irrelevant, sensory noise occurs in the background. Here, young adults were trained on the finger opposition sequence task, in a well-established training and testing protocol affording measures for online as well as off-line learning. During the training session, one group experienced a minor background vibratory stimulation to the trunk by the means of vibrating cushion, while the second group experienced recorded sound vibrations. A control group was trained with no extra sensory stimulation. Sensory stimulation during training had no effect on the online within-session gains, but dampened the expression of the off-line, consolidation phase, gains in the two sensory stimulation groups. These results suggest that background sensory stimulation can selectively modify off-line, procedural memory consolidation processes, despite well-preserved on-line learning. Classical studies have shown that neural plasticity in sensory systems is modulated by motor input. The current results extend this notion and suggest that some types of task-irrelevant sensory stimulation, concurrent with motor training, may constitute a 'gating' factor - modulating the triggering of long-term procedural memory consolidation processes. Thus, vibratory stimulation may be considered as a behavioral counterpart of pharmacological interventions that do not interfere with short term neural plasticity but block long-term plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.
Parallel processing streams for motor output and sensory prediction during action preparation
Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.
2014-01-01
Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available. PMID:25540223
Parallel processing streams for motor output and sensory prediction during action preparation.
Stenner, Max-Philipp; Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J
2015-03-15
Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available. Copyright © 2015 the American Physiological Society.
Thermally induced evolution of hydrogenated amorphous carbon
NASA Astrophysics Data System (ADS)
Mangolini, Filippo; Rose, Franck; Hilbert, James; Carpick, Robert W.
2013-10-01
The thermally induced structural evolution of hydrogenated amorphous carbon (a-C:H) films was investigated in situ by X-ray photoelectron spectroscopy for annealing temperatures up to 500 °C. A model for the conversion of sp3- to sp2-hybridized carbon in a-C:H vs. temperature and time was developed and applied to determine the ranges of activation energies for the thermally activated processes occurring. The energies are consistent with ordering and clustering of sp2 carbon, scission of sp3 carbon-hydrogen bonds and formation of sp2 carbon, and direct transformation of sp3- to sp2-hybridized carbon.
Sleep, offline processing, and vocal learning
Margoliash, Daniel; Schmidt, Marc F
2009-01-01
The study of song learning and the neural song system has provided an important comparative model system for the study of speech and language acquisition. We describe some recent advances in the bird song system, focusing on the role of offline processing including sleep in processing sensory information and in guiding developmental song learning. These observations motivate a new model of the organization and role of the sensory memories in vocal learning. PMID:19906416
Tremblay-Marchand, D; Doyen, A; Britten, M; Pouliot, Y
2016-07-01
Microfiltration (MF) is a well-known process that can be used in the dairy industry to separate caseins from serum proteins (SP) in skim milk using membranes with a pore diameter of 0.1μm. Graded permeability ceramic membranes have been studied widely as means of improving milk fractionation by overcoming problems encountered with other MF membranes. The ideal operating parameters for process efficiency in terms of membrane selectivity, permeate flux, casein loss, SP transmission, energy consumption, and dilution with water remain to be determined for this membrane. Our objective was to evaluate the effects of transmembrane pressure (TMP), volumetric concentration factor (VCF), and diafiltration on overall process efficiency. Skim milk was processed using a pilot-scale MF system equipped with 0.72-m(2) graded permeability membranes with a pore size of 0.1μm. In the first experiment, in full recycle mode, TMP was set at 124, 152, 179, or 207 kPa by adjusting the permeate pressure at the outlet. Whereas TMP had no significant effect on permeate and retentate composition, 152 kPa was found to be optimal for SP removal during concentration and concentration or diafiltration experiments. When VCF was increased to 3×, SP rejection coefficient increased along with energy consumption and total casein loss, whereas SP removal rate decreased. Diafiltering twice allowed an increase in total SP removal but resulted in a substantial increase in energy consumption and casein loss. It also reduced the SP removal rate by diluting permeate. The membrane surface area required for producing cheese milk by blending whole milk, cream, and MF retentate (at different VCF) was estimated for different cheese milk casein concentrations. For a given casein concentration, the same quantity of permeate and SP would be produced, but less membrane surface area would be needed at a lower retentate VCF. Microfiltration has great potential as a process of adding value to conventional cheesemaking processes, but its cost-effectiveness at a large scale remains to be demonstrated. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Johari, Yusuf B; Estes, Scott D; Alves, Christina S; Sinacore, Marty S; James, David C
2015-12-01
Based on an optimized electroporation protocol, we designed a rapid, milliliter-scale diagnostic transient production assay to identify limitations in the ability of Chinese hamster ovary (CHO) cells to produce a model "difficult-to-express" homodimeric Fc-fusion protein, Sp35Fc, that exhibited very low volumetric titer and intracellular formation of disulfide-bonded oligomeric aggregates post-transfection. As expression of Sp35Fc induced an unfolded protein response in transfected host cells, we utilized the transient assay to compare, in parallel, multiple functionally diverse strategies to engineer intracellular processing of Sp35Fc in order to increase production and reduce aggregation as two discrete design objectives. Specifically, we compared the effect of (i) co-expression of ER-resident molecular chaperones (BiP, PDI, CypB) or active forms of UPR transactivators (ATF6c, XBP1s) at varying recombinant gene load, (ii) addition of small molecules known to act as chemical chaperones (PBA, DMSO, glycerol, betaine, TMAO) or modulate UPR signaling (PERK inhibitor GSK2606414) at varying concentration, (iii) a reduction in culture temperature to 32°C. Using this information, we designed a biphasic, Sp35Fc-specific transient manufacturing process mediated by lipofection that utilized CypB co-expression at an optimal Sp35Fc:CypB gene ratio of 5:1 to initially maximize transfected cell proliferation, followed by addition of a combination of PBA (0.5 mM) and glycerol (1% v/v) at the onset of stationary phase to maximize cell specific production and eliminate Sp35Fc aggregation. Using this optimal, engineered process transient Sp35Fc production was significantly increased sixfold over a 12 day production process with no evidence of disulfide-bonded aggregates. Finally, transient production in clonally derived sub-populations (derived from parental CHO host) screened for a heritably improved capability to produce Sp35Fc was also significantly improved by the optimized process, showing that protein-specific cell/process engineering can provide a solution that exceeds the limits of genetic/functional diversity within heterogeneous host cell populations. . © 2015 Wiley Periodicals, Inc.
Judd, Margaret A
2018-03-01
Styloid process (SP) development and its role in an individual's lived experience plays a negligible role in paleopathological research, although a handful of possible Eagle's syndrome cases have been reported. Here, the development of the stylohyoid chain and the medical research of SP variants are reviewed to inform the differential diagnosis of a probable SP fracture in a young adult male associated with the Ottoman Period (13-19thC) in Jordan. The fracture surface of the right SP is smooth rather than irregular, the coloration is uniform with the surrounding cortical bone staining, and no new bone formation is visible. All features are consistent with a perimortem injury. An unossified stylohyal is a differential diagnosis, while the left elongated SP suggests a predisposition to intrinsic injury. The implications of SP fractures are considered. Copyright © 2017 Elsevier Inc. All rights reserved.
Devoize, Laurent; Doméjean, Sophie; Melin, Céline; Raboisson, Patrick; Artola, Alain; Dallel, Radhouane
2010-07-09
The organization of efferent projections from the spinal trigeminal nucleus oralis (Sp5O) to the spinal cord in the rat was studied using the anterograde tracer Phaseolus vulgaris leucoagglutinin. Sp5O projections to the spinal cord are restricted to the cervical cord. No labeled terminal can be detected in the thoracic and lumbar cord. The organization of these projections happens to critically depend on the dorso-ventral location of the injection site. On the one hand, the dorsal part of the Sp5O projects to the medial part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the ipsilateral one. Ipsilateral labeled terminals are distributed throughout laminae VII to IX but tend to cluster around the dorso-medial motor nuclei, especially at C3-C5 levels. Within the contralateral ventral horn, label terminals are found particularly in the region of the ventro-medial motor nucleus. This projection extends as far caudally as C3 or C4 level. On the other hand, the ventral part of the Sp5O projects to the lateral part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the contralateral one. Contralateral labeled terminals are distributed within the region of the dorso- and ventro-medial motor nuclei at C1-C4 levels whereas they are restricted to the dorso-medial motor nucleus at C5-C8 levels. These findings suggest that Sp5O is involved in the coordination of neck movements and in the modulation of incoming sensory information at the cervical spinal cord. Copyright (c) 2010 Elsevier B.V. All rights reserved.