Sample records for separate cell types

  1. High-resolution Identification and Separation of Living Cell Types by Multiple microRNA-responsive Synthetic mRNAs.

    PubMed

    Endo, Kei; Hayashi, Karin; Saito, Hirohide

    2016-02-23

    The precise identification and separation of living cell types is critical to both study cell function and prepare cells for medical applications. However, intracellular information to distinguish live cells remains largely inaccessible. Here, we develop a method for high-resolution identification and separation of cell types by quantifying multiple microRNA (miRNA) activities in live cell populations. We found that a set of miRNA-responsive, in vitro synthesized mRNAs identify a specific cell population as a sharp peak and clearly separate different cell types based on less than two-fold differences in miRNA activities. Increasing the number of miRNA-responsive mRNAs enhanced the capability for cell identification and separation, as we precisely and simultaneously distinguished different cell types with similar miRNA profiles. In addition, the set of synthetic mRNAs separated HeLa cells into subgroups, uncovering heterogeneity of the cells and the level of resolution achievable. Our method could identify target live cells and improve the efficiency of cell purification from heterogeneous populations.

  2. Separation of cells from the rat anterior pituitary gland

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Hatfield, J. Michael

    1983-01-01

    Various techniques for separating the hormone-producing cell types from the rat anterior pituitary gland are examined. The purity, viability, and responsiveness of the separated cells depend on the physiological state of the donor, the tissue dissociation procedures, the staining technique used for identification of cell type, and the cell separation technique. The chamber-gradient setup and operation, the characteristics of the gradient materials, and the separated cell analysis of velocity sedimentation techniques (in particular Staput and Celsep) are described. Consideration is given to the various types of materials used in density gradient centrifugation and the operation of a gradient generating device. The use of electrophoresis to separate rat pituitary cells is discussed.

  3. Morphology-based optical separation of subpopulations from a heterogeneous murine breast cancer cell line.

    PubMed

    Tamura, Masato; Sugiura, Shinji; Takagi, Toshiyuki; Satoh, Taku; Sumaru, Kimio; Kanamori, Toshiyuki; Okada, Tomoko; Matsui, Hirofumi

    2017-01-01

    Understanding tumor heterogeneity is an urgent and unmet need in cancer research. In this study, we used a morphology-based optical cell separation process to classify a heterogeneous cancer cell population into characteristic subpopulations. To classify the cell subpopulations, we assessed their morphology in hydrogel, a three-dimensional culture environment that induces morphological changes according to the characteristics of the cells (i.e., growth, migration, and invasion). We encapsulated the murine breast cancer cell line 4T1E, as a heterogeneous population that includes highly metastatic cells, in click-crosslinkable and photodegradable gelatin hydrogels, which we developed previously. We observed morphological changes within 3 days of encapsulating the cells in the hydrogel. We separated the 4T1E cell population into colony- and granular-type cells by optical separation, in which local UV-induced degradation of the photodegradable hydrogel around the target cells enabled us to collect those cells. The obtained colony- and granular-type cells were evaluated in vitro by using a spheroid assay and in vivo by means of a tumor growth and metastasis assay. The spheroid assay showed that the colony-type cells formed compact spheroids in 2 days, whereas the granular-type cells did not form spheroids. The tumor growth assay in mice revealed that the granular-type cells exhibited lower tumor growth and a different metastasis behavior compared with the colony-type cells. These results suggest that morphology-based optical cell separation is a useful technique to classify a heterogeneous cancer cell population according to its cellular characteristics.

  4. A miniaturized multipurpose platform for rapid, label-free, and simultaneous separation, patterning, and in vitro culture of primary and rare cells.

    PubMed

    Didar, Tohid Fatanat; Bowey, Kristen; Almazan, Guillermina; Tabrizian, Maryam

    2014-02-01

    Given that current cell isolation techniques are expensive, time consuming, yield low isolation purities, and/or alter target cell properties, a versatile, cost effective, and easy-to-operate microchip with the capability to simultaneously separate, capture, pattern, and culture rare and primary cells in vitro is developed. The platform is based on target cell adhesion onto the micro-fabricated interfaces produced by microcontact printing of cell-specific antibodies. Results show over 95% separation efficiency in less than 10 min for the separation of oligodendrocyte progenitor cells (OPCs) and cardiomyocytes from rat brain and heart mixtures, respectively. Target cell attachment and single cell spreading can be precisely controlled on the basis of the designed patterns. Both cell types can maintain their biofunctionality. Indeed, isolated OPCs can proliferate and differentiate into mature oligodendrocytes, while isolated cardiomyocytes retain their contractile properties on the separation platform. Successful separation of two dissimilar cell types present in varying concentrations in their respective cell mixtures and the demonstration of their integrity after separation open new avenues for time and cost-effective sorting of various cell types using the developed miniaturized platform. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Solar cell with doped groove regions separated by ridges

    DOEpatents

    Molesa, Steven Edward; Pass, Thomas; Kraft, Steve

    2017-01-31

    Solar cells with doped groove regions separated by ridges and methods of fabricating solar cells are described. In an example, a solar cell includes a substrate having a surface with a plurality of grooves and ridges. A first doped region of a first conductivity type is disposed in a first of the grooves. A second doped region of a second conductivity type, opposite the first conductivity type, is disposed in a second of the grooves. The first and second grooves are separated by one of the ridges.

  6. A New Cell Separation Method Based on Antibody-Immobilized Nanoneedle Arrays for the Detection of Intracellular Markers.

    PubMed

    Kawamura, Ryuzo; Miyazaki, Minami; Shimizu, Keita; Matsumoto, Yuta; Silberberg, Yaron R; Sathuluri, Ramachandra Rao; Iijima, Masumi; Kuroda, Shun'ichi; Iwata, Futoshi; Kobayashi, Takeshi; Nakamura, Chikashi

    2017-11-08

    Focusing on intracellular targets, we propose a new cell separation technique based on a nanoneedle array (NNA) device, which allows simultaneous insertion of multiple needles into multiple cells. The device is designed to target and lift ("fish") individual cells from a mixed population of cells on a substrate using an antibody-functionalized NNA. The mechanics underlying this approach were validated by force analysis using an atomic force microscope. Accurate high-throughput separation was achieved using one-to-one contacts between the nanoneedles and the cells by preparing a single-cell array in which the positions of the cells were aligned with 10,000 nanoneedles in the NNA. Cell-type-specific separation was realized by controlling the adhesion force so that the cells could be detached in cell-type-independent manner. Separation of nestin-expressing neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) was demonstrated using the proposed technology, and successful differentiation to neuronal cells was confirmed.

  7. Rapid and label-free separation of Burkitt's lymphoma cells from red blood cells by optically-induced electrokinetics.

    PubMed

    Liang, Wenfeng; Zhao, Yuliang; Liu, Lianqing; Wang, Yuechao; Dong, Zaili; Li, Wen Jung; Lee, Gwo-Bin; Xiao, Xiubin; Zhang, Weijing

    2014-01-01

    Early stage detection of lymphoma cells is invaluable for providing reliable prognosis to patients. However, the purity of lymphoma cells in extracted samples from human patients' marrow is typically low. To address this issue, we report here our work on using optically-induced dielectrophoresis (ODEP) force to rapidly purify Raji cells' (a type of Burkitt's lymphoma cell) sample from red blood cells (RBCs) with a label-free process. This method utilizes dynamically moving virtual electrodes to induce negative ODEP force of varying magnitudes on the Raji cells and RBCs in an optically-induced electrokinetics (OEK) chip. Polarization models for the two types of cells that reflect their discriminate electrical properties were established. Then, the cells' differential velocities caused by a specific ODEP force field were obtained by a finite element simulation model, thereby established the theoretical basis that the two types of cells could be separated using an ODEP force field. To ensure that the ODEP force dominated the separation process, a comparison of the ODEP force with other significant electrokinetics forces was conducted using numerical results. Furthermore, the performance of the ODEP-based approach for separating Raji cells from RBCs was experimentally investigated. The results showed that these two types of cells, with different concentration ratios, could be separated rapidly using externally-applied electrical field at a driven frequency of 50 kHz at 20 Vpp. In addition, we have found that in order to facilitate ODEP-based cell separation, Raji cells' adhesion to the OEK chip's substrate should be minimized. This paper also presents our experimental results of finding the appropriate bovine serum albumin concentration in an isotonic solution to reduce cell adhesion, while maintaining suitable medium conductivity for electrokinetics-based cell separation. In short, we have demonstrated that OEK technology could be a promising tool for efficient and effective purification of Raji cells from RBCs.

  8. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    NASA Technical Reports Server (NTRS)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  9. A Self-Directed Method for Cell-Type Identification and Separation of Gene Expression Microarrays

    PubMed Central

    Zuckerman, Neta S.; Noam, Yair; Goldsmith, Andrea J.; Lee, Peter P.

    2013-01-01

    Gene expression analysis is generally performed on heterogeneous tissue samples consisting of multiple cell types. Current methods developed to separate heterogeneous gene expression rely on prior knowledge of the cell-type composition and/or signatures - these are not available in most public datasets. We present a novel method to identify the cell-type composition, signatures and proportions per sample without need for a-priori information. The method was successfully tested on controlled and semi-controlled datasets and performed as accurately as current methods that do require additional information. As such, this method enables the analysis of cell-type specific gene expression using existing large pools of publically available microarray datasets. PMID:23990767

  10. Quality testing of an innovative cascade separation system for multiple cell separation

    NASA Astrophysics Data System (ADS)

    Pierzchalski, Arkadiusz; Moszczynska, Aleksandra; Albrecht, Bernd; Heinrich, Jan-Michael; Tarnok, Attila

    2012-03-01

    Isolation of different cell types from mixed samples in one separation step by FACS is feasible but expensive and slow. It is cheaper and faster but still challenging by magnetic separation. An innovative bead-based cascade-system (pluriSelect GmbH, Leipzig, Germany) relies on simultaneous physical separation of different cell types. It is based on antibody-mediated binding of cells to beads of different size and isolation with sieves of different mesh-size. We validated pluriSelect system for single parameter (CD3) and simultaneous separation of CD3 and CD15 cells from EDTA blood-samples. Results were compared with those obtained by MACS (Miltenyi-Biotech) magnetic separation (CD3 separation). pluriSelect separation was done in whole blood, MACS on Ficoll gradient isolated leukocytes, according to the manufacturer's protocols. Isolated and residual cells were immunophenotyped (7-color 8-antibody panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLADR) on a CyFlowML flow cytometer (Partec GmbH). Cell count (Coulter), purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (92-98%), yield (50-60%) and viability (92-98%) of isolated cells. PluriSelect separation was slightly faster than MACS (1.15 h versus 1.5h). Moreover, no preenrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two cell subpopulation directly from whole blood and can provide a simple alternative to FACS. The isolated cells can be used for further research applications.

  11. Type of monocyte immunomagnetic separation affects the morphology of monocyte-derived dendritic cells, as investigated by scanning electron microscopy.

    PubMed

    Kowalewicz-Kulbat, M; Ograczyk, E; Krawczyk, K; Rudnicka, W; Fol, M

    2016-12-01

    Dendritic cells (DCs) are increasingly being used for multiple applications and are useful tools for many immunotherapeutic strategies. The understanding of the possible impact of the DCs-generation methods on the biological capacities of these cells is therefore essential. Although the immunomagnetic separation is regarded as a fast and accurate method yielding cells with the high purity and efficiency, still little is known about its impact on the properties of the generated DCs. The aim of this study was to compare the morphology of the monocyte derived dendritic cells (MoDCs), generated from monocytes selected with anti-CD14 mAbs (positive separation) and treated with anti-CD3, -CD7, -CD16, -CD19, -CD56, -CD123, glycophorin A (negative separation), using laser scanning microscopy. We found that the type of the immunomagnetic separation method used strongly influences the shape and cell dimension of the MoDCs. We observed that the height of both immature and LPS-matured DCs generated from monocytes isolated by negative separation was significantly higher compared to the cells obtained by positive separation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Stripe-patterned thermo-responsive cell culture dish for cell separation without cell labeling.

    PubMed

    Kumashiro, Yoshikazu; Ishihara, Jun; Umemoto, Terumasa; Itoga, Kazuyoshi; Kobayashi, Jun; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-02-11

    A stripe-patterned thermo-responsive surface is prepared to enable cell separation without labeling. The thermo-responsive surface containing a 3 μm striped pattern exhibits various cell adhesion and detachment properties. A mixture of three cell types is separated on the patterned surface based on their distinct cell-adhesion properties, and the composition of the cells is analyzed by flow cytometry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Separation of cancer cells from white blood cells by pinched flow fractionation.

    PubMed

    Pødenphant, Marie; Ashley, Neil; Koprowska, Kamila; Mir, Kalim U; Zalkovskij, Maksim; Bilenberg, Brian; Bodmer, Walter; Kristensen, Anders; Marie, Rodolphe

    2015-12-21

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation is challenged by the size overlap between cancer cells and the 10(6) times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells.

  14. Design and simulation of a microfluidic device for acoustic cell separation.

    PubMed

    Shamloo, Amir; Boodaghi, Miad

    2018-03-01

    Experimental acoustic cell separation methods have been widely used to perform separation for different types of blood cells. However, numerical simulation of acoustic cell separation has not gained enough attention and needs further investigation since by using numerical methods, it is possible to optimize different parameters involved in the design of an acoustic device and calculate particle trajectories in a simple and low cost manner before spending time and effort for fabricating these devices. In this study, we present a comprehensive finite element-based simulation of acoustic separation of platelets, red blood cells and white blood cells, using standing surface acoustic waves (SSAWs). A microfluidic channel with three inlets, including the middle inlet for sheath flow and two symmetrical tilted angle inlets for the cells were used to drive the cells through the channel. Two interdigital transducers were also considered in this device and by implementing an alternating voltage to the transducers, an acoustic field was created which can exert the acoustic radiation force to the cells. Since this force is dependent to the size of the cells, the cells are pushed towards the midline of the channel with different path lines. Particle trajectories for different cells were obtained and compared with a theoretical equation. Two types of separations were observed as a result of varying the amplitude of the acoustic field. In the first mode of separation, white blood cells were sorted out through the middle outlet and in the second mode of separation, platelets were sorted out through the side outlets. Depending on the clinical needs and by using the studied microfluidic device, each of these modes can be applied to separate the desired cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Separation of cells from the rat anterior pituitary gland

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Hatfield, J. Michael

    1984-01-01

    Data concerned with analyzing the cellular organization of the rat anterior pituitary gland are examined. The preparation of the cell suspensions and the methods used to separate pituitary cell types are described. Particular emphasis is given to velocity sedimentation at unit gravity, density gradient centrifugation, affinity methods, fluorescence activated cell sorting, and density gradient and continuous-flow electrophoresis. The difficulties encountered when attempting to compare data from different pituitary cell separation studies are discussed, and results from various experiments are presented. The functional capabilities of the separated cell populations can be tested in various culture systems.

  16. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics.

    PubMed

    Sarkar, Aniruddh; Hou, Han Wei; Mahan, Alison E; Han, Jongyoon; Alter, Galit

    2016-03-30

    Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary 'bind-elute' separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets-cells or proteins-bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients.

  17. Electrochemical cell and separator plate thereof

    DOEpatents

    Baker, Bernard S.; Dharia, Dilip J.

    1979-10-02

    A fuel cell includes a separator plate having first and second flow channels extending there through contiguously with an electrode and respectively in flow communication with the cell electrolyte and in flow isolation with respect to such electrolyte. In fuel cell system arrangement, the diverse type channels are supplied in common with process gas for thermal control purposes. The separator plate is readily formed by corrugation of integral sheet material. 10 figs.

  18. An innovative cascade system for simultaneous separation of multiple cell types.

    PubMed

    Pierzchalski, Arkadiusz; Mittag, Anja; Bocsi, Jozsef; Tarnok, Attila

    2013-01-01

    Isolation of different cell types from one sample by fluorescence activated cell sorting is standard but expensive and time consuming. Magnetic separation is more cost effective and faster by but requires substantial effort. An innovative pluriBead-cascade cell isolation system (pluriSelect GmbH, Leipzig, Germany) simultaneously separates two or more different cell types. It is based on antibody-mediated binding of cells to beads of different size and their isolation with sieves of different mesh-size. For the first time, we validated the pluriSelect system for simultaneous separation of CD4+- and CD8+-cells from human EDTA-blood samples. Results were compared with those obtained by magnetic activated cell sorting (MACS; two steps -first isolation of CD4+, then restaining of the residual cell suspension with anti-human CD8+ MACS antibody followed by the second isolation). pluriSelect separation was done in whole blood, MACS separation on density gradient isolated mononuclear cells. Isolated and residual cells were immunophenotyped by 7-color 9-marker panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLA-DR) using flow cytometry. Cell count, purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (MACS (median[range]: 92.4% [91.5-94.9] vs. pluriSelect 95% [94.9-96.8])) of CD4+ cells, however CD8+ isolation showed lower purity by MACS (74.8% [67.6-77.9], pluriSelect 89.9% [89.0-95.7]). Yield was not significantly different for CD4 (MACS 58.5% [54.1-67.5], pluriSelect 67.9% [56.8-69.8]) and for CD8 (MACS 57.2% [41.3-72.0], pluriSelect 67.2% [60.0-78.5]). Viability was slightly higher with MACS for CD4+ (98.4% [97.8-99.0], pluriSelect 94.1% [92.1-95.2]) and for CD8+-cells (98.8% [98.3-99.1], pluriSelect 86.7% [84.2-89.9]). pluriSelect separation was substantially faster than MACS (1h vs. 2.5h) and no pre-enrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two and more cell subpopulation directly from whole blood and provides a simple alternative to magnetic separation.

  19. New polymers for low-gravity purification of cells by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1983-01-01

    A potentially powerful technique for separating different biological cell types is based on the partitioning of these cells between the immiscible aqueous phases formed by solution of certain polymers in water. This process is gravity-limited because cells sediment rather than associate with the phase most favored on the basis of cell-phase interactions. In the present contract we have been involved in the synthesis of new polymers both to aid in understanding the partitioning process and to improve the quality of separations. The prime driving force behind the design of these polymers is to produce materials which will aid in space experiments to separate important cell types and to study the partitioning process in the absence of gravity (i.e., in an equilibrium state).

  20. Numerical analysis of a dielectrophoresis field-flow fractionation device for the separation of multiple cell types.

    PubMed

    Shamloo, Amir; Kamali, Ali

    2017-10-01

    In this study, a dielectrophoresis field-flow fractionation device was analyzed using a numerical simulation method and the behaviors of a set of different cells were investigated. By reducing the alternating current frequency of the electrodes from the value used in the original setup configuration and increasing the number of exit channels, total discrimination in cell trajectories and subsequent separation of four cell types were achieved. Cells were differentiated based on their size and dielectric response that are represented in their real part of Clausius-Mossotti factor at different frequencies. A number of novel designs were also proposed based on the original setup configuration. It was seen that by reducing the length of the main channel and the number of electrodes at low frequencies and not changing the inlet flow velocities, cell separation was still achieved successfully, although with a slightly larger electrode voltage. The shorter main channel decreased the residence time for the cells on the chip and also reduced the overall size of the device-these were improvements over the original design. The obtained results can be used to analyze other cell types by knowing their size and dielectric properties to design geometries that can ensure separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microfluidic antibody arrays for simultaneous cell separation and stimulus.

    PubMed

    Liu, Yan; Germain, Todd; Pappas, Dimitri

    2014-12-01

    A microfluidic chip containing stamped antibody arrays was developed for simultaneous cell separation and drug testing. Poly(dimethyl siloxane) (PDMS) stamping was used to deposit antibodies in a microfluidic channel, forming discrete cell-capture regions on the surface. Cell mixtures were then introduced, resulting in the separation of cells when specific antibodies were used. Anti-CD19 antibody regions resulted in 94 % capture purity for CD19+ Ramos cells. An antibody that captures multiple cell types, for example anti-CD71, can also be used to capture several cell types simultaneously. Cells could also be loaded onto the arrays with spatial control using laminar streams. Both Ramos B cells and HuT 78 T cells were isolated in the chip and exposed to staurosporine in the same channel. Both cell lines had similar responses to the drug, with 2-10 % of cells remaining viable after 20 h of drug treatment, depending on cell type. The chip can also be used to analyze the efficacy of antibody therapy against cancer cells. Anti-CD95 was deposited on the surface and used for simultaneous cell capture and apoptosis induction via the extrinsic pathway. Cells captured on anti-CD95 surfaces had significant viability loss (15 % viability after 24 h) when compared with a control anti-CD71 antibody (81 % viability after 24 h). This chip can be used for a variety of cell separation and/or drug testing studies, enabling researchers to isolate cells and test them against different anti-cancer compounds and to follow cell response using fluorescence or other readout methods.

  2. Report of investigations into charge cadmium reactivity: Nickel-cadmium cell ESD 91-86

    NASA Technical Reports Server (NTRS)

    Lewis, Harlan L.

    1992-01-01

    In Aug. 1990, a presentation was given at the 25th Ann. IECEC meeting on the results of Destructive Physical Analysis (DPA) on two successive sets of Ni-Cd cells. The cells were of two different separator types, Pellon 2505 and 2536. One cell of each separator type was analyzed on two occasions; the first pair were analyzed to establish baseline data on essentially new cells; the second pair were analyzed after the cells had been on charge-discharge cycling for a year in connection with a satellite simulation study. The gas composition found in the cells, the absence of charged cadmium in the analytical data, and the appearance of dried out portions on the Cd plates in the one year cell S/N 7 which used Pellon 2505 as its separator material, were questions which arose. These concerns are answered and the observational results are clarified.

  3. A lower content of de-methylesterified homogalacturonan improves enzymatic cell separation and isolation of mesophyll protoplasts in Arabidopsis.

    PubMed

    Lionetti, Vincenzo; Cervone, Felice; De Lorenzo, Giulia

    2015-04-01

    Cell adhesion occurs primarily at the level of middle lamella which is mainly composed by pectin polysaccharides. These can be degraded by cell wall degrading enzymes (CWDEs) during developmental processes to allow a controlled separation of plant cells. Extensive cell wall degradation by CWDEs with consequent cell separation is performed when protoplasts are isolated from plant tissues by using mixtures of CWDEs. We have evaluated whether modification of pectin affects cell separation and protoplast isolation. Arabidopsis plants overexpressing the pectin methylesterase inhibitors AtPMEI-1 or AtPMEI-2, and Arabidopsis pme3 plants, mutated in the gene encoding pectin methylesterase 3, showed an increased efficiency of isolation of viable mesophyll protoplasts as compared with Wild Type Columbia-0 plants. The release of protoplasts was correlated with the reduced level of long stretches of de-methylesterified homogalacturonan (HGA) present in these plants. Response to elicitation, cell wall regeneration and efficiency of transfection in protoplasts from transgenic plants was comparable to those of wild type protoplasts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, Victor Paul

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means ofmore » labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.« less

  5. Large silver-cadmium technology program

    NASA Technical Reports Server (NTRS)

    Charlip, S.; Lerner, S.

    1971-01-01

    The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.

  6. Cell-Specific Multifunctional Processing of Heterogeneous Cell Systems in a Single Laser Pulse Treatment

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Mutonga, Martin B. G.; Lapotko, Dmitri O.

    2012-01-01

    Current methods of cell processing for gene and cell therapies use several separate procedures for gene transfer and cell separation or elimination, because no current technology can offer simultaneous multi-functional processing of specific cell sub-sets in highly heterogeneous cell systems. Using the cell-specific generation of plasmonic nanobubbles of different sizes around cell-targeted gold nanoshells and nanospheres, we achieved simultaneous multifunctional cell-specific processing in a rapid single 70 ps laser pulse bulk treatment of heterogeneous cell suspension. This method supported the detection of cells, delivery of external molecular cargo to one type of cells and the concomitant destruction of another type of cells without damaging other cells in suspension, and real-time guidance of the two above cellular effects. PMID:23167546

  7. DIELECTROPHORESIS-BASED MICROFLUIDIC SEPARATION AND DETECTION SYSTEMS

    PubMed Central

    Yang, Jun; Vykoukal, Jody; Noshari, Jamileh; Becker, Frederick; Gascoyne, Peter; Krulevitch, Peter; Fuller, Chris; Ackler, Harold; Hamilton, Julie; Boser, Bernhard; Eldredge, Adam; Hitchens, Duncan; Andrews, Craig

    2009-01-01

    Diagnosis and treatment of human diseases frequently requires isolation and detection of certain cell types from a complex mixture. Compared with traditional separation and detection techniques, microfluidic approaches promise to yield easy-to-use diagnostic instruments tolerant of a wide range of operating environments and capable of accomplishing automated analyses. These approaches will enable diagnostic advances to be disseminated from sophisticated clinical laboratories to the point-of-care. Applications will include the separation and differential analysis of blood cell subpopulations for host-based detection of blood cell changes caused by disease, infection, or exposure to toxins, and the separation and analysis of surface-sensitized, custom dielectric beads for chemical, biological, and biomolecular targets. Here we report a new particle separation and analysis microsystem that uses dielectrophoretic field-flow fractionation (DEP-FFF). The system consists of a microfluidic chip with integrated sample injector, a DEP-FFF separator, and an AC impedance sensor. We show the design of a miniaturized impedance sensor integrated circuit (IC) with improved sensitivity, a new packaging approach for micro-flumes that features a slide-together compression package and novel microfluidic interconnects, and the design, control, integration and packaging of a fieldable prototype. Illustrative applications will be shown, including the separation of different sized beads and different cell types, blood cell differential analysis, and impedance sensing results for beads, spores and cells. PMID:22025905

  8. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong

    2017-03-01

    Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.

  9. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells.

    PubMed

    Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong

    2017-12-01

    Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH 3 NH 3 PbI 3 ). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.

  10. Efficiency and Impact of Positive and Negative Magnetic Separation on Monocyte Derived Dendritic Cell Generation.

    PubMed

    Kowalewicz-Kulbat, Magdalena; Ograczyk, Elżbieta; Włodarczyk, Marcin; Krawczyk, Krzysztof; Fol, Marek

    2016-06-01

    The immunomagnetic separation technique is the basis of monocyte isolation and further generation of monocyte-derived dendritic cells. To compare the efficiency of monocyte positive and negative separation, concentration of beads, and their impact on generated dendritic cells. Monocytes were obtained using monoclonal antibody-coated magnetic beads followed the Ficoll-Paque gradient separation of mononuclear cell fraction from the peripheral blood of 6 healthy volunteers. CD14 expression was analyzed by flow cytometry. Both types of magnetic separation including recommended and reduced concentrations of beads did not affect the yield and the purity of monocytes and their surface CD14 expression. However, DCs originated from the "positively" separated monocytes had noticeable higher expression of CD80.

  11. Paper diagnostic for instantaneous blood typing.

    PubMed

    Khan, Mohidus Samad; Thouas, George; Shen, Wei; Whyte, Gordon; Garnier, Gil

    2010-05-15

    Agglutinated blood transports differently onto paper than stable blood with well dispersed red cells. This difference was investigated to develop instantaneous blood typing tests using specific antibody-antigen interactions to trigger blood agglutination. Two series of experiments were performed. The first related the level of agglutination and the fluidic properties of blood on its transport in paper. Blood samples were mixed at different ratios with specific and nonspecific antibodies; a droplet of each mixture was deposited onto a filter paper strip, and the kinetics of wicking and red cell separation were measured. Agglutinated blood phase separated, with the red blood cells (RBC) forming a distinct spot upon contact with paper while the plasma wicked; in contrast, stable blood suspensions wicked uniformly. The second study analyzed the wicking and the chromatographic separation of droplets of blood deposited onto paper strips pretreated with specific and nonspecific antibodies. Drastic differences in transport occurred. Blood agglutinated by interaction with one of its specific antibodies phase separated, causing a chromatographic separation. The red cells wicked very little while the plasma wicked at a faster rate than the original blood sample. Blood agglutination and wicking in paper followed the concepts of colloids chemistry. The immunoglobin M antibodies agglutinated the red blood cells by polymer bridging, upon selective adsorption on the specific antigen at their surface. The transport kinetics was viscosity controlled, with the viscosity of red cells drastically increasing upon blood agglutination. Three arm prototypes were investigated for single-step blood typing.

  12. Separation of CHO cells using hydrocyclones.

    PubMed

    Pinto, Rodrigo C V; Medronho, Ricardo A; Castilho, Leda R

    2008-01-01

    Hydrocyclones are simple and robust separation devices with no moving parts. In the past few years, their use in animal cell separation has been proposed. In this work, the use of different hydrocyclone configurations for Chinese hamster ovary (CHO) cell separation was investigated following an experimental design. It was shown that cell separation efficiencies for cultures of the wild-type CHO.K1 cell line and of a recombinant CHO cell line producing granulocyte-macrophage colony stimulating factor (GM-CSF) were kept above 97%. Low viability losses were observed, as measured by trypan blue exclusion and by determination of intracellular lactate dehydrogenase (LDH) released to the culture medium. Mathematical models were proposed to predict the flow rate, flow ratio and separation efficiency as a function of hydrocyclone geometry and pressure drop. When cells were monitored for any induction of apoptosis upon passage through the hydrocyclones, no increase in apoptotic cell concentration was observed within 48 h of hydrocycloning. Thus, based on the high separation efficiencies, the robustness of the equipment, and the absence of apoptosis induction, hydrocyclones seem to be specially suited for use as cell retention devices in long-term perfusion runs.

  13. Separation and sorting of cells in microsystems using physical principles

    NASA Astrophysics Data System (ADS)

    Lee, Gi-Hun; Kim, Sung-Hwan; Ahn, Kihoon; Lee, Sang-Hoon; Park, Joong Yull

    2016-01-01

    In the last decade, microfabrication techniques have been combined with microfluidics and applied to cell biology. Utilizing such new techniques, various cell studies have been performed for the research of stem cells, immune cells, cancer, neurons, etc. Among the various biological applications of microtechnology-based platforms, cell separation technology has been highly regarded in biological and clinical fields for sorting different types of cells, finding circulating tumor cells (CTCs), and blood cell separation, amongst other things. Many cell separation methods have been created using various physical principles. Representatively, these include hydrodynamic, acoustic, dielectrophoretic, magnetic, optical, and filtering methods. In this review, each of these methods will be introduced, and their physical principles and sample applications described. Each physical principle has its own advantages and disadvantages. The engineers who design the systems and the biologists who use them should understand the pros and cons of each method or principle, to broaden the use of microsystems for cell separation. Continuous development of microsystems for cell separation will lead to new opportunities for diagnosing CTCs and cancer metastasis, as well as other elements in the bloodstream.

  14. Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis.

    PubMed

    Adams, Tayloria N G; Jiang, Alan Y L; Vyas, Prema D; Flanagan, Lisa A

    2018-01-15

    Whole cell membrane capacitance is an electrophysiological property of the plasma membrane that serves as a biomarker for stem cell fate potential. Neural stem and progenitor cells (NSPCs) that differ in ability to form neurons or astrocytes are distinguished by membrane capacitance measured by dielectrophoresis (DEP). Differences in membrane capacitance are sufficient to enable the enrichment of neuron- or astrocyte-forming cells by DEP, showing the separation of stem cells on the basis of fate potential by membrane capacitance. NSPCs sorted by DEP need not be labeled and do not experience toxic effects from the sorting procedure. Other stem cell populations also display shifts in membrane capacitance as cells differentiate to a particular fate, clarifying the value of sorting a variety of stem cell types by capacitance. Here, we describe methods developed by our lab for separating NSPCs on the basis of capacitance using several types of DEP microfluidic devices, providing basic information on the sorting procedure as well as specific advantages and disadvantages of each device. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. MEMS-based thin-film fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  16. Evaluation of results of cell electrophoresis experiments on space shuttle STS-3 including pre-flight and post-flight laboratory experiments

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    The objectives of the red blood cell experiments were to provide a visual check on the electrophoretic process and especially electroosmotic flow in space as well as to provide test separations of non-degradable standard particles for comparison with the separations of the three viable cell types studied on the Apollo-Soyuz Test Project. Determination of the maximum concentrations of cells that can be separated in column electrophore was a significant goal. Two of the eight columns were available for red cell experiments, so two concentrations of human and rabbit RBC mixtures were used. The objectives of another experiment were to evaluate the reproducibility of microgravity electrophoretic separation of living kidney cells, to separate cells with highly viability despite two freeze-thaw cycles, and to optimize the physical conditions of cell separation. Owing to the uncertain heterogeneity of the starting material, the experimental design does not assess resolution in microgravity, but improved separability was sought in comparison to density-gradient electrophoresis or continuous-flow electrophoresis. Efforts were made to increase cell yield and cell viability and to assess reproducibility directly.

  17. Disturb-Free Three-Dimensional Vertical Floating Gate NAND with Separated-Sidewall Control Gate

    NASA Astrophysics Data System (ADS)

    Seo, Moon-Sik; Endoh, Tetsuo

    2012-02-01

    Recently, the three-dimensional (3D) vertical floating gate (FG) type NAND cell arrays with the sidewall control gate (SCG) structure are receiving attention to overcome the reliability issues of charge trap (CT) type 3D NAND. In order to achieve the multilevel cell (MLC) operation for lower bit cost in 3D NAND, it is important to eliminate reliability issues, such as the Vth distribution with interference and disturbance problems and Vth shift with retention issues. In this paper, we intensively investigated the disturbance problems of the 3D vertical FG type NAND cell with separated-sidewall control gate (S-SCG) structure for the reliable MLC operation. Above all, we successfully demonstrate the fully suppressed disturbance problems, such as indirect programming of the unselected cells, hot electron injection of the edge cells and direct influence to the neighboring passing cells, by using the S-SCG with 30 nm pillar size.

  18. EGF Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival

    PubMed Central

    Mardin, Balca R.; Isokane, Mayumi; Cosenza, Marco R.; Krämer, Alwin; Ellenberg, Jan; Fry, Andrew M.; Schiebel, Elmar

    2014-01-01

    Summary Timely and accurate assembly of the mitotic spindle is critical for the faithful segregation of chromosomes and centrosome separation is a key step in this process. The timing of centrosome separation varies dramatically between cell types; however, the mechanisms responsible for these differences and its significance are unclear. Here, we show that activation of epidermal growth factor receptor (EGFR) signaling determines the timing of centrosome separation. Premature separation of centrosomes decreases the requirement for the major mitotic kinesin Eg5 for spindle assembly, accelerates mitosis and decreases the rate of chromosome missegregation. Importantly, EGF stimulation impacts upon centrosome separation and mitotic progression to different degrees in different cell lines. Cells with high EGFR levels fail to arrest in mitosis upon Eg5 inhibition. This has important implications for cancer therapy since cells with high centrosomal response to EGF are more susceptible to combinatorial inhibition of EGFR and Eg5. PMID:23643362

  19. Understanding thread properties for red blood cell antigen assays: weak ABO blood typing.

    PubMed

    Nilghaz, Azadeh; Zhang, Liyuan; Li, Miaosi; Ballerini, David R; Shen, Wei

    2014-12-24

    "Thread-based microfluidics" research has so far focused on utilizing and manipulating the wicking properties of threads to form controllable microfluidic channels. In this study we aim to understand the separation properties of threads, which are important to their microfluidic detection applications for blood analysis. Confocal microscopy was utilized to investigate the effect of the microscale surface morphologies of fibers on the thread's separation efficiency of red blood cells. We demonstrated the remarkably different separation properties of threads made using silk and cotton fibers. Thread separation properties dominate the clarity of blood typing assays of the ABO groups and some of their weak subgroups (Ax and A3). The microfluidic thread-based analytical devices (μTADs) designed in this work were used to accurately type different blood samples, including 89 normal ABO and 6 weak A subgroups. By selecting thread with the right surface morphology, we were able to build μTADs capable of providing rapid and accurate typing of the weak blood groups with high clarity.

  20. Evaluation of Inorganic/Organic Separators

    NASA Technical Reports Server (NTRS)

    Donnel, C. P., III

    1976-01-01

    Thirty-six (36) experimental 40AH sealed silver-zinc cells were constructed during phase I of this two (2) phase program. These cells were divided into six (6) groups of six (6) cells each. Each group of six (6) cells was evenly divided into two batches of three (3) cells each. Groups 1 through 4 each featured a different inorganic filler material in the slurry used to coat the separator substrate. Groups 5 and 6 featured an alternate method of separator bag construction. With the exception of the various separator materials, the parts and processes used to produce these thirty-six (36) cells were the same as those used to make the HR40-7 cell. The two (2) batches of cells in each cell group differed only in the lots of solutions and other separator slurry components used. Each cell was given two formation charge/discharge cycles prior to being shipped to NASA Lewis Research Center. Phase II of the program consisted of constructing another thirty-six (36) 40AH experimental cells in six (6) groups of six (6) cells each. Each group was distinguished by the type of precoated separator material used to fabricate separator bags. A new method of separator bag construction was used in this phase of the program. These cells were given two (2) formation cycles and shipped to NASA Lewis Research Center.

  1. Ion transport restriction in mechanically strained separator membranes

    NASA Astrophysics Data System (ADS)

    Cannarella, John; Arnold, Craig B.

    2013-03-01

    We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.

  2. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  3. Immunomicrospheres - Reagents for cell labeling and separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Dreyer, W. J.

    1980-01-01

    Immunomicrospheres are specially designed microscopic particles that have antibodies or similar molecules chemically bound to their surfaces. The antibody-coated microspheres react in a highly specific way with target cells, viruses, or other antigenic agents. Immunomicrospheres may be synthesized so that they incorporate compounds that are highly radioactive, intensely fluorescent, magnetic, electron opaque, highly colored, or pharmacologically active. These various types of microspheres may be coated with pure, highly specific monoclonal antibodies obtained by the new hybridoma cell cloning techniques or with conventional antibody preparations. Some of the many present and potential applications for these new reagents are (1) new types of radioimmune or immunofluorescent assays, (2) improved fluorescence microscopy, (3) separation of cells on the basis of the fluorescent, electrophoretic, or magnetic properties of bound immunomicrospheres, (4) markers for use in several types of electron or standard light microscopy, and (5) delivery of lethal compouds to specific undesirable living cells. The combination of the various new types of synthetic microspheres and the newly available homogeneous antibodies offers new opportunities in research, diagnosis, and therapy.

  4. Characterization and Separation of Cancer Cells with a Wicking Fiber Device.

    PubMed

    Tabbaa, Suzanne M; Sharp, Julia L; Burg, Karen J L

    2017-12-01

    Current cancer diagnostic methods lack the ability to quickly, simply, efficiently, and inexpensively screen cancer cells from a mixed population of cancer and normal cells. Methods based on biomarkers are unreliable due to complexity of cancer cells, plasticity of markers, and lack of common tumorigenic markers. Diagnostics are time intensive, require multiple tests, and provide limited information. In this study, we developed a novel wicking fiber device that separates cancer and normal cell types. To the best of our knowledge, no previous work has used vertical wicking of cells through fibers to identify and isolate cancer cells. The device separated mouse mammary tumor cells from a cellular mixture containing normal mouse mammary cells. Further investigation showed the device separated and isolated human cancer cells from a heterogeneous mixture of normal and cancerous human cells. We report a simple, inexpensive, and rapid technique that has potential to identify and isolate cancer cells from large volumes of liquid samples that can be translated to on-site clinic diagnosis.

  5. Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells.

    PubMed

    Zhang, Weijia; Kai, Kazuharu; Choi, Dong Soon; Iwamoto, Takayuki; Nguyen, Yen H; Wong, Helen; Landis, Melissa D; Ueno, Naoto T; Chang, Jenny; Qin, Lidong

    2012-11-13

    Here we report a microfluidics method to enrich physically deformable cells by mechanical manipulation through artificial microbarriers. Driven by hydrodynamic forces, flexible cells or cells with high metastatic propensity change shape to pass through the microbarriers and exit the separation device, whereas stiff cells remain trapped. We demonstrate the separation of (i) a mixture of two breast cancer cell types (MDA-MB-436 and MCF-7) with distinct deformabilities and metastatic potentials, and (ii) a heterogeneous breast cancer cell line (SUM149), into enriched flexible and stiff subpopulations. We show that the flexible phenotype is associated with overexpression of multiple genes involved in cancer cell motility and metastasis, and greater mammosphere formation efficiency. Our observations support the relationship between tumor-initiating capacity and cell deformability, and demonstrate that tumor-initiating cells are less differentiated in terms of cell biomechanics.

  6. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  7. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  8. Ultrafine polybenzimidazole (PBI) fibers. [separators for alkaline batteries and dfuel cells

    NASA Technical Reports Server (NTRS)

    Chenevey, E. C.

    1979-01-01

    Mats were made from ultrafine polybenzimidazole (PBI) fibers to provide an alternate to the use of asbestos as separators in fuel cells and alkaline batteries. To minimize distortion during mat drying, a process to provide a dry fibrid was developed. Two fibrid types were developed: one coarse, making mats for battery separators; the other fine, making low permeability matrices for fuel cells. Eventually, it was demonstrated that suitable mat fabrication techniques yielded fuel cell separators from the coarser alkaline battery fibrids. The stability of PBI mats to 45% KOH at 123 C can be increased by heat treatment at high temperatures. Weight loss data to 1000 hours exposure show the alkali resistance of the mats to be superior to that of asbestos.

  9. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells.

    PubMed

    Sanchez-Antequera, Yolanda; Mykhaylyk, Olga; van Til, Niek P; Cengizeroglu, Arzu; de Jong, J Henk; Huston, Marshall W; Anton, Martina; Johnston, Ian C D; Pojda, Zygmunt; Wagemaker, Gerard; Plank, Christian

    2011-04-21

    Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.

  10. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOEpatents

    De Ceuster, Denis; Cousins, Peter John; Smith, David D

    2014-03-18

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  11. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOEpatents

    De Ceuster, Denis; Cousins, Peter John; Smith, David D

    2013-05-28

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  12. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOEpatents

    De Ceuster, Denis; Cousins, Peter John; Smith, David D.

    2010-12-14

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  13. Separation of distinct adhesion complexes and associated cytoskeleton by a micro-stencil-printing method.

    PubMed

    Caballero, David; Osmani, Naël; Georges-Labouesse, Elisabeth; Labouesse, Michel; Riveline, Daniel

    2012-01-01

    Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with "stampcils" focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein-fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.

  14. Continuous high throughput molecular adhesion based cell sorting using ridged microchannels

    NASA Astrophysics Data System (ADS)

    Tasadduq, Bushra; Wang, Gonghao; Alexeev, Alexander; Sarioglu, Ali Fatih; Sulchek, Todd

    2016-11-01

    Cell molecular interactions govern important physiological processes such as stem cell homing, inflammation and cancer metastasis. But due to a lack of effective separation technologies selective to these interactions it is challenging to specifically sort cells. Other label free separation techniques based on size, stiffness and shape do not provide enough specificity to cell type, and correlation to clinical condition. We propose a novel microfluidic device capable of high throughput molecule dependent separation of cells by flowing them through a microchannel decorated with molecule specific coated ridges. The unique aspect of this sorting design is the use of optimized gap size which is small enough to lightly squeeze the cells while flowing under the ridged part of the channel to increase the surface area for interaction between the ligand on cell surface and coated receptor molecule but large enough so that biomechanical markers, stiffness and viscoelasticity, do not dominate the cell separation mechanism. We are able to separate Jurkat cells based on its expression of PSGL-1ligand using ridged channel coated with P selectin at a flow rate of 0.045ml/min and achieve 2-fold and 5-fold enrichment of PSGL-1 positive and negative Jurkat cells respectively.

  15. Tracing the evolutionary origins of insect renal function.

    PubMed

    Halberg, Kenneth A; Terhzaz, Selim; Cabrero, Pablo; Davies, Shireen A; Dow, Julian A T

    2015-04-21

    Knowledge on neuropeptide receptor systems is integral to understanding animal physiology. Yet, obtaining general insight into neuropeptide signalling in a clade as biodiverse as the insects is problematic. Here we apply fluorescent analogues of three key insect neuropeptides to map renal tissue architecture across systematically chosen representatives of the major insect Orders, to provide an unprecedented overview of insect renal function and control. In endopterygote insects, such as Drosophila, two distinct transporting cell types receive separate neuropeptide signals, whereas in the ancestral exopterygotes, a single, general cell type mediates all signals. Intriguingly, the largest insect Order Coleoptera (beetles) has evolved a unique approach, in which only a small fraction of cells are targets for neuropeptide action. In addition to demonstrating a universal utility of this technology, our results reveal not only a generality of signalling by the evolutionarily ancient neuropeptide families but also a clear functional separation of the types of cells that mediate the signal.

  16. Portable vibration-assisted filtration device for on-site isolation of blood cells or pathogenic bacteria from whole human blood.

    PubMed

    Kim, Yong Tae; Park, Kyun Joo; Kim, Seyl; Kim, Soon Ae; Lee, Seok Jae; Kim, Do Hyun; Lee, Tae Jae; Lee, Kyoung G

    2018-03-01

    Isolation of specific cells from whole blood is important to monitor disease prognosis and diagnosis. In this study, a vibration-assisted filtration (VF) device has been developed for isolation and recovery of specific cells such as leukocytes and pathogenic bacteria from human whole blood. The VF device is composed of three layers which was fabricated using injection molding with cyclic olefin copolymer (COC) pellets consisting of: a top layer with coin-type vibration motor (Ф = 10mm), a middle plate with a 1μm or 3μm-pore filter membrane to separate of Staphylococcus aureus (S. aureus) cells or leukocytes (i.e. white blood cells) respectively, and a bottom chamber with conical-shaped microstructure. One milliliter of human whole blood was injected into a sample loading chamber using a 3μm-pore filter equipped in the VF device and the coin-type vibration motor applied external vibration force by generating a rotational fluid which enhances the filtration velocity due to the prevention of the cell clogging on the filter membrane. The effluent blood such as erythrocytes, platelet, and plasma was collected at the bottom chamber while the leukocytes were sieved by the filter membrane. The vibration-assisted leukocyte separation was able to finish within 200s while leukocyte separation took 1200s without vibration. Moreover, we successfully separated S. aureus from human whole blood using a 1μm-pore filter equipped VF device and it was further confirmed by genetic analysis. The proposed VF device provides an advanced cell separation platform in terms of simplicity, fast separation, and portability in the fields of point-of-care diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment.

    PubMed

    Faraghat, Shabnam A; Hoettges, Kai F; Steinbach, Max K; van der Veen, Daan R; Brackenbury, William J; Henslee, Erin A; Labeed, Fatima H; Hughes, Michael P

    2017-05-02

    Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.

  18. Aerospace nickel-cadmium cell separator qualifications program

    NASA Technical Reports Server (NTRS)

    Francis, R. W.; Haag, R. L.

    1986-01-01

    The present space qualified nylon separator, Pellon 2505 ML, is no longer available for aerospace nickel-cadmium (NiCd) cells. As a result of this anticipated unavailability, a joint Government program between the Air Force Space Division and the Naval Research Laboratory was established. Four cell types were procured with both the old qualified and the new unqualified separators. Acceptance, characterization, and life cycling tests are to be performed at the Naval Weapons Support Center, Crane, Ind. (NWSC/Crane). The scheduling and current status of this program are discussed and the progress of testing and available results are projected.

  19. Reproductive cell separation: A concept

    NASA Technical Reports Server (NTRS)

    Cutaia, A. J.

    1973-01-01

    Attempt has been made to separate mammalian male (Y) bearing sperm from female (X) bearing sperm. Both types of sperm are very dependent on gravity for their direction of movement. Proposed concept suggests electrophoretic force of suitable magnitude and direction may be effective means of separating X and Y sperm under zero gravity.

  20. Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis.

    PubMed

    Ye, Ting; Li, Hua; Lam, K Y

    2015-02-01

    In this paper, we numerically explore the possibility of separating two groups of deformable cells, by a very small dielectrophoretic (DEP) microchip with the characteristic length of several cell diameters. A 2D two-fluid model is developed to describe the separation process, where three types of forces are considered, the aggregation force for cell-cell interaction, the deformation force for cell deformation, and the DEP force for cell dielectrophoresis. As a model validation, we calculate the levitation height of a cell subject to DEP force, and compare it with the experimental data. After that, we simulate the separation of two groups of cells with different dielectric properties at high and low frequencies, respectively. The simulation results show that the deformable cells can be separated successfully by a very small DEP microchip, according to not only their different permittivities at the high frequency, but also their different conductivities at the low frequency. In addition, both two groups of cells have a shape deformation from an original shape to a lopsided slipper shape during the separation process. It is found that the cell motion is mainly determined by the DEP force arising from the electric field, causing the cells to deviate from the centerline of microchannel. However, the cell deformation is mainly determined by the deformation force arising from the fluid flow, causing the deviated cells to undergo an asymmetric motion with the deformation of slipper shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [The relationship of the saturation density of multilayer cell cultures to their mass exchange with the medium].

    PubMed

    Akatov, V S; Lavrovskaia, V P

    1991-01-01

    Chinese hamster fibroblasts (CHF) and NIH 3T3 cells were cultured on a glass substrate at different distances from the porous membrane separating the cells from the perfusing medium. It is shown that with perfusion of medium above the membrane there is no movement of the medium near the cells. In both the types of culture, the cells grow in multilayers, however the multilayer character of growth in CHF is more pronounced than in NIH 3T3 cells. The saturation density of the cultures depends on the cell-membrane separation, and at separations of no more than 0.2 mm exceeds the saturation density in the monolayer by 8-10 fold. The dependences of the saturation density on separation are different for CHE and NIH 3T3 cells, indicating qualitative differences in the inhibition of cell growth in monolayers between these cultures. The results obtained indicate that the inhibition of cell growth in monolayer is due to mass exchange limitations, rather than to intercellular contact interactions.

  2. Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.

    2014-11-01

    Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.

  3. Cell structure for electrochemical devices and method of making same

    DOEpatents

    Kaun, Thomas D.

    1993-01-01

    An electrochemical device comprises a plurality of cells, each cell including a laminate cell membrane, made up of a separator/electrolyte means interposed between alternating positive and negative electrodes, each type of electrode being respectively in common contact to a single current collector.

  4. Advanced Method for Isolation of Mouse Hepatocytes, Liver Sinusoidal Endothelial Cells, and Kupffer Cells.

    PubMed

    Liu, Jia; Huang, Xuan; Werner, Melanie; Broering, Ruth; Yang, Dongliang; Lu, Mengji

    2017-01-01

    Separation of pure cell populations from the liver is a prerequisite to study the role of hepatic parenchymal and non-parenchymal cells in liver physiology, pathophysiology, and immunology. Traditional methods for hepatic cell separation usually purify only single cell types from liver specimens. Here, we describe an efficient method that can simultaneously purify populations of hepatocytes (HCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs) from a single mouse liver specimen. A liberase-based perfusion technique in combination with a low-speed centrifugation and magnetic-activated cell sorting (MACS) led to the isolation and purification of HCs, KCs, and LSECs with high yields and purity.

  5. Collection, Storage, and Preparation of Human Blood Cells

    PubMed Central

    Dagur, Pradeep K.; McCoy, J. Philip

    2015-01-01

    Human peripheral blood is often studied by flow cytometry in both the research and clinical laboratories. The methods for collection, storage, and preparation of peripheral blood will vary depending on the cell lineage to be examined as well as the type of assay to be performed. This unit presents protocols for collection of blood, separation of leukocytes from whole blood by lysis of erythrocytes, isolating mononuclear cells by density gradient separation, and assorted non-flow sorting methods, such as magnetic bead separations, for enriching specific cell populations, including monocytes, T lymphocytes, B lymphocytes, neutrophils,, , and platelets prior to flow cytometric analysis. A protocol is also offered for cryopreservation of cells since clinical research often involves retrospective flow cytometric analysis of samples stored over a period of months or years. PMID:26132177

  6. Separation and Analysis of Adherent and Non-Adherent Cancer Cells Using a Single-Cell Microarray Chip.

    PubMed

    Yamamura, Shohei; Yamada, Eriko; Kimura, Fukiko; Miyajima, Kumiko; Shigeto, Hajime

    2017-10-21

    A new single-cell microarray chip was designed and developed to separate and analyze single adherent and non-adherent cancer cells. The single-cell microarray chip is made of polystyrene with over 60,000 microchambers of 10 different size patterns (31-40 µm upper diameter, 11-20 µm lower diameter). A drop of suspension of adherent carcinoma (NCI-H1650) and non-adherent leukocyte (CCRF-CEM) cells was placed onto the chip, and single-cell occupancy of NCI-H1650 and CCRF-CEM was determined to be 79% and 84%, respectively. This was achieved by controlling the chip design and surface treatment. Analysis of protein expression in single NCI-H1650 and CCRF-CEM cells was performed on the single-cell microarray chip by multi-antibody staining. Additionally, with this system, we retrieved positive single cells from the microchambers by a micromanipulator. Thus, this system demonstrates the potential for easy and accurate separation and analysis of various types of single cells.

  7. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  8. Effect of separator and inoculum type on electricity generation and microbial community in single-chamber microbial fuel cells.

    PubMed

    Yu, Jaecheul; Park, Younghyun; Lee, Taeho

    2014-04-01

    Single-chamber microbial fuel cell (SMFC)-I consisted of 4 separator-electrode assemblies (SEAs) with two types of cation exchange membrane (CEM: Nafion and CMI 7000) and an anion exchange membrane (AEM: AMI 7001). SMFC-II consisted of 4 SEAs with Nafion and three types of nonwoven fabric. SMFC-I and -II were inoculated with anaerobic digested and activated sludge, respectively, and operated under fed-batch mode. In SMFC I, AEM-SEA showed a maximum power density (PDmax). Nafion-SEA showed a PDmax in SMFC II, which was similar to that of Nafion-SEA of SMFC I. Although different bacteria were developed in SMFC-I (Deltaproteobacteria and Firmicutes) and SMFC-II (Gammaproteobacteria, Betaproteobacteria and Bacteroidetes), the inoculum type little affects electricity generation. Variations of pH and oxygen in biofilm have influenced microbial community structure and electricity generation according to the electrode and separator material. Although the electricity generation of non-woven fabric-SEA was less than that of Nafion-SEA, the use of non-woven fabrics is expected to reduce the construction and operating costs of MFCs.

  9. Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure.

    PubMed

    Liu, Zongbin; Huang, Fei; Du, Jinghui; Shu, Weiliang; Feng, Hongtao; Xu, Xiaoping; Chen, Yan

    2013-01-01

    This work reports a microfluidic device with deterministic lateral displacement (DLD) arrays allowing rapid and label-free cancer cell separation and enrichment from diluted peripheral whole blood, by exploiting the size-dependent hydrodynamic forces. Experiment data and theoretical simulation are presented to evaluate the isolation efficiency of various types of cancer cells in the microfluidic DLD structure. We also demonstrated the use of both circular and triangular post arrays for cancer cell separation in cell solution and blood samples. The device was able to achieve high cancer cell isolation efficiency and enrichment factor with our optimized design. Therefore, this platform with DLD structure shows great potential on fundamental and clinical studies of circulating tumor cells.

  10. Investigations on gel forming media use in low gravity bioseparations research

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Szlag, David C.; Plank, Lindsay D.; Delcourt, Scott G.; Kunze, M. Elaine

    1989-01-01

    Research on gelling media and conditions suitable for the preservation of the spatial configuration of cell suspensions and macromolecular solutions after separation in free fluid during low gravity experiments is presented. The examples studied included free electrophoresis of cells in a cylindrical column and two-phase aqueous polymer separation. Microgravity electrophoresis experiments were simulated by separating model cell types (animal or human) in a vertical density gradient containing low-conductivity buffer, 1.7-6.5 percent Ficoll, 6.8-5.0 percent sucrose, and 1 percent SeaPrep low-melting temperature agarose. Upon cooling, a gel formed in the column and cells could be captured at the forming locations. Two-phase extraction experiments were simulated using two-polymer solutions in which phase separation occurs in normal saline at temperatures compatible with cell viability and in which one or both phases form a gel upon cooling. Suitable polymers included commercial agaroses (1-2 percent), maltodextrin (5-7 percent), and gelatin (5-20 percent).

  11. Rapid separation on copper powder of total mercury in blood and determination of mercury by flameless atomic absorption spectrometry.

    PubMed

    Dogan, S; Haerdi, W

    1979-01-01

    The determination of mercury in blood by flameless atomic absorption spectrometry (FAAS) has been described. Prior to its analysis, the sample was decomposed by combustion and separated on a copper powder micro-column. A special type of cell has been used which gives a better sensitivity compared with the types of cells described in the literature and the method of FAAS analysis has been improved. The sensitivity of 0.1 ng for 1% absorbance was observed and the standard deviation for six determinations at this level was found to be +/- 0.05 ng, for 95% probability.

  12. Study on Self-start up of Polymer Electrolyte Fuel Cell Stack at Subzero Temperature

    NASA Astrophysics Data System (ADS)

    Shirato, Hiroyasu; Hoshina, Hideo; Yamakoshi, Yukiyasu; Tomita, Kazuhiko; Oka, Yoshiaki

    This paper aims to boot up polymer electrolyte fuel cells at subzero temperature without energy from outside and compass the conditions. Visualization tests of water drainage and voltage-current density characteristics provided the selection of a serpentine type as a channel of a fuel cell separator for cold region. The successful start-up of the cell at subzero temperature requires suitable current densities corresponding to the ambient temperature since the lower the temperature is, the lower the cell voltage soon after the start-up is. Suitable amount of exhausted energy is also necessary for the successful self start-up. Humidification using potassium acetate 30 mass% solution provides increased impedance of the cell and inhibits the water freezing owing to its dispersal to the electrode compared to no humidification. A stack laminated 25 sheets of the serpentine type separators enables stabilized power generation at normal temperature. The stack is also bootable with no energy from outside at 263K.

  13. Organization of supercoil domains and their reorganization by transcription

    PubMed Central

    Deng, Shuang; Stein, Richard A.; Higgins, N. Patrick

    2006-01-01

    Summary During a normal cell cycle, chromosomes are exposed to many biochemical reactions that require specific types of DNA movement. Separation forces move replicated chromosomes into separate sister cell compartments during cell division, and the contemporaneous acts of DNA replication, RNA transcription and cotranscriptional translation of membrane proteins cause specific regions of DNA to twist, writhe and expand or contract. Recent experiments indicate that a dynamic and stochastic mechanism creates supercoil DNA domains soon after DNA replication. Domain structure is subsequently reorganized by RNA transcription. Examples of transcription-dependent chromosome remodelling are also emerging from eukaryotic cell systems. PMID:16135220

  14. Multiparameter cell affinity chromatography: separation and analysis in a single microfluidic channel.

    PubMed

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2012-10-02

    The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation and death and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody-coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19- and anti-CD71-coated regions in the same channel. It was determined that the cell capture density on the anti-CD19 region was 2.44 ± 0.13 times higher than that on the anti-CD71-coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody-coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multiparameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation.

  15. Single cell array impedance analysis in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Altinagac, Emre; Taskin, Selen; Kizil, Huseyin

    2016-10-01

    Impedance analysis of single cells is presented in this paper. Following the separation of a target cell type by dielectrophoresis in our previous work, this paper focuses on capturing the cells as a single array and performing impedance analysis to point out the signature difference between each cell type. Lab-on-a-chip devices having a titanium interdigitated electrode layer on a glass substrate and a PDMS microchannel are fabricated to capture each cell in a single form and perform impedance analysis. HCT116 (homosapiens colon colorectal carcin) and HEK293 (human embryonic kidney) cells are used in our experiments.

  16. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling.

    PubMed

    Bertozzi, Cara C; Schmaier, Alec A; Mericko, Patricia; Hess, Paul R; Zou, Zhiying; Chen, Mei; Chen, Chiu-Yu; Xu, Bin; Lu, Min-min; Zhou, Diane; Sebzda, Eric; Santore, Matthew T; Merianos, Demetri J; Stadtfeld, Matthias; Flake, Alan W; Graf, Thomas; Skoda, Radek; Maltzman, Jonathan S; Koretzky, Gary A; Kahn, Mark L

    2010-07-29

    Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.

  17. High gradient magnetic field microstructures for magnetophoretic cell separation.

    PubMed

    Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K

    2016-08-01

    Microfluidics has advanced magnetic blood fractionation by making integrated miniature devices possible. A ferromagnetic microstructure array that is integrated with a microfluidic channel rearranges an applied magnetic field to create a high gradient magnetic field (HGMF). By leveraging the differential magnetic susceptibilities of cell types contained in a host medium, such as paramagnetic red blood cells (RBCs) and diamagnetic white blood cells (WBCs), the resulting HGMF can be used to continuously separate them without attaching additional labels, such as magnetic beads, to them. We describe the effect of these ferromagnetic microstructure geometries have on the blood separation efficacy by numerically simulating the influence of microstructure height and pitch on the HGMF characteristics and resulting RBC separation. Visualizations of RBC trajectories provide insight into how arrays can be optimized to best separate these cells from a host fluid. Periodic microstructures are shown to moderate the applied field due to magnetic interference between the adjacent teeth of an array. Since continuous microstructures do not similarly weaken the resultant HGMF, they facilitate significantly higher RBC separation. Nevertheless, periodic arrays are more appropriate for relatively deep microchannels since, unlike continuous microstructures, their separation effectiveness is independent of depth. The results are relevant to the design of microfluidic devices that leverage HGMFs to fractionate blood by separating RBCs and WBCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. LD Typing for Bone Marrow Transplantation.

    DTIC Science & Technology

    1977-06-15

    LD ( HLA —D) locus is the least understood. Separate Navy contracts deal with development of knowledge regarding the specific antigens present at this...locus. This contract is directed to the problem of collecting homozygous typing cells which can be used for P . ,At ~i1&~ L!~Y ~~~~ •i~~•~ (LD ( HLA —D...therefore decided to examine this group with preliminary testing to see whether they could yield the type ef cells necessary for HLA —D typing. Because

  19. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis

    PubMed Central

    Platre, Matthieu Pierre; Barberon, Marie; Caillieux, Erwann; Colot, Vincent

    2016-01-01

    Summary Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis. PMID:26662936

  20. Immunochemical identification of insect hemocyte populations: monoclonal antibodies distinguish four major hemocyte types in manduca sexta.

    PubMed

    Willott, E; Trenczek, T; Thrower, L W; Kanost, M R

    1994-12-01

    We have made 140 monoclonal antibodies to hemocytes (insect blood cells) from Manduca sexta. Four of these antibodies, when used in immunofluorescent microscopy of fixed hemocytes, distinguish the four main morphologically distinct hemocyte types. Plasmatocytes, granular cells, and oenocytoids are each recognized by a unique antibody specific to that type; spherulocytes are recognized by an antibody that also binds to plasmatocytes. When used in flow cytometry with nonfixed hemocytes, three of the four antibodies bind their respective cells; the oenocytoid marker failed to bind to any hemocytes. This set of four monoclonal antibodies may be useful for labeling individual cell types and for separating the different hemocyte types for further study of hemocyte functions.

  1. Proteome Analysis of Thyroid Cancer Cells After Long-Term Exposure to a Random Positioning Machine

    NASA Astrophysics Data System (ADS)

    Pietsch, Jessica; Bauer, Johann; Weber, Gerhard; Nissum, Mikkel; Westphal, Kriss; Egli, Marcel; Grosse, Jirka; Schönberger, Johann; Eilles, Christoph; Infanger, Manfred; Grimm, Daniela

    2011-11-01

    Annulling gravity during cell culturing triggers various types of cells to change their protein expression in a time dependent manner. We therefore decided to determine gravity sensitive proteins and their period of sensitivity to the effects of gravity. In this study, thyroid cancer cells of the ML-1 cell line were cultured under normal gravity (1 g) or in a random positioning machine (RPM), which simulated near weightlessness for 7 and 11 days. Cells were then sonicated and proteins released into the supernatant were separated from those that remained attached to the cell fragments. Subsequently, both types of proteins were fractionated by free-flow isoelectric focussing (FF-IEF). The fractions obtained were further separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to which comparable FF-IEF fractions derived from cells cultured either under 1 g or on the RPM had been applied side by side. The separation resulted in pairs of lanes, on which a number of identical bands were observed. Selected gel pieces were excised and their proteins determined by mass spectrometry. Equal proteins from cells cultured under normal gravity and the RPM, respectively, were detected in comparable gel pieces. However, many of these proteins had received different Mascot scores. Quantifying heat shock cognate 71 kDa protein, glutathione S-transferase P, nucleoside diphosphate kinase A and annexin-2 by Western blotting using whole cell lysates indicated usefulness of Mascot scores for selecting the most efficient antibodies.

  2. Expression of Coxsackievirus and Adenovirus Receptor Separates Hematopoietic and Cardiac Progenitor Cells in Fetal Liver Kinase 1-Expressing Mesoderm

    PubMed Central

    Tashiro, Katsuhisa; Hirata, Nobue; Okada, Atsumasa; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki

    2015-01-01

    In developing embryos or in vitro differentiation cultures using pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, fetal liver kinase 1 (Flk1)-expressing mesodermal cells are thought to be a heterogeneous population that includes hematopoietic progenitors, endothelial progenitors, and cardiac progenitors. However, information on cell surface markers for separating these progenitors in Flk1+ cells is currently limited. In the present study, we show that distinct types of progenitor cells in Flk1+ cells could be separated according to the expression of coxsackievirus and adenovirus receptor (CAR, also known as CXADR), a tight junction component molecule. We found that mouse and human PSC- and mouse embryo-derived Flk1+ cells could be subdivided into Flk1+CAR+ cells and Flk1+CAR− cells. The progenitor cells with cardiac potential were almost entirely restricted to Flk1+CAR+ cells, and Flk1+CAR− cells efficiently differentiated into hematopoietic cells. Endothelial differentiation potential was observed in both populations. Furthermore, from the expression of CAR, Flk1, and platelet-derived growth factor receptor-α (PDGFRα), Flk1+ cells could be separated into three populations (Flk1+PDGFRα−CAR− cells, Flk1+PDGFRα−CAR+ cells, and Flk1+PDGFRα+CAR+ cells). Flk1+PDGFRα+ cells and Flk1+PDGFRα− cells have been reported as cardiac and hematopoietic progenitor cells, respectively. We identified a novel population (Flk1+PDGFRα−CAR+ cells) with the potential to differentiate into not only hematopoietic cells and endothelial cells but also cardiomyocytes. Our findings indicate that CAR would be a novel and prominent marker for separating PSC- and embryo-derived Flk1+ mesodermal cells with distinct differentiation potentials. PMID:25762001

  3. Demixing kinetics of phase separated polymer solutions in microgravity. [cell separation

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.; Bamberger, S. B.; Harris, J. M.; Vanalstine, J.; Snyder, R. S.

    1987-01-01

    In preparation for performing cell partitioning in space the demixing behavior of aqueous two phase systems containing dextran and poly(ethylene glycol) in microgravity was modeled with an isopycnic system and studied on aircraft flights and on STS 51-D. In all types of experiments demixing occurs, eventually producing one phase localized around the wall of the container with the other internalized within it. The demixing kinetics were analyzed in each case.

  4. TCGA's Testicular Germ Cell Tumor Study - TCGA

    Cancer.gov

    TCGA network researchers identify molecular characteristics that classify testicular germ cell tumor types, including a separate subset of seminomas defined by KIT mutations. This provides a set of candidate biomarkers for risk stratification and potential therapeutic targeting.

  5. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin

    2016-02-01

    Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j

  6. Prawn Shell Derived Chitin Nanofiber Membranes as Advanced Sustainable Separators for Li/Na-Ion Batteries.

    PubMed

    Zhang, Tian-Wen; Shen, Bao; Yao, Hong-Bin; Ma, Tao; Lu, Lei-Lei; Zhou, Fei; Yu, Shu-Hong

    2017-08-09

    Separators, necessary components to isolate cathodes and anodes in Li/Na-ion batteries, are consumed in large amounts per year; thus, their sustainability is a concerning issue for renewable energy storage systems. However, the eco-efficient and environmentally friendly fabrication of separators with a high mechanical strength, excellent thermal stability, and good electrolyte wettability is still challenging. Herein, we reported the fabrication of a new type of separators for Li/Na-ion batteries through the self-assembly of eco-friendly chitin nanofibers derived from prawn shells. We demonstrated that the pore size in the chitin nanofiber membrane (CNM) separator can be tuned by adjusting the amount of pore generation agent (sodium dihydrogen citrate) in the self-assembly process of chitin nanofibers. By optimizing the pore size in CNM separators, the electrochemical performance of the LiFePO 4 /Li half-cell with a CNM separator is comparable to that with a commercialized polypropylene (PP) separator. More attractively, the CNM separator showed a much better performance in the LiFePO 4 /Li cell at 120 °C and Na 3 V 2 (PO 4 ) 3 /Na cell than the PP separator. The proposed fabrication of separators by using natural raw materials will play a significant contribution to the sustainable development of renewable energy storage systems.

  7. Phase separation like dynamics during Myxococcus xanthus fruiting body formation

    NASA Astrophysics Data System (ADS)

    Liu, Guannan; Thutupalli, Shashi; Wigbers, Manon; Shaevitz, Joshua

    2015-03-01

    Collective motion exists in many living organisms as an advantageous strategy to help the entire group with predation, forage, and survival. However, the principles of self-organization underlying such collective motions remain unclear. During various developmental stages of the soil-dwelling bacterium, Myxococcus xanthus, different types of collective motions are observed. In particular, when starved, M. xanthus cells eventually aggregate together to form 3-dimensional structures (fruiting bodies), inside which cells sporulate in response to the stress. We study the fruiting body formation process as an out of equilibrium phase separation process. As local cell density increases, the dynamics of the aggregation M. xanthus cells switch from a spatio-temporally random process, resembling nucleation and growth, to an emergent pattern formation process similar to a spinodal decomposition. By employing high-resolution microscopy and a video analysis system, we are able to track the motion of single cells within motile collective groups, while separately tuning local cell density, cell velocity and reversal frequency, probing the multi-dimensional phase space of M. xanthus development.

  8. Thermally assisted acoustofluidic separation of extracellular vesicles from cells

    NASA Astrophysics Data System (ADS)

    Mirtaheri, Elnaz; Dolatmoradi, Ata; Pimentel, Krystine; Bhansali, Shekhar; El-Zahab, Bilal

    2018-02-01

    Extracellular vesicles (EVs) have been gaining increasing attention given their role in communicating information between cells. Composition-based isolation of EVs is particularly of high significance as the proteomic and lipidomic characterization of their cargo could provide valuable clues to the role of EVs in mediating the biology of various conditions. This has, however, proved to be challenging as EVs, despite their abundance, are very small and difficult to be differentiated from the other constituents of host media. In addition, currently available methods like ultracentrifugation and filtration are cumbersome and capable of achieving mostly size-based separations. In this work, we demonstrate the possibility of separating submicron EV-like vesicles from cancer cells using a thermally-assisted acoustophoretic device. In a system composed of MCF-7 breast cancer cells spiked with two different types of same-size vesicles, composition-based isolation of vesicles was shown to be realizable through opposite focusing of the system's components at the node and antinodes of the overlaid ultrasonic standing wave. By proper choice of temperature in the microchannel, we were able to achieve separations with purities exceeding 93%. Furthermore, cells recovered from the channel were shown to be viable after the separation.

  9. Differentiation Generates Paracrine Cell Pairs That Maintain Basaloid Mouse Mammary Tumors: Proof of Concept

    PubMed Central

    Kim, Soyoung; Goel, Shruti; Alexander, Caroline M.

    2011-01-01

    There is a paradox offered up by the cancer stem cell hypothesis. How are the mixed populations that are characteristic of heterogeneous solid tumors maintained at constant proportion, given their high, and different, mitotic indices? In this study, we evaluate a well-characterized mouse model of human basaloid tumors (induced by the oncogene Wnt1), which comprise mixed populations of mammary epithelial cells resembling their normal basal and luminal counterparts. We show that these cell types are substantially inter-dependent, since the MMTV LTR drives expression of Wnt1 ligand in luminal cells, whereas the functional Wnt1-responsive receptor (Lrp5) is expressed by basal cells, and both molecules are necessary for tumor growth. There is a robust tumor initiating activity (tumor stem cell) in the basal cell population, which is associated with the ability to differentiate into luminal and basal cells, to regenerate the oncogenic paracrine signaling cell pair. However, we found an additional tumor stem cell activity in the luminal cell population. Knowing that tumors depend upon Wnt1-Lrp5, we hypothesized that this stem cell must express Lrp5, and found that indeed, all the stem cell activity could be retrieved from the Lrp5-positive cell population. Interestingly, this reflects post-transcriptional acquisition of Lrp5 protein expression in luminal cells. Furthermore, this plasticity of molecular expression is reflected in plasticity of cell fate determination. Thus, in vitro, Wnt1-expressing luminal cells retro-differentiate to basal cell types, and in vivo, tumors initiated with pure luminal cells reconstitute a robust basal cell subpopulation that is indistinguishable from the populations initiated by pure basal cells. We propose this is an important proof of concept, demonstrating that bipotential tumor stem cells are essential in tumors where oncogenic ligand-receptor pairs are separated into different cell types, and suggesting that Wnt-induced molecular and fate plasticity can close paracrine loops that are usually separated into distinct cell types. PMID:21541292

  10. Border cell release: Cell separation without cell wall degradation?

    PubMed

    Mravec, Jozef

    2017-07-03

    Plant border cells are specialized cells derived from the root cap with roles in the biomechanics of root growth and in forming a barrier against pathogens. The mechanism of highly localized cell separation which is essential for their release to the environment is little understood. Here I present in situ analysis of Brachypodium distachyon, a model organism for grasses which possess type II primary cell walls poor in pectin content. Results suggest similarity in spatial dynamics of pectic homogalacturonan during dicot and monocot border cell release. Integration of observations from different species leads to the hypothesis that this process most likely does not involve degradation of cell wall material but rather uses unique cell wall structural and compositional means enabling both the rigidity of the root cap as well as detachability of given cells on its surface.

  11. Internalization and intracellular retention of CD4 are two separate functions of the human immunodeficiency virus type 1 Nef protein.

    PubMed

    Giolo, Giorgia; Neri, Francesca; Casartelli, Nicoletta; Potestà, Marina; Belleudi, Francesca; Torrisi, Maria Rosaria; Doria, Margherita

    2007-11-01

    The pathogenic Nef protein of the human immunodeficiency virus type 1 (HIV-1) downregulates CD4 by inducing its endocytosis and by inhibiting the transport of the receptor to the cell membrane. By means of in vivo-selected mutations, we show that L37, P78 and E177 residues of Nef are required for its effect on CD4 internalization and recycling but dispensable for Nef-induced retention and degradation of intracellular CD4. Of note, the function of Nef on the anterograde transport of newly synthesized CD4 molecules is irrelevant in cells with a slow constitutive CD4 turnover such as T cell lines. Moreover, we show that a mutated CD4 that is unresponsive to Nef-mediated endocytosis, CD4LL(144)AA, is retained intracellularly and degraded by Nef like wild-type CD4. Thus, Nef's abilities to enhance endocytosis and induce intracellular retention of CD4 are mediated by separate protein surfaces and occur through distinct mechanisms.

  12. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  13. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  14. Microfluidic devices for label-free separation of cells through transient interaction with asymmetric receptor patterns

    NASA Astrophysics Data System (ADS)

    Bose, S.; Singh, R.; Hollatz, M. H.; Lee, C.-H.; Karp, J.; Karnik, R.

    2012-02-01

    Cell sorting serves an important role in clinical diagnosis and biological research. Most of the existing microscale sorting techniques are either non-specific to antigen type or rely on capturing cells making sample recovery difficult. We demonstrate a simple; yet effective technique for isolating cells in an antigen specific manner by using transient interactions of the cell surface antigens with asymmetric receptor patterned surface. Using microfluidic devices incorporating P-selectin patterns we demonstrate separation of HL60 cells from K562 cells. We achieved a sorting purity above 90% and efficiency greater than 85% with this system. We also present a mathematical model incorporating flow mediated and adhesion mediated transport of cells in the microchannel that can be used to predict the performance of these devices. Lastly, we demonstrate the clinical significance of the method by demonstrating single step separation of neutrophils from whole blood. When whole blood is introduced in the device, the granulocyte population gets separated exclusively yielding neutrophils of high purity (<10% RBC contamination). To our knowledge, this is the first ever demonstration of continuous label free sorting of neutrophils from whole blood. We believe this technology will be useful in developing point-of-care diagnostic devices and also for a host of cell sorting applications.

  15. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  16. Phase separation and the formation of cellular bodies

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Broedersz, Chase P.; Meir, Yigal; Wingreen, Ned S.

    Cellular bodies in eukaryotic cells spontaneously assemble to form cellular compartments. Among other functions, these bodies carry out essential biochemical reactions. Cellular bodies form micron-sized structures, which, unlike canonical cell organelles, are not surrounded by membranes. A recent in vitro experiment has shown that phase separation of polymers in solution can explain the formation of cellular bodies. We constructed a lattice-polymer model to capture the essential mechanism leading to this phase separation. We used both analytical and numerical tools to predict the phase diagram of a system of two interacting polymers, including the concentration of each polymer type in the condensed and dilute phase.

  17. Microgravity

    NASA Image and Video Library

    1998-10-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  18. Gene expression profiling of immunomagnetically separated cells directly from stabilized whole blood for multicenter clinical trials

    PubMed Central

    2014-01-01

    Background Clinically useful biomarkers for patient stratification and monitoring of disease progression and drug response are in big demand in drug development and for addressing potential safety concerns. Many diseases influence the frequency and phenotype of cells found in the peripheral blood and the transcriptome of blood cells. Changes in cell type composition influence whole blood gene expression analysis results and thus the discovery of true transcript level changes remains a challenge. We propose a robust and reproducible procedure, which includes whole transcriptome gene expression profiling of major subsets of immune cell cells directly sorted from whole blood. Methods Target cells were enriched using magnetic microbeads and an autoMACS® Pro Separator (Miltenyi Biotec). Flow cytometric analysis for purity was performed before and after magnetic cell sorting. Total RNA was hybridized on HGU133 Plus 2.0 expression microarrays (Affymetrix, USA). CEL files signal intensity values were condensed using RMA and a custom CDF file (EntrezGene-based). Results Positive selection by use of MACS® Technology coupled to transcriptomics was assessed for eight different peripheral blood cell types, CD14+ monocytes, CD3+, CD4+, or CD8+ T cells, CD15+ granulocytes, CD19+ B cells, CD56+ NK cells, and CD45+ pan leukocytes. RNA quality from enriched cells was above a RIN of eight. GeneChip analysis confirmed cell type specific transcriptome profiles. Storing whole blood collected in an EDTA Vacutainer® tube at 4°C followed by MACS does not activate sorted cells. Gene expression analysis supports cell enrichment measurements by MACS. Conclusions The proposed workflow generates reproducible cell-type specific transcriptome data which can be translated to clinical settings and used to identify clinically relevant gene expression biomarkers from whole blood samples. This procedure enables the integration of transcriptomics of relevant immune cell subsets sorted directly from whole blood in clinical trial protocols. PMID:25984272

  19. Isolation and genetic analysis of pure cells from forensic biological mixtures: The precision of a digital approach.

    PubMed

    Fontana, F; Rapone, C; Bregola, G; Aversa, R; de Meo, A; Signorini, G; Sergio, M; Ferrarini, A; Lanzellotto, R; Medoro, G; Giorgini, G; Manaresi, N; Berti, A

    2017-07-01

    Latest genotyping technologies allow to achieve a reliable genetic profile for the offender identification even from extremely minute biological evidence. The ultimate challenge occurs when genetic profiles need to be retrieved from a mixture, which is composed of biological material from two or more individuals. In this case, DNA profiling will often result in a complex genetic profile, which is then subject matter for statistical analysis. In principle, when more individuals contribute to a mixture with different biological fluids, their single genetic profiles can be obtained by separating the distinct cell types (e.g. epithelial cells, blood cells, sperm), prior to genotyping. Different approaches have been investigated for this purpose, such as fluorescent-activated cell sorting (FACS) or laser capture microdissection (LCM), but currently none of these methods can guarantee the complete separation of different type of cells present in a mixture. In other fields of application, such as oncology, DEPArray™ technology, an image-based, microfluidic digital sorter, has been widely proven to enable the separation of pure cells, with single-cell precision. This study investigates the applicability of DEPArray™ technology to forensic samples analysis, focusing on the resolution of the forensic mixture problem. For the first time, we report here the development of an application-specific DEPArray™ workflow enabling the detection and recovery of pure homogeneous cell pools from simulated blood/saliva and semen/saliva mixtures, providing full genetic match with genetic profiles of corresponding donors. In addition, we assess the performance of standard forensic methods for DNA quantitation and genotyping on low-count, DEPArray™-isolated cells, showing that pure, almost complete profiles can be obtained from as few as ten haploid cells. Finally, we explore the applicability in real casework samples, demonstrating that the described approach provides complete separation of cells with outstanding precision. In all examined cases, DEPArray™ technology proves to be a groundbreaking technology for the resolution of forensic biological mixtures, through the precise isolation of pure cells for an incontrovertible attribution of the obtained genetic profiles. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves

    PubMed Central

    Agustí, Javier; Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R; Talón, Manuel

    2009-01-01

    Background Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. Results Efficient protocols for the isolation of specific citrus cell types, namely laminar abscission zone (LAZ) and petiolar cortical (Pet) cells based on laser capture microdissection (LCM) and for RNA microextraction and amplification have been developed. A comparative transcriptome analysis between LAZ and Pet from citrus leaf explants subjected to an in-vitro 24 h ethylene treatment was performed utilising microarray hybridization and analysis. Our analyses of gene functional classes differentially represented in ethylene-treated LAZ revealed an activation program dominated by the expression of genes associated with protein synthesis, protein fate, cell type differentiation, development and transcription. The extensive repertoire of genes associated with cell wall biosynthesis and metabolism strongly suggests that LAZ layers activate both catabolic and anabolic wall modification pathways during the abscission program. In addition, over-representation of particular members of different transcription factor families suggests important roles for these genes in the differentiation of the effective cell separation layer within the many layers contained in the citrus LAZ. Preferential expression of stress-related and defensive genes in Pet reveals that this tissue is likely to be reprogrammed to prevent pathogen attacks and general abiotic stresses after organ shedding. Conclusion The LCM-based data generated in this survey represent the most accurate description of the main biological processes and genes involved in organ abscission in citrus. This study provides novel molecular insight into ethylene-promoted leaf abscission and identifies new putative target genes for characterization and manipulation of organ abscission in citrus. PMID:19852773

  1. Electrostatic separation for recycling silver, silicon and polyethylene terephthalate from waste photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zisheng; Sun, Bo; Yang, Jie; Wei, Yusheng; He, Shoujie

    2017-04-01

    Electrostatic separation technology has been proven to be an effective and environmentally friendly way of recycling electronic waste. In this study, this technology was applied to recycle waste solar panels. Mixed particles of silver and polyethylene terephthalate, silicon and polyethylene terephthalate, and silver and silicon were separated with a single-roll-type electrostatic separator. The influence of high voltage level, roll speed, radial position corona electrode and angular position of the corona electrode on the separation efficiency was studied. The experimental data showed that separation of silver/polyethylene terephthalate and silicon/polyethylene terephthalate needed a higher voltage level, while separation of silver and silicon needed a smaller angular position for the corona electrode and a higher roll speed. The change of the high voltage level, roll speed, radial position of the corona electrode, and angular position of the corona electrode has more influence on silicon separation efficiency than silver separation efficiency. An integrated process is proposed using a two-roll-type corona separator for multistage separation of a mixture of these three materials. The separation efficiency for silver and silicon were found to reach 96% and 98%, respectively.

  2. Restrictive loads powered by separate or by common electrical sources

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.

    1989-01-01

    In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.

  3. Computed aided system for separation and classification of the abnormal erythrocytes in human blood

    NASA Astrophysics Data System (ADS)

    Wąsowicz, Michał; Grochowski, Michał; Kulka, Marek; Mikołajczyk, Agnieszka; Ficek, Mateusz; Karpieńko, Katarzyna; Cićkiewicz, Maciej

    2017-12-01

    The human peripheral blood consists of cells (red cells, white cells, and platelets) suspended in plasma. In the following research the team assessed an influence of nanodiamond particles on blood elements over various periods of time. The material used in the study consisted of samples taken from ten healthy humans of various age, different blood types and both sexes. The markings were leaded by adding to the blood unmodified diamonds and oxidation modified. The blood was put under an impact of two diamond concentrations: 20μl and 100μl. The amount of abnormal cells increased with time. The percentage of echinocytes as a result of interaction with nanodiamonds in various time intervals for individual specimens was scarce. The impact of the two diamond types had no clinical importance on red blood cells. It is supposed that as a result of longlasting exposure a dehydratation of red cells takes place, because of the function of the cells. The analysis of an influence of nanodiamond particles on blood elements was supported by computer system designed for automatic counting and classification of the Red Blood Cells (RBC). The system utilizes advanced image processing methods for RBCs separation and counting and Eigenfaces method coupled with the neural networks for RBCs classification into normal and abnormal cells purposes.

  4. Types of neural cells in the spinal ganglia of human embryos and early fetuses.

    PubMed

    Olszewska, B; Woźniak, W; Gardner, E; O'Rahilly, R

    1979-01-01

    Spinal ganglial of human embryos and fetuses ranging in C.-R. length from 15 to 74 mm and in age from 6 1/2 to 11 postovulatory weeks were studied by light and electron microscopy. A sequence of events in differentiation and maturation enabled five types of cells to be distinguished: 1. apolar, undifferentiated neuroblasts are the main cells at 6 1/2 to 7 1/2 weeks; 2. early bipolar neuroblasts (strictly speaking, types 2 to 5 are immature neurons) predominate at the end of the embryonic period proper (8 postovulatory weeks); 3. intermediate bipolar neuroblasts are characteristic of the early fetal period; 4. late bipolar neuroblasts, in which two proceses arise separately from one pole of the cell, appear at about 10 postovulatory weeks; 5. unipolar neuroblasts are found within another week and, by that time, cells of types 1 and 2 are no longer present.

  5. [Effect of cryopreservation on umbilical blood cells and its mechanism].

    PubMed

    Li, Xin; Chen, Fangping; Jiang, Tiebin; Wang, Erhua; Liu, Jing

    2013-07-01

    To evaluate the effect of cryopreservation on clonogenic ability and apoptosis rate of mono-nuclear cells and CD34+ cells in umbilical blood (UB), and to choose the index to present the freezing injury and optimize the cryopreservation of UB. The mono-nuclear cells (MNC) and CD34+ cells were separated from UB and frozen.After 30 days, they were thawed in warm water. Clonogenic capacity and clonogenic recovery before and after the cryopreservation was compared. We also used Annexin V-FITC-PI to investigate the apoptosis rate of the cells before and after the cryopreservation of these 2 types of cells. The number of colony forming unit-granulocyte/monocyte (CFU-GMs) was not changed after freezing and thawing in both MNCs and CD34+ cells, while the number of colony forming unit-granulocyte, erythrocyte, monocyte and megakaryocyte (CFU-GEMM) was obviously reduced after freezing in CD34+ cells. The 2 types of cryopreserved cells had certain degree of apoptosis before the cryopreservation. MNC-type cryopreservation increased the cells apoptosis a little, while CD34+-type cryopreservation increased more. The cells have certain degree of apoptosis before the cryopreservation. The freezing and thawing procedure does affect the early stage progenitor cells-CFU-GEMM in the CD34+- type cryopreserved cells in UB. The damage may be induced by the cell apoptosis.

  6. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.

    PubMed

    Wang, Jin; Mora-Seró, Iván; Pan, Zhenxiao; Zhao, Ke; Zhang, Hua; Feng, Yaoyu; Yang, Guang; Zhong, Xinhua; Bisquert, Juan

    2013-10-23

    Searching suitable panchromatic QD sensitizers for expanding the light-harvesting range, accelerating charge separation, and retarding charge recombination is an effective way to improve power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs). One possible way to obtain a wide absorption range is to use the exciplex state of a type-II core/shell-structured QDs. In addition, this system could also provide a fast charge separation and low charge-recombination rate. Herein, we report on using a CdTe/CdSe type-II core/shell QD sensitizer with an absorption range extending into the infrared region because of its exciplex state, which is covalently linked to TiO2 mesoporous electrodes by dropping a bifunctional linker molecule mercaptopropionic acid (MPA)-capped QD aqueous solution onto the film electrode. High loading and a uniform distribution of QD sensitizer throughout the film electrode thickness have been confirmed by energy dispersive X-ray (EDX) elemental mapping. The accelerated electron injection and retarded charge-recombination pathway in the built CdTe/CdSe QD cells in comparison with reference CdSe QD-based cells have been confirmed by impedance spectroscopy, fluorescence decay, and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) analysis. With the combination of the high QD loading and intrinsically superior optoelectronic properties of type-II core/shell QD (wide absorption range, fast charge separation, and slow charge recombination), the resulting CdTe/CdSe QD-based regenerative sandwich solar cells exhibit a record PCE of 6.76% (J(sc) = 19.59 mA cm(-2), V(oc) = 0.606 V, and FF = 0.569) with a mask around the active film under a full 1 sun illumination (simulated AM 1.5), which is the highest reported to date for liquid-junction QDSCs.

  7. The performance and long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells.

    PubMed

    Kondaveeti, Sanath; Kakarla, Ramesh; Kim, Hong Suck; Kim, Byung-Goon; Min, Booki

    2018-02-01

    This study evaluates long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells with domestic wastewater. Low-cost separators tested in this study were nonwoven fabrics (NWF) of polypropylene (PP80, PP100), textile fabrics of polyphenylene sulfide (PPS), sulfonated polyphenylene sulfide (SPPS), and cellulose esters. NWF PP80 separator generated the highest power density of 280 mW/m 2 , which was higher than with ion-exchange membranes (cation exchange membrane; CEM = 271 mW/m 2 , cation exchange membrane; CMI = 196 mW/m 2 , Nafion = 260 mW/m 2 ). MFC operations with other size-selective separators such as SPPS, PPS, and cellulose esters exhibited power densities of 261, 231, and 250 mW/m 2 , respectively. During a 280-day operation, initial power density of PP80 (278 mW/m 2 ) was decreased to 257 mW/m 2 , but this decrease was smaller than with others (Nafion: 265-230 mW/m 2 ; PP100: 220-126 mW/m 2 ). The anode potential of around -430 mV did not change much with all separators in the long-term operation, but the initial cathode potential gradually decreased. Fouling analysis suggested that the presence of carbonaceous substance on Nafion and PP80 after 280 days of operation and Nafion was subject to be more biofouling.

  8. Immunomagnetic cell separation, imaging, and analysis using Captivate ferrofluids

    NASA Astrophysics Data System (ADS)

    Jones, Laurie; Beechem, Joseph M.

    2002-05-01

    We have developed applications of CaptivateTM ferrofluids, paramagnetic particles (approximately 200 nm diameter), for isolating and analyzing cell populations in combination with fluorescence-based techniques. Using a microscope-mounted magnetic yoke and sample insertion chamber, fluorescent images of magnetically captured cells were obtained in culture media, buffer, or whole blood, while non-magnetically labeled cells sedimented to the bottom of the chamber. We combined this immunomagnetic cell separation and imaging technique with fluorescent staining, spectroscopy, and analysis to evaluate cell surface receptor-containing subpopulations, live/dead cell ratios, apoptotic/dead cell ratios, etc. The acquired images were analyzed using multi-color parameters, as produced by nucleic acid staining, esterase activity, or antibody labeling. In addition, the immunomagnetically separated cell fractions were assessed through microplate analysis using the CyQUANT Cell Proliferation Assay. These methods should provide an inexpensive alternative to some flow cytometric measurements. The binding capacities of the streptavidin- labled Captivate ferrofluid (SA-FF) particles were determined to be 8.8 nmol biotin/mg SA-FF, using biotin-4- fluorescein, and > 106 cells/mg SA-FF, using several cell types labeled with biotinylated probes. For goat anti- mouse IgG-labeled ferrofluids (GAM-FF), binding capacities were established to be approximately 0.2 - 7.5 nmol protein/mg GAM-FF using fluorescent conjugates of antibodies, protein G, and protein A.

  9. Fluorescence- and magnetic-activated cell sorting strategies to separate spermatozoa involving plural contributors from biological mixtures for human identification

    PubMed Central

    Xu, Yan; Xie, Jianhui; Chen, Ronghua; Cao, Yu; Ping, Yuan; Xu, Qingwen; Hu, Wei; Wu, Dan; Gu, Lihua; Zhou, Huaigu; Chen, Xin; Zhao, Ziqin; Zhong, Jiang; Li, Rui

    2016-01-01

    No effective method has been developed to distinguish sperm cells originating from different men in multi-suspect sexual assault cases. Here we combined MACS and FACS to isolate single donor sperm cells from forensic mixture samples including female vaginal epithelial cells and sperm cells from multiple contributors. Sperms from vaginal swab were isolated by MACS using FITC-conjugated A kinase anchor protein 3 (AKAP3) antibody; target individual sperm cells involving two or three donors were separated by FACS using FITC-labeled blood group A/B antigen antibody. This procedure was further tested in two mock multi-suspect sexual assault samples and one practical casework sample. Our results showed that complete single donor STR profiles could be successfully obtained from sperm/epithelial cell and sperm mixtures from two contributors. For unbalanced sperm/epithelial cells and sperm cells mixtures, sensitivity results revealed that target cells could be detected at as low as 1:32 and 1:8 mixed ratios, respectively. Although highly relies on cell number and blood types or secretor status of the individuals, this procedure would still be useful tools for forensic DNA analysis of multi-suspect sexual assault cases by the combined use of FACS and MACS based on sperm-specific AKAP3 antigen and human blood type antigen. PMID:27857155

  10. Cellular Innate Immunity: An Old Game with New Players.

    PubMed

    Gasteiger, Georg; D'Osualdo, Andrea; Schubert, David A; Weber, Alexander; Bruscia, Emanuela M; Hartl, Dominik

    2017-01-01

    Innate immunity is a rapidly evolving field with novel cell types and molecular pathways being discovered and paradigms changing continuously. Innate and adaptive immune responses are traditionally viewed as separate from each other, but emerging evidence suggests that they overlap and mutually interact. Recently discovered cell types, particularly innate lymphoid cells and myeloid-derived suppressor cells, are gaining increasing attention. Here, we summarize and highlight current concepts in the field, focusing on innate immune cells as well as the inflammasome and DNA sensing which appear to be critical for the activation and orchestration of innate immunity, and may provide novel therapeutic opportunities for treating autoimmune, autoinflammatory, and infectious diseases. © 2016 S. Karger AG, Basel.

  11. Inversion layer solar cell fabrication and evaluation. [etching on silicon films

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Inversion layer solar cells were fabricated by etching through the diffused layer on p-type silicon wafers in a comb-like contact pattern. The charge separation comes from an induced p-n junction at the surface. The inverted surface is caused by a layer of transparent material applied to the surface that either contains free positive ions or that creates donor states at the interface. Cells are increased from 3 ma I sub sc to 100 ma by application of sodium silicate. The action is unstable, however, and decays. Non-mesa contaminated oxide cells were fabricated with short circuit currents of over 100 ma measured in the sun. Cells of this type have demonstrated stability.

  12. Redox regulation of epithelial sodium channels examined in alveolar type 1 and 2 cells patch-clamped in lung slice tissue.

    PubMed

    Helms, My N; Jain, Lucky; Self, Julie L; Eaton, Douglas C

    2008-08-15

    The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 +/- 3.2 and 22.5 +/- 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 microm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 +/- 0.26 to 0.82 +/- 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (O2.) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that O2. and NO signaling plays an important role in maintaining lung fluid balance.

  13. Vibration-type particle separation device with piezoceramic vibrator

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Doi, Akihiro

    2008-12-01

    During hemanalysis, it is necessary to separate blood cells from whole blood. Many blood separation methods, for example, centrifugation and filtering, are in practical use. However, the use of these methods involves problems from the perspectives of processing speed and processing volume. We develop new types of blood separation devices that use piezo-ceramic vibrators. The first device uses a capillary. One end of the capillary is fixed to the device frame, and the other is fixed to a piezo-ceramic vibrator. The vibrator transmits bending waves to the capillary. This device can process only a small amount of solution; therefore, it is not suitable for hemanalysis. In order to solve this problem, we developed a second device; this device has a pair of thin glass plates with a small gap as a substitute for the capillary used in the first device. These devices are based on the fact that particles heavier than water move toward transverse velocity antinodes while those lighter than water move toward velocity nodes. In this report, we demonstrate the highspeed separation of silica microbeads and 50-vol% glycerol water by using these devices. The first device can separate the abovementioned solution within 3 min while the second can separate it within 1 min. Both devices are driven by a rectangular wave of 15 to 20 Vpp. Furthermore, it has been confirmed that red blood cells are separated from diluted whole blood using the first device within approximately 1 min. These devices have transparency, so they can compose as the analysis system with the chemical analyzer easily.

  14. Analysis of cellular autofluorescence in touch samples by flow cytometry: implications for front end separation of trace mixture evidence.

    PubMed

    Katherine Philpott, M; Stanciu, Cristina E; Kwon, Ye Jin; Bustamante, Eduardo E; Greenspoon, Susan A; Ehrhardt, Christopher J

    2017-07-01

    The goal of this study was to survey optical and biochemical variation in cell populations deposited onto a surface through touch or contact and identify specific features that may be used to distinguish and then sort cell populations from separate contributors in a trace biological mixture. Although we were not able to detect meaningful biochemical variation in touch samples deposited by different contributors through preliminary antibody surveys, we did observe distinct differences in red autofluorescence emissions (650-670 nm), with as much as a tenfold difference in mean fluorescence intensities observed between certain pairs of donors. Results indicate that the level of red autofluorescence in touch samples can be influenced by a donor's contact with specific material prior to handling the substrate from which cells were collected. In particular, we observed increased red autofluorescence in cells deposited subsequent to handling laboratory gloves, plant material, and certain types of marker ink, which could be easily visualized microscopically or using flow cytometry, and persisted after hand washing. To test whether these observed optical differences could potentially be used as the basis for a cell separation workflow, a controlled two-person touch mixture was separated into two fractions via fluorescence-activated cell sorting (FACS) using gating criteria based on intensity of 650-670 nm emissions and then subjected to DNA analysis. Genetic analysis of the sorted fractions provided partial DNA profiles that were consistent with separation of individual contributors from the mixture suggesting that variation in autofluorescence signatures, even if driven by extrinsic factors, may nonetheless be a useful means of isolating contributors to some touch mixtures. Graphical Abstract Conceptual workflow diagram. Trace biological mixtures containing cells from multiple individuals are analyzed by flow cytometry. Cells are then physically separated into two populations based on intensity of red autofluorescence using Fluorescence Activated Cell Sorting. Each isolated cell fraction is subjected to DNA analysis resulting in a DNA profile for each contributor.

  15. Insights into collaborative separation process of photogenerated charges and superior performance of solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiangyang, E-mail: lxy081276@126.com; Wang, Shun; Zheng, Haiwu

    2016-07-25

    ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} (ZnO/CBS) and ZnO nanowires/CBS-graphene nanoplates (ZnO/CBS-GNs), as well as two types of solar cells were prepared. The photovoltaic responses of CBS-GNs and ZnO/CBS-GNs can be improved with incorporation of GNs. The transient surface photovoltage (TPV) can provide detailed information on the separation and transport of photogenerated carriers. The multichannel separation process from the TPVs indicates that the macro-photoelectric signals can be attributed to the photogenerated charges separated at the interface of CBS/GNs, rather than CBS/ZnO. The multi-interfacial recombination is the major carrier loss, and the hole selective p-V{sub 2}O{sub 5} can efficiently accelerate the chargemore » extraction to the external circuit. The ZnO/CBS-GNs cell exhibits the superior performance, and the highest efficiency is 10.9%. With the adequate interfaces of CBS/GNs, GNs conductive network, energy level matching, etc., the excitons can easily diffuse to the interface of CBS/GNs, and the separated electrons and holes can be collected quickly, inducing the high photoelectric properties. Here, a facile strategy for solid state solar cells with superior performance presents a potential application.« less

  16. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse

    PubMed Central

    Mayer, Robert; Brero, Alessandro; von Hase, Johann; Schroeder, Timm; Cremer, Thomas; Dietzel, Steffen

    2005-01-01

    Background Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes) with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals. Results All mouse cell types showed non-random correlations of radial chromosome territory positions with gene density as well as with chromosome size. The distribution of chromosome territories and pericentromeric heterochromatin changed during differentiation, leading to distinct cell type specific distribution patterns. We exclude a strict dependence of these differences on nuclear shape. Positional differences in mouse cell nuclei were less pronounced compared to human cell nuclei in agreement with smaller differences in chromosome size and gene density. Notably, the position of chromosome territories relative to each other was very variable. Conclusion Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types. Our findings are incompatible with a previously reported model of parental genome separation. PMID:16336643

  17. Ni-H2 cell separator matrix engineering

    NASA Technical Reports Server (NTRS)

    Scott, W. E.

    1992-01-01

    This project was initiated to develop alternative separator materials to the previously used asbestos matrices which were removed from the market for health and environmental reasons. The objective of the research was to find a material or combination of materials that had the following characteristics: (1) resistant to the severe conditions encountered in Ni-H2 cells; (2) satisfactory electrical, electrolyte management, and thermal management properties to function properly; (3) environmentally benign; and (4) capable of being manufactured into a separator matrix. During the course of the research it was discovered that separators prepared from wettable polyethylene fibers along and in combination with potassium titanate pigment performed satisfactory in preliminary characterization tests. Further studies lead to the optimization of the separator composition and manufacturing process. Single ply separator sheets were manufactured with 100 percent polyethylene fibers and also with a combination of polyethylene fibers and potassium titanate pigment (PKT) in the ratio of 60 percent PKT and 40 percent fibers. A pilot paper machine was used to produce the experimental separator material by a continuous, wet laid process. Both types of matrices were produced at several different area densities (grams/sq m).

  18. Dynamic microparticle manipulation with an electroosmotic flow gradient in low-frequency alternating current dielectrophoresis.

    PubMed

    Gencoglu, Aytug; Olney, David; LaLonde, Alexandra; Koppula, Karuna S; Lapizco-Encinas, Blanca H

    2014-02-01

    In this study, the potential of low-frequency AC insulator-based DEP (iDEP) was explored for the separation of polystyrene microparticles and yeast cells. An EOF gradient was generated by employing an asymmetrical, 20 Hz AC electrical signal in an iDEP device consisting of a microchannel with diamond-shaped insulating posts. Two types of samples were analyzed, the first sample contained three types of polystyrene particles with different diameters (0.5, 1.0, and 2.0 μm) and the second sample contained two types of polystyrene particles (1.0 and 2 μm) and yeast cells (6.3 μm). This particular scheme uses a tapered AC signal that allows for all particles to be trapped and concentrated at the insulating post array, as the signal becomes asymmetrical (more positive), particles are selectively released. The smallest particles in each sample were released first, since they require greater dielectrophoretic forces to remain trapped. The largest particles in each sample were released last, when the applied signal became cyclical. A dielectropherogram, which is analogous to a chromatogram, was obtained for each sample, demonstrating successful separation of the particles by showing "peaks" of the released particles. These separations were achieved at lower applied potentials than those reported in previous studies that used solely direct current electrical voltages. Additionally, mathematical modeling with COMSOL Multiphysics was carried out to estimate the magnitude of the dielectrophoretic and EOF forces acting on the particles considering the low-frequency, asymmetrical AC signal used in the experiments. The results demonstrated the potential of low-frequency AC-iDEP systems for handling and separating complex mixtures of microparticles and biological cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed Central

    Šljukić, Biljana; Morais, Ana L.; Santos, Diogo M. F.; Sequeira, César A. C.

    2012-01-01

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load. PMID:24958292

  20. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  1. Structure and compressive strength of silicon open-cell foam obtained by a centrifugal separation method

    NASA Astrophysics Data System (ADS)

    Cho, Ju-Young; Kim, Ki-Young

    2013-03-01

    The present study describes a new way to make an open-cell silicon foam from an Al-Si alloy melt by centrifugation during its solidification. The effects of the silicon content and the chute diameter of the crucible on the morphology, the density and the compressive strength of the silicon foams were investigated. A vertical-type centrifugal separator was designed to push the unfrozen Al-Si melt outside, leaving only the silicon foam inside the crucible during rotation. Alloys in the Al-Si system with silicon contents of 40 and 50 wt% were prepared by an electrical resistance furnace, and the revolution of the centrifugal separator was controlled to fabricate the foam. Open-cell silicon foams could be obtained successfully. The apparent density and the compressive strength were in the ranges of 620-820 kg/m3 and 7.5-14.5 MPa, respectively.

  2. Red blood cell transport mechanisms in polyester thread-based blood typing devices.

    PubMed

    Nilghaz, Azadeh; Ballerini, David R; Guan, Liyun; Li, Lizi; Shen, Wei

    2016-02-01

    A recently developed blood typing diagnostic based on a polyester thread substrate has shown great promise for use in medical emergencies and in impoverished regions. The device is easy to use and transport, while also being inexpensive, accurate, and rapid. This study used a fluorescent confocal microscope to delve deeper into how red blood cells were behaving within the polyester thread-based diagnostic at the cellular level, and how plasma separation could be made to visibly occur on the thread, making it possible to identify blood type in a single step. Red blood cells were stained and the plasma phase dyed with fluorescent compounds to enable them to be visualised under the confocal microscope at high magnification. The mechanisms uncovered were in surprising contrast with those found for a similar, paper-based method. Red blood cell aggregates did not flow over each other within the thread substrate as expected, but suffered from a restriction to their flow which resulted in the chromatographic separation of the RBCs from the liquid phase of the blood. It is hoped that these results will lead to the optimisation of the method to enable more accurate and sensitive detection, increasing the range of blood systems that can be detected.

  3. Glial cell migration in the eye disc.

    PubMed

    Silies, Marion; Yuva, Yeliz; Engelen, Daniel; Aho, Annukka; Stork, Tobias; Klämbt, Christian

    2007-11-28

    Any complex nervous system is made out of two major cell types, neurons and glial cells. A hallmark of glial cells is their pronounced ability to migrate. En route to their final destinations, glial cells are generally guided by neuronal signals. Here we show that in the developing visual system of Drosophila glial cell migration is largely controlled by glial-glial interactions and occurs independently of axonal contact. Differentiation into wrapping glia is initiated close to the morphogenetic furrow. Using single cell labeling experiments we identified six distinct glial cell types in the eye disc. The migratory glial population is separated from the wrapping glial cells by the so-called carpet cells, extraordinary large glial cells, each covering a surface area of approximately 10,000 epithelial cells. Subsequent cell ablation experiments demonstrate that the carpet glia regulates glial migration in the eye disc epithelium and suggest a new model underlying glial migration and differentiation in the developing visual system.

  4. Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector

    NASA Astrophysics Data System (ADS)

    Melnyk, Roman; DiBianca, Frank A.

    2003-06-01

    A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.

  5. Crystallography of some lunar plagioclases

    USGS Publications Warehouse

    Stewart, D.B.; Appleman, D.E.; Huebner, J.S.; Clark, J.R.

    1970-01-01

    Crystals of calcic bytownite from type B rocks have space group U with c ??? 14 angstroms. Bytownite crystals from type A rocks are more sodic and have space group C1, c ??? 7 angstroms. Cell parameters of eight bulk feldspar separates from crystalline rocks indicate that the range of angle gamma is about 23 times the standard error of measurement, and its value might be useful for estimation of composition. Cell parameters of seven ilmenites are close to those of pure FeTiO3.

  6. Manufacturing of Proteins and Antibodies: Chapter Downstream Processing Technologies : Harvest Operations.

    PubMed

    Turner, Richard; Joseph, Adrian; Titchener-Hooker, Nigel; Bender, Jean

    2017-08-04

    Cell harvesting is the separation or retention of cells and cellular debris from the supernatant containing the target molecule Selection of harvest method strongly depends on the type of cells, mode of bioreactor operation, process scale, and characteristics of the product and cell culture fluid. Most traditional harvesting methods use some form of filtration, centrifugation, or a combination of both for cell separation and/or retention. Filtration methods include normal flow depth filtration and tangential flow microfiltration. The ability to scale down predictably the selected harvest method helps to ensure successful production and is critical for conducting small-scale characterization studies for confirming parameter targets and ranges. In this chapter we describe centrifugation and depth filtration harvesting methods, share strategies for harvest optimization, present recent developments in centrifugation scale-down models, and review alternative harvesting technologies.

  7. Diffusion chamber system for testing of collagen-based cell migration barriers for separation of ligament enthesis zones in tissue-engineered ACL constructs.

    PubMed

    Hahner, J; Hoyer, M; Hillig, S; Schulze-Tanzil, G; Meyer, M; Schröpfer, M; Lohan, A; Garbe, L-A; Heinrich, G; Breier, A

    2015-01-01

    A temporary barrier separating scaffold zones seeded with different cell types prevents faster growing cells from overgrowing co-cultured cells within the same construct. This barrier should allow sufficient nutrient diffusion through the scaffold. The aim of this study was to test the effect of two variants of collagen-based barriers on macromolecule diffusion, viability, and the spreading efficiency of primary ligament cells on embroidered scaffolds. Two collagen barriers, a thread consisting of a twisted film tape and a sponge, were integrated into embroidered poly(lactic-co-caprolactone) and polypropylene scaffolds, which had the dimension of lapine anterior cruciate ligaments (ACL). A diffusion chamber system was designed and established to monitor nutrient diffusion using fluorescein isothiocyanate-labeled dextran of different molecular weights (20, 40, 150, 500 kDa). Vitality of primary lapine ACL cells was tested at days 7 and 14 after seeding using fluorescein diacetate and ethidium bromide staining. Cell spreading on the scaffold surface was measured using histomorphometry. Nuclei staining of the cross-sectioned scaffolds revealed the penetration of ligament cells through both barrier types. The diffusion chamber was suitable to characterize the diffusivity of dextran molecules through embroidered scaffolds with or without integrated collagen barriers. The diffusion coefficients were generally significantly lower in scaffolds with barriers compared to those without barriers. No significant differences between diffusion coefficients of both barrier types were detected. Both barriers were cyto-compatible and prevented most of the ACL cells from crossing the barrier, whereby the collagen thread was easier to handle and allowed a higher rate of cell spreading.

  8. Performance of mid infrared spectroscopy in skin cancer cell type identification

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Kemper, Björn; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick; Naranjo, Valery; Penaranda, Francisco; Schnekenburger, Jürgen

    2017-02-01

    Marker free optical spectroscopy is a powerful tool for the rapid inspection of pathologically suspicious skin lesions and the non-invasive detection of early skin tumors. This goal can be reached by the combination of signal localization and the spectroscopical detection of chemical cell signatures. We here present the development and application of mid infrared spectroscopy (midIR) for the analysis of skin tumor cell types and three dimensional tissue phantoms towards the application of midIR spectroscopy for fast and reliable skin diagnostics. We developed standardized in vitro skin systems with increasing complexity, from single skin cell types as fibroblasts, keratinocytes and melanoma cells, to mixtures of these and finally three dimensional skin cancer phantoms. The cell systems were characterized with different systems in the midIR range up to 12 μm. The analysis of the spectra by novel data processing algorithms demonstrated the clear separation of all cell types, especially melanoma cells. Special attention and algorithm training was required for closely related mesenchymal cell types as dedifferentiated melanoma cells and fibroblasts. Proof of concept experiments with mixtures of in vivo fluorescence labelled skin cell types allowed the test of the new algorithms performance for the identification of specific cell types. The intense training of the software systems with various samples resulted in a increased sensitivity and specificity of the combined midIR and software system. These data highlight the potential of midIR spectroscopy as sensitive and specific future optical biopsy technology.

  9. Urban land use of the Sao Paulo metropolitan area by automatic analysis of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Niero, M.; Foresti, C.

    1983-01-01

    The separability of urban land use classes in the metropolitan area of Sao Paulo was studied by means of automatic analysis of MSS/LANDSAT digital data. The data were analyzed using the media K and MAXVER classification algorithms. The land use classes obtained were: CBD/vertical growth area, residential area, mixed area, industrial area, embankment area type 1, embankment area type 2, dense vegetation area and sparse vegetation area. The spectral analysis of representative samples of urban land use classes was done using the "Single Cell" analysis option. The classes CBD/vertical growth area, residential area and embankment area type 2 showed better spectral separability when compared to the other classes.

  10. Facile control of nanoporosity in Cellulose Acetate using Nickel(II) nitrate additive and water pressure treatment for highly efficient battery gel separators.

    PubMed

    Lee, Woong Gi; Kim, Do Hyeong; Jeon, Woo Cheol; Kwak, Sang Kyu; Kang, Seok Ju; Kang, Sang Wook

    2017-04-28

    We succeed in fabricating nearly straight nanopores in cellulose acetate (CA) polymers for use as battery gel separators by utilizing an inorganic hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) complex and isostatic water pressure treatment. The continuous nanopores are generated when the polymer film is exposed to isostatic water pressure after complexing the nickel(II) nitrate hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) with the CA. These results can be attributed to the manner in which the polymer chains are weakened because of the plasticization effect of the Ni(NO 3 ) 2 ·6H 2 O that is incorporated into the CA. Furthermore, we performed extensive molecular dynamics simulation for confirming the interaction between electrolyte and CA separator. The well controlled CA membrane after water pressure treatment enables fabrication of highly reliable cell by utilizing 2032-type coin cell structure. The resulting cell performance exhibits not only the effect of the physical morphology of CA separator, but also the chemical interaction of electrolyte with CA polymer which facilitates the Li-ion in the cell.

  11. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.

  13. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    NASA Astrophysics Data System (ADS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-04-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  14. Magnetic separation of algae genetically modified for increased intracellular iron uptake.

    PubMed

    Buck, Amy; Moore, Lee R; Lane, Christopher D; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J; Zborowski, Maciej

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides ( A. p. ) strains. The A. p. cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1,000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  15. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    PubMed Central

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. p.) strains. The A. p. cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1,000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. PMID:29353957

  16. Magnetophoretic separation ICP-MS immunoassay using Cs-doped multicore magnetic nanoparticles for the determination of salmonella typhimurium.

    PubMed

    Jeong, Arong; Lim, H B

    2018-02-01

    In this work, a magnetophoretic separation ICP-MS immunoassay using newly synthesized multicore magnetic nanoparticles (MMNPs) was developed for the determination of salmonella typhimurium (typhi). The uniqueness of this method was the use of MMNPs doped with Cs for both separation and detection, which enable us to achieve fast analysis, high sensitivity, and good reliability. For demonstration, heat-killed typhi in a phosphate buffer solution was determined by ICP-MS after the MMNP-typhi reaction product was separated from unreacted MMNPs in a micropipette tip filled with 25% polyethylene glycol through magnetophoretic separation. The calibration curve obtained by plotting 133 Cs intensity vs. the number of synthetic standard, showed a coefficient of determination (R 2 ) of 0.94 with a limit of detection (LOD) of 102 cells/mL without cell culturing. Excellent recoveries, between 98-100%, were obtained from four replicates and compared with a sandwich-type ICP-MS immunoassay for further confirmation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The effects of stress on the enzymes of peripheral leukocytes

    NASA Technical Reports Server (NTRS)

    Leise, E. M.; Gray, I.

    1973-01-01

    Previous work showed an early response of rabbit and human leukocyte enzymes to the stress of bacterial infection. Since these represented a mixed population of leukocytes and since polymorphonuclear leukocytes (PMN) increased in these preparations, it was necessary to establish whether the observed increase in lactate dehydrenase (LDH) and protein was the result of an increase in any one particular cell type or in all cells. The need for the development of a simple reproducible method for the differential separation of peripheral leukocytes for the furtherance of our own studies was apparent. It was also becoming increasingly apparent that morphologically similar cells, such as small lymphocytes (L) and macrophages, were capable of different biological functions. A dextran gradient centrifugation method was developed which has provided an easily reproducible technique for separating L from PMN. During the course of this work, in which over 250 rabbits were examined, the pattern of daily leukocyte protein and enzyme variation became increasingly more apparent. This information could have some impact on future work with leukocyte enzymes, by our group and by other workers. The differences in normal protein and enzyme levels maintained by some individuals, and some inbred strains, were evaluated and reported separately. It has been shown that one type of leukocyte may react more to a given stress than other leukocytes.

  18. Kidney cell electrophoresis in space flight: Rationale, methods, results and flow cytometry applications

    NASA Technical Reports Server (NTRS)

    Todd, P.; Morrison, Dennis R.; Barlow, Grant H.; Lewis, Marian L.; Lanham, J. W.; Cleveland, C.; Williams, K.; Kunze, M. E.; Goolsby, C. L.

    1988-01-01

    Cultures of human embryonic kidney cells consistently contain an electrophoretically separable subpopulation of cells that produce high levels of urokinase and have an electrophoretic mobility about 85 percent as high as that of the most mobile human embryonic kidney cells. This subpopulation is rich in large epithelioid cells that have relatively little internal structure. When resolution and throughput are adequate, free fluid electrophoresis can be used to isolate a broad band of low mobility cells which also produces high levels of plasminogen activators (PAs). In the course of performing this, it was discovered that all electrophoretic subpopulations of cultured human embryonic kidney cells produce some PAs and that separate subpopulations produce high quantities of different types of PA's. This information and the development of sensitive assays for this project have provided new insights into cell secretion mechanisms related to fibrinolysis. These advances would probably not have been made without the NASA program to explore fundamental questions of free fluid electrophoresis in space.

  19. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  20. Genetics Home Reference: lattice corneal dystrophy type I

    MedlinePlus

    ... have recurrent corneal erosions, which are caused by separation of particular layers of the cornea from one ... intricate network that forms in the spaces between cells and provides structural support to tissues. The protein ...

  1. Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nor, N. S. M., E-mail: madra@ukm.my; Deraman, M., E-mail: madra@ukm.my; Omar, R., E-mail: madra@ukm.my

    Activated porous carbon electrode prepared from fibres of oil palm empty fruit bunches was used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated using carbon electrodes, stainless steel current collector, H{sub 2}SO{sub 4} electrolyte, and three types of nanoporous separators. Cells A, B and C were fabricated using polypropylene, eggshell membrane, and filter paper, respectively. Electrochemical characterizations data from Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanic Charge Discharge techniques showed that specific capacitance, specific power and specific energy for cell A were 122 F g{sup −1}, 177 W kg{sup −1}, 3.42 Wh kg{sup −1}, cellmore » B; 125 F g{sup −1}, 179 W kg{sup −1}, and 3.64 Wh kg{sup −1}, and cell C; 180 F g{sup −1}, 178 W kg{sup −1}, 4.27 Wh kg{sup −1}. All the micrographs from Field Emission Scanning Electron Microscope showed that the different in nanoporous structure of the separators lead to a significant different in influencing the values of specific capacitance, power and energy of supercapacitors, which is associated with the mobility of ion into the pore network. These results indicated that the filter paper was superior than the eggshell membrane and polypropylene nanoporous separators. However, we found that in terms of acidic resistance, polypropylene was the best nanoporous separator for acidic medium.« less

  2. Critical and maximally informative encoding between neural populations in the retina

    PubMed Central

    Kastner, David B.; Baccus, Stephen A.; Sharpee, Tatyana O.

    2015-01-01

    Computation in the brain involves multiple types of neurons, yet the organizing principles for how these neurons work together remain unclear. Information theory has offered explanations for how different types of neurons can maximize the transmitted information by encoding different stimulus features. However, recent experiments indicate that separate neuronal types exist that encode the same filtered version of the stimulus, but then the different cell types signal the presence of that stimulus feature with different thresholds. Here we show that the emergence of these neuronal types can be quantitatively described by the theory of transitions between different phases of matter. The two key parameters that control the separation of neurons into subclasses are the mean and standard deviation (SD) of noise affecting neural responses. The average noise across the neural population plays the role of temperature in the classic theory of phase transitions, whereas the SD is equivalent to pressure or magnetic field, in the case of liquid–gas and magnetic transitions, respectively. Our results account for properties of two recently discovered types of salamander Off retinal ganglion cells, as well as the absence of multiple types of On cells. We further show that, across visual stimulus contrasts, retinal circuits continued to operate near the critical point whose quantitative characteristics matched those expected near a liquid–gas critical point and described by the nearest-neighbor Ising model in three dimensions. By operating near a critical point, neural circuits can maximize information transmission in a given environment while retaining the ability to quickly adapt to a new environment. PMID:25675497

  3. Acoustic Microfluidics for Bioanalytical Application

    NASA Astrophysics Data System (ADS)

    Lopez, Gabriel

    2013-03-01

    This talk will present new methods the use of ultrasonic standing waves in microfluidic systems to manipulate microparticles for the purpose of bioassays and bioseparations. We have recently developed multi-node acoustic focusing flow cells that can position particles into many parallel flow streams and have demonstrated the potential of such flow cells in the development of high throughput, parallel flow cytometers. These experiments show the potential for the creation of high throughput flow cytometers in applications requiring high flow rates and rapid detection of rare cells. This talk will also present the development of elastomeric capture microparticles and their use in acoustophoretic separations. We have developed simple methods to form elastomeric particles that are surface functionalized with biomolecular recognition reagents. These compressible particles exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. These particles can be continuously separated from cells by flowing them through a microfluidic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast elastomeric particles at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast particles and cells. Separated elastomeric particles were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers (including biomolecules and cells) in a number of biological sample types. We acknowledge support through the NSF Research Triangle MRSEC.

  4. Heterogeneity in the growth hormone pituitary gland system of rats and humans: Implications to microgravity based research

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R.; Hayes, C.; Lanham, J. W.; Cleveland, C.; Todd, P.; Morrison, Dennis R.

    1988-01-01

    The cell separation techniques of velocity sedimentation, flow cytometry and continuous flow electrophoresis were used to obtain enriched populations of growth hormone (GH) cells. The goal was to isolate a GH cell subpopulation which releases GH molecules which are very high in biological activity, it was important to use a method which was effective in processing large numbers of cells over a short time span. The techniques based on sedimentation are limited by cell density overlaps and streaming. While flow cytometry is useful in the analytical mode for objectively establishing cell purity, the numbers of cells which can be processed in the sort mode are so small as to make this approach ineffective in terms of the long term goals. It was shown that continuous flow electrophoresis systems (CFES) can separate GH cells from other cell types on the basis of differences in surface charge. The bioreactive producers appear to be more electrophoretically mobile than the low producers. Current ground based CFES efforts are hampered by cell clumping in low ionic strength buffers and poor cell recoveries from the CFES device.

  5. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-11-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.

  6. Method and apparatus for rebalancing a redox flow cell system

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F. (Inventor)

    1986-01-01

    A rebalance cell is provided for a REDOX electrochemical system of the type having anode and cathode fluids which are aqueous HCl solutions with two metal species in each. The rebalance cell has a cathode compartment and a chlorine compartment separated by an ion permeable membrane. By applying an electrical potential to the rebalance cell while circulating cathode fluid through the cathode compartment and while circulating an identical fluid through the chlorine compartment, any significant imbalance of the REDOX system is prevented.

  7. Method and apparatus for rebalancing a REDOX flow cell system

    NASA Technical Reports Server (NTRS)

    Gahn, R. F. (Inventor)

    1985-01-01

    A rebalance cell is provided for a REDOX electrochemical system of the type with anode and cathode fluids which are aqueous HC1 solutions with two metal species in each. The rebalance cell has a cathode compartment and a chlorine compartment separated by an ion permeable membrane. By applying an electrical potential to the rebalance cell while circulating cathode fluid through the cathode compartment and while circulating an identical fluid through the chlorine compartment, any significant imbalance of the REDOX system is prevented.

  8. Simple microfluidic stagnation point flow geometries

    PubMed Central

    Dockx, Greet; Verwijlen, Tom; Sempels, Wouter; Nagel, Mathias; Moldenaers, Paula; Hofkens, Johan; Vermant, Jan

    2016-01-01

    A geometrically simple flow cell is proposed to generate different types of stagnation flows, using a separation flow and small variations of the geometric parameters. Flows with high local deformation rates can be changed from purely rotational, over simple shear flow, to extensional flow in a region surrounding a stagnation point. Computational fluid dynamic calculations are used to analyse how variations of the geometrical parameters affect the flow field. These numerical calculations are compared to the experimentally obtained streamlines of different designs, which have been determined by high speed confocal microscopy. As the flow type is dictated predominantly by the geometrical parameters, such simple separating flow devices may alleviate the requirements for flow control, while offering good stability for a wide variety of flow types. PMID:27462382

  9. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment.

    PubMed

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-06

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS 2 film was deposited on TiO 2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO 2 nanorod arrays were treated with hydrogen plasma(H:TiO 2 ) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  10. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment

    NASA Astrophysics Data System (ADS)

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-01

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS2 film was deposited on TiO2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO2 nanorod arrays were treated with hydrogen plasma(H:TiO2) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  11. A Minimally Invasive Method for Retrieving Single Adherent Cells of Different Types from Cultures

    PubMed Central

    Zeng, Jia; Mohammadreza, Aida; Gao, Weimin; Merza, Saeed; Smith, Dean; Kelbauskas, Laimonas; Meldrum, Deirdre R.

    2014-01-01

    The field of single-cell analysis has gained a significant momentum over the last decade. Separation and isolation of individual cells is an indispensable step in almost all currently available single-cell analysis technologies. However, stress levels introduced by such manipulations remain largely unstudied. We present a method for minimally invasive retrieval of selected individual adherent cells of different types from cell cultures. The method is based on a combination of mechanical (shear flow) force and biochemical (trypsin digestion) treatment. We quantified alterations in the transcription levels of stress response genes in individual cells exposed to varying levels of shear flow and trypsinization. We report optimal temperature, RNA preservation reagents, shear force and trypsinization conditions necessary to minimize changes in the stress-related gene expression levels. The method and experimental findings are broadly applicable and can be used by a broad research community working in the field of single cell analysis. PMID:24957932

  12. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    PubMed Central

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  13. Evaluation and verification of epitaxial process sequence for silicon solar-cell production

    NASA Technical Reports Server (NTRS)

    Redfield, D.

    1981-01-01

    To achieve the program goals, 28 minimodules were fabricated and tested, using 600 cells made from three-inch-diameter wafers processed by the sequence chosen for this purpose. Of these 600 cells, half were made from epitaxially grown layers on potentially low-cost substrates. The other half were made from commercial semiconductor-grade (SG), single-crystal silicon wafers that served as controls. Cell processing was normally performed on mixed lots containing significant numbers of each of these two types of wafers. After evaluation of the performance of all cells, they were separated by types for incorporation into modules that were to be tested for electrical performance and response to environmental stress. A simplified flow chart displaying this scheme, for quantities representing half of the planned total to be processed, is presented.

  14. Alpha-, Delta- and PP-cells

    PubMed Central

    Brereton, Melissa F.; Vergari, Elisa; Zhang, Quan

    2015-01-01

    Islet non-β-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca2+-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet. In diabetes, the transdifferentiation of non-β-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-β-cells contribute to the control of islet function. PMID:26216135

  15. The positive effects of different platelet-rich plasma methods on human muscle, bone, and tendon cells.

    PubMed

    Mazzocca, Augustus D; McCarthy, Mary Beth R; Chowaniec, David M; Dugdale, Evan M; Hansen, Derek; Cote, Mark P; Bradley, James P; Romeo, Anthony A; Arciero, Robert A; Beitzel, Knut

    2012-08-01

    Clinical application of platelet-rich plasma (PRP) in the realm of orthopaedic sports medicine has yielded variable results. Differences in separation methods and variability of the individual may contribute to these variable results. To compare the effects of different PRP separation methods on human bone, muscle, and tendon cells in an in vitro model. Controlled laboratory study. Blood collected from 8 participants (mean ± SD age 31.6 ± 10.9 years) was used to obtain PRP preparations. Three different PRP separation methods were used: a single-spin process yielding a lower platelet concentration (PRP(LP)), a single-spin process yielding high platelet and white blood cell concentrations (PRP(HP)), and a double-spin that produces a higher platelet concentration and lower white blood cell concentration (PRP(DS)). Human bone, muscle, and tendon cells obtained from discarded tissue samples during shoulder surgery were placed into culture and treated with the 3 PRP preparations, control media (2% fetal bovine serum [FBS] and 10% FBS), and native blood. Radioactive thymidine assays were obtained to examine cell proliferation, and testing with enzyme-linked immunosorbent assay was used to determine growth factor concentrations. Addition of PRP(LP) to osteocytes, myocytes, and tenocytes significantly increased cell proliferation (P ≤ .05) compared with the controls. Adding PRP(DS) to osteoblasts and tenocytes increased cell proliferation significantly (P ≤ .05), but no significance was shown for its addition to myocytes. The addition of PRP(HP) significantly increased cell proliferation compared with the controls only when added to tenocytes (P ≤ .05). Osteoblasts: Proliferation was significantly increased by addition of PRP(LP) compared with all controls (2% FBS, 10% FBS, native blood) (P ≤ .05). Addition of PRP(DS) led to significantly increased proliferation compared with all controls, native blood, and PRP(HP) (P ≤ .05). Proliferation was significantly less when PRP(HP) was added compared with PRP(DS) (P ≤ .05). Myocytes: Proliferation was significantly increased by addition of PRP(LP) compared with native blood (P ≤ .05). Adding PRP(HP) or PRP(DS) to myocytes showed no significant increase in proliferation compared with the controls or the other separations. Tenocytes: Proliferation was significantly increased by addition of PRP(LP) compared with all controls (2% FBS, 10% FBS, native blood) (P ≤ .05). Addition of PRP(DS) showed a significant increase compared with the controls and native blood. For tenocytes, there was a significant increase (P ≤ .05) seen when PRP(HP) was added compared with the controls and native blood but not compared with the other separations. The primary findings of this study suggest the application of different PRP separations may result in a potential beneficial effect on the clinically relevant target cells in vitro. However, it is unclear which platelet concentration or PRP preparation may be optimal for the treatment of various cell types. In addition, a "more is better" theory for the use of higher platelet concentrations cannot be supported. This study was not intended to prove efficacy but to provide a platform for future research to be built upon. The utilization of different PRP separations may result in a potentially beneficial effect on the clinically relevant target cells in vitro, but it is unclear which platelet concentration or PRP preparation may be optimal for the treatment of various cell types.

  16. The in vivo antitumor effects of type I-interferon against hepatocellular carcinoma: the suppression of tumor cell growth and angiogenesis.

    PubMed

    Enomoto, Hirayuki; Tao, Lihua; Eguchi, Ryoji; Sato, Ayuko; Honda, Masao; Kaneko, Shuichi; Iwata, Yoshinori; Nishikawa, Hiroki; Imanishi, Hiroyasu; Iijima, Hiroko; Tsujimura, Tohru; Nishiguchi, Shuhei

    2017-09-22

    Type I-interferon (IFN) is considered to exert antitumor effects through the inhibition of cancer cell proliferation and angiogenesis. Based on the species-specific biological activity of IFN, we evaluated each antitumor mechanism separately. We further examined the antitumor effects of type I-IFN combined with sorafenib. Human IFN (hIFN) significantly inhibited the proliferation of human hepatocellular carcinoma (HCC) Hep3B cells and the tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Although mouse IFN (mIFN) did not inhibit the proliferation of Hep3B cells in vitro, mIFN, as well as hIFN, showed significant antitumor effects in mouse Hep3B cell-xenograft model. Furthermore, mIFN treatment amplified the antitumor effects of sorafenib in vivo with the suppression of angiogenesis. The DNA chip analysis showed that the mIFN treatment promoted the antitumor signal pathways of sorafenib, including anti-angiogenic effects. Unlike the effects observed in in vitro experiments, mIFN showed an antitumor effect in the mouse Hep3B cell-xenograft model, suggesting a role of the anti-angiogenic activity in the in vivo tumoricidal effects of type I-IFN. In addition, our findings suggested the clinical utility of combination therapy with type І-IFN and sorafenib for HCC.

  17. Classifying GABAergic interneurons with semi-supervised projected model-based clustering.

    PubMed

    Mihaljević, Bojan; Benavides-Piccione, Ruth; Guerra, Luis; DeFelipe, Javier; Larrañaga, Pedro; Bielza, Concha

    2015-09-01

    A recently introduced pragmatic scheme promises to be a useful catalog of interneuron names. We sought to automatically classify digitally reconstructed interneuronal morphologies according to this scheme. Simultaneously, we sought to discover possible subtypes of these types that might emerge during automatic classification (clustering). We also investigated which morphometric properties were most relevant for this classification. A set of 118 digitally reconstructed interneuronal morphologies classified into the common basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA) interneuron types by 42 of the world's leading neuroscientists, quantified by five simple morphometric properties of the axon and four of the dendrites. We labeled each neuron with the type most commonly assigned to it by the experts. We then removed this class information for each type separately, and applied semi-supervised clustering to those cells (keeping the others' cluster membership fixed), to assess separation from other types and look for the formation of new groups (subtypes). We performed this same experiment unlabeling the cells of two types at a time, and of half the cells of a single type at a time. The clustering model is a finite mixture of Gaussians which we adapted for the estimation of local (per-cluster) feature relevance. We performed the described experiments on three different subsets of the data, formed according to how many experts agreed on type membership: at least 18 experts (the full data set), at least 21 (73 neurons), and at least 26 (47 neurons). Interneurons with more reliable type labels were classified more accurately. We classified HT cells with 100% accuracy, MA cells with 73% accuracy, and CB and LB cells with 56% and 58% accuracy, respectively. We identified three subtypes of the MA type, one subtype of CB and LB types each, and no subtypes of HT (it was a single, homogeneous type). We got maximum (adapted) Silhouette width and ARI values of 1, 0.83, 0.79, and 0.42, when unlabeling the HT, CB, LB, and MA types, respectively, confirming the quality of the formed cluster solutions. The subtypes identified when unlabeling a single type also emerged when unlabeling two types at a time, confirming their validity. Axonal morphometric properties were more relevant that dendritic ones, with the axonal polar histogram length in the [π, 2π) angle interval being particularly useful. The applied semi-supervised clustering method can accurately discriminate among CB, HT, LB, and MA interneuron types while discovering potential subtypes, and is therefore useful for neuronal classification. The discovery of potential subtypes suggests that some of these types are more heterogeneous that previously thought. Finally, axonal variables seem to be more relevant than dendritic ones for distinguishing among the CB, HT, LB, and MA interneuron types. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The analysis of genomic structures in the L1 family of cell adhesion molecules provides no evidence for exon shuffling events after the separation of arthropod and chordate lineages.

    PubMed

    Zhao, G; Hortsch, M

    1998-07-17

    Members of the L1 family of neural cell adhesion molecules consist of multiple extracellular immunoglobulin and fibronectin type III domains that mediate the adhesive properties of this group of transmembrane proteins. In vertebrate genomes, these protein domains are separated by introns, and it has been suggested that L1-type genes might have been subject to exon-shuffling events during evolution. However, comparison of the human L1-CAM and the chicken neurofascin gene with the genomic structure of their Drosophila homologue, neuroglian, indicates that no major rearrangement of protein domains has taken place subsequent to the split of the arthropod and chordate phyla. The Drosophila neuroglian gene appears to have lost most of the introns that have been conserved in the human L1-CAM and the chicken neurofascin gene. Nevertheless, exon shuffling or the generation of new exons by mutational changes might have been responsible for the generation of additional, alternatively spliced exons in L1-type genes.

  19. Development of an in vitro test system for assessment of male, reproductive toxicity.

    PubMed

    Habas, Khaled; Anderson, Diana; Brinkworth, Martin

    2014-02-10

    There is a need for improved reproductive toxicology assays that do not require large numbers of animals but are sensitive and informative. Therefore, Staput velocity-sedimentation separation followed by culture of specific mouse testicular cells was used as such a system. The specificity of separation was assessed using immunocytochemistry to identify spermatids, spermatocytes and spermatogonia. The efficacy of the system to detect toxicity was then evaluated by analysing the effects of hydrogen peroxide (H2O2) by the terminal uridine-deoxynucleotide end-labelling (TUNEL) assay to show the rate of apoptosis induced among the different types of germ cells. We found that 2 h of treatment at both 1 and 10 μM induced increases of over ∼10-fold in the percentage of apoptotic cells (p≤0.001), confirming that testicular germ cells are prone to apoptosis at very low concentrations of H2O2. It was also demonstrated for the first time for this compound that spermatogonia are significantly more susceptible than spermatocytes, which are more affected than spermatids. This reflects the proportion of actively dividing cells in these cell types, suggesting a mechanism for the differential sensitivity. The approach should thus form the basis of a useful test system for reproductive and genetic toxicology in the future. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Normalization, bias correction, and peak calling for ChIP-seq

    PubMed Central

    Diaz, Aaron; Park, Kiyoub; Lim, Daniel A.; Song, Jun S.

    2012-01-01

    Next-generation sequencing is rapidly transforming our ability to profile the transcriptional, genetic, and epigenetic states of a cell. In particular, sequencing DNA from the immunoprecipitation of protein-DNA complexes (ChIP-seq) and methylated DNA (MeDIP-seq) can reveal the locations of protein binding sites and epigenetic modifications. These approaches contain numerous biases which may significantly influence the interpretation of the resulting data. Rigorous computational methods for detecting and removing such biases are still lacking. Also, multi-sample normalization still remains an important open problem. This theoretical paper systematically characterizes the biases and properties of ChIP-seq data by comparing 62 separate publicly available datasets, using rigorous statistical models and signal processing techniques. Statistical methods for separating ChIP-seq signal from background noise, as well as correcting enrichment test statistics for sequence-dependent and sonication biases, are presented. Our method effectively separates reads into signal and background components prior to normalization, improving the signal-to-noise ratio. Moreover, most peak callers currently use a generic null model which suffers from low specificity at the sensitivity level requisite for detecting subtle, but true, ChIP enrichment. The proposed method of determining a cell type-specific null model, which accounts for cell type-specific biases, is shown to be capable of achieving a lower false discovery rate at a given significance threshold than current methods. PMID:22499706

  1. Separating large microscale particles by exploiting charge differences with dielectrophoresis.

    PubMed

    Polniak, Danielle V; Goodrich, Eric; Hill, Nicole; Lapizco-Encinas, Blanca H

    2018-04-13

    Dielectrophoresis (DEP), the migration of particles due to polarization effects under the influence of a nonuniform electric field, was employed for characterizing the behavior and achieving the separation of larger (diameter >5 μm) microparticles by exploiting differences in electrical charge. Usually, electrophoresis (EP) is the method of choice for separating particles based on differences in electrical charge; however, larger particles, which have low electrophoretic mobilities, cannot be easily separated with EP-based techniques. This study presents an alternative for the characterization, assessment, and separation of larger microparticles, where charge differences are exploited with DEP instead of EP. Polystyrene microparticles with sizes varying from 5 to 10 μm were characterized employing microdevices for insulator-based dielectrophoresis (iDEP). Particles within an iDEP microchannel were exposed simultaneously to DEP, EP, and electroosmotic (EO) forces. The electrokinetic behavior of four distinct types of microparticles was carefully characterized by means of velocimetry and dielectrophoretic capture assessments. As a final step, a dielectropherogram separation of two distinct types of 10 μm particles was devised by first characterizing the particles and then performing the separation. The two types of 10 μm particles were eluted from the iDEP device as two separate peaks of enriched particles in less than 80 s. It was demonstrated that particles with the same size, shape, surface functionalization, and made from the same bulk material can be separated with iDEP by exploiting slight differences in the magnitude of particle charge. The results from this study open the possibility for iDEP to be used as a technique for the assessment and separation of biological cells that have very similar characteristics (shape, size, similar make-up), but slight variance in surface electrical charge. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Selective digestion of Ba2+/Ca2+ alginate gel microdroplets for single-cell handling

    NASA Astrophysics Data System (ADS)

    Odaka, Masao; Hattori, Akihiro; Matsuura, Kenji; Yasuda, Kenji

    2018-06-01

    Cells encapsuled by polymer microdroplets are an effective platform for the identification and separation of individual cells for single-cell-based analysis. However, a key challenge is to maintain and release the captured cells in the microdroplets selectively, nondestructively, and noninvasively. We developed a simple method of encapsulating cells in alginate microdroplets having different digestion characteristics. Cells were diluted with an alginate polymer of sol state and encapsulated into microdroplets with Ba2+ and Ca2+ by a spray method. When a chelating buffer was applied, alginate gel microdroplets were digested according to the difference in chelating efficiency of linkage-divalent cations; hence, two types of alginate microdroplets were formed. Moreover, we examined the capability of the alginate gel to exchange linkage-divalent cations and found that both Ca2+ exchange in Ba-alginate microdroplets and Ba2+ exchange in Ca-alginate microdroplets occurred. These results indicate that the potential applications of a mixture of alginate microdroplets with different divalent cations control the selective digestion of microdroplets to improve the high-throughput, high-content microdroplet-based separation, analysis, or storage of single cells.

  3. An Inducible DamID System for Profiling Interactions of Nuclear Lamina Protein Component Lamin B1 with Chromosomes in Mouse Cells.

    PubMed

    Kozhevnikova, E N; Leshchenko, A E; Pindyurin, A V

    2018-05-01

    At the level of DNA organization into chromatin, there are mechanisms that define gene expression profiles in specialized cell types. Genes within chromatin regions that are located at the nuclear periphery are generally expressed at lower levels; however, the nature of this phenomenon remains unclear. These parts of chromatin interact with nuclear lamina proteins like Lamin B1 and, therefore, can be identified in a given cell type by chromatin profiling of these proteins. In this study, we created and tested a Dam Identification (DamID) system induced by Cre recombinase using Lamin B1 and mouse embryonic fibroblasts. This inducible system will help to generate genome-wide profiles of chromatin proteins in given cell types and tissues with no need to dissect tissues from organs or separate cells from tissues, which is achieved by using specific regulatory DNA elements and due to the high sensitivity of the method.

  4. Anisotropic properties of phase separation in two-component dipolar Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Jinbin

    2018-03-01

    Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.

  5. Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity

    PubMed Central

    Krönig, Malte; Walter, Max; Drendel, Vanessa; Werner, Martin; Jilg, Cordula A.; Richter, Andreas S.; Backofen, Rolf; McGarry, David; Follo, Marie; Schultze-Seemann, Wolfgang; Schüle, Roland

    2015-01-01

    A lack of cell surface markers for the specific identification, isolation and subsequent analysis of living prostate tumor cells hampers progress in the field. Specific characterization of tumor cells and their microenvironment in a multi-parameter molecular assay could significantly improve prognostic accuracy for the heterogeneous prostate tumor tissue. Novel functionalized gold-nano particles allow fluorescence-based detection of absolute mRNA expression levels in living cells by fluorescent activated flow cytometry (FACS). We use of this technique to separate prostate tumor and benign cells in human prostate needle biopsies based on the expression levels of the tumor marker alpha-methylacyl-CoA racemase (AMACR). We combined RNA and protein detection of living cells by FACS to gate for epithelial cell adhesion molecule (EPCAM) positive tumor and benign cells, EPCAM/CD45 double negative mesenchymal cells and CD45 positive infiltrating lymphocytes. EPCAM positive epithelial cells were further sub-gated into AMACR high and low expressing cells. Two hundred cells from each population and several biopsies from the same patient were analyzed using a multiplexed gene expression profile to generate a cell type resolved profile of the specimen. This technique provides the basis for the clinical evaluation of cell type resolved gene expression profiles as pre-therapeutic prognostic markers for prostate cancer. PMID:25514598

  6. Gliogenesis: historical perspectives, 1839-1985.

    PubMed

    Webster, Henry deF; Aström, Karl E

    2009-01-01

    This historical review of gliogenesis begins with Schwann's introduction of the cell doctrine in 1839. Subsequent microscopic studies revealed the cellular structure of many organs and tissues, but the CNS was thought to be different. In 1864, Virchow created the concept that nerve cells are held together by a "Nervenkitte" which he called"glia" (for glue). He and his contemporaries thought that "glia" was an unstructured, connective tissue-like ground substance that separated nerve cells from each other and from blood vessels. Dieters, a pupil of Virchow, discovered that this ground substance contained cells, which he described and illustrated. Improvements in microscopes and discovery of metallic impregnation methods finally showed convincingly that the "glia" was not a binding substance. Instead, it was composed of cells, each separate and distinct from neighboring cells and each with its own characteristic array of processes. Light microscopic studies of developing and mature nervous tissue led to the discovery of different types of glial cells-astroglia, oligodendroglia, microglia, and ependymal cells in the CNS, and Schwann cells in the peripheral nervous system (PNS). Subsequent studies characterized the origins and development of each type of glial cell. A new era began with the introduction of electron microscopy, immunostaining, and in vitro maintenance of both central and peripheral nervous tissue. Other methods and models greatly expanded our understanding of how glia multiply, migrate, and differentiate. In 1985, almost a century and a half of study had produced substantial progress in our understanding of glial cells, including their origins and development. Major advances were associated with the discovery of new methods. These are summarized first. Then the origins and development of astroglia, oligodendroglia, microglia, ependymal cells, and Schwann cells are described and discussed. In general, morphology is emphasized. Findings related to cytodifferentiation, cellular interactions, functions, and regulation of developing glia have also been included.

  7. Incudomalleal joint formation: the roles of apoptosis, migration and downregulation

    PubMed Central

    Amin, Susan; Matalova, Eva; Simpson, Carol; Yoshida, Hiroki; Tucker, Abigail S

    2007-01-01

    Background The middle ear of mammals is composed of three endochondrial ossicles, the stapes, incus and malleus. Joints link the malleus to the incus and the incus to the stapes. In the mouse the first arch derived malleus and incus are formed from a single Sox9 and Type II collagen expressing condensation that later subdivides to give rise to two separate ossicles. In contrast the stapes forms from a separate condensation derived from the second branchial arch. Fusion of the malleus and incus is observed in a number of human syndromes and results in conductive hearing loss. Understanding how this joint forms during normal development is thus an important step in furthering our understanding of such defects. Results We show that the developing incudomalleal joint is characterised by a lack of proliferation and discrete areas of apoptosis. Apoptosis has been suggested to aid in the removal of pre-cartilaginous cells from the joint region, allowing for the physical separation of the cartilaginous elements, however, we show that joint initiation is unaffected by blocking apoptosis. There is also no evidence of cell migration out of the presumptive joint region, as observed by labelling of joint and ossicle cells in culture. Using Type II collagen lacZ reporter mice, however, it is evident that cells in the presumptive joint region remain in place and downregulate cartilage markers. Conclusion The malleus and incus first appear as a single united condensation expressing early cartilage markers. The incudomalleal joint region forms by cells in the presumptive joint region switching off cartilage markers and turning on joint markers. Failure in this process may result in fusion of this joint, as observed in human syndromes such as Branchio-Oto-Renal Syndrome or Treacher Collins Syndrome. PMID:18053235

  8. Physical effects of DCNQI derivatives doping as an N type organic semiconductor in organic photovoltaic cell performance.

    PubMed

    Lee, Joo Hyung; Oh, Se Young

    2014-08-01

    In the previous work, we have reported that organic photovoltaic (OPV) cells using DMDCNQI as an n-type second dopant material showed a high power conversion efficiency (PCE). In the present work, we have synthesized a novel DHDCNQI with long alkyl chains to improve the compatibility between the DHDCNQI dopant molecule and host P3HT polymer. We have fabricated OPV cells consisting of ITO/PEDOT:PSS/P3HT:PCBM:DHDCNQI/Al. We have investigated the characteristics of theses OPV cells using DCNQI derivative dopants from the measurements of the incident photon-to-current collection efficiency and photocurrent. The OPV cell using 3 wt% DHDCNQI exhibited a high PCE of 3.29% due to the high charge separation efficiency, good compatibility and low trap site effect.

  9. Evaluation of a Passive Heat Exchanger Based Cooling System for Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Burke, Kenneth A.

    2011-01-01

    Fuel cell cooling is conventionally performed with an actively controlled, dedicated coolant loop that exchanges heat with a separate external cooling loop. To simplify this system the concept of directly cooling a fuel cell utilizing a coolant loop with a regenerative heat exchanger to preheat the coolant entering the fuel cell with the coolant exiting the fuel cell was analyzed. The preheating is necessary to minimize the temperature difference across the fuel cell stack. This type of coolant system would minimize the controls needed on the coolant loop and provide a mostly passive means of cooling the fuel cell. The results indicate that an operating temperature of near or greater than 70 C is achievable with a heat exchanger effectiveness of around 90 percent. Of the heat exchanger types evaluated with the same type of fluid on the hot and cold side, a counter flow type heat exchanger would be required which has the possibility of achieving the required effectiveness. The number of heat transfer units required by the heat exchanger would be around 9 or greater. Although the analysis indicates the concept is feasible, the heat exchanger design would need to be developed and optimized for a specific fuel cell operation in order to achieve the high effectiveness value required.

  10. Accelerated cycle life performance for ovonic nickel-metal hydride cells

    NASA Technical Reports Server (NTRS)

    Otzinger, Burton M.

    1991-01-01

    Nickel-Metal Hydride (Ni-MH) rechargeable batteries have emerged as the leading candidate for commercial replacement of nickel-cadmium (Ni-Cd) batteries. An important incentive is that the Ni-MH cell provides approximately twice the capacity of a Ni-Cd cell for a given size. A six-cell battery was committed to an accelerated cycle life test to determine the effect of separation type on performance. Results of the test may also show the Ni-MH battery to be a replacement candidate for the aerospace Ni-Cd battery.

  11. Cellular injury evidenced by impedance technology and infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2015-03-01

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value < 0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic responses was evident while clear separation was linked to cytotoxicity. RT-CES detected morphological changes as indicators of cell injury and could distinguish between viable, cytostatic and cytotoxic responses. FTIR microspectroscopy confirmed that cytostatic cells were viable and could still recover while also describing early cellular stress related responses on a molecular level.

  12. Experimental results with fuel cell start-up and shut-down. Impact of type of carbon for cathode catalyst support

    DOE PAGES

    Lottin, Olivier; Dillet, Jerome; Maranzana, Gael; ...

    2015-09-14

    Separate testing protocols for fuel cell startups and shutdowns were developed to distinguish between their effects on reverse currents and CO 2 evolution. The internal currents and the local potentials were measured with different membrane-electrode assemblies (MEAs): we examined the influence of the type of carbon for cathode catalyst support as well as the mitigating effect of low anode Pt loading. In conclusion, significant differences were observed and the experiments also confirmed previous results that the evolved CO 2 accounts for less than 25% of the total exchanged charge.

  13. Experimental results with fuel cell start-up and shut-down. Impact of type of carbon for cathode catalyst support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottin, Olivier; Dillet, Jerome; Maranzana, Gael

    Separate testing protocols for fuel cell startups and shutdowns were developed to distinguish between their effects on reverse currents and CO 2 evolution. The internal currents and the local potentials were measured with different membrane-electrode assemblies (MEAs): we examined the influence of the type of carbon for cathode catalyst support as well as the mitigating effect of low anode Pt loading. In conclusion, significant differences were observed and the experiments also confirmed previous results that the evolved CO 2 accounts for less than 25% of the total exchanged charge.

  14. Genes Related to Antiviral Activity, Cell Migration, and Lysis Are Differentially Expressed in CD4+ T Cells in Human T Cell Leukemia Virus Type 1-Associated Myelopathy/Tropical Spastic Paraparesis Patients

    PubMed Central

    Pinto, Mariana Tomazini; Malta, Tathiane Maistro; Rodrigues, Evandra Strazza; Pinheiro, Daniel Guariz; Panepucci, Rodrigo Alexandre; Malmegrim de Farias, Kelen Cristina Ribeiro; Sousa, Alessandra De Paula; Takayanagui, Osvaldo Massaiti; Tanaka, Yuetsu; Covas, Dimas Tadeu

    2014-01-01

    Abstract Human T cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T cells and these cells play a central role in HTLV-1 infection. In this study, we investigated the global gene expression profile of circulating CD4+ T cells from the distinct clinical status of HTLV-1-infected individuals in regard to TAX expression levels. CD4+ T cells were isolated from asymptomatic HTLV-1 carrier (HAC) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients in order to identify genes involved in HAM/TSP development using a microarray technique. Hierarchical clustering analysis showed that healthy control (CT) and HTLV-1-infected samples clustered separately. We also observed that the HAC and HAM/TSP groups clustered separately regardless of TAX expression. The gene expression profile of CD4+ T cells was compared among the CT, HAC, and HAM/TSP groups. The paxillin (Pxn), chemokine (C-X-C motif ) receptor 4 (Cxcr4), interleukin 27 (IL27), and granzyme A (Gzma) genes were differentially expressed between the HAC and HAM/TSP groups, regardless of TAX expression. The perforin 1 (Prf1) and forkhead box P3 (Foxp3) genes were increased in the HAM/TSP group and presented a positive correlation to the expression of TAX and the proviral load (PVL). The frequency of CD4+FOXP3+ regulatory T cells (Treg) was higher in HTLV-1-infected individuals. Foxp3 gene expression was positively correlated with cell lysis-related genes (Gzma, Gzmb, and Prf1). These findings suggest that CD4+ T cell activity is distinct between the HAC and HAM/TSP groups. PMID:24041428

  15. Potential of mid IR spectroscopy in the rapid label free identification of skin malignancies

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Kemper, Björn; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick; Naranjo, Valery; Penaranda, Francisco; Schnekenburger, Jürgen

    2016-03-01

    The rapid inspection of suspicious skin lesions for pathological cell types is the objective of optical point of care diagnostics technologies. A marker free fast diagnosis of skin malignancies would overcome the limitations of the current gold standard surgical biopsy. The time consuming and costly biopsy procedure requires the inspection of each sample by a trained pathologist, which limits the analysis of potentially malignant lesions. Optical technologies like RAMAN or infrared spectroscopy, which provide both, localization and chemical information, can be used to differentiate malignant from healthy tissue by the analysis of multi cell structures and cell type specific spectra. We here report the application of midIR spectroscopy towards fast and reliable skin diagnostics. Within the European research project MINERVA we developed standardized in vitro skin systems with increasing complexity, from single skin cell types as fibroblasts, keratinocytes and melanoma cells, to mixtures of these and finally three dimensional human skin equivalents. The standards were characterized in the established midIR range and also with newly developed systems for fast imaging up to 12 μm. The analysis of the spectra by novel data processing algorithms demonstrated the clear separation of all cell types, especially the tumor cells. The signals from single cell layers were sufficient for cell type differentiation. We have compared different midIR systems and found all of them suitable for specific cell type identification. Our data demonstrate the potential of midIR spectroscopy for fast image acquisition and an improved data processing as sensitive and specific optical biopsy technology.

  16. Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula

    PubMed Central

    Wen, Jason WH

    2017-01-01

    During amphibian gastrulation, presumptive endoderm is internalised as part of vegetal rotation, a large-scale movement that encompasses the whole vegetal half of the embryo. It has been considered a gastrulation process unique to amphibians, but we show that at the cell level, endoderm internalisation exhibits characteristics reminiscent of bottle cell formation and ingression, known mechanisms of germ layer internalisation. During ingression proper, cells leave a single-layered epithelium. In vegetal rotation, the process occurs in a multilayered cell mass; we refer to it as ingression-type cell migration. Endoderm cells move by amoeboid shape changes, but in contrast to other instances of amoeboid migration, trailing edge retraction involves ephrinB1-dependent macropinocytosis and trans-endocytosis. Moreover, although cells are separated by wide gaps, they are connected by filiform protrusions, and their migration depends on C-cadherin and the matrix protein fibronectin. Cells move in the same direction but at different velocities, to rearrange by differential migration. PMID:28826499

  17. Identification of a DNA Segment Exhibiting Rearrangement Modifying Effects upon Transgenic δ-deleting Elements

    PubMed Central

    Janowski, Karen M.; Ledbetter, Stephanie; Mayo, Matthew S.; Hockett, Richard D.

    1997-01-01

    Control of the rearrangement and expression of the T cell receptor α and δ chains is critical for determining T cell type. The process of δ deletion is a candidate mechanism for maintaining separation of the α and δ loci. Mice harboring a transgenic reporter δ deletion construct show α/β T cell lineage–specific use of the transgenic elements. A 48-basepair segment of DNA, termed HPS1A, when deleted from this reporter construct, loses tight lineage-specific rearrangement control of transgenic elements, with abundant rearrangements of transgenic δ-deleting elements now in γ/δ T cells. Furthermore, HPS1A augments recombination frequency of extrachromosomal substrates in an in vitro recombination assay. DNA binding proteins recognizing HPS1A have been identified and are restricted to early B and T cells, during the time of active rearrangement of endogenous TCR and immunoglobulin loci. These data are consistent with δ deletion playing an important role in maintaining separate TCR α and δ loci. PMID:9207011

  18. Electric and Magnetic Manipulation of Biological Systems

    NASA Astrophysics Data System (ADS)

    Lee, H.; Hunt, T. P.; Liu, Y.; Ham, D.; Westervelt, R. M.

    2005-06-01

    New types of biological cell manipulation systems, a micropost matrix, a microelectromagnet matrix, and a microcoil array, were developed. The micropost matrix consists of post-shaped electrodes embedded in an insulating layer. With a separate ac voltage applied to each electrode, the micropost matrix generates dielectrophoretic force to trap and move individual biological cells. The microelectromagnet matrix consists of two arrays of straight wires aligned perpendicular to each other, that are covered with insulating layers. By independently controlling the current in each wire, the microelectromagnet matrix creates versatile magnetic fields to manipulate individual biological cells attached to magnetic beads. The microcoil array is a set of coils implemented in a foundry using a standard silicon fabrication technology. Current sources to the coils, and control circuits are integrated on a single chip, making the device self-contained. Versatile manipulation of biological cells was demonstrated using these devices by generating optimized electric or magnetic field patterns. A single yeast cell was trapped and positioned with microscopic resolution, and multiple yeast cells were trapped and independently moved along the separate paths for cell-sorting.

  19. Erythrocyte agglutination by wheat germ agglutinin: ionic strength dependence of the contact seam topology.

    PubMed

    Rolfe, M; Parmar, A; Hoy, T G; Coakley, W T

    2001-01-01

    The topology of the cell-cell contact seam formed when normal or pronase pre-treated (PPT) erythrocytes are exposed to wheat germ agglutinin (WGA) in isotonic media of different ionic strengths was examined here. Lectin uptake and cell agglutination were also quantified. Agglutination of normal cells was gradually and significantly inhibited as ionic strength (IS) was reduced from 0.15 (buffered 145 mm NaCl) to 0.105. Agglutination was less inhibited in PPT cells, even when IS was reduced to 0.09. Cell contact seams formed during agglutination showed patterns of localized contacts. The scale of the patterns, i.e. the average lateral separation distance of contact regions, was 0.62 microm for normal cells and was significantly shorter, at 0.44 microm, for PPT cells at an IS of 0.15. The scale increased significantly for both cell types when the IS was reduced to 0.09. Flow cytometry measurements showed that WGA uptake by normal cells increased slightly, whilst that for PPT cells was unchanged, as IS was decreased from 0.15 to 0.09. The results imply that, whilst ionic strength change does not exert a strong influence on intermolecular WGA-ligand binding, physico-chemical modification of the interaction between cells modulates not only the extent and progression of the biospecific lectin-induced cell-cell agglutination but also the topology of the contact seam. The IS dependence of contact separation in WGA-agglutinated cells is contrasted here with that reported for cells adhering in dextran solutions. The influence of IS change and pronase pre-treatment on contact pattern are consistent with predictions, from interfacial instability theory, of punctuate thinning of the aqueous layer separating bilayer membranes in close apposition.

  20. Manual centrifuge system: Bearing-based hand spinner made with 3-D printer.

    PubMed

    Sun-Young Yoo; Seung Jae Lee; Jong-Mo Seo

    2017-07-01

    Compact disk (CD) Microfluidic platforms are being studied for medical applications such as blood tests. However, its size is bulky and electricity is needed to realize centrifuge force. In this paper, bearing-based hand spinner is designed using three-dimensional printer. This spinner does not need electricity and keeps rotating direction unlike paperfuge while it is spinning. The properties of spinner vary depending on bearing type which is positioned at the center. The type of weighting area also affects change in RPM over time. When a separation experiment is implemented, separating mixture into red ink and oil and whole blood into red blood cell and plasma are achieved properly with ceramic ball bearing.

  1. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip

    PubMed Central

    Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia

    2013-01-01

    Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis. PMID:24404011

  2. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip.

    PubMed

    Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia

    2013-01-01

    Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.

  3. Alternate pathogenesis of systemic neoplasia in the bivalve mollusc Mytilus.

    PubMed

    Moore, J D; Elston, R A; Drum, A S; Wilkinson, M T

    1991-09-01

    The proliferative disease systemic neoplasia, also termed hemic neoplasia or disseminated sarcoma, was studied in four Puget Sound, Washington populations of the bay mussel (Mytilus sp.). Using flow cytometric measurement of DAPI-stained cells withdrawn from the hemolymph, DNA content frequency histograms were generated for 73 individuals affected by the disease. The cells manifesting systemic neoplasia were found to exist as either of two separate types, characterized by G0G1 phase nuclear DNA contents of either approximately 4.9 x haploid (pentaploid form) or approximately 3.8 x haploid (tetraploid form). The two disease forms were found to coexist in all four mussel populations sampled, with overall relative prevalences of 66% pentaploid form, 29% tetraploid form, and 5% exhibiting both disease forms simultaneously. These findings represent the first unequivocal demonstration of multiple cell types in a bivalve neoplasia. The two forms appear to represent separate pathogenetic processes rather than sequential stages of a single pathogenesis. Two cell cycling parameters associated with proliferative activity were employed to compare the alternate forms: (i) the percentage of cells assigned to the DNA Synthesis (S) phase of the neoplastic cell cycle, and (ii) the proportion of neoplastic cell mitotic figures in hemocytological preparations. Mean values for both parameters were significantly higher for mussels with the tetraploid form of the disease, suggesting a higher rate of proliferation relative to the pentaploid form. Qualitatively, cells of the tetraploid form contained slightly lower nuclear and cytoplasmic volumes compared to those of the pentaploid form. An observed wide variation in neoplastic cell nuclear size within either disease form may reflect the distribution of cells in the G0G1, S, and G2M phases of the cell cycle. Potential etiologic relationships between the two forms are discussed.

  4. Nanoparticles: synthesis and applications in life science and environmental technology

    NASA Astrophysics Data System (ADS)

    Luong Nguyen, Hoang; Nguyen, Hoang Nam; Hai Nguyen, Hoang; Quynh Luu, Manh; Hieu Nguyen, Minh

    2015-03-01

    This work focuses on the synthesis, functionalization, and application of gold and silver nanoparticles, magnetic nanoparticles Fe3O4, combination of 4-ATP-coated silver nanoparticles and Fe3O4 nanoparticles. The synthesis methods such as chemical reduction, seeding, coprecipitation,and inverse microemulsion will be outlined. Silica- and amino-coated nanoparticles are suitable for several applications in biomedicine and the environment. The applications of the prepared nanoparticles for early detection of breast cancer cells, basal cell carcinoma, antibacterial test, arsenic removal from water, Herpes DNA separation, CD4+ cell separation and isolation of DNA of Hepatitis virus type B (HBV) and Epstein-Barr virus (EBV) are discussed. Finally, some promising perspectives will be pointed out. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  5. Genome Wide DNA Methylation Profiles Provide Clues to the Origin and Pathogenesis of Germ Cell Tumors

    PubMed Central

    Rijlaarsdam, Martin A.; Tax, David M. J.; Gillis, Ad J. M.; Dorssers, Lambert C. J.; Koestler, Devin C.; de Ridder, Jeroen; Looijenga, Leendert H. J.

    2015-01-01

    The cell of origin of the five subtypes (I-V) of germ cell tumors (GCTs) are assumed to be germ cells from different maturation stages. This is (potentially) reflected in their methylation status as fetal maturing primordial germ cells are globally demethylated during migration from the yolk sac to the gonad. Imprinted regions are erased in the gonad and later become uniparentally imprinted according to fetal sex. Here, 91 GCTs (type I-IV) and four cell lines were profiled (Illumina’s HumanMethylation450BeadChip). Data was pre-processed controlling for cross hybridization, SNPs, detection rate, probe-type bias and batch effects. The annotation was extended, covering snRNAs/microRNAs, repeat elements and imprinted regions. A Hidden Markov Model-based genome segmentation was devised to identify differentially methylated genomic regions. Methylation profiles allowed for separation of clusters of non-seminomas (type II), seminomas/dysgerminomas (type II), spermatocytic seminomas (type III) and teratomas/dermoid cysts (type I/IV). The seminomas, dysgerminomas and spermatocytic seminomas were globally hypomethylated, in line with previous reports and their demethylated precursor. Differential methylation and imprinting status between subtypes reflected their presumed cell of origin. Ovarian type I teratomas and dermoid cysts showed (partial) sex specific uniparental maternal imprinting. The spermatocytic seminomas showed uniparental paternal imprinting while testicular teratomas exhibited partial imprinting erasure. Somatic imprinting in type II GCTs might indicate a cell of origin after global demethylation but before imprinting erasure. This is earlier than previously described, but agrees with the totipotent/embryonic stem cell like potential of type II GCTs and their rare extra-gonadal localization. The results support the common origin of the type I teratomas and show strong similarity between ovarian type I teratomas and dermoid cysts. In conclusion, we identified specific and global methylation differences between GCT subtypes, providing insight into their developmental timing and underlying developmental biology. Data and extended annotation are deposited at GEO (GSE58538 and GPL18809). PMID:25859847

  6. Elastomeric negative acoustic contrast particles for affinity capture assays.

    PubMed

    Cushing, Kevin W; Piyasena, Menake E; Carroll, Nick J; Maestas, Gian C; López, Beth Ann; Edwards, Bruce S; Graves, Steven W; López, Gabriel P

    2013-02-19

    This report describes the development of elastomeric capture microparticles (ECμPs) and their use with acoustophoretic separation to perform microparticle assays via flow cytometry.We have developed simple methods to form ECμPs by cross-linking droplets of common commercially available silicone precursors in suspension followed by surface functionalization with biomolecular recognition reagents. The ECμPs are compressible particles that exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum, or diluted blood. In this study, these particles have been functionalized with antibodies to bind prostate specific antigen and immunoglobulin (IgG). Specific separation of the ECμPs from blood cells is achieved by flowing them through a microfluidic acoustophoretic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast ECμPs at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast (ECμPs) and positive contrast particles (cells). Separated ECμPs were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers in a number of biological sample types.

  7. Elastomeric Negative Acoustic Contrast Particles for Affinity Capture Assays

    PubMed Central

    Cushing, Kevin W.; Piyasena, Menake E.; Carroll, Nick J.; Maestas, Gian C.; López, Beth Ann; Edwards, Bruce S.; Graves, Steven W.; López, Gabriel P.

    2013-01-01

    This report describes the development of elastomeric capture microparticles (ECμPs) and their use with acoustophoretic separation to perform microparticle assays via flow cytometry. We have developed simple methods to form ECμPsby crosslinking droplets of common commercially available silicone precursors in suspension followed by surface functionalization with biomolecular recognition reagents. The ECμPs are compressible particles that exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. In this study, these particles have been functionalized with antibodies to bind prostate specific antigen and immunoglobulin (IgG). Specific separation of the ECμPs from blood cells is achieved by flowing them through a microfluidic acoustophoretic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast ECμPs at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast (ECμPs) and positive contrast particles (cells). Separated ECμPs were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers in a number of biological sample types. PMID:23331264

  8. Cytochemical and functional characterization of blood and inflammatory cells from the lizard Ameiva ameiva.

    PubMed

    Alberio, Sanny O; Diniz, Jose A; Silva, Edilene O; de Souza, Wanderley; DaMatta, Renato A

    2005-06-01

    The fine structure and differential cell count of blood and coelomic exudate leukocytes were studied with the aim to identify granulocytes from Ameiva ameiva, a lizard distributed in the tropical regions of the Americas. Blood leukocytes were separated with a Percoll cushion and coelomic exudate cells were obtained 24 h after intracoelomic thioglycollate injection. In the blood, erythrocytes, monocytes, thrombocytes, lymphocytes, plasma cells and four types of granulocytes were identified based on their morphology and cytochemistry. Types I and III granulocytes had round intracytoplasmic granules with the same basic morphology; however, type III granulocyte had a bilobued nucleus and higher amounts of heterochromatin suggesting an advance stage of maturation. Type II granulocytes had fusiformic granules and more mitochondria. Type IV granulocytes were classified as the basophil mammalian counterpart based on their morphology and relative number. Macrophages and granulocytes type III were found in the normal coelomic cavity. However, after the thioglycollate injection the number of type III granulocyte increased. Granulocytes found in the coelomic cavity were related to type III blood granulocyte based on the morphology and cytochemical localization of alkaline phosphatase and basic proteins in their intracytoplasmic granules. Differential blood leukocyte counts showed a predominance of type III granulocyte followed by lymphocyte, type I granulocyte, type II granulocyte, monocyte and type IV granulocyte. Taken together, these results indicate that types I and III granulocytes correspond to the mammalian neutrophils/heterophils and type II to the eosinophil granulocytes.

  9. Magnetic Separation and Antibiotics Selection Enable Enrichment of Cells with ZFN/TALEN-Induced Mutations

    PubMed Central

    Lee, Choong-il; Kim, Hyongbum; Kim, Jin-Soo

    2013-01-01

    The ability to enrich cells with targeted mutations greatly facilitates the process of using engineered nucleases, including zinc-finger nucleases and transcription activator-like effector nucleases, to construct such cells. We previously used surrogate reporters to enrich cells containing nuclease-induced mutations via flow cytometry. This method is, however, limited by the availability of flow cytometers. Furthermore, sorted cells occasionally fail to form colonies after exposure to a strong laser and hydrostatic pressure. Here we describe two different types of novel reporters that enable mutant cell enrichment without the use of flow cytometers. We designed reporters that express H-2Kk, a surface antigen, and the hygromycin resistance protein (HygroR), respectively, when insertions or deletions are generated at the target sequences by the activity of engineered nucleases. After cotransfection of these reporters and the engineered nuclease-encoding plasmids, H-2Kk- and HygroR-expressing cells were isolated using magnetic separation and hygromycin treatment, respectively. We found that mutant cells were drastically enriched in the isolated cells, suggesting that these two reporters enable efficient enrichment of mutants. We propose that these two reporters will greatly facilitate the use of engineered nucleases in a wider range of biomedical research. PMID:23441197

  10. Murine Intracisternal A Type Particles Fail to Separate from the Membrane of the Endoplasmic Reticulum

    PubMed Central

    Perk, Kalman; Dahlberg, John E.

    1974-01-01

    Analysis of serial sections of murine cells containing intracisternal A particles revealed that over 99% of all A particles remain in a budding configuration. This indicates that these particles fail to detach from the membrane of the endoplasmic reticulum. This observation explains how, despite their intracellular abundance in certain murine tumors, no extracellular A-type particles can be found. Images PMID:4431082

  11. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation.

    PubMed

    Park, Sang-Hyug; Sim, Woo Young; Min, Byoung-Hyun; Yang, Sang Sik; Khademhosseini, Ali; Kaplan, David L

    2012-01-01

    Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.

  12. Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation

    PubMed Central

    Min, Byoung-Hyun; Yang, Sang Sik; Khademhosseini, Ali; Kaplan, David L.

    2012-01-01

    Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation. PMID:23029565

  13. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    PubMed

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  14. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  15. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor.

    PubMed

    Brown, Jacquelyn A; Pensabene, Virginia; Markov, Dmitry A; Allwardt, Vanessa; Neely, M Diana; Shi, Mingjian; Britt, Clayton M; Hoilett, Orlando S; Yang, Qing; Brewer, Bryson M; Samson, Philip C; McCawley, Lisa J; May, James M; Webb, Donna J; Li, Deyu; Bowman, Aaron B; Reiserer, Ronald S; Wikswo, John P

    2015-09-01

    The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier.

  16. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    NASA Technical Reports Server (NTRS)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground-based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities.

  17. Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals.

    PubMed

    Aghazadeh, Sajjad; Mousavinezhad, Seyed Kamal; Gharabaghi, Mahdi

    2015-11-01

    Flotation has been widely used for separation of valuable minerals from gangues based on their surface characterizations and differences in hydrophobicity on mineral surfaces. As hydrophobicity of minerals widely differs from each other, their separation by flotation will become easier. Collectors are chemical materials which are supposed to make selectively valuable minerals hydrophobic. In addition, there are some minerals which based on their surface and structural features are intrinsically hydrophobic. However, their hydrophobicities are not strong enough to be floatable in the flotation cell without collectors such as sulfide minerals, coal, stibnite, and so forth. To float these minerals in a flotation cell, their hydrophobicity should be increased in specific conditions. Various parameters including pH, Eh, size distribution, mill types, mineral types, ore characterization, and type of reaction in flotation cells affect the hydrophobicity of minerals. Surface analysis results show that when sulfide minerals experience specific flotation conditions, the reactions on the surface of these minerals increase the amount of sulfur on the surface. These phenomenons improve the hydrophobicity of these minerals due to strong hydrophobic feature of sulfurs. Collectorless flotation reduces chemical material consumption amount, increases flotation selectivity (grade increases), and affects the equipment quantities; however, it can also have negative effects. Some minerals with poor surface floatability can be increased by adding some ions to the flotation system. Depressing undesirable minerals in flotation is another application of collectorless flotation.

  18. Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.

    PubMed

    Goll, Johannes; Audo, Gregoire; Minceva, Mirjana

    2015-08-07

    Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle

    PubMed Central

    Chen, Katherine C.; Csikasz-Nagy, Attila; Gyorffy, Bela; Val, John; Novak, Bela; Tyson, John J.

    2000-01-01

    The molecular machinery of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected the roles of cyclin molecules (Cln1–3 and Clb1–6) in coordinating the events of DNA synthesis, bud emergence, spindle formation, nuclear division, and cell separation. These experimental clues suggest a mechanism for the principal molecular interactions controlling cyclin synthesis and degradation. Using standard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three major classes of cyclin-dependent kinase activities. Model in hand, we examine the molecular events controlling “Start” (the commitment step to a new round of chromosome replication, bud formation, and mitosis) and “Finish” (the transition from metaphase to anaphase, when sister chromatids are pulled apart and the bud separates from the mother cell) in wild-type cells and 50 mutants. The model accounts for many details of the physiology, biochemistry, and genetics of cell cycle control in budding yeast. PMID:10637314

  20. Gas/liquid sensing via chemotaxis of Euglena cells confined in an isolated micro-aquarium.

    PubMed

    Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo

    2013-10-21

    We demonstrate on-chip gas/liquid sensing by using the chemotaxis of live bacteria (Euglena gracilis) confined in an isolated micro-aquarium, and gas/liquid permeation through porous polydimethylsiloxane (PDMS). The sensing chip consisted of one closed micro-aquarium and two separated bypass microchannels along the perimeter of the micro-aquarium. Test gas/liquid and reference samples were introduced into the two individual microchannels separately, and the gas/liquid permeated through the PDMS walls and dissolved in the micro-aquarium water, resulting in a chemical concentration gradient in the micro-aquarium. By employing the closed micro-aquarium isolated from sample flows, we succeeded in measuring the chemotaxis of Euglena for a gas substance quantitatively, which cannot be achieved with the conventional flow-type or hydro-gel-type microfluidic devices. We found positive (negative) chemotaxis for CO2 concentrations below (above) 15%, with 64 ppm as the minimum concentration affecting the cells. We also observed chemotaxis for ethanol and H2O2. By supplying culture medium via the microchannels, the Euglena culture remained alive for more than 2 months. The sensing chip is thus useful for culturing cells and using them for environmental toxicity/nutrition studies by monitoring their motion.

  1. Genetics of the connective tissue proteins: Assignment of the gene for human type I procollagen to chromosome 17 by analysis of cell hybrids and microcell hybrids*

    PubMed Central

    Raj, Cholappadi V. Sundar; Church, Robert L.; Klobutcher, Lawrence A.; Ruddle, Frank H.

    1977-01-01

    Somatic cell hybrids between mouse and human cell lines have been used to identify the specific chromosome that governs the synthesis of type I procollagen. Fourteen hybrid clones and subclones were derived independently from crosses between mouse parents [LM (thymidine kinase-negative) or A9 (hypoxanthine phosphoribosyltransferase-negative)] and human cells (human diploid lung fibroblasts WI-38 or diploid skin fibroblasts GM5, GM17, and GM9). The cultures were labeled with [3H]proline in modified Eagle's medium without serum. Radioactive procollagens were purified from the medium by the method of Church et al. [(1974) J. Mol. Biol. 86, 785-799]. DEAE-cellulose chromatography was used to separate collagen and type I and type III procollagen. Human type I procollagen was assayed by double immunodiffusion analysis with type I procollagen antibodies prepared by immunizing rabbits with purified human type I procollagen. These analyses combined with karyology and isozyme analyses of each hybrid line have produced evidence for the assignment of the gene for human type I procollagen to chromosome 17. A human microcell-mouse hybrid cell line containing only human chromosome 17 was positive for human type I procollagen, lending further support to the assignment of the human type I procollagen gene to chromosome 17. Finally, by using a hybrid line containing only the long arm of human chromosome 17 translocated onto a mouse chromosome, the type I procollagen gene can be assigned more specifically to the long arm of chromosome 17. Images PMID:412188

  2. Size-separation of silver nanoparticles using sucrose gradient centrifugation

    DOE PAGES

    Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won; ...

    2015-08-28

    Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less

  3. Size-separation of silver nanoparticles using sucrose gradient centrifugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won

    Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less

  4. Separation control by vortex generator devices in a transonic channel flow

    NASA Astrophysics Data System (ADS)

    Bur, Reynald; Coponet, Didier; Carpels, Yves

    2009-12-01

    An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.

  5. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles.

    PubMed

    Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M

    2013-01-01

    Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules. © 2013 John Wiley & Sons A/S.

  6. Differentiation of Bovine Spermatogonial Stem Cells into Osteoblasts

    PubMed Central

    Qasemi-Panahi, Babak; Tajik, Parviz; Movahedin, Mansoureh; Moghaddam, Gholamali; Barzgar, Younes; Heidari-Vala, Hamed

    2011-01-01

    Spermatogonial Stem Cell (SSC) technologies provide multiple opportunities for research in the field of biotechnology and regenerative medicine. The therapeutic use of Embryonic Stem Cells (ESCs) is restricted due to severe ethical and immunological concerns. Therefore, we need a new pluripotent cell type. Despite well-known role of germ cells in the gametogenesis, some facts apparently show their multipotentiality. In the present study, bovine SSCs were co-cultured with Sertoli cell for 7 days. Sertoli cells and SSCs were identified by Vimentin and Oct-4 immunocytochemical staining method, respectively. In order to differentiate SSCs into osteoblasts, we used consecutive inducer media without separation of the colonies. We characterized osteoblasts using Alizarin red staining. PMID:23408761

  7. Differentiation of bovine spermatogonial stem cells into osteoblasts.

    PubMed

    Qasemi-Panahi, Babak; Tajik, Parviz; Movahedin, Mansoureh; Moghaddam, Gholamali; Barzgar, Younes; Heidari-Vala, Hamed

    2011-07-01

    Spermatogonial Stem Cell (SSC) technologies provide multiple opportunities for research in the field of biotechnology and regenerative medicine. The therapeutic use of Embryonic Stem Cells (ESCs) is restricted due to severe ethical and immunological concerns. Therefore, we need a new pluripotent cell type. Despite well-known role of germ cells in the gametogenesis, some facts apparently show their multipotentiality. In the present study, bovine SSCs were co-cultured with Sertoli cell for 7 days. Sertoli cells and SSCs were identified by Vimentin and Oct-4 immunocytochemical staining method, respectively. In order to differentiate SSCs into osteoblasts, we used consecutive inducer media without separation of the colonies. We characterized osteoblasts using Alizarin red staining.

  8. Solar energy conversion in a photoelectrochemical biofuel cell.

    PubMed

    Hambourger, Michael; Kodis, Gerdenis; Vaughn, Michael D; Moore, Gary F; Gust, Devens; Moore, Ana L; Moore, Thomas A

    2009-12-07

    A photoelectrochemical biofuel cell has been developed which incorporates aspects of both an enzymatic biofuel cell and a dye-sensitized solar cell. Photon absorption at a porphyrin-sensitized n-type semiconductor electrode gives rise to a charge-separated state. Electrons and holes are shuttled to appropriate cathodic and anodic catalysts, respectively, allowing the production of electricity, or a reduced fuel, via the photochemical oxidation of a biomass-derived substrate. The operation of this device is reviewed. The use of alternate anodic redox mediators provides insight regarding loss mechanisms in the device. Design strategies for enhanced performance are discussed.

  9. New genes and new biological roles for expansins

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    2000-01-01

    Expansins are extracellular proteins that loosen plant cell walls in novel ways. They are thought to function in cell enlargement, pollen tube invasion of the stigma (in grasses), wall disassembly during fruit ripening, abscission and other cell separation events. Expansins are encoded by two multigene families and each gene is often expressed in highly specific locations and cell types. Structural analysis indicates that one expansin region resembles the catalytic domain of family-45 endoglucanases but glucanase activity has not been detected. The genome projects have revealed numerous expansin-related sequences but their putative wall-loosening functions remain to be assessed.

  10. Optoelectronic tweezers for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Kremer, Clemens; Neale, Steven; Menachery, Anoop; Barrett, Mike; Cooper, Jonathan M.

    2012-01-01

    Optoelectronic tweezers (OET) allows the spatial patterning of electric fields through selected illumination of a photoconductive surface. This enables the manipulation of micro particles and cells by creating non-uniform electrical fields that then produce dielectrophoretic (DEP) forces. The DEP responses of cells differ and can produce negative or positive (repelled or attracted to areas of high electric field) forces. Therefore OET can be used to manipulate individual cells and separate different cell types from each other. Thus OET has many applications for medical diagnostics, demonstrated here with work towards diagnosing Human African Trypanosomiasis, also known as sleeping sickness.

  11. Mission simulator test data. [an overview of a real time mission simulation test program of a nickel cadmium battery

    NASA Technical Reports Server (NTRS)

    Hendee, E. A.

    1980-01-01

    A real time mission simulation test program of nickel cadmium cells, performed in conjunction with the Anik 1A2 satellite, is reviewed. Simulation of the temperature profiles, the electrical profiles, the depth of discharge, and the rate of charge and discharge is reported. The type of separator used in the cells and the transfer of electrolytes during overcharge are discussed.

  12. Intestinal development and differentiation

    PubMed Central

    Noah, Taeko K.; Donahue, Bridgitte; Shroyer, Noah F.

    2011-01-01

    In this review, we present an overview of intestinal development and cellular differentiation of the intestinal epithelium. The review is separated into two sections: Section one summarizes organogenesis of the small and large intestines, including endoderm and gut tube formation in early embryogenesis, villus morphogenesis, and crypt formation. Section two reviews cell fate specification and differentiation of each cell type within the intestinal epithelium. Growth factor and transcriptional networks that regulate these developmental processes are summarized. PMID:21978911

  13. Theory-Driven Models for Correcting Fight or Flight Imbalance in Gulf War Illness

    DTIC Science & Technology

    2013-09-01

    models require the inclusion of positive receptor feedback dynamics 483 to produce mutlistability, these effects become inherent in more coarse, but...separately. In this modified immune module innate immune cells (ICells) produce cytokines that regulate the innate immune response (IIR) including...Th1 type adaptive immune response (T1Cell), producing Th1 pro-inflammatory cytokines (T1Cyt) including IL-2, interferon-gamma (IFN-γ), and tumor

  14. Unique Proteins Expressed by Blood Vessels in Skeletal Sites Colonized by Breast Cancer Cells

    DTIC Science & Technology

    2006-08-01

    fluorescent labeled acetylated LDL at an accelerated rate (3). After one week in culture BVECs and MVECs were harvested. Total RNA was extracted from...both cell types using the Qiagen RNeasy kit (Valencia, CA). Microarray labeling, hybridization and analysis was conducted on the RNA by the Penn...State University DNA Microarray Facility under the direction of Dr. Craig Praul. Briefly, RNA obtained from three separate isolations of BVECs and

  15. Redox Regulation of Epithelial Sodium Channels Examined in Alveolar Type 1 and 2 Cells Patch-clamped in Lung Slice Tissue*

    PubMed Central

    Helms, My N.; Jain, Lucky; Self, Julie L.; Eaton, Douglas C.

    2008-01-01

    The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 ± 3.2 and 22.5 ± 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 μm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 ± 0.26 to 0.82 ± 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{O}}_{2}^{\\overline{.}}\\end{equation*}\\end{document}) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{O}}_{2}^{\\overline{.}}\\end{equation*}\\end{document} and NO signaling plays an important role in maintaining lung fluid balance. PMID:18541535

  16. Microgravity Segregation in Binary Mixtures of Inelastic Spheres Driven by Velocity Fluctuation Gradients

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Louge, Michel Y.

    1996-01-01

    We are interested in collisional granular flows of dry materials in reduced gravity. Because the particles interact through collisions, the energy of the particle velocity fluctuations plays an important role in the physics. Here we focus on the separation of grains by properties - size, for example - that is driven by spatial gradients in the fluctuation energy of the grains. The segregation of grains by size is commonly observed in geophysical flows and industrial processes. Segregation of flowing grains can also take place based on other properties, e.g. shape, mass, friction, and coefficient of restitution. Many mechanisms may be responsible for segregation; most of these are strongly influenced by gravity. Here, we outline a mechanism that is independent of gravity. This mechanism may be important but is often obscured in terrestrial grain flows. It is driven by gradients in fluctuation energy. In microgravity, the separation of grains by property will proceed slowly enough to permit flight observations to provide an unambiguous measurement of the transport coefficients associated with the segregation. In this context, we are planning a microgravity shear cell experiment that contains a mixture of two types of spherical grains. The grains will be driven to interact with two different types of boundaries on either sides of the cell. The resulting separation will be observed visually.

  17. Bio-electrochemical characterization of air-cathode microbial fuel cells with microporous polyethylene/silica membrane as separator.

    PubMed

    Kircheva, Nina; Outin, Jonathan; Perrier, Gérard; Ramousse, Julien; Merlin, Gérard; Lyautey, Emilie

    2015-12-01

    The aim of this work was to study the behavior over time of a separator made of a low-cost and non-selective microporous polyethylene membrane (RhinoHide®) in an air-cathode microbial fuel cell with a reticulated vitreous carbon foam bioanode. Performances of the microporous polyethylene membrane (RhinoHide®) were compared with Nafion®-117 as a cationic exchange membrane. A non-parametric test (Mann-Whitney) done on the different sets of coulombic or energy efficiency data showed no significant difference between the two types of tested membrane (p<0.05). Volumetric power densities were ranging from 30 to 90 W·m(-3) of RVC foam for both membranes. Similar amounts of biomass were observed on both sides of the polyethylene membrane illustrating bacterial permeability of this type of separator. A monospecific denitrifying population on cathodic side of RhinoHide® membrane has been identified. Electrochemical impedance spectroscopy (EIS) was used at OCV conditions to characterize electrochemical behavior of MFCs by equivalent electrical circuit fitted on both Nyquist and Bode plots. Resistances and pseudo-capacitances from EIS analyses do not differ in such a way that the nature of the membrane could be considered as responsible. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. [Identification of occult disseminated tumor cells by recombinant herpes simplex virus expressing GFP (HSV(GFP))].

    PubMed

    Han, Xiang-ping; Shi, Gui-lan; Wang, Cheng-feng; Li, Jie; Zhang, Jian-wei; Zhang, Yu; Zhang, Shu-ren; Liu, Bin-lei

    2012-12-01

    To develop a novel rapid protocol for the detection of occult disseminated tumor cells by a recombinant herpes simplex virus expressing GFP (HSV(GFP)). Tumor cells of seven cell lines were exposed to HSV(GFP) and then examined for GFP expression by fluorescence microscopy. Various numbers of tumor cells (10, 100, 1000, 10 000) were mixed into 2 ml human whole blood, separated with lymphocytes separation medium, exposed to HSV(GFP), incubated at 37°C for 6 - 24 h and then counted for the number of green cells under the fluorescence microscope. Some clinical samples including peripheral blood, pleural effusion, ascites, spinal fluid from tumor-bearing patients were screened using this protocol in parallel with routine cytological examination. HSV(GFP) was able to infect all 7 tumor cell lines indicating that the HSV(GFP) can be used to detect different types of tumor cells. The detection sensitivity was 10 cancer cells in 2 ml whole blood. In the clinical samples, there were 4/15 positive by routine cytological examination but 11/15 positive by HSV(GFP), indicating a higher sensitivity of this new protocol. Recombinant herpes simplex virus-mediated green fluorescence is a simple and sensitive technique for the identification of occult disseminated cancer cells including circulating tumor cells (CTCs).

  19. Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore.

    PubMed

    Simek, Karel; Kasalický, Vojtech; Hornák, Karel; Hahn, Martin W; Weinbauer, Markus G

    2010-03-01

    We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains.

  20. A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system

    PubMed Central

    Shinomiya, Kazunori; Takemura, Shin-ya; Rivlin, Patricia K.; Plaza, Stephen M.; Scheffer, Louis K.; Meinertzhagen, Ian A.

    2015-01-01

    Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use respectively either T4 or T5, two cell types of the fourth neuropil, or lobula plate (LOP), that exhibit narrow-field direction-selective responses and provide input to wide-field tangential neurons. T4 or T5 both have four subtypes that terminate one each in the four strata of the LOP. Representatives are reported in a wide range of Diptera, and both cell types exhibit various similarities in: (1) the morphology of their dendritic arbors; (2) their four morphological and functional subtypes; (3) their cholinergic profile in Drosophila; (4) their input from the pathways of L3 cells in the first neuropil, or lamina (LA), and by one of a pair of LA cells, L1 (to the T4 pathway) and L2 (to the T5 pathway); and (5) their innervation by a single, wide-field contralateral tangential neuron from the central brain. Progenitors of both also express the gene atonal early in their proliferation from the inner anlage of the developing optic lobe, being alone among many other cell type progeny to do so. Yet T4 receives input in the second neuropil, or medulla (ME), and T5 in the third neuropil or lobula (LO). Here we suggest that these two cell types were originally one, that their ancestral cell population duplicated and split to innervate separate ME and LO neuropils, and that a fiber crossing—the internal chiasma—arose between the two neuropils. The split most plausibly occurred, we suggest, with the formation of the LO as a new neuropil that formed when it separated from its ancestral neuropil to leave the ME, suggesting additionally that ME input neurons to T4 and T5 may also have had a common origin. PMID:26217193

  1. Physicochemical characteristics of LR3-IGF1 protein inclusion bodies: electrophoretic mobility studies.

    PubMed

    Wangsa-Wirawan, N D; O'Neill, B K; Middelberg, A P

    2001-01-01

    A knowledge of the physicochemical properties of inclusion bodies is important for the rational design of potential recovery processes such as flotation and precipitation. In this study, measurement of the size and electrophoretic mobility of protein inclusion bodies and cell debris was undertaken. SDS-PAGE analysis of protein inclusion bodies subjected to different cleaning regimes suggested that electrophoretic mobility provides a qualitative measure of protein inclusion body purity. Electrophoretic mobility as a function of electrolyte type and ionic strength was investigated. The presence of divalent ions produced a stronger effect on electrophoretic mobility compared with monovalent ions. The isoelectric point of cell debris was significantly lower than that for the inclusion bodies. Hence, the contaminating cell debris may be separated from inclusion bodies using flotation by exploiting this difference in isoelectric points. Separation by this method is simple, convenient, and a possible alternative to the conventional route of centrifugation.

  2. Separation of abscission zone cells in detached Azolla roots depends on apoplastic pH.

    PubMed

    Fukuda, Kazuma; Yamada, Yoshiya; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji

    2013-01-01

    In studies on the mechanism of cell separation during abscission, little attention has been paid to the apoplastic environment. We found that the apoplastic pH surrounding abscission zone cells in detached roots of the water fern Azolla plays a major role in cell separation. Abscission zone cells of detached Azolla roots were separated rapidly in a buffer at neutral pH and slowly in a buffer at pH below 4.0. However, cell separation rarely occurred at pH 5.0-5.5. Light and electron microscopy revealed that cell separation was caused by a degradation of the middle lamella between abscission zone cells at both pH values, neutral and below 4.0. Low temperature and papain treatment inhibited cell separation. Enzyme(s) in the cell wall of the abscission zone cells might be involved in the degradation of the pectin of the middle lamella and the resultant, pH-dependent cell separation. By contrast, in Phaseolus leaf petioles, unlike Azolla roots, cell separation was slow and increased only at acidic pH. The rapid cell separation, as observed in Azolla roots at neutral pH, did not occur. Indirect immunofluorescence microscopy, using anti-pectin monoclonal antibodies, revealed that the cell wall pectins of the abscission zone cells of Azolla roots and Phaseolus leaf petioles looked similar and changed similarly during cell separation. Thus, the pH-related differences in cell separation mechanisms of Azolla and Phaseolus might not be due to differences in cell wall pectin, but to differences in cell wall-located enzymatic activities responsible for the degradation of pectic substances. A possible enzyme system is discussed. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Characterization of Glass Fiber Separator Material for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Frank, H.

    1984-01-01

    Characterization studies were carried out on a glass fiber paper that is currently employed as a separator material for some LiSOCl2 primary cells. The material is of the non-woven type made from microfilaments of E-type glass and contains an ethyl acrylate binder. Results from extraction studies and tensile testing revealed that the binder content and tensile strength of the paper were significantly less than values specified by the manufacturer. Scanning electron micrographs revealed the presence of clusters of impurities many of which were high in iron content. Results of emission spectroscopy revealed high overall levels of iron and leaching, followed by atomic absorption measurements, revealed that essentially all of this iron is soluble in SOCl2.

  4. Interaction of bacteria and ion-exchange particles and its potential in separation for matrix-assisted laser desorption/ionization mass spectrometric identification of bacteria in water.

    PubMed

    Guo, Zhongxian; Liu, Ying; Li, Shuping; Yang, Zhaoguang

    2009-12-01

    Identification of microbial contaminants in drinking water is a challenge to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) due to low levels of microorganisms in fresh water. To avoid the time-consuming culture step of obtaining enough microbial cells for subsequent MALDI-MS analysis, a combination of membrane filtration and nanoparticles- or microparticles-based magnetic separation is a fast and efficient approach. In this work, the interaction of bacteria and fluidMAG-PAA, a cation-exchange superparamagnetic nanomaterial, was investigated by MALDI-MS analysis and transmission electron microscopy. FluidMAG-PAA selectively captured cells of Salmonella, Bacillus, Enterococcus and Staphylococcus aureus. This capture was attributed to the aggregation of negatively charged nanoparticles on bacterial cell regional surfaces that bear positive charges. Three types of non-porous silica-encapsulated anion-exchange magnetic microparticles (SiMAG-Q, SiMAG-PEI, SiMAG-DEAE) were capable of concentrating a variety of bacteria, and were compared with silica-free, smaller fluidMAG particles. Salmonella, Escherichia coli, Enterococcus and other bacteria spiked in aqueous solutions, tap water and reservoir water were separated and concentrated by membrane filtration and magnetic separation based on these ion-exchange magnetic materials, and then characterized by whole cell MALDI-MS. By comparing with the mass spectra of the isolates and pure cells, bacteria in fresh water can be rapidly detected at 1 x 10(3) colony-forming units (cfu)/mL. Copyright 2009 John Wiley & Sons, Ltd.

  5. Fundamentals of affinity cell separations.

    PubMed

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. What Everyone Should Know about Archeans

    ERIC Educational Resources Information Center

    Freeland, Peter

    2013-01-01

    For many years biologists supposed that one group of microorganisms, which they called archaebacteria, were an ancient and primitive type of bacteria. Following biochemical analysis of their RNA and other cell components, it soon became clear that their distinct features merited classification in a separate domain, the archea. From an evolutionary…

  7. Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator

    NASA Astrophysics Data System (ADS)

    Cao, Wanjun; Li, Yangxing; Fitch, Brian; Shih, Jonathan; Doung, Tien; Zheng, Jim

    2014-12-01

    The Li-ion capacitor (LIC) is composed of a lithium-doped carbon anode and an activated carbon cathode, which is a half Li-ion battery (LIB) and a half electrochemical double-layer capacitor (EDLC). LICs can achieve much more energy density than EDLC without sacrificing the high power performance advantage of capacitors over batteries. LIC pouch cells were assembled using activated carbon (AC) cathode and hard carbon (HC) + stabilized lithium metal power (SLMP®) anode. Different cathode configurations, various SLMP loadings on HC anode, and two types of separators were investigated to achieve the optimal electrochemical performance of the LIC. Firstly, the cathode binders study suggests that the PTFE binder offers improved energy and power performances for LIC in comparison to PVDF. Secondly, the mass ratio of SLMP to HC is at 1:7 to obtain the optimized electrochemical performance for LIC among all the various studied mass ratios between lithium loading amounts and active anode material. Finally, compared to the separator Celgard PP 3501, cellulose based TF40-30 is proven to be a preferred separator for LIC.

  8. Long life, rechargeable nickel-zinc battery

    NASA Technical Reports Server (NTRS)

    Luksha, E.

    1974-01-01

    A production version of the inorganic separator was evaluated for improving the life of the nickel-zinc system. Nickel-zinc cells (7-10 Ah capacities) of different electrode separator configurations were constructed and tested. The nickel-zinc cells using the inorganic separator encasing the zinc electrode, the nickel electrode, or both electrodes had shorter lives than cells using Visking and cellophane separation. Cells with the inorganic separation all fell below 70% of their theoretical capacity within 30 cycles, but the cells constructed with organic separation required 80 cycles. Failure of the cells using the ceramic separator was irreversible capacity degradation due to zinc loss through cracks developed in the inorganic separator. Zinc loss through the separator was minimized with the use of combinations of the inorganic separator with Visking and cellophane. Cells using the combined separation operated 130 duty cycles before degrading to 70% of their theoretical capacity.

  9. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.

    PubMed

    Strohm, Eric M; Kolios, Michael C

    2015-08-01

    A label-free method that can identify cells in a blood sample using high frequency photoacoustic and ultrasound signals is demonstrated. When the wavelength of the ultrasound or photoacoustic wave is similar to the size of a single cell (frequencies of 100-500 MHz), unique periodic features occur within the ultrasound and photoacoustic power spectrum that depend on the cell size, structure, and morphology. These spectral features can be used to identify different cell types present in blood, such as red blood cells (RBCs), white blood cells (WBCs), and circulating tumor cells. Circulating melanoma cells are ideal for photoacoustic detection due to their endogenous optical absorption properties. Using a 532 nm pulsed laser and a 375 MHz transducer, the ultrasound and photoacoustic signals from RBCs, WBCs, and melanoma cells were individually measured in an acoustic microscope to examine how the signals change between cell types. A photoacoustic and ultrasound signal was detected from RBCs and melanoma cells; only an ultrasound signal was detected from WBCs. The different cell types were distinctly separated using the ultrasound and photoacoustic signal amplitude and power spectral periodicity. The size of each cell was also estimated from the spectral periodicity. For the first time, sound waves generated using pulse-echo ultrasound and photoacoustics have been used to identify and size single cells, with applications toward counting and identifying cells, including circulating melanoma cells. © 2015 International Society for Advancement of Cytometry.

  10. Comparison of Vibrio parahaemolyticus grown in estuarine water and rich medium.

    PubMed Central

    Pace, J; Chai, T J

    1989-01-01

    Cell envelope composition and selected physiological traits of Vibrio parahaemolyticus were studied in regard to the Kanagawa phenomenon and growth conditions. Cell envelopes were prepared from cells cultured in Proteose Peptone-beef extract (Difco Laboratories, Detroit, Mich.) medium or filtered estuarine water. Protein, phospholipid, and lipopolysaccharide contents varied with culture conditions. The phospholipids present in the cell envelopes were identified as phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Phosphatidylethanolamine decreased and phosphatidylglycerol increased in cells grown in estuarine water. Profiles of proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated numerous protein species, with four to six predominant proteins ranging from 26,000 to 120,000 in molecular weight. The profile of V. parahaemolyticus cell envelope proteins was unique and might be useful in the identification of the organism. Alkaline phosphatase activity was slightly higher in Kanagawa-negative strains and was higher in cells grown in estuarine water than in cells grown in rich laboratory medium. The DNA levels in estuarine water-grown cells increased, while RNA levels and cell volume decreased. Bacteriophage sensitivity typing demonstrated a close intraspecies relationship. Results indicated that Kanagawa-positive and -negative strains were closely related, but they could be grouped separately and may have undergone starvation-related physiological changes when cultured in estuarine water. Images PMID:2782869

  11. Morphometric analysis of suprabasal cells in oral white lesions.

    PubMed Central

    Shabana, A H; el-Labban, N G; Lee, K W; Kramer, I R

    1989-01-01

    Surgical specimens from the cheek mucosa of 73 patients with white lesions were studied to determine various morphometric parameters that would help differentiate between the various types of oral mucosal white lesions that carry a risk of malignant change. Four cell types were represented: traumatic keratosis, leucoplakia, candidal leucoplakia and lichen planus, in addition to a control group of normal mucosa. The shape and size of the epithelial cells in two cell compartments, parabasal and spinous, were investigated by an interactive image analysis system (IBAS-1). The results showed an increase in the cell size in the parabasal cell compartment of all the white lesions compared with the normal mucosa. In the spinous cell compartment there was an increase in the cell size in lichen planus and traumatic keratosis; leucoplakia and candidal leucoplakia showed a slight decrease in cell size compared with the normal mucosa. Attempts to discriminate between the four groups of white lesions showed that these parameters can provide a high level of separation between lichen planus and the three other groups, but not between leucoplakia, candidal leucoplakia, and traumatic keratosis. PMID:2703543

  12. Interferons direct Th2 cell reprogramming to generate a stable GATA-3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions.

    PubMed

    Hegazy, Ahmed N; Peine, Michael; Helmstetter, Caroline; Panse, Isabel; Fröhlich, Anja; Bergthaler, Andreas; Flatz, Lukas; Pinschewer, Daniel D; Radbruch, Andreas; Löhning, Max

    2010-01-29

    Current T cell differentiation models invoke separate T helper 2 (Th2) and Th1 cell lineages governed by the lineage-specifying transcription factors GATA-3 and T-bet. However, knowledge on the plasticity of Th2 cell lineage commitment is limited. Here we show that infection with Th1 cell-promoting lymphocytic choriomeningitis virus (LCMV) reprogrammed otherwise stably committed GATA-3(+) Th2 cells to adopt a GATA-3(+)T-bet(+) and interleukin-4(+)interferon-gamma(+) "Th2+1" phenotype that was maintained in vivo for months. Th2 cell reprogramming required T cell receptor stimulation, concerted type I and type II interferon and interleukin-12 signals, and T-bet. LCMV-triggered T-bet induction in adoptively transferred virus-specific Th2 cells was crucial to prevent viral persistence and fatal immunopathology. Thus, functional reprogramming of unfavorably differentiated Th2 cells may facilitate the establishment of protective immune responses. Stable coexpression of GATA-3 and T-bet provides a molecular concept for the long-term coexistence of Th2 and Th1 cell lineage characteristics in single memory T cells. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin.

    PubMed

    Hatfield, Ronald D; Chaptman, Ann K

    2009-05-27

    This study was undertaken to compare cell wall characteristics including levels of p-coumarate (pCA) and lignin in corn (Zea mays L.) types. Five different types of corn, four commercial and Teosinte, were grown in the greenhouse in individual pots. For each corn type replicate stems were harvested at tassel emergence. Tissues for cell wall analysis were harvested from stems (separated into rind and pith tissues) and roots. Stem cell wall characteristics across the different corn types were similar for total neutral sugars, total uronosyls, lignin, and phenolic acids. However, the neutral sugar composition of root cell walls was markedly different, with high levels of galactose and arabinose. Levels of pCA in the different tissues ranged from 13.8 to 33.1 mg g(-1) of CW depending upon the type of tissue. There was no evidence that pCA was incorporated into cell walls attached to arabinoxylans. Lignin levels were similar within a given tissue, with pith ranging from 86.1 to 132.0 mg g(-1) of CW, rind from 178.4 to 236.6 mg g(-1) of CW, and roots from 216.5 to 242.6 mg g(-1) of CW. The higher values for lignins in root tissue may be due to suberin remaining in the acid-insoluble residue, forming Klason lignins. With the exception of root tissues, higher pCA levels accompanied higher lignin levels. This may indicate a potential role of pCA aiding lignin formation in corn cell walls during the lignification process.

  14. Thin-film Organic-based Solar Cells for Space Power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Harris, Jerry D.; Hepp, Aloysius F.; Anglin, Emily J.; Raffaelle, Ryne P.; Clark, Harry R., Jr.; Gardner, Susan T. P.; Sun, Sam S.

    2002-01-01

    Recent advances in dye-sensitized and organic polymer solar cells have lead NASA to investigate the potential of these devices for space power generation. Dye-sensitized solar cells were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AM0) illumination. Complete cells were exposed to pressures less than 1 x 10(exp -7) torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6 percent loss in efficiency as a result of the thermal cycling. In a separate project, novel -Bridge-Donor-Bridge- Acceptor- (-BDBA-) type conjugated block copolymer systems have been synthesized and characterized by photoluminescence (PL). In comparison to pristine donor or acceptor, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99 percent. Effective and efficient photo induced electron transfer and charge separation occurs due to the interfaces of micro phase separated donor and acceptor blocks. The system is very promising for a variety high efficiency light harvesting applications. Under an SBIR contract, fullerene-doped polymer-based photovoltaic devices were fabricated and characterized. The best devices showed overall power efficiencies of approx. 0.14 percent under white light. Devices fabricated from 2 percent solids content solutions in chlorobenzene gave the best results. Presently, device lifetimes are too short to be practical for space applications.

  15. Classification of Acute Myelogenous Leukemia (AML M2 and AML M3) using Momentum Back Propagation from Watershed Distance Transform Segmented Images

    NASA Astrophysics Data System (ADS)

    Suryani, Esti; Wiharto; Palgunadi, Sarngadi; Nurcahya Pradana, TP

    2017-01-01

    This study uses image processing to analyze white blood cell with leukemia indicated that includes the identification, analysis of shapes and sizes, as well as white blood cell count indicated the symptoms of leukemia. A case study in this research was blood cells, from the type of leukemia Acute Myelogenous Leukemia (AML), M2 and M3 in particular. Image processing operations used for segmentation by utilizing the color conversion from RGB (Red, Green dab Blue) to obtain white blood cell candidates. Furthermore, the white blood cells candidates are separated by other cells with active contour without edge. WBC (White Blood Cell) results still have intersected or overlap condition. Watershed distance transform method can separate overlap of WBC. Furthermore, the separation of the nucleus from the cytoplasm using the HSI (Hue Saturation Intensity). The further characteristic extraction process is done by calculating the area WBC, WBC edge, roundness, the ratio of the nucleus, the mean and standard deviation of pixel intensities. The feature extraction results are used for training and testing in determining the classification of AML: M2 and M3 by using the momentum backpropagation algorithm. The classification process is done by testing the numeric data input from the feature extraction results that have been entered in the database. K-Fold validation is used to divide the amount of training data and to test the classification of AML M2 and M3. The experiment results of eight images trials, the result, was 94.285% per cell accuracy and 75% per image accuracy

  16. Thin-Film Organic-Based Solar Cells for Space Power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Harris, Jerry D.; Hepp, Aloysius F.; Anglin, Emily J.; Raffaelle, Ryne P.; Clark, Harry R., Jr.; Gardner, Susan T. P.; Sun, Sam S.

    2001-01-01

    Recent advances in dye-sensitized and organic polymer solar cells have lead NASA to investigate the potential of these devices for space power generation. Dye-sensitaized solar cells were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AM0) illumination. Complete cells were exposed to pressures less than 1 x 10 (exp -7)torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6% loss in efficiency as a result of the thermal cycling. In a separate project, novel -Bridge-Donor-Bridge-Acceptor- (-BDBA-) type conjugated block copolymer systems have been synthesized and characterized by photoluminescence (PL). In comparison to pristine donor or acceptor, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99%. Effective and efficient photo induced electron transfer and charge separation occurs due to the interfaces of micro phase separated donor and acceptor blocks. The system is very promising for a variety high efficiency light harvesting applications. Under an SBIR contract, fullerene-doped polymer-based photovoltaic devices were fabricated and characterized. The best devices showed overall power efficiencies of approximately 0.14% under white light. Devices fabricated from 2% solids content solutions in chlorobenzene gave the best results. Presently, device lifetimes are too short to be practical for space applications.

  17. Directed Evolution to Engineer Monobody for FRET Biosensor Assembly and Imaging at Live-Cell Surface.

    PubMed

    Limsakul, Praopim; Peng, Qin; Wu, Yiqian; Allen, Molly E; Liang, Jing; Remacle, Albert G; Lopez, Tyler; Ge, Xin; Kay, Brian K; Zhao, Huimin; Strongin, Alex Y; Yang, Xiang-Lei; Lu, Shaoying; Wang, Yingxiao

    2018-04-19

    Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver.

    PubMed

    Oberlin, Estelle; Fleury, Maud; Clay, Denis; Petit-Cocault, Laurence; Candelier, Jean-Jacques; Mennesson, Benoît; Jaffredo, Thierry; Souyri, Michèle

    2010-11-25

    Edification of the human hematopoietic system during development is characterized by the production of waves of hematopoietic cells separated in time, formed in distinct embryonic sites (ie, yolk sac, truncal arteries including the aorta, and placenta). The embryonic liver is a major hematopoietic organ wherein hematopoietic stem cells (HSCs) expand, and the future, adult-type, hematopoietic cell hierarchy becomes established. We report herein the identification of a new, transient, and rare cell population in the human embryonic liver, which coexpresses VE-cadherin, an endothelial marker, CD45, a pan-hematopoietic marker, and CD34, a common endothelial and hematopoietic marker. This population displays an outstanding self-renewal, proliferation, and differentiation potential, as detected by in vitro and in vivo hematopoietic assays compared with its VE-cadherin negative counterpart. Based on VE-cadherin expression, our data demonstrate the existence of 2 phenotypically and functionally separable populations of multipotent HSCs in the human embryo, the VE-cadherin(+) one being more primitive than the VE-cadherin(-) one, and shed a new light on the hierarchical organization of the embryonic liver HSC compartment.

  19. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry.

    PubMed

    Kang, Dukjin; Oh, Sunok; Ahn, Sung-Min; Lee, Bong-Hee; Moon, Myeong Hee

    2008-08-01

    Exosomes, small membrane vesicles secreted by a multitude of cell types, are involved in a wide range of physiological roles such as intercellular communication, membrane exchange between cells, and degradation as an alternative to lysosomes. Because of the small size of exosomes (30-100 nm) and the limitations of common separation procedures including ultracentrifugation and flow cytometry, size-based fractionation of exosomes has been challenging. In this study, we used flow field-flow fractionation (FlFFF) to fractionate exosomes according to differences in hydrodynamic diameter. The exosome fractions collected from FlFFF runs were examined by transmission electron microscopy (TEM) to morphologically confirm their identification as exosomes. Exosomal lysates of each fraction were digested and analyzed using nanoflow LC-ESI-MS-MS for protein identification. FIFFF, coupled with mass spectrometry, allows nanoscale size-based fractionation of exosomes and is more applicable to primary cells and stem cells since it requires much less starting material than conventional gel-based separation, in-gel digestion and the MS-MS method.

  20. Intravascular NK/T-cell lymphoma: a report of five cases with cutaneous manifestation from China.

    PubMed

    Wang, Lei; Chen, Siyuan; Ma, Han; Shi, Dongmei; Huang, Changzheng; Lu, Chun; Gao, Tianwen; Wang, Gang

    2015-09-01

    Intravascular lymphoma is a rare type of lymphoma that frequently affects the skin and is usually of B-cell origin. This lymphoma type is very rare and not recognized as a separate entity in the 2008 World Health Organization classification of hematopoietic and lymphoid tissue tumors. We reported five cases of intravascular NK/T cell lymphoma with cutaneous manifestation and reviewed 12 published cases involving Chinese patients with similar characteristics. All five patients were adults who exhibited red or brown patches or plaques on the lower extremities or trunk; four cases were associated with B symptoms; one case developed subsequent to a lymphoma on the face (possibly extranodal NK/T cell lymphoma, nasal type). Histopathologically, all patients exhibited abnormal, medium-sized intravascular lymphocytes in the dermis and subcutaneous tissues. All patients were positive for CD2, CD3ϵ, CD56 and cytotoxic proteins. All cases were Epstein-Barr virus (EBV) positive. Four of FIVE patients died of lymphoma within a few months of diagnosis. Intravascular NK/T-cell lymphoma is a rare highly aggressive and EBV-associated lymphoma that is prone to develop in Chinese patients. The relationship between intravascular NK/T-cell lymphoma and extranodal NK/T-cell lymphoma, nasal type, requires clarification. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Studies on the asparagine-linked oligosaccharides from cartilage-specific proteoglycan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cioffi, L.C.

    1987-01-01

    Chondrocytes synthesize and secrete a cartilage-specific proteoglycan (PG-H) as one of their major products. This proteoglycan has attached to it several types of carbohydrate chains, including chondroitin sulfate, keratan sulfate, O-linked oligosaccharides, and asparagine-linked oligosaccharides. The asparagine-linked oligosaccharides found on PG-H were investigated in these studies. Methodology was developed for the isolation and separation of standard of standard complex and high mannose type oligosaccharides. This included digesting glycoproteins with N-glycanase and separation of the oligosaccharides according to type by concanavalin-A lectin chromatography. The different oligosaccharide types were then analyzed by high pressure liquid chromatography. This methodology was used in themore » subsequent studies on the PG-H asparagine-linked oligosaccharides. Initially, the asparagine-linked oligosaccharides recovered from the culture medium (CM) and cell-associated (Ma) fractions of PG-H from of tibial chondrocytes were labeled with (/sup 3/H)-mannose and the oligosaccharides were isolated and analyzed.« less

  2. The architecture of chicken chromosome territories changes during differentiation

    PubMed Central

    Stadler, Sonja; Schnapp, Verena; Mayer, Robert; Stein, Stefan; Cremer, Christoph; Bonifer, Constanze; Cremer, Thomas; Dietzel, Steffen

    2004-01-01

    Background Between cell divisions the chromatin fiber of each chromosome is restricted to a subvolume of the interphase cell nucleus called chromosome territory. The internal organization of these chromosome territories is still largely unknown. Results We compared the large-scale chromatin structure of chromosome territories between several hematopoietic chicken cell types at various differentiation stages. Chromosome territories were labeled by fluorescence in situ hybridization in structurally preserved nuclei, recorded by confocal microscopy and evaluated visually and by quantitative image analysis. Chromosome territories in multipotent myeloid precursor cells appeared homogeneously stained and compact. The inactive lysozyme gene as well as the centromere of the lysozyme gene harboring chromosome located to the interior of the chromosome territory. In further differentiated cell types such as myeloblasts, macrophages and erythroblasts chromosome territories appeared increasingly diffuse, disaggregating to separable substructures. The lysozyme gene, which is gradually activated during the differentiation to activated macrophages, as well as the centromere were relocated increasingly to more external positions. Conclusions Our results reveal a cell type specific constitution of chromosome territories. The data suggest that a repositioning of chromosomal loci during differentiation may be a consequence of general changes in chromosome territory morphology, not necessarily related to transcriptional changes. PMID:15555075

  3. Predictive Computational Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    di Pierro, Miichele; Zhang, Bin; Wolynes, Peter J.; Onuchic, Jose N.

    In vivo, the human genome folds into well-determined and conserved three-dimensional structures. The mechanism driving the folding process remains unknown. We report a theoretical model (MiChroM) for chromatin derived by using the maximum entropy principle. The proposed model allows Molecular Dynamics simulations of the genome using as input the classification of loci into chromatin types and the presence of binding sites of loop forming protein CTCF. The model was trained to reproduce the Hi-C map of chromosome 10 of human lymphoblastoid cells. With no additional tuning the model was able to predict accurately the Hi-C maps of chromosomes 1-22 for the same cell line. Simulations show unknotted chromosomes, phase separation of chromatin types and a preference of chromatin of type A to sit at the periphery of the chromosomes.

  4. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation.

    PubMed

    Luo, Tao; Fan, Lei; Zeng, Yixiao; Liu, Ya; Chen, Shuxun; Tan, Qiulin; Lam, Raymond H W; Sun, Dong

    2018-05-04

    Prefocusing of the cell mixture is necessary for achieving a high-efficiency and continuous dielectrophoretic (DEP) cell separation. However, prefocusing through sheath flow requires a complex and tedious peripheral system for multi-channel fluid control, hindering the integration of DEP separation systems with other microfluidic functionalities for comprehensive clinical and biological tasks. This paper presented a simplified sheathless cell separation approach that combines gravitational-sedimentation-based sheathless prefocusing and DEP separation methods. Through gravitational sedimentation in a tubing, which was inserted into the inlet of a microfluidic chip with an adjustable steering angle, the cells were focused into a stream at the upstream region of a microchannel prior to separation. Then, a DEP force was applied at the downstream region of the microchannel for the active separation of the cells. Through this combined strategy, the peripheral system for the sheath flow was no longer required, and thus the integration of cell separation system with additional microfluidic functionalities was facilitated. The proposed sheathless scheme focused the mixture of cells with different sizes and dielectric properties into a stream in a wide range of flow rates without changing the design of the microfluidic chip. The DEP method is a label-free approach that can continuously separate cells on the basis of the sizes or dielectric properties of the cells and thus capable of greatly flexible cell separation. The efficiency of the proposed approach was experimentally assessed according to its performance in the separation of human acute monocytic leukemia THP-1 cells from yeast cells with respect to different sizes and THP-1 cells from human acute myelomonocytic leukemia OCI-AML3 cells with respect to different dielectric properties. The experimental results revealed that the separation efficiency of the method can surpass 90% and thus effective in separating cells on the basis of either size or dielectric property.

  5. Pattern multiplicity and fumarate hydratase (FH)/S-(2-succino)-cysteine (2SC) staining but not eosinophilic nucleoli with perinucleolar halos differentiate hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinomas from kidney tumors without FH gene alteration.

    PubMed

    Muller, Marie; Guillaud-Bataille, Marine; Salleron, Julia; Genestie, Catherine; Deveaux, Sophie; Slama, Abdelhamid; de Paillerets, Brigitte Bressac; Richard, Stéphane; Benusiglio, Patrick R; Ferlicot, Sophie

    2018-02-06

    Hereditary leiomyomatosis and renal cell carcinoma syndrome is characterized by an increased risk of agressive renal cell carcinoma, often of type 2 papillary histology, and is caused by FH germline mutations. A prominent eosinophilic macronucleolus with a perinucleolar clear halo is distinctive of hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cell carcinoma according to the 2012 ISUP and 2016 WHO kidney tumor classification. From an immunohistochemistry perspective, tumors are often FH-negative and S-(2-succino)-cysteine (2SC) positive. We performed a pathology review of 24 renal tumors in 23 FH mutation carriers, and compared them to 12 type 2 papillary renal cell carcinomas from FH wild-type patients. Prominent eosinophilic nucleoli with perinucleolar halos were present in almost all FH-deficient renal cell carcinomas (23/24). Unexpectedly, they were also present in 58% of type 2 papillary renal cell carcinomas from wild-type patients. Renal cell carcinoma in mutation carriers displayed a complex architecture with multiple patterns, typically papillary, tubulopapillary, and tubulocystic, but also sarcomatoid and rhabdoid. Such pattern diversity was not seen in non-carriers. FH/2SC immunohistochemistry was informative as all hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinomas were either FH- or 2SC+. For FH and 2SC immunohistochemistries taken separately, sensitivity of negative anti-FH immunohistochemistry was 87.5% and specificity was 100%. For positive anti-2SC immunohistochemistry, sensitivity, and specificity were 91.7% and 91.7%, respectively. All FH wild-type renal cell carcinoma were FH-positive, and all but one were 2SC-negative. In conclusion, multiplicity of architectural patterns, rhabdoid/sarcomatoid components and combined FH/2SC staining, but not prominent eosinophilic nucleoli with perinucleolar halos, differentiate hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinoma from type 2 papillary renal cell carcinoma with efficient FH gene. Our findings are crucial in identifying who should be referred to Cancer Genetics clinics for genetic counseling and testing.

  6. Assessement of angiogenesis reveals blood vessel heterogeneity in lung carcinoma

    PubMed Central

    BIRAU, AMALIA; CEAUSU, RALUCA AMALIA; CIMPEAN, ANCA MARIA; GAJE, PUSA; RAICA, MARIUS; OLARIU, TEODORA

    2012-01-01

    Despite advances in treatment, the prognosis for lung cancer patients remains poor. Angiogenesis appears to be a promising target for lung cancer therapy; however, the clinical significance of vascular changes are not completely understood. The aim of this study was to evaluate the types and morphology of blood vessels in various lung carcinomas. Using double immunostaining, we investigated 39 biopsies from patients admitted with various histological types of lung carcinoma. Tumor blood vessels were quantified separately for CD34/smooth muscle actin and described as either immature, intermediate or mature. Double immunostaining evaluation of the type of blood vessels in lung carcinomas revealed a marked heterogeneity. The immature and intermediate type of vessels were more common in adenocarcinomas (ADCs) and squamous cell carcinomas (SCCs) of the lung. Small cell lung carcinomas revealed a significant correlation between pathological and immature types of blood vessels. Therefore, quantifying the types of tumor vessels in lung carcinomas may be an important element to improve the results of anti-vascular therapy. PMID:23205116

  7. Cancer of the Esophagus and Esophagogastric Junction: An Eighth Edition Staging Primer

    PubMed Central

    Rice, Thomas W.; Ishwaran, Hemant; Ferguson, Mark K.; Blackstone, Eugene H.; Goldstraw, Peter

    2017-01-01

    This primer for eighth edition staging of esophageal and esophagogastric epithelial cancers presents separate classifications for the clinical (cTNM), pathologic (pTNM), and postneoadjuvant pathologic (ypTNM) stage groups, which are no longer shared. For pTNM, pT1 has been subcategorized as pT1a and pT1b for the subgrouping pStage I adenocarcinoma and squamous cell carcinoma. A new, simplified esophagus-specific regional lymph node map has been introduced. Undifferentiated histologic grade (G4) has been eliminated; additional analysis is required to expose histopathologic cell type. Location has been removed as a category for pT2N0M0 squamous cell cancer. The definition of the esophagogastric junction has been revised. ypTNM stage groups are identical for both histopathologic cell types, unlike those for cTNM and pTNM. PMID:27810391

  8. Flow analysis of human chromosome sets by means of mixing-stirring device

    NASA Astrophysics Data System (ADS)

    Zenin, Valeri V.; Aksenov, Nicolay D.; Shatrova, Alla N.; Klopov, Nicolay V.; Cram, L. Scott; Poletaev, Andrey I.

    1997-05-01

    A new mixing and stirring device (MSD) was used to perform flow karyotype analysis of single human mitotic chromosomes analyzed so as to maintain the identity of chromosomes derived from the same cell. An improved method for cell preparation and intracellular staining of chromosomes was developed. The method includes enzyme treatment, incubation with saponin and separation of prestained cells from debris on a sucrose gradient. Mitotic cells are injected one by one in the MSD which is located inside the flow chamber where cells are ruptured, thereby releasing chromosomes. The set of chromosomes proceeds to flow in single file fashion to the point of analysis. The device works in a stepwise manner. The concentration of cells in the sample must be kept low to ensure that only one cell at a time enters the breaking chamber. Time-gated accumulation of data in listmode files makes it possible to separate chromosome sets comprising of single cells. The software that was developed classifies chromosome sets according to different criteria: total number of chromosomes, overall DNA content in the set, and the number of chromosomes of certain types. This approach combines the high performance of flow cytometry with the advantages of image analysis. Examples obtained with different human cell lines are presented.

  9. Dictyostelium mutants lacking the cytoskeletal protein coronin are defective in cytokinesis and cell motility

    PubMed Central

    1993-01-01

    Coronin is an actin-binding protein in Dictyostelium discoideum that is enriched at the leading edge of the cells and in projections of the cell surface called crowns. The polypeptide sequence of coronin is distinguished by its similarities to the beta-subunits of trimeric G proteins (E. L. de Hostos, B. Bradtke, F. Lottspeich, R. Guggenheim, and G. Gerisch, 1991. EMBO (Eur. Mol. Biol. Organ.) J. 10:4097-4104). To elucidate the in vivo function of coronin, null mutants have been generated by gene replacement. The mutant cells lacking coronin grow and migrate more slowly than wild-type cells. When these cor- cells grow in liquid medium they become multinucleate, indicating a role of coronin in cytokinesis. To explore this role, coronin has been localized in mitotic wild-type cells by immunofluorescence labeling. During separation of the daughter cells, coronin is strongly accumulated at their distal portions including the leading edges. This contrasts with the localization of myosin II in the cleavage furrow and suggests that coronin functions independently of the conventional myosin in facilitating cytokinesis. PMID:8380174

  10. Lattice-Boltzmann-based simulations of diffusiophoresis of colloids and cells

    NASA Astrophysics Data System (ADS)

    Kreft Pearce, Jennifer; Castigliego, Joshua

    Increasing environmental degradation due to plastic pollutants requires innovative solutions that facilitate the extraction of pollutants without harming local biota. We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on diffusiophoresis and the separation of particles within the system. A gradient in viscosity that simulates a concentration gradient in a dissolved polymer allows us to separate various types of particles based on their deformability. As seen in previous experiments, simulated particles that have a higher deformability react differently to the polymer matrix than those with a lower deformability. Therefore, the particles can be separated from each other. The system described above was simulated with various concentration gradients as well as various Soret coefficients in order to optimize the separation of the particles. This simulation, in particular, was intended to model an oceanic system where the particles of interest were motile and nonmotile plankton and microplastics. The separation of plankton from the microplastics was achieved.

  11. Baseline and annual repeat rounds of screening: implications for optimal regimens of screening.

    PubMed

    Henschke, Claudia I; Salvatore, Mary; Cham, Matthew; Powell, Charles A; DiFabrizio, Larry; Flores, Raja; Kaufman, Andrew; Eber, Corey; Yip, Rowena; Yankelevitz, David F

    2018-03-01

    Differences in results of baseline and subsequent annual repeat rounds provide important information for optimising the regimen of screening. A prospective cohort study of 65,374 was reviewed to examine the frequency/percentages of the largest noncalcified nodule (NCN), lung cancer cell types and Kaplan-Meier (K-M) survival rates, separately for baseline and annual rounds. Of 65,374 baseline screenings, NCNs were identified in 28,279 (43.3%); lung cancer in 737 (1.1%). Of 74,482 annual repeat screenings, new NCNs were identified in 4959 (7%); lung cancer in 179 (0.24%). Only adenocarcinoma was diagnosed in subsolid NCNs. Percentages of lung cancers by cell type were significantly different (p < 0.0001) in the baseline round compared with annual rounds, reflecting length bias, as were the ratios, reflecting lead times. Long-term K-M survival rate was 100% for typical carcinoids and for adenocarcinomas manifesting as subsolid NCNs; 85% (95% CI 81-89%) for adenocarcinoma, 74% (95% CI 63-85%) for squamous cell, 48% (95% CI 34-62%) for small cell. The rank ordering by lead time was the same as the rank ordering by survival rates. The significant differences in the frequency of NCNs and frequency and aggressiveness of diagnosed cancers in baseline and annual repeat need to be recognised for an optimal regimen of screening. • Lung cancer aggressiveness varies considerably by cell type and nodule consistency. • Kaplan-Meier survival rates varied by cell type between 100% and 48%. • The percentages of lung cancers by cell type in screening rounds reflect screening biases. • Rank ordering by cell type survival is consistent with that by lead times. • Empirical evidence provides critical information for the regimen of screening.

  12. Physiological pathways regulating the activity of magnocellular neurosecretory cells.

    PubMed

    Leng, G; Brown, C H; Russell, J A

    1999-04-01

    Magnocellular oxytocin and vasopressin cells are among the most extensively studied neurons in the brain; their large size and high synthetic capacity, their discrete, homogeneous distribution and the anatomical separation of their terminals from their cell bodies, and the ability to determine their neuronal output readily by measurements of hormone concentration in the plasma, combine to make these systems amenable to a wide range of fundamental investigations. While vasopressin cells have intrinsic burst-generating properties, oxytocin cells are organized within local pattern-generating networks. In this review we consider the rôle played by particular afferent pathways in the regulation of the activity of oxytocin and vasopressin cells. For both cell types, the effects of changes in the activity of synaptic input can be complex.

  13. Antibody-immobilized column for quick cell separation based on cell rolling.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-01-01

    Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.

  14. Isolation of osteoprogenitors from human jaw periosteal cells: a comparison of two magnetic separation methods.

    PubMed

    Olbrich, Marcus; Rieger, Melanie; Reinert, Siegmar; Alexander, Dorothea

    2012-01-01

    Human jaw periosteum tissue contains osteoprogenitors that have potential for tissue engineering applications in oral and maxillofacial surgeries. To isolate osteoprogenitor cells from heterogeneous cell populations, we used the specific mesenchymal stem cell antigen-1 (MSCA-1) antibody and compared two magnetic separation methods. We analyzed the obtained MSCA-1(+) and MSCA-1(-) fractions in terms of purity, yield of positive/negative cells and proliferative and mineralization potentials. The analysis of cell viability after separation revealed that the EasySep method yielded higher viability rates, whereas the flow cytometry results showed a higher purity for the MACS-separated cell fractions. The mineralization capacity of the osteogenic induced MSCA-1(+) cells compared with the MSCA-1(-) controls using MACS was 5-fold higher, whereas the same comparison after EasySep showed no significant differences between both fractions. By analyzing cell proliferation, we detected a significant difference between the proliferative potential of the osteogenic cells versus untreated cells after the MACS and EasySep separations. The differentiated cells after MACS separation adjusted their proliferative capacity, whereas the EasySep-separated cells failed to do so. The protein expression analysis showed small differences between the two separation methods. Our findings suggest that MACS is a more suitable separation method to isolate osteoprogenitors from the entire jaw periosteal cell population.

  15. [Comparison of the activity and yield rate of osteoblast obtained by different digestion methods].

    PubMed

    Li, Ling-hui; Ding, Dao-Fang; Du, Guo-Qing; Wang, Hui-Hao; Zhan, Hong-Sheng

    2013-04-01

    To compared the activity and yield rate of osteoblast obtained by different collagenase digestion methods, to find a better way to extract osteoblast for the experimental researches of osteoporosis. Ten 24-hour-old SD rats were were euthanized. The cranium of rats were removed and cuted into blocks of 1 mm x 1 mm size. After digested by trypsin for 15 min, all the cranium were divided into two equal parts, and randomly divided into two groups which would be digested by type I collagenase and type II collagenase separately for two times. The rat cells of the two groups were cultured in thermostat incubator with 5% CO2 under the condition of 37 degrees C. The primary culture osteoblasts were counted by using a haemacytometer after digestion and 72 hours later. The second generation osteoblasts cultured 48 h were dyed by NBT/BCIP staining solution, and were detected by quantitative measurement with PNPP. The cells had irregular shapes. The results of cell counting showed that the cell number of type I group was larger than type 11 group. Alkaline phosphatase dyeing were positive. Detecting of alkaline phosphatase using the method of PNPP showed that the absorbance value in type I group were higher than type II group (P<0.05). Two types of collagenase are both suitable for the in vitro culture of rat osteoblasts. The activity and yield rate of osteoblasts in type I group are higher which could provide more stable seed cells for the treatment of osteoporosis.

  16. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  17. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  18. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  19. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  20. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  1. Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes

    PubMed Central

    Michels, Aaron W.; Landry, Laurie G.; McDaniel, Kristen A.; Yu, Liping; Campbell-Thompson, Martha; Kwok, William W.; Jones, Kenneth L.; Gottlieb, Peter A.; Kappler, John W.; Tang, Qizhi; Roep, Bart O.; Atkinson, Mark A.; Mathews, Clayton E.

    2017-01-01

    Type 1 diabetes results from chronic autoimmune destruction of insulin-producing β-cells within pancreatic islets. Although insulin is a critical self-antigen in animal models of autoimmune diabetes, due to extremely limited access to pancreas samples, little is known about human antigenic targets for islet-infiltrating T cells. Here we show that proinsulin peptides are targeted by islet-infiltrating T cells from patients with type 1 diabetes. We identified hundreds of T cells from inflamed pancreatic islets of three young organ donors with type 1 diabetes with a short disease duration with high-risk HLA genes using a direct T-cell receptor (TCR) sequencing approach without long-term cell culture. Among 85 selected CD4 TCRs tested for reactivity to preproinsulin peptides presented by diabetes-susceptible HLA-DQ and HLA-DR molecules, one T cell recognized C-peptide amino acids 19–35, and two clones from separate donors responded to insulin B-chain amino acids 9–23 (B:9–23), which are known to be a critical self-antigen–driving disease progress in animal models of autoimmune diabetes. These B:9–23–specific T cells from islets responded to whole proinsulin and islets, whereas previously identified B:9–23 responsive clones from peripheral blood did not, highlighting the importance of proinsulin-specific T cells in the islet microenvironment. PMID:27920090

  2. Processing of the major autolysin of E. faecalis, AtlA, by the zinc-metalloprotease, GelE, impacts AtlA septal localization and cell separation.

    PubMed

    Stinemetz, Emily K; Gao, Peng; Pinkston, Kenneth L; Montealegre, Maria Camila; Murray, Barbara E; Harvey, Barrett R

    2017-01-01

    AtlA is the major peptidoglycan hydrolase of Enterococcus faecalis involved in cell division and cellular autolysis. The secreted zinc metalloprotease, gelatinase (GelE), has been identified as an important regulator of cellular function through post-translational modification of protein substrates. AtlA is a known target of GelE, and their interplay has been proposed to regulate AtlA function. To study the protease-mediated post-translational modification of AtlA, monoclonal antibodies were developed as research tools. Flow cytometry and Western blot analysis suggests that in the presence of GelE, surface-bound AtlA exists primarily as a N-terminally truncated form whereas in the absence of GelE, the N-terminal domain of AtlA is retained. We identified the primary GelE cleavage site occurring near the transition between the T/E rich Domain I and catalytic region, Domain II via N-terminal sequencing. Truncation of AtlA had no effect on the peptidoglycan hydrolysis activity of AtlA. However, we observed that N-terminal cleavage was required for efficient AtlA-mediated cell division while unprocessed AtlA was unable to resolve dividing cells into individual units. Furthermore, we observed that the processed AtlA has the propensity to localize to the cell septum on wild-type cells whereas unprocessed AtlA in the ΔgelE strain were dispersed over the cell surface. Combined, these results suggest that AtlA septum localization and subsequent cell separation can be modulated by a single GelE-mediated N-terminal cleavage event, providing new insights into the post-translation modification of AtlA and the mechanisms governing chaining and cell separation.

  3. Processing of the major autolysin of E. faecalis, AtlA, by the zinc-metalloprotease, GelE, impacts AtlA septal localization and cell separation

    PubMed Central

    Pinkston, Kenneth L.; Montealegre, Maria Camila; Murray, Barbara E.

    2017-01-01

    AtlA is the major peptidoglycan hydrolase of Enterococcus faecalis involved in cell division and cellular autolysis. The secreted zinc metalloprotease, gelatinase (GelE), has been identified as an important regulator of cellular function through post-translational modification of protein substrates. AtlA is a known target of GelE, and their interplay has been proposed to regulate AtlA function. To study the protease-mediated post-translational modification of AtlA, monoclonal antibodies were developed as research tools. Flow cytometry and Western blot analysis suggests that in the presence of GelE, surface-bound AtlA exists primarily as a N-terminally truncated form whereas in the absence of GelE, the N-terminal domain of AtlA is retained. We identified the primary GelE cleavage site occurring near the transition between the T/E rich Domain I and catalytic region, Domain II via N-terminal sequencing. Truncation of AtlA had no effect on the peptidoglycan hydrolysis activity of AtlA. However, we observed that N-terminal cleavage was required for efficient AtlA-mediated cell division while unprocessed AtlA was unable to resolve dividing cells into individual units. Furthermore, we observed that the processed AtlA has the propensity to localize to the cell septum on wild-type cells whereas unprocessed AtlA in the ΔgelE strain were dispersed over the cell surface. Combined, these results suggest that AtlA septum localization and subsequent cell separation can be modulated by a single GelE-mediated N-terminal cleavage event, providing new insights into the post-translation modification of AtlA and the mechanisms governing chaining and cell separation. PMID:29049345

  4. Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids.

    PubMed

    Zhao, Wujun; Cheng, Rui; Lim, So Hyun; Miller, Joshua R; Zhang, Weizhong; Tang, Wei; Xie, Jin; Mao, Leidong

    2017-06-27

    This paper reports a biocompatible and label-free cell separation method using ferrofluids that can separate a variety of low-concentration cancer cells from cell culture lines (∼100 cancer cells per mL) from undiluted white blood cells, with a throughput of 1.2 mL h -1 and an average separation efficiency of 82.2%. The separation is based on the size difference of the cancer cells and white blood cells, and is conducted in a custom-made biocompatible ferrofluid that retains not only excellent short-term viabilities but also normal proliferations of 7 commonly used cancer cell lines. A microfluidic device is designed and optimized specifically to shorten the time of live cells' exposure to ferrofluids from hours to seconds, by eliminating time-consuming off-chip sample preparation and extraction steps and integrating them on-chip to achieve a one-step process. As a proof-of-concept demonstration, a ferrofluid with 0.26% volume fraction was used in this microfluidic device to separate spiked cancer cells from cell lines at a concentration of ∼100 cells per mL from white blood cells with a throughput of 1.2 mL h -1 . The separation efficiencies were 80 ± 3%, 81 ± 5%, 82 ± 5%, 82 ± 4%, and 86 ± 6% for A549 lung cancer, H1299 lung cancer, MCF-7 breast cancer, MDA-MB-231 breast cancer, and PC-3 prostate cancer cell lines, respectively. The separated cancer cells' purity was between 25.3% and 28.8%. In addition, the separated cancer cells from this strategy showed an average short-term viability of 94.4 ± 1.3%, and these separated cells were cultured and demonstrated normal proliferation to confluence even after the separation process. Owing to its excellent biocompatibility and label-free operation and its ability to recover low concentrations of cancer cells from white blood cells, this method could lead to a promising tool for rare cell separation.

  5. Two distinct extracellular RNA signatures released by a single cell type identified by microarray and next-generation sequencing

    PubMed Central

    Lässer, Cecilia; Shelke, Ganesh Vilas; Yeri, Ashish; Kim, Dae-Kyum; Crescitelli, Rossella; Raimondo, Stefania; Sjöstrand, Margareta; Gho, Yong Song; Van Keuren Jensen, Kendall; Lötvall, Jan

    2017-01-01

    ABSTRACT Cells secrete extracellular RNA (exRNA) to their surrounding environment and exRNA has been found in many body fluids such as blood, breast milk and cerebrospinal fluid. However, there are conflicting results regarding the nature of exRNA. Here, we have separated 2 distinct exRNA profiles released by mast cells, here termed high-density (HD) and low-density (LD) exRNA. The exRNA in both fractions was characterized by microarray and next-generation sequencing. Both exRNA fractions contained mRNA and miRNA, and the mRNAs in the LD exRNA correlated closely with the cellular mRNA, whereas the HD mRNA did not. Furthermore, the HD exRNA was enriched in lincRNA, antisense RNA, vault RNA, snoRNA, and snRNA with little or no evidence of full-length 18S and 28S rRNA. The LD exRNA was enriched in mitochondrial rRNA, mitochondrial tRNA, tRNA, piRNA, Y RNA, and full-length 18S and 28S rRNA. The proteomes of the HD and LD exRNA-containing fractions were determined with LC-MS/MS and analyzed with Gene Ontology term finder, which showed that both proteomes were associated with the term extracellular vesicles and electron microscopy suggests that at least a part of the exRNA is associated with exosome-like extracellular vesicles. Additionally, the proteins in the HD fractions tended to be associated with the nucleus and ribosomes, whereas the LD fraction proteome tended to be associated with the mitochondrion. We show that the 2 exRNA signatures released by a single cell type can be separated by floatation on a density gradient. These results show that cells can release multiple types of exRNA with substantial differences in RNA species content. This is important for any future studies determining the nature and function of exRNA released from different cells under different conditions. PMID:27791479

  6. Fast Filtration of Bacterial or Mammalian Suspension Cell Cultures for Optimal Metabolomics Results

    PubMed Central

    Bordag, Natalie; Janakiraman, Vijay; Nachtigall, Jonny; González Maldonado, Sandra; Bethan, Bianca; Laine, Jean-Philippe; Fux, Elie

    2016-01-01

    The metabolome offers real time detection of the adaptive, multi-parametric response of the organisms to environmental changes, pathophysiological stimuli or genetic modifications and thus rationalizes the optimization of cell cultures in bioprocessing. In bioprocessing the measurement of physiological intracellular metabolite levels is imperative for successful applications. However, a sampling method applicable to all cell types with little to no validation effort which simultaneously offers high recovery rates, high metabolite coverage and sufficient removal of extracellular contaminations is still missing. Here, quenching, centrifugation and fast filtration were compared and fast filtration in combination with a stabilizing washing solution was identified as the most promising sampling method. Different influencing factors such as filter type, vacuum pressure, washing solutions were comprehensively tested. The improved fast filtration method (MxP® FastQuench) followed by routine lipid/polar extraction delivers a broad metabolite coverage and recovery reflecting well physiological intracellular metabolite levels for different cell types, such as bacteria (Escherichia coli) as well as mammalian cells chinese hamster ovary (CHO) and mouse myeloma cells (NS0).The proposed MxP® FastQuench allows sampling, i.e. separation of cells from medium with washing and quenching, in less than 30 seconds and is robustly designed to be applicable to all cell types. The washing solution contains the carbon source respectively the 13C-labeled carbon source to avoid nutritional stress during sampling. This method is also compatible with automation which would further reduce sampling times and the variability of metabolite profiling data. PMID:27438065

  7. An unusual occurrence of arsenic-bearing pyrite in the Upper Freeport coal bed, West-Central Pennsylvania

    USGS Publications Warehouse

    Ruppert, L.F.; Minkin, J.A.; McGee, J.J.; Cecil, C.B.

    1992-01-01

    Scanning electron microscopy and electron microprobe analysis were used to identify a rare type of As-bearing pyrite in selected specific gravity separates from the Pennsylvanian age Upper Freeport coal bed, west-central Pennsylvania. Arsenic was detected mainly in cell-wall replacement pyrite where concentrations ranged from nondetectable to 1.9 wt %. Although the majority of arsenic-bearing pyrite in the Upper Freeport coal bed is concentrated in massive and late diagenetic pyrite morphologies, the rarer As-bearing cell-replacement pyrite was observed in both light and heavy gravity separates from the three coal facies examined. Arsenic was occasionally detected in cell-filling replacement pyrite, but this As appears to be an artifact produced by signals from underlying and/or adjacent As-bearing cell-wall replacement pyrite. It is postulated that some plants of the Upper Freeport paleoswamp may have biomethylated As, which later could have been converted to dimethylarsine or other volatile organoarsenic compounds by either biologically or chemically driven processes. Once liberated, the arsenic may have been incorporated into pyrite during pyritization of the cell walls. The As incorporation occurred early, before significant compaction of the peat, because the pyritized cell walls are not compacted.

  8. Multidimensional data analysis in immunophenotyping.

    PubMed

    Loken, M R

    2001-05-01

    The complexity of cell populations requires careful selection of reagents to detect cells of interest and distinguish them from other types. Additional reagents are frequently used to provide independent criteria for cell identification. Two or three monoclonal antibodies in combination with forward and right-angle light scatter generate a data set that is difficult to visualize because the data must be represented in four- or five-dimensional space. The separation between cell populations provided by the multiple characteristics is best visualized by multidimensional analysis using all parameters simultaneously to identify populations within the resulting hyperspace. Groups of cells are distinguished based on a combination of characteristics not apparent in any usual two-dimensional representation of the data.

  9. Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery.

    PubMed

    Wang, Yuhang; Zeng, Jiren; Cui, Xiaoqi; Zhang, Lijuan; Zheng, Gengfeng

    2016-02-24

    A separator-integrated, reversely connectable, symmetric lithium-ion battery is developed based on carbon-coated Li3V2(PO4)3 nanoparticles and polyvinylidene fluoride-treated separators. The Li3V2(PO4)3 nanoparticles are synthesized via a facile solution route followed by calcination in Ar/H2 atmosphere. Sucrose solution is used as the carbon source for uniform carbon coating on the Li3V2(PO4)3 nanoparticles. Both the carbon and the polyvinylidene fluoride treatments substantially improve the cycling life of the symmetric battery by preventing the dissolution and shuttle of the electroactive Li3V2(PO4)3. The obtained symmetric full cell exhibits a reversible capacity of ≈ 87 mA h g(-1), good cycling stability, and capacity retention of ≈ 70% after 70 cycles. In addition, this type of symmetric full cell can be operated in both forward and reverse connection modes, without any influence on the cycling of the battery. Furthermore, a new separator integration approach is demonstrated, which enables the direct deposition of electroactive materials for the battery assembly and does not affect the electrochemical performance. A 10-tandem-cell battery assembled without differentiating the electrode polarity exhibits a low thickness of ≈ 4.8 mm and a high output voltage of 20.8 V. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The atlA operon of Streptococcus mutans: role in autolysin maturation and cell surface biogenesis.

    PubMed

    Ahn, Sang-Joon; Burne, Robert A

    2006-10-01

    The Smu0630 protein (AtlA) was recently shown to be involved in cell separation, biofilm formation, and autolysis. Here, transcriptional studies revealed that atlA is part of a multigene operon under the control of at least three promoters. The morphology and biofilm-forming capacity of a nonpolar altA mutant could be restored to that of the wild-type strain by adding purified AtlA protein to the medium. A series of truncated derivatives of AtlA revealed that full activity required the C terminus and repeat regions. AtlA was cell associated and readily extractable from with sodium dodecyl sulfate. Of particular interest, the surface protein profile of AtlA-deficient strains was dramatically altered compared to the wild-type strain, as was the nature of the association of the multifunctional adhesin P1 with the cell wall. In addition, AtlA-deficient strains failed to develop competence as effectively as the parental strain. Mutation of thmA, which can be cotranscribed with atlA and encodes a putative pore-forming protein, resulted in a phenotype very similar to that of the AtlA-deficient strain. ThmA was also shown to be required for efficient processing of AtlA to its mature form, and treatment of the thmA mutant strain with full-length AtlA protein did not restore normal cell separation and biofilm formation. The effects of mutating other genes in the operon on cell division, biofilm formation, or AtlA biogenesis were not as profound. This study reveals that AtlA is a surface-associated protein that plays a critical role in the network connecting cell surface biogenesis, biofilm formation, genetic competence, and autolysis.

  11. Dynamic acoustic field activated cell separation (DAFACS).

    PubMed

    Skotis, G D; Cumming, D R S; Roberts, J N; Riehle, M O; Bernassau, A L

    2015-02-07

    Advances in diagnostics, cell and stem cell technologies drive the development of application-specific tools for cell and particle separation. Acoustic micro-particle separation offers a promising avenue for high-throughput, label-free, high recovery, cell and particle separation and isolation in regenerative medicine. Here, we demonstrate a novel approach utilizing a dynamic acoustic field that is capable of separating an arbitrary size range of cells. We first demonstrate the method for the separation of particles with different diameters between 6 and 45 μm and secondly particles of different densities in a heterogeneous medium. The dynamic acoustic field is then used to separate dorsal root ganglion cells. The shearless, label-free and low damage characteristics make this method of manipulation particularly suited for biological applications. Advantages of using a dynamic acoustic field for the separation of cells include its inherent safety and biocompatibility, the possibility to operate over large distances (centimetres), high purity (ratio of particle population, up to 100%), and high efficiency (ratio of separated particles over total number of particles to separate, up to 100%).

  12. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae.

    PubMed

    Cabib, E; Silverman, S J; Shaw, J A

    1992-01-01

    Previous results [E. Cabib, A. Sburlati, B. Bowers & S. J. Silverman (1989) Journal of Cell Biology 108, 1665-1672] strongly suggested that the lysis observed in daughter cells of Saccharomyces cerevisiae defective in chitin synthase 1 (Chs1) was caused by a chitinase that partially degrades the chitin septum in the process of cell separation. Consequently, it was proposed that in wild-type cells, Chs1 acts as a repair enzyme by replenishing chitin during cytokinesis. The chitinase requirement for lysis has been confirmed in two different ways: (a) demethylallosamidin, a more powerful chitinase inhibitor than the previously used allosamidin, is also a much better protector against lysis and (b) disruption of the chitinase gene in chs1 cells eliminates lysis. Reintroduction of a normal chitinase gene, by transformation of those cells with a suitable plasmid, restores lysis. The percentage of lysed cells in strains lacking Chs1 was not increased by elevating the chitinase level with high-copy-number plasmids carrying the hydrolase gene. Furthermore, the degree of lysis varied in different chs1 strains; lysis was abolished in chs1 mutants containing the scs1 suppressor. These results indicate that, in addition to chitinase, lysis requires other gene products that may become limiting.

  13. Differential electrophoretic separation of cells and its effect on cell viability

    NASA Technical Reports Server (NTRS)

    Leise, E. M.; Lesane, F.

    1974-01-01

    An electrophoretic separation method was applied to the separation of cells. To determine the efficiency of the separation, it was necessary to apply existing methodology and develop new methods to assess the characteristics and functions of the separated subpopulations. Through appropriate application of the widely used isoelectric focusing procedure, a reproducible separation method was developed. Cells accumulated at defined pH and 70-80% remained viable. The cells were suitable for further biologic, biochemical and immunologic studies.

  14. Fluorescent-Magnetic-Biotargeting Multifunctional Nanobioprobes for Detecting and Isolating Multiple Types of Tumor Cells

    PubMed Central

    Song, Er-Qun; Hu, Jun; Wen, Cong-Ying; Tian, Zhi-Quan; Yu, Xu; Zhang, Zhi-Ling; Shi, Yun-Bo; Pang, Dai-Wen

    2011-01-01

    Fluorescent-magnetic-biotargeting multifunctional nanobioprobes (FMBMNs) have attracted great attention in recent years due to their increasing, important applications in biomedical research, clinical diagnosis, and biomedicine. We have previously developed such nanobioprobes for the detection and isolation of a single kind of tumor cells. Detection and isolation of multiple tumor markers or tumor cells from complex samples sensitively and with high efficiency is critical for the early diagnosis of tumors, especially malignant tumors or cancers, which will improve clinical diagnosis outcomes and help to select effective treatment approaches. Here, we expanded the application of the monoclonal antibody (mAb)-coupled FMBMNs for multiplexed assays. Multiple types of cancer cells, such as leukemia cells and prostate cancer cells, were detected and collected from mixed samples within 25 minutes by using a magnet and an ordinary fluorescence microscope. The capture efficiencies of mAb-coupled FMBMNs for the above mentioned two types of cells were 96% and 97% respectively. Furthermore, by using the mAb-coupled FMBMNs, specific and sensitive detection and rapid separation of a small number of spiked leukemia cells and prostate cancer cells in a large population of cultured normal cells (about 0.01% were tumor cells) were achieved simply and inexpensively without any sample pretreatment before cell analysis. Therefore, mAb-coupled multicolour FMBMNs may be used for very sensitive detection and rapid isolation of multiple cancer cells in biomedical research and medical diagnostics. PMID:21250650

  15. Profiling of Sugar Nucleotides.

    PubMed

    Rejzek, Martin; Hill, Lionel; Hems, Edward S; Kuhaudomlarp, Sakonwan; Wagstaff, Ben A; Field, Robert A

    2017-01-01

    Sugar nucleotides are essential building blocks for the glycobiology of all living organisms. Detailed information on the types of sugar nucleotides present in a particular cell and how they change as a function of metabolic, developmental, or disease status is vital. The extraction, identification, and quantification of sugar nucleotides in a given sample present formidable challenges. In this chapter, currently used techniques for sugar nucleotide extraction from cells, separation from complex biological matrices, and detection by optical and mass spectrometry methods are discussed. © 2017 Elsevier Inc. All rights reserved.

  16. STUDIES ON BACTERIAL NUTRITION

    PubMed Central

    Thjötta, Theodor; Avery, O. T.

    1921-01-01

    The hemophilic bacteria of which Bacillus influenzæ serves as a type require for their growth two distinct and separable substances, both of which are present in blood and neither of which alone suffices. These substances are (a) a vitamine-like substance which can be extracted from red blood corpuscles, from yeast, and from vegetable cells, which is relatively heat-labile and absorbed from solution by certain agents; (b) a so called X substance which is present in red blood cells, is heat-stable, and acts in minute amounts. PMID:19868543

  17. Antibody production studied by means of the LHG assay*

    PubMed Central

    Wortis, H. H.; Taylor, R. B.; Dresser, D. W.

    1966-01-01

    By means of a modified plaque assay the numbers of cells producing 19S antibody (direct PFC) and 7S antibody (developed PFC) have been studied separately. Significant and somewhat surprising differences in the responses of the two kinds of antibody-producing cell have been noted. It is clear that the route of injection of the antigen is of importance in determining the response in the spleen. The response of both types of PFC was found to be biphasic. The total increase in spleen cell number after immunization was not readily accounted for by the increase in specific PFC. PMID:5954775

  18. Germline stem cells and sex determination in Hydra.

    PubMed

    Nishimiya-Fujisawa, Chiemi; Kobayashi, Satoru

    2012-01-01

    The sex of germline stem cells (GSCs) in Hydra is determined in a cell-autonomous manner. In gonochoristic species like Hydra magnipapillata or H. oligactis, where the sexes are separate, male polyps have sperm-restricted stem cells (SpSCs), while females have egg-restricted stem cells (EgSCs). These GSCs self-renew in a polyp, and are usually transmitted to a new bud from a parental polyp during asexual reproduction. But if these GSCs are lost during subsequent budding or regeneration events, new ones are generated from multipotent stem cells (MPSCs). MPSCs are the somatic stem cells in Hydra that ordinarily differentiate into nerve cells, nematocytes (stinging cells in cnidarians), and gland cells. By means of such a backup system, sexual reproduction is guaranteed for every polyp. Interestingly, Hydra polyps occasionally undergo sex-reversal. This implies that each polyp can produce either type of GSCs, i.e. Hydra are genetically hermaphroditic. Nevertheless a polyp possesses only one type of GSCs at a time. We propose a plausible model for sex-reversal in Hydra. We also discuss so-called germline specific genes, which are expressed in both GSCs and MPSCs, and some future plans to investigate Hydra GSCs.

  19. Bradykinin induced a positive chronotropic effect via stimulation of T- and L-type calcium currents in heart cells.

    PubMed

    El-Bizri, Nesrine; Bkaily, Ghassan; Wang, Shimin; Jacques, Danielle; Regoli, Domenico; D'Orléans-Juste, Pedro; Sukarieh, Rami

    2003-03-01

    Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone.

  20. High performance aqueous symmetric supercapacitors based on advanced carbon electrodes and hydrophilic poly(vinylidene fluoride) porous separator

    NASA Astrophysics Data System (ADS)

    Xie, Qinxing; Huang, Xiaolin; Zhang, Yufeng; Wu, Shihua; Zhao, Peng

    2018-06-01

    The main components of a supercapacitor include two electrodes, electrolyte, and a separator, which are all essential to specify the energy storage capability of the device. In this work, two kinds of porous carbon materials have been fabricated via different routes using pomelo peel as raw material. The specific surface area are 1187 m2 g-1 for the nanosized worm-like carbon, and 1744 m2 g-1 for the nitrogen-enriched microsized carbon. Both carbon materials demonstrate excellent energy storage capability as electrodes for aqueous supercapacitors. According to the three-electrode measurements, the worm-like carbon exhibits a high specific capacitance of 316 F g-1 at 0.2 A g-1 in 6 M KOH, while the other exhibits 471 F g-1 due to the highly enriched nitrogen atoms in structure. In addition, two-electrode coin-type cells have been assembled with the carbon materials as electrodes and hydrophilic poly(vinylidene fluoride) porous membrane as the separator. The assembled cells exhibit high specific capacitances, excellent rate performance and superior cycling durability because of a synergistic effect of the high performance carbon electrodes and hydrophilic porous separator.

  1. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  2. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-09

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.

  3. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).

    PubMed

    Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il

    2011-03-21

    Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications. This journal is © The Royal Society of Chemistry 2011

  4. Andrographolide potentiates the antitumor effect of topotecan in acute myeloid leukemia cells through an intrinsic apoptotic pathway.

    PubMed

    Hodroj, Mohammad Hassan; Jardaly, Achraf; Abi Raad, Sarah; Zouein, Annalise; Rizk, Sandra

    2018-01-01

    Topotecan (TP) is an anticancer drug acting as topoisomerase I inhibitor that is used in the treatment of many types of cancers including leukemia, but it has significant side effects. Andrographolide, a compound extracted from Andrographis paniculata , was recently proven to inhibit the growth of cancer cells and can induce apoptosis. The aim of this study is to investigate the possible synergism between TP and andrographolide in acute myeloid cells in vitro. U937 acute myeloid leukemic cells were cultured using Roswell Park Memorial Institute (RPMI) medium and then treated for 24 h with TP and andrographolide prepared through the dilution of dimethyl sulfoxide (DMSO) stocks with RPMI on the day of treatment. Cell proliferation was assessed using cell proliferation assay upon treatment with both compounds separately and in combination. Cell-cycle study and apoptosis detection were performed by staining the cells with propidium iodide (PI) stain and Annexin V/PI stain, respectively, followed by flow cytometry analysis. Western blotting was used to assess the expression of various proteins involved in apoptotic pathways. Both TP and andrographolide showed an antiproliferative effect in a dose-dependent manner when applied on U937 cells separately; however, pretreating the cells with andrographolide before applying TP exhibited a synergistic effect with lower inhibitory concentrations (half-maximal inhibitory concentration). Treating the cells with TP alone led to specific cell-cycle arrest at S phase that was more prominent upon pretreatment combination with andrographolide. Using Annexin V/PI staining to assess the proapoptotic effect following the pretreatment combination showed an increase in the number of apoptotic cells, which was supported by the Western blot results that manifested an upregulation of several proapoptotic proteins expression. The pretreatment of U937 with andrographolide followed by low doses of TP showed an enhancement in inducing apoptosis when compared to the application of each compound separately.

  5. Andrographolide potentiates the antitumor effect of topotecan in acute myeloid leukemia cells through an intrinsic apoptotic pathway

    PubMed Central

    Hodroj, Mohammad Hassan; Jardaly, Achraf; Abi Raad, Sarah; Zouein, Annalise; Rizk, Sandra

    2018-01-01

    Background Topotecan (TP) is an anticancer drug acting as topoisomerase I inhibitor that is used in the treatment of many types of cancers including leukemia, but it has significant side effects. Andrographolide, a compound extracted from Andrographis paniculata, was recently proven to inhibit the growth of cancer cells and can induce apoptosis. The aim of this study is to investigate the possible synergism between TP and andrographolide in acute myeloid cells in vitro. Materials and methods U937 acute myeloid leukemic cells were cultured using Roswell Park Memorial Institute (RPMI) medium and then treated for 24 h with TP and andrographolide prepared through the dilution of dimethyl sulfoxide (DMSO) stocks with RPMI on the day of treatment. Cell proliferation was assessed using cell proliferation assay upon treatment with both compounds separately and in combination. Cell-cycle study and apoptosis detection were performed by staining the cells with propidium iodide (PI) stain and Annexin V/PI stain, respectively, followed by flow cytometry analysis. Western blotting was used to assess the expression of various proteins involved in apoptotic pathways. Results Both TP and andrographolide showed an antiproliferative effect in a dose-dependent manner when applied on U937 cells separately; however, pretreating the cells with andrographolide before applying TP exhibited a synergistic effect with lower inhibitory concentrations (half-maximal inhibitory concentration). Treating the cells with TP alone led to specific cell-cycle arrest at S phase that was more prominent upon pretreatment combination with andrographolide. Using Annexin V/PI staining to assess the proapoptotic effect following the pretreatment combination showed an increase in the number of apoptotic cells, which was supported by the Western blot results that manifested an upregulation of several proapoptotic proteins expression. Conclusion The pretreatment of U937 with andrographolide followed by low doses of TP showed an enhancement in inducing apoptosis when compared to the application of each compound separately. PMID:29785137

  6. Region-specific spike frequency acceleration in Layer 5 pyramidal neurons mediated by Kv1 subunits

    PubMed Central

    Miller, Mark N; Okaty, Benjamin W; Nelson, Sacha B

    2009-01-01

    Separation of the cortical sheet into functionally distinct regions is a hallmark of neocortical organization. Cortical circuit function emerges from afferent and efferent connectivity, local connectivity within the cortical microcircuit, and the intrinsic membrane properties of neurons that comprise the circuit. While localization of functions to particular cortical areas can be partially accounted for by regional differences in both long range and local connectivity, it is unknown whether the intrinsic membrane properties of cortical cell-types differ between cortical regions. Here we report the first example of a region-specific firing type in layer 5 pyramidal neurons, and show that the intrinsic membrane and integrative properties of a discrete subtype of layer 5 pyramidal neurons differ between primary motor and somatosensory cortices due to region and cell-type-specific Kv1 subunit expression. PMID:19091962

  7. Novel platform for minimizing cell loss on separation process: Droplet-based magnetically activated cell separator

    NASA Astrophysics Data System (ADS)

    Kim, Youngho; Hong, Su; Lee, Sang Ho; Lee, Kangsun; Yun, Seok; Kang, Yuri; Paek, Kyeong-Kap; Ju, Byeong-Kwon; Kim, Byungkyu

    2007-07-01

    To reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACS—which consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tube—we could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry. We could find that the number (3241/59940) of cells lost in the DMACS is much less than that (22360/59940) in the MACS while the efficiency of cell separation in the DMACS (96.07%) is almost the same as that in the MACS (96.72%). Practically, with fluorescent images, it was visually confirmed that the statistical data are reliable. From the viability test by using Hoechst 33 342, it was also demonstrated that there was no cell damage on a gas-liquid interface. Conclusively, DMACS will be a powerful tool to separate rare cells and applicable as a separator, key component of lab-on-a-chip.

  8. Hepatic stellate cell and myofibroblast-like cell gene expression in the explanted cirrhotic livers of patients undergoing liver transplantation.

    PubMed

    Estep, J Michael; O'Reilly, Linda; Grant, Geraldine; Piper, James; Jonsson, Johann; Afendy, Arian; Chandhoke, Vikas; Younossi, Zobair M

    2010-02-01

    Hepatic stellate cells (HSC) are involved in hepatic fibrogenesis. Cell signaling associated with an insult to the liver affects an HSC transdifferentiation to fibrogenic myofibroblast-like cells. To investigate the transcriptional expression distinguishing HSC and myofibroblast-like cells between livers with and without cirrhosis. Tissue from ten cirrhotic livers (undergoing transplant) and four non-cirrhotic livers from the National Disease Research Interchange underwent cell separation to extract HSC and myofibroblast-like cell populations. Separated cell types as well as LI-90 cells were subjected to microarray analysis. Selected microarray results were verified by quantitative real-time PCR. Differential expression of some genes, such as IL-1beta, IL-1alpha, and IL-6, was associated with both transdifferentiation and disease. Other genes, such as fatty acid 2-hydroxylase only show differential expression in association with disease. Functional analysis supported these findings, indicating some signal transduction pathways (IL-6) are involved in disease and activation, whereas retinoid X receptor signaling in HSC from cirrhotic and non-cirrhotic livers varies in scope and quality. These findings indicate distinct phenotypes for HSC from cirrhotic and non-cirrhotic livers. Furthermore, coordinated differential expression between genes involved in the same signal transduction pathways provides some insight into the mechanisms that may control the balance between fibrogenesis and fibrolysis.

  9. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform, and reliable results that will ensure that separator materials have the desired properties for long life and good performance in secondary alkaline cells.

  10. Imaging cell picker: A morphology-based automated cell separation system on a photodegradable hydrogel culture platform.

    PubMed

    Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji

    2018-06-09

    Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Live-cell imaging of phosphoinositide dynamics and membrane architecture during Legionella infection.

    PubMed

    Weber, Stephen; Wagner, Maria; Hilbi, Hubert

    2014-01-28

    The causative agent of Legionnaires' disease, Legionella pneumophila, replicates in amoebae and macrophages in a distinct membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation is governed by the bacterial Icm/Dot type IV secretion system that translocates ~300 different "effector" proteins into host cells. Some of the translocated effectors anchor to the LCV membrane via phosphoinositide (PI) lipids. Here, we use the soil amoeba Dictyostelium discoideum, producing fluorescent PI probes, to analyze the LCV PI dynamics by live-cell imaging. Upon uptake of wild-type or Icm/Dot-deficient L. pneumophila, PtdIns(3,4,5)P3 transiently accumulated for an average of 40 s on early phagosomes, which acquired PtdIns(3)P within 1 min after uptake. Whereas phagosomes containing ΔicmT mutant bacteria remained decorated with PtdIns(3)P, more than 80% of wild-type LCVs gradually lost this PI within 2 h. The process was accompanied by a major rearrangement of PtdIns(3)P-positive membranes condensing to the cell center. PtdIns(4)P transiently localized to early phagosomes harboring wild-type or ΔicmT L. pneumophila and was cleared within minutes after uptake. During the following 2 h, PtdIns(4)P steadily accumulated only on wild-type LCVs, which maintained a discrete PtdIns(4)P identity spatially separated from calnexin-positive endoplasmic reticulum (ER) for at least 8 h. The separation of PtdIns(4)P-positive and ER membranes was even more pronounced for LCVs harboring ΔsidC-sdcA mutant bacteria defective for ER recruitment, without affecting initial bacterial replication in the pathogen vacuole. These findings elucidate the temporal and spatial dynamics of PI lipids implicated in LCV formation and provide insight into host cell membrane and effector protein interactions. The environmental bacterium Legionella pneumophila is the causative agent of Legionnaires' pneumonia. The bacteria form in free-living amoebae and mammalian immune cells a replication-permissive compartment, the Legionella-containing vacuole (LCV). To subvert host cell processes, the bacteria secrete the amazing number of ~300 different proteins into host cells. Some of these proteins bind phosphoinositide (PI) lipids to decorate the LCV. PI lipids are crucial factors involved in host cell membrane dynamics and LCV formation. Using Dictyostelium amoebae producing one or two distinct fluorescent probes, we elucidated the dynamic LCV PI pattern in high temporal and spatial resolution. Notably, the endocytic PI lipid PtdIns(3)P was slowly cleared from LCVs, thus incapacitating the host cell's digestive machinery, while PtdIns(4)P gradually accumulated on the LCV, enabling critical interactions with host organelles. The LCV PI pattern underlies the spatiotemporal configuration of bacterial effector proteins and therefore represents a crucial aspect of LCV formation.

  12. Espin cytoskeletal proteins in the sensory cells of rodent taste buds

    PubMed Central

    Sekerková, Gabriella; Freeman, David; Mugnaini, Enrico; Bartles, James R.

    2010-01-01

    Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste bud cells contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of rat circumvallate taste buds. In confocal images, we counted 21.5±0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7±1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP3R3),α-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP3R3, PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP3R3, α-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of ~3 μm-long microvilli occupying the taste pore, was separated by an espin-depleted zone from a second espin-positive zone situated lower within the taste pit. This latter zone included espin-positive rod-like structures that occasionally extended basally to a depth of 10-12 μm into the cytoplasm of taste cells. We propose that the espin-positive zone in the taste pit coincides with actin bundles in association with the microvilli of type II taste cells, whereas the espin-positive microvilli in the taste pore are the single microvilli of type III taste cells. PMID:16841162

  13. Basic features of boron isotope separation by SILARC method in the two-step iterative static model

    NASA Astrophysics Data System (ADS)

    Lyakhov, K. A.; Lee, H. J.

    2013-05-01

    In this paper we develop a new static model for boron isotope separation by the laser assisted retardation of condensation method (SILARC) on the basis of model proposed by Jeff Eerkens. Our model is thought to be adequate to so-called two-step iterative scheme for isotope separation. This rather simple model helps to understand combined action on boron separation by SILARC method of all important parameters and relations between them. These parameters include carrier gas, molar fraction of BCl3 molecules in carrier gas, laser pulse intensity, gas pulse duration, gas pressure and temperature in reservoir and irradiation cells, optimal irradiation cell and skimmer chamber volumes, and optimal nozzle throughput. A method for finding optimal values of these parameters based on some objective function global minimum search was suggested. It turns out that minimum of this objective function is directly related to the minimum of total energy consumed, and total setup volume. Relations between nozzle throat area, IC volume, laser intensity, number of nozzles, number of vacuum pumps, and required isotope production rate were derived. Two types of industrial scale irradiation cells are compared. The first one has one large throughput slit nozzle, while the second one has numerous small nozzles arranged in parallel arrays for better overlap with laser beam. It is shown that the last one outperforms the former one significantly. It is argued that NO2 is the best carrier gas for boron isotope separation from the point of view of energy efficiency and Ar from the point of view of setup compactness.

  14. Colon Stem Cell and Crypt Dynamics Exposed by Cell Lineage Reconstruction

    PubMed Central

    Itzkovitz, Shalev; Elbaz, Judith; Maruvka, Yosef E.; Segev, Elad; Shlush, Liran I.; Dekel, Nava; Shapiro, Ehud

    2011-01-01

    Stem cell dynamics in vivo are often being studied by lineage tracing methods. Our laboratory has previously developed a retrospective method for reconstructing cell lineage trees from somatic mutations accumulated in microsatellites. This method was applied here to explore different aspects of stem cell dynamics in the mouse colon without the use of stem cell markers. We first demonstrated the reliability of our method for the study of stem cells by confirming previously established facts, and then we addressed open questions. Our findings confirmed that colon crypts are monoclonal and that, throughout adulthood, the process of monoclonal conversion plays a major role in the maintenance of crypts. The absence of immortal strand mechanism in crypts stem cells was validated by the age-dependent accumulation of microsatellite mutations. In addition, we confirmed the positive correlation between physical and lineage proximity of crypts, by showing that the colon is separated into small domains that share a common ancestor. We gained new data demonstrating that colon epithelium is clustered separately from hematopoietic and other cell types, indicating that the colon is constituted of few progenitors and ruling out significant renewal of colonic epithelium from hematopoietic cells during adulthood. Overall, our study demonstrates the reliability of cell lineage reconstruction for the study of stem cell dynamics, and it further addresses open questions in colon stem cells. In addition, this method can be applied to study stem cell dynamics in other systems. PMID:21829376

  15. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions.

    PubMed

    Rao, Nikhil; Grover, Gregory N; Vincent, Ludovic G; Evans, Samantha C; Choi, Yu Suk; Spencer, Katrina H; Hui, Elliot E; Engler, Adam J; Christman, Karen L

    2013-11-01

    Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions.

  16. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis.

    PubMed

    Alazzam, Anas; Mathew, Bobby; Alhammadi, Falah

    2017-03-01

    We describe the design, microfabrication, and testing of a microfluidic device for the separation of cancer cells based on dielectrophoresis. Cancer cells, specifically green fluorescent protein-labeled MDA-MB-231, are successfully separated from a heterogeneous mixture of the same and normal blood cells. MDA-MB-231 cancer cells are separated with an accuracy that enables precise detection and counting of circulating tumor cells present among normal blood cells. The separation is performed using a set of planar interdigitated transducer electrodes that are deposited on the surface of a glass wafer and slightly protrude into the separation microchannel at one side. The device includes two parts, namely, a glass wafer and polydimethylsiloxane element. The device is fabricated using standard microfabrication techniques. All experiments are conducted with low conductivity sucrose-dextrose isotonic medium. The variation in response between MDA-MB-231 cancer cells and normal cells to a certain band of alternating-current frequencies is used for continuous separation of cells. The fabrication of the microfluidic device, preparation of cells and medium, and flow conditions are detailed. The proposed microdevice can be used to detect and separate malignant cells from heterogeneous mixture of cells for the purpose of early screening for cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. On-Demand Cell Internal Short Circuit Device

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Keyser, Matthew

    2014-01-01

    A device implantable in Li-ion cells that can generate a hard internal short circuit on-demand by exposing the cell to 60?C has been demonstrated to be valuable for expanding our understanding of cell responses. The device provides a negligible impact to cell performance and enables the instigation of the 4 general categories of cell internal shorts to determine relative severity and cell design susceptibility. Tests with a 18650 cell design indicates that the anode active material short to the aluminum cathode current collector tends to be more catastrophic than the 3 other types of internal shorts. Advanced safety features (such as shutdown separators) to prevent or mitigate the severity of cell internal shorts can be verified with this device. The hard short success rate achieved to date in 18650 cells is about 80%, which is sufficient for using these cells in battery assemblies for field-failure-relevant, cell-cell thermal runaway propagation verification tests

  18. Investigating reliability attributes of silicon photovoltaic cells - An overview

    NASA Technical Reports Server (NTRS)

    Royal, E. L.

    1982-01-01

    Reliability attributes are being developed on a wide variety of advanced single-crystal silicon solar cells. Two separate investigations: cell-contact integrity (metal-to-silicon adherence), and cracked cells identified with fracture-strength-reducing flaws are discussed. In the cell-contact-integrity investigation, analysis of contact pull-strength data shows that cell types made with different metallization technologies, i.e., vacuum, plated, screen-printed and soldered, have appreciably different reliability attributes. In the second investigation, fracture strength was measured using Czochralski wafers and cells taken at various stages of processing and differences were noted. Fracture strength, which is believed to be governed by flaws introduced during wafer sawing, was observed to improve (increase) after chemical polishing and other process steps that tend to remove surface and edge flaws.

  19. Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms

    PubMed Central

    Sukumaran, Sunil K.; Margolskee, Robert F.; Bachmanov, Alexander A.

    2016-01-01

    Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This “anion effect” has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of isolated mouse taste cells, we identify two separate populations of AI salt-responsive type III taste cells distinguished by their sensitivity to anion size and show that these cells compose subpopulations of acid-responsive taste cells. We also find evidence that a sodium-conducting osmotically sensitive mechanism contributes to salt responses in type III taste cells. Our data not only provide new insights into the transduction mechanisms of AI salt taste but also have important implications for general theories of taste encoding. PMID:26865617

  20. Selection of Shared and Neoantigen-Reactive T Cells for Adoptive Cell Therapy Based on CD137 Separation.

    PubMed

    Seliktar-Ofir, Sivan; Merhavi-Shoham, Efrat; Itzhaki, Orit; Yunger, Sharon; Markel, Gal; Schachter, Jacob; Besser, Michal J

    2017-01-01

    Adoptive cell therapy (ACT) of autologous tumor infiltrating lymphocytes (TIL) is an effective immunotherapy for patients with solid tumors, yielding objective response rates of around 40% in refractory patients with metastatic melanoma. Most clinical centers utilize bulk, randomly isolated TIL from the tumor tissue for ex vivo expansion and infusion. Only a minor fraction of the administered T cells recognizes tumor antigens, such as shared and mutation-derived neoantigens, and consequently eliminates the tumor. Thus, there are many ongoing effects to identify and select tumor-specific TIL for therapy; however, those approaches are very costly and require months, which is unreasonable for most metastatic patients. CD137 (4-1BB) has been identified as a co-stimulatory marker, which is induced upon the specific interaction of T cells with their target cell. Therefore, CD137 can be a useful biomarker and an important tool for the selection of tumor-reactive T cells. Here, we developed and validated a simple and time efficient method for the selection of CD137-expressing T cells for therapy based on magnetic bead separation. CD137 selection was performed with clinical grade compliant reagents, and TIL were expanded in a large-scale manner to meet cell numbers required for the patient setting in a GMP facility. For the first time, the methodology was designed to comply with both clinical needs and limitations, and its feasibility was assessed. CD137-selected TIL demonstrated significantly increased antitumor reactivity and were enriched for T cells recognizing neoantigens as well as shared tumor antigens. CD137-based selection enabled the enrichment of tumor-reactive T cells without the necessity of knowing the epitope specificity or the antigen type. The direct implementation of the CD137 separation method to the cell production of TIL may provide a simple way to improve the clinical efficiency of TIL ACT.

  1. Selection of Shared and Neoantigen-Reactive T Cells for Adoptive Cell Therapy Based on CD137 Separation

    PubMed Central

    Seliktar-Ofir, Sivan; Merhavi-Shoham, Efrat; Itzhaki, Orit; Yunger, Sharon; Markel, Gal; Schachter, Jacob; Besser, Michal J.

    2017-01-01

    Adoptive cell therapy (ACT) of autologous tumor infiltrating lymphocytes (TIL) is an effective immunotherapy for patients with solid tumors, yielding objective response rates of around 40% in refractory patients with metastatic melanoma. Most clinical centers utilize bulk, randomly isolated TIL from the tumor tissue for ex vivo expansion and infusion. Only a minor fraction of the administered T cells recognizes tumor antigens, such as shared and mutation-derived neoantigens, and consequently eliminates the tumor. Thus, there are many ongoing effects to identify and select tumor-specific TIL for therapy; however, those approaches are very costly and require months, which is unreasonable for most metastatic patients. CD137 (4-1BB) has been identified as a co-stimulatory marker, which is induced upon the specific interaction of T cells with their target cell. Therefore, CD137 can be a useful biomarker and an important tool for the selection of tumor-reactive T cells. Here, we developed and validated a simple and time efficient method for the selection of CD137-expressing T cells for therapy based on magnetic bead separation. CD137 selection was performed with clinical grade compliant reagents, and TIL were expanded in a large-scale manner to meet cell numbers required for the patient setting in a GMP facility. For the first time, the methodology was designed to comply with both clinical needs and limitations, and its feasibility was assessed. CD137-selected TIL demonstrated significantly increased antitumor reactivity and were enriched for T cells recognizing neoantigens as well as shared tumor antigens. CD137-based selection enabled the enrichment of tumor-reactive T cells without the necessity of knowing the epitope specificity or the antigen type. The direct implementation of the CD137 separation method to the cell production of TIL may provide a simple way to improve the clinical efficiency of TIL ACT. PMID:29067023

  2. NIFLUMIC ACID BLOCKS NATIVE AND RECOMBINANT T-TYPE CHANNELS

    PubMed Central

    Balderas, E; Arteaga-Tlecuitl, R; Rivera, M; Gomora, JC; Darszon, A

    2012-01-01

    Voltage-dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation and the acrosome reaction, all essential for fertilization. Pharmacological evidence has suggested T-type calcium channels participate in the acrosome reaction. Niflumic acid (NA), a non-steroidal anti-inflammatory drug commonly used as chloride channel blocker, blocks T-currents in mouse spermatogenic cells and Cl− channels in testicular sperm. Here we examine the mechanism of NA blockade and explore if it can be used to separate the contribution of different CaV3 members previously detected in these cells. Electrophysiological patch-clamp recordings were performed in isolated mouse spermatogenic cells and in HEK cells heterologously expressing CaV3 channels. NA blocks mouse spermatogenic cell T-type currents with an IC50 of 73.5 µM, without major voltage-dependent effects. The NA blockade is more potent in the open and in the inactivated state than in the closed state of the T-type channels. Interestingly, we found that heterologously expressed CaV3.1 and CaV3.3 channels were more sensitive to NA than CaV3.2 channels, and this drug substantially slowed the recovery from inactivation of the three isoforms. Molecular docking modeling of drug-channel binding predicts that NA binds preferentially to the extracellular face of CaV3.1 channels. The biophysical characteristics of mouse spermatogenic cell T-type currents more closely resemble those from heterologously expressed CaV3.1 channels, including their sensitivity to NA. As CaV3.1 null mice maintain their spermatogenic cell T-currents, it is likely that a novel CaV3.2 isoform is responsible for them. PMID:21898399

  3. Statistical Modeling of Single Target Cell Encapsulation

    PubMed Central

    Moon, SangJun; Ceyhan, Elvan; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems. PMID:21814548

  4. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. II. Sensitivity and response dynamics to hair bundle displacement

    NASA Technical Reports Server (NTRS)

    Baird, R. A.

    1994-01-01

    1. Hair cells in whole-mount in vitro preparations of the utricular macula of the bullfrog (Rana catesbeiana) were selected according to their macular location and hair bundle morphology. The sensitivity and response dynamics of selected hair cells to natural stimulation were examined by recording their voltage responses to step and sinusoidal hair bundle displacements applied to their longest stereocilia. 2. The voltage responses of 31 hair cells to sinusoidal hair bundle displacements were characterized by their gains and phases, taken with respect to peak hair bundle displacement. The gains of Type B and Type C cells at both 0.5 and 5.0 Hz were markedly lower than those of Type F and Type E cells. Phases, with the exception of Type C cells, lagged hair bundle displacement at 0.5 Hz. Type C cells had phase leads of 25-40 degrees. At 5.0 Hz, response phases in all cells were phase lagged with respect to those at 0.5 Hz. Type C cells had larger gains and smaller phase leads at 5.0 Hz than at 0.5 Hz, suggesting the presence of low-frequency adaptation. 3. Displacement-response curves, derived from the voltage responses to 5.0-Hz sinusoids, were sigmoidal in shape and asymmetrical, with the depolarizing response having a greater magnitude and saturating less abruptly than the hyperpolarizing response. When normalized to their largest displacement the linear ranges of these curves varied from < 0.5 to 1.25 microns and were largest in Type B and smallest in Type F and Type E cells. Sensitivity, defined as the slope of the normalized displacement-response curve, was inversely correlated with linear range. 4. The contribution of geometric factors associated with the hair bundle to linear range and sensitivity were predicted from realistic models of utricular hair bundles created using morphological data obtained from light and electron microscopy. Three factors, including 1) the inverse ratio of the lengths of the kinocilium and longest stereocilia, representing the lever arm between kinociliary and stereociliary displacement; 2) tip link extension/linear displacement, largely a function of stereociliary height and separation; and 3) stereociliary number, an estimate of the number of transduction channels, were considered in this analysis. The first of these factors was quantitatively more important than the latter two factors and their total contribution was largest in Type B and Type C cells. Theoretical models were also used to calculate the relation between rotary and linear displacement.(ABSTRACT TRUNCATED AT 400 WORDS).

  5. Anatomic Characteristics Associated with Head Splitting in Cabbage (Brassica oleracea var. capitata L.)

    PubMed Central

    Li, Xiaonan; Choi, Su Ryun; Wang, Yunbo; Sung, Chang-keun; Im, Subin; Ramchiary, Nirala; Zhou, Guangsheng; Lim, Yong Pyo

    2015-01-01

    Cabbage belonging to Brassicaceae family is one of the most important vegetables cultivated worldwide. The economically important part of cabbage crop is head, formed by leaves which may be of splitting and non-splitting types. Cabbage varieties showing head splitting causes huge loss to the farmers and therefore finding the molecular and structural basis of splitting types would be helpful to breeders. To determine which anatomical characteristics were related to head-splitting in cabbage, we analyzed two contrasting cabbage lines and their offspring using a field emission scanning electron microscope. The inbred line “747” is an early head-splitting type, while the inbred line “748” is a head-splitting-resistant type. The petiole cells of “747” seems to be larger than those of “748” at maturity; however, there was no significant difference in petiole cell size at both pre-heading and maturity stages. The lower epidermis cells of “747” were larger than those of “748” at the pre-heading and maturity stages. “747” had thinner epidermis cell wall than “748” at maturity stage, however, there was no difference of the epidermis cell wall thickness in the two lines at the pre-heading stage. The head-splitting plants in the F1 and F2 population inherited the larger cell size and thinner cell walls of epidermis cells in the petiole. In the petiole cell walls of “747” and the F1 and F2 plants that formed splitting heads, the cellulose microfibrils were loose and had separated from each other. These findings verified that anomalous cellulose microfibrils, larger cell size and thinner-walled epidermis cells are important genetic factors that make cabbage heads prone to splitting. PMID:26536356

  6. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies.

    PubMed

    Yang, Fang; Liao, Xiangzhi; Tian, Yuan; Li, Guiying

    2017-04-01

    Exosomes, nanovesicles secreted by most types of cells, exist in virtually all bodily fluids. Their rich nucleic acid and protein content make them potentially valuable biomarkers for noninvasive molecular diagnostics. They also show promise, after further development, to serve as a drug delivery system. Unfortunately, existing exosome separation technologies, such as ultracentrifugation and methods incorporating magnetic beads, are time-consuming, laborious and separate only exosomes of low purity. Thus, a more effective separation method is highly desirable. Microfluidic platforms are ideal tools for exosome separation, since they enable fast, cost-efficient, portable and precise processing of nanoparticles and small volumes of liquid samples. Recently, several microfluidic-based exosome separation technologies have been studied. In this article, the advantages of the most recent technologies, as well as their limitations, challenges and potential uses in novel microfluidic exosome separation and collection applications is reviewed. This review outlines the uses of new powerful microfluidic exosome detection tools for biologists and clinicians, as well as exosome separation tools for microfluidic engineers. Current challenges of exosome separation methodologies are also described, in order to highlight areas for future research and development. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Redox‐Active Separators for Lithium‐Ion Batteries

    PubMed Central

    Pan, Ruijun; Ruan, Changqing; Edström, Kristina; Strømme, Maria

    2017-01-01

    Abstract A bilayered cellulose‐based separator design is presented that can enhance the electrochemical performance of lithium‐ion batteries (LIBs) via the inclusion of a porous redox‐active layer. The proposed flexible redox‐active separator consists of a mesoporous, insulating nanocellulose fiber layer that provides the necessary insulation between the electrodes and a porous, conductive, and redox‐active polypyrrole‐nanocellulose layer. The latter layer provides mechanical support to the nanocellulose layer and adds extra capacity to the LIBs. The redox‐active separator is mechanically flexible, and no internal short circuits are observed during the operation of the LIBs, even when the redox‐active layer is in direct contact with both electrodes in a symmetric lithium–lithium cell. By replacing a conventional polyethylene separator with a redox‐active separator, the capacity of the proof‐of‐concept LIB battery containing a LiFePO4 cathode and a Li metal anode can be increased from 0.16 to 0.276 mA h due to the capacity contribution from the redox‐active separator. As the presented redox‐active separator concept can be used to increase the capacities of electrochemical energy storage systems, this approach may pave the way for new types of functional separators. PMID:29593967

  8. Redox-Active Separators for Lithium-Ion Batteries.

    PubMed

    Wang, Zhaohui; Pan, Ruijun; Ruan, Changqing; Edström, Kristina; Strømme, Maria; Nyholm, Leif

    2018-03-01

    A bilayered cellulose-based separator design is presented that can enhance the electrochemical performance of lithium-ion batteries (LIBs) via the inclusion of a porous redox-active layer. The proposed flexible redox-active separator consists of a mesoporous, insulating nanocellulose fiber layer that provides the necessary insulation between the electrodes and a porous, conductive, and redox-active polypyrrole-nanocellulose layer. The latter layer provides mechanical support to the nanocellulose layer and adds extra capacity to the LIBs. The redox-active separator is mechanically flexible, and no internal short circuits are observed during the operation of the LIBs, even when the redox-active layer is in direct contact with both electrodes in a symmetric lithium-lithium cell. By replacing a conventional polyethylene separator with a redox-active separator, the capacity of the proof-of-concept LIB battery containing a LiFePO 4 cathode and a Li metal anode can be increased from 0.16 to 0.276 mA h due to the capacity contribution from the redox-active separator. As the presented redox-active separator concept can be used to increase the capacities of electrochemical energy storage systems, this approach may pave the way for new types of functional separators.

  9. Rare Cell Capture in Microfluidic Devices

    PubMed Central

    Pratt, Erica D.; Huang, Chao; Hawkins, Benjamin G.; Gleghorn, Jason P.; Kirby, Brian J.

    2010-01-01

    This article reviews existing methods for the isolation, fractionation, or capture of rare cells in microfluidic devices. Rare cell capture devices face the challenge of maintaining the efficiency standard of traditional bulk separation methods such as flow cytometers and immunomagnetic separators while requiring very high purity of the target cell population, which is typically already at very low starting concentrations. Two major classifications of rare cell capture approaches are covered: (1) non-electrokinetic methods (e.g., immobilization via antibody or aptamer chemistry, size-based sorting, and sheath flow and streamline sorting) are discussed for applications using blood cells, cancer cells, and other mammalian cells, and (2) electrokinetic (primarily dielectrophoretic) methods using both electrode-based and insulative geometries are presented with a view towards pathogen detection, blood fractionation, and cancer cell isolation. The included methods were evaluated based on performance criteria including cell type modeled and used, number of steps/stages, cell viability, and enrichment, efficiency, and/or purity. Major areas for improvement are increasing viability and capture efficiency/purity of directly processed biological samples, as a majority of current studies only process spiked cell lines or pre-diluted/lysed samples. Despite these current challenges, multiple advances have been made in the development of devices for rare cell capture and the subsequent elucidation of new biological phenomena; this article serves to highlight this progress as well as the electrokinetic and non-electrokinetic methods that can potentially be combined to improve performance in future studies. PMID:21532971

  10. High Cell Surface Expression of CD4 Allows Distinction of CD4+CD25+ Antigen-specific Effector T Cells from CD4+CD25+ Regulatory T Cells in Murine Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.

    2008-01-01

    Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698

  11. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets

    PubMed Central

    Macosko, Evan Z.; Basu, Anindita; Satija, Rahul; Nemesh, James; Shekhar, Karthik; Goldman, Melissa; Tirosh, Itay; Bialas, Allison R.; Kamitaki, Nolan; Martersteck, Emily M.; Trombetta, John J.; Weitz, David A.; Sanes, Joshua R.; Shalek, Alex K.; Regev, Aviv; McCarroll, Steven A.

    2015-01-01

    Summary Cells, the basic units of biological structure and function, vary broadly in type and state. Single-cell genomics can characterize cell identity and function, but limitations of ease and scale have prevented its broad application. Here we describe Drop-Seq, a strategy for quickly profiling thousands of individual cells by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell’s RNAs, and sequencing them all together. Drop-Seq analyzes mRNA transcripts from thousands of individual cells simultaneously while remembering transcripts’ cell of origin. We analyzed transcriptomes from 44,808 mouse retinal cells and identified 39 transcriptionally distinct cell populations, creating a molecular atlas of gene expression for known retinal cell classes and novel candidate cell subtypes. Drop-Seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution. PMID:26000488

  12. Ordered defect compounds in CuInSe{sub 2} for photovoltaic solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, K.; Katayama-Yoshida, H.

    2014-02-21

    Due to the complete compensation, defect complex (2V{sub Cu}+In{sub Cu}), namely two Cu vacancies and In located at Cu site, is stable in CuInSe{sub 2} (CIS). It is known that the series of ordered defect compounds (ODC) are constracted by ordering the defect complex. Based on the total energy calcalation by using the Korringa-Kohn-Rostoker coherent potential approxiamtion (KKR-CPA) method, we discuss phase separation of the CIS with the defect complexes into ODC and CIS. Since the band alignment between ODC and CIS is calculated to be type 2, effective electron-hole separation at the interface between ODC and CIS can bemore » expected. This causes the enhancement of conversion efficiency of CIS-based solar cell materials.« less

  13. Numerical simulation of dielectrophoretic separation of live/dead cells using a three-dimensional nonuniform AC electric field in micro-fabricated devices.

    PubMed

    Tada, Shigeru

    2015-01-01

    The analysis of cell separation has many important biological and medical applications. Dielectrophoresis (DEP) is one of the most effective and widely used techniques for separating and identifying biological species. In the present study, a DEP flow channel, a device that exploits the differences in the dielectric properties of cells in cell separation, was numerically simulated and its cell-separation performance examined. The samples of cells used in the simulation were modeled as human leukocyte (B cell) live and dead cells. The cell-separation analysis was carried out for a flow channel equipped with a planar electrode on the channel's top face and a pair of interdigitated counter electrodes on the bottom. This yielded a three-dimensional (3D) nonuniform AC electric field in the entire space of the flow channel. To investigate the optimal separation conditions for mixtures of live and dead cells, the strength of the applied electric field was varied. With appropriately selected conditions, the device was predicted to be very effective at separating dead cells from live cells. The major advantage of the proposed method is that a large volume of sample can be processed rapidly because of a large spacing of the channel height.

  14. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor.

    PubMed

    Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian

    2010-03-01

    A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells. Copyright (c) 2009 John Wiley & Sons, Ltd.

  15. Electrophoretic cell separation using microspheres. [purification of lymphocytes

    NASA Technical Reports Server (NTRS)

    Smolka, A.; Sachs, G.

    1980-01-01

    Methods of cell separation based on the electrokinetic properties of the cell membrane offer a degree of discrimination among cell populations which is not available with methods based on cell size or density alone. Studies aimed at extending red cell separations using microspheres to purification of lymphocytes.

  16. Inducing somatic meiosis-like reduction at high frequency by caffeine in root-tip cells of Vicia faba.

    PubMed

    Chen, Y; Zhang, L; Zhou, Y; Geng, Y; Chen, Z

    2000-07-20

    Germinated seeds of Vicia faba were treated in caffeine solutions of different concentration for different durations to establish the inducing system of somatic meiosis-like reduction. The highest frequency of somatic meiosis-like reduction could reach up to 54.0% by treating the root tips in 70 mmol/l caffeine solution for 2 h and restoring for 24 h. Two types of somatic meiosis-like reduction were observed. One was reductional grouping, in which the chromosomes in a cell usually separated into two groups, and the role of spindle fibers did not show. The other type was somatic meiosis, which was analogous to meiosis presenting in gametogenesis, and chromosome pairing and chiasmata were visualized.

  17. Enhancement of carrier lifetimes in type-II quantum dot/quantum well hybrid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couto, O. D. D., E-mail: odilon@ifi.unicamp.br; Almeida, P. T. de; Santos, G. E. dos

    We investigate optical transitions and carrier dynamics in hybrid structures containing type-I GaAs/AlGaAs quantum wells (QWs) and type-II GaSb/AlGaAs quantum dots (QDs). We show that the optical recombination of photocreated electrons confined in the QWs with holes in the QDs and wetting layer can be modified according to the QW/QD spatial separation. In particular, for low spacer thicknesses, the QW optical emission can be suppressed due to the transference of holes from the QW to the GaSb layer, favoring the optical recombination of spatially separated carriers, which can be useful for optical memory and solar cell applications. Time-resolved photoluminescence (PL)more » measurements reveal non-exponential recombination dynamics. We demonstrate that the PL transients can only be quantitatively described by considering both linear and quadratic terms of the carrier density in the bimolecular recombination approximation for type-II semiconductor nanostructures. We extract long exciton lifetimes from 700 ns to 5 μs for QDs depending on the spacer layer thickness.« less

  18. Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient neurons.

    PubMed

    Karten, Barbara; Vance, Dennis E; Campenot, Robert B; Vance, Jean E

    2003-02-07

    Niemann Pick type C (NPC) disease is a progressive neurodegenerative disorder. In cells lacking functional NPC1 protein, endocytosed cholesterol accumulates in late endosomes/lysosomes. We utilized primary neuronal cultures in which cell bodies and distal axons reside in separate compartments to investigate the requirement of NPC1 protein for transport of cholesterol from cell bodies to distal axons. We have recently observed that in NPC1-deficient neurons compared with wild-type neurons, cholesterol accumulates in cell bodies but is reduced in distal axons (Karten, B., Vance, D. E., Campenot, R. B., and Vance, J. E. (2002) J. Neurochem. 83, 1154-1163). We now show that NPC1 protein is expressed in both cell bodies and distal axons. In NPC1-deficient neurons, cholesterol delivered to cell bodies from low density lipoproteins (LDLs), high density lipoproteins, or cyclodextrin complexes was transported into axons in normal amounts, whereas transport of endogenously synthesized cholesterol was impaired. Inhibition of cholesterol synthesis with pravastatin in wild-type and NPC1-deficient neurons reduced axonal growth. However, LDLs restored a normal rate of growth to wild-type but not NPC1-deficient neurons treated with pravastatin. Thus, although LDL cholesterol is transported into axons of NPC1-deficient neurons, this source of cholesterol does not sustain normal axonal growth. Over the lifespan of NPC1-deficient neurons, these defects in cholesterol transport might be responsible for the observed altered distribution of cholesterol between cell bodies and axons and, consequently, might contribute to the neurological dysfunction in NPC disease.

  19. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.

    PubMed

    Lee, Myung Gwon; Shin, Joong Ho; Bae, Chae Yun; Choi, Sungyoung; Park, Je-Kyun

    2013-07-02

    We report a contraction-expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ~45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 10(8) cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.

  20. Carbon Nanotubes Preserve Normal Phenotypes Under Cancer-Promoting Conditions

    NASA Astrophysics Data System (ADS)

    Wailes, Elizabeth; Levi-Polyachenko, Nicole

    2015-03-01

    Tumor-associated fibroblasts and cancer cells have long been known to create a feedback loop that further stimulates the cancer. While this has been explored from a molecular biology standpoint, little is known about the physical relationship of the cell types even though both sets of cells are known to be mechanosensitive. Indeed, for both fibroblasts and cancer, mechanical signals can make the difference between a normal or pathological cell. To evaluate this relationship and test if it can be manipulated to favor normal cells, atomic force microscopy (AFM) and confocal microscopy was performed on fibroblast and breast cancer cell co-cultures with a collagen gel matrix to simulate the extracellular matrix. Pathological behavior was encouraged through the addition of transforming growth factor beta (TGF- β) . In a separate group, this behavior was discouraged through the doping of the collagen gel with multi-walled carbon nanotubes (MWNT). Significant differences were observed both in the elastic moduli of each cell type and the cancer cells' propensity to migrate through the gel as a model for metastasis. These results shed new light on how cancer progresses and promote the further investigation of nano-mechanical solutions to cancer.

  1. A hormone map of human immune cells showing the presence of adrenocorticotropic hormone, triiodothyronine and endorphin in immunophenotyped white blood cells

    PubMed Central

    Pállinger, Éva; Csaba, György

    2008-01-01

    The amounts of adrenocorticotropic hormone (ACTH), endorphin and triiodothyronine (T3) in twenty-six blood samples from men and women who were healthy or had non-haematological diseases were determined by flow cytometry. Lymphocytes were immunophenotyped using monoclonal antibodies against cell surface antigens, and monocytes and granulocytes were separated by their size and granularity (using forward-scatter versus side-scatter dot plots). Each hormone was found in each cell type. The hormone content of lymphocytes was balanced, but the concentration of ACTH was significantly lower in activated T cells, that of endorphin was significantly lower in natural killer (NK) cells, and that of T3 was lower in both cell types compared with values for all lymphocytes. Monocytes and granulocytes contained very significantly more hormones than lymphocytes or monocytes. The concentration of endorphin was an order of magnitude higher in granulocytes than in monocytes or lymphocytes, reflecting the pain-relieving role of granulocytes during inflammation. Compared with monocytes, in granulocytes there was a higher concentration of ACTH and a lower concentration of T3, which suggests selective hormone production by these cells. PMID:18005034

  2. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.

  3. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions. PMID:28042492

  4. Further analyses of human kidney cell populations separated on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Stewart, Robin M.; Todd, Paul; Cole, Kenneth D.; Morrison, Dennis R.

    1992-01-01

    Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120 C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantization of plasminogen activators in these samples. These assays of frozen-culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator-producing cells from nonproducing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one other.

  5. Floral nectar production and carbohydrate composition and the structure of receptacular nectaries in the invasive plant Bunias orientalis L. (Brassicaceae).

    PubMed

    Denisow, Bożena; Masierowska, Marzena; Antoń, Sebastian

    2016-11-01

    The data relating to the nectaries and nectar secretion in invasive Brassicacean taxa are scarce. In the present paper, the nectar production and nectar carbohydrate composition as well as the morphology, anatomy and ultrastructure of the floral nectaries in Bunias orientalis were investigated. Nectary glands were examined using light, fluorescence, scanning electron and transmission electron microscopy. The quantities of nectar produced by flowers and total sugar mass in nectar were relatively low. Total nectar carbohydrate production per 10 flowers averaged 0.3 mg. Nectar contained exclusively glucose (G) and fructose (F) with overall G/F ratio greater than 1. The flowers of B. orientalis have four nectaries placed at the base of the ovary. The nectarium is intermediate between two nectary types: the lateral and median nectary type (lateral and median glands stay separated) and the annular nectary type (both nectaries are united into one). Both pairs of glands represent photosynthetic type and consist of epidermis and glandular tissue. However, they differ in their shape, size, secretory activity, dimensions of epidermal and parenchyma cells, thickness of secretory parenchyma, phloem supply, presence of modified stomata and cuticle ornamentation. The cells of nectaries contain dense cytoplasm, plastids with starch grains and numerous mitochondria. Companion cells of phloem lack cell wall ingrowths. The ultrastructure of secretory cells indicates an eccrine mechanism of secretion. Nectar is exuded throughout modified stomata.

  6. Evaluation and comparison of histopathologic grading systems of epithelial carcinoma of the uterine cervix: Gynecologic Oncology Group studies.

    PubMed

    Stock, R J; Zaino, R; Bundy, B N; Askin, F B; Woodward, J; Fetter, B; Paulson, J A; DiSaia, P J; Stehman, F B

    1994-04-01

    The subjects of this study are 445 patients with advanced cervical cancer treated by standardized radiation therapy. Upon entry into one of two Gynecologic Oncology Group (GOG) protocols, original pathologic diagnoses and histologic tumor descriptions for each patient were compared with separate evaluations made by a consensus opinion of two GOG pathologists. A review diagnosis using grade, cell type, and the Stendahl scoring system was then made by the first author (R.J.S.) without knowledge of the prior diagnoses. Of the original pathologists' diagnoses, 21% did not include grade or cell type. There was little agreement among the different pathologists as to the use of either specific grade or cell type. Histologic grade, irrespective of the pathologists making the diagnosis, had no correlation to prognosis. The Reagan and Wentz large-cell keratinizing (LCK) cell type, when applied by the author to tumors with any form of squamous keratinization present, identified a group of patients with a poorer prognosis, although not independently of other prognostic factors. The Stendahl scoring system identified a number of patients with both a poorer and better prognosis. This was statistically significant and independent of other risk factors. A major limitation, however, was the number of patients evaluable because of inadequate biopsy material in 23.6% of the study group.

  7. Fresenius AS.TEC204 blood cell separator.

    PubMed

    Sugai, Mikiya

    2003-02-01

    Fresenius AS.TEC204 is a third-generation blood cell separator that incorporates the continuous centrifugal separation method and automatic control of the cell separation process. Continuous centrifugation separates cell components according to their specific gravity, and different cell components are either harvested or eliminated as needed. The interface between the red blood cell and plasma is optically detected, and the Interface Control (IFC) cooperates with different pumps, monitors and detectors to harvest required components automatically. The system is composed of three major sections; the Front Panel Unit; the Pump Unit, and the Centrifuge Unit. This unit can be used for a wide variety of clinical applications including collection of platelets, peripheral blood stem cells, bone marrow stem cells, granulocytes, mononuclear cells, and exchange of plasma or red cells, and for plasma treatment.

  8. Exploring what prompts ITIC to become a superior acceptor in organic solar cell by combining molecular dynamics simulation with quantum chemistry calculation.

    PubMed

    Pan, Qing-Qing; Li, Shuang-Bao; Duan, Ying-Chen; Wu, Yong; Zhang, Ji; Geng, Yun; Zhao, Liang; Su, Zhong-Min

    2017-11-29

    The interface characteristic is a crucial factor determining the power conversion efficiency of organic solar cells (OSCs). In this work, our aim is to conduct a comparative study on the interface characteristics between the very famous non-fullerene acceptor, ITIC, and a fullerene acceptor, PC71BM by combining molecular dynamics simulations with density functional theory. Based on some typical interface models of the acceptor ITIC or PC71BM and the donor PBDB-T selected from MD simulation, besides the evaluation of charge separation/recombination rates, the relative positions of Frenkel exciton (FE) states and the charge transfer states along with their oscillator strengths are also employed to estimate the charge separation abilities. The results show that, when compared with those for the PBDB-T/PC71BM interface, the CT states are more easily formed for the PBDB-T/ITIC interface by either the electron transfer from the FE state or direct excitation, indicating the better charge separation ability of the former. Moreover, the estimation of the charge separation efficiency manifests that although these two types of interfaces have similar charge recombination rates, the PBDB-T/ITIC interface possesses the larger charge separation rates than those of the PBDB-T/PC71BM interface. Therefore, the better match between PBDB-T and ITIC together with a larger charge separation efficiency at the interface are considered to be the reasons for the prominent performance of ITIC in OSCs.

  9. Coordinated encoding between cell types in the retina: insights from the theory of phase transitions

    NASA Astrophysics Data System (ADS)

    Sharpee, Tatyana

    2015-03-01

    In this talk I will describe how the emergence of some types of neurons in the brain can be quantitatively described by the theory of transitions between different phases of matter. The two key parameters that control the separation of neurons into subclasses are the mean and standard deviation of noise levels among neurons in the population. The mean noise level plays the role of temperature in the classic theory of phase transitions, whereas the standard deviation is equivalent to pressure, in the case of liquid-gas transitions, or to magnetic field for magnetic transitions. Our results account for properties of two recently discovered types of salamander OFF retinal ganglion cells, as well as the absence of multiple types of ON cells. We further show that, across visual stimulus contrasts, retinal circuits continued to operate near the critical point whose quantitative characteristics matched those expected near a liquid-gas critical point and described by the nearest-neighbor Ising model in three dimensions. Because the retina needs to operate under changing stimulus conditions, the observed parameters of cell types corresponded to metastable states in the region between the spinodal line and the line describing maximally informative solutions. Such properties of neural circuits can maximize information transmission in a given environment while retaining the ability to quickly adapt to a new environment. NSF CAREER award 1254123 and NIH R01EY019493

  10. Morphology of human embryonic kidney cells in culture after space flight

    NASA Technical Reports Server (NTRS)

    Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.

    1985-01-01

    The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.

  11. Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors.

    PubMed

    Kind, Thomas; Issing, Matthias; Arnold, Rüdiger; Müller, Bernt

    2002-12-01

    A novel bipolar transistor for extracellular recording the electrical activity of biological cells is presented, and the electrical behavior compared with the field-effect transistor (FET). Electrical coupling is examined between single cells separated from the heart of adults rats (cardiac myocytes) and both types of transistors. To initiate a local extracellular voltage, the cells are periodically stimulated by a patch pipette in voltage clamp and current clamp mode. The local extracellular voltage is measured by the planar integrated electronic sensors: the bipolar and the FET. The small signal transistor currents correspond to the local extracellular voltage. The two types of sensor transistors used here were developed and manufactured in the laboratory of our institute. The manufacturing process and the interfaces between myocytes and transistors are described. The recordings are interpreted by way of simulation based on the point-contact model and the single cardiac myocyte model.

  12. Myxococcus xanthus Developmental Cell Fate Production: Heterogeneous Accumulation of Developmental Regulatory Proteins and Reexamination of the Role of MazF in Developmental Lysis

    PubMed Central

    Lee, Bongsoo; Holkenbrink, Carina; Treuner-Lange, Anke

    2012-01-01

    Myxococcus xanthus undergoes a starvation-induced multicellular developmental program during which cells partition into three known fates: (i) aggregation into fruiting bodies followed by differentiation into spores, (ii) lysis, or (iii) differentiation into nonaggregating persister-like cells, termed peripheral rods. As a first step to characterize cell fate segregation, we enumerated total, aggregating, and nonaggregating cells throughout the developmental program. We demonstrate that both cell lysis and cell aggregation begin with similar timing at approximately 24 h after induction of development. Examination of several known regulatory proteins in the separated aggregated and nonaggregated cell fractions revealed previously unknown heterogeneity in the accumulation patterns of proteins involved in type IV pilus (T4P)-mediated motility (PilC and PilA) and regulation of development (MrpC, FruA, and C-signal). As part of our characterization of the cell lysis fate, we set out to investigate the unorthodox MazF-MrpC toxin-antitoxin system which was previously proposed to induce programmed cell death (PCD). We demonstrate that deletion of mazF in two different wild-type M. xanthus laboratory strains does not significantly reduce developmental cell lysis, suggesting that MazF's role in promoting PCD is an adaption to the mutant background strain used previously. PMID:22493014

  13. Green grasses as light harvesters in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  14. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  15. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  16. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  17. Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations.

    PubMed

    Han, Ki-Ho; Frazier, A Bruno

    2006-02-01

    This paper presents the characterization of continuous single-stage and three-stage cascade paramagnetic capture (PMC) mode magnetophoretic microseparators for high efficiency separation of red and white blood cells from diluted whole blood based on their native magnetic properties. The separation mechanism for both PMC microseparators is based on a high gradient magnetic separation (HGMS) method. This approach enables separation of blood cells without the use of additives such as magnetic beads. Experimental results for the single-stage PMC microseparator show that 91.1% of red blood cells were continuously separated from the sample at a volumetric flow rate of 5 microl h-1. In addition, the three-stage cascade PMC microseparator continuously separated 93.5% of red blood cells and 97.4% of white blood cells from whole blood at a volumetric flow rate of 5 microl h-1.

  18. Automated morphological analysis of bone marrow cells in microscopic images for diagnosis of leukemia: nucleus-plasma separation and cell classification using a hierarchical tree model of hematopoesis

    NASA Astrophysics Data System (ADS)

    Krappe, Sebastian; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian

    2016-03-01

    The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually under the use of bright field microscopy. This is a time-consuming, subjective, tedious and error-prone process. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason a computer assisted diagnosis system for bone marrow differentiation is pursued. In this work we focus (a) on a new method for the separation of nucleus and plasma parts and (b) on a knowledge-based hierarchical tree classifier for the differentiation of bone marrow cells in 16 different classes. Classification trees are easily interpretable and understandable and provide a classification together with an explanation. Using classification trees, expert knowledge (i.e. knowledge about similar classes and cell lines in the tree model of hematopoiesis) is integrated in the structure of the tree. The proposed segmentation method is evaluated with more than 10,000 manually segmented cells. For the evaluation of the proposed hierarchical classifier more than 140,000 automatically segmented bone marrow cells are used. Future automated solutions for the morphological analysis of bone marrow smears could potentially apply such an approach for the pre-classification of bone marrow cells and thereby shortening the examination time.

  19. Deterministic Migration-Based Separation of White Blood Cells.

    PubMed

    Kim, Byeongyeon; Choi, Young Joon; Seo, Hyekyung; Shin, Eui-Cheol; Choi, Sungyoung

    2016-10-01

    Functional and phenotypic analyses of peripheral white blood cells provide useful clinical information. However, separation of white blood cells from peripheral blood requires a time-consuming, inconvenient process and thus analyses of separated white blood cells are limited in clinical settings. To overcome this limitation, a microfluidic separation platform is developed to enable deterministic migration of white blood cells, directing the cells into designated positions according to a ridge pattern. The platform uses slant ridge structures on the channel top to induce the deterministic migration, which allows efficient and high-throughput separation of white blood cells from unprocessed whole blood. The extent of the deterministic migration under various rheological conditions is explored, enabling highly efficient migration of white blood cells in whole blood and achieving high-throughput separation of the cells (processing 1 mL of whole blood less than 7 min). In the separated cell population, the composition of lymphocyte subpopulations is well preserved, and T cells secrete cytokines without any functional impairment. On the basis of the results, this microfluidic platform is a promising tool for the rapid enrichment of white blood cells, and it is useful for functional and phenotypic analyses of peripheral white blood cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  1. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  2. 2-Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: geobiological implications

    PubMed Central

    Doughty, David M.; Hunter, Ryan C.; Summons, Roger E.; Newman, Dianne K.

    2010-01-01

    2-Methylhopanes, molecular fossils of 2-methylbacteriohopanepolyol (2-MeBHP) lipids, have been proposed as biomarkers for cyanobacteria, and by extension, oxygenic photosynthesis. However, the robustness of this interpretation is unclear, as 2-methylhopanoids occur in organisms besides cyanobacteria and their physiological functions are unknown. As a first step towards understanding the role of 2-MeBHP in cyanobacteria, we examined the expression and intercellular localization of hopanoids in the three cell types of Nostoc punctiforme: vegetative cells, akinetes, and heterocysts. Cultures in which N. punctiforme had differentiated into akinetes contained approximately 10-fold higher concentrations of 2-methylhopanoids than did cultures that contained only vegetative cells. In contrast, 2-methylhopanoids were only present at very low concentrations in heterocysts. Hopanoid production initially increased 3-fold in cells starved of nitrogen but returned to levels consistent with vegetative cells within two weeks. Vegetative and akinete cell types were separated into cytoplasmic, thylakoid, and outer membrane fractions; the increase in hopanoid expression observed in akinetes was due to a 34-fold enrichment of hopanoid content in their outer membrane relative to vegetative cells. Akinetes formed in response either to low light or phosphorus limitation, exhibited the same 2-methylhopanoid localization and concentration, demonstrating that 2-methylhopanoids are associated with the akinete cell type per se. Because akinetes are resting cells that are not photosynthetically active, 2-methylhopanoids cannot be functionally linked to oxygenic photosyntheis in N. punctiforme. PMID:19811542

  3. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    PubMed

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.

  4. Cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, Steven T.; Feikert, John H.; Kachmitter, James L.; Pekala, Richard W.

    1995-01-01

    An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack.

  5. Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function

    PubMed Central

    Shay, Christopher F.; Ferrante, Michele; Chapman, G. William; Hasselmo, Michael E.

    2015-01-01

    Rebound spiking properties of medial entorhinal cortex (mEC) stellate cells induced by inhibition may underlie their functional properties in awake behaving rats, including the temporal phase separation of distinct grid cells and differences in grid cell firing properties. We investigated rebound spiking properties using whole cell patch recording in entorhinal slices, holding cells near spiking threshold and delivering sinusoidal inputs, superimposed with realistic inhibitory synaptic inputs to test the capacity of cells to selectively respond to specific phases of inhibitory input. Stellate cells showed a specific phase range of hyperpolarizing inputs that elicited spiking, but non-stellate cells did not show phase specificity. In both cell types, the phase range of spiking output occurred between the peak and subsequent descending zero crossing of the sinusoid. The phases of inhibitory inputs that induced spikes shifted earlier as the baseline sinusoid frequency increased, while spiking output shifted to later phases. Increases in magnitude of the inhibitory inputs shifted the spiking output to earlier phases. Pharmacological blockade of h-current abolished the phase selectivity of hyperpolarizing inputs eliciting spikes. A network computational model using cells possessing similar rebound properties as found in vitro produces spatially periodic firing properties resembling grid cell firing when a simulated animal moves along a linear track. These results suggest that the ability of mEC stellate cells to fire rebound spikes in response to a specific range of phases of inhibition could support complex attractor dynamics that provide completion and separation to maintain spiking activity of specific grid cell populations. PMID:26385258

  6. Deformability and size-based cancer cell separation using an integrated microfluidic device.

    PubMed

    Pang, Long; Shen, Shaofei; Ma, Chao; Ma, Tongtong; Zhang, Rui; Tian, Chang; Zhao, Lei; Liu, Wenming; Wang, Jinyi

    2015-11-07

    Cell sorting by filtration techniques offers a label-free approach for cell separation on the basis of size and deformability. However, filtration is always limited by the unpredictable variation of the filter hydrodynamic resistance due to cell accumulation and clogging in the microstructures. In this study, we present a new integrated microfluidic device for cell separation based on the cell size and deformability by combining the microstructure-constricted filtration and pneumatic microvalves. Using this device, the cell populations sorted by the microstructures can be easily released in real time for subsequent analysis. Moreover, the periodical sort and release of cells greatly avoided cell accumulation and clogging and improved the selectivity. Separation of cancer cells (MCF-7, MDA-MB-231 and MDA231-LM2) with different deformability showed that the mixture of the less flexible cells (MCF-7) and the flexible cells (MDA-MB-231 and MDA231-LM2) can be well separated with more than 75% purity. Moreover, the device can be used to separate cancer cells from the blood samples with more than 90% cell recovery and more than 80% purity. Compared with the current filtration methods, the device provides a new approach for cancer cell separation with high collection recovery and purity, and also, possesses practical potential to be applied as a sample preparation platform for fundamental studies and clinical applications.

  7. Low-Dose Priming Before Vaccination with the Phase I Chloroform-Methanol Residue Vaccine Against Q Fever Enhances Humoral and Cellular Immune Responses to Coxiella Burnetii

    DTIC Science & Technology

    2008-10-01

    type LPS (HENIS). Coxiella burnetii was propagated in the yolk sac cells of embryonated chicken eggs and separated from host components by Renografin...After the third passage, infected spleens were pooled and a suspension was used to infect the yolk sac cells of fertile White Leghorn chicken eggs...1966. Vaccination against Q fever, p. 528–531. In Vaccines against viral and rickettsial diseases in man. PAHO science publication number 147. Pan

  8. Quantitative analysis of random ameboid motion

    NASA Astrophysics Data System (ADS)

    Bödeker, H. U.; Beta, C.; Frank, T. D.; Bodenschatz, E.

    2010-04-01

    We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.

  9. Adrenoceptors in Brain: Cellular Gene Expression and Effects on Astrocytic Metabolism and [Ca2+]i

    PubMed Central

    Hertz, Leif; Lovatt, Ditte; Goldman, Steven A.; Nedergaard, Maiken

    2010-01-01

    Recent in vivo studies have established astrocytes as a major target for locus coeruleus activation (Bekar et al., Cereb. Cortex 18, 2789–2795), renewing interest in cell culture studies on noradrenergic effects on astrocytes in primary cultures and calling for additional information about the expression of adrenoceptor subtypes on different types of brain cells. In the present communication, mRNA expression of α1-, α2- and β-adrenergic receptors and their subtypes was determined in freshly-isolated, cell marker-defined populations of astrocytes, NG2-positive cells, microglia, endothelial cells, and Thy1-positive neurons (mainly glutamatergic projection neurons) in murine cerebral cortex. Immediately after dissection of frontal, parietal and occipital cortex of 10–12-week-old transgenic mice, which combined each cell-type marker with a specific fluorescent signal, the tissue was digested, triturated and centrifuged, yielding a solution of dissociated cells of all types, which were separated by fluorescence-activated cell sorting (FACS). mRNA expression in each cell fraction was determined by microarray analysis. α1A-Receptors were unequivocally expressed in astrocytes and NG2-positive cells, but absent in other cell types, and α1B-receptors were not expressed in any cell population. Among α2-receptors only α2A-receptors were expressed, unequivocally in astrocytes and NG-positive cells, tentatively in microglia and questionably in Thy1-positive neurons and endothelial cells. β1-Receptors were unequivocally expressed in astrocytes, tentatively in microglia, and questionably in neurons and endothelial cells, whereas β2-adrenergic receptors showed tentative expression in neurons and astrocytes and unequivocal expression in other cell types. This distribution was supported by immunochemical data and its relevance established by previous studies in well-differentiated primary cultures of mouse astrocytes, showing that stimulation of α2-adrenoceptors increases glycogen formation and oxidative metabolism, the latter by a mechanism depending on intramitochondrial Ca2+, whereas α1-adrenoceptor stimulation enhances glutamate uptake, and β-adrenoceptor activation causes glycogenolysis and increased Na+,K+-ATPase activity. The Ca2+- and cAMP-mediated association between energy-consuming and energy-yielding processes is emphasized. PMID:20380860

  10. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.

  11. Electrochemical components employing polysiloxane-derived binders

    DOEpatents

    Delnick, Frank M.

    2013-06-11

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  12. Bovine viral diarrhea virus type 2 impairs macrophage responsiveness to toll-like receptor ligation with the exception of toll-like receptor 7

    USDA-ARS?s Scientific Manuscript database

    Bovine viral diarrhea virus (BVDV) is a member of the Flaviviradae family. BVDV isolates are classified into two biotypes based on the development of cytopathic (cp) or non-cytopathic (ncp) effects in epithelial cell culture. In addition, BVDV isolates are further separated into species, BVDV1 and 2...

  13. Cell partition in two phase polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.

  14. Ultrasound guided transplantation of enriched and cryopreserved spermatogonial cell suspension in goats.

    PubMed

    Kaul, G; Kaur, J; Rafeeqi, T A

    2010-12-01

    Spermatogonial stem cells transplantation provides a unique approach for studying spermatogenesis. Initially developed in mice, this technique has now been extended in farm animals and provides an alternative means to preserve valuable male germ line and to produce transgenic animals. The aim of this study was to enrich type A spermatogonial cells amongst the isolated cells from goat testis, to cryopreserve these enriched populations of cells and their subsequent transplantation in unrelated recipient goats under ultrasound guidance. The cells were isolated enzymatically and enriched by differential plating and separation on discontinuous percoll gradient. Ultrasound guided injection of trypan blue dye into rete testis resulted in 20-30% filling of the seminiferous tubules. Prior to transplantation, the cells were labelled with a fluorescent dye to trace donor cells in recipient seminiferous tubules after transplantation. The fluorescent-labelled cells were observed up to 12 weeks after transplantation. © 2009 Blackwell Verlag GmbH.

  15. Isolation, Identification, and Culture of Human Lymphatic Endothelial Cells.

    PubMed

    Lokmic, Zerina

    2016-01-01

    A protocol describing the isolation of foreskin lymphatic endothelial cells (LECs) and lymphatic malformation lymphatic endothelial cells (LM LECs) is presented herein. To isolate LECs and LM LECs, tissues are mechanically disrupted to make a single-cell suspension, which is then enzymatically digested in dispase and collagenase type II. LECs and LM LECs, in the resulting single-cell suspension, are then sequentially labeled with antibodies recognizing fibroblast and endothelial cell surface antigens CD34 and CD31 and separated from the remaining components in the cell suspension by capture with magnetic beads. Viable LECs and LM LECs are then seeded and expanded on fibronectin-coated flasks. LEC and LM LEC purity is determined immunohistochemically using cell surface markers CD31, CD34, podoplanin, VEGFR-3 and nuclear marker PROX-1. Cells whose purity is >98 % are used for experiments between passage 4 and 6.

  16. Patterns of Viral DNA Integration in Cells Transformed by Wild Type or DNA-Binding Protein Mutants of Adenovirus Type 5 and Effect of Chemical Carcinogens on Integration

    PubMed Central

    Dorsch-Häsler, Karoline; Fisher, Paul B.; Weinstein, I. Bernard; Ginsberg, Harold S.

    1980-01-01

    The integration pattern of viral DNA was studied in a number of cell lines transformed by wild-type adenovirus type 5 (Ad5 WT) and two mutants of the DNA-binding protein gene, H5ts125 and H5ts107. The effect of chemical carcinogens on the integration of viral DNA was also investigated. Liquid hybridization (C0t) analyses showed that rat embryo cells transformed by Ad5 WT usually contained only the left-hand end of the viral genome, whereas cell lines transformed by H5ts125 or H5ts107 at either the semipermissive (36°C) or nonpermissive (39.5°C) temperature often contained one to five copies of all or most of the entire adenovirus genome. The arrangement of the integrated adenovirus DNA sequences was determined by cleavage of transformed cell DNA with restriction endonucleases XbaI, EcoRI, or HindIII followed by transfer of separated fragments to nitrocellulose paper and hybridization according to the technique of E. M. Southern (J. Mol. Biol. 98: 503-517, 1975). It was found that the adenovirus genome is integrated as a linear sequence covalently linked to host cell DNA; that the viral DNA is integrated into different host DNA sequences in each cell line studied; that in cell lines that contain multiple copies of the Ad5 genome the viral DNA sequences can be integrated in a single set of host cell DNA sequences and not as concatemers; and that chemical carcinogens do not alter the extent or pattern of viral DNA integration. Images PMID:6246266

  17. Adipose-derived stem cells were impaired in restricting CD4+T cell proliferation and polarization in type 2 diabetic ApoE-/- mouse.

    PubMed

    Liu, Ming-Hao; Li, Ya; Han, Lu; Zhang, Yao-Yuan; Wang, Di; Wang, Zhi-Hao; Zhou, Hui-Min; Song, Ming; Li, Yi-Hui; Tang, Meng-Xiong; Zhang, Wei; Zhong, Ming

    2017-07-01

    Atherosclerosis (AS) is the most common and serious complication of type 2 diabetes mellitus (T2DM) and is accelerated via chronic systemic inflammation rather than hyperglycemia. Adipose tissue is the major source of systemic inflammation in abnormal metabolic state. Pro-inflammatory CD4 + T cells play pivotal role in promoting adipose inflammation. Adipose-derived stem cells (ADSCs) for fat regeneration have potent ability of immunosuppression and restricting CD4 + T cells as well. Whether T2DM ADSCs are impaired in antagonizing CD4 + T cell proliferation and polarization remains unclear. We constructed type 2 diabetic ApoE -/- mouse models and tested infiltration and subgroups of CD4 + T cell in stromal-vascular fraction (SVF) in vivo. Normal/T2DM ADSCs and normal splenocytes with or without CD4 sorting were separated and co-cultured at different scales ex vivo. Immune phenotypes of pro- and anti-inflammation of ADSCs were also investigated. Flow cytometry (FCM) and ELISA were applied in the experiments above. CD4 + T cells performed a more pro-inflammatory phenotype in adipose tissue in T2DM ApoE -/- mice in vivo. Restriction to CD4 + T cell proliferation and polarization was manifested obviously weakened after co-cultured with T2DM ADSCs ex vivo. No obvious distinctions were found in morphology and growth type of both ADSCs. However, T2DM ADSCs acquired a pro-inflammatory immune phenotype, with secreting less PGE2 and expressing higher MHC-II and co-stimulatory molecules (CD40, CD80). Normal ADSCs could also obtain the phenotypic change after cultured with T2DM SVF supernatant. CD4 + T cell infiltration and pro-inflammatory polarization exist in adipose tissue in type 2 diabetic ApoE -/- mice. T2DM ADSCs had impaired function in restricting CD4 + T lymphocyte proliferation and pro-inflammatory polarization due to immune phenotypic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Synthesis of an A-D-A type of molecule used as electron acceptor for improving charge transfer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chao-Zhi; Gu, Shu-Duo; Shen, Dan; Yuan, Yang; Zhang, Mingdao

    2016-08-01

    Electron-accepting molecules play an important role in developing organic solar cells. A new type of A-D-A molecule, 3,6-di([7-(5-bromothiophen-2-yl)-1,5,2,4,6,8-dithiotetrazocin-3-yl]thiophen-2-yl)-9-(2-ethylhexyl)carbazole, was synthesized. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels are -3.55 and -5.85 eV, respectively. Therefore, the A-D-A type of compound could be used as electron acceptor for fabricating organic solar cell with a high open circuit voltage. Gibbs free energy (-49.2 kJ/mol) reveals that the process of A-D-A acceptor accepting an electron from poly(3-hexylthiophene) at excited state is spontaneous. The value of entropy (118 J/mol) in the process of an electron transferring from P3HT to the A-D-A acceptor at organic interface suggests that electrons generated from separation of electron-hole pairs at donor/acceptor interface would be delocalized efficiently. Therefore, the A-D-A molecule would be a potential acceptor for efficient organic BHJ solar cells.

  19. Integrin Based Isolation Enables Purification of Murine Lineage Committed Cardiomyocytes

    PubMed Central

    Tarnawski, Laura; Xian, Xiaojie; Monnerat, Gustavo; Macaulay, Iain C.; Malan, Daniela; Borgman, Andrew; Wu, Sean M.; Fleischmann, Bernd K.; Jovinge, Stefan

    2015-01-01

    In contrast to mature cardiomyocytes which have limited regenerative capacity, pluripotent stem cells represent a promising source for the generation of new cardiomyocytes. The tendency of pluripotent stem cells to form teratomas and the heterogeneity from various differentiation stages and cardiomyocyte cell sub-types, however, are major obstacles to overcome before this type of therapy could be applied in a clinical setting. Thus, the identification of extracellular markers for specific cardiomyocyte progenitors and mature subpopulations is of particular importance. The delineation of cardiomyocyte surface marker patterns not only serves as a means to derive homogeneous cell populations by FACS, but is also an essential tool to understand cardiac development. By using single-cell expression profiling in early mouse embryonic hearts, we found that a combination of integrin alpha-1, alpha-5, alpha-6 and N-cadherin enables isolation of lineage committed murine cardiomyocytes. Additionally, we were able to separate trabecular cardiomyocytes from solid ventricular myocardium and atrial murine cells. These cells exhibit expected subtype specific phenotype confirmed by electrophysiological analysis. We show that integrin expression can be used for the isolation of living, functional and lineage-specific murine cardiomyocytes. PMID:26323090

  20. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells

    PubMed Central

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying

    2015-01-01

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021

  1. Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis.

    PubMed

    Dores, C; Rancourt, D; Dobrinski, I

    2015-05-01

    To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density, or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here, we report the use of stirred suspension bioreactors (SSB) to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: SSB followed by differential plating. After 66 h of culture, germ cell enrichment in SSBs provided 7.3 ± 1.0-fold (n = 9), differential plating 9.8 ± 2.4-fold (n = 6) and combination of both methods resulted in 9.1 ± 0.3-fold enrichment of germ cells from the initial germ cell population (n = 3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the SSB allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability owing to handling. © 2015 American Society of Andrology and European Academy of Andrology.

  2. Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis

    PubMed Central

    Dores, Camila; Rancourt, Derrick; Dobrinski, Ina

    2015-01-01

    To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here we report the use of stirred suspension bioreactors to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: stirred suspension bioreactor followed by differential plating. After 66 hours of culture, germ cell enrichment in stirred suspension bioreactors provided 7.3±1.0 fold (n=9), differential plating 9.8±2.4 fold (n=6) and combination of both methods resulted in 9.1±0.3 fold enrichment of germ cells from the initial germ cell population (n=3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the stirred suspension bioreactor allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability due to handling. PMID:25877677

  3. Continuous-flow electrophoretic separator for biologicals

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.; Griffin, R. N.; Locker, R. J.

    1976-01-01

    In the near absence of gravity, a continuous-flow type of electrophoretic separator can be operated with a much thicker separation chamber than is possible under 1 g conditions. This should permit either better resolution or shorter separation time per unit of sample. An apparatus to perform experiments on sounding rockets is under development and will be described. The electrophoresis cell is 5 mm thick by 5 cm wide with 10 cm long electrodes. It is supplied with buffer, sample, and coolant at about 4 C through the use of a passive refrigerant system. UV sample detection and provision for recovery and cold storage of up to 50 sample fractions are now being added to the basic unit. A wide range of operating conditions are electronically programmable into the unit, even up to a short time before flight, and a further range of some parameters can be achieved by exchanging power supplies and by changing gears in the motor drive units of the pump. The preliminary results of some separation studies on various biological products using a commercially available electrophoretic separator are also presented.

  4. Fundamentals and Application of Magnetic Particles in Cell Isolation and Enrichment

    PubMed Central

    Plouffe, Brian D.; Murthy, Shashi K.; Lewis, Laura H.

    2014-01-01

    Magnetic sorting using magnetic beads has become a routine methodology for the separation of key cell populations from biological suspensions. Due to the inherent ability of magnets to provide forces at a distance, magnetic cell manipulation is now a standardized process step in numerous processes in tissue engineering, medicine, and in fundamental biological research. Herein we review the current status of magnetic particles to enable isolation and separation of cells, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles and on current applications of magnet-based cell separation in laboratory and clinical settings. We highlight the contribution of cell separation to biomedical research and medicine and detail modern cell separation methods (both magnetic and non-magnetic). In addition to a review of the current state-of-the-art in magnet-based cell sorting, we discuss current challenges and available opportunities for further research, development and commercialization of magnetic particle-based cell separation systems. PMID:25471081

  5. Traction force microscopy in rapidly moving cells reveals separate roles for ROCK and MLCK in the mechanics of retraction.

    PubMed

    Morin, Timothy R; Ghassem-Zadeh, Sean A; Lee, Juliet

    2014-08-15

    Retraction is a major rate-limiting step in cell motility, particularly in slow moving cell types that form large stable adhesions. Myosin II dependent contractile forces are thought to facilitate detachment by physically pulling up the rear edge. However, retraction can occur in the absence of myosin II activity in cell types that form small labile adhesions. To investigate the role of contractile force generation in retraction, we performed traction force microscopy during the movement of fish epithelial keratocytes. By correlating changes in local traction stress at the rear with the area retracted, we identified four distinct modes of retraction. "Recoil" retractions are preceded by a rise in local traction stress, while rear edge is temporarily stuck, followed by a sharp drop in traction stress upon detachment. This retraction type was most common in cells generating high average traction stress. In "pull" type retractions local traction stress and area retracted increase concomitantly. This was the predominant type of retraction in keratocytes and was observed mostly in cells generating low average traction stress. "Continuous" type retractions occur without any detectable change in traction stress, and are seen in cells generating low average traction stress. In contrast, to many other cell types, "release" type retractions occur in keratocytes following a decrease in local traction stress. Our identification of distinct modes of retraction suggests that contractile forces may play different roles in detachment that are related to rear adhesion strength. To determine how the regulation of contractility via MLCK or Rho kinase contributes to the mechanics of detachment, inhibitors were used to block or augment these pathways. Modulation of MLCK activity led to the most rapid change in local traction stress suggesting its importance in regulating attachment strength. Surprisingly, Rho kinase was not required for detachment, but was essential for localizing retraction to the rear. We suggest that in keratocytes MLCK and Rho kinase play distinct, complementary roles in the respective temporal and spatial control of rear detachment that is essential for maintaining rapid motility. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Effects of cholinergic drugs on receptive field properties of rabbit retinal ganglion cells

    PubMed Central

    Ariel, M.; Daw, N. W.

    1982-01-01

    1. Retinal ganglion cells were recorded extracellularly from the rabbit's eye in situ to study the effects of cholinergic drugs on receptive field properties. Physostigmine, an acetylcholinesterase inhibitor, and nicotine increased the spontaneous activity of nearly all retinal ganglion cell types. The effectiveness of physostigmine was roughly correlated with the neurone's inherent level of spontaneous activity. Brisk cells, having high rates of spontaneous firing, showed large increases in their maintained discharge, whereas sluggish cells, with few or no spontaneous spikes, showed small and sometimes transient increases in spontaneous activity during physostigmine. 2. The sensitivity of ganglion cells to spots of optimal size and position did not change substantially during the infusion of physostigmine. However, the responsiveness to light (number of spikes per stimulus above the spontaneous level) increased. This effect occurred with sluggish and more complex cells, rarely with brisk cells. 3. Another effect of physostigmine on sluggish and more complex cells was to make these cells `on—off'. The additional response to the inappropriate change in contrast had a long latency and lacked an initial transient burst. 4. Complex receptive field properties such as orientation sensitivity, radial grating inhibition, speed tuning and size specificity were also examined. These inhibitory properties were still present during infusion of physostigmine and, in most cases, the trigger feature of each cell type remained. 5. These results are consistent with pharmacological results on ACh release from the retina. There appear to be two types of release of ACh, having their most powerful influences on separate classes of cells. One release (transient), occurs at light onset and offset and acts primarily on sluggish and more complex ganglion cells; the other release (tonic) is not light-modulated and acts primarily on brisk cells. A wiring diagram for the ACh cells is suggested. PMID:7097593

  7. Exocyst-Dependent Membrane Addition Is Required for Anaphase Cell Elongation and Cytokinesis in Drosophila

    PubMed Central

    Giansanti, Maria Grazia; Vanderleest, Timothy E.; Jewett, Cayla E.; Sechi, Stefano; Frappaolo, Anna; Fabian, Lacramioara; Robinett, Carmen C.; Brill, Julie A.; Loerke, Dinah; Fuller, Margaret T.; Blankenship, J. Todd

    2015-01-01

    Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression. PMID:26528720

  8. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, G.A.

    1984-05-29

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  9. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, George A.

    1986-08-05

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  10. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood - A review.

    PubMed

    Antfolk, Maria; Laurell, Thomas

    2017-05-01

    Rare cells in blood, such as circulating tumor cells or fetal cells in the maternal circulation, posses a great prognostic or diagnostic value, or for the development of personalized medicine, where the study of rare cells could provide information to more specifically targeted treatments. When conventional cell separation methods, such as flow cytometry or magnetic activated cell sorting, have fallen short other methods are desperately sought for. Microfluidics have been extensively used towards isolating and processing rare cells as it offers possibilities not present in the conventional systems. Furthermore, microfluidic methods offer new possibilities for cell separation as they often rely on non-traditional biomarkers and intrinsic cell properties. This offers the possibility to isolate cell populations that would otherwise not be targeted using conventional methods. Here, we provide an extensive review of the latest advances in continuous flow microfluidic rare cell separation and processing with each cell's specific characteristics and separation challenges as a point of view. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Axonal interferon responses and alphaherpesvirus neuroinvasion

    NASA Astrophysics Data System (ADS)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFNgamma, IFNbeta induces a non-canonical, local antiviral response in axons. The activation of a local IFNbeta response in axons represents a new paradigm for early cytokine control of neuroinvasion. And the two response modes induced by the two distinct types of IFN erect an efficient and appropriate barrier against PNS infection.

  12. Separator development and testing of nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gonzalez-Sanabria, O. D.; Manzo, M. A.

    1984-01-01

    The components, design, and operating characteristics of Ni-H2 cells batteries were improved. A separator development program was designed to develop a separator that is resistant to penetration by oxygen and loose active material from then nickel electrode, while retraining the required chemical and thermal stability, reservoir capability, and high ionic conductivity. The performance of the separators in terms of cell operating voltage was to at least match that of state-of-the-art separators while eliminating the separator problems. The separators were submitted to initial screening tests and those which successfully completed the tests were built into Ni-H2 cells for short term testing. The separators with the best performance are tested for long term performance and life.

  13. Method for forming a cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, Steven T.; Feikert, John H.; Kaschmitter, James L.; Pekala, Richard W.

    1994-01-01

    An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack.

  14. Cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, S.T.; Feikert, J.H.; Kachmitter, J.L.; Pekala, R.W.

    1995-02-28

    An improved multi-cell electrochemical energy storage device is described, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.

  15. Method for forming a cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, S.T.; Feikert, J.H.; Kaschmitter, J.L.; Pekala, R.W.

    1994-08-09

    An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.

  16. Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based microfluidic device.

    PubMed

    Didar, Tohid Fatanat; Li, Kebin; Veres, Teodor; Tabrizian, Maryam

    2013-07-01

    Despite the advances made in the field of regenerative medicine, the progress in cutting-edge technologies for separating target therapeutic cells are still at early stage of development. These cells are often rare, such as stem cells or progenitor cells that their overall properties should be maintained during the separation process for their subsequent application in regenerative medicine. This work, presents separation of oligodendrocyte progenitor cells (OPCs) from rat brain primary cultures using an integrated thermoplastic elastomeric (TPE)- based multilayer microfluidic device fabricated using hot-embossing technology. OPCs are frequently used in recovery, repair and regeneration of central nervous system after injuries. Indeed, their ability to differentiate in vitro into myelinating oligodendrocytes, are extremely important for myelin repair. OPCs form 5-10% of the glial cells population. The traditional macroscale techniques for OPCs separation require pre-processing of cells and/or multiple time consuming steps with low efficiency leading very often to alteration of their properties. The proposed methodology implies to separate OPCs based on their smaller size compared to other cells from the brain tissue mixture. Using aforementioned microfluidic chip embedded with a 5 μm membrane pore size and micropumping system, a separation efficiency more than 99% was achieved. This microchip was able to operate at flow rates up to 100 μl/min, capable of separating OPCs from a confluent 75 cm(2) cell culture flask in less than 10 min, which provides us with a high-throughput and highly efficient separation expected from any cell sorting techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Rapid cell separation with minimal manipulation for autologous cell therapies

    NASA Astrophysics Data System (ADS)

    Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  18. [Clinical effect of stem cell transplantation via hepatic artery in the treatment of type II hyperammonemia: a report on 6 cases].

    PubMed

    DU, Kan; Luan, Zuo; Qu, Su-Qing; Yang, Hui; Yang, Yin-Xiang; Wang, Zhao-Yan; Jin, Hui-Yu; Liu, Wei-Peng

    2013-11-01

    This study aimed to investigate the clinical effect of transplantation of CD133⁺ peripheral blood stem cells or umbilical cord mesenchymal stem cells via the hepatic artery in children with type II hyperammonemia and its possible action mechanism. Umbilical cord mesenchymal stem cells were obtained by collecting cord blood (100-150 mL) from healthy fetuses and separating stem cell suspension (5 mL) from the cord blood by hydroxyethyl starch sedimentation. CD133⁺ peripheral blood stem cells were obtained by mobilizing peripheral blood from the fathers of sick children using recombinant human granulocyte colony-stimulating factor for 5 days, collecting mononuclear cells (120 mL), and separating out CD133⁺ cells by sorting. With catheterization and percutaneous puncture, the obtained stem cells were slowly injected into the liver of sick children via the hepatic artery. The changes in clinical symptoms and laboratory indices such as blood ammonia, liver function, and arginine and citrulline concentrations were observed. After stem cell transplantation via the hepatic artery, the 6 children showed significantly decreased blood ammonia levels, and their blood ammonia levels slowly increased 1 to 2 weeks later, but remained below 100 μmol/L, and changes in glutamic-pyruvic transaminase levels were similar to blood ammonia. Plasma citrulline and arginine concentrations increased significantly after transplantation and the increase in citrulline level exceeded the increase in arginine level. An 8 months follow-up visit for one typical patient showed that the weight and height increased after transplantation and sleep was improved without night crying. The child could actively gaze at interesting objects instead of responding indifferently and started to say simple words. With regard to fine motor skills, the child could pinch things with the thumb and middle finger instead of displaying a lack of hand-eye coordination and progress was also made in gross motor skills. Gesell test showed that the child made progress for an average of 3.82 months in all areas. It was concluded that after stem cell transplantation, children with type II hyperammonemia have decreased blood ammonia levels, stable and improved liver function and steadily increased plasma citrulline and arginine concentrations. They display a progressive trend in such aspects as movement, language and environmental adaptability. It is hypothesized that stem cell transplantation via the hepatic artery partially or totally activates, or provides supplementary ornithine carbamoyl transferase, so that plasma citrulline and arginine concentrations increase and urea cycle disorder can be corrected to some extent.

  19. Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence

    PubMed Central

    Cunningham, Cameron R.; Champhekar, Ameya; Tullius, Michael V.; Dillon, Barbara Jane; Zhen, Anjie; de la Fuente, Justin Rafael; Herskovitz, Jonathan; Elsaesser, Heidi; Snell, Laura M.; Wilson, Elizabeth B.; de la Torre, Juan Carlos; Kitchen, Scott G.; Horwitz, Marcus A.; Bensinger, Steven J.; Smale, Stephen T.; Brooks, David G.

    2016-01-01

    Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. PMID:26808628

  20. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues.

    PubMed

    Tremblay, Kimberly D; Zaret, Kenneth S

    2005-04-01

    The location and movement of mammalian gut tissue progenitors, prior to the expression of tissue-specific genes, has been unknown, but this knowledge is essential to identify transitions that lead to cell type specification. To address this, we used vital dyes to label exposed anterior endoderm cells of early somite stage mouse embryos, cultured the embryos into the tissue bud phase of development, and determined the tissue fate of the dye labeled cells. This approach was performed at three embryonic stages that are prior to, or coincident with, foregut tissue patterning (1-3 somites, 4-6 somites, and 7-10 somites). Short-term labeling experiments tracked the movement of tissue progenitor cells during foregut closure. Surprisingly, we found that two distinct types of endoderm-progenitor cells, lateral and medial, arising from three spatially separated embryonic domains, converge to generate the epithelial cells of the liver bud. Whereas the lateral endoderm-progenitors give rise to descendants that are constrained in tissue fate and position along the anterior-posterior axis of the gut, the medial gut endoderm-progenitors give rise to descendants that stream along the anterior-posterior axis at the ventral midline and contribute to multiple gut tissues. The fate map reveals extensive morphogenetic movement of progenitors prior to tissue specification, it permits a detailed analysis of endoderm tissue patterning, and it illustrates that diverse progenitor domains can give rise to individual tissue cell types.

  1. Application of glutaraldehyde for the staining of esterase-active cells with carboxyfluorescein diacetate.

    PubMed

    Morono, Yuki; Takano, Suguru; Miyanaga, Kazuhiko; Tanji, Yasunori; Unno, Hajime; Hori, Katsutoshi

    2004-03-01

    Staining of esterase-active bacteria with carboxyfluorescein diacetate (CFDA) has been used to evaluate the viability of various types of cell. However, the outer membrane of Gram-negative bacteria prevents CFDA from permeating into the cell. Although EDTA can increase the permeability of the outer membrane allowing CFDA to enter the cells, it was experimentally confirmed that there is still considerable difficulty in visualizing viable cells due to passive diffusion of carboxyfluorescein (CF), a hydrolyzed product of CFDA, out of the cells. We found that glutaraldehyde enhances the discriminative recognition of esterase-active Gram-negative bacteria under microscopic observation by improving the efficacy of staining. We believe the successful staining in the presence of glutaraldehyde is due to two separate effects: an increase in the permeability of CFDA into the cell and prevention of leakage of CF out of the cell.

  2. Characterization of cadmium transport in hepatopancreatic cells of a mangrove crab Ucides cordatus: The role of calcium.

    PubMed

    Ortega, Priscila; Custódio, Marcio R; Zanotto, Flavia P

    2017-07-01

    Cadmium is a toxic metal, present in batteries and discarded in estuaries and mangrove habitats. Apart from that, it is a non-essential metal that causes toxic effects in many organisms. Cadmium accumulates in gills and hepatopancreas of crustaceans and its route into the cell is unknown. It is possible that occurs by calcium channels or calcium transporters. The objective of this study was to characterize the transport of cadmium and the role of calcium in different cell types from hepatopancreas of the mangrove crab Ucides cordatus. For this, the hepatopancreas was dissociated by magnetic stirring and after that separated by a sucrose gradient. Then, the cells were labeled with FluoZin-3 AM and different CdCl 2 concentrations were added together with a variety of inhibitors. The results showed that Cd 2+ transport occurs differently in each cell type from hepatopancreas and is partially explained by the function the cells perform in this organ. Embryonic (E) and Resorptive (R) cells transported more Cd 2+ compared to Fibrillar (F) and Blister (B) cells. R cells responded to Ca 2+ channel inhibitors and intracellular Ca 2+ manipulations positively, as the other cell types and in a stronger way. B cells were the least responsive to Ca 2+ channel inhibitors and, unlike the other cells, showed a competition of Cd 2+ with intracellular Ca 2+ manipulations. The results indicate that Ca 2+ affects the transport of Cd 2+ in hepatopancreatic cells of Ucides cordatus and uses Ca 2+ channels to enter these cells. In addition, information about Ca concentration could be used as a mitigating factor for Cd accumulation in crabs' hepatopancreas. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. HLA-targeted flow cytometric sorting of blood cells allows separation of pure and viable microchimeric cell populations.

    PubMed

    Drabbels, Jos J M; van de Keur, Carin; Kemps, Berit M; Mulder, Arend; Scherjon, Sicco A; Claas, Frans H J; Eikmans, Michael

    2011-11-10

    Microchimerism is defined by the presence of low levels of nonhost cells in a person. We developed a reliable method for separating viable microchimeric cells from the host environment. For flow cytometric cell sorting, HLA antigens were targeted with human monoclonal HLA antibodies (mAbs). Optimal separation of microchimeric cells (present at a proportion as low as 0.01% in artificial mixtures) was obtained with 2 different HLA mAbs, one targeting the chimeric cells and the other the background cells. To verify purity of separated cell populations, flow-sorted fractions of 1000 cells were processed for DNA analysis by HLA-allele-specific and Y-chromosome-directed real-time quantitative PCR assays. After sorting, PCR signals of chimeric DNA markers in the positive fractions were significantly enhanced compared with those in the presort samples, and they were similar to those in 100% chimeric control samples. Next, we demonstrate applicability of HLA-targeted FACS sorting after pregnancy by separating chimeric maternal cells from child umbilical cord mononuclear cells. Targeting allelic differences with anti-HLA mAbs with FACS sorting allows maximal enrichment of viable microchimeric cells from a background cell population. The current methodology enables reliable microchimeric cell detection and separation in clinical specimens.

  4. Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.

    PubMed

    Zhang, Xinjie; Zhu, Zhixian; Xiang, Nan; Long, Feifei; Ni, Zhonghua

    2018-03-20

    Microfluidic technologies for cell separation were reported frequently in recent years. However, a compact microfluidic instrument enabling thoroughly automated cell separation is still rarely reported until today due to the difficult hybrid between the macrosized fluidic control system and the microsized microfluidic device. In this work, we propose a novel and automated microfluidic instrument to realize size-based separation of cancer cells in a label-free and high-throughput manner. Briefly, the instrument is equipped with a fully integrated microfluidic device and a set of robust fluid-driven and control units, and the instrument functions of precise fluid infusion and high-throughput cell separation are guaranteed by a flow regulatory chip and two cell separation chips which are the key components of the microfluidic device. With optimized control programs, the instrument is successfully applied to automatically sort human breast adenocarcinoma cell line MCF-7 from 5 mL of diluted human blood with a high recovery ratio of ∼85% within a rapid processing time of ∼23 min. We envision that our microfluidic instrument will be potentially useful in many biomedical applications, especially cell separation, enrichment, and concentration for the purpose of cell culture and analysis.

  5. Colossal magnetoresistance accompanied with magnetorelaxor behavior in phase-separated Ca1-xCexMnO3 thin films and CaMnO3/Ca0.92Ce0.08MnO3 superlattices

    NASA Astrophysics Data System (ADS)

    Xiang, P.-H.; Yamada, H.; Sawa, A.; Akoh, H.

    2010-03-01

    We report on the transport properties of electron-doped manganite Ca1-xCexMnO3 (CCMO, 0≤x≤0.08) films and superlattices composed of insulating layers CaMnO3 (CMO) and Ca0.92Ce0.08MnO3 (CCMO8), deposited on nearly lattice-matched NdAlO3 substrates. The CCMO (x =0.06 and 0.07) films show colossal magnetoresistance (CMR) accompanied with magnetorelaxor behavior, which can be ascribed to the phase separation of canted G-type antiferromagnetic metal and C-type antiferromagnetic insulator. The (CMO)m/(CCMO8)n superlattices with 4≤m, n ≤8 (unit cells) resemble the solid-solution CCMO (x =0.06 and 0.07) films in CMR and magnetorelaxor behavior, suggesting that the phase separation takes place in the superlattices. The CMR and magnetorelaxor behavior of the (CMO)m/(CCMO8)n superlattices strongly depend on the thicknesses of constituent CMO and CCMO8 layers. The origin of the phase separation in the superlattices is discussed in terms of the charge transfer and the phase competition at the interfaces.

  6. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru; Akbay, Taner; Hosoi, Kei

    The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 °C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 °C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system.

  7. Thinner, More-Efficient Oxygen-Separation Cells

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Galica, Leo M.; Losey, Robert W.

    1992-01-01

    Better gas-distribution plates fabricated more easily. Oxygen-separation cell redesigned to make it more efficient, smaller, lighter, and easier to manufacture. Potential applications include use as gas separators, filters, and fuel cells.

  8. Carbonic Anhydrase Activity Associated with the Cyanobacterium Synechococcus PCC7942 1

    PubMed Central

    Badger, Murray R.; Price, G. Dean

    1989-01-01

    Intact cells and crude homogenates of high (1% CO2) and low dissolved inorganic carbon (Ci) (30-50 microliters per liter of CO2) grown Synechococcus PCC7942 have carbonic anhydrase (CA)-like activity, which enables them to catalyze the exchange of 18O from CO2 to H2O. This activity was studied using a mass spectrometer coupled to a cuvette with a membrane inlet system. Intact high and low Ci cells were found to contain CA activity, separated from the medium by a membrane which is preferentially permeable to CO2. This activity is most apparent in the light, where 18O-labeled CO2 species are being taken up by the cells but the effluxing CO2 has lost most of its label to water. In the dark, low Ci cells catalyze the depletion of the 18O enrichment of CO2 and this activity is inhibited by both ethoxyzolamide and 2-(trifluoromethoxy)carbonyl cyanide. This may occur via a common inhibition of the Ci pump and the Ci pump is proposed as a potential site for the exchange of 18O. CA activity was measurable in homogenates of both cell types but was 5- to 10-fold higher in low Ci cells. This was inhibited by ethoxyzolamide with an I50 of 50 to 100 micromolar in both low and high Ci cells. A large proportion of the internal CA activity appears to be pelletable in nature. This pelletability is increased by the presence of Mg2+ in a manner similar to that of ribulose bisphosphate carboxylase-oxygenase activity and chlorophyll (thylakoids) and may be the result of nonspecific aggregation. Separation of crude homogenates on sucrose gradients is consistent with the notion that CA and ribulose bisphosphate carboxylase-oxygenase activity may be associated with the same pelletable fraction. However, we cannot unequivocally establish that CA is located within the carboxysome. The sucrose gradients show the presence of separate soluble and pelletable CA activity. This may be due to the presence of separate forms of the enzyme or may arise from the same pelletable association which is unstable during extraction. PMID:16666546

  9. Selection and Characterization of Dunaliella salina Mutants Defective in Haloadaptation 1

    PubMed Central

    Chitlaru, Edith; Pick, Uri

    1989-01-01

    A technique for selection of Dunaliella mutants defective in their capacity to recover from osmotic shocks has been developed. The selection is based on physical separation of mutants on density gradients. This technique takes advantage of the fact that Dunaliella cells, when exposed to osmotic shocks, initially change volume and density due to water gain or loss and subsequently recover their volume and density by readjusting their intracellular glycerol. Eight mutants that do not recover their original density following hyperosmotic shocks have been isolated. The mutants grow similar to wild type cells in 1 molar NaCl, and recover like the wild type from hypotonic shocks but are defective in recovering from hypertonic shocks. A partial characterization of one of the mutants is described. Images Figure 1 PMID:16667101

  10. Graft-vs-leukemia activity and graft-vs-host disease induced by allogeneic Th1- and Th2-type CD4+ T cells in mice.

    PubMed

    Zeis, M; Uharek, L; Hartung, G; Glass, B; Steinmann, J; Schmitz, N

    2001-01-01

    The transfer of allogeneic lymphocytes contained in a hematopoietic stem cell graft confers an immune-mediated antileukemic effect, termed the graft-vs-leukemia (GVL) effect. Graft-vs-host disease (GVHD), the most detrimental complication of allogeneic BMT, largely resides within the same lymphocyte population. Therefore, separation of GVL- and GVH-reactions is a long-standing goal of experimental studies dealing with allogeneic transplantation of hematopoietic stem cells. The objective of the current study was to assess the potential of Th1- and Th2-type CD4+ T cells in mediating GVHD and GVL effects in a fully allogeneic murine transplant model. BALB/c (H-2d) mice were given a dose of A20 (H-2d, B-cell leukemia) cells two days prior to lethal total body irradiation (TBI) and transplantation of fully mismatched (C57BL/6, H-2b) T-cell depleted (anti-Thy1.2, CD90) bone marrow (TCD-BM) cells. Graded numbers of either unmanipulated, Th1- or Th2-polarized highly enriched CD4+ donor type T cells (10(6) or 10(7)) were administered 2 h posttransplant. Infusion of 10(6) of unmanipulated, Th1-, or Th2-primed CD4+ T cells resulted in moderate GVHD-related mortality (40%, 50%, 10%) and significantly improved long-term survival (50%, 45%, 46% surviving the observation period of 120 days) as compared to animals receiving TCD-BM alone (18%). The administration of 10(7) unmanipulated or Th1-type CD4+ T cells given shortly after transplantation led to death of all mice within 50 days due to fatal acute GVHD. In contrast, the adoptive transfer of 10(7) Th2-primed CD4+ T cells resulted in significant improvement of long-term survival (80%) compared to the TCD-BM group. This powerful GVL effect was associated with a substantially lower incidence of lethal acute GVHD (10%) if compared to the results of transplantation of Th1-type CD4+ T cells. These results demonstrate that allogeneic Th2-type CD4+ T cells given post BMT can induce GVL effects in a cell-dose-dependent manner without increasing the risk of severe acute GVHD.

  11. A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fibrin influences INS-1 cells insulin secretion.

    PubMed

    Sabra, Georges; Vermette, Patrick

    2013-02-01

    The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVEC) co-cultured in fibrin over INS-1 cell insulin secretion. For this purpose, a three-dimensional (3D) cell culture chamber was designed, built using micro-fabrication techniques and validated. The co-culture was successfully carried out and the effect on INS-1 cell insulin secretion was investigated. After 48 and 72 h, INS-1 cells co-cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS-1 cells cultured alone or co-cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered. Copyright © 2012 Wiley Periodicals, Inc.

  12. Mathematical modeling of a thermovoltaic cell

    NASA Technical Reports Server (NTRS)

    White, Ralph E.; Kawanami, Makoto

    1992-01-01

    A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.

  13. Label-free density difference amplification-based cell sorting.

    PubMed

    Song, Jihwan; Song, Minsun; Kang, Taewook; Kim, Dongchoul; Lee, Luke P

    2014-11-01

    The selective cell separation is a critical step in fundamental life sciences, translational medicine, biotechnology, and energy harvesting. Conventional cell separation methods are fluorescent activated cell sorting and magnetic-activated cell sorting based on fluorescent probes and magnetic particles on cell surfaces. Label-free cell separation methods such as Raman-activated cell sorting, electro-physiologically activated cell sorting, dielectric-activated cell sorting, or inertial microfluidic cell sorting are, however, limited when separating cells of the same kind or cells with similar sizes and dielectric properties, as well as similar electrophysiological phenotypes. Here we report a label-free density difference amplification-based cell sorting (dDACS) without using any external optical, magnetic, electrical forces, or fluidic activations. The conceptual microfluidic design consists of an inlet, hydraulic jump cavity, and multiple outlets. Incoming particles experience gravity, buoyancy, and drag forces in the separation chamber. The height and distance that each particle can reach in the chamber are different and depend on its density, thus allowing for the separation of particles into multiple outlets. The separation behavior of the particles, based on the ratio of the channel heights of the inlet and chamber and Reynolds number has been systematically studied. Numerical simulation reveals that the difference between the heights of only lighter particles with densities close to that of water increases with increasing the ratio of the channel heights, while decreasing Reynolds number can amplify the difference in the heights between the particles considered irrespective of their densities.

  14. Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS).

    PubMed

    An, Jaemin; Lee, Jangwon; Lee, Sang Ho; Park, Jungyul; Kim, Byungkyu

    2009-06-01

    In this paper, we successfully separated malignant human breast cancer epithelial cells (MCF 7) from healthy breast cells (MCF 10A) and analyzed the main parameters that influence the separation efficiency with an advanced dielectrophoresis (DEP)-activated cell sorter (DACS). Using the efficient DACS, the malignant cancer cells (MCF 7) were isolated successfully by noninvasive methods from normal cells with similar cell size distributions (MCF 10A), depending on differences between their material properties such as conductivity and permittivity, because our system was able to discern the subtle differences in the properties by generating continuously changed electrical field gradients. In order to evaluate the separation performance without considering size variations, the cells collected from each outlet were divided into size-dependent groups and counted statistically. Following that, the quantitative relative ratio of numbers between MCF 7 and MCF 10A cells in each size-dependent group separated by the DEP were compared according to applied frequencies in the range 48, 51, and 53 MHz with an applied amplitude of 8 V(pp). Finally, under the applied voltage of 48 MHz-8 V(pp) and a flow rate of 290 microm/s, MCF 7 and MCF 10A cells were separated with a maximum efficiency of 86.67% and 98.73% respectively. Therefore, our suggested system shows it can be used for detection and separation of cancerous epithelial cells from noncancerous cells in clinical applications.

  15. A Mutation in UL15 of Herpes Simplex Virus 1 That Reduces Packaging of Cleaved Genomes▿

    PubMed Central

    Yang, Kui; Wills, Elizabeth G.; Baines, Joel D.

    2011-01-01

    Herpesvirus genomic DNA is cleaved from concatemers that accumulate in infected cell nuclei. Genomic DNA is inserted into preassembled capsids through a unique portal vertex. Extensive analyses of viral mutants have indicated that intact capsids, the portal vertex, and all components of a tripartite terminase enzyme are required to both cleave and package viral DNA, suggesting that DNA cleavage and packaging are inextricably linked. Because the processes have not been functionally separable, it has been difficult to parse the roles of individual proteins in the DNA cleavage/packaging reaction. In the present study, a virus bearing the deletion of codons 400 to 420 of UL15, encoding a terminase component, was analyzed. This virus, designated vJB27, failed to replicate on noncomplementing cells but cleaved concatemeric DNA to ca. 35 to 98% of wild-type levels. No DNA cleavage was detected in cells infected with a UL15-null virus or a virus lacking UL15 codons 383 to 385, comprising a motif proposed to couple ATP hydrolysis to DNA translocation. The amount of vJB27 DNA protected from DNase I digestion was reduced compared to the wild-type virus by 6.5- to 200-fold, depending on the DNA fragment analyzed, thus indicating a profound defect in DNA packaging. Capsids containing viral DNA were not detected in vJB27-infected cells, as determined by electron microscopy. These data suggest that pUL15 plays an essential role in DNA translocation into the capsid and indicate that this function is separable from its role in DNA cleavage. PMID:21880766

  16. The evaluation of layered separators for nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1991-01-01

    The concept of using layered separators to achieve the required electrolyte retention and bubble pressure fo nickel-hydrogen cells was evaluated in a boilerplate cell test. Zircar cloth, polyethylene paper and polypropylene felt were combined with a layer of radiation-grafted polyethylene film to achieve the required properties. Three cells of each layered separator were built and tested by characterization cycling and by low earth orbit cycling for 5000 cycles at 80 percent DOD. Three cells containing asbestos separators were used as the reference.

  17. Cell separation: Terminology and practical considerations

    PubMed Central

    Tomlinson, Sophie; Yang, Xuebin B; Kirkham, Jennifer

    2013-01-01

    Cell separation is a powerful tool in biological research. Increasing usage, particularly within the tissue engineering and regenerative medicine communities, means that researchers from a diverse range of backgrounds are utilising cell separation technologies. This review aims to offer potential solutions to cell sorting problems and to clarify common ambiguities in terminology and experimental design. The frequently used cell separation terms of ‘purity’, ‘recovery’ and ‘viability’ are discussed, and attempts are made to reach a consensus view of their sometimes ambiguous meanings. The importance of appropriate experimental design is considered, with aspects such as marker expression, tissue isolation and original cell population analysis discussed. Finally, specific technical issues such as cell clustering, dead cell removal and non-specific antibody binding are considered and potential solutions offered. The solutions offered may provide a starting point to improve the quality of cell separations achieved by both the novice and experienced researcher alike. PMID:23440031

  18. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.

    PubMed

    Di Pierro, Michele; Cheng, Ryan R; Lieberman Aiden, Erez; Wolynes, Peter G; Onuchic, José N

    2017-11-14

    Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible. Copyright © 2017 the Author(s). Published by PNAS.

  19. Integrated fuel cell stack shunt current prevention arrangement

    DOEpatents

    Roche, Robert P.; Nowak, Michael P.

    1992-01-01

    A fuel cell stack includes a plurality of fuel cells juxtaposed with one another in the stack and each including a pair of plate-shaped anode and cathode electrodes that face one another, and a quantity of liquid electrolyte present at least between the electrodes. A separator plate is interposed between each two successive electrodes of adjacent ones of the fuel cells and is unified therewith into an integral separator plate. Each integral separator plate is provided with a circumferentially complete barrier that prevents flow of shunt currents onto and on an outer peripheral surface of the separator plate. This barrier consists of electrolyte-nonwettable barrier members that are accommodated, prior to the formation of the integral separator plate, in corresponding edge recesses situated at the interfaces between the electrodes and the separator plate proper. Each barrier member extends over the entire length of the associated marginal portion and is flush with the outer periphery of the integral separator plate. This barrier also prevents cell-to-cell migration of any electrolyte that may be present at the outer periphery of the integral separator plate while the latter is incorporated in the fuel cell stack.

  20. Quantitative Magnetic Separation of Particles and Cells using Gradient Magnetic Ratcheting

    PubMed Central

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-01-01

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting (MACS), are robust but perform coarse, qualitative separations based on surface antigen expression. We report a quantitative magnetic separation technology using high-force magnetic ratcheting over arrays of magnetically soft micro-pillars with gradient spacing, and use the system to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micro-pillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic-field. Particles with higher IOC separate and equilibrate along the miro-pillar array at larger pitches. We develop a semi-analytical model that predicts behavior for particles and cells. Using the system, LNCaP cells were separated based on the bound quantity of 1μm anti-EpCAM particles as a metric for expression. The ratcheting cytometry system was able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof of concept, EpCAM-labeled cells from patient blood were isolated with 74% purity, demonstrating potential towards a quantitative magnetic separation instrument. PMID:26890496

  1. Radiation and Smoking Effects on Lung Cancer Incidence by Histological Types Among Atomic Bomb Survivors

    PubMed Central

    Egawa, Hiromi; Furukawa, Kyoji; Preston, Dale; Funamoto, Sachiyo; Yonehara, Shuji; Matsuo, Takeshi; Tokuoka, Shoji; Suyama, Akihiko; Ozasa, Kotaro; Kodama, Kazunori; Mabuchi, Kiyohiko

    2014-01-01

    While the risk of lung cancer associated separately with smoking and radiation exposure has been widely reported, it is not clear how smoking and radiation together contribute to the risk of specific lung cancer histological types. With individual smoking histories and radiation dose estimates, we characterized the joint effects of radiation and smoking on type-specific lung cancer rates among the Life Span Study cohort of Japanese atomic bomb survivors. Among 105,404 cohort subjects followed between 1958 and 1999, 1,803 first primary lung cancer incident cases were diagnosed and classified by histological type. Poisson regression methods were used to estimate excess relative risks under several interaction models. Adenocarcinoma (636 cases), squamous-cell carcinoma (330) and small-cell carcinoma (194) made up 90% of the cases with known histology. Both smoking and radiation exposure significantly increased the risk of each major lung cancer histological type. Smoking-associated excess relative risks were significantly larger for small-cell and squamous-cell carcinomas than for adenocarcinoma. The gender-averaged excess relative risks per 1 Gy of radiation (for never-smokers at age 70 after radiation exposure at age 30) were estimated as 1.49 (95% confidence interval 0.1–4.6) for small-cell carcinoma, 0.75 (0.3–1.3) for adenocarcinoma, and 0.27 (0–1.5) for squamous-cell carcinoma. Under a model allowing radiation effects to vary with levels of smoking, the nature of the joint effect of smoking and radiation showed a similar pattern for different histological types in which the radiation-associated excess relative risk tended to be larger for moderate smokers than for heavy smokers. However, in contrast to analyses of all lung cancers as a group, such complicated interactions did not describe the data significantly better than either simple additive or multiplicative interaction models for any of the type-specific analyses. PMID:22862780

  2. Improved Separators For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Shen, David; Surampudi, Subbarao; Huang, Chen-Kuo; Halpert, Gerald

    1994-01-01

    Improved pairs of separators proposed for use in rechargeable lithium cells operating at ambient temperature. Block growth of lithium dendrites and help prevent short circuits. Each cell contains one separator made of microporous polypropylene placed next to anode, and one separator made of microporous polytetrafluoroethylene (PTFE) next to cathode. Separators increase cycle lives of secondary lithium cells. Cells to which concept applicable those of Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/VO(x), and Li/MnO(2) chemical systems. Advantageous in spacecraft, military, communications, automotive, and other applications in which high energy density and rechargeability needed.

  3. Fuel-Cell Water Separator

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul

    2010-01-01

    The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.

  4. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    PubMed

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of ozone and peroxone on algal separation via dispersed air flotation.

    PubMed

    Nguyen, Truc Linh; Lee, D J; Chang, J S; Liu, J C

    2013-05-01

    Effects of pre-oxidation on algal separation by dispersed air flotation were examined. Ozone (O3) and peroxone (O3 and H2O2) could induce cell lysis, release of intracellular organic matter (IOM), and mineralization of organic substances. Separation efficiency of algal cells improved when pre-oxidized. Total of 76.4% algal cells was separated at 40 mg/L of N-cetyl-N-N-N-trimethylammonium bromide (CTAB), while 95% were separated after 30-min ozonation. Pre-oxidation by ozone and peroxone also enhanced flotation separation efficiency of dissolved organic carbon (DOC), polysaccharide, and protein, in which peroxone process exerted more significantly than O3. Two main mechanisms were involved in flotation separation of unoxidized algal suspension, namely hydrophobic cell surface and cell flocculation resulting from CTAB adsorption. However, flocculation by CTAB was hindered for pre-oxidized algal suspensions. It implied that the compositional changes in extracellular organic matter (EOM) by pre-oxidation were more determined for flotation separation of pre-oxidized cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Automated Conflict Resolution, Arrival Management and Weather Avoidance for ATM

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Lauderdale, Todd A.; Chu, Yung-Cheng

    2010-01-01

    The paper describes a unified solution to three types of separation assurance problems that occur in en-route airspace: separation conflicts, arrival sequencing, and weather-cell avoidance. Algorithms for solving these problems play a key role in the design of future air traffic management systems such as NextGen. Because these problems can arise simultaneously in any combination, it is necessary to develop integrated algorithms for solving them. A unified and comprehensive solution to these problems provides the foundation for a future air traffic management system that requires a high level of automation in separation assurance. The paper describes the three algorithms developed for solving each problem and then shows how they are used sequentially to solve any combination of these problems. The first algorithm resolves loss-of-separation conflicts and is an evolution of an algorithm described in an earlier paper. The new version generates multiple resolutions for each conflict and then selects the one giving the least delay. Two new algorithms, one for sequencing and merging of arrival traffic, referred to as the Arrival Manager, and the other for weather-cell avoidance are the major focus of the paper. Because these three problems constitute a substantial fraction of the workload of en-route controllers, integrated algorithms to solve them is a basic requirement for automated separation assurance. The paper also reviews the Advanced Airspace Concept, a proposed design for a ground-based system that postulates redundant systems for separation assurance in order to achieve both high levels of safety and airspace capacity. It is proposed that automated separation assurance be introduced operationally in several steps, each step reducing controller workload further while increasing airspace capacity. A fast time simulation was used to determine performance statistics of the algorithm at up to 3 times current traffic levels.

  7. The Development of M Cells in Peyer’s Patches Is Restricted to Specialized Dome-Associated Crypts

    PubMed Central

    Gebert, Andreas; Fassbender, Susanne; Werner, Kerstin; Weissferdt, Annikka

    1999-01-01

    It is controversial whether the membranous (M) cells of the Peyer’s patches represent a separate cell line or develop from enterocytes under the influence of lymphocytes on the domes. To answer this question, the crypts that produce the dome epithelial cells were studied and the distribution of M cells over the domes was determined in mice. The Ulex europaeus agglutinin was used to detect M cells in mouse Peyer’s patches. Confocal microscopy with lectin-gold labeling on ultrathin sections, scanning electron microscopy, and laminin immuno-histochemistry were combined to characterize the cellular composition and the structure of the dome-associated crypts and the dome epithelium. In addition, the sites of lymphocyte invasion into the dome epithelium were studied after removal of the epithelium using scanning electron microscopy. The domes of Peyer’s patches were supplied with epithelial cells that derived from two types of crypt: specialized dome-associated crypts and ordinary crypts differing not only in shape, size, and cellular composition but also in the presence of M cell precursors. When epithelial cells derived from ordinary crypts entered the domes, they formed converging radial strips devoid of M cells. In contrast to the M cells, the sites where lymphocytes invaded the dome epithelium were not arranged in radial strips, but randomly distributed over the domes. M cell development is restricted to specialized dome-associated crypts. Only dome epithelial cells that derive from these specialized crypts differentiate into M cells. It is concluded that M cells represent a separate cell line that is induced in the dome-associated crypts by still unknown, probably diffusible lymphoid factors. PMID:10329609

  8. Fuel cell system with separating structure bonded to electrolyte

    DOEpatents

    Bourgeois, Richard Scott; Gudlavalleti, Sauri; Quek, Shu Ching; Hasz, Wayne Charles; Powers, James Daniel

    2010-09-28

    A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.

  9. Behavior of sea urchin primary mesenchyme cells in artificial extracellular matrices.

    PubMed

    Katow, H

    1986-02-01

    The primary mesenchyme cells (PMCs) were separated from the mesenchyme blastulae of Pseudocentrotus depressus using differential adhesiveness of these cells to plastic Petri dishes. These cells were incubated in various artificial extracellular matrices (ECMs) including horse serum plasma fibronectin, mouse EHS sarcoma laminin, mouse EHS sarcoma type IV collagen, and porcine skin dermatan sulfate. The cell behavior was monitored by a time-lapse videomicrograph and analysed with a microcomputer. The ultrastructure of the artificial ECM was examined by transmission electron microscopy (TEM), while the ultrastructure of the PMCs was examined by scanning electron microscopy (SEM). The PMCs did not migrate in type IV collagen gel, laminin or dermatan sulfate matrix either with or without collagen gel, whereas PMCs in the matrix which was composed of fibronectin and collagen gel migrated considerably. However, the most active and extensive PMC migration was seen in the matrix which contained dermatan sulfate in addition to fibronectin and collagen gel. This PMC migration involved an increase not only of migration speed but also of proportion of migration-promoted cells. These results support the hypothesis that the mechanism of PMC migration involves fibronectin, collagen and sulfated proteoglycans which contain dermatan sulfate.

  10. Solar breeze power package and saucer ship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, S. E.

    1985-11-12

    A solar breeze power package having versatile sail and windmast options useful both on land and sea and especially useful in the saucer ship type design. The Vertical Axis Wind Turbine (VAWT) of the several Darrieus designs in conjunction with roll-up or permanently mounted solar cells combine in a hybrid or are used separately to provide power to a battery bank or other storage device.

  11. 8th edition AJCC/UICC staging of cancers of the esophagus and esophagogastric junction: application to clinical practice.

    PubMed

    Rice, Thomas W; Patil, Deepa T; Blackstone, Eugene H

    2017-03-01

    The 8th edition of the American Joint Committee on Cancer (AJCC) staging of epithelial cancers of the esophagus and esophagogastric junction (EGJ) presents separate classifications for clinical (cTNM), pathologic (pTNM), and postneoadjuvant (ypTNM) stage groups. Histopathologic cell type markedly affects survival of clinically and pathologically staged patients, requiring separate groupings for each cell type, but ypTNM groupings are identical for both cell types. Clinical categories, typically obtained by imaging with minimal histologic information, are limited by resolution of each method. Strengths and shortcomings of clinical staging methods should be recognized. Complementary cytology or histopathology findings may augment imaging and aid initial treatment decision-making. However, prognostication using clinical stage groups remains coarse and inaccurate compared with pTNM. Pathologic staging is losing its relevance for advanced-stage cancer as neoadjuvant therapy replaces esophagectomy alone. However, it remains relevant for early-stage cancers and as a staging and survival reference point. Although pathologic stage could facilitate decision-making, its use to direct postoperative adjuvant therapy awaits more effective treatment. Prognostication using pathologic stage groups is the most refined of all classifications. Postneoadjuvant staging (ypTNM) is introduced by the AJCC but not adopted by the Union for International Cancer Control (UICC). Drivers of this addition include absence of equivalent pathologic (pTNM) categories for categories peculiar to the postneoadjuvant state (ypT0N0-3M0 and ypTisN0-3M0), dissimilar stage group compositions, and markedly different survival profiles. Thus, prognostication is specific for patients undergoing neoadjuvant therapy. The role of ypTNM classification in additional treatment decision-making is currently limited. Precision cancer care advances are necessary for this information to be clinically useful.

  12. High-throughput separation of cells by dielectrophoresis enhanced with 3D gradient AC electric field.

    PubMed

    Tada, Shigeru; Hayashi, Masako; Eguchi, Masanori; Tsukamoto, Akira

    2017-11-01

    We propose a novel, high-performance dielectrophoretic (DEP) cell-separation flow chamber with a parallel-plate channel geometry. The flow chamber, consisting of a planar electrode on the top and an interdigitated-pair electrode array at the bottom, was developed to facilitate the separation of cells by creating a nonuniform AC electric field throughout the volume of the flow chamber. The operation and performance of the device were evaluated using live and dead human epithermal breast (MCF10A) cells. The separation dynamics of the cell suspension in the flow chamber was also investigated by numerically simulating the trajectories of individual cells. A theoretical model to describe the dynamic cell behavior under the action of DEP, including dipole-dipole interparticle, viscous, and gravitational forces, was developed. The results demonstrated that the live cells traveling through the flow chamber congregated into sites where the electric field gradient was minimal, in the middle of the flow stream slightly above the centerlines of the grounded electrodes at the bottom. Meanwhile, the dead cells were trapped on the edges of the high-voltage electrodes at the bottom. Cells were thus successfully separated with a remarkably high separation ratio (∼98%) at the appropriately tuned field frequency and applied voltage. The numerically predicted behavior and spatial distribution of the cells during separation also showed good agreement with those observed experimentally.

  13. The effect of fibrin on cultured vascular endothelial cells.

    PubMed

    Kadish, J L; Butterfield, C E; Folkman, J

    1979-01-01

    The normal cobblestone monolayer architecture of cultured vascular endothelium becomes rapidly disorganized after contact of the cell layer with a fibrin clot. The cells of a confluent endothelial monolayer separate into individual migratory cells in 4--6 hr after contact with fibrin. The effect is reversible in that removal of the fibrin clot results in resumption of the normal morphology within about 2 hr. No other cell type tested exhibits the same change in organization when exposed to fibrin. A similar morphological change in endothelium does occur after the cell layer is overlaid with a collagen fibril gel but a gel of methylcellulose has no effect. It is proposed that the change in behavior of endothelial cells in response to contact with fibrin may represent a cellular component of fibrinolysis. The implications of this finding for the pathophysiology of disease states involving intravascular fibrin deposition are discussed.

  14. Microanalysis of plant cell wall polysaccharides.

    PubMed

    Obel, Nicolai; Erben, Veronika; Schwarz, Tatjana; Kühnel, Stefan; Fodor, Andrea; Pauly, Markus

    2009-09-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  15. Grooved nanowires from self-assembling hairpin molecules for solar cells.

    PubMed

    Tevis, Ian D; Tsai, Wei-Wen; Palmer, Liam C; Aytun, Taner; Stupp, Samuel I

    2012-03-27

    One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%. © 2012 American Chemical Society

  16. Long-lived force patterns and deformation waves at repulsive epithelial boundaries

    NASA Astrophysics Data System (ADS)

    Rodríguez-Franco, Pilar; Brugués, Agustí; Marín-Llauradó, Ariadna; Conte, Vito; Solanas, Guiomar; Batlle, Eduard; Fredberg, Jeffrey J.; Roca-Cusachs, Pere; Sunyer, Raimon; Trepat, Xavier

    2017-10-01

    For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.

  17. Electrophoretic separation and analysis of living cells from solid tissues by several methods - Human embryonic kidney cell cultures as a model

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.

    1986-01-01

    The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.

  18. Microfabricated poly(ethylene glycol) templates enable rapid screening of triculture conditions for cardiac tissue engineering.

    PubMed

    Iyer, Rohin K; Chiu, Loraine L Y; Radisic, Milica

    2009-06-01

    The purpose of this study was to design a simple system for cultivation of micro-scale cardiac organoids and investigate the effects of cellular composition on the organoid function. We hypothesized that cultivation of cardiomyocytes (CM) on preformed networks of fibroblasts (FB) and endothelial cells (EC) would enhance the structural and functional properties of the organoids, compared to simultaneously seeding the three cell types or cultivating enriched CM alone. Microchannels for cell seeding were created by photopolymerization of poly(ethylene glycol) diacrylate. In the preculture group the channels were seeded with a mixture of NIH 3T3 FB and D4T EC, following by addition of neonatal rat CM after 2 days of FB/EC preculture. The control microchannels were seeded simultaneously with FB/EC/CM (simultaneous triculture) or with enriched CM alone (enriched CM). Preculture resulted in cylindrical, contractile, and compact cardiac organoids that contained elongated CM expressing connexin-43 and cardiac troponin I. In contrast, simultaneous triculture resulted in noncontractile organoids with clusters of CM growing separately from elongated FBs and ECs. The staining for Connexin-43 was absent in the simultaneous triculture group. When fixed or frozen FB/EC were utilized as a preculture substrate for CM, noncontractile organoids were obtained; while preculture on a single cell type (either FB or EC) resulted in contractile organoids but with inferior properties compared to preculture with both FB/EC. These results emphasize the importance of living cells, presence of both nonmyocyte cell types as well as sequential seeding approach for cultivation of functional multicell type cardiac organoids. 2008 Wiley Periodicals, Inc.

  19. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, M.N.M.; School of Life and Health Science, Aston University, Aston Triangle, Birmingham, B4 7EJ; Wright, K.T.

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditionsmore » significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.« less

  20. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays.

    PubMed

    Walter, M N M; Wright, K T; Fuller, H R; MacNeil, S; Johnson, W E B

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Optimization of yield in magnetic cell separations using nickel nanowires of different lengths.

    PubMed

    Hultgren, Anne; Tanase, Monica; Felton, Edward J; Bhadriraju, Kiran; Salem, Aliasger K; Chen, Christopher S; Reich, Daniel H

    2005-01-01

    Ferromagnetic nanowires are shown to perform both high yield and high purity single-step cell separations on cultures of NIH-3T3 mouse fibroblast cells. The nanowires are made by electrochemical deposition in nanoporous templates, permitting detailed control of their chemical and physical properties. When added to fibroblast cell cultures, the nanowires are internalized by the cells via the integrin-mediated adhesion pathway. The effectiveness of magnetic cell separations using Ni nanowires 350 nm in diameter and 5-35 micrometers long in field gradients of 40 T/m was compared to commercially available superparamagnetic beads. The percent yield of the separated populations is found to be optimized when the length of the nanowire is matched to the diameter of the cells in the culture. Magnetic cell separations performed under these conditions achieve 80% purity and 85% yield, a 4-fold increase over the beads. This effect is shown to be robust when the diameter of the cell is changed within the same cell line using mitomycin-C.

  2. Free flow electrophoresis in space shuttle program (biotex)

    NASA Astrophysics Data System (ADS)

    Hannig, Kurt; Bauer, Johann

    In the space shuttle program free flow electrophoresis will be applied for separation of proteins, biopolymers and cells. Proteins are to be separated according to the ``Feldsprung-Gradienten'' procedure by Prof. H. Wagner, University of Saarbruecken, biopolymers are to be separated by the isotachophoresis technique by Prof. Schmitz, University of Muenster and we intend to separate cells in order to increase the efficiency of recovery of hybrid cells after electrofusion performed under microgravity in collaboration with Prof. U. Zimmermann, University of Wuerzburg. There are supposed two ways for reaching this goal: Enrichment of cells before electrofusion may enhance the probability that the cells of interest are immortalized. Separation of cells after electrofusion may help to clone the hybrid cells of interest. Under microgravity, the combination of improved electrophoresis with higher electrofusion rates may provide new possibilities for immortalization of cells. This may be a new way to obtain cellular products, which are physiologically glycosylated.

  3. [Advanced and Metastatic Lung Cancer – What is new in the Diagnosis and Therapy?].

    PubMed

    Rothschild, Sacha I

    2015-07-01

    Lung cancer is one of the most common types of malignancies worldwide. The majority of patients are diagnosed with an incurable advanced/metastatic stage disease. Palliative treatment approaches improve the survival and the quality of life of these patients. Lung cancer is subdivided according to histology and molecular biology. The most important classification separates small cell from non-small cell lung cancer. In the subgroup of non-small cell lung cancer novel treatment approaches coming along with an improved prognosis have been established during the last decade. The current manuscript provides an overview on current treatment options for metastatic lung cancer. Furthermore, an outlook on promising future treatment options is provided.

  4. Assessing dysplasia of a bronchial biopsy with FTIR spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Foreman, Liberty; Kimber, James A.; Oliver, Katherine V.; Brown, James M.; Janes, Samuel M.; Fearn, Tom; Kazarian, Sergei G.; Rich, Peter

    2015-03-01

    An FTIR image of an 8 µm section of de-paraffinised bronchial biopsy that shows a histological transition from normal to severe dysplasia/squamous cell carcinoma (SCC) in situ was obtained in transmission by stitching together images of 256 x 256 µm recorded using a 96 x 96 element FPA detector. Each pixel spectrum was calculated from 128 co-added interferograms at 4 cm-1 resolution. In order to improve the signal to noise ratio, blocks of 4x4 adjacent pixels were subsequently averaged. Analyses of this spectral image, after conversion of the spectra to their second derivatives, show that the epithelium and the lamina propria tissue types can be distinguished using the area of troughs at either 1591, 1334, 1275 or 1215 cm-1 or, more effectively, by separation into two groups by hierarchical clustering (HCA) of the 1614-1465 region. Due to an insufficient signal to noise ratio, disease stages within the image could not be distinguished with this extent of pixel averaging. However, after separation of the cell types, disease stages within either the epithelium or the lamina propria could be distinguished if spectra were averaged from larger, manually selected areas of the tissue. Both cell types reveal spectral differences that follow a transition from normal to cancerous histology. For example, spectral changes that occurred in the epithelium over the transition from normal to carcinoma in situ could be seen in the 1200-1000 cm-1 region, particularly as a decrease in the second derivative troughs at 1074 and 1036 cm-1 , consistent with changes in some form of carbohydrate. Spectral differences that indicate a disease transition from normal to carcinoma in the lamina propria could be seen in the 1350-1175 cm-1 and 1125-1030 cm-1 regions. Thus demonstrating that a progression from healthy to severe dysplasia/squamous cell carcinoma (SCC) in situ can be seen using FTIR spectroscopic imaging and multivariate analysis.

  5. Two separate defects affecting true naive or virtual memory T cell precursors combine to reduce naive T cell responses with aging.

    PubMed

    Renkema, Kristin R; Li, Gang; Wu, Angela; Smithey, Megan J; Nikolich-Žugich, Janko

    2014-01-01

    Naive T cell responses are eroded with aging. We and others have recently shown that unimmunized old mice lose ≥ 70% of Ag-specific CD8 T cell precursors and that many of the remaining precursors acquire a virtual (central) memory (VM; CD44(hi)CD62L(hi)) phenotype. In this study, we demonstrate that unimmunized TCR transgenic (TCRTg) mice also undergo massive VM conversion with age, exhibiting rapid effector function upon both TCR and cytokine triggering. Age-related VM conversion in TCRTg mice directly depended on replacement of the original TCRTg specificity by endogenous TCRα rearrangements, indicating that TCR signals must be critical in VM conversion. Importantly, we found that VM conversion had adverse functional effects in both old wild-type and old TCRTg mice; that is, old VM, but not old true naive, T cells exhibited blunted TCR-mediated, but not IL-15-mediated, proliferation. This selective proliferative senescence correlated with increased apoptosis in old VM cells in response to peptide, but decreased apoptosis in response to homeostatic cytokines IL-7 and IL-15. Our results identify TCR as the key factor in differential maintenance and function of Ag-specific precursors in unimmunized mice with aging, and they demonstrate that two separate age-related defects--drastic reduction in true naive T cell precursors and impaired proliferative capacity of their VM cousins--combine to reduce naive T cell responses with aging.

  6. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing.

    PubMed

    Xu, Chun-Xiu; Yin, Xue-Feng

    2011-02-04

    A chip-based microfluidic system for high-throughput single-cell analysis is described. The system was integrated with continuous introduction of individual cells, rapid dynamic lysis, capillary electrophoretic (CE) separation and laser induced fluorescence (LIF) detection. A cross microfluidic chip with one sheath-flow channel located on each side of the sampling channel was designed. The labeled cells were hydrodynamically focused by sheath-flow streams and sequentially introduced into the cross section of the microchip under hydrostatic pressure generated by adjusting liquid levels in the reservoirs. Combined with the electric field applied on the separation channel, the aligned cells were driven into the separation channel and rapidly lysed within 33ms at the entry of the separation channel by Triton X-100 added in the sheath-flow solution. The maximum rate for introducing individual cells into the separation channel was about 150cells/min. The introduction of sheath-flow streams also significantly reduced the concentration of phosphate-buffered saline (PBS) injected into the separation channel along with single cells, thus reducing Joule heating during electrophoretic separation. The performance of this microfluidic system was evaluated by analysis of reduced glutathione (GSH) and reactive oxygen species (ROS) in single erythrocytes. A throughput of 38cells/min was obtained. The proposed method is simple and robust for high-throughput single-cell analysis, allowing for analysis of cell population with considerable size to generate results with statistical significance. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Separation technologies for stem cell bioprocessing.

    PubMed

    Diogo, Maria Margarida; da Silva, Cláudia Lobato; Cabral, Joaquim M S

    2012-11-01

    Stem cells have been the focus of an intense research due to their potential in Regenerative Medicine, drug discovery, toxicology studies, as well as for fundamental studies on developmental biology and human disease mechanisms. To fully accomplish this potential, the successful application of separation processes for the isolation and purification of stem cells and stem cell-derived cells is a crucial issue. Although separation methods have been used over the past decades for the isolation and enrichment of hematopoietic stem/progenitor cells for transplantation in hemato-oncological settings, recent achievements in the stem cell field have created new challenges including the need for novel scalable separation processes with a higher resolution and more cost-effective. Important examples are the need for high-resolution methods for the separation of heterogeneous populations of multipotent adult stem cells to study their differential biological features and clinical utility, as well as for the depletion of tumorigenic cells after pluripotent stem cell differentiation. Focusing on these challenges, this review presents a critical assessment of separation processes that have been used in the stem cell field, as well as their current and potential applications. The techniques are grouped according to the fundamental principles that govern cell separation, which are defined by the main physical, biophysical, and affinity properties of cells. A special emphasis is given to novel and promising approaches such as affinity-based methods that take advantage of the use of new ligands (e.g., aptamers, lectins), as well as to novel biophysical-based methods requiring no cell labeling and integrated with microscale technologies. Copyright © 2012 Wiley Periodicals, Inc.

  8. Role of pectolytic enzymes in the programmed separation of cells from the root cap of higher plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawes, M.C.

    1995-03-01

    The objective of this research was to develop a model system to study border cell separation in transgenic pea roots. In addition, the hypothesis that genes encoding pectolytic enzymes in the root cap play a role in the programmed separation of root border cells from the root tip was tested. The following objectives have been accomplished: (1) the use of transgenic hairy roots to study border cell separation has been optimized for Pisum sativum; (2) a cDNA encoding a root cap pectinmethylesterase (PME) has been cloned; (3) PME and polygalacturonase activities in cell walls of the root cap have beenmore » characterized and shown to be correlated with border cell separation. A fusion gene encoding pectate lyase has also been transformed into pea hairy root cells.« less

  9. Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. I. Cell types without spherules.

    PubMed

    Heatfield, B M; Travis, D F

    1975-01-01

    The fine structure of regenerating tips of spines of the sea urchin Strongylocentrotus purpuratus was investigated. Each conical tip consisted of an inner dermis, which deposits and contains the calcite skeleton, and an external layer of epidermis. Although cell types termed spherulecytes containing large, intracellular membrane bound spherules were also present in spine tissues, only epidermal and dermal cell types lacking such spherules are described in this paper. The epidermis was composed largely of free cells representing several functional types. Over the apical portion of the tip these cells occurred in groups, while proximally they were distributed within longitudinal grooves present along the periphery of the spine from the base to the tip. The terminal portions of apical processes extending from some of the epidermal cells formed a thin, contiguous outer layer consisting of small individual islands of cytoplasm bearing microvilli. Adjacent islands were connected around the periphery by a junctional complex extending roughly 200 A in depth in which the opposing plasma membranes were separated by a narrow gap about 145 A in width bridged by amorphous material. Other epidermal cells were closely associated with the basal lamina, which was 900 A in thickness and delineated the dermoepidermal junction; some of these cells appeared to synthesize the lamina, while others may be sensory nerve cells. The dermis at the spine tip also consisted of several functional types of free cells; the most interesting of these was the calcoblast, which deposits the skeleton. Calcoblasts extended a thin, cytoplasmic skeletal sheath which surrounded the tips and adjacent proximal portions of each of the longitudinally oriented microspines comprising the regenerating skeleton, and distally, formed a conical extracellular channel ahead of the mineralizing tip. The intimate relationship between calcoblasts and the growing mineral surface strongly suggests that these cells directly control both the kinetics of mineral deposition and morphogenesis of the skeleton. Other cell types in the dermis were precalcoblasts and phagocytes. Precalcoblasts may function as fibroblasts and are possible precursors of calcoblasts. Closely associated with the basal lamina at the dermoepidermal junction were extracellular unbanded anchoring fi0rils 150 A to 200 A51 in diameter. Scattered proximally among dermal cells were other extracellular fibrils, presumably collagenous, about 300 A in diameter wit

  10. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.

    PubMed

    O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-24

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types. Moreover the transfection is efficient with high cell viability and does not require a postsorting step to separate transfected from nontransfected cells in the cell population. We also show for the first time a precision transfection strategy where a single cell type in a coculture is target transfected via bio-orthogonal click chemistry.

  11. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.

    PubMed

    Caplan, Z; Melilli, C; Barbano, D M

    2013-04-01

    The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Two-Stage, In Silico Deconvolution of the Lymphocyte Compartment of the Peripheral Whole Blood Transcriptome in the Context of Acute Kidney Allograft Rejection

    PubMed Central

    Shannon, Casey P.; Balshaw, Robert; Ng, Raymond T.; Wilson-McManus, Janet E.; Keown, Paul; McMaster, Robert; McManus, Bruce M.; Landsberg, David; Isbel, Nicole M.; Knoll, Greg; Tebbutt, Scott J.

    2014-01-01

    Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical. Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations, and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection. The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-specificity of these differentially expressed probe-set lists is consistent with the originating tissue and their functional enrichment consistent with allograft rejection. Finally, we demonstrate that the strategy described here can be used to derive useful hypotheses by validating a cell type-specific ratio in an independent cohort using the nanoString nCounter assay. PMID:24733377

  13. In vitro differentiation of neural cells from human adipose tissue derived stromal cells.

    PubMed

    Dave, Shruti D; Patel, Chetan N; Vanikar, Aruna V; Trivedi, Hargovind L

    2018-01-01

    Stem cells, including neural stem cells (NSCs), are endowed with self-renewal capability and hence hold great opportunity for the institution of replacement/protective therapy. We propose a method for in vitro generation of stromal cells from human adipose tissue and their differentiation into neural cells. Ten grams of donor adipose tissue was surgically resected from the abdominal wall of the human donor after the participants' informed consents. The resected adipose tissue was minced and incubated for 1 hour in the presence of an enzyme (collagenase-type I) at 37 0 C followed by its centrifugation. After centrifugation, the supernatant and pellets were separated and cultured in a medium for proliferation at 37 0 C with 5% CO2 for 9-10 days in separate tissue culture dishes for generation of mesenchymal stromal cells (MSC). At the end of the culture, MSC were harvested and analyzed. The harvested MSC were subjected for further culture for their differentiation into neural cells for 5-7 days using differentiation medium mainly comprising of neurobasal medium. At the end of the procedure, culture cells were isolated and studied for expression of transcriptional factor proteins: orthodenticle homolog-2 (OTX-2), beta-III-tubulin (β3-Tubulin), glial-fibrillary acid protein (GFAP) and synaptophysin-β2. In total, 50 neural cells-lines were generated. In vitro generated MSC differentiated neural cells' mean quantum was 5.4 ± 6.9 ml with the mean cell count being, 5.27 ± 2.65 × 10 3/ μl. All of them showed the presence of OTX-2, β3-Tubulin, GFAP, synaptophysin-β2. Neural cells can be differentiated in vitro from MSC safely and effectively. In vitro generated neural cells represent a potential therapy for recovery from spinal cord injuries and neurodegenerative disease.

  14. Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins

    PubMed Central

    Titushkin, Igor; Cho, Michael

    2009-01-01

    Abstract Cellular mechanics is known to play an important role in the cell homeostasis including proliferation, motility, and differentiation. Significant variation in the mechanical properties between different cell types suggests that control of the cell metabolism is feasible through manipulation of the cell mechanical parameters using external physical stimuli. We investigated the electrocoupling mechanisms of cellular biomechanics modulation by an electrical stimulation in two mechanically distinct cell types—human mesenchymal stem cells and osteoblasts. Application of a 2 V/cm direct current electric field resulted in approximately a twofold decrease in the cell elasticity and depleted intracellular ATP. Reduction in the ATP level led to inhibition of the linker proteins that are known to physically couple the cell membrane and cytoskeleton. The membrane separation from the cytoskeleton was confirmed by up to a twofold increase in the membrane tether length that was extracted from the cell membrane after an electrical stimulation. In comparison to human mesenchymal stem cells, the membrane-cytoskeleton attachment in osteoblasts was much stronger but, in response to the same electrical stimulation, the membrane detachment from the cytoskeleton was found to be more pronounced. The observed effects mediated by an electric field are cell type- and serum-dependent and can potentially be used for electrically assisted cell manipulation. An in-depth understanding and control of the mechanisms to regulate cell mechanics by external physical stimulus (e.g., electric field) may have great implications for stem cell-based tissue engineering and regenerative medicine. PMID:19167316

  15. Stacking Oxygen-Separation Cells

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.

    1991-01-01

    Simplified configuration and procedure developed for assembly of stacks of solid-electrolyte cells separating oxygen from air electrochemically. Reduces number of components and thus reduces probability of such failures as gas leaks, breakdown of sensitive parts, and electrical open or short circuits. Previous, more complicated version of cell described in "Improved Zirconia Oxygen-Separation Cell" (NPO-16161).

  16. Antibody enhancement of free-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Cohly, H. H. P.; Morrison, Dennis R.; Atassi, M. Zouhair

    1988-01-01

    Specific T cell clones and antibodies (ABs) were developed to study the efficiency of purifying closely associated T cells using Continuous Flow Electrophoresis System. Enhanced separation is accomplished by tagging cells first with ABs directed against the antigenic determinants on the cell surface and then with ABs against the Fc portion of the first AB. This second AB protrudes sufficiently beyond the cell membrane and glycocalyx to become the major overall cell surface potential determinant and thus causes a reduction of electrophoretic mobility. This project was divided into three phases. Phase one included development of specific T cell clones and separation of these specific clones. Phase two extends these principles to the separation of T cells from spleen cells and immunized lymph node cells. Phase three applies this double antibody technique to the separation of T cytotoxic cells from bone marrow.

  17. Immune responses of mussel hemocyte subpopulations are differentially regulated by enzymes of the PI 3-K, PKC, and ERK kinase families.

    PubMed

    García-García, Erick; Prado-Alvarez, Maria; Novoa, Beatriz; Figueras, Antonio; Rosales, Carlos

    2008-01-01

    Various hemocyte cell types have been described in invertebrates, but for most species a functional characterization of different hemocyte cell types is still lacking. In order to characterize some immunological properties of mussel (Mytilus galloprovincialis) hemocytes, cells were separated by flow cytometry and their capacity for phagocytosis, production of reactive oxygen species (ROS), and production of nitric oxide (NO), was examined. Phosphatidylinositol 3-kinase (PI 3-K), protein kinase C (PKC), and extracellular signal-regulated kinase (ERK) inhibitors were also used to biochemically characterize these cell responses. Four morphologically distinct subpopulations, designated R1-R4, were detected. R1, R2, and R3 cells presented different levels of phagocytosis towards zymosan, latex beads, and two bacteria species. Similarly, R1 to R3, but not R4, cells produced ROS, while all subpopulations produced NO, in response to zymosan. Internalization of all phagocytic targets was blocked by PI 3-K inhibition. In addition, internalization of latex particles, but not of bacteria, was partially blocked by PKC or ERK inhibition. Interestingly, phagocytosis of zymosan was impaired by PKC, or ERK inhibitors, only in R2 cells. Zymosan-induced ROS production was blocked by PI 3-K inhibition, but not by PKC, or ERK inhibition. In addition, zymosan-stimulated NO production was affected by PI 3-K inhibition in R1 and R2, but not in R3 or R4 cells. NO production in all cell types was unaffected by PKC inhibition, but ERK inhibition blocked it in R2 cells. These data reveal the existence of profound functional and biochemical differences in mussel hemocytes and indicate that M. galloprovincialis hemocytes are specialized cells fulfilling specific tasks in the context of host defense.

  18. Structure and assembly of desmosome junctions: biosynthesis, processing, and transport of the major protein and glycoprotein components in cultured epithelial cells.

    PubMed

    Penn, E J; Hobson, C; Rees, D A; Magee, A I

    1987-07-01

    Extracts of metabolically labeled cultured epithelial cells have been analyzed by immunoprecipitation followed by SDS-PAGE, using antisera to the major high molecular mass proteins and glycoproteins (greater than 100 kD) from desmosomes of bovine muzzle epidermis. For nonstratifying cells (Madin-Darby canine kidney [MDCK] and Madin-Darby bovine kidney), and A431 cells that have lost the ability to stratify through transformation, and a stratifying cell type (primary human keratinocytes) apparently similar polypeptides were immunoprecipitated with our antisera. These comprised three glycoproteins (DGI, DGII, and DGIII) and one major nonglycosylated protein (DPI). DPII, which has already been characterized by others in stratifying tissues, appeared to be absent or present in greatly reduced amounts in the nonstratifying cell types. The desmosome glycoproteins were further characterized in MDCK cells. Pulse-chase studies showed all three DGs were separate translation products. The two major glycoprotein families (DGI and DGII/III) were both found to be synthesized with co-translational addition of 2-4 high mannose cores later processed into complex type chains. However, they became endo-beta-N-acetylglucosaminidase H resistant at different times (DGII/III being slower). None of the DGs were found to have O-linked oligosaccharides unlike bovine muzzle DGI. Transport to the cell surface was rapid for all glycoproteins (60-120 min) as demonstrated by the rate at which they became sensitive to trypsin in intact cells. This also indicated that they were exposed at the outer cell surface. DGII/III, but not DGI, underwent a proteolytic processing step, losing 10 kD of carbohydrate-free peptide, during transport to the cell surface suggesting a possible regulatory mechanism in desmosome assembly.

  19. Separation of mouse testis cells on a Celsep (TM) apparatus and their usefulness as a source of high molecular weight DNA or RNA

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Gizang-Ginsberg, E.; Engelmyer, E.; Gavin, B. J.; Ponzetto, C.

    1985-01-01

    The use of a self-contained unit-gravity cell separation apparatus for separation of populations of mouse testicular cells is described. The apparatus, a Celsep (TM), maximizes the unit area over which sedimentation occurs, reduces the amount of separation medium employed, and is quite reproducible. Cells thus isolated have been good sources for isolation of DNA, and notably, high molecular weight RNA.

  20. Phylogenetic analysis of the haemagglutinin gene of current wild-type canine distemper viruses from South Africa: lineage Africa.

    PubMed

    Woma, Timothy Y; van Vuuren, Moritz; Bosman, Ana-Mari; Quan, Melvyn; Oosthuizen, Marinda

    2010-07-14

    There are no reports of CDV isolations in southern Africa, and although CDV is said to have geographically distinct lineages, molecular information of African strains has not yet been documented. Viruses isolated in cell cultures were subjected to reverse transcription-polymerase chain reaction (RT-PCR), and the complete H gene was sequenced and phylogenetically analysed with other strains from GenBank. Phylogenetic comparisons of the complete H gene of CDV isolates from different parts of the world (available in GenBank) with wild-type South African isolates revealed nine clades. All South African isolates form a separate African clade of their own and thus are clearly separated from the American, European, Asian, Arctic and vaccine virus clades. It is likely that only the 'African lineage' of CDV may be circulating in South Africa currently, and the viruses isolated from dogs vaccinated against CDV are not the result of reversion to virulence of vaccine strains, but infection with wild-type strains. (c) 2009 Elsevier B.V. All rights reserved.

  1. Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques.

    PubMed

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki

    2014-05-07

    Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process.

  2. Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry

    NASA Astrophysics Data System (ADS)

    Um, Jo-Eun; Song, Sun Gu; Yoo, Pil J.; Song, Changsik; Kim, Woo-Jae

    2018-01-01

    Single-walled carbon nanotubes (SWCNTs) can be either metallic or semiconducting, making their separation critical for applications in nanoelectronics, biomedical materials, and solar cells. Herein, we investigate a novel solution-phase separation method based on click chemistry (azide-alkyne Huisgen cycloaddition) and determine its efficiency and scalability. In this method, metallic SWCNTs in metallic/semiconducting SWCNT mixtures are selectively functionalized with alkyne groups by being reacted with 4-propargyloxybenezenediazonium tetrafluoroborate. Subsequently, silica nanoparticles are functionalized with azide groups and reacted with alkyne-bearing metallic SWCNTs in the SWCNT mixture in the presence of a Cu catalyst. As a result, metallic SWCNTs are anchored on silica powder, whereas non-functionalized semiconducting SWCNTs remain in solution. Low-speed centrifugation effectively removes the silica powder with attached metallic SWCNTs, furnishing a solution of highly pure semiconducting SWCNTs, as confirmed by Raman and UV-vis/near-infrared absorption measurements. This novel separation scheme exhibits the advantage of simultaneously separating both metallic and semiconducting SWCNTs from their mixtures, being cost-effective and therefore applicable at an industrial scale.

  3. Evaluation program for secondary spacecraft cells: Initial evaluation tests of Eagle-Picher Industries, Incorporated 6.0 ampere-hour, nickel-cadmium spacecraft cells for separator material evaluation

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1975-01-01

    Several groups of nickel cadmium cells were tested for the durability of their separator materials. The cells were rated at 6.0 ampere-hours, and contained double ceramic seals. Two cells in each group were fitted with pressure gauge assemblies. Results are presented for various brands of separator materials.

  4. Method for separating biological cells. [suspended in aqueous polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E. (Inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  5. Dynamics and Size of Cross-Linking-Induced Lipid Nanodomains in Model Membranes

    PubMed Central

    Štefl, Martin; Šachl, Radek; Humpolíčková, Jana; Cebecauer, Marek; Macháň, Radek; Kolářová, Marie; Johansson, Lennart B.-Å.; Hof, Martin

    2012-01-01

    Changes of membrane organization upon cross-linking of its components trigger cell signaling response to various exogenous factors. Cross-linking of raft gangliosides GM1 with cholera toxin (CTxB) was shown to cause microscopic phase separation in model membranes, and the CTxB-GM1 complexes forming a minimal lipid raft unit are the subject of ongoing cell membrane research. Yet, those subdiffraction sized rafts have never been described in terms of size and dynamics. By means of two-color z-scan fluorescence correlation spectroscopy, we show that the nanosized domains are formed in model membranes at lower sphingomyelin (Sph) content than needed for the large-scale phase separation and that the CTxB-GM1 complexes are confined in the domains poorly stabilized with Sph. Förster resonance energy transfer together with Monte Carlo modeling of the donor decay response reveal the domain radius of ∼8 nm, which increases at higher Sph content. We observed two types of domains behaving differently, which suggests a dual role of the cross-linker: first, local transient condensation of the GM1 molecules compensating for a lack of Sph and second, coalescence of existing nanodomains ending in large-scale phase separation. PMID:22824274

  6. Aphid Gel Saliva: Sheath Structure, Protein Composition and Secretory Dependence on Stylet-Tip Milieu

    PubMed Central

    Will, Torsten; Steckbauer, Kathrin; Hardt, Martin; van Bel, Aart J. E.

    2012-01-01

    In order to separate and analyze saliva types secreted during stylet propagation and feeding, aphids were fed on artificial diets. Gel saliva was deposited as chains of droplets onto Parafilm membranes covering the diets into which watery saliva was secreted. Saliva compounds collected from the diet fluid were separated by SDS-PAGE, while non-soluble gel saliva deposits were processed in a novel manner prior to protein separation by SDS-PAGE. Soluble (watery saliva) and non-soluble (gel saliva) protein fractions were significantly different. To test the effect of the stylet milieu on saliva secretion, aphids were fed on various diets. Hardening of gel saliva is strongly oxygen-dependent, probably owing to formation of sulfide bridges by oxidation of sulphydryl groups. Surface texture of gel saliva deposits is less pronounced under low-oxygen conditions and disappears in dithiothreitol containing diet. Using diets mimicking sieve-element sap and cell-wall fluid respectively showed that the soluble protein fraction was almost exclusively secreted in sieve elements while non-soluble fraction was preferentially secreted at cell wall conditions. This indicates that aphids are able to adapt salivary secretion in dependence of the stylet milieu. PMID:23056521

  7. Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen.

    PubMed

    Li, Albert P; Uzgare, Aarti; LaForge, Yumiko S

    2012-07-30

    The integrated discrete multiple organ co-culture system (IdMOC) allows the co-culturing of multiple cell types as physically separated cells interconnected by a common overlying medium. We report here the application of IdMOC with two cell types: the metabolically competent primary human hepatocytes, and a metabolically incompetent cell line, mouse 3T3 fibroblasts, in the definition of the role of hepatic metabolism on the cytotoxicity of three model toxicants: cyclophosphamide (CPA), aflatoxin B1 (AFB) and tamoxifen (TMX). The presence of hepatic metabolism in IdMOC with human hepatocytes was demonstrated by the metabolism of the P450 isoform 3A4 substrate, luciferin-IPA. The three model toxicants showed three distinct patterns of cytotoxic profile: TMX was cytotoxic to 3T3 cells in the absence of hepatocytes, with slightly lower cytotoxicity towards both 3T3 cells and hepatocytes in the IdMOC. AFB was selective toxic towards the human hepatocytes and relatively noncytotoxic towards 3T3 cells both in the presence and absence of the hepatocytes. CPA cytotoxicity to the 3T3 cells was found to be significantly enhanced by the presence of the hepatocytes, with the cytotoxicity dependent of the number of hepatocytes, and with the cytotoxicity attenuated by the presence of a non-specific P450 inhibitor, 1-aminobenzotriazole. We propose here the following classification of toxicants based on the role of hepatic metabolism as defined by the human hepatocyte-3T3 cell IdMOC assay: type I: direct-acting cytotoxicants represented by TMX as indicated by cytotoxicity in 3T3 cells in the absence of hepatocytes; type II: metabolism-dependent cytotoxicity represented by AFB1 with effects localized within the site of metabolic activation (i. e. hepatocytes); and type III: metabolism-dependent cytotoxicity with metabolites that can diffuse out of the hepatocytes to cause toxicity in cells distal from the site of metabolism, as exemplified by CPA. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.

  9. A new electrophoretic focusing principle: focusing of nonamphoteric weak ionogenic analytes using inverse electromigration dispersion profiles.

    PubMed

    Gebauer, Petr; Malá, Zdena; Bocek, Petr

    2010-03-01

    This contribution introduces a new separation principle in CE which offers focusing of weak nonamphoteric ionogenic species and their inherent transport to the detector. The prerequisite condition for application of this principle is the existence of an inverse electromigration dispersion profile, i.e. a profile where pH is decreasing toward the anode or cathode for focusing of anionic or cationic weak analytes, respectively. The theory presented defines the principal conditions under which an analyte is focused on a profile of this type. Since electromigration dispersion profiles are migrating ones, the new principle offers inherent transport of focused analytes into the detection cell. The focusing principle described utilizes a mechanism different from both CZE (where separation is based on the difference in mobilities) and IEF (where separation is based on difference in pI), and hence, offers another separation dimension in CE. The new principle and its theory presented here are supplemented by convincing experiments as their proof.

  10. p16 expression in follicular dendritic cell sarcoma: a potential mimicker of human papillomavirus-related oropharyngeal squamous cell carcinoma.

    PubMed

    Zhang, Lingxin; Yang, Chen; Lewis, James S; El-Mofty, Samir K; Chernock, Rebecca D

    2017-08-01

    Follicular dendritic cell sarcoma is a rare mesenchymal neoplasm that most commonly occurs in cervical lymph nodes. It has histologic and clinical overlap with the much more common p16-positive human papillomavirus (HPV)-related squamous cell carcinoma of the oropharynx, which characteristically has nonkeratinizing morphology and often presents as an isolated neck mass. Not surprisingly, follicular dendritic cell sarcomas are commonly misdiagnosed as squamous cell carcinoma. Immunohistochemistry is helpful in separating the 2 entities. Follicular dendritic cell sarcoma expresses dendritic markers such as CD21 and CD23 and is almost always cytokeratin negative. However, in many cases of HPV-related oropharyngeal carcinoma, only p16 immunohistochemistry as a prognostic and surrogate marker for HPV is performed. p16 expression in follicular dendritic cell sarcoma has not been characterized. Here, we investigate the expression of p16 in follicular dendritic cell sarcoma and correlate it with retinoblastoma protein expression. A pilot study of dendritic marker expression in HPV-related oropharyngeal squamous cell carcinoma was also performed. We found that 4 of 8 sarcomas expressed p16 with strong and diffuse staining in 2 cases. In 2 of the 4 cases, p16 expression corresponded to loss of retinoblastoma protein expression. Dendritic marker expression (CD21 and CD23) was not found in HPV-related oropharyngeal squamous cell carcinomas. As such, positive p16 immunohistochemistry cannot be used as supportive evidence for the diagnosis of squamous cell carcinoma as strong and diffuse p16 expression may also occur in follicular dendritic cell sarcoma. Cytokeratins and dendritic markers are critical in separating the two tumor types. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Integrating the Allen Brain Institute Cell Types Database into Automated Neuroscience Workflow.

    PubMed

    Stockton, David B; Santamaria, Fidel

    2017-10-01

    We developed software tools to download, extract features, and organize the Cell Types Database from the Allen Brain Institute (ABI) in order to integrate its whole cell patch clamp characterization data into the automated modeling/data analysis cycle. To expand the potential user base we employed both Python and MATLAB. The basic set of tools downloads selected raw data and extracts cell, sweep, and spike features, using ABI's feature extraction code. To facilitate data manipulation we added a tool to build a local specialized database of raw data plus extracted features. Finally, to maximize automation, we extended our NeuroManager workflow automation suite to include these tools plus a separate investigation database. The extended suite allows the user to integrate ABI experimental and modeling data into an automated workflow deployed on heterogeneous computer infrastructures, from local servers, to high performance computing environments, to the cloud. Since our approach is focused on workflow procedures our tools can be modified to interact with the increasing number of neuroscience databases being developed to cover all scales and properties of the nervous system.

  12. Green grasses as light harvesters in dye sensitized solar cells.

    PubMed

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Separating biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Technique utilizing electric field to promote biological cell separation from suspending medium in zero gravity increases speed, reduces sedimentation, and improves efficiency of separation in normal gravity.

  14. Revisiting point FRAP to quantitatively characterize anomalous diffusion in live cells.

    PubMed

    Daddysman, Matthew K; Fecko, Christopher J

    2013-02-07

    Fluorescence recovery after photobleaching (FRAP) is widely used to interrogate diffusion and binding of proteins in live cells. Herein, we apply two-photon excited FRAP with a diffraction limited bleaching and observation volume to study anomalous diffusion of unconjugated green fluorescence protein (GFP) in vitro and in cells. Experiments performed on dilute solutions of GFP reveal that reversible fluorophore bleaching can be mistakenly interpreted as anomalous diffusion. We derive a reaction-diffusion FRAP model that includes reversible photobleaching, and demonstrate that it properly accounts for these photophysics. We then apply this model to investigate the diffusion of GFP in HeLa cells and polytene cells of Drosophila larval salivary glands. GFP exhibits anomalous diffusion in the cytoplasm of both cell types and in HeLa nuclei. Polytene nuclei contain optically resolvable chromosomes, permitting FRAP experiments that focus separately on chromosomal or interchrosomal regions. We find that GFP exhibits anomalous diffusion in chromosomal regions but diffuses normally in regions devoid of chromatin. This observation indicates that obstructed transport through chromatin and not crowding by macromolecules is a source of anomalous diffusion in polytene nuclei. This behavior is likely true in other cells, so it will be important to account for this type of transport physics and for reversible photobleaching to properly interpret future FRAP experiments on DNA-binding proteins.

  15. Mechanical Properties of Plant Cell Walls Probed by Relaxation Spectra1[W][OA

    PubMed Central

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola; Jørgensen, Bodil; Borkhardt, Bernhard; Petersen, Bent Larsen; Ulvskov, Peter

    2011-01-01

    Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, BayesRelax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated using tuber tissue from wild-type and transgenic potatoes (Solanum tuberosum) that differ in rhamnogalacturonan I side chain structure. PMID:21075961

  16. GATA3 Abundance Is a Critical Determinant of T Cell Receptor β Allelic Exclusion

    PubMed Central

    Ku, Chia-Jui; Sekiguchi, JoAnn M.; Panwar, Bharat; Guan, Yuanfang; Takahashi, Satoru; Yoh, Keigyou; Maillard, Ivan; Hosoya, Tomonori

    2017-01-01

    ABSTRACT Allelic exclusion describes the essential immunological process by which feedback repression of sequential DNA rearrangements ensures that only one autosome expresses a functional T or B cell receptor. In wild-type mammals, approximately 60% of cells have recombined the DNA of one T cell receptor β (TCRβ) V-to-DJ-joined allele in a functional configuration, while the second allele has recombined only the DJ sequences; the other 40% of cells have recombined the V to the DJ segments on both alleles, with only one of the two alleles predicting a functional TCRβ protein. Here we report that the transgenic overexpression of GATA3 leads predominantly to biallelic TCRβ gene (Tcrb) recombination. We also found that wild-type immature thymocytes can be separated into distinct populations based on intracellular GATA3 expression and that GATA3LO cells had almost exclusively recombined only one Tcrb locus (that predicted a functional receptor sequence), while GATA3HI cells had uniformly recombined both Tcrb alleles (one predicting a functional and the other predicting a nonfunctional rearrangement). These data show that GATA3 abundance regulates the recombination propensity at the Tcrb locus and provide new mechanistic insight into the historic immunological conundrum for how Tcrb allelic exclusion is mediated. PMID:28320875

  17. Root Border Cells and Their Role in Plant Defense.

    PubMed

    Hawes, Martha; Allen, Caitilyn; Turgeon, B Gillian; Curlango-Rivera, Gilberto; Minh Tran, Tuan; Huskey, David A; Xiong, Zhongguo

    2016-08-04

    Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.

  18. High performance a-Si solar cells and new fabrication methods for a-Si solar cells

    NASA Astrophysics Data System (ADS)

    Nakano, S.; Kuwano, Y.; Ohnishi, M.

    1986-12-01

    The super chamber, a separated UHV reaction-chamber system has been developed. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method. As a new material, amorphous superlattice-structure films were fabricated by the photo-CVD method for the first time. Superlattice structure p-layer a-Si solar cells were fabricated, and a conversion efficiency of 10.5% was obtained. For the fabrication of integrated type a-Si solar cell modules, a laser pattering method was investigated. A thermal analysis of the multilayer structure was done. It was confirmed that selective scribing for a-Si, TCO and metal film is possible by controlling the laser power density. Recently developed a-Si solar power generation systems and a-Si solar cell roofing tiles are also described.

  19. The counting of native blood cells by digital microscopy

    NASA Astrophysics Data System (ADS)

    Torbin, S. O.; Doubrovski, V. A.; Zabenkov, I. V.; Tsareva, O. E.

    2017-03-01

    An algorithm for photographic images processing of blood samples in its native state was developed to determine the concentration of erythrocytes, leukocytes and platelets without individual separate preparation of cells' samples. Special "photo templates" were suggested to use in order to identify red blood cells. The effect of "highlighting" of leukocytes, which was found by authors, was used to increase the accuracy of this type of cells counting. Finally to raise the resolution of platelets from leukocytes the areas of their photo images were used, but not their sizes. It is shown that the accuracy of cells counting for native blood samples may be comparable with the accuracy of similar studies for smears. At the same time the proposed native blood analysis simplifies greatly the procedure of sample preparation in comparison to smear, permits to move from the detection of blood cells ratio to the determination of their concentrations in the sample.

  20. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons.

    PubMed

    Rash, J E; Yasumura, T; Dudek, F E; Nagy, J I

    2001-03-15

    The transmembrane connexin proteins of gap junctions link extracellularly to form channels for cell-to-cell exchange of ions and small molecules. Two primary hypotheses of gap junction coupling in the CNS are the following: (1) generalized coupling occurs between neurons and glia, with some connexins expressed in both neurons and glia, and (2) intercellular junctional coupling is restricted to specific coupling partners, with different connexins expressed in each cell type. There is consensus that gap junctions link neurons to neurons and astrocytes to oligodendrocytes, ependymocytes, and other astrocytes. However, unresolved are the existence and degree to which gap junctions occur between oligodendrocytes, between oligodendrocytes and neurons, and between astrocytes and neurons. Using light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling of adult rat CNS, we investigated whether four of the best-characterized CNS connexins are each present in one or more cell types, whether oligodendrocytes also share gap junctions with other oligodendrocytes or with neurons, and whether astrocytes share gap junctions with neurons. Connexin32 (Cx32) was found only in gap junctions of oligodendrocyte plasma membranes, Cx30 and Cx43 were found only in astrocyte membranes, and Cx36 was only in neurons. Oligodendrocytes shared intercellular gap junctions only with astrocytes, with each oligodendrocyte isolated from other oligodendrocytes except via astrocyte intermediaries. Finally, neurons shared gap junctions only with other neurons and not with glial cells. Thus, the different cell types of the CNS express different connexins, which define separate pathways for neuronal versus glial gap junctional communication.

  1. Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interaction with platelets

    PubMed Central

    Pan, Yanfang; Yago, Tadayuki; Fu, Jianxin; Herzog, Brett; McDaniel, J. Michael; Mehta-D’Souza, Padmaja; Cai, Xiaofeng; Ruan, Changgeng; McEver, Rodger P.; West, Christopher; Dai, Kesheng; Chen, Hong

    2014-01-01

    O-glycosylation of podoplanin (PDPN) on lymphatic endothelial cells is critical for the separation of blood and lymphatic systems by interacting with platelet C-type lectin-like receptor 2 during development. However, how O-glycosylation controls endothelial PDPN function and expression remains unclear. In this study, we report that core 1 O-glycan–deficient or desialylated PDPN was highly susceptible to proteolytic degradation by various proteases, including metalloproteinases (MMP)-2/9. We found that the lymph contained activated MMP-2/9 and incubation of the lymph reduced surface levels of PDPN on core 1 O-glycan–deficient endothelial cells, but not on wild-type ECs. The lymph from mice with sepsis induced by cecal ligation and puncture, which contained bacteria-derived sialidase, reduced PDPN levels on wild-type ECs. The MMP inhibitor, GM6001, rescued these reductions. Additionally, GM6001 treatment rescued the reduction of PDPN level on lymphatic endothelial cells in mice lacking endothelial core 1 O-glycan or cecal ligation and puncture-treated mice. Furthermore, core 1 O-glycan–deficient or desialylated PDPN impaired platelet interaction under physiological flow. These data indicate that sialylated O-glycans of PDPN are essential for platelet adhesion and prevent PDPN from proteolytic degradation primarily mediated by MMPs in the lymph. PMID:25336627

  2. A unique tripartite collision tumor of the esophagus

    PubMed Central

    Schizas, Dimitrios; Michalinos, Adamantios; Alexandrou, Paraskevi; Moris, Demetrios; Baliou, Evangelia; Tsilimigras, Diamantis; Throupis, Theodore; Liakakos, Theodore

    2017-01-01

    Abstract Rationale: We report a unique case of a tripartite esophageal collision tumor consisting of three separate histologic types. Patients concerns: Therapeutic dilemmas on the proper treatment of those rare neoplasms remain unanswered considering both proper surgical therapy and adjuvant therapy. Diagnose: In this paper, we report a unique case of a patient with a tripartite esophageal collision tumor consisting of a small cell carcinoma, an adenocarcinoma of medium differentiation and a signet ring cell carcinoma. Diagnosis is difficult as clinical presentation of the patient was undistinguishable from other, commoner tumor types. Interventions: The patient's diagnostic and therapeutic course along with available data on the collisions tumor's biological behavior and treatment are briefly discussed. Outcomes: Esophagectomy is the best treatment options for these patients. Unique nature of this tumor demands aggresive oncologic treatment. Lessons: Collision tumors are rare neoplasms consisting of distinct cell populations developing in juxtaposition to one another without any areas of intermingling. Various cell types can be found. However, collision neoplasms of the esophagus combining adenomatous and neuroendocrine components are exceedingly rare, with only 5 cases described to date in the literature. Given their rarity, limited information is available on their tumorigenesis, biological behavior and clinical course. In general, these tumors are aggressive neoplasms and significantly affect patient treatment and prognosis. PMID:29245236

  3. THE RELATION BETWEEN DNA SYNTHESIS AND CHROMOSOME STRUCTURE AS RESOLVED BY X-RAY DAMAGE

    PubMed Central

    Evans, H. J.; Savage, J. R. K.

    1963-01-01

    Vicia faba root tip cells were treated for short periods with tritiated thymidine, either immediately before or after exposure of roots to x-rays, and autoradiograph preparations were analysed in an attempt to test the hypothesis that chromatid type (B') aberrations are induced only in those chromosome regions that have synthesized DNA prior to x-irradiation, whereas chromosome type (B'') aberrations are induced only in unduplicated chromosome regions. Studying the relation between presence or absence of label at loci involved in aberrations, in cells irradiated at different development stages, and the pattern of labelling in cells carrying both types of aberration leads to the conclusion that B'' aberrations are induced only in unreplicated chromosome regions. Following replication, only B' aberrations are induced, but these aberrations are also induced in chromosome regions preparing to incorporate DNA. It is suggested that the doubled response of the chromosome to x-rays prior to DNA incorporation might reflect a physical separation of replicating units prior to replication. The aberration yields in damaged cells which were irradiated in G 1 S, and early G 2 were in the ratio of 1.0:2.0:3.2. The data indicate that the increased yield of B' in early G 2 relative to S cells may be a consequence of changes in the spatial distribution of the chromosomes within the nucleus. PMID:14064107

  4. Cellular localization of the atypical isoforms of protein kinase C (aPKCζ/PKMζ and aPKCλ/ι) on the neuromuscular synapse.

    PubMed

    Besalduch, Núria; Lanuza, Maria A; Garcia, Neus; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Priego, Mercedes; Tomàs, Josep

    2013-11-27

    Several classic and novel protein kinase C (PKC) isoforms are selectively distributed in specific cell types of the adult neuromuscular junction (NMJ), in the neuron, glia and muscle components, and are involved in many functions, including neurotransmission. Here, we investigate the presence in this paradigmatic synapse of atypical PKCs, full-length atypical PKC zeta (aPKCζ), its separated catalytic part (PKMζ) and atypical lambda-iota PKC (aPKCλ/ι). High resolution immunohistochemistry was performed using a pan-atypical PKC antibody. Our results show moderate immunolabeling on the three cells (presynaptic motor nerve terminal, teloglial Schwann cell and postsynaptic muscle cell) suggesting the complex involvement of atypical PKCs in synaptic function. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Wall effects in continuous microfluidic magneto-affinity cell separation.

    PubMed

    Wu, Liqun; Zhang, Yong; Palaniapan, Moorthi; Roy, Partha

    2010-05-01

    Continuous microfluidic magneto-affinity cell separator combines unique microscale flow phenomenon with advantageous nanobead properties, to isolate cells with high specificity. Owing to the comparable size of the cell-bead complexes and the microchannels, the walls of the microchannel exert a strong influence on the separation of cells by this method. We present a theoretical and experimental study that provides a quantitative description of hydrodynamic wall interactions and wall rolling velocity of cells. A transient convection model describes the transport of cells in two-phase microfluidic flow under the influence of an external magnetic field. Transport of cells along the microchannel walls is also considered via an additional equation. Results show the variation of cell flux in the fluid phases and the wall as a function of a dimensionless parameter arising in the equations. Our results suggest that conditions may be optimized to maximize cell separation while minimizing contact with the wall surfaces. Experimentally measured cell rolling velocities on the wall indicate the presence of other near-wall forces in addition to fluid shear forces. Separation of a human colon carcinoma cell line from a mixture of red blood cells, with folic acid conjugated 1 microm and 200 nm beads, is reported.

  6. Microchip assays for screening monoclonal antibody product quality.

    PubMed

    Chen, Xiaoyu; Tang, Kaiyan; Lee, Maximilian; Flynn, Gregory C

    2008-12-01

    Microchip CE-SDS was evaluated as a high-throughput alternative to conventional CE-SDS for monitoring monoclonal antibody protein quality. A commercial instrument (LabChip) 90) was used to separate dodecyl sulfate coated proteins through a sieving polymer based on the proteins' sizes. Under reducing conditions, the microchip CE-SDS separation was similar to that of conventional CE-SDS, providing reasonable resolution of the non-glycosylated and the glycosylated heavy chains. The fluorescence detection on LabChip 90 using non-covalent fluorescent labeling method was about as sensitive as the 220 nm UV detection used in a conventional CE instrument. A simple glycan typing assay was developed for the reducing microchip CE-SDS format. Antibodies, either pure or in crude cell culture media are treated with Endoglycosidase H, which specifically cleaves the hybrid and high mannose type glycans. A heavy chain migration shift on reducing CE-SDS resulting from the loss of glycan is used to measure the level of high mannose/hybrid type glycans as a percentage of the total glycans. Microchip CE-SDS, under both non-reducing and reducing conditions, can be used in a variety of antibody product screening assays. The microchip analyses provide sufficient resolution and sensitivity for this purpose but on a time scale approximately 70 times faster (41 s versus 50 min per sample) than conventional CE separation under typical operational conditions.

  7. Expression of chemokine CXCL10 in dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Higuchi, Masashi; Yoshida, Saishu; Tsukada, Takehiro; Ueharu, Hiroki; Chen, Mo; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2014-09-01

    Chemokines are mostly small secreted polypeptides whose signals are mediated by seven trans-membrane G-protein-coupled receptors. Their functions include the control of leukocytes and the intercellular mediation of cell migration, proliferation, and adhesion in several tissues. We have previously revealed that the CXC chemokine ligand 12 (CXCL12) and its receptor 4 (CXCR4) are expressed in the anterior pituitary gland, and that the CXCL12/CXCR4 axis evokes the migration and interconnection of S100β-protein-positive cells (S100β-positive cells), which do not produce classical anterior pituitary hormones. However, little is known of the cells producing the other CXCLs and CXCRs or of their characteristics in the anterior pituitary. We therefore examined whether CXCLs and CXCRs occurred in the rat anterior pituitary lobe. We used reverse transcription plus the polymerase chain reaction to analyze the expression of Cxcl and Cxcr and identified the cells that expressed Cxcl by in situ hybridization. Transcripts of Cxcl10 and its receptor (Cxcr3 and toll-like receptor 4, Tlr4) were clearly detected: cells expressing Cxcl10 and Tlr4 were identified amongst S100β-positive cells and those expressing Cxcr3 amongst adrenocorticotropic hormone (ACTH)-producing cells. We also investigated Cxcl10 expression in subpopulations of S100β-positive cells. We separated cultured S100β-positive cells into the round-type (dendritic-cell-like) and process-type (astrocyte- or epithelial-cell-like) by their adherent activity to laminin, a component of the extracellular matrix; CXCL10 was expressed only in round-type S100β-positive cells. Thus, CXCL10 produced by a subpopulation of S100β-positive cells probably exerts an autocrine/paracrine effect on S100β-positive cells and ACTH-producing cells in the anterior lobe.

  8. Metal matrix composite structural panel construction

    NASA Technical Reports Server (NTRS)

    Mcwithey, R. R.; Royster, D. M. (Inventor); Bales, T. T.

    1983-01-01

    Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells.

  9. Recombinant human parainfluenza virus type 2 with mutations in V that permit cellular interferon signaling are not attenuated in non-human primates

    PubMed Central

    Schaap-Nutt, Anne; D’Angelo, Christopher; Amaro-Carambot, Emerito; Nolan, Sheila M.; Davis, Stephanie; Wise, Shenelle-Marie; Higgins, Caraline; Bradley, Konrad; Kim, Olivia; Mayor, Reina; Skiadopoulos, Mario H.; Collins, Peter L.; Murphy, Brian R.; Schmidt, Alexander C.

    2010-01-01

    The HPIV2 V protein inhibits type I interferon (IFN) induction and signaling. To manipulate the V protein, whose coding sequence overlaps that of the polymerase-associated phosphoprotein (P), without altering the P protein, we generated an HPIV2 virus in which P and V are expressed from separate genes (rHPIV2-P+V). rHPIV2-P+V replicated like HPIV2-WT in vitro and in non-human primates. HPIV2-P+V was modified by introducing two separate mutations into the V protein to create rHPIV2-L101E/L102E and rHPIV2-Δ122–127. In contrast to HPIV2-WT, both mutant viruses were unable to degrade STAT2, leaving virus-infected cells susceptible to IFN. Neither mutant, nor HPIV2-WT, induced significant amounts of IFN-β in infected cells. Surprisingly, neither rHPIV2-L101E/L102E nor rHPIV2-Δ122–127 was attenuated in two species of non-human primates. This indicates that loss of HPIV2's ability to inhibit IFN signaling is insufficient to attenuate virus replication in vivo as long as IFN induction is still inhibited. PMID:20667570

  10. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    NASA Astrophysics Data System (ADS)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  11. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    PubMed Central

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34+ AML cells with a large variability in basal autophagy between AMLs observed. The autophagy flux was higher in AMLs classified as poor risk, which are frequently associated with TP53 mutations (TP53mut), compared with favorable- and intermediate-risk AMLs. In addition, the higher flux was associated with a higher expression level of several autophagy genes, but was not affected by alterations in p53 expression by knocking down p53 or overexpression of wild-type p53 or p53R273H. AML CD34+ cells were more sensitive to the autophagy inhibitor hydroxychloroquine (HCQ) than normal bone marrow CD34+ cells. Similar, inhibition of autophagy by knockdown of ATG5 or ATG7 triggered apoptosis, which coincided with increased expression of p53. In contrast to wild-type p53 AML (TP53wt), HCQ treatment did not trigger a BAX and PUMA-dependent apoptotic response in AMLs harboring TP53mut. To further characterize autophagy in the leukemic stem cell-enriched cell fraction AML CD34+ cells were separated into ROSlow and ROShigh subfractions. The immature AML CD34+-enriched ROSlow cells maintained higher basal autophagy and showed reduced survival upon HCQ treatment compared with ROShigh cells. Finally, knockdown of ATG5 inhibits in vivo maintenance of AML CD34+ cells in NSG mice. These results indicate that targeting autophagy might provide new therapeutic options for treatment of AML since it affects the immature AML subfraction. PMID:28703806

  12. Replication of Muscle Cell Using Bioimprint

    NASA Astrophysics Data System (ADS)

    Samsuri, Fahmi; Mitchell, John S.; Alkaisi, Maan M.; Evans, John J.

    2009-07-01

    In our earlier study a heat-curable PDMS or a UV curable elastomer, was used as the replicating material to introduce Bioimprint methodology to facilitate cell imaging [1-2] But, replicating conditions for thermal polymerization is known to cause cell dehydration during curing. In this study, a new type of polymer was developed for use in living cell replica formation, and it was tested on human muscle cells. The cells were incubated and cultured according to standard biological culturing procedures, and they were grown for about 10 days. The replicas were then separated from the muscle cells and taken for analysis under an Atomic Force Microscope (AFM). The new polymer was designed to be biocompatible with higher resolution and fast curing process compared to other types of silicon-based organic polymers such as polydimethylsiloxane (PDMS). Muscle cell imprints were achieved and higher resolution images were able to show the micro structures of the muscle cells, including the cellular fibers and cell membranes. The AFM is able to image features at nanoscale resolution. This capacity enables a number of characteristics of biological cells to be visualized in a unique manner. Polymer and muscle cells preparations were developed at Hamilton, in collaboration between Plant and Food Research and the Department of Electrical and Computer Engineering, University of Canterbury. Tapping mode was used for the AFM image analysis as it has low tip-sample forces and non-destructive imaging capability. We will be presenting the bioimprinting processes of muscle cells, their AFM imaging and characterization of the newly developed polymer.

  13. Microfluidic Cell-based Assays in Stem Cell and Other Rare Cell Type Research

    DOE PAGES

    Wu, Meiye

    2015-03-23

    Microfluidics is a technology defined by the engineered precise manipulation of minute amount of liquids through channels with dimensions in the micron scale. Much of microfluidic devices used for biomedical purposes are produced in the form of so called “lab-on-a-chip” format, where multiple steps of conventional biochemical analyses such as staining, washing, and signal collection are miniaturized and integrated into chips fabricated from polymer or glass. Cell-based microfluidic lab-on-achip technology provides some obvious advantages: 1) drastically reduced sample and reagent requirement, and 2) separation and detection with improved sensitivity due to fluid properties at the microscale, i.e. laminar flow. Basedmore » on these two advantages, the obvious place where microfluidic cell assays will provide the most benefit is wherescientists must gather much information from precious little sample. Stem cells and other precious cell types such as circulating tumor cells (CTCs), and rare immune subsets are the perfect match for microfluidic multiplex assays. The recent demonstration that multiple cellular changes such as surface receptor activation, protein translocation, long and short RNA, and DNA changes can all be extracted from intact single cells paves the way to systems level understanding of cellular states during development or disease. Finally, with the ability to preserve cell integrity in a microfluidic device during multiplexed analysis, one also preserves the single cell resolution, where information regarding the cell-to-cell heterogeneity during differentiation or response to stimuli is vitally important.« less

  14. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types

    PubMed Central

    Lever, Mark A.; Torti, Andrea; Eickenbusch, Philip; Michaud, Alexander B.; Šantl-Temkiv, Tina; Jørgensen, Bo Barker

    2015-01-01

    A method for the extraction of nucleic acids from a wide range of environmental samples was developed. This method consists of several modules, which can be individually modified to maximize yields in extractions of DNA and RNA or separations of DNA pools. Modules were designed based on elaborate tests, in which permutations of all nucleic acid extraction steps were compared. The final modular protocol is suitable for extractions from igneous rock, air, water, and sediments. Sediments range from high-biomass, organic rich coastal samples to samples from the most oligotrophic region of the world's oceans and the deepest borehole ever studied by scientific ocean drilling. Extraction yields of DNA and RNA are higher than with widely used commercial kits, indicating an advantage to optimizing extraction procedures to match specific sample characteristics. The ability to separate soluble extracellular DNA pools without cell lysis from intracellular and particle-complexed DNA pools may enable new insights into the cycling and preservation of DNA in environmental samples in the future. A general protocol is outlined, along with recommendations for optimizing this general protocol for specific sample types and research goals. PMID:26042110

  15. Mixed-Meal Tolerance Test Versus Glucagon Stimulation Test for the Assessment of β-Cell Function in Therapeutic Trials in Type 1 Diabetes

    PubMed Central

    Greenbaum, Carla J.; Mandrup-Poulsen, Thomas; McGee, Paula Friedenberg; Battelino, Tadej; Haastert, Burkhard; Ludvigsson, Johnny; Pozzilli, Paolo; Lachin, John M.; Kolb, Hubert

    2008-01-01

    OBJECTIVE—β-Cell function in type 1 diabetes clinical trials is commonly measured by C-peptide response to a secretagogue in either a mixed-meal tolerance test (MMTT) or a glucagon stimulation test (GST). The Type 1 Diabetes TrialNet Research Group and the European C-peptide Trial (ECPT) Study Group conducted parallel randomized studies to compare the sensitivity, reproducibility, and tolerability of these procedures. RESEARCH DESIGN AND METHODS—In randomized sequences, 148 TrialNet subjects completed 549 tests with up to 2 MMTT and 2 GST tests on separate days, and 118 ECPT subjects completed 348 tests (up to 3 each) with either two MMTTs or two GSTs. RESULTS—Among individuals with up to 4 years’ duration of type 1 diabetes, >85% had measurable stimulated C-peptide values. The MMTT stimulus produced significantly higher concentrations of C-peptide than the GST. Whereas both tests were highly reproducible, the MMTT was significantly more so (R2 = 0.96 for peak C-peptide response). Overall, the majority of subjects preferred the MMTT, and there were few adverse events. Some older subjects preferred the shorter duration of the GST. Nausea was reported in the majority of GST studies, particularly in the young age-group. CONCLUSIONS—The MMTT is preferred for the assessment of β-cell function in therapeutic trials in type 1 diabetes. PMID:18628574

  16. Mixed-meal tolerance test versus glucagon stimulation test for the assessment of beta-cell function in therapeutic trials in type 1 diabetes.

    PubMed

    Greenbaum, Carla J; Mandrup-Poulsen, Thomas; McGee, Paula Friedenberg; Battelino, Tadej; Haastert, Burkhard; Ludvigsson, Johnny; Pozzilli, Paolo; Lachin, John M; Kolb, Hubert

    2008-10-01

    Beta-cell function in type 1 diabetes clinical trials is commonly measured by C-peptide response to a secretagogue in either a mixed-meal tolerance test (MMTT) or a glucagon stimulation test (GST). The Type 1 Diabetes TrialNet Research Group and the European C-peptide Trial (ECPT) Study Group conducted parallel randomized studies to compare the sensitivity, reproducibility, and tolerability of these procedures. In randomized sequences, 148 TrialNet subjects completed 549 tests with up to 2 MMTT and 2 GST tests on separate days, and 118 ECPT subjects completed 348 tests (up to 3 each) with either two MMTTs or two GSTs. Among individuals with up to 4 years' duration of type 1 diabetes, >85% had measurable stimulated C-peptide values. The MMTT stimulus produced significantly higher concentrations of C-peptide than the GST. Whereas both tests were highly reproducible, the MMTT was significantly more so (R(2) = 0.96 for peak C-peptide response). Overall, the majority of subjects preferred the MMTT, and there were few adverse events. Some older subjects preferred the shorter duration of the GST. Nausea was reported in the majority of GST studies, particularly in the young age-group. The MMTT is preferred for the assessment of beta-cell function in therapeutic trials in type 1 diabetes.

  17. Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences.

    PubMed

    Zhang, Zhaoyang; Chen, Niancao; Li, Shihui; Battig, Mark R; Wang, Yong

    2012-09-26

    The ability to regulate cell-material interactions is important in various applications such as regenerative medicine and cell separation. This study successfully demonstrates that the binding states of cells on a hydrogel surface can be programmed by using hybridized aptamers and triggering complementary sequences (CSs). In the absence of the triggering CSs, the aptamers exhibit a stable, hybridized state in the hydrogel for cell-type-specific catch. In the presence of the triggering CSs, the aptamers are transformed into a new hybridized state that leads to the rapid dissociation of the aptamers from the hydrogel. As a result, the cells are released from the hydrogel. The entire procedure of cell catch and release during the transformation of the aptamers is biocompatible and does not involve any factor destructive to either the cells or the hydrogel. Thus, the programmable hydrogel is regenerable and can be applied to a new round of cell catch and release when needed.

  18. Trap and transfer. two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells.

    PubMed

    Christians, Jeffrey A; Kamat, Prashant V

    2013-09-24

    In solid-state semiconductor-sensitized solar cells, commonly known as extremely thin absorber (ETA) or solid-state quantum-dot-sensitized solar cells (QDSCs), transfer of photogenerated holes from the absorber species to the p-type hole conductor plays a critical role in the charge separation process. Using Sb2S3 (absorber) and CuSCN (hole conductor), we have constructed ETA solar cells exhibiting a power conversion efficiency of 3.3%. The hole transfer from excited Sb2S3 into CuSCN, which limits the overall power conversion efficiency of these solar cells, is now independently studied using transient absorption spectroscopy. In the Sb2S3 absorber layer, photogenerated holes are rapidly localized on the sulfur atoms of the crystal lattice, forming a sulfide radical (S(-•)) species. This trapped hole is transferred from the Sb2S3 absorber to the CuSCN hole conductor with an exponential time constant of 1680 ps. This process was monitored through the spectroscopic signal seen for the S(-•) species in Sb2S3, providing direct evidence for the hole transfer dynamics in ETA solar cells. Elucidation of the hole transfer mechanism from Sb2S3 to CuSCN represents a significant step toward understanding charge separation in Sb2S3 solar cells and provides insight into the design of new architectures for higher efficiency devices.

  19. Sample Acquisition and Analytical Chemistry Challenges to Verifying Compliance to Aviators Breathing Oxygen (ABO) Purity Specification

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA has been developing and testing two different types of oxygen separation systems. One type of oxygen separation system uses pressure swing technology, the other type uses a solid electrolyte electrochemical oxygen separation cell. Both development systems have been subjected to long term testing, and performance testing under a variety of environmental and operational conditions. Testing these two systems revealed that measuring the product purity of oxygen, and determining if an oxygen separation device meets Aviator's Breathing Oxygen (ABO) specifications is a subtle and sometimes difficult analytical chemistry job. Verifying product purity of cryogenically produced oxygen presents a different set of analytical chemistry challenges. This presentation will describe some of the sample acquisition and analytical chemistry challenges presented by verifying oxygen produced by an oxygen separator - and verifying oxygen produced by cryogenic separation processes. The primary contaminant that causes gas samples to fail to meet ABO requirements is water. The maximum amount of water vapor allowed is 7 ppmv. The principal challenge of verifying oxygen produced by an oxygen separator is that it is produced relatively slowly, and at comparatively low temperatures. A short term failure that occurs for just a few minutes in the course of a 1 week run could cause an entire tank to be rejected. Continuous monitoring of oxygen purity and water vapor could identify problems as soon as they occur. Long term oxygen separator tests were instrumented with an oxygen analyzer and with an hygrometer: a GE Moisture Monitor Series 35. This hygrometer uses an aluminum oxide sensor. The user's manual does not report this, but long term exposure to pure oxygen causes the aluminum oxide sensor head to bias dry. Oxygen product that exceeded the 7 ppm specification was improperly accepted, because the sensor had biased. The bias is permanent - exposure to air does not cause the sensor to return to its original response - but the bias can be accounted for by recalibrating the sensor. After this issue was found, continuous measurements of water vapor in the oxygen product were made using an FTIR. The FTIR cell is relatively large, so response time is slow - but moisture measurements were repeatable and accurate. Verifying ABO compliance for oxygen produced by commercial cryogenic processes has a different set of sample acquisition and analytical chemistry challenges. Customers want analytical chemists to conserve as much as possible. Hygrometers are not exposed to hours of continuous flow of oxygen, so they don't bias, but small amounts of contamination in valves can cause a "fail". K bottles are periodically cleaned and recertified - after cleaning residual moisture can cause a "fail". Operators let bottle pressure drop to room pressure, introduce outside air into the bottle, and the subsequent fill will "fail". Outside storage of K-bottles has allowed enough in-leakage, so contents will "fail".

  20. Cell design concepts for aqueous lithium-oxygen batteries: A model-based assessment

    NASA Astrophysics Data System (ADS)

    Grübl, Daniel; Bessler, Wolfgang G.

    2015-11-01

    Seven cell design concepts for aqueous (alkaline) lithium-oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separator chamber, and a redox-flow separator) are compared. Cathode and separator thicknesses are varied over a wide range (50 μm-20 mm) in order to identify optimum configurations. All designs show a considerable capacity-rate effect due to spatiotemporally inhomogeneous precipitation of solid discharge product LiOH·H2O. In addition, a cell design with flooded cathode and redox-flow separator including oxygen uptake within the external tank is suggested. For this design, the model predicts specific power up to 33 W/kg and specific energy up to 570 Wh/kg (gravimetric values of discharged cell including all cell components and catholyte except housing and piping).

  1. Loss of Wild-Type ATRX Expression in Somatic Cell Hybrids Segregates with Activation of Alternative Lengthening of Telomeres

    PubMed Central

    Cole, Sara L.; Dagg, Rebecca A.; Lau, Loretta M. S.; Duncan, Emma L.; Moy, Elsa L.; Reddel, Roger R.

    2012-01-01

    Alternative Lengthening of Telomeres (ALT) is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT. PMID:23185534

  2. A High-Performance and Recyclable Al-Air Coin Cell Based on Eco-Friendly Chitosan Hydrogel Membranes.

    PubMed

    Liu, Yisi; Sun, Qian; Yang, Xiaofei; Liang, Jianneng; Wang, Biqiong; Koo, Alicia; Li, Ruying; Li, Jie; Sun, Xueliang

    2018-05-18

    Aluminum-air batteries are a promising power supply for electronics due to its low cost and high energy density. However, portable coin-type Al-air batteries operating under ambient air condition for small electronic appliances have rarely been reported. Herein, coin cell-type Al-air batteries using cost-effective and eco-friendly chitosan hydrogel membranes modified by SiO2, SnO2, and ZnO have been prepared and assembled. The Al-air coin cell employing chitosan hydrogel membrane containing 10 wt.% SiO2 as a separator exhibits better discharge performance with a higher flat voltage plateau, longer discharge duration, and higher power density than the cells using a chitosan hydrogel membrane containing SnO2 or ZnO. Moreover, we also demonstrate that the presented Al-air coin cell can be recycled by a series of eco-friendly procedures using food grade ingredients, resulting in recycled products that are environmentally safe and ready for reuse. The Al-air coin cell adopting a recycled cathode from a fully discharged Al-air coin cell using the above-mentioned procedure has shown comparable performance to cells assembled with a new cathode. With these merits of enhanced electrochemical performance and recyclability, this new Al-air coin cell with modified chitosan hydrogel membrane can find wide applications for powering portable and small-size electronics.

  3. The CD11a and Endothelial Protein C Receptor Marker Combination Simplifies and Improves the Purification of Mouse Hematopoietic Stem Cells

    PubMed Central

    Karimzadeh, Alborz; Scarfone, Vanessa M.; Varady, Erika; Chao, Connie; Grathwohl, Karin; Fathman, John W.; Fruman, David A.; Serwold, Thomas

    2018-01-01

    Abstract Hematopoietic stem cells (HSCs) are the self‐renewing multipotent progenitors to all blood cell types. Identification and isolation of HSCs for study has depended on the expression of combinations of surface markers on HSCs that reliably distinguish them from other cell types. However, the increasing number of markers required to isolate HSCs has made it tedious, expensive, and difficult for newcomers, suggesting the need for a simpler panel of HSC markers. We previously showed that phenotypic HSCs could be separated based on expression of CD11a and that only the CD11a negative fraction contained true HSCs. Here, we show that CD11a and another HSC marker, endothelial protein C receptor (EPCR), can be used to effectively identify and purify HSCs. We introduce a new two‐color HSC sorting method that can highly enrich for HSCs with efficiencies comparable to the gold standard combination of CD150 and CD48. Our results demonstrate that adding CD11a and EPCR to the HSC biologist's toolkit improves the purity of and simplifies isolation of HSCs. stem cells translational medicine 2018;7:468–476 PMID:29543389

  4. Influence of homologous recombinational repair on cell survival and chromosomal aberration induction during the cell cycle in γ-irradiated CHO cells

    PubMed Central

    Wilson, Paul F.; Hinz, John M.; Urbin, Salustra S.; Nham, Peter B.; Thompson, Larry H.

    2010-01-01

    The repair of DNA double-strand breaks (DSB) by homologous recombinational repair (HRR) underlies the high radioresistance and low mutability observed in S-phase mammalian cells. To evaluate the contributions of HRR and nonhomologous end-joining (NHEJ) to overall DSB repair capacity throughout the cell cycle after γ-irradiation, we compared HRR-deficient RAD51D-knockout 51D1 to CgRAD51D-complemented 51D1 (51D1.3) CHO cells for survival and chromosomal aberrations (CAs). Asynchronous cultures were irradiated with 150 or 300 cGy and separated by cell size using centrifugal elutriation. Cell survival of each synchronous fraction (~20 fractions total from early G1 to late G2/M) was measured by colony formation. 51D1.3 cells were most resistant in S, while 51D1 cells were most resistant in early G1 (with survival and chromosome-type CA levels similar to 51D1.3) and became progressively more sensitive throughout S and G2. Both cell lines experienced significantly reduced survival from late S into G2. Metaphases were collected from every third elutriation fraction at the first post-irradiation mitosis and scored for CAs. 51D1 cells irradiated in S and G2 had ~2-fold higher chromatid-type CAs and a remarkable ~25-fold higher level of complex chromatid-type exchanges compared to 51D1.3 cells. Complex exchanges in 51D1.3 cells were only observed in G2. These results show an essential role for HRR in preventing gross chromosomal rearrangements in proliferating cells and, with our previous report of reduced survival of G2-phase NHEJ-deficient prkdc CHO cells [Hinz et al. DNA Repair 4, 782–792, 2005], imply reduced activity/efficiency of both HRR and NHEJ as cells transition from S to G2. PMID:20434408

  5. Sequence of Centromere Separation: Role of Centromeric Heterochromatin

    PubMed Central

    Vig, Baldev K.

    1982-01-01

    The late metaphase-early anaphase cells from various tissues of male Mus musculus, M. poschiavinus, M. spretus, M. castaneus, female and male Bos taurus (cattle) and female Myopus schisticolor (wood lemming) were analyzed for centromeres that showed separation into two daughter centromeres and those that did not show such separation. In all strains and species of mouse the Y chromosome is the first one to separate, as is the X or Y in the cattle. These sex chromosomes are devoid of constitutive heterochromatin, whereas all autosomes in these species carry detectable quantities. In cattle, the late replicating X chromosome appears to separate later than the active X. In the wood lemming the three pairs of autosomes with the least amount of centromeric constitutive heterochromatin separate first. These are followed by the separation of seven pairs of autosomes carrying medium amounts of constitutive heterochromatin. Five pairs of autosomes with the largest amounts of constitutive heterochromatin are the last in the sequence of separation. The sex chromosomes with medium amounts of constitutive heterochromatin around the centromere, and a very large amount of distal heterochromatin, separate among the very late ones but are not the last. These observations assign a specific role to centromeric constitutive heterochromatin and also indicate that nonproximal heterochromatin does not exert control over the sequence in which the centromeres in the genome separate. It appears that qualitative differences among various types of constitutive heterochromatin are as important as quantitative differences in controlling the separation of centromeres. PMID:6764903

  6. Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis.

    PubMed

    Zhou, Hao; White, Lee R; Tilton, Robert D

    2005-05-01

    Colloidal particles and biological cells are patterned and separated laterally adjacent to a micropatterned electrode array by applying AC electric fields that are principally oriented normally to the electrode array. This is demonstrated for yeast cells, red blood cells, and colloidal polystyrene particles of different sizes and zeta-potentials. The separation mechanism is observed experimentally to depend on the applied field frequency and voltage. At high frequencies, particles position themselves in a manner that is consistent with dielectrophoresis, while at low frequencies, the positioning is explained in terms of a strong coupling between gravity, the vertical component of the dielectrophoretic force, and the Stokes drag on particles induced by AC electroosmotic flow. Compared to high frequency dielectrophoretic separations, the low frequency separations are faster and require lower applied voltages. Furthermore, the AC electroosmosis coupling with dielectrophoresis may enable cell separations that are not feasible based on dielectrophoresis alone.

  7. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  8. The ultrastructural characterization of mitochondria-rich cells as a response to variations in salinity in two types of teleostean pseudobranch: milkfish (Chanos chanos) and Mozambique tilapia (Oreochromis mossambicus).

    PubMed

    Yang, Sheng-Hui; Tsai, Jeng-Dau; Kang, Chao-Kai; Yang, Wen-Kai; Kung, Hsiu-Ni; Lee, Tsung-Han

    2017-03-01

    The pseudobranchs of two euryhaline teleost species, the milkfish (Chanos chanos) and the Mozambique tilapia (Oreochromis mossambicus), were studied after acclimization to different salinities using optical and electron microscopy. The milkfish pseudobranch was the lamellae-free type, with separate lamellae along the filaments containing two groups of mitochondria (Mt)-rich cells: chloride cells (CCs) and pseudobranch type cells (PSCs). Conversely, the tilapia pseudobranch was the embedded type, covered with connective tissues and with only one group of Mt-rich PSCs. Chloride cells were identified according to the apical openings and branched tubular networks around randomly distributed and diversely shaped Mt. Pseudobranchs type cells, however, were characterized according to the orderly arrangement of parallel tubules around closely packed Mt; both the tubules and the Mt were distributed in the vascular side of the cell, but were absent from the apical region. Compared with those of seawater (SW)-acclimated milkfish, the pseudobranchial lamellae of freshwater (FW) specimens were longer on average, and the Mt of the CCs had fewer cristae, were less electron-dense, and were often vacuolated. The Mt in the PSCs of FW-acclimated milkfish and tilapia were larger and more electron-dense than those of their SW-acclimated counterparts; in addition, more tubules were found to aggregately surround the Mt and basolateral membranes in the PSCs of fish from the hypo-osmotic environment. Conversely, the PSCs of tilapia were periodic acid-Schiff (PAS)-positive, and Mt in PSCs were concentrated with more parallel arrays of the tubule system than those of milkfish. Therefore, salinity-dependent changes in the ultrastructures of PSCs suggest their potential role in energy metabolism of both lamellae-free and embedded pseudobranchs, whereas the PAS-positive staining characteristics suggest a role in releasing or storaging polysaccharides in the embedded pseudobranch. J. Morphol. 278:390-402, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Defined types of cortical interneurone structure space and spike timing in the hippocampus

    PubMed Central

    Somogyi, Peter; Klausberger, Thomas

    2005-01-01

    The cerebral cortex encodes, stores and combines information about the internal and external environment in rhythmic activity of multiple frequency ranges. Neurones of the cortex can be defined, recognized and compared on the comprehensive application of the following measures: (i) brain area- and cell domain-specific distribution of input and output synapses, (ii) expression of molecules involved in cell signalling, (iii) membrane and synaptic properties reflecting the expression of membrane proteins, (iv) temporal structure of firing in vivo, resulting from (i)–(iii). Spatial and temporal measures of neurones in the network reflect an indivisible unity of evolutionary design, i.e. neurones do not have separate structure or function. The blueprint of this design is most easily accessible in the CA1 area of the hippocampus, where a relatively uniform population of pyramidal cells and their inputs follow an instantly recognizable laminated pattern and act within stereotyped network activity patterns. Reviewing the cell types and their spatio-temporal interactions, we suggest that CA1 pyramidal cells are supported by at least 16 distinct types of GABAergic neurone. During a given behaviour-contingent network oscillation, interneurones of a given type exhibit similar firing patterns. During different network oscillations representing two distinct brain states, interneurones of the same class show different firing patterns modulating their postsynaptic target-domain in a brain-state-dependent manner. These results suggest roles for specific interneurone types in structuring the activity of pyramidal cells via their respective target domains, and accurately timing and synchronizing pyramidal cell discharge, rather than providing generalized inhibition. Finally, interneurones belonging to different classes may fire preferentially at distinct time points during a given oscillation. As different interneurones innervate distinct domains of the pyramidal cells, the different compartments will receive GABAergic input differentiated in time. Such a dynamic, spatio-temporal, GABAergic control, which evolves distinct patterns during different brain states, is ideally suited to regulating the input integration of individual pyramidal cells contributing to the formation of cell assemblies and representations in the hippocampus and, probably, throughout the cerebral cortex. PMID:15539390

  10. Water outlet control mechanism for fuel cell system operation in variable gravity environments

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)

    2007-01-01

    A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.

  11. New separators for nickel-zinc batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1976-01-01

    Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.

  12. The organization pattern of root border-like cells of Arabidopsis is dependent on cell wall homogalacturonan.

    PubMed

    Durand, Caroline; Vicré-Gibouin, Maïté; Follet-Gueye, Marie Laure; Duponchel, Ludovic; Moreau, Myriam; Lerouge, Patrice; Driouich, Azeddine

    2009-07-01

    Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip.

  13. The Organization Pattern of Root Border-Like Cells of Arabidopsis Is Dependent on Cell Wall Homogalacturonan12[C][W

    PubMed Central

    Durand, Caroline; Vicré-Gibouin, Maïté; Follet-Gueye, Marie Laure; Duponchel, Ludovic; Moreau, Myriam; Lerouge, Patrice; Driouich, Azeddine

    2009-01-01

    Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip. PMID:19448034

  14. Involvement of an Actomyosin Contractile Ring in Saccharomyces cerevisiae Cytokinesis

    PubMed Central

    Bi, Erfei; Maddox, Paul; Lew, Daniel J.; Salmon, E.D.; McMillan, John N.; Yeh, Elaine; Pringle, John R.

    1998-01-01

    In Saccharomyces cerevisiae, the mother cell and bud are connected by a narrow neck. The mechanism by which this neck is closed during cytokinesis has been unclear. Here we report on the role of a contractile actomyosin ring in this process. Myo1p (the only type II myosin in S. cerevisiae) forms a ring at the presumptive bud site shortly before bud emergence. Myo1p ring formation depends on the septins but not on F-actin, and preexisting Myo1p rings are stable when F-actin is depolymerized. The Myo1p ring remains in the mother–bud neck until the end of anaphase, when a ring of F-actin forms in association with it. The actomyosin ring then contracts to a point and disappears. In the absence of F-actin, the Myo1p ring does not contract. After ring contraction, cortical actin patches congregate at the mother–bud neck, and septum formation and cell separation rapidly ensue. Strains deleted for MYO1 are viable; they fail to form the actin ring but show apparently normal congregation of actin patches at the neck. Some myo1Δ strains divide nearly as efficiently as wild type; other myo1Δ strains divide less efficiently, but it is unclear whether the primary defect is in cytokinesis, septum formation, or cell separation. Even cells lacking F-actin can divide, although in this case division is considerably delayed. Thus, the contractile actomyosin ring is not essential for cytokinesis in S. cerevisiae. In its absence, cytokinesis can still be completed by a process (possibly localized cell–wall synthesis leading to septum formation) that appears to require septin function and to be facilitated by F-actin. PMID:9732290

  15. Separation of active and inactive fractions from starved culture of Vibrio parahaemolyticus by density dependent cell sorting.

    PubMed

    Nayak, Binaya Bhusan; Kamiya, Eriko; Nishino, Tomohiko; Wada, Minoru; Nishimura, Masahiko; Kogure, Kazuhiro

    2005-01-01

    The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.

  16. Microfluidic immunomagnetic cell separation from whole blood.

    PubMed

    Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Puiu, Poenar Daniel

    2016-02-01

    Immunomagnetic-based separation has become a viable technique for the separation of cells and biomolecules. Here we report on the design and analysis of a simple and efficient microfluidic device for high throughput and high efficiency capture of cells tagged with magnetic particles. This is made possible by using a microfluidic chip integrated with customized arrays of permanent magnets capable of creating large magnetic field gradients, which determine the effective capturing of the tagged cells. This method is based on manipulating the cells which are under the influence of a combination of magnetic and fluid dynamic forces in a fluid under laminar flow through a microfluidic chip. A finite element analysis (FEA) model is developed to analyze the cell separation process and predict its behavior, which is validated subsequently by the experimental results. The magnetic field gradients created by various arrangements of magnetic arrays have been simulated using FEA and the influence of these field gradients on cell separation has been studied with the design of our microfluidic chip. The proof-of-concept for the proposed technique is demonstrated by capturing white blood cells (WBCs) from whole human blood. CD45-conjugated magnetic particles were added into whole blood samples to label WBCs and the mixture was flown through our microfluidic device to separate the labeled cells. After the separation process, the remaining WBCs in the elute were counted to determine the capture efficiency, and it was found that more than 99.9% WBCs have been successfully separated from whole blood. The proposed design can be used for positive selection as well as for negative enrichment of rare cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Correlation of simulation/finite element analysis to the separation of intrinsically magnetic spores and red blood cells using a microfluidic magnetic deposition system.

    PubMed

    Sun, Jianxin; Moore, Lee; Xue, Wei; Kim, James; Zborowski, Maciej; Chalmers, Jeffrey J

    2018-05-01

    Magnetic separation of cells has been, and continues to be, widely used in a variety of applications, ranging from healthcare diagnostics to detection of food contamination. Typically, these technologies require cells labeled with antibody magnetic particle conjugate and a high magnetic energy gradient created in the flow containing the labeled cells (i.e., a column packed with magnetically inducible material), or dense packing of magnetic particles next to the flow cell. Such designs, while creating high magnetic energy gradients, are not amenable to easy, highly detailed, mathematic characterization. Our laboratories have been characterizing and developing analysis and separation technology that can be used on intrinsically magnetic cells or spores which are typically orders of magnitude weaker than typically immunomagnetically labeled cells. One such separation system is magnetic deposition microscopy (MDM) which not only separates cells, but deposits them in specific locations on slides for further microscopic analysis. In this study, the MDM system has been further characterized, using finite element and computational fluid mechanics software, and separation performance predicted, using a model which combines: 1) the distribution of the intrinsic magnetophoretic mobility of the cells (spores); 2) the fluid flow within the separation device; and 3) accurate maps of the values of the magnetic field (max 2.27 T), and magnetic energy gradient (max of 4.41 T 2 /mm) within the system. Guided by this model, experimental studies indicated that greater than 95% of the intrinsically magnetic Bacillus spores can be separated with the MDM system. Further, this model allows analysis of cell trajectories which can assist in the design of higher throughput systems. © 2018 Wiley Periodicals, Inc.

  18. Electrically Conductive Porous Membrane

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan (Inventor)

    2014-01-01

    The present invention relates to an electrically conductive membrane that can be configured to be used in fuel cell systems to act as a hydrophilic water separator internal to the fuel cell, or as a water separator used with water vapor fed electrolysis cells, or as a water separator used with water vapor fed electrolysis cells, or as a capillary structure in a thin head pipe evaporator, or as a hydrophobic gas diffusion layer covering the fuel cell electrode surface in a fuel cell.

  19. Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell.

    PubMed

    Kong, Jaemin; Lee, Jongjin; Kim, Geunjin; Kang, Hongkyu; Choi, Youna; Lee, Kwanghee

    2012-08-14

    Additional post-processing techniques, such as post-thermal annealing and UV illumination, were found to be required to obtain desirable values of the cell parameters in a tandem polymer solar cell incorporated with solution-processed basic n-type titanium sub-oxide (TiO(x))/acidic p-type poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) interlayers. Subsequent to the fabrication of the tandem polymer solar cells, the open-circuit voltage (V(OC)) of the cells exhibited half of the expected value. Only after the application of the post-treatments, the V(OC) of a tandem cell increased from the initial half-cell value (∼0.6 V) to its full-cell value (∼1.2 V). The selective light-biased incident photon-to-current efficiency (IPCE) measurements indicated that the initial V(OC) originated from the back subcell and that the application of the post-processing treatments revived the front subcell, such that the net photocurrent of the tandem cell was finally governed by a recombination process of holes from the back subcell and electrons from the front subcell. Based on our experimental results, we suggest that a V(OC) enhancement could be ascribed to two types of subsequent junction formations at the interface between the TiO(x) and PEDOT:PSS interlayers: an 'ion-mediated dipole junction', resulting from the electro-kinetic migration of cationic ions in the interlayers during post-thermal annealing in the presence of a low-work-function metal cathode, and a 'photoinduced Schottky junction', formed by increasing the charge carrier density in the n-type TiO(x) interlayer during UV illumination process. The two junctions separately contributed to the formation of a recombination junction through which the electrons in TiO(x) and the holes in PEDOT:PSS were able to recombine without substantial voltage drops.

  20. Hybrid air revitalization system for a closed ecosystem

    NASA Technical Reports Server (NTRS)

    Lee, M. G.; Brown, Mariann F.

    1990-01-01

    An air-revitalization concept is presented with experimental results to assess the practicality and applicability of the proposed system to extended-duration manned missions. The Hybrid Air Revitalization System (HARS) uses plants in a habitat to remove metabolic CO2 and moisture and produce oxygen and food. CO2 and O2 partial pressures, temperature, and humidity are regulated by means of electrochemical CO2 and O2 chemical separators and a moisture condenser separator. A cell-test facility is described in which the electrochemical CO2 removal processes are investigated with and without using H2. Performance is optimized by using 25-30 percent Teflon in the gas-diffusion-type electrode, employing a thin electrolyte matrix, operating at higher temperatures and lower dew points. The HARS concept is found to be a feasible approach to the electrochemical separation of CO2 and O2.

Top