Separation in Logistic Regression: Causes, Consequences, and Control.
Mansournia, Mohammad Ali; Geroldinger, Angelika; Greenland, Sander; Heinze, Georg
2018-04-01
Separation is encountered in regression models with a discrete outcome (such as logistic regression) where the covariates perfectly predict the outcome. It is most frequent under the same conditions that lead to small-sample and sparse-data bias, such as presence of a rare outcome, rare exposures, highly correlated covariates, or covariates with strong effects. In theory, separation will produce infinite estimates for some coefficients. In practice, however, separation may be unnoticed or mishandled because of software limits in recognizing and handling the problem and in notifying the user. We discuss causes of separation in logistic regression and describe how common software packages deal with it. We then describe methods that remove separation, focusing on the same penalized-likelihood techniques used to address more general sparse-data problems. These methods improve accuracy, avoid software problems, and allow interpretation as Bayesian analyses with weakly informative priors. We discuss likelihood penalties, including some that can be implemented easily with any software package, and their relative advantages and disadvantages. We provide an illustration of ideas and methods using data from a case-control study of contraceptive practices and urinary tract infection.
Yusuf, O B; Bamgboye, E A; Afolabi, R F; Shodimu, M A
2014-09-01
Logistic regression model is widely used in health research for description and predictive purposes. Unfortunately, most researchers are sometimes not aware that the underlying principles of the techniques have failed when the algorithm for maximum likelihood does not converge. Young researchers particularly postgraduate students may not know why separation problem whether quasi or complete occurs, how to identify it and how to fix it. This study was designed to critically evaluate convergence issues in articles that employed logistic regression analysis published in an African Journal of Medicine and medical sciences between 2004 and 2013. Problems of quasi or complete separation were described and were illustrated with the National Demographic and Health Survey dataset. A critical evaluation of articles that employed logistic regression was conducted. A total of 581 articles was reviewed, of which 40 (6.9%) used binary logistic regression. Twenty-four (60.0%) stated the use of logistic regression model in the methodology while none of the articles assessed model fit. Only 3 (12.5%) properly described the procedures. Of the 40 that used the logistic regression model, the problem of convergence occurred in 6 (15.0%) of the articles. Logistic regression tends to be poorly reported in studies published between 2004 and 2013. Our findings showed that the procedure may not be well understood by researchers since very few described the process in their reports and may be totally unaware of the problem of convergence or how to deal with it.
No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.
van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B
2016-11-24
Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.
A Solution to Separation and Multicollinearity in Multiple Logistic Regression
Shen, Jianzhao; Gao, Sujuan
2010-01-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286
A Solution to Separation and Multicollinearity in Multiple Logistic Regression.
Shen, Jianzhao; Gao, Sujuan
2008-10-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression
Weiss, Brandi A.; Dardick, William
2015-01-01
This article introduces an entropy-based measure of data–model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data–model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data–model fit to assess how well logistic regression models classify cases into observed categories. PMID:29795897
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression.
Weiss, Brandi A; Dardick, William
2016-12-01
This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data-model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data-model fit to assess how well logistic regression models classify cases into observed categories.
Dai, Xiaoping; Han, Yuping; Zhang, Xiaohong; Hu, Wei; Huang, Liangji; Duan, Wenpei; Li, Siyi; Liu, Xiaolu; Wang, Qian
2017-09-01
A better understanding of willingness to separate waste and waste separation behaviour can aid the design and improvement of waste management policies. Based on the intercept questionnaire survey data of undergraduate students and residents in Zhengzhou City of China, this article compared factors affecting the willingness and behaviour of students and residents to participate in waste separation using two binary logistic regression models. Improvement opportunities for waste separation were also discussed. Binary logistic regression results indicate that knowledge of and attitude to waste separation and acceptance of waste education significantly affect the willingness of undergraduate students to separate waste, and demographic factors, such as gender, age, education level, and income, significantly affect the willingness of residents to do so. Presence of waste-specific bins and attitude to waste separation are drivers of waste separation behaviour for both students and residents. Improved education about waste separation and facilities are effective to stimulate waste separation, and charging on unsorted waste may be an effective way to improve it in Zhengzhou.
Avalos, Marta; Adroher, Nuria Duran; Lagarde, Emmanuel; Thiessard, Frantz; Grandvalet, Yves; Contrand, Benjamin; Orriols, Ludivine
2012-09-01
Large data sets with many variables provide particular challenges when constructing analytic models. Lasso-related methods provide a useful tool, although one that remains unfamiliar to most epidemiologists. We illustrate the application of lasso methods in an analysis of the impact of prescribed drugs on the risk of a road traffic crash, using a large French nationwide database (PLoS Med 2010;7:e1000366). In the original case-control study, the authors analyzed each exposure separately. We use the lasso method, which can simultaneously perform estimation and variable selection in a single model. We compare point estimates and confidence intervals using (1) a separate logistic regression model for each drug with a Bonferroni correction and (2) lasso shrinkage logistic regression analysis. Shrinkage regression had little effect on (bias corrected) point estimates, but led to less conservative results, noticeably for drugs with moderate levels of exposure. Carbamates, carboxamide derivative and fatty acid derivative antiepileptics, drugs used in opioid dependence, and mineral supplements of potassium showed stronger associations. Lasso is a relevant method in the analysis of databases with large number of exposures and can be recommended as an alternative to conventional strategies.
Clustering performance comparison using K-means and expectation maximization algorithms.
Jung, Yong Gyu; Kang, Min Soo; Heo, Jun
2014-11-14
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.
Campos-Filho, N; Franco, E L
1989-02-01
A frequent procedure in matched case-control studies is to report results from the multivariate unmatched analyses if they do not differ substantially from the ones obtained after conditioning on the matching variables. Although conceptually simple, this rule requires that an extensive series of logistic regression models be evaluated by both the conditional and unconditional maximum likelihood methods. Most computer programs for logistic regression employ only one maximum likelihood method, which requires that the analyses be performed in separate steps. This paper describes a Pascal microcomputer (IBM PC) program that performs multiple logistic regression by both maximum likelihood estimation methods, which obviates the need for switching between programs to obtain relative risk estimates from both matched and unmatched analyses. The program calculates most standard statistics and allows factoring of categorical or continuous variables by two distinct methods of contrast. A built-in, descriptive statistics option allows the user to inspect the distribution of cases and controls across categories of any given variable.
Cakir, Ebru; Kucuk, Ulku; Pala, Emel Ebru; Sezer, Ozlem; Ekin, Rahmi Gokhan; Cakmak, Ozgur
2017-05-01
Conventional cytomorphologic assessment is the first step to establish an accurate diagnosis in urinary cytology. In cytologic preparations, the separation of low-grade urothelial carcinoma (LGUC) from reactive urothelial proliferation (RUP) can be exceedingly difficult. The bladder washing cytologies of 32 LGUC and 29 RUP were reviewed. The cytologic slides were examined for the presence or absence of the 28 cytologic features. The cytologic criteria showing statistical significance in LGUC were increased numbers of monotonous single (non-umbrella) cells, three-dimensional cellular papillary clusters without fibrovascular cores, irregular bordered clusters, atypical single cells, irregular nuclear overlap, cytoplasmic homogeneity, increased N/C ratio, pleomorphism, nuclear border irregularity, nuclear eccentricity, elongated nuclei, and hyperchromasia (p ˂ 0.05), and the cytologic criteria showing statistical significance in RUP were inflammatory background, mixture of small and large urothelial cells, loose monolayer aggregates, and vacuolated cytoplasm (p ˂ 0.05). When these variables were subjected to a stepwise logistic regression analysis, four features were selected to distinguish LGUC from RUP: increased numbers of monotonous single (non-umbrella) cells, increased nuclear cytoplasmic ratio, hyperchromasia, and presence of small and large urothelial cells (p = 0.0001). By this logistic model of the 32 cases with proven LGUC, the stepwise logistic regression analysis correctly predicted 31 (96.9%) patients with this diagnosis, and of the 29 patients with RUP, the logistic model correctly predicted 26 (89.7%) patients as having this disease. There are several cytologic features to separate LGUC from RUP. Stepwise logistic regression analysis is a valuable tool for determining the most useful cytologic criteria to distinguish these entities. © 2017 APMIS. Published by John Wiley & Sons Ltd.
Computational tools for exact conditional logistic regression.
Corcoran, C; Mehta, C; Patel, N; Senchaudhuri, P
Logistic regression analyses are often challenged by the inability of unconditional likelihood-based approximations to yield consistent, valid estimates and p-values for model parameters. This can be due to sparseness or separability in the data. Conditional logistic regression, though useful in such situations, can also be computationally unfeasible when the sample size or number of explanatory covariates is large. We review recent developments that allow efficient approximate conditional inference, including Monte Carlo sampling and saddlepoint approximations. We demonstrate through real examples that these methods enable the analysis of significantly larger and more complex data sets. We find in this investigation that for these moderately large data sets Monte Carlo seems a better alternative, as it provides unbiased estimates of the exact results and can be executed in less CPU time than can the single saddlepoint approximation. Moreover, the double saddlepoint approximation, while computationally the easiest to obtain, offers little practical advantage. It produces unreliable results and cannot be computed when a maximum likelihood solution does not exist. Copyright 2001 John Wiley & Sons, Ltd.
Engoren, Milo; Habib, Robert H; Dooner, John J; Schwann, Thomas A
2013-08-01
As many as 14 % of patients undergoing coronary artery bypass surgery are readmitted within 30 days. Readmission is usually the result of morbidity and may lead to death. The purpose of this study is to develop and compare statistical and genetic programming models to predict readmission. Patients were divided into separate Construction and Validation populations. Using 88 variables, logistic regression, genetic programs, and artificial neural nets were used to develop predictive models. Models were first constructed and tested on the Construction populations, then validated on the Validation population. Areas under the receiver operator characteristic curves (AU ROC) were used to compare the models. Two hundred and two patients (7.6 %) in the 2,644 patient Construction group and 216 (8.0 %) of the 2,711 patient Validation group were re-admitted within 30 days of CABG surgery. Logistic regression predicted readmission with AU ROC = .675 ± .021 in the Construction group. Genetic programs significantly improved the accuracy, AU ROC = .767 ± .001, p < .001). Artificial neural nets were less accurate with AU ROC = 0.597 ± .001 in the Construction group. Predictive accuracy of all three techniques fell in the Validation group. However, the accuracy of genetic programming (AU ROC = .654 ± .001) was still trivially but statistically non-significantly better than that of the logistic regression (AU ROC = .644 ± .020, p = .61). Genetic programming and logistic regression provide alternative methods to predict readmission that are similarly accurate.
Guo, Yanyong; Li, Zhibin; Wu, Yao; Xu, Chengcheng
2018-06-01
Bicyclists running the red light at crossing facilities increase the potential of colliding with motor vehicles. Exploring the contributing factors could improve the prediction of running red-light probability and develop countermeasures to reduce such behaviors. However, individuals could have unobserved heterogeneities in running a red light, which make the accurate prediction more challenging. Traditional models assume that factor parameters are fixed and cannot capture the varying impacts on red-light running behaviors. In this study, we employed the full Bayesian random parameters logistic regression approach to account for the unobserved heterogeneous effects. Two types of crossing facilities were considered which were the signalized intersection crosswalks and the road segment crosswalks. Electric and conventional bikes were distinguished in the modeling. Data were collected from 16 crosswalks in urban area of Nanjing, China. Factors such as individual characteristics, road geometric design, environmental features, and traffic variables were examined. Model comparison indicates that the full Bayesian random parameters logistic regression approach is statistically superior to the standard logistic regression model. More red-light runners are predicted at signalized intersection crosswalks than at road segment crosswalks. Factors affecting red-light running behaviors are gender, age, bike type, road width, presence of raised median, separation width, signal type, green ratio, bike and vehicle volume, and average vehicle speed. Factors associated with the unobserved heterogeneity are gender, bike type, signal type, separation width, and bike volume. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shi, K-Q; Zhou, Y-Y; Yan, H-D; Li, H; Wu, F-L; Xie, Y-Y; Braddock, M; Lin, X-Y; Zheng, M-H
2017-02-01
At present, there is no ideal model for predicting the short-term outcome of patients with acute-on-chronic hepatitis B liver failure (ACHBLF). This study aimed to establish and validate a prognostic model by using the classification and regression tree (CART) analysis. A total of 1047 patients from two separate medical centres with suspected ACHBLF were screened in the study, which were recognized as derivation cohort and validation cohort, respectively. CART analysis was applied to predict the 3-month mortality of patients with ACHBLF. The accuracy of the CART model was tested using the area under the receiver operating characteristic curve, which was compared with the model for end-stage liver disease (MELD) score and a new logistic regression model. CART analysis identified four variables as prognostic factors of ACHBLF: total bilirubin, age, serum sodium and INR, and three distinct risk groups: low risk (4.2%), intermediate risk (30.2%-53.2%) and high risk (81.4%-96.9%). The new logistic regression model was constructed with four independent factors, including age, total bilirubin, serum sodium and prothrombin activity by multivariate logistic regression analysis. The performances of the CART model (0.896), similar to the logistic regression model (0.914, P=.382), exceeded that of MELD score (0.667, P<.001). The results were confirmed in the validation cohort. We have developed and validated a novel CART model superior to MELD for predicting three-month mortality of patients with ACHBLF. Thus, the CART model could facilitate medical decision-making and provide clinicians with a validated practical bedside tool for ACHBLF risk stratification. © 2016 John Wiley & Sons Ltd.
Male-initiated partner abuse during marital separation prior to divorce.
Toews, Michelle L; McKenry, Patrick C; Catlett, Beth S
2003-08-01
The purpose of this study was to assess predictors of male-initiated psychological and physical partner abuse during the separation process prior to divorce among a sample of 80 divorced fathers who reported no physical violence during their marriages. The predictor variables examined were male gender-role identity, female-initiated divorces, dependence on one's former wife, depression, anxiety, and coparental conflict. Through ordinary least square (OLS) regression techniques, it was found that male gender-role identity was positively related to male-initiated psychological abuse during separation. Logistic regression analyses revealed that male-initiated psychological abuse, anxiety level, coparental conflict, and dependence on one's former spouse increased the odds of a man engaging in physical abuse. However, depression decreased the odds of separation physical abuse. The models predicting both male-initiated psychological abuse (F = 2.20, p < .05, R2 = .15) and physical violence during the separation process were significant (Model chi2 = 35.00, df= 7, p < .001).
Seeing the forest and the trees: multilevel models reveal both species and community patterns
Michelle M. Jackson; Monica G. Turner; Scott M. Pearson; Anthony R. Ives
2012-01-01
Studies designed to understand species distributions and community assemblages typically use separate analytical approaches (e.g., logistic regression and ordination) to model the distribution of individual species and to relate community composition to environmental variation. Multilevel models (MLMs) offer a promising strategy for integrating species and community-...
College Student Persistence to Degree: The Burden of Debt
ERIC Educational Resources Information Center
Robb, Cliff A.; Moody, Beth; Abdel-Ghany, Mohamed
2012-01-01
Data collected from two major universities (one in the Midwest and one in the Southeast) in the United States were used to analyze student persistence behavior and perceptions of debt. Results from four separate logistic regression analyses suggested that financial factors play a significant role in student persistence behavior as well as in…
ERIC Educational Resources Information Center
Zullig, Keith; Ubbes, Valerie A.; Pyle, Jennifer; Valois, Robert F.
2006-01-01
This study explored the relationships among weight perceptions, dieting behavior, and breakfast eating in 4597 public high school adolescents using the Centers for Disease Control and Prevention Youth Risk Behavior Survey. Adjusted multiple logistic regression models were constructed separately for race and gender groups via SUDAAN (Survey Data…
Variational dynamic background model for keyword spotting in handwritten documents
NASA Astrophysics Data System (ADS)
Kumar, Gaurav; Wshah, Safwan; Govindaraju, Venu
2013-12-01
We propose a bayesian framework for keyword spotting in handwritten documents. This work is an extension to our previous work where we proposed dynamic background model, DBM for keyword spotting that takes into account the local character level scores and global word level scores to learn a logistic regression classifier to separate keywords from non-keywords. In this work, we add a bayesian layer on top of the DBM called the variational dynamic background model, VDBM. The logistic regression classifier uses the sigmoid function to separate keywords from non-keywords. The sigmoid function being neither convex nor concave, exact inference of VDBM becomes intractable. An expectation maximization step is proposed to do approximate inference. The advantage of VDBM over the DBM is multi-fold. Firstly, being bayesian, it prevents over-fitting of data. Secondly, it provides better modeling of data and an improved prediction of unseen data. VDBM is evaluated on the IAM dataset and the results prove that it outperforms our prior work and other state of the art line based word spotting system.
Impact of grade separator on pedestrian risk taking behavior.
Khatoon, Mariya; Tiwari, Geetam; Chatterjee, Niladri
2013-01-01
Pedestrians on Delhi roads are often exposed to high risks. This is because the basic needs of pedestrians are not recognized as a part of the urban transport infrastructure improvement projects in Delhi. Rather, an ever increasing number of cars and motorized two-wheelers encourage the construction of large numbers of flyovers/grade separators to facilitate signal free movement for motorized vehicles, exposing pedestrians to greater risk. This paper describes the statistical analysis of pedestrian risk taking behavior while crossing the road, before and after the construction of a grade separator at an intersection of Delhi. A significant number of pedestrians are willing to take risks in both before and after situations. The results indicate that absence of signals make pedestrians behave independently, leading to increased variability in their risk taking behavior. Variability in the speeds of all categories of vehicles has increased after the construction of grade separators. After the construction of the grade separator, the waiting time of pedestrians at the starting point of crossing has increased and the correlation between waiting times and gaps accepted by pedestrians show that after certain time of waiting, pedestrians become impatient and accepts smaller gap size to cross the road. A Logistic regression model is fitted by assuming that the probability of road crossing by pedestrians depends on the gap size (in s) between pedestrian and conflicting vehicles, sex, age, type of pedestrians (single or in a group) and type of conflicting vehicles. The results of Logistic regression explained that before the construction of the grade separator the probability of road crossing by the pedestrian depends on only the gap size parameter; however after the construction of the grade separator, other parameters become significant in determining pedestrian risk taking behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.
Beyond Reading Alone: The Relationship Between Aural Literacy And Asthma Management
Rosenfeld, Lindsay; Rudd, Rima; Emmons, Karen M.; Acevedo-García, Dolores; Martin, Laurie; Buka, Stephen
2010-01-01
Objectives To examine the relationship between literacy and asthma management with a focus on the oral exchange. Methods Study participants, all of whom reported asthma, were drawn from the New England Family Study (NEFS), an examination of links between education and health. NEFS data included reading, oral (speaking), and aural (listening) literacy measures. An additional survey was conducted with this group of study participants related to asthma issues, particularly asthma management. Data analysis focused on bivariate and multivariable logistic regression. Results In bivariate logistic regression models exploring aural literacy, there was a statistically significant association between those participants with lower aural literacy skills and less successful asthma management (OR:4.37, 95%CI:1.11, 17.32). In multivariable logistic regression analyses, controlling for gender, income, and race in separate models (one-at-a-time), there remained a statistically significant association between those participants with lower aural literacy skills and less successful asthma management. Conclusion Lower aural literacy skills seem to complicate asthma management capabilities. Practice Implications Greater attention to the oral exchange, in particular the listening skills highlighted by aural literacy, as well as other related literacy skills may help us develop strategies for clear communication related to asthma management. PMID:20399060
Viswanathan, M; Pearl, D L; Taboada, E N; Parmley, E J; Mutschall, S K; Jardine, C M
2017-05-01
Using data collected from a cross-sectional study of 25 farms (eight beef, eight swine and nine dairy) in 2010, we assessed clustering of molecular subtypes of C. jejuni based on a Campylobacter-specific 40 gene comparative genomic fingerprinting assay (CGF40) subtypes, using unweighted pair-group method with arithmetic mean (UPGMA) analysis, and multiple correspondence analysis. Exact logistic regression was used to determine which genes differentiate wildlife and livestock subtypes in our study population. A total of 33 bovine livestock (17 beef and 16 dairy), 26 wildlife (20 raccoon (Procyon lotor), five skunk (Mephitis mephitis) and one mouse (Peromyscus spp.) C. jejuni isolates were subtyped using CGF40. Dendrogram analysis, based on UPGMA, showed distinct branches separating bovine livestock and mammalian wildlife isolates. Furthermore, two-dimensional multiple correspondence analysis was highly concordant with dendrogram analysis showing clear differentiation between livestock and wildlife CGF40 subtypes. Based on multilevel logistic regression models with a random intercept for farm of origin, we found that isolates in general, and raccoons more specifically, were significantly more likely to be part of the wildlife branch. Exact logistic regression conducted gene by gene revealed 15 genes that were predictive of whether an isolate was of wildlife or bovine livestock isolate origin. Both multiple correspondence analysis and exact logistic regression revealed that in most cases, the presence of a particular gene (13 of 15) was associated with an isolate being of livestock rather than wildlife origin. In conclusion, the evidence gained from dendrogram analysis, multiple correspondence analysis and exact logistic regression indicates that mammalian wildlife carry CGF40 subtypes of C. jejuni distinct from those carried by bovine livestock. Future studies focused on source attribution of C. jejuni in human infections will help determine whether wildlife transmit Campylobacter jejuni directly to humans. © 2016 Blackwell Verlag GmbH.
ERIC Educational Resources Information Center
Paxton, Raheem J.; Valois, Robert F.; Drane, J. Wanzer
2007-01-01
We investigated the relationship between family structure and substance use in a sample of 2,138 public middle school students in a southern state. The CDC Middle School Youth Risk Behavior Survey was utilized and adjusted logistic regression models were created separately for four race/gender categories (African American females/males, and…
ERIC Educational Resources Information Center
May, Diane E.; Hallin, Mary J.; Kratochvil, Christopher J.; Puumala, Susan E.; Smith, Lynette S.; Reinecke, Mark A.; Silva, Susan G.; Weller, Elizabeth B.; Vitiello, Benedetto; Breland-Noble, Alfiee; March, John S.
2007-01-01
Objective: To examine factors associated with eligibility and randomization and consider the efficiency of recruitment methods. Method: Adolescents, ages 12 to 17 years, were telephone screened (N = 2,804) followed by in-person evaluation (N = 1,088) for the Treatment for Adolescents With Depression Study. Separate logistic regression models,…
NASA Astrophysics Data System (ADS)
Ariffin, Syaiba Balqish; Midi, Habshah
2014-06-01
This article is concerned with the performance of logistic ridge regression estimation technique in the presence of multicollinearity and high leverage points. In logistic regression, multicollinearity exists among predictors and in the information matrix. The maximum likelihood estimator suffers a huge setback in the presence of multicollinearity which cause regression estimates to have unduly large standard errors. To remedy this problem, a logistic ridge regression estimator is put forward. It is evident that the logistic ridge regression estimator outperforms the maximum likelihood approach for handling multicollinearity. The effect of high leverage points are then investigated on the performance of the logistic ridge regression estimator through real data set and simulation study. The findings signify that logistic ridge regression estimator fails to provide better parameter estimates in the presence of both high leverage points and multicollinearity.
Sample size determination for logistic regression on a logit-normal distribution.
Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance
2017-06-01
Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.
Carrying a Weapon to School: The Influence of Youth Assets at Home and School
ERIC Educational Resources Information Center
Marsh, Shawn C.; Evans, William P.
2007-01-01
Eighth and tenth grade students (n= 1,619) reported on exposure to risk and protective assets in their day-to-day lives. The relationship between carrying a weapon to school and risk and protective factors in the home and school ecological domains was explored through logistic regression conducted separately by gender. Environmental control in the…
Staley, James R; Jones, Edmund; Kaptoge, Stephen; Butterworth, Adam S; Sweeting, Michael J; Wood, Angela M; Howson, Joanna M M
2017-06-01
Logistic regression is often used instead of Cox regression to analyse genome-wide association studies (GWAS) of single-nucleotide polymorphisms (SNPs) and disease outcomes with cohort and case-cohort designs, as it is less computationally expensive. Although Cox and logistic regression models have been compared previously in cohort studies, this work does not completely cover the GWAS setting nor extend to the case-cohort study design. Here, we evaluated Cox and logistic regression applied to cohort and case-cohort genetic association studies using simulated data and genetic data from the EPIC-CVD study. In the cohort setting, there was a modest improvement in power to detect SNP-disease associations using Cox regression compared with logistic regression, which increased as the disease incidence increased. In contrast, logistic regression had more power than (Prentice weighted) Cox regression in the case-cohort setting. Logistic regression yielded inflated effect estimates (assuming the hazard ratio is the underlying measure of association) for both study designs, especially for SNPs with greater effect on disease. Given logistic regression is substantially more computationally efficient than Cox regression in both settings, we propose a two-step approach to GWAS in cohort and case-cohort studies. First to analyse all SNPs with logistic regression to identify associated variants below a pre-defined P-value threshold, and second to fit Cox regression (appropriately weighted in case-cohort studies) to those identified SNPs to ensure accurate estimation of association with disease.
Tan, Ge; Yuan, Ruozhen; Wei, ChenChen; Xu, Mangmang; Liu, Ming
2018-05-26
Association between serum calcium and magnesium versus hemorrhagic transformation (HT) remains to be identified. A total of 1212 non-thrombolysis patients with serum calcium and magnesium collected within 24 h from stroke onset were enrolled. Backward stepwise multivariate logistic regression analysis was conducted to investigate association between calcium and magnesium versus HT. Calcium and magnesium were entered into logistic regression analysis in two models, separately: model 1, as continuous variable (per 1-mmol/L increase), and model 2, as four-categorized variable (being collapsed into quartiles). HT occurred in 140 patients (11.6%). Serum calcium was slightly lower in patients with HT than in patient without HT (P = 0.273). But serum magnesium was significantly lower in patients with HT than in patients without HT (P = 0.007). In logistic regression analysis, calcium displayed no association with HT. Magnesium, as either continuous or four-categorized variable, was independently and inversely associated with HT in stroke overall and stroke of large-artery atherosclerosis (LAA). The results demonstrated that serum calcium had no association with HT in patients without thrombolysis after acute ischemic stroke. Serum magnesium in low level was independently associated with increasing HT in stroke overall and particularly in stroke of LAA.
Logistic Regression and Path Analysis Method to Analyze Factors influencing Students’ Achievement
NASA Astrophysics Data System (ADS)
Noeryanti, N.; Suryowati, K.; Setyawan, Y.; Aulia, R. R.
2018-04-01
Students' academic achievement cannot be separated from the influence of two factors namely internal and external factors. The first factors of the student (internal factors) consist of intelligence (X1), health (X2), interest (X3), and motivation of students (X4). The external factors consist of family environment (X5), school environment (X6), and society environment (X7). The objects of this research are eighth grade students of the school year 2016/2017 at SMPN 1 Jiwan Madiun sampled by using simple random sampling. Primary data are obtained by distributing questionnaires. The method used in this study is binary logistic regression analysis that aims to identify internal and external factors that affect student’s achievement and how the trends of them. Path Analysis was used to determine the factors that influence directly, indirectly or totally on student’s achievement. Based on the results of binary logistic regression, variables that affect student’s achievement are interest and motivation. And based on the results obtained by path analysis, factors that have a direct impact on student’s achievement are students’ interest (59%) and students’ motivation (27%). While the factors that have indirect influences on students’ achievement, are family environment (97%) and school environment (37).
Hill, Benjamin David; Womble, Melissa N; Rohling, Martin L
2015-01-01
This study utilized logistic regression to determine whether performance patterns on Concussion Vital Signs (CVS) could differentiate known groups with either genuine or feigned performance. For the embedded measure development group (n = 174), clinical patients and undergraduate students categorized as feigning obtained significantly lower scores on the overall test battery mean for the CVS, Shipley-2 composite score, and California Verbal Learning Test-Second Edition subtests than did genuinely performing individuals. The final full model of 3 predictor variables (Verbal Memory immediate hits, Verbal Memory immediate correct passes, and Stroop Test complex reaction time correct) was significant and correctly classified individuals in their known group 83% of the time (sensitivity = .65; specificity = .97) in a mixed sample of young-adult clinical cases and simulators. The CVS logistic regression function was applied to a separate undergraduate college group (n = 378) that was asked to perform genuinely and identified 5% as having possibly feigned performance indicating a low false-positive rate. The failure rate was 11% and 16% at baseline cognitive testing in samples of high school and college athletes, respectively. These findings have particular relevance given the increasing use of computerized test batteries for baseline cognitive testing and return-to-play decisions after concussion.
The crux of the method: assumptions in ordinary least squares and logistic regression.
Long, Rebecca G
2008-10-01
Logistic regression has increasingly become the tool of choice when analyzing data with a binary dependent variable. While resources relating to the technique are widely available, clear discussions of why logistic regression should be used in place of ordinary least squares regression are difficult to find. The current paper compares and contrasts the assumptions of ordinary least squares with those of logistic regression and explains why logistic regression's looser assumptions make it adept at handling violations of the more important assumptions in ordinary least squares.
Are low wages risk factors for hypertension?
Du, Juan
2012-01-01
Objective: Socio-economic status (SES) is strongly correlated with hypertension. But SES has several components, including income and correlations in cross-sectional data need not imply SES is a risk factor. This study investigates whether wages—the largest category within income—are risk factors. Methods: We analysed longitudinal, nationally representative US data from four waves (1999, 2001, 2003 and 2005) of the Panel Study of Income Dynamics. The overall sample was restricted to employed persons age 25–65 years, n = 17 295. Separate subsamples were constructed of persons within two age groups (25–44 and 45–65 years) and genders. Hypertension incidence was self-reported based on physician diagnosis. Our study was prospective since data from three base years (1999, 2001, 2003) were used to predict newly diagnosed hypertension for three subsequent years (2001, 2003, 2005). In separate analyses, data from the first base year were used to predict time-to-reporting hypertension. Logistic regressions with random effects and Cox proportional hazards regressions were run. Results: Negative and strongly statistically significant correlations between wages and hypertension were found both in logistic and Cox regressions, especially for subsamples containing the younger age group (25–44 years) and women. Correlations were stronger when three health variables—obesity, subjective measures of health and number of co-morbidities—were excluded from regressions. Doubling the wage was associated with 25–30% lower chances of hypertension for persons aged 25–44 years. Conclusions: The strongest evidence for low wages being risk factors for hypertension among working people were for women and persons aged 25–44 years. PMID:22262559
Are low wages risk factors for hypertension?
Leigh, J Paul; Du, Juan
2012-12-01
Socio-economic status (SES) is strongly correlated with hypertension. But SES has several components, including income and correlations in cross-sectional data need not imply SES is a risk factor. This study investigates whether wages-the largest category within income-are risk factors. We analysed longitudinal, nationally representative US data from four waves (1999, 2001, 2003 and 2005) of the Panel Study of Income Dynamics. The overall sample was restricted to employed persons age 25-65 years, n = 17 295. Separate subsamples were constructed of persons within two age groups (25-44 and 45-65 years) and genders. Hypertension incidence was self-reported based on physician diagnosis. Our study was prospective since data from three base years (1999, 2001, 2003) were used to predict newly diagnosed hypertension for three subsequent years (2001, 2003, 2005). In separate analyses, data from the first base year were used to predict time-to-reporting hypertension. Logistic regressions with random effects and Cox proportional hazards regressions were run. Negative and strongly statistically significant correlations between wages and hypertension were found both in logistic and Cox regressions, especially for subsamples containing the younger age group (25-44 years) and women. Correlations were stronger when three health variables-obesity, subjective measures of health and number of co-morbidities-were excluded from regressions. Doubling the wage was associated with 25-30% lower chances of hypertension for persons aged 25-44 years. The strongest evidence for low wages being risk factors for hypertension among working people were for women and persons aged 25-44 years.
Using Dominance Analysis to Determine Predictor Importance in Logistic Regression
ERIC Educational Resources Information Center
Azen, Razia; Traxel, Nicole
2009-01-01
This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…
Fitzpatrick, Cole D; Rakasi, Saritha; Knodler, Michael A
2017-01-01
Speed is one of the most important factors in traffic safety as higher speeds are linked to increased crash risk and higher injury severities. Nearly a third of fatal crashes in the United States are designated as "speeding-related", which is defined as either "the driver behavior of exceeding the posted speed limit or driving too fast for conditions." While many studies have utilized the speeding-related designation in safety analyses, no studies have examined the underlying accuracy of this designation. Herein, we investigate the speeding-related crash designation through the development of a series of logistic regression models that were derived from the established speeding-related crash typologies and validated using a blind review, by multiple researchers, of 604 crash narratives. The developed logistic regression model accurately identified crashes which were not originally designated as speeding-related but had crash narratives that suggested speeding as a causative factor. Only 53.4% of crashes designated as speeding-related contained narratives which described speeding as a causative factor. Further investigation of these crashes revealed that the driver contributing code (DCC) of "driving too fast for conditions" was being used in three separate situations. Additionally, this DCC was also incorrectly used when "exceeding the posted speed limit" would likely have been a more appropriate designation. Finally, it was determined that the responding officer only utilized one DCC in 82% of crashes not designated as speeding-related but contained a narrative indicating speed as a contributing causal factor. The use of logistic regression models based upon speeding-related crash typologies offers a promising method by which all possible speeding-related crashes could be identified. Published by Elsevier Ltd.
Relationship between Enterobius vermicularis and the incidence of acute appendicitis.
Ramezani, Mohammad Arash; Dehghani, Mahmoud Reza
2007-01-01
The objective of this study was to evaluate the relationship between Enterobius vermicularis and the occurrence of acute appendicitis. Over a ten year period of time, all appendix specimens received by the department of pathology were reviewed for pathologic changes and the existence of E. vermicularis. Logistic regression was carried out to determine the odds ratio (OR) of the relationship between E. vermicularis and acute appendicitis. A total of 5048 specimens were reviewed. E. vermicularis was found in 144 (2.9%) cases. After separating by sex and adjusting for age logistic regression analysis showed the OR of E. vermicularis appendiceal infestation was 1.275 (95% CI = 0.42-3.9) for males and 1.678 (95% CI = 0.61-4.65) for females. Age was an independent risk factor for acute appendicitis in males (OR = 1.01, 95% CI = 1.003-1.017) and females (OR = 1.012, 95% CI = 1.005-1.02).
Cultural Beliefs, Partner Characteristics, Communication, and Sexual Risk Among Latino MSM
Reisen, Carol A.; Poppen, Paul J.; Bianchi, Fernanda T.; Zea, Maria Cecilia
2013-01-01
This study examined factors associated with communication about condom use and unprotected anal intercourse (UAI) in a U.S. sample of immigrant Latino MSM (N = 356), with a focus on culturally based beliefs. Logistic regression analysis revealed that communication about condom use at participants' most recent encounter was associated with a lower likelihood of UAI during that encounter. UAI was more likely when the partner was a main partner and there was seroconcordance. A separate logistic regression indicated that communication about condom use was less likely when the most recent encounter involved a main partner, greater sexual desire, and intoxication due to substance use. Although cultural beliefs were not predictive of communication about condom use or UAI at the most recent encounter, they were related to the occurrence of UAI in the previous three months. There is a need for more research on the interplay of culture, safer sex communication, and sexual risk. PMID:20652629
Applying Kaplan-Meier to Item Response Data
ERIC Educational Resources Information Center
McNeish, Daniel
2018-01-01
Some IRT models can be equivalently modeled in alternative frameworks such as logistic regression. Logistic regression can also model time-to-event data, which concerns the probability of an event occurring over time. Using the relation between time-to-event models and logistic regression and the relation between logistic regression and IRT, this…
Leffondré, Karen; Abrahamowicz, Michal; Siemiatycki, Jack
2003-12-30
Case-control studies are typically analysed using the conventional logistic model, which does not directly account for changes in the covariate values over time. Yet, many exposures may vary over time. The most natural alternative to handle such exposures would be to use the Cox model with time-dependent covariates. However, its application to case-control data opens the question of how to manipulate the risk sets. Through a simulation study, we investigate how the accuracy of the estimates of Cox's model depends on the operational definition of risk sets and/or on some aspects of the time-varying exposure. We also assess the estimates obtained from conventional logistic regression. The lifetime experience of a hypothetical population is first generated, and a matched case-control study is then simulated from this population. We control the frequency, the age at initiation, and the total duration of exposure, as well as the strengths of their effects. All models considered include a fixed-in-time covariate and one or two time-dependent covariate(s): the indicator of current exposure and/or the exposure duration. Simulation results show that none of the models always performs well. The discrepancies between the odds ratios yielded by logistic regression and the 'true' hazard ratio depend on both the type of the covariate and the strength of its effect. In addition, it seems that logistic regression has difficulty separating the effects of inter-correlated time-dependent covariates. By contrast, each of the two versions of Cox's model systematically induces either a serious under-estimation or a moderate over-estimation bias. The magnitude of the latter bias is proportional to the true effect, suggesting that an improved manipulation of the risk sets may eliminate, or at least reduce, the bias. Copyright 2003 JohnWiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun
2014-12-01
Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.
Confounder summary scores when comparing the effects of multiple drug exposures.
Cadarette, Suzanne M; Gagne, Joshua J; Solomon, Daniel H; Katz, Jeffrey N; Stürmer, Til
2010-01-01
Little information is available comparing methods to adjust for confounding when considering multiple drug exposures. We compared three analytic strategies to control for confounding based on measured variables: conventional multivariable, exposure propensity score (EPS), and disease risk score (DRS). Each method was applied to a dataset (2000-2006) recently used to examine the comparative effectiveness of four drugs. The relative effectiveness of risedronate, nasal calcitonin, and raloxifene in preventing non-vertebral fracture, were each compared to alendronate. EPSs were derived both by using multinomial logistic regression (single model EPS) and by three separate logistic regression models (separate model EPS). DRSs were derived and event rates compared using Cox proportional hazard models. DRSs derived among the entire cohort (full cohort DRS) was compared to DRSs derived only among the referent alendronate (unexposed cohort DRS). Less than 8% deviation from the base estimate (conventional multivariable) was observed applying single model EPS, separate model EPS or full cohort DRS. Applying the unexposed cohort DRS when background risk for fracture differed between comparison drug exposure cohorts resulted in -7 to + 13% deviation from our base estimate. With sufficient numbers of exposed and outcomes, either conventional multivariable, EPS or full cohort DRS may be used to adjust for confounding to compare the effects of multiple drug exposures. However, our data also suggest that unexposed cohort DRS may be problematic when background risks differ between referent and exposed groups. Further empirical and simulation studies will help to clarify the generalizability of our findings.
Kumar, Abhishek; Kumari, Divya; Singh, Aditya
2015-10-01
This article examines the trends and pattern in socioeconomic inequality in stunting, underweight and wasting among children aged <3 years in urban India over a 14-year period. We use three successive rounds of the National Family Health Survey data conducted during 1992-93, 1998-99 and 2005-06. The selected socioeconomic predictors are household wealth and mother's education level. We use principal component analysis to compute a separate wealth index for urban India for all three rounds of the survey. We have used descriptive statistics, concentration index and pooled logistic regression to analyse the data. The results show that between 1992-93 and 2005-06, the prevalence of childhood undernutrition has declined across household wealth quintiles and educational level of mothers. However, the pace of decline is much higher among the better-off socioeconomic groups than among the least-affluent groups. The result of pooled logistic regression analysis shows that the socioeconomic inequality in childhood undernutrition in urban India has increased over the study period. The salient findings of this study call for separate programmes targeting the children of lower socioeconomic groups in urban population of India. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2014; all rights reserved.
Standards for Standardized Logistic Regression Coefficients
ERIC Educational Resources Information Center
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E
2013-06-01
Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework. © 2013, The International Biometric Society.
Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson
2010-01-01
Summary Objective Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this Review was to assess machine learning alternatives to logistic regression which may accomplish the same goals but with fewer assumptions or greater accuracy. Study Design and Setting We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. Results We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (CART), and meta-classifiers (in particular, boosting). Conclusion While the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and to a lesser extent decision trees (particularly CART) appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. PMID:20630332
Robust mislabel logistic regression without modeling mislabel probabilities.
Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun
2018-03-01
Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.
Fungible weights in logistic regression.
Jones, Jeff A; Waller, Niels G
2016-06-01
In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson
2010-08-01
Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Should metacognition be measured by logistic regression?
Rausch, Manuel; Zehetleitner, Michael
2017-03-01
Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, J; Xu, J; Tang, H L; Han, J; Mao, Y R
2017-02-10
Objective: To analyze the factors associated with divorce or separation when one of the spouse diagnosed and newly reported as HIV positive, in China. Methods: Data from the Chinese HIV/AIDS Comprehensive Response Information Management System, by December 31, 2015 were used for collection on newly reported HIV cases regarding their baseline information in 2014 and follow-up within one year, among couples and above 18 year olds. HIV cases were divided into divorce/separation group and married group according to their marriage dynamics in one year after being diagnosed as HIV positive. Multivariate logistic regressions were used to analyze potential factors associated with divorce or separation after the diagnoses made. Results: A total of 31 708 HIV cases were included in this study. 22.5% (7 134/31 708) of them got divorced or separated in one year after diagnose being made. 81.6% (25 864/31 708) of them had couples tested in one year after diagnose made and 10.0% (2 599/25 864) of them got divorced or separated. Among 18.4% (5 844/31 708) of the HIV cases who did not have their couples tested in one year after the diagnoses, 77.6% (4 535/5 844) got divorced or separated. For those who did not have their couples tested in one year after the diagnose. Data from the multivariate logistic regression analysis showed that factors as those who were older than 45 (46-60 yr.: OR =1.28, 95 %CI : 1.03-1.58; ≥61 yr.: OR =1.83, 95 %CI : 1.41-2.37), with Han ethnicity ( OR =1.56, 95 %CI : 1.34-1.83), with high school education or above ( OR =1.55, 95 %CI : 1.27-1.90), non-farmers or non-rural laborers ( OR =1.34, 95 %CI : 1.17-1.54), infected through injecting drug use ( OR =1.33, 95 % CI : 1.03-1.71), men who had sex with men ( OR =1.49, 95 % CI : 1.20-1.86), or with childless ( OR =2.35, 95 %CI : 1.78-3.09) etc . were more likely to be divorced or separated after the diagnoses being made, among those who had their couples tested in one year after the diagnoses. Results from the multivariate logistic regression analysis showed that factors as those who were above 60 year olds ( OR =1.32, 95 %CI : 1.12-1.56), with Han ethnicity ( OR =1.27, 95 %CI : 1.13-1.44), with high school education or above ( OR =1.26, 95 %CI : 1.11-1.43), non-farmers or non-rural labors ( OR =1.37, 95 %CI : 1.25-1.51), infected through having sex with men ( OR =1.38, 95 %CI : 1.25-1.54), or without a child ( OR =1.48, 95 % CI : 1.27-1.71), were more likely to be divorced or separated after the diagnoses. Conclusion: A certain proportion of HIV cases got divorced or separated in one year after the diagnosis was made. The proportions of divorce or separation were different among populations. Interventions targeting reducing divorce or separation in certain populations should be integrated into routine care system to reduce the HIV transmission.
London Measure of Unplanned Pregnancy: guidance for its use as an outcome measure
Hall, Jennifer A; Barrett, Geraldine; Copas, Andrew; Stephenson, Judith
2017-01-01
Background The London Measure of Unplanned Pregnancy (LMUP) is a psychometrically validated measure of the degree of intention of a current or recent pregnancy. The LMUP is increasingly being used worldwide, and can be used to evaluate family planning or preconception care programs. However, beyond recommending the use of the full LMUP scale, there is no published guidance on how to use the LMUP as an outcome measure. Ordinal logistic regression has been recommended informally, but studies published to date have all used binary logistic regression and dichotomized the scale at different cut points. There is thus a need for evidence-based guidance to provide a standardized methodology for multivariate analysis and to enable comparison of results. This paper makes recommendations for the regression method for analysis of the LMUP as an outcome measure. Materials and methods Data collected from 4,244 pregnant women in Malawi were used to compare five regression methods: linear, logistic with two cut points, and ordinal logistic with either the full or grouped LMUP score. The recommendations were then tested on the original UK LMUP data. Results There were small but no important differences in the findings across the regression models. Logistic regression resulted in the largest loss of information, and assumptions were violated for the linear and ordinal logistic regression. Consequently, robust standard errors were used for linear regression and a partial proportional odds ordinal logistic regression model attempted. The latter could only be fitted for grouped LMUP score. Conclusion We recommend the linear regression model with robust standard errors to make full use of the LMUP score when analyzed as an outcome measure. Ordinal logistic regression could be considered, but a partial proportional odds model with grouped LMUP score may be required. Logistic regression is the least-favored option, due to the loss of information. For logistic regression, the cut point for un/planned pregnancy should be between nine and ten. These recommendations will standardize the analysis of LMUP data and enhance comparability of results across studies. PMID:28435343
Logistic models--an odd(s) kind of regression.
Jupiter, Daniel C
2013-01-01
The logistic regression model bears some similarity to the multivariable linear regression with which we are familiar. However, the differences are great enough to warrant a discussion of the need for and interpretation of logistic regression. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Conners, Erin E; Swanson, Kate; Morales-Miranda, Sonia; Fernández Casanueva, Carmen; Mercer, Valerie J; Brouwer, Kimberly C
2017-07-01
This study assessed correlates of inconsistent condom use with casual partners and the prevalence of sexual risk behaviors and STIs in the Mexico/Guatemala border region using a sample of 392 migrants (303 men, 85 women) who reported current substance use or problem drinking. We ran separate univariate logistic regression models for men and women, and multivariate logistic regression models for men only. Prevalence of syphilis was 1.2% among women and 2.3% among men; HIV prevalence was 2.4% among women and 1.3% among men. Inconsistent condom use with casual partners was higher in women with greater education and lower among women who sold sex. In men, less access to free condoms, drug use with sexual partners, and drug use before sex were independently associated with inconsistent condom use with casual partners. Sexual and substance use risk behaviors were common, and HIV/STI prevention efforts should target both genders and expand beyond most-at risk populations.
Hultman, Charles Scott; Clayton, John L; Kittinger, Benjamin J; Tong, Winnie M
2014-01-01
Learning curves are characterized by incremental improvement of a process, through repetition and reduction in variability, but can be disrupted with the emergence of new techniques and technologies. Abdominal wall reconstruction continues to evolve, with the introduction of components separation in the 1990s and biologic mesh in the 2000s. As such, attempts at innovation may impact the success of reconstructive outcomes and yield a changing set of complications. The purpose of this project was to describe the paradigm shift that has occurred in abdominal wall reconstruction during the past 10 years, focusing on the incorporation of new materials and methods. We reviewed 150 consecutive patients who underwent abdominal wall reconstruction of midline defects with components separation, from 2000 to 2010. Both univariate and multivariate logistic regression analyses were performed to identify risk factors for complications. Patients were stratified into the following periods: early (2000-2003), middle (2004-2006), and late (2007-2010). From 2000 to 2010, we performed 150 abdominal wall reconstructions with components separation [mean age, 50.2 years; body mass index (BMI), 30.4; size of defect, 357 cm; length of stay, 9.6 days; follow-up, 4.4 years]. Primary fascial closure was performed in 120 patients. Mesh was used in 114 patients in the following locations: overlay (n = 28), inlay (n = 30), underlay (n = 54), and unknown (n = 2). Complications occurred in a bimodal distribution, highest in 2001 (introduction of biologic mesh) and 2008 (conversion from underlay to overlay location). Age, sex, history of smoking, defect size, and length of stay were not associated with incidence of complications. Unadjusted risk factors for seroma (16.8%) were elevated BMI, of previous hernia repairs, use of overlay mesh, and late portion of the learning curve, with logistic regression supporting only late portion of the learning curve [odds ratio (OR), 4.3; 95% confidence interval (CI), 1.0-18.6] and BMI (OR, 1.17; 95% CI, 1.06-1.29). The only unadjusted risk factor for recurrence was location of mesh. Logistic regression, comparing underlay, inlay, and overlay mesh to no mesh, revealed that the use of underlay mesh predicted recurrence (OR, 3.0; 95% CI, 1.04-8.64). All P values were less than 0.05. The overall learning curve for a specific procedure, such as abdominal wall reconstruction, can be quite volatile, especially as innovative techniques and new technologies are introduced and incorporated into the surgeon's practice. Our current practice includes primary repair myofascial flap of the components separation and the use of biologic mesh as an overlay graft, anchored to the external oblique. This process of outcome improvement is not gradual but is often punctuated by periods of failure and redemption.
Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
NASA Astrophysics Data System (ADS)
Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami
2017-06-01
A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.
The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...
Predicting U.S. Army Reserve Unit Manning Using Market Demographics
2015-06-01
develops linear regression , classification tree, and logistic regression models to determine the ability of the location to support manning requirements... logistic regression model delivers predictive results that allow decision-makers to identify locations with a high probability of meeting unit...manning requirements. The recommendation of this thesis is that the USAR implement the logistic regression model. 14. SUBJECT TERMS U.S
ERIC Educational Resources Information Center
Chen, Chau-Kuang
2005-01-01
Logistic and Cox regression methods are practical tools used to model the relationships between certain student learning outcomes and their relevant explanatory variables. The logistic regression model fits an S-shaped curve into a binary outcome with data points of zero and one. The Cox regression model allows investigators to study the duration…
Hollier, John M; Czyzewski, Danita I; Self, Mariella M; Weidler, Erica M; Smith, E O'Brian; Shulman, Robert J
2017-03-01
This study evaluates whether certain patient or parental characteristics are associated with gastroenterology (GI) referral versus primary pediatrics care for pediatric irritable bowel syndrome (IBS). A retrospective clinical trial sample of patients meeting pediatric Rome III IBS criteria was assembled from a single metropolitan health care system. Baseline socioeconomic status (SES) and clinical symptom measures were gathered. Various instruments measured participant and parental psychosocial traits. Study outcomes were stratified by GI referral versus primary pediatrics care. Two separate analyses of SES measures and GI clinical symptoms and psychosocial measures identified key factors by univariate and multiple logistic regression analyses. For each analysis, identified factors were placed in unadjusted and adjusted multivariate logistic regression models to assess their impact in predicting GI referral. Of the 239 participants, 152 were referred to pediatric GI, and 87 were managed in primary pediatrics care. Of the SES and clinical symptom factors, child self-assessment of abdominal pain duration and lower percentage of people living in poverty were the strongest predictors of GI referral. Among the psychosocial measures, parental assessment of their child's functional disability was the sole predictor of GI referral. In multivariate logistic regression models, all selected factors continued to predict GI referral in each model. Socioeconomic environment, clinical symptoms, and functional disability are associated with GI referral. Future interventions designed to ameliorate the effect of these identified factors could reduce unnecessary specialty consultations and health care overutilization for IBS.
Risk Factors for Suicidal Ideation in People at Risk for Huntington's Disease.
Anderson, Karen E; Eberly, Shirley; Groves, Mark; Kayson, Elise; Marder, Karen; Young, Anne B; Shoulson, Ira
2016-12-15
Suicidal ideation (SI) and attempts are increased in Huntington's disease (HD), making risk factor assessment a priority. To determine whether, hopelessness, irritability, aggression, anxiety, CAG expansion status, depression, and motor signs/symptoms were associated with Suicidal Ideation (SI) in those at risk for HD. Behavioral and neurological data were collected from subjects in an observational study. Subject characteristics were calculated by CAG status and SI. Logistic regression models were adjusted for demographics. Separate logistic regressions were used to compare SI and non-SI subjects. A combined logistic regression model, including 4 pre-specified predictors, (hopelessness, irritability, aggression, anxiety) was used to assess the relationship of SI to these predictors. 801 subjects were assessed, 40 were classified as having SI, 6.3% of CAG mutation expansion carriers had SI, compared with 4.3% of non- CAG mutation expansion carriers (p = 0.2275). SI subjects had significantly increased depression (p < 0.0001), hopelessness (p < 0.0001), irritability (p < 0.0001), aggression (p = 0.0089), and anxiety (p < 0.0001), and an elevated motor score (p = 0.0098). Impulsivity, assessed in a subgroup of subjects, was also associated with SI (p = 0.0267). Hopelessness and anxiety remained significant in combined model (p < 0.001; p < 0.0198, respectively) even when motor score was included. Behavioral symptoms were significantly higher in those reporting SI. Hopelessness and anxiety showed a particularly strong association with SI. Risk identification could assist in assessment of suicidality in this group.
Screening for ketosis using multiple logistic regression based on milk yield and composition.
Kayano, Mitsunori; Kataoka, Tomoko
2015-11-01
Multiple logistic regression was applied to milk yield and composition data for 632 records of healthy cows and 61 records of ketotic cows in Hokkaido, Japan. The purpose was to diagnose ketosis based on milk yield and composition, simultaneously. The cows were divided into two groups: (1) multiparous, including 314 healthy cows and 45 ketotic cows and (2) primiparous, including 318 healthy cows and 16 ketotic cows, since nutritional status, milk yield and composition are affected by parity. Multiple logistic regression was applied to these groups separately. For multiparous cows, milk yield (kg/day/cow) and protein-to-fat (P/F) ratio in milk were significant factors (P<0.05) for the diagnosis of ketosis. For primiparous cows, lactose content (%), solid not fat (SNF) content (%) and milk urea nitrogen (MUN) content (mg/dl) were significantly associated with ketosis (P<0.01). A diagnostic rule was constructed for each group of cows: (1) 9.978 × P/F ratio + 0.085 × milk yield <10 and (2) 2.327 × SNF - 2.703 × lactose + 0.225 × MUN <10. The sensitivity, specificity and the area under the curve (AUC) of the diagnostic rules were (1) 0.800, 0.729 and 0.811; (2) 0.813, 0.730 and 0.787, respectively. The P/F ratio, which is a widely used measure of ketosis, provided the sensitivity, specificity and AUC values of (1) 0.711, 0.726 and 0.781; and (2) 0.678, 0.767 and 0.738, respectively.
Dahlin, Johanna; Härkönen, Juho
2013-12-01
Multiple studies have found that women report being in worse health despite living longer. Gender gaps vary cross-nationally, but relatively little is known about the causes of comparative differences. Existing literature is inconclusive as to whether gender gaps in health are smaller in more gender equal societies. We analyze gender gaps in self-rated health (SRH) and limiting longstanding illness (LLI) with five waves of European Social Survey data for 191,104 respondents from 28 countries. We use means, odds ratios, logistic regressions, and multilevel random slopes logistic regressions. Gender gaps in subjective health vary visibly across Europe. In many countries (especially in Eastern and Southern Europe), women report distinctly worse health, while in others (such as Estonia, Finland, and Great Britain) there are small or no differences. Logistic regressions ran separately for each country revealed that individual-level socioeconomic and demographic variables explain a majority of these gaps in some countries, but contribute little to their understanding in most countries. In yet other countries, men had worse health when these variables were controlled for. Cross-national variation in the gender gaps exists after accounting for individual-level factors. Against expectations, the remaining gaps are not systematically related to societal-level gender inequality in the multilevel analyses. Our findings stress persistent cross-national variability in gender gaps in health and call for further analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Logistic Regression: Concept and Application
ERIC Educational Resources Information Center
Cokluk, Omay
2010-01-01
The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet
2010-05-01
This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.
Logistic regression applied to natural hazards: rare event logistic regression with replications
NASA Astrophysics Data System (ADS)
Guns, M.; Vanacker, V.
2012-06-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
Large unbalanced credit scoring using Lasso-logistic regression ensemble.
Wang, Hong; Xu, Qingsong; Zhou, Lifeng
2015-01-01
Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, H.; Kim, Rokho; Korrick, S.
1996-12-31
In an earlier report based on participants in the Veterans Administration Normative Aging Study, we found a significant association between the risk of hypertension and lead levels in tibia. To examine the possible confounding effects of education and occupation, we considered in this study five levels of education and three levels of occupation as independent variables in the statistical model. Of 1,171 active subjects seen between August 1991 and December 1994, 563 provided complete data for this analysis. In the initial logistic regression model, acre and body mass index, family history of hypertension, and dietary sodium intake, but neither cumulativemore » smoking nor alcohol ingestion, conferred increased odds ratios for being hypertensive that were statistically significant. When the lead biomarkers were added separately to this initial logistic model, tibia lead and patella lead levels were associated with significantly elevated odds ratios for hypertension. In the final backward elimination logistic regression model that included categorical variables for education and occupation, the only variables retained were body mass index, family history of hypertension, and tibia lead level. We conclude that education and occupation variables were not confounding the association between the lead biomarkers and hypertension that we reported previously. 27 refs., 3 tabs.« less
Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning
ERIC Educational Resources Information Center
Li, Zhushan
2014-01-01
Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…
A Methodology for Generating Placement Rules that Utilizes Logistic Regression
ERIC Educational Resources Information Center
Wurtz, Keith
2008-01-01
The purpose of this article is to provide the necessary tools for institutional researchers to conduct a logistic regression analysis and interpret the results. Aspects of the logistic regression procedure that are necessary to evaluate models are presented and discussed with an emphasis on cutoff values and choosing the appropriate number of…
John Hogland; Nedret Billor; Nathaniel Anderson
2013-01-01
Discriminant analysis, referred to as maximum likelihood classification within popular remote sensing software packages, is a common supervised technique used by analysts. Polytomous logistic regression (PLR), also referred to as multinomial logistic regression, is an alternative classification approach that is less restrictive, more flexible, and easy to interpret. To...
Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble
Wang, Hong; Xu, Qingsong; Zhou, Lifeng
2015-01-01
Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data. PMID:25706988
Mapping of the DLQI scores to EQ-5D utility values using ordinal logistic regression.
Ali, Faraz Mahmood; Kay, Richard; Finlay, Andrew Y; Piguet, Vincent; Kupfer, Joerg; Dalgard, Florence; Salek, M Sam
2017-11-01
The Dermatology Life Quality Index (DLQI) and the European Quality of Life-5 Dimension (EQ-5D) are separate measures that may be used to gather health-related quality of life (HRQoL) information from patients. The EQ-5D is a generic measure from which health utility estimates can be derived, whereas the DLQI is a specialty-specific measure to assess HRQoL. To reduce the burden of multiple measures being administered and to enable a more disease-specific calculation of health utility estimates, we explored an established mathematical technique known as ordinal logistic regression (OLR) to develop an appropriate model to map DLQI data to EQ-5D-based health utility estimates. Retrospective data from 4010 patients were randomly divided five times into two groups for the derivation and testing of the mapping model. Split-half cross-validation was utilized resulting in a total of ten ordinal logistic regression models for each of the five EQ-5D dimensions against age, sex, and all ten items of the DLQI. Using Monte Carlo simulation, predicted health utility estimates were derived and compared against those observed. This method was repeated for both OLR and a previously tested mapping methodology based on linear regression. The model was shown to be highly predictive and its repeated fitting demonstrated a stable model using OLR as well as linear regression. The mean differences between OLR-predicted health utility estimates and observed health utility estimates ranged from 0.0024 to 0.0239 across the ten modeling exercises, with an average overall difference of 0.0120 (a 1.6% underestimate, not of clinical importance). This modeling framework developed in this study will enable researchers to calculate EQ-5D health utility estimates from a specialty-specific study population, reducing patient and economic burden.
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression
ERIC Educational Resources Information Center
Weiss, Brandi A.; Dardick, William
2016-01-01
This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…
What Are the Odds of that? A Primer on Understanding Logistic Regression
ERIC Educational Resources Information Center
Huang, Francis L.; Moon, Tonya R.
2013-01-01
The purpose of this Methodological Brief is to present a brief primer on logistic regression, a commonly used technique when modeling dichotomous outcomes. Using data from the National Education Longitudinal Study of 1988 (NELS:88), logistic regression techniques were used to investigate student-level variables in eighth grade (i.e., enrolled in a…
On the Usefulness of a Multilevel Logistic Regression Approach to Person-Fit Analysis
ERIC Educational Resources Information Center
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas
2011-01-01
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W
2015-08-01
Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul
2015-11-04
Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.
Duvall, Susanne W.; Erickson, Sarah J.; MacLean, Peggy; Lowe, Jean R.
2014-01-01
The goal was to identify perinatal predictors of early executive dysfunction in preschoolers born very low birth weight. Fifty-seven preschoolers completed three executive function tasks (Dimensional Change Card Sort-Separated (inhibition, working memory and cognitive flexibility), Bear Dragon (inhibition and working memory) and Gift Delay Open (inhibition)). Relationships between executive function and perinatal medical severity factors (gestational age, days on ventilation, size for gestational age, maternal steroids and number of surgeries), and chronological age were investigated by multiple linear regression and logistic regression. Different perinatal medical severity factors were predictive of executive function tasks, with gestational age predicting Bear Dragon and Gift Open; and number of surgeries and maternal steroids predicting performance on Dimensional Change Card Sort-Separated. By understanding the relationship between perinatal medical severity factors and preschool executive outcomes, we may be able to identify children at highest risk for future executive dysfunction, thereby focusing targeted early intervention services. PMID:25117418
Kaur, Ravneet; Albano, Peter P.; Cole, Justin G.; Hagerty, Jason; LeAnder, Robert W.; Moss, Randy H.; Stoecker, William V.
2015-01-01
Background/Purpose Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Methods Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Results Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Conclusion Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. PMID:25809473
Kaur, R; Albano, P P; Cole, J G; Hagerty, J; LeAnder, R W; Moss, R H; Stoecker, W V
2015-11-01
Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue, and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Logistic regression for risk factor modelling in stuttering research.
Reed, Phil; Wu, Yaqionq
2013-06-01
To outline the uses of logistic regression and other statistical methods for risk factor analysis in the context of research on stuttering. The principles underlying the application of a logistic regression are illustrated, and the types of questions to which such a technique has been applied in the stuttering field are outlined. The assumptions and limitations of the technique are discussed with respect to existing stuttering research, and with respect to formulating appropriate research strategies to accommodate these considerations. Finally, some alternatives to the approach are briefly discussed. The way the statistical procedures are employed are demonstrated with some hypothetical data. Research into several practical issues concerning stuttering could benefit if risk factor modelling were used. Important examples are early diagnosis, prognosis (whether a child will recover or persist) and assessment of treatment outcome. After reading this article you will: (a) Summarize the situations in which logistic regression can be applied to a range of issues about stuttering; (b) Follow the steps in performing a logistic regression analysis; (c) Describe the assumptions of the logistic regression technique and the precautions that need to be checked when it is employed; (d) Be able to summarize its advantages over other techniques like estimation of group differences and simple regression. Copyright © 2012 Elsevier Inc. All rights reserved.
Gender differences in social support and leisure-time physical activity.
Oliveira, Aldair J; Lopes, Claudia S; Rostila, Mikael; Werneck, Guilherme Loureiro; Griep, Rosane Härter; Leon, Antônio Carlos Monteiro Ponce de; Faerstein, Eduardo
2014-08-01
To identify gender differences in social support dimensions' effect on adults' leisure-time physical activity maintenance, type, and time. Longitudinal study of 1,278 non-faculty public employees at a university in Rio de Janeiro, RJ, Southeastern Brazil. Physical activity was evaluated using a dichotomous question with a two-week reference period, and further questions concerning leisure-time physical activity type (individual or group) and time spent on the activity. Social support was measured with the Medical Outcomes Study Social Support Scale. For the analysis, logistic regression models were adjusted separately by gender. A multinomial logistic regression showed an association between material support and individual activities among women (OR = 2.76; 95%CI 1.2;6.5). Affective support was associated with time spent on leisure-time physical activity only among men (OR = 1.80; 95%CI 1.1;3.2). All dimensions of social support that were examined influenced either the type of, or the time spent on, leisure-time physical activity. In some social support dimensions, the associations detected varied by gender. Future studies should attempt to elucidate the mechanisms involved in these gender differences.
Dynamic Dimensionality Selection for Bayesian Classifier Ensembles
2015-03-19
learning of weights in an otherwise generatively learned naive Bayes classifier. WANBIA-C is very cometitive to Logistic Regression but much more...classifier, Generative learning, Discriminative learning, Naïve Bayes, Feature selection, Logistic regression , higher order attribute independence 16...discriminative learning of weights in an otherwise generatively learned naive Bayes classifier. WANBIA-C is very cometitive to Logistic Regression but
Travis Woolley; David C. Shaw; Lisa M. Ganio; Stephen Fitzgerald
2012-01-01
Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed bums and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate...
Preserving Institutional Privacy in Distributed binary Logistic Regression.
Wu, Yuan; Jiang, Xiaoqian; Ohno-Machado, Lucila
2012-01-01
Privacy is becoming a major concern when sharing biomedical data across institutions. Although methods for protecting privacy of individual patients have been proposed, it is not clear how to protect the institutional privacy, which is many times a critical concern of data custodians. Built upon our previous work, Grid Binary LOgistic REgression (GLORE)1, we developed an Institutional Privacy-preserving Distributed binary Logistic Regression model (IPDLR) that considers both individual and institutional privacy for building a logistic regression model in a distributed manner. We tested our method using both simulated and clinical data, showing how it is possible to protect the privacy of individuals and of institutions using a distributed strategy.
Covariate Imbalance and Adjustment for Logistic Regression Analysis of Clinical Trial Data
Ciolino, Jody D.; Martin, Reneé H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.
2014-01-01
In logistic regression analysis for binary clinical trial data, adjusted treatment effect estimates are often not equivalent to unadjusted estimates in the presence of influential covariates. This paper uses simulation to quantify the benefit of covariate adjustment in logistic regression. However, International Conference on Harmonization guidelines suggest that covariate adjustment be pre-specified. Unplanned adjusted analyses should be considered secondary. Results suggest that that if adjustment is not possible or unplanned in a logistic setting, balance in continuous covariates can alleviate some (but never all) of the shortcomings of unadjusted analyses. The case of log binomial regression is also explored. PMID:24138438
Differentially private distributed logistic regression using private and public data.
Ji, Zhanglong; Jiang, Xiaoqian; Wang, Shuang; Xiong, Li; Ohno-Machado, Lucila
2014-01-01
Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee.
Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Liu, Weixiang
2017-01-01
The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules’ 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively. PMID:29228030
Pang, Tiantian; Huang, Leidan; Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Gong, Xuehao; Liu, Weixiang
2017-01-01
The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules' 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively.
Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi
2017-06-01
Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p < 0.05). Identifying and training mothers at risk as well as improving prenatal care may reduce the PTB rate. We also recommend that statisticians utilize the logistic regression model for the classification of risk groups for PTB.
Screening for ketosis using multiple logistic regression based on milk yield and composition
KAYANO, Mitsunori; KATAOKA, Tomoko
2015-01-01
Multiple logistic regression was applied to milk yield and composition data for 632 records of healthy cows and 61 records of ketotic cows in Hokkaido, Japan. The purpose was to diagnose ketosis based on milk yield and composition, simultaneously. The cows were divided into two groups: (1) multiparous, including 314 healthy cows and 45 ketotic cows and (2) primiparous, including 318 healthy cows and 16 ketotic cows, since nutritional status, milk yield and composition are affected by parity. Multiple logistic regression was applied to these groups separately. For multiparous cows, milk yield (kg/day/cow) and protein-to-fat (P/F) ratio in milk were significant factors (P<0.05) for the diagnosis of ketosis. For primiparous cows, lactose content (%), solid not fat (SNF) content (%) and milk urea nitrogen (MUN) content (mg/dl) were significantly associated with ketosis (P<0.01). A diagnostic rule was constructed for each group of cows: (1) 9.978 × P/F ratio + 0.085 × milk yield <10 and (2) 2.327 × SNF − 2.703 × lactose + 0.225 × MUN <10. The sensitivity, specificity and the area under the curve (AUC) of the diagnostic rules were (1) 0.800, 0.729 and 0.811; (2) 0.813, 0.730 and 0.787, respectively. The P/F ratio, which is a widely used measure of ketosis, provided the sensitivity, specificity and AUC values of (1) 0.711, 0.726 and 0.781; and (2) 0.678, 0.767 and 0.738, respectively. PMID:26074408
Reisler, Ronald B; Gibbs, Paul H; Danner, Denise K; Boudreau, Ellen F
2012-11-26
We compared the effect on primary vaccination plaque-reduction neutralization 80% titers (PRNT80) responses of same-day administration (at different injection sites) of two similar investigational inactivated alphavirus vaccines, eastern equine encephalitis (EEE) vaccine (TSI-GSD 104) and western equine encephalitis (WEE) vaccine (TSI-GSD 210) to separate administration. Overall, primary response rate for EEE vaccine was 524/796 (66%) and overall primary response rate for WEE vaccine was 291/695 (42%). EEE vaccine same-day administration yielded a 59% response rate and a responder geometric mean titer (GMT)=89 while separate administration yielded a response rate of 69% and a responder GMT=119. WEE vaccine same-day administration yielded a 30% response rate and a responder GMT=53 while separate administration yielded a response rate of 54% and a responder GMT=79. EEE response rates for same-day administration (group A) vs. non-same-day administration (group B) were significantly affected by gender. A logistic regression model predicting response to EEE comparing group B to group A for females yielded an OR=4.10 (95% CL 1.97-8.55; p=.0002) and for males yielded an OR=1.25 (95% CL 0.76-2.07; p=.3768). WEE response rates for same-day administration vs. non-same-day administration were independent of gender. A logistic regression model predicting response to WEE comparing group B to group A yielded an OR=2.14 (95% CL 1.22-3.73; p=.0077). We report immune interference occurring with same-day administration of two completely separate formalin inactivated viral vaccines in humans. These findings combined with the findings of others regarding immune interference would argue for a renewed emphasis on studying the immunological mechanisms of induction of inactivated viral vaccine protection. Copyright © 2012. Published by Elsevier Ltd.
Sleep problems and suicide attempts among adolescents: a case-control study.
Koyawala, Neel; Stevens, Jack; McBee-Strayer, Sandra M; Cannon, Elizabeth A; Bridge, Jeffrey A
2015-01-01
This study used a case-control design to compare sleep disturbances in 40 adolescents who attempted suicide with 40 never-suicidal adolescents. Using hierarchical logistic regression analyses, we found that self-reported nighttime awakenings were significantly associated with attempted suicide, after controlling for antidepressant use, antipsychotic use, affective problems, and being bullied. In a separate regression analysis, the parent-reported total sleep problems score also predicted suicide attempt status, controlling for key covariates. No associations were found between suicide attempts and other distinct sleep problems, including falling asleep at bedtime, sleeping a lot during the day, trouble waking up in the morning, sleep duration, and parent-reported nightmares. Clinicians should be aware of sleep problems as potential risk factors for suicide attempts for adolescents.
Workplace bullying a risk for permanent employees.
Keuskamp, Dominic; Ziersch, Anna M; Baum, Fran E; Lamontagne, Anthony D
2012-04-01
We tested the hypothesis that the risk of experiencing workplace bullying was greater for those employed on casual contracts compared to permanent or ongoing employees. A cross-sectional population-based telephone survey was conducted in South Australia in 2009. Employment arrangements were classified by self-report into four categories: permanent, casual, fixed-term and self-employed. Self-report of workplace bullying was modelled using multiple logistic regression in relation to employment arrangement, controlling for sex, age, working hours, years in job, occupational skill level, marital status and a proxy for socioeconomic status. Workplace bullying was reported by 174 respondents (15.2%). Risk of workplace bullying was higher for being in a professional occupation, having a university education and being separated, divorced or widowed, but did not vary significantly by sex, age or job tenure. In adjusted multivariate logistic regression models, casual workers were significantly less likely than workers on permanent or fixed-term contracts to report bullying. Those separated, divorced or widowed had higher odds of reporting bullying than married, de facto or never-married workers. Contrary to expectation, workplace bullying was more often reported by permanent than casual employees. It may represent an exposure pathway not previously linked with the more idealised permanent employment arrangement. A finer understanding of psycho-social hazards across all employment arrangements is needed, with equal attention to the hazards associated with permanent as well as casual employment. © 2012 The Authors. ANZJPH © 2012 Public Health Association of Australia.
Logistic regression for dichotomized counts.
Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W
2016-12-01
Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.
Zhu, K; Lou, Z; Zhou, J; Ballester, N; Kong, N; Parikh, P
2015-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Hospital readmissions raise healthcare costs and cause significant distress to providers and patients. It is, therefore, of great interest to healthcare organizations to predict what patients are at risk to be readmitted to their hospitals. However, current logistic regression based risk prediction models have limited prediction power when applied to hospital administrative data. Meanwhile, although decision trees and random forests have been applied, they tend to be too complex to understand among the hospital practitioners. Explore the use of conditional logistic regression to increase the prediction accuracy. We analyzed an HCUP statewide inpatient discharge record dataset, which includes patient demographics, clinical and care utilization data from California. We extracted records of heart failure Medicare beneficiaries who had inpatient experience during an 11-month period. We corrected the data imbalance issue with under-sampling. In our study, we first applied standard logistic regression and decision tree to obtain influential variables and derive practically meaning decision rules. We then stratified the original data set accordingly and applied logistic regression on each data stratum. We further explored the effect of interacting variables in the logistic regression modeling. We conducted cross validation to assess the overall prediction performance of conditional logistic regression (CLR) and compared it with standard classification models. The developed CLR models outperformed several standard classification models (e.g., straightforward logistic regression, stepwise logistic regression, random forest, support vector machine). For example, the best CLR model improved the classification accuracy by nearly 20% over the straightforward logistic regression model. Furthermore, the developed CLR models tend to achieve better sensitivity of more than 10% over the standard classification models, which can be translated to correct labeling of additional 400 - 500 readmissions for heart failure patients in the state of California over a year. Lastly, several key predictor identified from the HCUP data include the disposition location from discharge, the number of chronic conditions, and the number of acute procedures. It would be beneficial to apply simple decision rules obtained from the decision tree in an ad-hoc manner to guide the cohort stratification. It could be potentially beneficial to explore the effect of pairwise interactions between influential predictors when building the logistic regression models for different data strata. Judicious use of the ad-hoc CLR models developed offers insights into future development of prediction models for hospital readmissions, which can lead to better intuition in identifying high-risk patients and developing effective post-discharge care strategies. Lastly, this paper is expected to raise the awareness of collecting data on additional markers and developing necessary database infrastructure for larger-scale exploratory studies on readmission risk prediction.
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Choi, Seung Hoan; Labadorf, Adam T; Myers, Richard H; Lunetta, Kathryn L; Dupuis, Josée; DeStefano, Anita L
2017-02-06
Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth's logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth's logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework.
Differentially private distributed logistic regression using private and public data
2014-01-01
Background Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. Methodology In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. Experiments and results We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Conclusion Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee. PMID:25079786
Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung
2015-12-01
This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Lixue; Chen, Kean
2015-11-01
To improve the design of underwater target recognition systems based on auditory perception, this study compared human listeners with automatic classifiers. Performances measures and strategies in three discrimination experiments, including discriminations between man-made and natural targets, between ships and submarines, and among three types of ships, were used. In the experiments, the subjects were asked to assign a score to each sound based on how confident they were about the category to which it belonged, and logistic regression, which represents linear discriminative models, also completed three similar tasks by utilizing many auditory features. The results indicated that the performances of logistic regression improved as the ratio between inter- and intra-class differences became larger, whereas the performances of the human subjects were limited by their unfamiliarity with the targets. Logistic regression performed better than the human subjects in all tasks but the discrimination between man-made and natural targets, and the strategies employed by excellent human subjects were similar to that of logistic regression. Logistic regression and several human subjects demonstrated similar performances when discriminating man-made and natural targets, but in this case, their strategies were not similar. An appropriate fusion of their strategies led to further improvement in recognition accuracy.
NASA Astrophysics Data System (ADS)
Mei, Zhixiong; Wu, Hao; Li, Shiyun
2018-06-01
The Conversion of Land Use and its Effects at Small regional extent (CLUE-S), which is a widely used model for land-use simulation, utilizes logistic regression to estimate the relationships between land use and its drivers, and thus, predict land-use change probabilities. However, logistic regression disregards possible spatial autocorrelation and self-organization in land-use data. Autologistic regression can depict spatial autocorrelation but cannot address self-organization, while logistic regression by considering only self-organization (NElogistic regression) fails to capture spatial autocorrelation. Therefore, this study developed a regression (NE-autologistic regression) method, which incorporated both spatial autocorrelation and self-organization, to improve CLUE-S. The Zengcheng District of Guangzhou, China was selected as the study area. The land-use data of 2001, 2005, and 2009, as well as 10 typical driving factors, were used to validate the proposed regression method and the improved CLUE-S model. Then, three future land-use scenarios in 2020: the natural growth scenario, ecological protection scenario, and economic development scenario, were simulated using the improved model. Validation results showed that NE-autologistic regression performed better than logistic regression, autologistic regression, and NE-logistic regression in predicting land-use change probabilities. The spatial allocation accuracy and kappa values of NE-autologistic-CLUE-S were higher than those of logistic-CLUE-S, autologistic-CLUE-S, and NE-logistic-CLUE-S for the simulations of two periods, 2001-2009 and 2005-2009, which proved that the improved CLUE-S model achieved the best simulation and was thereby effective to a certain extent. The scenario simulation results indicated that under all three scenarios, traffic land and residential/industrial land would increase, whereas arable land and unused land would decrease during 2009-2020. Apparent differences also existed in the simulated change sizes and locations of each land-use type under different scenarios. The results not only demonstrate the validity of the improved model but also provide a valuable reference for relevant policy-makers.
Evans, M A; Rosen, L N
2000-01-01
The effects of work climate, pregnancy transitions stress, maternal medical conditions, health risk behaviors, psychological health, and demographic characteristics were examined among 269 pregnant military women. The study found that single and separated/divorced military women were at greater risk for preterm delivery than married women. Unmarried participants were more likely to belong to ethnic minorities, were lower ranking, less educated, and reported a greater number of medical conditions than married participants. Psychosocial variables distinguished the three marital status groups--married, single, and separated/divorced--but none of these variables was related to preterm delivery. In a logistic regression analysis, marital status was a more significant predictor of preterm delivery than were medical conditions.
Unitary Response Regression Models
ERIC Educational Resources Information Center
Lipovetsky, S.
2007-01-01
The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…
Binary logistic regression-Instrument for assessing museum indoor air impact on exhibits.
Bucur, Elena; Danet, Andrei Florin; Lehr, Carol Blaziu; Lehr, Elena; Nita-Lazar, Mihai
2017-04-01
This paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The prediction of the impact on the exhibits during certain pollution scenarios (environmental impact) was calculated by a mathematical model based on the binary logistic regression; it allows the identification of those environmental parameters from a multitude of possible parameters with a significant impact on exhibitions and ranks them according to their severity effect. Air quality (NO 2 , SO 2 , O 3 and PM 2.5 ) and microclimate parameters (temperature, humidity) monitoring data from a case study conducted within exhibition and storage spaces of the Romanian National Aviation Museum Bucharest have been used for developing and validating the binary logistic regression method and the mathematical model. The logistic regression analysis was used on 794 data combinations (715 to develop of the model and 79 to validate it) by a Statistical Package for Social Sciences (SPSS 20.0). The results from the binary logistic regression analysis demonstrated that from six parameters taken into consideration, four of them present a significant effect upon exhibits in the following order: O 3 >PM 2.5 >NO 2 >humidity followed at a significant distance by the effects of SO 2 and temperature. The mathematical model, developed in this study, correctly predicted 95.1 % of the cumulated effect of the environmental parameters upon the exhibits. Moreover, this model could also be used in the decisional process regarding the preventive preservation measures that should be implemented within the exhibition space. The paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The mathematical model developed on the environmental parameters analyzed by the binary logistic regression method could be useful in a decision-making process establishing the best measures for pollution reduction and preventive preservation of exhibits.
Determining factors influencing survival of breast cancer by fuzzy logistic regression model.
Nikbakht, Roya; Bahrampour, Abbas
2017-01-01
Fuzzy logistic regression model can be used for determining influential factors of disease. This study explores the important factors of actual predictive survival factors of breast cancer's patients. We used breast cancer data which collected by cancer registry of Kerman University of Medical Sciences during the period of 2000-2007. The variables such as morphology, grade, age, and treatments (surgery, radiotherapy, and chemotherapy) were applied in the fuzzy logistic regression model. Performance of model was determined in terms of mean degree of membership (MDM). The study results showed that almost 41% of patients were in neoplasm and malignant group and more than two-third of them were still alive after 5-year follow-up. Based on the fuzzy logistic model, the most important factors influencing survival were chemotherapy, morphology, and radiotherapy, respectively. Furthermore, the MDM criteria show that the fuzzy logistic regression have a good fit on the data (MDM = 0.86). Fuzzy logistic regression model showed that chemotherapy is more important than radiotherapy in survival of patients with breast cancer. In addition, another ability of this model is calculating possibilistic odds of survival in cancer patients. The results of this study can be applied in clinical research. Furthermore, there are few studies which applied the fuzzy logistic models. Furthermore, we recommend using this model in various research areas.
Mixed conditional logistic regression for habitat selection studies.
Duchesne, Thierry; Fortin, Daniel; Courbin, Nicolas
2010-05-01
1. Resource selection functions (RSFs) are becoming a dominant tool in habitat selection studies. RSF coefficients can be estimated with unconditional (standard) and conditional logistic regressions. While the advantage of mixed-effects models is recognized for standard logistic regression, mixed conditional logistic regression remains largely overlooked in ecological studies. 2. We demonstrate the significance of mixed conditional logistic regression for habitat selection studies. First, we use spatially explicit models to illustrate how mixed-effects RSFs can be useful in the presence of inter-individual heterogeneity in selection and when the assumption of independence from irrelevant alternatives (IIA) is violated. The IIA hypothesis states that the strength of preference for habitat type A over habitat type B does not depend on the other habitat types also available. Secondly, we demonstrate the significance of mixed-effects models to evaluate habitat selection of free-ranging bison Bison bison. 3. When movement rules were homogeneous among individuals and the IIA assumption was respected, fixed-effects RSFs adequately described habitat selection by simulated animals. In situations violating the inter-individual homogeneity and IIA assumptions, however, RSFs were best estimated with mixed-effects regressions, and fixed-effects models could even provide faulty conclusions. 4. Mixed-effects models indicate that bison did not select farmlands, but exhibited strong inter-individual variations in their response to farmlands. Less than half of the bison preferred farmlands over forests. Conversely, the fixed-effect model simply suggested an overall selection for farmlands. 5. Conditional logistic regression is recognized as a powerful approach to evaluate habitat selection when resource availability changes. This regression is increasingly used in ecological studies, but almost exclusively in the context of fixed-effects models. Fitness maximization can imply differences in trade-offs among individuals, which can yield inter-individual differences in selection and lead to departure from IIA. These situations are best modelled with mixed-effects models. Mixed-effects conditional logistic regression should become a valuable tool for ecological research.
Factors accounting for youth suicide attempt in Hong Kong: a model building.
Wan, Gloria W Y; Leung, Patrick W L
2010-10-01
This study aimed at proposing and testing a conceptual model of youth suicide attempt. We proposed a model that began with family factors such as a history of physical abuse and parental divorce/separation. Family relationship, presence of psychopathology, life stressors, and suicide ideation were postulated as mediators, leading to youth suicide attempt. The stepwise entry of the risk factors to a logistic regression model defined their proximity as related to suicide attempt. Path analysis further refined our proposed model of youth suicide attempt. Our originally proposed model was largely confirmed. The main revision was dropping parental divorce/separation as a risk factor in the model due to lack of significant contribution when examined alongside with other risk factors. This model was cross-validated by gender. This study moved research on youth suicide from identification of individual risk factors to model building, integrating separate findings of the past studies.
Advanced colorectal neoplasia risk stratification by penalized logistic regression.
Lin, Yunzhi; Yu, Menggang; Wang, Sijian; Chappell, Richard; Imperiale, Thomas F
2016-08-01
Colorectal cancer is the second leading cause of death from cancer in the United States. To facilitate the efficiency of colorectal cancer screening, there is a need to stratify risk for colorectal cancer among the 90% of US residents who are considered "average risk." In this article, we investigate such risk stratification rules for advanced colorectal neoplasia (colorectal cancer and advanced, precancerous polyps). We use a recently completed large cohort study of subjects who underwent a first screening colonoscopy. Logistic regression models have been used in the literature to estimate the risk of advanced colorectal neoplasia based on quantifiable risk factors. However, logistic regression may be prone to overfitting and instability in variable selection. Since most of the risk factors in our study have several categories, it was tempting to collapse these categories into fewer risk groups. We propose a penalized logistic regression method that automatically and simultaneously selects variables, groups categories, and estimates their coefficients by penalizing the [Formula: see text]-norm of both the coefficients and their differences. Hence, it encourages sparsity in the categories, i.e. grouping of the categories, and sparsity in the variables, i.e. variable selection. We apply the penalized logistic regression method to our data. The important variables are selected, with close categories simultaneously grouped, by penalized regression models with and without the interactions terms. The models are validated with 10-fold cross-validation. The receiver operating characteristic curves of the penalized regression models dominate the receiver operating characteristic curve of naive logistic regressions, indicating a superior discriminative performance. © The Author(s) 2013.
Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.
2003-01-01
Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.
Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon
2015-01-01
Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. Methods: In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. Results: The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Conclusion: Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended. PMID:26793655
Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon
2015-01-01
Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.
Kempe, P T; van Oppen, P; de Haan, E; Twisk, J W R; Sluis, A; Smit, J H; van Dyck, R; van Balkom, A J L M
2007-09-01
Two methods for predicting remissions in obsessive-compulsive disorder (OCD) treatment are evaluated. Y-BOCS measurements of 88 patients with a primary OCD (DSM-III-R) diagnosis were performed over a 16-week treatment period, and during three follow-ups. Remission at any measurement was defined as a Y-BOCS score lower than thirteen combined with a reduction of seven points when compared with baseline. Logistic regression models were compared with a Cox regression for recurrent events model. Logistic regression yielded different models at different evaluation times. The recurrent events model remained stable when fewer measurements were used. Higher baseline levels of neuroticism and more severe OCD symptoms were associated with a lower chance of remission, early age of onset and more depressive symptoms with a higher chance. Choice of outcome time affects logistic regression prediction models. Recurrent events analysis uses all information on remissions and relapses. Short- and long-term predictors for OCD remission show overlap.
Estimating the exceedance probability of rain rate by logistic regression
NASA Technical Reports Server (NTRS)
Chiu, Long S.; Kedem, Benjamin
1990-01-01
Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.
NASA Astrophysics Data System (ADS)
Cary, Theodore W.; Cwanger, Alyssa; Venkatesh, Santosh S.; Conant, Emily F.; Sehgal, Chandra M.
2012-03-01
This study compares the performance of two proven but very different machine learners, Naïve Bayes and logistic regression, for differentiating malignant and benign breast masses using ultrasound imaging. Ultrasound images of 266 masses were analyzed quantitatively for shape, echogenicity, margin characteristics, and texture features. These features along with patient age, race, and mammographic BI-RADS category were used to train Naïve Bayes and logistic regression classifiers to diagnose lesions as malignant or benign. ROC analysis was performed using all of the features and using only a subset that maximized information gain. Performance was determined by the area under the ROC curve, Az, obtained from leave-one-out cross validation. Naïve Bayes showed significant variation (Az 0.733 +/- 0.035 to 0.840 +/- 0.029, P < 0.002) with the choice of features, but the performance of logistic regression was relatively unchanged under feature selection (Az 0.839 +/- 0.029 to 0.859 +/- 0.028, P = 0.605). Out of 34 features, a subset of 6 gave the highest information gain: brightness difference, margin sharpness, depth-to-width, mammographic BI-RADs, age, and race. The probabilities of malignancy determined by Naïve Bayes and logistic regression after feature selection showed significant correlation (R2= 0.87, P < 0.0001). The diagnostic performance of Naïve Bayes and logistic regression can be comparable, but logistic regression is more robust. Since probability of malignancy cannot be measured directly, high correlation between the probabilities derived from two basic but dissimilar models increases confidence in the predictive power of machine learning models for characterizing solid breast masses on ultrasound.
Wang, Qingliang; Li, Xiaojie; Hu, Kunpeng; Zhao, Kun; Yang, Peisheng; Liu, Bo
2015-05-12
To explore the risk factors of portal hypertensive gastropathy (PHG) in patients with hepatitis B associated cirrhosis and establish a Logistic regression model of noninvasive prediction. The clinical data of 234 hospitalized patients with hepatitis B associated cirrhosis from March 2012 to March 2014 were analyzed retrospectively. The dependent variable was the occurrence of PHG while the independent variables were screened by binary Logistic analysis. Multivariate Logistic regression was used for further analysis of significant noninvasive independent variables. Logistic regression model was established and odds ratio was calculated for each factor. The accuracy, sensitivity and specificity of model were evaluated by the curve of receiver operating characteristic (ROC). According to univariate Logistic regression, the risk factors included hepatic dysfunction, albumin (ALB), bilirubin (TB), prothrombin time (PT), platelet (PLT), white blood cell (WBC), portal vein diameter, spleen index, splenic vein diameter, diameter ratio, PLT to spleen volume ratio, esophageal varices (EV) and gastric varices (GV). Multivariate analysis showed that hepatic dysfunction (X1), TB (X2), PLT (X3) and splenic vein diameter (X4) were the major occurring factors for PHG. The established regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4. The accuracy of model for PHG was 79.1% with a sensitivity of 77.2% and a specificity of 80.8%. Hepatic dysfunction, TB, PLT and splenic vein diameter are risk factors for PHG and the noninvasive predicted Logistic regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4.
Variable Selection in Logistic Regression.
1987-06-01
23 %. AUTIOR(.) S. CONTRACT OR GRANT NUMBE Rf.i %Z. D. Bai, P. R. Krishnaiah and . C. Zhao F49620-85- C-0008 " PERFORMING ORGANIZATION NAME AND AOORESS...d I7 IOK-TK- d 7 -I0 7’ VARIABLE SELECTION IN LOGISTIC REGRESSION Z. D. Bai, P. R. Krishnaiah and L. C. Zhao Center for Multivariate Analysis...University of Pittsburgh Center for Multivariate Analysis University of Pittsburgh Y !I VARIABLE SELECTION IN LOGISTIC REGRESSION Z- 0. Bai, P. R. Krishnaiah
NASA Astrophysics Data System (ADS)
Madhu, B.; Ashok, N. C.; Balasubramanian, S.
2014-11-01
Multinomial logistic regression analysis was used to develop statistical model that can predict the probability of breast cancer in Southern Karnataka using the breast cancer occurrence data during 2007-2011. Independent socio-economic variables describing the breast cancer occurrence like age, education, occupation, parity, type of family, health insurance coverage, residential locality and socioeconomic status of each case was obtained. The models were developed as follows: i) Spatial visualization of the Urban- rural distribution of breast cancer cases that were obtained from the Bharat Hospital and Institute of Oncology. ii) Socio-economic risk factors describing the breast cancer occurrences were complied for each case. These data were then analysed using multinomial logistic regression analysis in a SPSS statistical software and relations between the occurrence of breast cancer across the socio-economic status and the influence of other socio-economic variables were evaluated and multinomial logistic regression models were constructed. iii) the model that best predicted the occurrence of breast cancer were identified. This multivariate logistic regression model has been entered into a geographic information system and maps showing the predicted probability of breast cancer occurrence in Southern Karnataka was created. This study demonstrates that Multinomial logistic regression is a valuable tool for developing models that predict the probability of breast cancer Occurrence in Southern Karnataka.
Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H
2012-01-01
Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198
Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H
2012-01-01
The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.
NASA Astrophysics Data System (ADS)
Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.
2014-07-01
Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.
Understanding logistic regression analysis.
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.
Quantifying discrimination of Framingham risk functions with different survival C statistics.
Pencina, Michael J; D'Agostino, Ralph B; Song, Linye
2012-07-10
Cardiovascular risk prediction functions offer an important diagnostic tool for clinicians and patients themselves. They are usually constructed with the use of parametric or semi-parametric survival regression models. It is essential to be able to evaluate the performance of these models, preferably with summaries that offer natural and intuitive interpretations. The concept of discrimination, popular in the logistic regression context, has been extended to survival analysis. However, the extension is not unique. In this paper, we define discrimination in survival analysis as the model's ability to separate those with longer event-free survival from those with shorter event-free survival within some time horizon of interest. This definition remains consistent with that used in logistic regression, in the sense that it assesses how well the model-based predictions match the observed data. Practical and conceptual examples and numerical simulations are employed to examine four C statistics proposed in the literature to evaluate the performance of survival models. We observe that they differ in the numerical values and aspects of discrimination that they capture. We conclude that the index proposed by Harrell is the most appropriate to capture discrimination described by the above definition. We suggest researchers report which C statistic they are using, provide a rationale for their selection, and be aware that comparing different indices across studies may not be meaningful. Copyright © 2012 John Wiley & Sons, Ltd.
The association of health-related fitness with indicators of academic performance in Texas schools.
Welk, Gregory J; Jackson, Allen W; Morrow, James R; Haskell, William H; Meredith, Marilu D; Cooper, Kenneth H
2010-09-01
This study examined the associations between indicators of health-related physical fitness (cardiovascular fitness and body mass index) and academic performance (Texas Assessment of Knowledge and Skills). Partial correlations were generally stronger for cardiovascular fitness than body mass index and consistently stronger in the middle school grades. Mixed-model regression analyses revealed modest associations between fitness and academic achievement after controlling for potentially confounding variables. The effects of fitness on academic achievement were positive but small. A separate logistic regression analysis indicated that higher fitness rates increased the odds of schools achieving exemplary/recognized school status within the state. School fitness attainment is an indicator of higher performing schools. Direction of causality cannot be inferred due to the cross-sectional nature of the data.
ERIC Educational Resources Information Center
Koon, Sharon; Petscher, Yaacov
2015-01-01
The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…
2017-03-23
PUBLIC RELEASE; DISTRIBUTION UNLIMITED Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and... Cost and Probability of Cost and Schedule Overrun for Program Managers Ryan C. Trudelle Follow this and additional works at: https://scholar.afit.edu...afit.edu. Recommended Citation Trudelle, Ryan C., "Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and
2013-11-01
Ptrend 0.78 0.62 0.75 Unconditional logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for risk of node...Ptrend 0.71 0.67 Unconditional logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for risk of high-grade tumors... logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for the associations between each of the seven SNPs and
Cavanaugh, Courtenay E; Messing, Jill T; Eyzerovich, Evelina; Campbell, Jacquelyn C
2015-01-01
Women abused by an intimate partner are at risk of engaging in nonfatal suicidal behavior and suicidal communication (NSBSC). No studies have examined ethnic differences in correlates of NSBSC among abused women. This secondary data analytic study examined whether correlates of NSBSC previously reported among a mixed ethnic sample of women seeking help for abuse by a male intimate partner differed for those who self-identified as Latina (N = 340), African American (N = 184), or European American (N = 67). Logistic regression was used to examine correlates of NSBSC separately among Latina, African American, and European American women. More severe violence by a male intimate partner, having a chronic or disabling illness, being younger, and being unemployed were positively associated with NSBSC in bivariate analyses among Latina women, but unemployment did not remain significantly associated with NSBSC in the multiple logistic regression. There were no significant correlates of NSBSC for African American women. Having a chronic illness was significantly associated with NSBSC among European American women. Findings suggest the need for culturally tailored suicide prevention interventions and studies that examine risk and protective factors for NSBSC among a diversity of women abused by male intimate partners.
Yap, Lorraine; Shu, Su; Zhang, Lei; Liu, Wei; Chen, Yi; Wu, Zunyou; Li, Jianghong; Wand, Handan; Donovan, Basil; Butler, Tony
2017-02-01
There is currently no information about the prevalence of, and factors contributing to psychological distress experienced by re-education through labour camp detainees in China. A cross-sectional face-to-face survey was conducted in three labour camps in Guangxi, China. The questionnaire covered socio-demographic characteristics; sexually transmissible infections (STIs); drug use; psychological distress (K-10); and health service usage and access inside the labour camps. K-10 scores were categorised as ≤30 (low to moderate distress) and >30 or more (highly distressed). Univariate and multivariate logistic regression models identified factors independently associated with high K-10 scores for men and women separately. In total, 755 detainees, 576 (76%) men and 179 (24%) women, participated in the health survey. The study found 11.6% men versus 11.2% women detainees experienced high psychological distress, but no significant gender differences were observed (p> 0.05). Multivariate logistic regression showed that multiple physical health problems were significantly associated with high psychological distress among men. Drug treatment and forensic mental health services need to be established in detention centres in China to treat more than 10% of detainees with drug use and mental health disorders.
Gender differences in social support and leisure-time physical activity
Oliveira, Aldair J; Lopes, Claudia S; Rostila, Mikael; Werneck, Guilherme Loureiro; Griep, Rosane Härter; de Leon, Antônio Carlos Monteiro Ponce; Faerstein, Eduardo
2014-01-01
OBJECTIVE To identify gender differences in social support dimensions’ effect on adults’ leisure-time physical activity maintenance, type, and time. METHODS Longitudinal study of 1,278 non-faculty public employees at a university in Rio de Janeiro, RJ, Southeastern Brazil. Physical activity was evaluated using a dichotomous question with a two-week reference period, and further questions concerning leisure-time physical activity type (individual or group) and time spent on the activity. Social support was measured with the Medical Outcomes Study Social Support Scale. For the analysis, logistic regression models were adjusted separately by gender. RESULTS A multinomial logistic regression showed an association between material support and individual activities among women (OR = 2.76; 95%CI 1.2;6.5). Affective support was associated with time spent on leisure-time physical activity only among men (OR = 1.80; 95%CI 1.1;3.2). CONCLUSIONS All dimensions of social support that were examined influenced either the type of, or the time spent on, leisure-time physical activity. In some social support dimensions, the associations detected varied by gender. Future studies should attempt to elucidate the mechanisms involved in these gender differences. PMID:25210819
Kim, Sun Mi; Kim, Yongdai; Jeong, Kuhwan; Jeong, Heeyeong; Kim, Jiyoung
2018-01-01
The aim of this study was to compare the performance of image analysis for predicting breast cancer using two distinct regression models and to evaluate the usefulness of incorporating clinical and demographic data (CDD) into the image analysis in order to improve the diagnosis of breast cancer. This study included 139 solid masses from 139 patients who underwent a ultrasonography-guided core biopsy and had available CDD between June 2009 and April 2010. Three breast radiologists retrospectively reviewed 139 breast masses and described each lesion using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. We applied and compared two regression methods-stepwise logistic (SL) regression and logistic least absolute shrinkage and selection operator (LASSO) regression-in which the BI-RADS descriptors and CDD were used as covariates. We investigated the performances of these regression methods and the agreement of radiologists in terms of test misclassification error and the area under the curve (AUC) of the tests. Logistic LASSO regression was superior (P<0.05) to SL regression, regardless of whether CDD was included in the covariates, in terms of test misclassification errors (0.234 vs. 0.253, without CDD; 0.196 vs. 0.258, with CDD) and AUC (0.785 vs. 0.759, without CDD; 0.873 vs. 0.735, with CDD). However, it was inferior (P<0.05) to the agreement of three radiologists in terms of test misclassification errors (0.234 vs. 0.168, without CDD; 0.196 vs. 0.088, with CDD) and the AUC without CDD (0.785 vs. 0.844, P<0.001), but was comparable to the AUC with CDD (0.873 vs. 0.880, P=0.141). Logistic LASSO regression based on BI-RADS descriptors and CDD showed better performance than SL in predicting the presence of breast cancer. The use of CDD as a supplement to the BI-RADS descriptors significantly improved the prediction of breast cancer using logistic LASSO regression.
Yu, Yuanyuan; Li, Hongkai; Sun, Xiaoru; Su, Ping; Wang, Tingting; Liu, Yi; Yuan, Zhongshang; Liu, Yanxun; Xue, Fuzhong
2017-12-28
Confounders can produce spurious associations between exposure and outcome in observational studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual method, though it has some problems in accuracy and precision. It is, therefore, important to highlight the problems of logistic regression and search the alternative method. Four causal diagram models were defined to summarize confounding equivalence. Both theoretical proofs and simulation studies were performed to verify whether conditioning on different confounding equivalence sets had the same bias-reducing potential and then to select the optimum adjusting strategy, in which logistic regression model and inverse probability weighting based marginal structural model (IPW-based-MSM) were compared. The "do-calculus" was used to calculate the true causal effect of exposure on outcome, then the bias and standard error were used to evaluate the performances of different strategies. Adjusting for different sets of confounding equivalence, as judged by identical Markov boundaries, produced different bias-reducing potential in the logistic regression model. For the sets satisfied G-admissibility, adjusting for the set including all the confounders reduced the equivalent bias to the one containing the parent nodes of the outcome, while the bias after adjusting for the parent nodes of exposure was not equivalent to them. In addition, all causal effect estimations through logistic regression were biased, although the estimation after adjusting for the parent nodes of exposure was nearest to the true causal effect. However, conditioning on different confounding equivalence sets had the same bias-reducing potential under IPW-based-MSM. Compared with logistic regression, the IPW-based-MSM could obtain unbiased causal effect estimation when the adjusted confounders satisfied G-admissibility and the optimal strategy was to adjust for the parent nodes of outcome, which obtained the highest precision. All adjustment strategies through logistic regression were biased for causal effect estimation, while IPW-based-MSM could always obtain unbiased estimation when the adjusted set satisfied G-admissibility. Thus, IPW-based-MSM was recommended to adjust for confounders set.
Use and interpretation of logistic regression in habitat-selection studies
Keating, Kim A.; Cherry, Steve
2004-01-01
Logistic regression is an important tool for wildlife habitat-selection studies, but the method frequently has been misapplied due to an inadequate understanding of the logistic model, its interpretation, and the influence of sampling design. To promote better use of this method, we review its application and interpretation under 3 sampling designs: random, case-control, and use-availability. Logistic regression is appropriate for habitat use-nonuse studies employing random sampling and can be used to directly model the conditional probability of use in such cases. Logistic regression also is appropriate for studies employing case-control sampling designs, but careful attention is required to interpret results correctly. Unless bias can be estimated or probability of use is small for all habitats, results of case-control studies should be interpreted as odds ratios, rather than probability of use or relative probability of use. When data are gathered under a use-availability design, logistic regression can be used to estimate approximate odds ratios if probability of use is small, at least on average. More generally, however, logistic regression is inappropriate for modeling habitat selection in use-availability studies. In particular, using logistic regression to fit the exponential model of Manly et al. (2002:100) does not guarantee maximum-likelihood estimates, valid probabilities, or valid likelihoods. We show that the resource selection function (RSF) commonly used for the exponential model is proportional to a logistic discriminant function. Thus, it may be used to rank habitats with respect to probability of use and to identify important habitat characteristics or their surrogates, but it is not guaranteed to be proportional to probability of use. Other problems associated with the exponential model also are discussed. We describe an alternative model based on Lancaster and Imbens (1996) that offers a method for estimating conditional probability of use in use-availability studies. Although promising, this model fails to converge to a unique solution in some important situations. Further work is needed to obtain a robust method that is broadly applicable to use-availability studies.
Modeling Governance KB with CATPCA to Overcome Multicollinearity in the Logistic Regression
NASA Astrophysics Data System (ADS)
Khikmah, L.; Wijayanto, H.; Syafitri, U. D.
2017-04-01
The problem often encounters in logistic regression modeling are multicollinearity problems. Data that have multicollinearity between explanatory variables with the result in the estimation of parameters to be bias. Besides, the multicollinearity will result in error in the classification. In general, to overcome multicollinearity in regression used stepwise regression. They are also another method to overcome multicollinearity which involves all variable for prediction. That is Principal Component Analysis (PCA). However, classical PCA in only for numeric data. Its data are categorical, one method to solve the problems is Categorical Principal Component Analysis (CATPCA). Data were used in this research were a part of data Demographic and Population Survey Indonesia (IDHS) 2012. This research focuses on the characteristic of women of using the contraceptive methods. Classification results evaluated using Area Under Curve (AUC) values. The higher the AUC value, the better. Based on AUC values, the classification of the contraceptive method using stepwise method (58.66%) is better than the logistic regression model (57.39%) and CATPCA (57.39%). Evaluation of the results of logistic regression using sensitivity, shows the opposite where CATPCA method (99.79%) is better than logistic regression method (92.43%) and stepwise (92.05%). Therefore in this study focuses on major class classification (using a contraceptive method), then the selected model is CATPCA because it can raise the level of the major class model accuracy.
Anderson, C Leigh; Reynolds, Travis W; Gugerty, Mary Kay
2017-02-01
We use OLS and logistic regression to investigate variation in husband and wife perspectives on the division of authority over agriculture-related decisions within households in rural Tanzania. Using original data from husbands and wives (interviewed separately) in 1,851 Tanzanian households, the analysis examines differences in the wife's authority over 13 household and farming decisions. The study finds that the level of decision-making authority allocated to wives by their husbands, and the authority allocated by wives to themselves, both vary significantly across households. In addition to commonly considered assets such as women's age and education, in rural agricultural households women's health and labor activities also appear to matter for perceptions of authority. We also find husbands and wives interviewed separately frequently disagree with each other over who holds authority over key farming, family, and livelihood decisions. Further, the results of OLS and logistic regression suggest that even after controlling for various individual, household, and regional characteristics, husband and wife claims to decision-making authority continue to vary systematically by decision-suggesting that decision characteristics themselves also matter. The absence of spousal agreement over the allocation of authority (i.e., a lack of "intra-household accord") over different farm and household decisions is problematic for interventions seeking to use survey data to develop and inform strategies for reducing gender inequalities or empowering women in rural agricultural households. Findings provide policy and program insights into when studies interviewing only a single spouse or considering only a single decision may inaccurately characterize intra-household decision-making dynamics.
Logistic regression models of factors influencing the location of bioenergy and biofuels plants
T.M. Young; R.L. Zaretzki; J.H. Perdue; F.M. Guess; X. Liu
2011-01-01
Logistic regression models were developed to identify significant factors that influence the location of existing wood-using bioenergy/biofuels plants and traditional wood-using facilities. Logistic models provided quantitative insight for variables influencing the location of woody biomass-using facilities. Availability of "thinnings to a basal area of 31.7m2/ha...
Discrete post-processing of total cloud cover ensemble forecasts
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian
2017-04-01
This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.
Fuzzy multinomial logistic regression analysis: A multi-objective programming approach
NASA Astrophysics Data System (ADS)
Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan
2017-05-01
Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.
A Primer on Logistic Regression.
ERIC Educational Resources Information Center
Woldbeck, Tanya
This paper introduces logistic regression as a viable alternative when the researcher is faced with variables that are not continuous. If one is to use simple regression, the dependent variable must be measured on a continuous scale. In the behavioral sciences, it may not always be appropriate or possible to have a measured dependent variable on a…
Ye, Dong-qing; Hu, Yi-song; Li, Xiang-pei; Huang, Fen; Yang, Shi-gui; Hao, Jia-hu; Yin, Jing; Zhang, Guo-qing; Liu, Hui-hui
2004-11-01
To explore the impact of environmental factors, daily lifestyle, psycho-social factors and the interactions between environmental factors and chemokines genes on systemic lupus erythematosus (SLE). Case-control study was carried out and environmental factors for SLE were analyzed by univariate and multivariate unconditional logistic regression. Interactions between environmental factors and chemokines polymorphism contributing to systemic lupus erythematosus were also analyzed by logistic regression model. There were nineteen factors associated with SLE when univariate unconditional logistic regression was used. However, when multivariate unconditional logistic regression was used, only five factors showed having impacts on the disease, in which drinking well water (OR=0.099) was protective factor for SLE, and multiple drug allergy (OR=8.174), over-exposure to sunshine (OR=18.339), taking antibiotics (OR=9.630) and oral contraceptives were risk factors for SLE. When unconditional logistic regression model was used, results showed that there was interaction between eating irritable food and -2518MCP-1G/G genotype (OR=4.387). No interaction between environmental factors was found that contributing to SLE in this study. Many environmental factors were related to SLE, and there was an interaction between -2518MCP-1G/G genotype and eating irritable food.
Mielniczuk, Jan; Teisseyre, Paweł
2018-03-01
Detection of gene-gene interactions is one of the most important challenges in genome-wide case-control studies. Besides traditional logistic regression analysis, recently the entropy-based methods attracted a significant attention. Among entropy-based methods, interaction information is one of the most promising measures having many desirable properties. Although both logistic regression and interaction information have been used in several genome-wide association studies, the relationship between them has not been thoroughly investigated theoretically. The present paper attempts to fill this gap. We show that although certain connections between the two methods exist, in general they refer two different concepts of dependence and looking for interactions in those two senses leads to different approaches to interaction detection. We introduce ordering between interaction measures and specify conditions for independent and dependent genes under which interaction information is more discriminative measure than logistic regression. Moreover, we show that for so-called perfect distributions those measures are equivalent. The numerical experiments illustrate the theoretical findings indicating that interaction information and its modified version are more universal tools for detecting various types of interaction than logistic regression and linkage disequilibrium measures. © 2017 WILEY PERIODICALS, INC.
ERIC Educational Resources Information Center
Shih, Ching-Lin; Liu, Tien-Hsiang; Wang, Wen-Chung
2014-01-01
The simultaneous item bias test (SIBTEST) method regression procedure and the differential item functioning (DIF)-free-then-DIF strategy are applied to the logistic regression (LR) method simultaneously in this study. These procedures are used to adjust the effects of matching true score on observed score and to better control the Type I error…
Access disparities to Magnet hospitals for patients undergoing neurosurgical operations
Missios, Symeon; Bekelis, Kimon
2017-01-01
Background Centers of excellence focusing on quality improvement have demonstrated superior outcomes for a variety of surgical interventions. We investigated the presence of access disparities to hospitals recognized by the Magnet Recognition Program of the American Nurses Credentialing Center (ANCC) for patients undergoing neurosurgical operations. Methods We performed a cohort study of all neurosurgery patients who were registered in the New York Statewide Planning and Research Cooperative System (SPARCS) database from 2009–2013. We examined the association of African-American race and lack of insurance with Magnet status hospitalization for neurosurgical procedures. A mixed effects propensity adjusted multivariable regression analysis was used to control for confounding. Results During the study period, 190,535 neurosurgical patients met the inclusion criteria. Using a multivariable logistic regression, we demonstrate that African-Americans had lower admission rates to Magnet institutions (OR 0.62; 95% CI, 0.58–0.67). This persisted in a mixed effects logistic regression model (OR 0.77; 95% CI, 0.70–0.83) to adjust for clustering at the patient county level, and a propensity score adjusted logistic regression model (OR 0.75; 95% CI, 0.69–0.82). Additionally, lack of insurance was associated with lower admission rates to Magnet institutions (OR 0.71; 95% CI, 0.68–0.73), in a multivariable logistic regression model. This persisted in a mixed effects logistic regression model (OR 0.72; 95% CI, 0.69–0.74), and a propensity score adjusted logistic regression model (OR 0.72; 95% CI, 0.69–0.75). Conclusions Using a comprehensive all-payer cohort of neurosurgery patients in New York State we identified an association of African-American race and lack of insurance with lower rates of admission to Magnet hospitals. PMID:28684152
Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.
Schmidt, Amand F; Klungel, Olaf H; Groenwold, Rolf H H
2016-01-01
Postlaunch data on medical treatments can be analyzed to explore adverse events or relative effectiveness in real-life settings. These analyses are often complicated by the number of potential confounders and the possibility of model misspecification. We conducted a simulation study to compare the performance of logistic regression, propensity score, disease risk score, and stabilized inverse probability weighting methods to adjust for confounding. Model misspecification was induced in the independent derivation dataset. We evaluated performance using relative bias confidence interval coverage of the true effect, among other metrics. At low events per coefficient (1.0 and 0.5), the logistic regression estimates had a large relative bias (greater than -100%). Bias of the disease risk score estimates was at most 13.48% and 18.83%. For the propensity score model, this was 8.74% and >100%, respectively. At events per coefficient of 1.0 and 0.5, inverse probability weighting frequently failed or reduced to a crude regression, resulting in biases of -8.49% and 24.55%. Coverage of logistic regression estimates became less than the nominal level at events per coefficient ≤5. For the disease risk score, inverse probability weighting, and propensity score, coverage became less than nominal at events per coefficient ≤2.5, ≤1.0, and ≤1.0, respectively. Bias of misspecified disease risk score models was 16.55%. In settings with low events/exposed subjects per coefficient, disease risk score methods can be useful alternatives to logistic regression models, especially when propensity score models cannot be used. Despite better performance of disease risk score methods than logistic regression and propensity score models in small events per coefficient settings, bias, and coverage still deviated from nominal.
Pfeiffer, R M; Riedl, R
2015-08-15
We assess the asymptotic bias of estimates of exposure effects conditional on covariates when summary scores of confounders, instead of the confounders themselves, are used to analyze observational data. First, we study regression models for cohort data that are adjusted for summary scores. Second, we derive the asymptotic bias for case-control studies when cases and controls are matched on a summary score, and then analyzed either using conditional logistic regression or by unconditional logistic regression adjusted for the summary score. Two scores, the propensity score (PS) and the disease risk score (DRS) are studied in detail. For cohort analysis, when regression models are adjusted for the PS, the estimated conditional treatment effect is unbiased only for linear models, or at the null for non-linear models. Adjustment of cohort data for DRS yields unbiased estimates only for linear regression; all other estimates of exposure effects are biased. Matching cases and controls on DRS and analyzing them using conditional logistic regression yields unbiased estimates of exposure effect, whereas adjusting for the DRS in unconditional logistic regression yields biased estimates, even under the null hypothesis of no association. Matching cases and controls on the PS yield unbiased estimates only under the null for both conditional and unconditional logistic regression, adjusted for the PS. We study the bias for various confounding scenarios and compare our asymptotic results with those from simulations with limited sample sizes. To create realistic correlations among multiple confounders, we also based simulations on a real dataset. Copyright © 2015 John Wiley & Sons, Ltd.
Nie, Z Q; Ou, Y Q; Zhuang, J; Qu, Y J; Mai, J Z; Chen, J M; Liu, X Q
2016-05-01
Conditional logistic regression analysis and unconditional logistic regression analysis are commonly used in case control study, but Cox proportional hazard model is often used in survival data analysis. Most literature only refer to main effect model, however, generalized linear model differs from general linear model, and the interaction was composed of multiplicative interaction and additive interaction. The former is only statistical significant, but the latter has biological significance. In this paper, macros was written by using SAS 9.4 and the contrast ratio, attributable proportion due to interaction and synergy index were calculated while calculating the items of logistic and Cox regression interactions, and the confidence intervals of Wald, delta and profile likelihood were used to evaluate additive interaction for the reference in big data analysis in clinical epidemiology and in analysis of genetic multiplicative and additive interactions.
Li, Yi; Tseng, Yufeng J.; Pan, Dahua; Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Hopfinger, Anton J.
2008-01-01
Currently, the only validated methods to identify skin sensitization effects are in vivo models, such as the Local Lymph Node Assay (LLNA) and guinea pig studies. There is a tremendous need, in particular due to novel legislation, to develop animal alternatives, eg. Quantitative Structure-Activity Relationship (QSAR) models. Here, QSAR models for skin sensitization using LLNA data have been constructed. The descriptors used to generate these models are derived from the 4D-molecular similarity paradigm and are referred to as universal 4D-fingerprints. A training set of 132 structurally diverse compounds and a test set of 15 structurally diverse compounds were used in this study. The statistical methodologies used to build the models are logistic regression (LR), and partial least square coupled logistic regression (PLS-LR), which prove to be effective tools for studying skin sensitization measures expressed in the two categorical terms of sensitizer and non-sensitizer. QSAR models with low values of the Hosmer-Lemeshow goodness-of-fit statistic, χHL2, are significant and predictive. For the training set, the cross-validated prediction accuracy of the logistic regression models ranges from 77.3% to 78.0%, while that of PLS-logistic regression models ranges from 87.1% to 89.4%. For the test set, the prediction accuracy of logistic regression models ranges from 80.0%-86.7%, while that of PLS-logistic regression models ranges from 73.3%-80.0%. The QSAR models are made up of 4D-fingerprints related to aromatic atoms, hydrogen bond acceptors and negatively partially charged atoms. PMID:17226934
MODELING SNAKE MICROHABITAT FROM RADIOTELEMETRY STUDIES USING POLYTOMOUS LOGISTIC REGRESSION
Multivariate analysis of snake microhabitat has historically used techniques that were derived under assumptions of normality and common covariance structure (e.g., discriminant function analysis, MANOVA). In this study, polytomous logistic regression (PLR which does not require ...
Brenn, T; Arnesen, E
1985-01-01
For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.
ERIC Educational Resources Information Center
DeMars, Christine E.
2009-01-01
The Mantel-Haenszel (MH) and logistic regression (LR) differential item functioning (DIF) procedures have inflated Type I error rates when there are large mean group differences, short tests, and large sample sizes.When there are large group differences in mean score, groups matched on the observed number-correct score differ on true score,…
Satellite rainfall retrieval by logistic regression
NASA Technical Reports Server (NTRS)
Chiu, Long S.
1986-01-01
The potential use of logistic regression in rainfall estimation from satellite measurements is investigated. Satellite measurements provide covariate information in terms of radiances from different remote sensors.The logistic regression technique can effectively accommodate many covariates and test their significance in the estimation. The outcome from the logistical model is the probability that the rainrate of a satellite pixel is above a certain threshold. By varying the thresholds, a rainrate histogram can be obtained, from which the mean and the variant can be estimated. A logistical model is developed and applied to rainfall data collected during GATE, using as covariates the fractional rain area and a radiance measurement which is deduced from a microwave temperature-rainrate relation. It is demonstrated that the fractional rain area is an important covariate in the model, consistent with the use of the so-called Area Time Integral in estimating total rain volume in other studies. To calibrate the logistical model, simulated rain fields generated by rainfield models with prescribed parameters are needed. A stringent test of the logistical model is its ability to recover the prescribed parameters of simulated rain fields. A rain field simulation model which preserves the fractional rain area and lognormality of rainrates as found in GATE is developed. A stochastic regression model of branching and immigration whose solutions are lognormally distributed in some asymptotic limits has also been developed.
Practical Session: Logistic Regression
NASA Astrophysics Data System (ADS)
Clausel, M.; Grégoire, G.
2014-12-01
An exercise is proposed to illustrate the logistic regression. One investigates the different risk factors in the apparition of coronary heart disease. It has been proposed in Chapter 5 of the book of D.G. Kleinbaum and M. Klein, "Logistic Regression", Statistics for Biology and Health, Springer Science Business Media, LLC (2010) and also by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr341.pdf). This example is based on data given in the file evans.txt coming from http://www.sph.emory.edu/dkleinb/logreg3.htm#data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd
Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test ofmore » the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.« less
NASA Astrophysics Data System (ADS)
Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam
2015-10-01
Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.
The cross-validated AUC for MCP-logistic regression with high-dimensional data.
Jiang, Dingfeng; Huang, Jian; Zhang, Ying
2013-10-01
We propose a cross-validated area under the receiving operator characteristic (ROC) curve (CV-AUC) criterion for tuning parameter selection for penalized methods in sparse, high-dimensional logistic regression models. We use this criterion in combination with the minimax concave penalty (MCP) method for variable selection. The CV-AUC criterion is specifically designed for optimizing the classification performance for binary outcome data. To implement the proposed approach, we derive an efficient coordinate descent algorithm to compute the MCP-logistic regression solution surface. Simulation studies are conducted to evaluate the finite sample performance of the proposed method and its comparison with the existing methods including the Akaike information criterion (AIC), Bayesian information criterion (BIC) or Extended BIC (EBIC). The model selected based on the CV-AUC criterion tends to have a larger predictive AUC and smaller classification error than those with tuning parameters selected using the AIC, BIC or EBIC. We illustrate the application of the MCP-logistic regression with the CV-AUC criterion on three microarray datasets from the studies that attempt to identify genes related to cancers. Our simulation studies and data examples demonstrate that the CV-AUC is an attractive method for tuning parameter selection for penalized methods in high-dimensional logistic regression models.
Parental separation in childhood and self-reported psychological health: A population-based study.
Lindström, Martin; Rosvall, Maria
2016-12-30
The aim of the present study is to investigate associations between parental separation/divorce during childhood, and self-reported psychological health, adjusting for social capital, social support, civil status and economic stress in childhood. A cross-sectional public health survey was conducted in the autumn of 2012 in Scania, southern Sweden, with a postal questionnaire with 28,029 participants aged 18-80. Associations between parental separation/divorce during childhood and self-reported psychological health (GHQ12) were investigated using logistic regressions. A 16.1% proportion of all men 22.4% of all women reported poor psychological health. Among men, 20.4% had experienced parental separation during childhood until age 18 years, the corresponding prevalence among women was 22.3%. Parental separation/divorce in childhood was significantly associated with poor self-rated psychological health among men who had experienced parental separation/divorce at ages 0-4, and among women with this experience at ages 0-4, 10-14 and 15-18. These significant associations remained throughout the multiple analyses. The results support the notion that the experience of parental separation/divorce in childhood may influence psychological health in adulthood, particularly if it is experienced in the age interval 0-4 years. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Choi, Namkee G; DiNitto, Diana M; Marti, C Nathan; Choi, Bryan Y
2017-03-01
Given growing numbers of older adults with mental and substance use disorders (MSUDs), this study examined the association between ten types of adverse childhood experiences (ACEs) and lifetime MSUDs among those aged 50+. Data (N = 14,738 for the 50+ age group) came from the 2012 to 2013 National Epidemiologic Survey on Alcohol and Related Conditions. Using multivariable binary logistic regression analyses, we examined relationships between ten ACEs and six lifetime MSUDs (major depressive disorder (MDD) and anxiety, post-traumatic stress, alcohol use, drug use, and nicotine use disorders). Gender differences were examined using tests of interaction effects and gender-separate logistic regression models. Of the sample, 53.2% of women and 50.0% of men reported at least one ACE. For both genders, parental/other adult's substance abuse was the most prevalent (22.6%), followed by physical abuse, and emotional neglect. Child abuse and neglect and parental/other adult's mental illness and substance abuse had small but consistently significant associations with MSUDs (e.g., odds ratio = 1.28, 95% CI = 1.12-1.46 for parental/other adult's substance misuse and MDD). Although the relationship between total number of ACEs and MSUDs was cumulative for both men and women, the associations of physical abuse, sexual abuse, emotional neglect, and parental separation/divorce with MSUDs were stronger among men. This study underscores the significant yet modest association between ACEs and lifetime MSUDs in late life. More research is needed to investigate why ACEs seem to have greater effects on older men and to discern the sources of gender differences in ACEs' effects.
Mortality in Children Under Five Receiving Nonphysician Clinician Emergency Care in Uganda.
Rice, Brian; Periyanayagam, Usha; Chamberlain, Stacey; Dreifuss, Bradley; Hammerstedt, Heather; Nelson, Sara; Maling, Samuel; Bisanzo, Mark
2016-03-01
A nonphysician clinician (NPC) training program was started in Uganda in 2009. NPC care was initially supervised by a physician and subsequent care was independent. The mortality of children under 5 (U5) was analyzed to evaluate the impact of transitioning NPC care from physician-supervised to independent care. A retrospective review was performed of a quality assurance database including 3-day follow-up for all patients presenting to the emergency department (ED). Mortality rates were calculated and χ(2) tests used for significance of proportions. Multiple logistic regression was used to assess independent predictors of mortality. Overall, 68.8% of 4985 U5 patients were admitted and 28.6% were "severely ill." The overall mortality was significantly lower in physician-supervised versus independent NPC care (2.90% vs 5.04%, P = .05). No significant mortality difference was seen between supervised and unsupervised care (2.17% vs 3.01%, P = .43) for the majority of patients that were not severely ill. Severely ill patients analyzed separately showed a significant mortality difference (4.07% vs 10.3%, P = .01). Logistic regression revealed physician supervision significantly reduced mortality for patients overall (odds ratio = 0.52, P = .03), but not for nonseverely ill patients analyzed separately (odds ratio = 0.73, P = .47). Though physician supervision reduced mortality for the severely ill subset of patients, physicians are not available full-time in most EDs in Sub-Saharan Africa. Training NPCs in emergency care produced noninferior mortality outcomes for unsupervised NPC care compared with physician-supervised NPC care for the majority of U5 patients. Copyright © 2016 by the American Academy of Pediatrics.
Sorensen, Sherman G; Spruance, Spotswood L; Smout, Randall; Horn, Susan
2012-06-01
Percutaneous, mechanical closure of defects of the atrial septum fails to completely resolve shunting in up to 20% of cases. Little is known about the factors associated with device failure. We measured the left atrial opening (X), right atrial opening (Z), tunnel length (Y), septum secundum, device-septum primum separation, and tunnel compressibility of the patent foramen ovale (PFO) in 301 patients with cryptogenic neurological events, PFO anatomy, and severe Valsalva shunting (Spencer Grade 5-5+). All patients then underwent percutaneous closure with the GORE®HELEX Septal Occluder device and were evaluated at 3 months for residual shunt by transcranial Doppler (TCD). Severe residual Valsalva shunt (TCD Grade 5-5+) was found at 3 months in 21 of 301 (7%) patients. X, Y, and Z were associated with failure with a high degree of statistical significance, whereas the width of the septum secundum, device-septum primum separation, and tunnel compressibility were not. An unanticipated finding was that 14 of 35 (40%) patients sized with a large balloon failed compared with 9 of 280 (3%) sized with a small balloon (P < 0.0001). In the multivariate logistic regression model, X (P = < 0.0001) and balloon size (P < 0.0001) were both strong predictors of failure. In an intracardiac echocardiography-defined PFO population, characterized by severe baseline Valsalva shunt and a high incidence of persistent (rest) shunting, association of six intracardiac measurements to closure device failure by multivariate logistic regression showed that the width of the left atrial opening was a strong predictor of residual shunting. An unanticipated finding was that use of a large sizing balloon was also strongly associated with failure. ©2012, Wiley Periodicals, Inc.
Vaeth, Michael; Skovlund, Eva
2004-06-15
For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.
Kesselmeier, Miriam; Lorenzo Bermejo, Justo
2017-11-01
Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is their strong dependence on outlier subjects, for example, patients diagnosed at unusually young age. Robust methods are available to constrain outlier influence, but they are scarcely used in genetic studies. This article provides a non-intimidating introduction to robust logistic regression, and investigates its benefits and limitations in genetic association studies. We applied the bounded Huber and extended the R package 'robustbase' with the re-descending Hampel functions to down-weight outlier influence. Computer simulations were carried out to assess the type I error rate, mean squared error (MSE) and statistical power according to major characteristics of the genetic study and investigated markers. Simulations were complemented with the analysis of real data. Both standard and robust estimation controlled type I error rates. Standard logistic regression showed the highest power but standard GRR estimates also showed the largest bias and MSE, in particular for associated rare and recessive variants. For illustration, a recessive variant with a true GRR=6.32 and a minor allele frequency=0.05 investigated in a 1000 case/1000 control study by standard logistic regression resulted in power=0.60 and MSE=16.5. The corresponding figures for Huber-based estimation were power=0.51 and MSE=0.53. Overall, Hampel- and Huber-based GRR estimates did not differ much. Robust logistic regression may represent a valuable alternative to standard maximum likelihood estimation when the focus lies on risk prediction rather than identification of susceptibility variants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lindström, Martin; Rosvall, Maria
2015-09-30
Studies of the association between parental separation in childhood and suicide thoughts and attempts are scarce. The aim of this study is to investigate associations between parental separation/divorce during childhood, and ever having had suicide thoughts and ever having made suicide attempt, adjusting for social capital and other covariates. In 2012 a cross-sectional public health survey was conducted in Scania, southern Sweden, with a postal questionnaire with 28,029 participants aged 18-80. Associations between parental separation/divorce during childhood and ever having considered suicide or having made suicide attempt were analysed by logistic regression. Overall, 12.1% of the men and 15.5% of the women had experienced suicide thoughts, and 3.2% of the men and 5.3% of the women had ever tried committing suicide. Among men, 20.4% had experienced parental separation during childhood until age 18, and among women 22.3%. Parental separation/divorce in childhood was with few exceptions significantly associated with ever having had suicide thoughts with the highest odds ratios for those who had experienced parental separation during ages 0-4 years. Parental separation/divorce in childhood was significantly associated with suicide attempts among men who had experienced parental separation/divorce at ages 0-4 and 15-18, and among women at any age 0-18. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Strayhorn, G
2000-04-01
To determine whether students' performances in a pre-admission program predicted whether participants would (1) apply to medical school, (2) get accepted, and (3) graduate. Using prospectively collected data from participants in the University of North Carolina at Chapel Hill's Medical Education Development Program (MEDP) and data from the Association of American Colleges Student and Applicant Information Management System, the author identified 371 underrepresented minority (URM) students who were full-time participants and completed the program between 1984 and 1989, prior to their acceptance into medical school. Logistic regression analysis was used to determine whether MEDP performance significantly predicted (after statistically controlling for traditional predictors of these outcomes) the proportions of URM participants who applied to medical school and were accepted, the timeliness of graduating, and the proportion graduating. Odds ratios with 95% confidence intervals were calculated to determine the associations between the independent and outcome variables. In separate logistic regression models, MEDP performance predicted the study's outcomes after statistically controlling for traditional predictors with 95% confidence intervals. Pre-admission programs with similar outcomes can improve the diversity of the physician workforce and the access to health care for underrepresented minority and economically disadvantaged populations.
The mental well-being of Central American transmigrant men in Mexico.
Altman, Claire E; Gorman, Bridget K; Chávez, Sergio; Ramos, Federico; Fernández, Isaac
2018-04-01
To understand the mental health status of Central American migrant men travelling through Mexico to the U.S., we analysed the association between migration-related circumstances/stressors and psychological disorders. In-person interviews and a psychiatric assessment were conducted in 2010 and 2014 with 360 primarily Honduran transmigrant young adult males. The interviews were conducted at three Casas del Migrante (or migrant safe houses) in the migration-corridor cities of Monterrey, and Guadalupe, Nuevo Leon; and Saltillo, Coahuila. The results indicated high levels of migration-related stressors including abuse and a high prevalence of major depressive episodes (MDEs), alcohol dependency, and alcohol abuse. Nested logistic regression models were used to separately predict MDEs, alcohol dependency, and alcohol abuse, assessing their association with migration experiences and socio-demographic characteristics. Logistic regression models showed that characteristics surrounding migration (experiencing abuse, migration duration, and attempts) are predictive of depression. Alcohol dependency and abuse were both associated with marital status and having family/friends in the intended U.S. destination, while the number of migration attempts also predicted alcohol dependency. The results provide needed information on the association between transit migration through Mexico to the U.S. among unauthorised Central American men and major depressive disorder and alcohol abuse and dependency.
Xu, Wenjian; Zheng, Lijun; Xu, Yin; Zheng, Yong
2017-02-17
Social attitudes toward male homosexuality in China so far are still not optimistic. Sexual minorities in China have reported high levels of internalized homophobia. This Internet-based study examined the associations among internalized homophobia, mental health, sexual behaviors, and outness among 435 gay/bisexual men in Southwest China from 2014 to 2015. Latent profile analysis, confirmatory factor analysis, univariate logistic regression, and separate multivariate logistic regression analyses were conducted. This descriptive study found the Internalized Homophobia Scale to be suitable for use in China. The sample demonstrated a high prevalence of internalized homophobia. Latent profile analysis suggested a 2-class solution as optimal, and a high level of internalized homophobia was significantly associated with greater psychological distress (Wald = 6.49, AOR = 1.66), transactional sex during the previous 6 months (Wald = 5.23, AOR = 2.77), more sexual compulsions (Wald = 14.05, AOR = 2.12), and the concealment of sexual identity from others (Wald = 30.70, AOR = 0.30) and parents (Wald = 6.72, AOR = 0.49). These findings contribute to our understanding of internalized homophobia in China, and highlight the need to decrease gay-related psychological stress/distress and improve public health services.
Batchelor, Nicola A; Atkinson, Peter M; Gething, Peter W; Picozzi, Kim; Fèvre, Eric M; Kakembo, Abbas S L; Welburn, Susan C
2009-12-15
The continued northwards spread of Rhodesian sleeping sickness or Human African Trypanosomiasis (HAT) within Uganda is raising concerns of overlap with the Gambian form of the disease. Disease convergence would result in compromised diagnosis and treatment for HAT. Spatial determinants for HAT are poorly understood across small areas. This study examines the relationships between Rhodesian HAT and several environmental, climatic and social factors in two newly affected districts, Kaberamaido and Dokolo. A one-step logistic regression analysis of HAT prevalence and a two-step logistic regression method permitted separate analysis of both HAT occurrence and HAT prevalence. Both the occurrence and prevalence of HAT were negatively correlated with distance to the closest livestock market in all models. The significance of distance to the closest livestock market strongly indicates that HAT may have been introduced to this previously unaffected area via the movement of infected, untreated livestock from endemic areas. This illustrates the importance of the animal reservoir in disease transmission, and highlights the need for trypanosomiasis control in livestock and the stringent implementation of regulations requiring the treatment of cattle prior to sale at livestock markets to prevent any further spread of Rhodesian HAT within Uganda.
Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T
2016-02-01
The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.
Nonconvex Sparse Logistic Regression With Weakly Convex Regularization
NASA Astrophysics Data System (ADS)
Shen, Xinyue; Gu, Yuantao
2018-06-01
In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $\\ell_0$ pseudo norm is able to better induce sparsity than the commonly used $\\ell_1$ norm. For a class of weakly convex sparsity inducing functions, we prove the nonconvexity of the corresponding sparse logistic regression problem, and study its local optimality conditions and the choice of the regularization parameter to exclude trivial solutions. Despite the nonconvexity, a method based on proximal gradient descent is used to solve the general weakly convex sparse logistic regression, and its convergence behavior is studied theoretically. Then the general framework is applied to a specific weakly convex function, and a necessary and sufficient local optimality condition is provided. The solution method is instantiated in this case as an iterative firm-shrinkage algorithm, and its effectiveness is demonstrated in numerical experiments by both randomly generated and real datasets.
A comparative study on entrepreneurial attitudes modeled with logistic regression and Bayes nets.
López Puga, Jorge; García García, Juan
2012-11-01
Entrepreneurship research is receiving increasing attention in our context, as entrepreneurs are key social agents involved in economic development. We compare the success of the dichotomic logistic regression model and the Bayes simple classifier to predict entrepreneurship, after manipulating the percentage of missing data and the level of categorization in predictors. A sample of undergraduate university students (N = 1230) completed five scales (motivation, attitude towards business creation, obstacles, deficiencies, and training needs) and we found that each of them predicted different aspects of the tendency to business creation. Additionally, our results show that the receiver operating characteristic (ROC) curve is affected by the rate of missing data in both techniques, but logistic regression seems to be more vulnerable when faced with missing data, whereas Bayes nets underperform slightly when categorization has been manipulated. Our study sheds light on the potential entrepreneur profile and we propose to use Bayesian networks as an additional alternative to overcome the weaknesses of logistic regression when missing data are present in applied research.
Comparison of cranial sex determination by discriminant analysis and logistic regression.
Amores-Ampuero, Anabel; Alemán, Inmaculada
2016-04-05
Various methods have been proposed for estimating dimorphism. The objective of this study was to compare sex determination results from cranial measurements using discriminant analysis or logistic regression. The study sample comprised 130 individuals (70 males) of known sex, age, and cause of death from San José cemetery in Granada (Spain). Measurements of 19 neurocranial dimensions and 11 splanchnocranial dimensions were subjected to discriminant analysis and logistic regression, and the percentages of correct classification were compared between the sex functions obtained with each method. The discriminant capacity of the selected variables was evaluated with a cross-validation procedure. The percentage accuracy with discriminant analysis was 78.2% for the neurocranium (82.4% in females and 74.6% in males) and 73.7% for the splanchnocranium (79.6% in females and 68.8% in males). These percentages were higher with logistic regression analysis: 85.7% for the neurocranium (in both sexes) and 94.1% for the splanchnocranium (100% in females and 91.7% in males).
Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B.; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain
2017-01-01
Abstract Background: The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Results: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Conclusions: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. PMID:28327993
Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A
2017-05-01
The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.
Lin, Chao-Cheng; Bai, Ya-Mei; Chen, Jen-Yeu; Hwang, Tzung-Jeng; Chen, Tzu-Ting; Chiu, Hung-Wen; Li, Yu-Chuan
2010-03-01
Metabolic syndrome (MetS) is an important side effect of second-generation antipsychotics (SGAs). However, many SGA-treated patients with MetS remain undetected. In this study, we trained and validated artificial neural network (ANN) and multiple logistic regression models without biochemical parameters to rapidly identify MetS in patients with SGA treatment. A total of 383 patients with a diagnosis of schizophrenia or schizoaffective disorder (DSM-IV criteria) with SGA treatment for more than 6 months were investigated to determine whether they met the MetS criteria according to the International Diabetes Federation. The data for these patients were collected between March 2005 and September 2005. The input variables of ANN and logistic regression were limited to demographic and anthropometric data only. All models were trained by randomly selecting two-thirds of the patient data and were internally validated with the remaining one-third of the data. The models were then externally validated with data from 69 patients from another hospital, collected between March 2008 and June 2008. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of all models. Both the final ANN and logistic regression models had high accuracy (88.3% vs 83.6%), sensitivity (93.1% vs 86.2%), and specificity (86.9% vs 83.8%) to identify MetS in the internal validation set. The mean +/- SD AUC was high for both the ANN and logistic regression models (0.934 +/- 0.033 vs 0.922 +/- 0.035, P = .63). During external validation, high AUC was still obtained for both models. Waist circumference and diastolic blood pressure were the common variables that were left in the final ANN and logistic regression models. Our study developed accurate ANN and logistic regression models to detect MetS in patients with SGA treatment. The models are likely to provide a noninvasive tool for large-scale screening of MetS in this group of patients. (c) 2010 Physicians Postgraduate Press, Inc.
Bayesian logistic regression in detection of gene-steroid interaction for cancer at PDLIM5 locus.
Wang, Ke-Sheng; Owusu, Daniel; Pan, Yue; Xie, Changchun
2016-06-01
The PDZ and LIM domain 5 (PDLIM5) gene may play a role in cancer, bipolar disorder, major depression, alcohol dependence and schizophrenia; however, little is known about the interaction effect of steroid and PDLIM5 gene on cancer. This study examined 47 single-nucleotide polymorphisms (SNPs) within the PDLIM5 gene in the Marshfield sample with 716 cancer patients (any diagnosed cancer, excluding minor skin cancer) and 2848 noncancer controls. Multiple logistic regression model in PLINK software was used to examine the association of each SNP with cancer. Bayesian logistic regression in PROC GENMOD in SAS statistical software, ver. 9.4 was used to detect gene- steroid interactions influencing cancer. Single marker analysis using PLINK identified 12 SNPs associated with cancer (P< 0.05); especially, SNP rs6532496 revealed the strongest association with cancer (P = 6.84 × 10⁻³); while the next best signal was rs951613 (P = 7.46 × 10⁻³). Classic logistic regression in PROC GENMOD showed that both rs6532496 and rs951613 revealed strong gene-steroid interaction effects (OR=2.18, 95% CI=1.31-3.63 with P = 2.9 × 10⁻³ for rs6532496 and OR=2.07, 95% CI=1.24-3.45 with P = 5.43 × 10⁻³ for rs951613, respectively). Results from Bayesian logistic regression showed stronger interaction effects (OR=2.26, 95% CI=1.2-3.38 for rs6532496 and OR=2.14, 95% CI=1.14-3.2 for rs951613, respectively). All the 12 SNPs associated with cancer revealed significant gene-steroid interaction effects (P < 0.05); whereas 13 SNPs showed gene-steroid interaction effects without main effect on cancer. SNP rs4634230 revealed the strongest gene-steroid interaction effect (OR=2.49, 95% CI=1.5-4.13 with P = 4.0 × 10⁻⁴ based on the classic logistic regression and OR=2.59, 95% CI=1.4-3.97 from Bayesian logistic regression; respectively). This study provides evidence of common genetic variants within the PDLIM5 gene and interactions between PLDIM5 gene polymorphisms and steroid use influencing cancer.
Deletion Diagnostics for Alternating Logistic Regressions
Preisser, John S.; By, Kunthel; Perin, Jamie; Qaqish, Bahjat F.
2013-01-01
Deletion diagnostics are introduced for the regression analysis of clustered binary outcomes estimated with alternating logistic regressions, an implementation of generalized estimating equations (GEE) that estimates regression coefficients in a marginal mean model and in a model for the intracluster association given by the log odds ratio. The diagnostics are developed within an estimating equations framework that recasts the estimating functions for association parameters based upon conditional residuals into equivalent functions based upon marginal residuals. Extensions of earlier work on GEE diagnostics follow directly, including computational formulae for one-step deletion diagnostics that measure the influence of a cluster of observations on the estimated regression parameters and on the overall marginal mean or association model fit. The diagnostic formulae are evaluated with simulations studies and with an application concerning an assessment of factors associated with health maintenance visits in primary care medical practices. The application and the simulations demonstrate that the proposed cluster-deletion diagnostics for alternating logistic regressions are good approximations of their exact fully iterated counterparts. PMID:22777960
Psychosocial factors influencing smokeless tobacco use by teen-age military dependents.
Lee, S; Raker, T; Chisick, M C
1994-02-01
Using bivariate and logistic regression analysis, we explored psychosocial correlates of smokeless tobacco (SLT) use in a sample of 2,257 teenage military dependents. We built separate regression models for males and females to explain triers and users of SLT. Results show female and male triers share five factors regarding SLT use--parental and peer approval, trying smoking, relatives using SLT, and athletic team membership. Male trial of SLT was additionally associated with race, difficulty in purchasing SLT, relatives who smoke, current smoking, and belief that SLT can cause mouth cancer. Male use of SLT was associated with race, seeing a dentist regularly, SLT counseling by a dentist, parental approval, trying and current smoking, and grade level. In all models, trying smoking was the strongest explanatory variable. Relatives and peers exert considerable influence on SLT use. Few triers or users had received SLT counseling from their dentist despite high dental utilization rates.
Knol, Mirjam J; van der Tweel, Ingeborg; Grobbee, Diederick E; Numans, Mattijs E; Geerlings, Mirjam I
2007-10-01
To determine the presence of interaction in epidemiologic research, typically a product term is added to the regression model. In linear regression, the regression coefficient of the product term reflects interaction as departure from additivity. However, in logistic regression it refers to interaction as departure from multiplicativity. Rothman has argued that interaction estimated as departure from additivity better reflects biologic interaction. So far, literature on estimating interaction on an additive scale using logistic regression only focused on dichotomous determinants. The objective of the present study was to provide the methods to estimate interaction between continuous determinants and to illustrate these methods with a clinical example. and results From the existing literature we derived the formulas to quantify interaction as departure from additivity between one continuous and one dichotomous determinant and between two continuous determinants using logistic regression. Bootstrapping was used to calculate the corresponding confidence intervals. To illustrate the theory with an empirical example, data from the Utrecht Health Project were used, with age and body mass index as risk factors for elevated diastolic blood pressure. The methods and formulas presented in this article are intended to assist epidemiologists to calculate interaction on an additive scale between two variables on a certain outcome. The proposed methods are included in a spreadsheet which is freely available at: http://www.juliuscenter.nl/additive-interaction.xls.
Further investigations of the W-test for pairwise epistasis testing.
Howey, Richard; Cordell, Heather J
2017-01-01
Background: In a recent paper, a novel W-test for pairwise epistasis testing was proposed that appeared, in computer simulations, to have higher power than competing alternatives. Application to genome-wide bipolar data detected significant epistasis between SNPs in genes of relevant biological function. Network analysis indicated that the implicated genes formed two separate interaction networks, each containing genes highly related to autism and neurodegenerative disorders. Methods: Here we investigate further the properties and performance of the W-test via theoretical evaluation, computer simulations and application to real data. Results: We demonstrate that, for common variants, the W-test is closely related to several existing tests of association allowing for interaction, including logistic regression on 8 degrees of freedom, although logistic regression can show inflated type I error for low minor allele frequencies, whereas the W-test shows good/conservative type I error control. Although in some situations the W-test can show higher power, logistic regression is not limited to tests on 8 degrees of freedom but can instead be tailored to impose greater structure on the assumed alternative hypothesis, offering a power advantage when the imposed structure matches the true structure. Conclusions: The W-test is a potentially useful method for testing for association - without necessarily implying interaction - between genetic variants disease, particularly when one or more of the genetic variants are rare. For common variants, the advantages of the W-test are less clear, and, indeed, there are situations where existing methods perform better. In our investigations, we further uncover a number of problems with the practical implementation and application of the W-test (to bipolar disorder) previously described, apparently due to inadequate use of standard data quality-control procedures. This observation leads us to urge caution in interpretation of the previously-presented results, most of which we consider are highly likely to be artefacts.
Alishiri, Gholam Hossein; Bayat, Noushin; Fathi Ashtiani, Ali; Tavallaii, Seyed Abbas; Assari, Shervin; Moharamzad, Yashar
2008-01-01
The aim of this work was to develop two logistic regression models capable of predicting physical and mental health related quality of life (HRQOL) among rheumatoid arthritis (RA) patients. In this cross-sectional study which was conducted during 2006 in the outpatient rheumatology clinic of our university hospital, Short Form 36 (SF-36) was used for HRQOL measurements in 411 RA patients. A cutoff point to define poor versus good HRQOL was calculated using the first quartiles of SF-36 physical and mental component scores (33.4 and 36.8, respectively). Two distinct logistic regression models were used to derive predictive variables including demographic, clinical, and psychological factors. The sensitivity, specificity, and accuracy of each model were calculated. Poor physical HRQOL was positively associated with pain score, disease duration, monthly family income below 300 US$, comorbidity, patient global assessment of disease activity or PGA, and depression (odds ratios: 1.1; 1.004; 15.5; 1.1; 1.02; 2.08, respectively). The variables that entered into the poor mental HRQOL prediction model were monthly family income below 300 US$, comorbidity, PGA, and bodily pain (odds ratios: 6.7; 1.1; 1.01; 1.01, respectively). Optimal sensitivity and specificity were achieved at a cutoff point of 0.39 for the estimated probability of poor physical HRQOL and 0.18 for mental HRQOL. Sensitivity, specificity, and accuracy of the physical and mental models were 73.8, 87, 83.7% and 90.38, 70.36, 75.43%, respectively. The results show that the suggested models can be used to predict poor physical and mental HRQOL separately among RA patients using simple variables with acceptable accuracy. These models can be of use in the clinical decision-making of RA patients and to recognize patients with poor physical or mental HRQOL in advance, for better management.
NASA Astrophysics Data System (ADS)
Lombardo, L.; Cama, M.; Maerker, M.; Parisi, L.; Rotigliano, E.
2014-12-01
This study aims at comparing the performances of Binary Logistic Regression (BLR) and Boosted Regression Trees (BRT) methods in assessing landslide susceptibility for multiple-occurrence regional landslide events within the Mediterranean region. A test area was selected in the north-eastern sector of Sicily (southern Italy), corresponding to the catchments of the Briga and the Giampilieri streams both stretching for few kilometres from the Peloritan ridge (eastern Sicily, Italy) to the Ionian sea. This area was struck on the 1st October 2009 by an extreme climatic event resulting in thousands of rapid shallow landslides, mainly of debris flows and debris avalanches types involving the weathered layer of a low to high grade metamorphic bedrock. Exploiting the same set of predictors and the 2009 landslide archive, BLR- and BRT-based susceptibility models were obtained for the two catchments separately, adopting a random partition (RP) technique for validation; besides, the models trained in one of the two catchments (Briga) were tested in predicting the landslide distribution in the other (Giampilieri), adopting a spatial partition (SP) based validation procedure. All the validation procedures were based on multi-folds tests so to evaluate and compare the reliability of the fitting, the prediction skill, the coherence in the predictor selection and the precision of the susceptibility estimates. All the obtained models for the two methods produced very high predictive performances, with a general congruence between BLR and BRT in the predictor importance. In particular, the research highlighted that BRT-models reached a higher prediction performance with respect to BLR-models, for RP based modelling, whilst for the SP-based models the difference in predictive skills between the two methods dropped drastically, converging to an analogous excellent performance. However, when looking at the precision of the probability estimates, BLR demonstrated to produce more robust models in terms of selected predictors and coefficients, as well as of dispersion of the estimated probabilities around the mean value for each mapped pixel. The difference in the behaviour could be interpreted as the result of overfitting effects, which heavily affect decision tree classification more than logistic regression techniques.
ERIC Educational Resources Information Center
Osborne, Jason W.
2012-01-01
Logistic regression is slowly gaining acceptance in the social sciences, and fills an important niche in the researcher's toolkit: being able to predict important outcomes that are not continuous in nature. While OLS regression is a valuable tool, it cannot routinely be used to predict outcomes that are binary or categorical in nature. These…
Fehr, M
2014-09-01
Business opportunities in the household waste sector in emerging economies still evolve around the activities of bulk collection and tipping with an open material balance. This research, conducted in Brazil, pursued the objective of shifting opportunities from tipping to reverse logistics in order to close the balance. To do this, it illustrated how specific knowledge of sorted waste composition and reverse logistics operations can be used to determine realistic temporal and quantitative landfill diversion targets in an emerging economy context. Experimentation constructed and confirmed the recycling trilogy that consists of source separation, collection infrastructure and reverse logistics. The study on source separation demonstrated the vital difference between raw and sorted waste compositions. Raw waste contained 70% biodegradable and 30% inert matter. Source separation produced 47% biodegradable, 20% inert and 33% mixed material. The study on collection infrastructure developed the necessary receiving facilities. The study on reverse logistics identified private operators capable of collecting and processing all separated inert items. Recycling activities for biodegradable material were scarce and erratic. Only farmers would take the material as animal feed. No composting initiatives existed. The management challenge was identified as stimulating these activities in order to complete the trilogy and divert the 47% source-separated biodegradable discards from the landfills. © The Author(s) 2014.
Reasons for job separations in a cohort of workers with psychiatric disabilities.
Cook, Judith A; Burke-Miller, Jane K
2015-01-01
We explored the relative effects of adverse working conditions, job satisfaction, wages, worker characteristics, and local labor markets in explaining voluntary job separations (quits) among employed workers with psychiatric disabilities. Data come from the Employment Intervention Demonstration Program in which 2,086 jobs were ended by 892 workers during a 24 mo observation period. Stepped multivariable logistic regression analysis examined the effect of variables on the likelihood of quitting. Over half (59%) of all job separations were voluntary while 41% were involuntary, including firings (17%), temporary job endings (14%), and layoffs (10%). In multivariable analysis, workers were more likely to quit positions at which they were employed for 20 h/wk or less, those with which they were dissatisfied, low-wage jobs, non-temporary positions, and jobs in the structural (construction) occupations. Voluntary separation was less likely for older workers, members of racial and ethnic minority groups, and those residing in regions with lower unemployment rates. Patterns of job separations for workers with psychiatric disabilities mirrored some findings regarding job leaving in the general labor force but contradicted others. Job separation antecedents reflect the concentration of jobs for workers with psychiatric disabilities in the secondary labor market, characterized by low-salaried, temporary, and part-time employment.
Intermediate and advanced topics in multilevel logistic regression analysis
Merlo, Juan
2017-01-01
Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher‐level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within‐cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population‐average effect of covariates measured at the subject and cluster level, in contrast to the within‐cluster or cluster‐specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster‐level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28543517
Intermediate and advanced topics in multilevel logistic regression analysis.
Austin, Peter C; Merlo, Juan
2017-09-10
Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Predicting Social Trust with Binary Logistic Regression
ERIC Educational Resources Information Center
Adwere-Boamah, Joseph; Hufstedler, Shirley
2015-01-01
This study used binary logistic regression to predict social trust with five demographic variables from a national sample of adult individuals who participated in The General Social Survey (GSS) in 2012. The five predictor variables were respondents' highest degree earned, race, sex, general happiness and the importance of personally assisting…
Effect of folic acid on appetite in children: ordinal logistic and fuzzy logistic regressions.
Namdari, Mahshid; Abadi, Alireza; Taheri, S Mahmoud; Rezaei, Mansour; Kalantari, Naser; Omidvar, Nasrin
2014-03-01
Reduced appetite and low food intake are often a concern in preschool children, since it can lead to malnutrition, a leading cause of impaired growth and mortality in childhood. It is occasionally considered that folic acid has a positive effect on appetite enhancement and consequently growth in children. The aim of this study was to assess the effect of folic acid on the appetite of preschool children 3 to 6 y old. The study sample included 127 children ages 3 to 6 who were randomly selected from 20 preschools in the city of Tehran in 2011. Since appetite was measured by linguistic terms, a fuzzy logistic regression was applied for modeling. The obtained results were compared with a statistical ordinal logistic model. After controlling for the potential confounders, in a statistical ordinal logistic model, serum folate showed a significantly positive effect on appetite. A small but positive effect of folate was detected by fuzzy logistic regression. Based on fuzzy regression, the risk for poor appetite in preschool children was related to the employment status of their mothers. In this study, a positive association was detected between the levels of serum folate and improved appetite. For further investigation, a randomized controlled, double-blind clinical trial could be helpful to address causality. Copyright © 2014 Elsevier Inc. All rights reserved.
Victimization from Mental and Physical Bullying and Substance Use in Early Adolescence
Tharp-Taylor, Shannah; Haviland, Amelia; D'Amico, Elizabeth J.
2009-01-01
Logistic regression analyses were used to assess the association between victimization from mental and physical bullying and use of alcohol, cigarettes, marijuana, and inhalants among middle school students. Self-report data were analyzed from 926 ethnically diverse sixth through eighth grade students (43% white, 26% Latino, 7% Asian American/Pacific Islander, 3% African American, 14% mixed ethnic origin, and 5% “other”) ages 11 – 14 years from southern California. Substance use was collected at two time points (fall 2004 and spring 2005) during an academic year. Models were run for each substance separately. Results supported an association between victimization from bullying and substance use. Youths who experienced each type of bullying (mental or physical) separately or in combination were more likely to report use of each substance in spring 2005. This finding held after controlling for gender, grade level, ethnicity and substance use in fall 2004. PMID:19398162
Call for research: detecting early vulnerability for psychiatric hospitalization.
Prince, Jonathan D
2013-01-01
This study delineated the extent to which a broad set of risk factors in youth, a period well suited to primary prevention strategies, influences the likelihood and timing of first lifetime psychiatric hospitalizations. Logistic regression was used to delineate early risk factors for psychiatric hospitalization among Americans in a nationally representative survey (NCS-R, Part II, 2001-2003: N = 5,692). Results suggest that inpatient stay is more common and happens at earlier ages among Americans who report growing up with versus without: (1) depressed parents or caregivers, (2) family members who victimized them, or (3) one of three child mental illnesses (conduct, oppositional defiant, or separation anxiety disorder). In order to prevent inpatient stay, findings call for longitudinal research on early vulnerability for psychiatric hospitalization among families with: (1) depressed parents of children or adolescents, (2) violence against children, and (3) children that have externalizing or separation anxiety disorders.
NASA Astrophysics Data System (ADS)
Pantaleoni, Eva
Establishing wetland gains and losses, delineating wetland boundaries, and determining their vegetative composition are major challenges that can be improved through remote sensing studies. We used the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to separate wetlands from uplands in a study of 870 locations on the Virginia Coastal Plain. We used the first five bands from each of two ASTER scenes (6 March 2005 and 16 October 2005), covering the visible to the short-wave infrared region (0.52-2.185mum). We included GIS data layers for soil survey, topography, and presence or absence of water in a logistic regression model that predicted the location of over 78% of the wetlands. While this was slightly less accurate (78% vs. 86%) than current National Wetland Inventory (NWI) aerial photo interpretation procedures of locating wetlands, satellite imagery analysis holds great promise for speeding wetland mapping, lowering costs, and improving update frequency. To estimate wetland vegetation composition classes, we generated a classification and regression tree (CART) model and a multinomial logistic regression (logit) model, and compared their accuracy in separating woody wetlands, emergent wetlands and open water. The overall accuracy of the CART model was 73.3%, while for the logit model was 76.7%. The CART producer's accuracy of the emergent wetlands was higher than the accuracy from the multinomial logit (57.1% vs. 40.7%). However, we obtained the opposite result for the woody wetland category (68.7% vs. 52.6%). A McNemar test between the two models and NWI maps showed that their accuracies were not statistically different. We conducted a subpixel analysis of the ASTER images to estimate canopy cover of forested wetlands. We used top-of-atmosphere reflectance from the visible and near infrared bands, Delta Normalized Difference Vegetation Index, and a tasseled cap brightness, greenness, and wetness in linear regression model with canopy cover as the dependent variable. The model achieved an adjusted-R 2 of 0.69 (RMSE = 2.7%) for canopy cover less than 16%, and an adjusted-R 2 of 0.04 (RMSE = 19.8%) for higher canopy cover values. Taken together, these findings suggest that satellite remote sensing, in concert with other spatial data, has strong potential for mapping both wetland presence and type.
Delva, J; Spencer, M S; Lin, J K
2000-01-01
This article compares estimates of the relative odds of nitrite use obtained from weighted unconditional logistic regression with estimates obtained from conditional logistic regression after post-stratification and matching of cases with controls by neighborhood of residence. We illustrate these methods by comparing the odds associated with nitrite use among adults of four racial/ethnic groups, with and without a high school education. We used aggregated data from the 1994-B through 1996 National Household Survey on Drug Abuse (NHSDA). Difference between the methods and implications for analysis and inference are discussed.
Physical Function in Older Men With Hyperkyphosis
Harrison, Stephanie L.; Fink, Howard A.; Marshall, Lynn M.; Orwoll, Eric; Barrett-Connor, Elizabeth; Cawthon, Peggy M.; Kado, Deborah M.
2015-01-01
Background. Age-related hyperkyphosis has been associated with poor physical function and is a well-established predictor of adverse health outcomes in older women, but its impact on health in older men is less well understood. Methods. We conducted a cross-sectional study to evaluate the association of hyperkyphosis and physical function in 2,363 men, aged 71–98 (M = 79) from the Osteoporotic Fractures in Men Study. Kyphosis was measured using the Rancho Bernardo Study block method. Measurements of grip strength and lower extremity function, including gait speed over 6 m, narrow walk (measure of dynamic balance), repeated chair stands ability and time, and lower extremity power (Nottingham Power Rig) were included separately as primary outcomes. We investigated associations of kyphosis and each outcome in age-adjusted and multivariable linear or logistic regression models, controlling for age, clinic, education, race, bone mineral density, height, weight, diabetes, and physical activity. Results. In multivariate linear regression, we observed a dose-related response of worse scores on each lower extremity physical function test as number of blocks increased, p for trend ≤.001. Using a cutoff of ≥4 blocks, 20% (N = 469) of men were characterized with hyperkyphosis. In multivariate logistic regression, men with hyperkyphosis had increased odds (range 1.5–1.8) of being in the worst quartile of performing lower extremity physical function tasks (p < .001 for each outcome). Kyphosis was not associated with grip strength in any multivariate analysis. Conclusions. Hyperkyphosis is associated with impaired lower extremity physical function in older men. Further studies are needed to determine the direction of causality. PMID:25431353
Mental health status and healthcare utilization among community dwelling older adults.
Adepoju, Omolola; Lin, Szu-Hsuan; Mileski, Michael; Kruse, Clemens Scott; Mask, Andrew
2018-04-27
Shifts in mental health utilization patterns are necessary to allow for meaningful access to care for vulnerable populations. There have been long standing issues in how mental health is provided, which has caused problems in that care being efficacious for those seeking it. To assess the relationship between mental health status and healthcare utilization among adults ≥65 years. A negative binomial regression model was used to assess the relationship between mental health status and healthcare utilization related to office-based physician visits, while a two-part model, consisting of logistic regression and negative binomial regression, was used to separately model emergency visits and inpatient services. The receipt of care in office-based settings were marginally higher for subjects with mental health difficulties. Both probabilities and counts of inpatient hospitalizations were similar across mental health categories. The count of ER visits was similar across mental health categories; however, the probability of having an emergency department visit was marginally higher for older adults who reported mental health difficulties in 2012. These findings are encouraging and lend promise to the recent initiatives on addressing gaps in mental healthcare services.
Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V
2012-01-01
In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999
ERIC Educational Resources Information Center
Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza
2014-01-01
This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…
ERIC Educational Resources Information Center
French, Brian F.; Maller, Susan J.
2007-01-01
Two unresolved implementation issues with logistic regression (LR) for differential item functioning (DIF) detection include ability purification and effect size use. Purification is suggested to control inaccuracies in DIF detection as a result of DIF items in the ability estimate. Additionally, effect size use may be beneficial in controlling…
A Note on Three Statistical Tests in the Logistic Regression DIF Procedure
ERIC Educational Resources Information Center
Paek, Insu
2012-01-01
Although logistic regression became one of the well-known methods in detecting differential item functioning (DIF), its three statistical tests, the Wald, likelihood ratio (LR), and score tests, which are readily available under the maximum likelihood, do not seem to be consistently distinguished in DIF literature. This paper provides a clarifying…
ERIC Educational Resources Information Center
West, Lindsey M.; Davis, Telsie A.; Thompson, Martie P.; Kaslow, Nadine J.
2011-01-01
Protective factors for fostering reasons for living were examined among low-income, suicidal, African American women. Bivariate logistic regressions revealed that higher levels of optimism, spiritual well-being, and family social support predicted reasons for living. Multivariate logistic regressions indicated that spiritual well-being showed…
Comparison of Two Approaches for Handling Missing Covariates in Logistic Regression
ERIC Educational Resources Information Center
Peng, Chao-Ying Joanne; Zhu, Jin
2008-01-01
For the past 25 years, methodological advances have been made in missing data treatment. Most published work has focused on missing data in dependent variables under various conditions. The present study seeks to fill the void by comparing two approaches for handling missing data in categorical covariates in logistic regression: the…
Comparison of IRT Likelihood Ratio Test and Logistic Regression DIF Detection Procedures
ERIC Educational Resources Information Center
Atar, Burcu; Kamata, Akihito
2011-01-01
The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…
Multiple Logistic Regression Analysis of Cigarette Use among High School Students
ERIC Educational Resources Information Center
Adwere-Boamah, Joseph
2011-01-01
A binary logistic regression analysis was performed to predict high school students' cigarette smoking behavior from selected predictors from 2009 CDC Youth Risk Behavior Surveillance Survey. The specific target student behavior of interest was frequent cigarette use. Five predictor variables included in the model were: a) race, b) frequency of…
ERIC Educational Resources Information Center
Anderson, Carolyn J.; Verkuilen, Jay; Peyton, Buddy L.
2010-01-01
Survey items with multiple response categories and multiple-choice test questions are ubiquitous in psychological and educational research. We illustrate the use of log-multiplicative association (LMA) models that are extensions of the well-known multinomial logistic regression model for multiple dependent outcome variables to reanalyze a set of…
Propensity Score Estimation with Data Mining Techniques: Alternatives to Logistic Regression
ERIC Educational Resources Information Center
Keller, Bryan S. B.; Kim, Jee-Seon; Steiner, Peter M.
2013-01-01
Propensity score analysis (PSA) is a methodological technique which may correct for selection bias in a quasi-experiment by modeling the selection process using observed covariates. Because logistic regression is well understood by researchers in a variety of fields and easy to implement in a number of popular software packages, it has…
Two-factor logistic regression in pediatric liver transplantation
NASA Astrophysics Data System (ADS)
Uzunova, Yordanka; Prodanova, Krasimira; Spasov, Lyubomir
2017-12-01
Using a two-factor logistic regression analysis an estimate is derived for the probability of absence of infections in the early postoperative period after pediatric liver transplantation. The influence of both the bilirubin level and the international normalized ratio of prothrombin time of blood coagulation at the 5th postoperative day is studied.
ERIC Educational Resources Information Center
Courtney, Jon R.; Prophet, Retta
2011-01-01
Placement instability is often associated with a number of negative outcomes for children. To gain state level contextual knowledge of factors associated with placement stability/instability, logistic regression was applied to selected variables from the New Mexico Adoption and Foster Care Administrative Reporting System dataset. Predictors…
Classifying machinery condition using oil samples and binary logistic regression
NASA Astrophysics Data System (ADS)
Phillips, J.; Cripps, E.; Lau, John W.; Hodkiewicz, M. R.
2015-08-01
The era of big data has resulted in an explosion of condition monitoring information. The result is an increasing motivation to automate the costly and time consuming human elements involved in the classification of machine health. When working with industry it is important to build an understanding and hence some trust in the classification scheme for those who use the analysis to initiate maintenance tasks. Typically "black box" approaches such as artificial neural networks (ANN) and support vector machines (SVM) can be difficult to provide ease of interpretability. In contrast, this paper argues that logistic regression offers easy interpretability to industry experts, providing insight to the drivers of the human classification process and to the ramifications of potential misclassification. Of course, accuracy is of foremost importance in any automated classification scheme, so we also provide a comparative study based on predictive performance of logistic regression, ANN and SVM. A real world oil analysis data set from engines on mining trucks is presented and using cross-validation we demonstrate that logistic regression out-performs the ANN and SVM approaches in terms of prediction for healthy/not healthy engines.
Length bias correction in gene ontology enrichment analysis using logistic regression.
Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H
2012-01-01
When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.
Hansson, Lisbeth; Khamis, Harry J
2008-12-01
Simulated data sets are used to evaluate conditional and unconditional maximum likelihood estimation in an individual case-control design with continuous covariates when there are different rates of excluded cases and different levels of other design parameters. The effectiveness of the estimation procedures is measured by method bias, variance of the estimators, root mean square error (RMSE) for logistic regression and the percentage of explained variation. Conditional estimation leads to higher RMSE than unconditional estimation in the presence of missing observations, especially for 1:1 matching. The RMSE is higher for the smaller stratum size, especially for the 1:1 matching. The percentage of explained variation appears to be insensitive to missing data, but is generally higher for the conditional estimation than for the unconditional estimation. It is particularly good for the 1:2 matching design. For minimizing RMSE, a high matching ratio is recommended; in this case, conditional and unconditional logistic regression models yield comparable levels of effectiveness. For maximizing the percentage of explained variation, the 1:2 matching design with the conditional logistic regression model is recommended.
Lee, Seokho; Shin, Hyejin; Lee, Sang Han
2016-12-01
Alzheimer's disease (AD) is usually diagnosed by clinicians through cognitive and functional performance test with a potential risk of misdiagnosis. Since the progression of AD is known to cause structural changes in the corpus callosum (CC), the CC thickness can be used as a functional covariate in AD classification problem for a diagnosis. However, misclassified class labels negatively impact the classification performance. Motivated by AD-CC association studies, we propose a logistic regression for functional data classification that is robust to misdiagnosis or label noise. Specifically, our logistic regression model is constructed by adopting individual intercepts to functional logistic regression model. This approach enables to indicate which observations are possibly mislabeled and also lead to a robust and efficient classifier. An effective algorithm using MM algorithm provides simple closed-form update formulas. We test our method using synthetic datasets to demonstrate its superiority over an existing method, and apply it to differentiating patients with AD from healthy normals based on CC from MRI. © 2016, The International Biometric Society.
Szekér, Szabolcs; Vathy-Fogarassy, Ágnes
2018-01-01
Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.
Logistic regression for circular data
NASA Astrophysics Data System (ADS)
Al-Daffaie, Kadhem; Khan, Shahjahan
2017-05-01
This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.
Naval Research Logistics Quarterly. Volume 28. Number 3,
1981-09-01
denotes component-wise maximum. f has antone (isotone) differences on C x D if for cl < c2 and d, < d2, NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28...or negative correlations and linear or nonlinear regressions. Given are the mo- ments to order two and, for special cases, (he regression function and...data sets. We designate this bnb distribution as G - B - N(a, 0, v). The distribution admits only of positive correlation and linear regressions
Bond, H S; Sullivan, S G; Cowling, B J
2016-06-01
Influenza vaccination is the most practical means available for preventing influenza virus infection and is widely used in many countries. Because vaccine components and circulating strains frequently change, it is important to continually monitor vaccine effectiveness (VE). The test-negative design is frequently used to estimate VE. In this design, patients meeting the same clinical case definition are recruited and tested for influenza; those who test positive are the cases and those who test negative form the comparison group. When determining VE in these studies, the typical approach has been to use logistic regression, adjusting for potential confounders. Because vaccine coverage and influenza incidence change throughout the season, time is included among these confounders. While most studies use unconditional logistic regression, adjusting for time, an alternative approach is to use conditional logistic regression, matching on time. Here, we used simulation data to examine the potential for both regression approaches to permit accurate and robust estimates of VE. In situations where vaccine coverage changed during the influenza season, the conditional model and unconditional models adjusting for categorical week and using a spline function for week provided more accurate estimates. We illustrated the two approaches on data from a test-negative study of influenza VE against hospitalization in children in Hong Kong which resulted in the conditional logistic regression model providing the best fit to the data.
Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz
2012-01-01
From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins. PMID:27418910
Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz
2012-01-01
From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins.
Crane, Paul K; Gibbons, Laura E; Jolley, Lance; van Belle, Gerald
2006-11-01
We present an ordinal logistic regression model for identification of items with differential item functioning (DIF) and apply this model to a Mini-Mental State Examination (MMSE) dataset. We employ item response theory ability estimation in our models. Three nested ordinal logistic regression models are applied to each item. Model testing begins with examination of the statistical significance of the interaction term between ability and the group indicator, consistent with nonuniform DIF. Then we turn our attention to the coefficient of the ability term in models with and without the group term. If including the group term has a marked effect on that coefficient, we declare that it has uniform DIF. We examined DIF related to language of test administration in addition to self-reported race, Hispanic ethnicity, age, years of education, and sex. We used PARSCALE for IRT analyses and STATA for ordinal logistic regression approaches. We used an iterative technique for adjusting IRT ability estimates on the basis of DIF findings. Five items were found to have DIF related to language. These same items also had DIF related to other covariates. The ordinal logistic regression approach to DIF detection, when combined with IRT ability estimates, provides a reasonable alternative for DIF detection. There appear to be several items with significant DIF related to language of test administration in the MMSE. More attention needs to be paid to the specific criteria used to determine whether an item has DIF, not just the technique used to identify DIF.
Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis.
Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio
2014-11-24
The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine stratification.
Use of generalized ordered logistic regression for the analysis of multidrug resistance data.
Agga, Getahun E; Scott, H Morgan
2015-10-01
Statistical analysis of antimicrobial resistance data largely focuses on individual antimicrobial's binary outcome (susceptible or resistant). However, bacteria are becoming increasingly multidrug resistant (MDR). Statistical analysis of MDR data is mostly descriptive often with tabular or graphical presentations. Here we report the applicability of generalized ordinal logistic regression model for the analysis of MDR data. A total of 1,152 Escherichia coli, isolated from the feces of weaned pigs experimentally supplemented with chlortetracycline (CTC) and copper, were tested for susceptibilities against 15 antimicrobials and were binary classified into resistant or susceptible. The 15 antimicrobial agents tested were grouped into eight different antimicrobial classes. We defined MDR as the number of antimicrobial classes to which E. coli isolates were resistant ranging from 0 to 8. Proportionality of the odds assumption of the ordinal logistic regression model was violated only for the effect of treatment period (pre-treatment, during-treatment and post-treatment); but not for the effect of CTC or copper supplementation. Subsequently, a partially constrained generalized ordinal logistic model was built that allows for the effect of treatment period to vary while constraining the effects of treatment (CTC and copper supplementation) to be constant across the levels of MDR classes. Copper (Proportional Odds Ratio [Prop OR]=1.03; 95% CI=0.73-1.47) and CTC (Prop OR=1.1; 95% CI=0.78-1.56) supplementation were not significantly associated with the level of MDR adjusted for the effect of treatment period. MDR generally declined over the trial period. In conclusion, generalized ordered logistic regression can be used for the analysis of ordinal data such as MDR data when the proportionality assumptions for ordered logistic regression are violated. Published by Elsevier B.V.
MOMS: Obstetrical Outcomes and Risk Factors for Obstetrical Complications Following Prenatal Surgery
JOHNSON, Mark P.; BENNETT, Kelly A.; RAND, Larry; BURROWS, Pamela K.; THOM, Elizabeth A.; HOWELL, Lori J.; FARRELL, Jody A.; DABROWIAK, Mary E.; BROCK, John W.; FARMER, Diana L.; ADZICK, N. Scott
2016-01-01
Background The Management of Myelomeningocele Study (MOMS) was a multi-center randomized trial to compare prenatal and standard postnatal closure of myelomeningocele. The trial was stopped early at recommendation of the Data and Safety Monitoring Committee and outcome data for 158 of the 183 randomized women published. Objective In this report, pregnancy outcomes for the complete trial cohort are presented. We also sought to analyze risk factors for adverse pregnancy outcome among those women who underwent prenatal myelomeningocele repair. Study Design Pregnancy outcomes were compared between the two surgery groups. For women who underwent prenatal surgery antecedent demographic, surgical and pregnancy complication risk factors were evaluated for the following outcomes: premature spontaneous membrane rupture on or before 34 weeks 0 days (PPROM), spontaneous membrane rupture at any gestational age (SROM), preterm delivery at 34 weeks 0 days or earlier (PTD) and non-intact hysterotomy (minimal uterine wall tissue between fetal membranes and uterine serosa, or partial or complete dehiscence at delivery) and chorioamniotic membrane separation. Risk factors were evaluated using chi-square and Wilcoxon tests and multivariable logistic regression. Results A total of 183 women were randomized: 91 to prenatal surgery and 92 to postnatal surgery groups. Analysis of the complete cohort confirmed initial findings: that prenatal surgery was associated with an increased risk for membrane separation, oligohydramnios, spontaneous membrane rupture, spontaneous onset of labor and earlier gestational age at birth. In multivariable logistic regression of the prenatal surgery group adjusting for clinical center, earlier gestational age at surgery and chorioamniotic membrane separation were associated with increased risk of SROM (odds ratio [OR] 1.49, 95% confidence interval [CI] 1.01-2.22; OR 2.96, 95% CI 1.05-8.35, respectively). Oligohydramnios was associated with an increased risk of subsequent PTD (OR 9.21, 95% CI 2.19 - 38.78). Nulliparity was a risk factor for non-intact hysterotomy (OR 3.68, 95% CI 1.35 – 10.05). Conclusions Despite the confirmed benefits of prenatal surgery, considerable maternal and fetal risk exists compared with postnatal repair. Early gestational age at surgery and development of chorioamniotic membrane separation are risk factors for ruptured membranes. Oligohydramnios is a risk factor for preterm delivery and nulliparity is a risk factor for non-intact hysterotomy at delivery. PMID:27496687
Fei, Y; Hu, J; Li, W-Q; Wang, W; Zong, G-Q
2017-03-01
Essentials Predicting the occurrence of portosplenomesenteric vein thrombosis (PSMVT) is difficult. We studied 72 patients with acute pancreatitis. Artificial neural networks modeling was more accurate than logistic regression in predicting PSMVT. Additional predictive factors may be incorporated into artificial neural networks. Objective To construct and validate artificial neural networks (ANNs) for predicting the occurrence of portosplenomesenteric venous thrombosis (PSMVT) and compare the predictive ability of the ANNs with that of logistic regression. Methods The ANNs and logistic regression modeling were constructed using simple clinical and laboratory data of 72 acute pancreatitis (AP) patients. The ANNs and logistic modeling were first trained on 48 randomly chosen patients and validated on the remaining 24 patients. The accuracy and the performance characteristics were compared between these two approaches by SPSS17.0 software. Results The training set and validation set did not differ on any of the 11 variables. After training, the back propagation network training error converged to 1 × 10 -20 , and it retained excellent pattern recognition ability. When the ANNs model was applied to the validation set, it revealed a sensitivity of 80%, specificity of 85.7%, a positive predictive value of 77.6% and negative predictive value of 90.7%. The accuracy was 83.3%. Differences could be found between ANNs modeling and logistic regression modeling in these parameters (10.0% [95% CI, -14.3 to 34.3%], 14.3% [95% CI, -8.6 to 37.2%], 15.7% [95% CI, -9.9 to 41.3%], 11.8% [95% CI, -8.2 to 31.8%], 22.6% [95% CI, -1.9 to 47.1%], respectively). When ANNs modeling was used to identify PSMVT, the area under receiver operating characteristic curve was 0.849 (95% CI, 0.807-0.901), which demonstrated better overall properties than logistic regression modeling (AUC = 0.716) (95% CI, 0.679-0.761). Conclusions ANNs modeling was a more accurate tool than logistic regression in predicting the occurrence of PSMVT following AP. More clinical factors or biomarkers may be incorporated into ANNs modeling to improve its predictive ability. © 2016 International Society on Thrombosis and Haemostasis.
McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying
2009-01-01
Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817
Ai, Zi-Sheng; Gao, You-Shui; Sun, Yuan; Liu, Yue; Zhang, Chang-Qing; Jiang, Cheng-Hua
2013-03-01
Risk factors for femoral neck fracture-induced avascular necrosis of the femoral head have not been elucidated clearly in middle-aged and elderly patients. Moreover, the high incidence of screw removal in China and its effect on the fate of the involved femoral head require statistical methods to reflect their intrinsic relationship. Ninety-nine patients older than 45 years with femoral neck fracture were treated by internal fixation between May 1999 and April 2004. Descriptive analysis, interaction analysis between associated factors, single factor logistic regression, multivariate logistic regression, and detailed interaction analysis were employed to explore potential relationships among associated factors. Avascular necrosis of the femoral head was found in 15 cases (15.2 %). Age × the status of implants (removal vs. maintenance) and gender × the timing of reduction were interactive according to two-factor interactive analysis. Age, the displacement of fractures, the quality of reduction, and the status of implants were found to be significant factors in single factor logistic regression analysis. Age, age × the status of implants, and the quality of reduction were found to be significant factors in multivariate logistic regression analysis. In fine interaction analysis after multivariate logistic regression analysis, implant removal was the most important risk factor for avascular necrosis in 56-to-85-year-old patients, with a risk ratio of 26.00 (95 % CI = 3.076-219.747). The middle-aged and elderly have less incidence of avascular necrosis of the femoral head following femoral neck fractures treated by cannulated screws. The removal of cannulated screws can induce a significantly high incidence of avascular necrosis of the femoral head in elderly patients, while a high-quality reduction is helpful to reduce avascular necrosis.
Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing
2016-01-01
Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.
Bohman, Hannes; Låftman, Sara Brolin; Päären, Aivar; Jonsson, Ulf
2017-03-29
Earlier research has investigated the association between parental separation and long-term health outcomes among offspring, but few studies have assessed the potentially moderating role of mental health status in adolescence. The aim of this study was to analyze whether parental separation in childhood predicts depression in adulthood and whether the pattern differs between individuals with and without earlier depression. A community-based sample of individuals with adolescent depression in 1991-93 and matched non-depressed peers were followed up using a structured diagnostic interview after 15 years. The participation rate was 65% (depressed n = 227; non-depressed controls n = 155). Information on parental separation and conditions in childhood and adolescence was collected at baseline. The outcome was depression between the ages 19-31 years; information on depression was collected at the follow-up diagnostic interview. The statistical method used was binary logistic regression. Our analyses showed that depressed adolescents with separated parents had an excess risk of recurrence of depression in adulthood, compared with depressed adolescents with non-separated parents. In addition, among adolescents with depression, parental separation was associated with an increased risk of a switch to bipolar disorder in adulthood. Among the matched non-depressed peers, no associations between parental separation and adult depression or bipolar disorder were found. Parental separation may have long-lasting health consequences for vulnerable individuals who suffer from mental illness already in adolescence.
Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification.
Zhang, Jianguang; Jiang, Jianmin
2018-02-01
While existing logistic regression suffers from overfitting and often fails in considering structural information, we propose a novel matrix-based logistic regression to overcome the weakness. In the proposed method, 2D matrices are directly used to learn two groups of parameter vectors along each dimension without vectorization, which allows the proposed method to fully exploit the underlying structural information embedded inside the 2D matrices. Further, we add a joint [Formula: see text]-norm on two parameter matrices, which are organized by aligning each group of parameter vectors in columns. This added co-regularization term has two roles-enhancing the effect of regularization and optimizing the rank during the learning process. With our proposed fast iterative solution, we carried out extensive experiments. The results show that in comparison to both the traditional tensor-based methods and the vector-based regression methods, our proposed solution achieves better performance for matrix data classifications.
Detecting DIF in Polytomous Items Using MACS, IRT and Ordinal Logistic Regression
ERIC Educational Resources Information Center
Elosua, Paula; Wells, Craig
2013-01-01
The purpose of the present study was to compare the Type I error rate and power of two model-based procedures, the mean and covariance structure model (MACS) and the item response theory (IRT), and an observed-score based procedure, ordinal logistic regression, for detecting differential item functioning (DIF) in polytomous items. A simulation…
ERIC Educational Resources Information Center
Rudner, Lawrence
2016-01-01
In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows…
ERIC Educational Resources Information Center
Fan, Xitao; Wang, Lin
The Monte Carlo study compared the performance of predictive discriminant analysis (PDA) and that of logistic regression (LR) for the two-group classification problem. Prior probabilities were used for classification, but the cost of misclassification was assumed to be equal. The study used a fully crossed three-factor experimental design (with…
ERIC Educational Resources Information Center
Nguyen, Phuong L.
2006-01-01
This study examines the effects of parental SES, school quality, and community factors on children's enrollment and achievement in rural areas in Viet Nam, using logistic regression and ordered logistic regression. Multivariate analysis reveals significant differences in educational enrollment and outcomes by level of household expenditures and…
School Exits in the Milwaukee Parental Choice Program: Evidence of a Marketplace?
ERIC Educational Resources Information Center
Ford, Michael
2011-01-01
This article examines whether the large number of school exits from the Milwaukee school voucher program is evidence of a marketplace. Two logistic regression and multinomial logistic regression models tested the relation between the inability to draw large numbers of voucher students and the ability for a private school to remain viable. Data on…
Hierarchical Bayesian Logistic Regression to forecast metabolic control in type 2 DM patients.
Dagliati, Arianna; Malovini, Alberto; Decata, Pasquale; Cogni, Giulia; Teliti, Marsida; Sacchi, Lucia; Cerra, Carlo; Chiovato, Luca; Bellazzi, Riccardo
2016-01-01
In this work we present our efforts in building a model able to forecast patients' changes in clinical conditions when repeated measurements are available. In this case the available risk calculators are typically not applicable. We propose a Hierarchical Bayesian Logistic Regression model, which allows taking into account individual and population variability in model parameters estimate. The model is used to predict metabolic control and its variation in type 2 diabetes mellitus. In particular we have analyzed a population of more than 1000 Italian type 2 diabetic patients, collected within the European project Mosaic. The results obtained in terms of Matthews Correlation Coefficient are significantly better than the ones gathered with standard logistic regression model, based on data pooling.
Li, Ji; Gray, B.R.; Bates, D.M.
2008-01-01
Partitioning the variance of a response by design levels is challenging for binomial and other discrete outcomes. Goldstein (2003) proposed four definitions for variance partitioning coefficients (VPC) under a two-level logistic regression model. In this study, we explicitly derived formulae for multi-level logistic regression model and subsequently studied the distributional properties of the calculated VPCs. Using simulations and a vegetation dataset, we demonstrated associations between different VPC definitions, the importance of methods for estimating VPCs (by comparing VPC obtained using Laplace and penalized quasilikehood methods), and bivariate dependence between VPCs calculated at different levels. Such an empirical study lends an immediate support to wider applications of VPC in scientific data analysis.
Model building strategy for logistic regression: purposeful selection.
Zhang, Zhongheng
2016-03-01
Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.
Rodríguez, Luis A; Madsen, Kristine A; Cotterman, Carolyn; Lustig, Robert H
2016-09-01
To examine the association between added sugar intake and metabolic syndrome among adolescents. Dietary, serum biomarker, anthropometric and physical activity data from the US National Health and Nutrition Examination Survey cycles between 2005 and 2012 were analysed using multivariate logistic regression models. Added sugar intake in grams per day was estimated from two 24 h standardized dietary recalls and then separated into quintiles from lowest to highest consumption. Multivariate logistic regression analyses were adjusted for physical activity, age, BMI Z-score and energy intake, and their interactions with race were included. Nationally representative sample, USA. US adolescents aged 12-19 years (n 1623). Added sugar was significantly associated with metabolic syndrome. The adjusted prevalence odds ratios for having metabolic syndrome comparing adolescents in the third, fourth and fifth quintiles v. those in the lowest quintile of added sugar were 5·3 (95 % CI 1·4, 20·6), 9·9 (95 % CI 1·9, 50·9) and 8·7 (95 % CI 1·4, 54·9), respectively. Our findings suggest that higher added sugar intake, independent of total energy intake, physical activity or BMI Z-score, is associated with increased prevalence of metabolic syndrome in US adolescents. Further studies are needed to determine if reducing intake of added sugar may help US adolescents prevent or reverse metabolic syndrome.
Socio-economic Correlates of Malnutrition among Married Women in Bangladesh.
Mostafa Kamal, S M; Md Aynul, Islam
2010-12-01
This paper examines the prevalence and socio-economic correlates of malnutrition among ever married non-pregnant women of reproductive age of Bangladesh using a nationally representative weighted sample of 10,145. Body mass index was used to measure nutritional status. Both bivariate and multivariate statistical analyses were employed to assess the relationship between socio-economic characteristics and women's nutritional status. Overall, 28.5% of the women were found to be underweight. The fixed effect multivariate binary logistic regression analysis yielded significantly increased risk of underweight for the young, currently working, non-Muslim, rural residents, widowed, divorced or separated women. Significant wide variations of malnourishment prevailed in the administrative regions of the country. Wealth index and women's education were the most important determinants of underweight. The multivariate logistic regression analysis revealed that the risk of being underweight was almost seven times higher (OR=6.76, 95% CI=5.20-8.80) among women with no formal education as compared to those with higher education and the likelihood of underweight was significantly (p<0.001) 5.2 times (OR=5.23, 95% CI=4.51-6.07) in the poorest as compared to their richest counterparts. Poverty alleviation programmes should be strengthened targeting the poor. Effective policies, information and health education programmes for women are required to ensure adequate access to health services and for them to understand the components of a healthy diet.
Asbestos-related diseases in automobile mechanics.
Ameille, Jacques; Rosenberg, Nicole; Matrat, Mireille; Descatha, Alexis; Mompoint, Dominique; Hamzi, Lounis; Atassi, Catherine; Vasile, Manuela; Garnier, Robert; Pairon, Jean-Claude
2012-01-01
Automobile mechanics have been exposed to asbestos in the past, mainly due to the presence of chrysotile asbestos in brakes and clutches. Despite the large number of automobile mechanics, little is known about the non-malignant respiratory diseases observed in this population. The aim of this retrospective multicenter study was to analyse the frequency of pleural and parenchymal abnormalities on high-resolution computed tomography (HRCT) in a population of automobile mechanics. The study population consisted of 103 automobile mechanics with no other source of occupational exposure to asbestos, referred to three occupational health departments in the Paris area for systematic screening of asbestos-related diseases. All subjects were examined by HRCT and all images were reviewed separately by two independent readers; who in the case of disagreement discussed until they reached agreement. Multiple logistic regression models were constructed to investigate factors associated with pleural plaques. Pleural plaques were observed in five cases (4.9%) and interstitial abnormalities consistent with asbestosis were observed in one case. After adjustment for age, smoking status, and a history of non-asbestos-related respiratory diseases, multiple logistic regression models showed a significant association between the duration of exposure to asbestos and pleural plaques. The asbestos exposure experienced by automobile mechanics may lead to pleural plaques. The low prevalence of non-malignant asbestos-related diseases, using a very sensitive diagnostic tool, is in favor of a low cumulative exposure to asbestos in this population of workers.
Calibration power of the Braden scale in predicting pressure ulcer development.
Chen, Hong-Lin; Cao, Ying-Juan; Wang, Jing; Huai, Bao-Sha
2016-11-02
Calibration is the degree of correspondence between the estimated probability produced by a model and the actual observed probability. The aim of this study was to investigate the calibration power of the Braden scale in predicting pressure ulcer development (PU). A retrospective analysis was performed among consecutive patients in 2013. The patients were separated into training a group and a validation group. The predicted incidence was calculated using a logistic regression model in the training group and the Hosmer-Lemeshow test was used for assessing the goodness of fit. In the validation cohort, the observed and the predicted incidence were compared by the Chi-square (χ 2 ) goodness of fit test for calibration power. We included 2585 patients in the study, of these 78 patients (3.0%) developed a PU. Between the training and validation groups the patient characteristics were non-significant (p>0.05). In the training group, the logistic regression model for predicting pressure ulcer was Logit(P) = -0.433*Braden score+2.616. The Hosmer-Lemeshow test showed no goodness fit (χ 2 =13.472; p=0.019). In the validation group, the predicted pressure ulcer incidence also did not fit well with the observed incidence (χ 2 =42.154, p=0.000 by Braden scores; and χ 2 =17.223, p=0.001 by Braden scale risk classification). The Braden scale has low calibration power in predicting PU formation.
Lin, Hanxiao; Zhang, Hua; Yan, Yuxia; Liu, Duan; Zhang, Ruyi; Liu, Yeungyeung; Chen, Pei; Zhang, Jincai; Xuan, Dongying
2014-12-01
This study aimed to compare the opinions of dentists and endocrinologists regarding diabetes mellitus (DM) and periodontitis, and to investigate the possible effects on their practice. Cross-sectional data were collected from 297 endocrinologists and 134 dentists practicing in southern China using two separated questionnaires. Questions were close-ended or Likert-scaled. Statistical analyses were done by descriptive statistics, bivariate and binary logistic regression analysis. Compared with endocrinologists, dentists presented more favorable attitudes for the relationship of DM and periodontitis (P<0.001). 61.2% of dentists reported they would frequently refer patients with severe periodontitis for DM evaluation, while only 26.6% of endocrinologists reported they would frequently advise patients with DM to visit a dentist. Nearly all of the respondents (94.4%) agreed that the interdisciplinary collaboration should be strengthened. The logistic regression analysis exhibited that respondents with more favorable attitudes were more likely to advise a dental visit (P=0.003) or to screen for DM (P=0.006). Endocrinologists and dentists are not equally equipped with the knowledge about the relationship between DM and periodontitis, and there is a wide gap between their practice and the current evidence, especially for endocrinologists. It's urgent to take measures to develop the interdisciplinary education and collaboration among the health care providers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Asbestos-related diseases in automobile mechanics
Ameille, Jacques; Rosenberg, Nicole; Matrat, Mireille; Descatha, Alexis; Mompoint, Dominique; Hamzi, Lounis; Atassi, Catherine; Vasile, Manuela; Garnier, Robert; Pairon, Jean-Claude
2012-01-01
Purpose Automobile mechanics have been exposed to asbestos in the past, mainly due to the presence of chrysotile asbestos in brakes and clutches. Despite the large number of automobile mechanics, little is known about the non-malignant respiratory diseases observed in this population. The aim of this retrospective multicenter study was to analyze the frequency of pleural and parenchymal abnormalities on HRCT in a population of automobile mechanics. Methods The study population consisted of 103 automobile mechanics with no other source of occupational exposure to asbestos, referred to three occupational health departments in the Paris area for systematic screening of asbestos–related diseases. All subjects were examined by HRCT and all images were reviewed separately by two independent readers, with further consensus in the case of disagreement. Multiple logistic regression models were constructed to investigate factors associated with pleural plaques. Results Pleural plaques were observed in 5 cases (4.9%) and interstitial abnormalities consistent with asbestosis were observed in 1 case. After adjustment for age, smoking status, and a history of non-asbestos-related respiratory diseases, multiple logistic regression models showed a significant association between the duration of exposure to asbestos and pleural plaques. Conclusions The asbestos exposure experienced by automobile mechanics may lead to pleural plaques. The low prevalence of non-malignant asbestos-related diseases, using a very sensitive diagnostic tool, is in favor of a low cumulative exposure to asbestos in this population of workers. PMID:21965465
NASA Astrophysics Data System (ADS)
Ceppi, C.; Mancini, F.; Ritrovato, G.
2009-04-01
This study aim at the landslide susceptibility mapping within an area of the Daunia (Apulian Apennines, Italy) by a multivariate statistical method and data manipulation in a Geographical Information System (GIS) environment. Among the variety of existing statistical data analysis techniques, the logistic regression was chosen to produce a susceptibility map all over an area where small settlements are historically threatened by landslide phenomena. By logistic regression a best fitting between the presence or absence of landslide (dependent variable) and the set of independent variables is performed on the basis of a maximum likelihood criterion, bringing to the estimation of regression coefficients. The reliability of such analysis is therefore due to the ability to quantify the proneness to landslide occurrences by the probability level produced by the analysis. The inventory of dependent and independent variables were managed in a GIS, where geometric properties and attributes have been translated into raster cells in order to proceed with the logistic regression by means of SPSS (Statistical Package for the Social Sciences) package. A landslide inventory was used to produce the bivariate dependent variable whereas the independent set of variable concerned with slope, aspect, elevation, curvature, drained area, lithology and land use after their reductions to dummy variables. The effect of independent parameters on landslide occurrence was assessed by the corresponding coefficient in the logistic regression function, highlighting a major role played by the land use variable in determining occurrence and distribution of phenomena. Once the outcomes of the logistic regression are determined, data are re-introduced in the GIS to produce a map reporting the proneness to landslide as predicted level of probability. As validation of results and regression model a cell-by-cell comparison between the susceptibility map and the initial inventory of landslide events was performed and an agreement at 75% level achieved.
Household participation in recycling programs: a case study from Turkey.
Budak, Fuat; Oguz, Burcu
2008-11-01
This study investigates the underlining factors that motivate households to participate in a pilot source separation and recycling program in Turkey. The data of this research were collected from randomly selected households in the program area via face to face interviews based on an inclusive questionnaire. The results of logistic regression analysis show that having sufficient knowledge regarding recycling and the recycling program is the most statistically significant factor in determining whether a household will participate in recycling. The results also imply that some of the socio-economic and demographic characteristics of household hypothesized to affect the household decision to participate in recycling, in the research framework, are not significant.
Suicidal ideation and Attempts in North American School-Based Surveys
Saewyc, Elizabeth M.; Skay, Carol L.; Hynds, Patricia; Pettingell, Sandra; Bearinger, Linda H.; Resnick, Michael D.; Reis, Elizabeth
2008-01-01
This study explored the prevalence, disparity, and cohort trends in suicidality among bisexual teens vs. heterosexual and gay/lesbian peers in 9 population-based high school surveys in Canada and the U.S. Multivariate logistic regressions were used to calculate age-adjusted odds ratios separately by gender; 95% confidence intervals tested cohort trends where surveys were repeated over multiple years. Results showed remarkable consistency: bisexual youth reported higher odds of recent suicidal ideation and attempts vs. heterosexual peers, with increasing odds in most surveys over the past decade. Results compared to gay and lesbian peers were mixed, with varying gender differences in prevalence and disparity trends in the different regions. PMID:19835039
Determination of riverbank erosion probability using Locally Weighted Logistic Regression
NASA Astrophysics Data System (ADS)
Ioannidou, Elena; Flori, Aikaterini; Varouchakis, Emmanouil A.; Giannakis, Georgios; Vozinaki, Anthi Eirini K.; Karatzas, George P.; Nikolaidis, Nikolaos
2015-04-01
Riverbank erosion is a natural geomorphologic process that affects the fluvial environment. The most important issue concerning riverbank erosion is the identification of the vulnerable locations. An alternative to the usual hydrodynamic models to predict vulnerable locations is to quantify the probability of erosion occurrence. This can be achieved by identifying the underlying relations between riverbank erosion and the geomorphological or hydrological variables that prevent or stimulate erosion. Thus, riverbank erosion can be determined by a regression model using independent variables that are considered to affect the erosion process. The impact of such variables may vary spatially, therefore, a non-stationary regression model is preferred instead of a stationary equivalent. Locally Weighted Regression (LWR) is proposed as a suitable choice. This method can be extended to predict the binary presence or absence of erosion based on a series of independent local variables by using the logistic regression model. It is referred to as Locally Weighted Logistic Regression (LWLR). Logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable (e.g. binary response) based on one or more predictor variables. The method can be combined with LWR to assign weights to local independent variables of the dependent one. LWR allows model parameters to vary over space in order to reflect spatial heterogeneity. The probabilities of the possible outcomes are modelled as a function of the independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. erosion presence or absence) for any value of the independent variables. The erosion occurrence probability can be calculated in conjunction with the model deviance regarding the independent variables tested. The most straightforward measure for goodness of fit is the G statistic. It is a simple and effective way to study and evaluate the Logistic Regression model efficiency and the reliability of each independent variable. The developed statistical model is applied to the Koiliaris River Basin on the island of Crete, Greece. Two datasets of river bank slope, river cross-section width and indications of erosion were available for the analysis (12 and 8 locations). Two different types of spatial dependence functions, exponential and tricubic, were examined to determine the local spatial dependence of the independent variables at the measurement locations. The results show a significant improvement when the tricubic function is applied as the erosion probability is accurately predicted at all eight validation locations. Results for the model deviance show that cross-section width is more important than bank slope in the estimation of erosion probability along the Koiliaris riverbanks. The proposed statistical model is a useful tool that quantifies the erosion probability along the riverbanks and can be used to assist managing erosion and flooding events. Acknowledgements This work is part of an on-going THALES project (CYBERSENSORS - High Frequency Monitoring System for Integrated Water Resources Management of Rivers). The project has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.
NASA Astrophysics Data System (ADS)
Yilmaz, Işık
2009-06-01
The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.
ERIC Educational Resources Information Center
Schumacher, Phyllis; Olinsky, Alan; Quinn, John; Smith, Richard
2010-01-01
The authors extended previous research by 2 of the authors who conducted a study designed to predict the successful completion of students enrolled in an actuarial program. They used logistic regression to determine the probability of an actuarial student graduating in the major or dropping out. They compared the results of this study with those…
Carolyn B. Meyer; Sherri L. Miller; C. John Ralph
2004-01-01
The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...
ERIC Educational Resources Information Center
Monahan, Patrick O.; McHorney, Colleen A.; Stump, Timothy E.; Perkins, Anthony J.
2007-01-01
Previous methodological and applied studies that used binary logistic regression (LR) for detection of differential item functioning (DIF) in dichotomously scored items either did not report an effect size or did not employ several useful measures of DIF magnitude derived from the LR model. Equations are provided for these effect size indices.…
ERIC Educational Resources Information Center
Magis, David; Raiche, Gilles; Beland, Sebastien; Gerard, Paul
2011-01-01
We present an extension of the logistic regression procedure to identify dichotomous differential item functioning (DIF) in the presence of more than two groups of respondents. Starting from the usual framework of a single focal group, we propose a general approach to estimate the item response functions in each group and to test for the presence…
Risk Factors of Falls in Community-Dwelling Older Adults: Logistic Regression Tree Analysis
ERIC Educational Resources Information Center
Yamashita, Takashi; Noe, Douglas A.; Bailer, A. John
2012-01-01
Purpose of the Study: A novel logistic regression tree-based method was applied to identify fall risk factors and possible interaction effects of those risk factors. Design and Methods: A nationally representative sample of American older adults aged 65 years and older (N = 9,592) in the Health and Retirement Study 2004 and 2006 modules was used.…
ERIC Educational Resources Information Center
Gordovil-Merino, Amalia; Guardia-Olmos, Joan; Pero-Cebollero, Maribel
2012-01-01
In this paper, we used simulations to compare the performance of classical and Bayesian estimations in logistic regression models using small samples. In the performed simulations, conditions were varied, including the type of relationship between independent and dependent variable values (i.e., unrelated and related values), the type of variable…
Ohlmacher, G.C.; Davis, J.C.
2003-01-01
Landslides in the hilly terrain along the Kansas and Missouri rivers in northeastern Kansas have caused millions of dollars in property damage during the last decade. To address this problem, a statistical method called multiple logistic regression has been used to create a landslide-hazard map for Atchison, Kansas, and surrounding areas. Data included digitized geology, slopes, and landslides, manipulated using ArcView GIS. Logistic regression relates predictor variables to the occurrence or nonoccurrence of landslides within geographic cells and uses the relationship to produce a map showing the probability of future landslides, given local slopes and geologic units. Results indicated that slope is the most important variable for estimating landslide hazard in the study area. Geologic units consisting mostly of shale, siltstone, and sandstone were most susceptible to landslides. Soil type and aspect ratio were considered but excluded from the final analysis because these variables did not significantly add to the predictive power of the logistic regression. Soil types were highly correlated with the geologic units, and no significant relationships existed between landslides and slope aspect. ?? 2003 Elsevier Science B.V. All rights reserved.
A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test
NASA Technical Reports Server (NTRS)
Messer, Bradley
2007-01-01
Propulsion ground test facilities face the daily challenge of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Over the last decade NASA s propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and exceeded the capabilities of numerous test facility and test article components. A logistic regression mathematical modeling technique has been developed to predict the probability of successfully completing a rocket propulsion test. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),.., X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure of accomplishing a full duration test. The use of logistic regression modeling is not new; however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from this type of model provide project managers with insight and confidence into the effectiveness of rocket propulsion ground testing.
Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei
2017-06-01
To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (P<0.05). In addition, a comparison of the area under receiver operating characteristic curves of the two models showed a statistically significant difference (P<0.05). The RBF ANNs model is more likely to predict the occurrence of PVT induced by AP than logistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Shuang; Jiang, Xiaoqian; Wu, Yuan; Cui, Lijuan; Cheng, Samuel; Ohno-Machado, Lucila
2013-01-01
We developed an EXpectation Propagation LOgistic REgRession (EXPLORER) model for distributed privacy-preserving online learning. The proposed framework provides a high level guarantee for protecting sensitive information, since the information exchanged between the server and the client is the encrypted posterior distribution of coefficients. Through experimental results, EXPLORER shows the same performance (e.g., discrimination, calibration, feature selection etc.) as the traditional frequentist Logistic Regression model, but provides more flexibility in model updating. That is, EXPLORER can be updated one point at a time rather than having to retrain the entire data set when new observations are recorded. The proposed EXPLORER supports asynchronized communication, which relieves the participants from coordinating with one another, and prevents service breakdown from the absence of participants or interrupted communications. PMID:23562651
Dietary consumption patterns and laryngeal cancer risk.
Vlastarakos, Petros V; Vassileiou, Andrianna; Delicha, Evie; Kikidis, Dimitrios; Protopapas, Dimosthenis; Nikolopoulos, Thomas P
2016-06-01
We conducted a case-control study to investigate the effect of diet on laryngeal carcinogenesis. Our study population was made up of 140 participants-70 patients with laryngeal cancer (LC) and 70 controls with a non-neoplastic condition that was unrelated to diet, smoking, or alcohol. A food-frequency questionnaire determined the mean consumption of 113 different items during the 3 years prior to symptom onset. Total energy intake and cooking mode were also noted. The relative risk, odds ratio (OR), and 95% confidence interval (CI) were estimated by multiple logistic regression analysis. We found that the total energy intake was significantly higher in the LC group (p < 0.001), and that the difference remained statistically significant after logistic regression analysis (p < 0.001; OR: 118.70). Notably, meat consumption was higher in the LC group (p < 0.001), and the difference remained significant after logistic regression analysis (p = 0.029; OR: 1.16). LC patients also consumed significantly more fried food (p = 0.036); this difference also remained significant in the logistic regression model (p = 0.026; OR: 5.45). The LC group also consumed significantly more seafood (p = 0.012); the difference persisted after logistic regression analysis (p = 0.009; OR: 2.48), with the consumption of shrimp proving detrimental (p = 0.049; OR: 2.18). Finally, the intake of zinc was significantly higher in the LC group before and after logistic regression analysis (p = 0.034 and p = 0.011; OR: 30.15, respectively). Cereal consumption (including pastas) was also higher among the LC patients (p = 0.043), with logistic regression analysis showing that their negative effect was possibly associated with the sauces and dressings that traditionally accompany pasta dishes (p = 0.006; OR: 4.78). Conversely, a higher consumption of dairy products was found in controls (p < 0.05); logistic regression analysis showed that calcium appeared to be protective at the micronutrient level (p < 0.001; OR: 0.27). We found no difference in the overall consumption of fruits and vegetables between the LC patients and controls; however, the LC patients did have a greater consumption of cooked tomatoes and cooked root vegetables (p = 0.039 for both), and the controls had more consumption of leeks (p = 0.042) and, among controls younger than 65 years, cooked beans (p = 0.037). Lemon (p = 0.037), squeezed fruit juice (p = 0.032), and watermelon (p = 0.018) were also more frequently consumed by the controls. Other differences at the micronutrient level included greater consumption by the LC patients of retinol (p = 0.044), polyunsaturated fats (p = 0.041), and linoleic acid (p = 0.008); LC patients younger than 65 years also had greater intake of riboflavin (p = 0.045). We conclude that the differences in dietary consumption patterns between LC patients and controls indicate a possible role for lifestyle modifications involving nutritional factors as a means of decreasing the risk of laryngeal cancer.
Gjesdal, Sturla; Bratberg, Espen
2002-09-01
The aim of the study was to identify predictors for the transition from long-term sickness absence into disability pension with a special focus on gender. The study used data from a national database containing a 10% random sample of the Norwegian adult population (The KIRUT database). The study population were all individuals in the database who on 1 January 1990 were eligible for sick pay from the Norwegian National Insurance System: 83,398 men and 75,586 women. Individuals below 60 years with long-term sickness absence starting in 1990 and 1991 were identified, 6,434 men and 8,233 women, and followed up for three years. Background data were used as independent variables in a logistic regression of the probability for receiving disability pension during follow-up. Annual cumulative incidence of long-term sickness absence was 6.5% for women and 4.9% for men. During follow-up, 12.4% of the women and 12.6% of the men received disability pension. Among full-time employed women only 10.3% had become disability pensioners, while the corresponding proportion for women working part-time was 15.5%. For men the figures were 12.1% (full-time) and 18.1% (part-time). In the logistic regression of the whole sample the female odds ratio was insignificant. The dominant predictive factors for disability pension were age and duration of the sickness spells. Working part-time also increased the risk. Higher levels of education and having children below 7 years reduced the probability for disability pension. Separate regressions for men and women showed that the 'protective' effect of having small children only remained for women.
Shteingart, Hanan; Loewenstein, Yonatan
2016-01-01
There is a long history of experiments in which participants are instructed to generate a long sequence of binary random numbers. The scope of this line of research has shifted over the years from identifying the basic psychological principles and/or the heuristics that lead to deviations from randomness, to one of predicting future choices. In this paper, we used generalized linear regression and the framework of Reinforcement Learning in order to address both points. In particular, we used logistic regression analysis in order to characterize the temporal sequence of participants' choices. Surprisingly, a population analysis indicated that the contribution of the most recent trial has only a weak effect on behavior, compared to more preceding trials, a result that seems irreconcilable with standard sequential effects that decay monotonously with the delay. However, when considering each participant separately, we found that the magnitudes of the sequential effect are a monotonous decreasing function of the delay, yet these individual sequential effects are largely averaged out in a population analysis because of heterogeneity. The substantial behavioral heterogeneity in this task is further demonstrated quantitatively by considering the predictive power of the model. We show that a heterogeneous model of sequential dependencies captures the structure available in random sequence generation. Finally, we show that the results of the logistic regression analysis can be interpreted in the framework of reinforcement learning, allowing us to compare the sequential effects in the random sequence generation task to those in an operant learning task. We show that in contrast to the random sequence generation task, sequential effects in operant learning are far more homogenous across the population. These results suggest that in the random sequence generation task, different participants adopt different cognitive strategies to suppress sequential dependencies when generating the "random" sequences.
Physical function in older men with hyperkyphosis.
Katzman, Wendy B; Harrison, Stephanie L; Fink, Howard A; Marshall, Lynn M; Orwoll, Eric; Barrett-Connor, Elizabeth; Cawthon, Peggy M; Kado, Deborah M
2015-05-01
Age-related hyperkyphosis has been associated with poor physical function and is a well-established predictor of adverse health outcomes in older women, but its impact on health in older men is less well understood. We conducted a cross-sectional study to evaluate the association of hyperkyphosis and physical function in 2,363 men, aged 71-98 (M = 79) from the Osteoporotic Fractures in Men Study. Kyphosis was measured using the Rancho Bernardo Study block method. Measurements of grip strength and lower extremity function, including gait speed over 6 m, narrow walk (measure of dynamic balance), repeated chair stands ability and time, and lower extremity power (Nottingham Power Rig) were included separately as primary outcomes. We investigated associations of kyphosis and each outcome in age-adjusted and multivariable linear or logistic regression models, controlling for age, clinic, education, race, bone mineral density, height, weight, diabetes, and physical activity. In multivariate linear regression, we observed a dose-related response of worse scores on each lower extremity physical function test as number of blocks increased, p for trend ≤.001. Using a cutoff of ≥4 blocks, 20% (N = 469) of men were characterized with hyperkyphosis. In multivariate logistic regression, men with hyperkyphosis had increased odds (range 1.5-1.8) of being in the worst quartile of performing lower extremity physical function tasks (p < .001 for each outcome). Kyphosis was not associated with grip strength in any multivariate analysis. Hyperkyphosis is associated with impaired lower extremity physical function in older men. Further studies are needed to determine the direction of causality. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Low Cancer Risk of South Asians: A Brief Report.
Tran, H Nicole; Udaltsova, Natalia; Li, Yan; Klatsky, Arthur L
2018-03-02
South Asians (ancestry in India, Pakistan, Bangladesh, or Sri Lanka) may have lower cancer risk than other racial-ethnic groups. To supplement published cohort data suggesting low cancer risk in South Asians. Logistic regression models with 7 covariates to study cancer mortality through 2012 in 273,843 persons (1117 South Asians) with baseline examination data from 1964 to 1985. Cancer mortality. Through 2012, death was attributed to cancer in 28,031 persons, of which 1555 were Asians, including 32 South Asians. The all-Asian vs white adjusted odds ratio was 1.0, and the South Asian vs white odds ratio was 0.5 (p < 0.001). In separate regressions, South Asians were at lower risk than blacks, Chinese, Filipinos, Japanese, or other Asians. The South Asian-white disparity was concentrated in men but was generally similar when strata of smoking, body mass index, baseline age, and date of death were compared. These data support the observation that compared with whites and other Asian groups, South Asians, especially men, have a lower risk of cancer.
Overhead longwave infrared hyperspectral material identification using radiometric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelinski, M. E.
Material detection algorithms used in hyperspectral data processing are computationally efficient but can produce relatively high numbers of false positives. Material identification performed as a secondary processing step on detected pixels can help separate true and false positives. This paper presents a material identification processing chain for longwave infrared hyperspectral data of solid materials collected from airborne platforms. The algorithms utilize unwhitened radiance data and an iterative algorithm that determines the temperature, humidity, and ozone of the atmospheric profile. Pixel unmixing is done using constrained linear regression and Bayesian Information Criteria for model selection. The resulting product includes an optimalmore » atmospheric profile and full radiance material model that includes material temperature, abundance values, and several fit statistics. A logistic regression method utilizing all model parameters to improve identification is also presented. This paper details the processing chain and provides justification for the algorithms used. Several examples are provided using modeled data at different noise levels.« less
Heeren, G Anita; Jemmott, John B; Mandeya, Andrew; Tyler, Joanne C
2009-04-01
Whether certain behavioral beliefs, normative beliefs, and control beliefs predict the intention to use condoms and subsequent condom use was examined among 320 undergraduates at a university in South Africa who completed confidential questionnaires on two occasions separated by 3 months. Participants' mean age was 23.4 years, 47.8% were women, 48.9% were South Africans, and 51.1% were from other sub-Saharan African countries. Multiple regression revealed that condom-use intention was predicted by hedonistic behavioral beliefs, normative beliefs regarding sexual partners and peers, and control beliefs regarding condom-use technical skill and impulse control. Logistic regression revealed that baseline condom-use intention predicted consistent condom use and condom use during most recent intercourse at 3-month follow-up. HIV/STI risk-reduction interventions for undergraduates in South Africa should target their condom-use hedonistic beliefs, normative beliefs regarding partners and peers, and control beliefs regarding technical skill and impulse control.
Thompson, Ronald G; Lizardi, Dana; Keyes, Katherine M; Hasin, Deborah S
2008-12-01
This study examined whether the experiences of childhood or adolescent parental divorce/separation and parental alcohol problems affected the likelihood of offspring DSM-IV lifetime alcohol dependence, controlling for parental history of drug, depression, and antisocial behavior problems. Data were drawn from the 2001-2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC), a nationally representative United States survey of 43,093 civilian non-institutionalized participants aged 18 and older, interviewed in person. Logistic regression models were used to calculate the main and interaction effects of childhood or adolescent parental divorce/separation and parental history of alcohol problems on offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Childhood or adolescent parental divorce/separation and parental history of alcohol problems were significantly related to offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Experiencing parental divorce/separation during childhood, even in the absence of parental history of alcohol problems, remained a significant predictor of lifetime alcohol dependence. Experiencing both childhood or adolescent parental divorce/separation and parental alcohol problems had a significantly stronger impact on the risk for DSM-IV alcohol dependence than the risk incurred by either parental risk factor alone. Further research is needed to better identify the factors that increase the risk for lifetime alcohol dependence among those who experience childhood or adolescent parental divorce/separation.
Thompson, Ronald G.; Lizardi, Dana; Keyes, Katherine M.; Hasin, Deborah S.
2013-01-01
Background This study examined whether the experiences of childhood or adolescent parental divorce/separation and parental alcohol problems affected the likelihood of offspring DSM-IV lifetime alcohol dependence, controlling for parental history of drug, depression, and antisocial behavior problems. Method Data were drawn from the 2001–2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC), a nationally representative United States survey of 43,093 civilian non-institutionalized participants aged 18 and older, interviewed in person. Logistic regression models were used to calculate the main and interaction effects of childhood or adolescent parental divorce/separation and parental history of alcohol problems on offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Results Childhood or adolescent parental divorce/separation and parental history of alcohol problems were significantly related to offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Experiencing parental divorce/separation during childhood, even in the absence of parental history of alcohol problems, remained a significant predictor of lifetime alcohol dependence. Experiencing both childhood or adolescent parental divorce/separation and parental alcohol problems had a significantly stronger impact on the risk for DSM-IV alcohol dependence than the risk incurred by either parental risk factor alone. Conclusions Further research is needed to better identify the factors that increase the risk for lifetime alcohol dependence among those who experience childhood or adolescent parental divorce/separation. PMID:18757141
ERIC Educational Resources Information Center
Guler, Nese; Penfield, Randall D.
2009-01-01
In this study, we investigate the logistic regression (LR), Mantel-Haenszel (MH), and Breslow-Day (BD) procedures for the simultaneous detection of both uniform and nonuniform differential item functioning (DIF). A simulation study was used to assess and compare the Type I error rate and power of a combined decision rule (CDR), which assesses DIF…
ERIC Educational Resources Information Center
Le, Huy; Marcus, Justin
2012-01-01
This study used Monte Carlo simulation to examine the properties of the overall odds ratio (OOR), which was recently introduced as an index for overall effect size in multiple logistic regression. It was found that the OOR was relatively independent of study base rate and performed better than most commonly used R-square analogs in indexing model…
Predicting Student Success on the Texas Chemistry STAAR Test: A Logistic Regression Analysis
ERIC Educational Resources Information Center
Johnson, William L.; Johnson, Annabel M.; Johnson, Jared
2012-01-01
Background: The context is the new Texas STAAR end-of-course testing program. Purpose: The authors developed a logistic regression model to predict who would pass-or-fail the new Texas chemistry STAAR end-of-course exam. Setting: Robert E. Lee High School (5A) with an enrollment of 2700 students, Tyler, Texas. Date of the study was the 2011-2012…
Susan L. King
2003-01-01
The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...
Logistic regression trees for initial selection of interesting loci in case-control studies
Nickolov, Radoslav Z; Milanov, Valentin B
2007-01-01
Modern genetic epidemiology faces the challenge of dealing with hundreds of thousands of genetic markers. The selection of a small initial subset of interesting markers for further investigation can greatly facilitate genetic studies. In this contribution we suggest the use of a logistic regression tree algorithm known as logistic tree with unbiased selection. Using the simulated data provided for Genetic Analysis Workshop 15, we show how this algorithm, with incorporation of multifactor dimensionality reduction method, can reduce an initial large pool of markers to a small set that includes the interesting markers with high probability. PMID:18466557
Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R.
2008-01-01
Logistic regression was used to develop statistical models that can be used to predict the probability of debris flows in areas recently burned by wildfires by using data from 14 wildfires that burned in southern California during 2003-2006. Twenty-eight independent variables describing the basin morphology, burn severity, rainfall, and soil properties of 306 drainage basins located within those burned areas were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows soon after the 2003 to 2006 fires were delineated from data in the National Elevation Dataset using a geographic information system; (2) Data describing the basin morphology, burn severity, rainfall, and soil properties were compiled for each basin. These data were then input to a statistics software package for analysis using logistic regression; and (3) Relations between the occurrence or absence of debris flows and the basin morphology, burn severity, rainfall, and soil properties were evaluated, and five multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combinations produced the most effective models, and the multivariate models that best predicted the occurrence of debris flows were identified. Percentage of high burn severity and 3-hour peak rainfall intensity were significant variables in all models. Soil organic matter content and soil clay content were significant variables in all models except Model 5. Soil slope was a significant variable in all models except Model 4. The most suitable model can be selected from these five models on the basis of the availability of independent variables in the particular area of interest and field checking of probability maps. The multivariate logistic regression models can be entered into a geographic information system, and maps showing the probability of debris flows can be constructed in recently burned areas of southern California. This study demonstrates that logistic regression is a valuable tool for developing models that predict the probability of debris flows occurring in recently burned landscapes.
Hein, R; Abbas, S; Seibold, P; Salazar, R; Flesch-Janys, D; Chang-Claude, J
2012-01-01
Menopausal hormone therapy (MHT) is associated with an increased breast cancer risk in postmenopausal women, with combined estrogen-progestagen therapy posing a greater risk than estrogen monotherapy. However, few studies focused on potential effect modification of MHT-associated breast cancer risk by genetic polymorphisms in the progesterone metabolism. We assessed effect modification of MHT use by five coding single nucleotide polymorphisms (SNPs) in the progesterone metabolizing enzymes AKR1C3 (rs7741), AKR1C4 (rs3829125, rs17134592), and SRD5A1 (rs248793, rs3736316) using a two-center population-based case-control study from Germany with 2,502 postmenopausal breast cancer patients and 4,833 matched controls. An empirical-Bayes procedure that tests for interaction using a weighted combination of the prospective and the retrospective case-control estimators as well as standard prospective logistic regression were applied to assess multiplicative statistical interaction between polymorphisms and duration of MHT use with regard to breast cancer risk assuming a log-additive mode of inheritance. No genetic marginal effects were observed. Breast cancer risk associated with duration of combined therapy was significantly modified by SRD5A1_rs3736316, showing a reduced risk elevation in carriers of the minor allele (p (interaction,empirical-Bayes) = 0.006 using the empirical-Bayes method, p (interaction,logistic regression) = 0.013 using logistic regression). The risk associated with duration of use of monotherapy was increased by AKR1C3_rs7741 in minor allele carriers (p (interaction,empirical-Bayes) = 0.083, p (interaction,logistic regression) = 0.029) and decreased in minor allele carriers of two SNPs in AKR1C4 (rs3829125: p (interaction,empirical-Bayes) = 0.07, p (interaction,logistic regression) = 0.021; rs17134592: p (interaction,empirical-Bayes) = 0.101, p (interaction,logistic regression) = 0.038). After Bonferroni correction for multiple testing only SRD5A1_rs3736316 assessed using the empirical-Bayes method remained significant. Postmenopausal breast cancer risk associated with combined therapy may be modified by genetic variation in SRD5A1. Further well-powered studies are, however, required to replicate our finding.
Busch, Robert; Han, MeiLan K; Bowler, Russell P; Dransfield, Mark T; Wells, J Michael; Regan, Elizabeth A; Hersh, Craig P
2016-02-10
Despite inhaled medications that decrease exacerbation risk, some COPD patients experience frequent exacerbations. We determined prospective risk factors for exacerbations among subjects in the COPDGene Study taking inhaled medications. 2113 COPD subjects were categorized into four medication use patterns: triple therapy with tiotropium (TIO) plus long-acting beta-agonist/inhaled-corticosteroid (ICS ± LABA), tiotropium alone, ICS ± LABA, and short-acting bronchodilators. Self-reported exacerbations were recorded in telephone and web-based longitudinal follow-up surveys. Associations with exacerbations were determined within each medication group using four separate logistic regression models. A head-to-head analysis compared exacerbation risk among subjects using tiotropium vs. ICS ± LABA. In separate logistic regression models, the presence of gastroesophageal reflux, female gender, and higher scores on the St. George's Respiratory Questionnaire were significant predictors of exacerbator status within multiple medication groups (reflux: OR 1.62-2.75; female gender: OR 1.53 - OR 1.90; SGRQ: OR 1.02-1.03). Subjects taking either ICS ± LABA or tiotropium had similar baseline characteristics, allowing comparison between these two groups. In the head-to-head comparison, tiotropium users showed a trend towards lower rates of exacerbations (OR = 0.69 [95 % CI 0.45, 1.06], p = 0.09) compared with ICS ± LABA users, especially in subjects without comorbid asthma (OR = 0.56 [95% CI 0.31, 1.00], p = 0.05). Each common COPD medication usage group showed unique risk factor patterns associated with increased risk of exacerbations, which may help clinicians identify subjects at risk. Compared to similar subjects using ICS ± LABA, those taking tiotropium showed a trend towards reduced exacerbation risk, especially in subjects without asthma. ClinicalTrials.gov NCT00608764, first received 1/28/2008.
PNPLA3 I148M associations with liver carcinogenesis in Japanese chronic hepatitis C patients.
Nakaoka, Kazunori; Hashimoto, Senju; Kawabe, Naoto; Nitta, Yoshifumi; Murao, Michihito; Nakano, Takuji; Shimazaki, Hiroaki; Kan, Toshiki; Takagawa, Yuka; Ohki, Masashi; Kurashita, Takamitsu; Takamura, Tomoki; Nishikawa, Toru; Ichino, Naohiro; Osakabe, Keisuke; Yoshioka, Kentaro
2015-01-01
To investigate associations between patatin-like phospholipase domain-containing 3 (PNPLA3) genotypes and fibrosis and hepatocarcinogenesis in Japanese chronic hepatitis C (CHC) patients. Two hundred and thirty-one patients with CHC were examined for PNPLA3 genotypes, liver stiffness measurements (LSM), and hepatocellular carcinoma (HCC) from May 2010 to October 2012 at Fujita Health University Hospital. The rs738409 single nucleotide polymorphism (SNP) encoding for a functional PNPLA3 I148M protein variant was genotyped using a TaqMan predesigned SNP genotyping assay. LSM was determined as the velocity of a shear wave (Vs) with an acoustic radiation force impulse. Vs cut-off values for cirrhosis were set at 1.55 m/s. We excluded CHC patients with a sustained virological response or relapse after interferon treatment. PNPLA3 genotypes were CC, CG, and GG for 118, 72, and 41 patients, respectively. Multivariable logistic regression analysis selected older age (OR = 1.06; 95% CI: 1.03-1.09; p < 0.0001), higher body mass index (BMI) (OR= 1.12; 95% CI: 1.03-1.22; p = 0.0082), and PNPLA3 genotype GG (OR = 2.07; 95% CI: 0.97-4.42; p = 0.0599) as the factors independently associated with cirrhosis. When 137 patients without past history of interferon treatment were separately assessed, multivariable logistic regression analysis selected older age (OR = 1.05; 95% CI: 1.02-1.09; p = 0.0034), and PNPLA3 genotype GG (OR = 3.35; 95% CI: 1.13-9.91; p = 0.0291) as the factors independently associated with cirrhosis. Multivariable logistic regression analysis selected older age (OR = 1.12; 95% CI: 1.07-1.17; p < 0.0001), PNPLA3 genotype GG (OR = 2.62; 95% CI: 1.15-5.96; p = 0.0218), and male gender (OR = 1.83; 95% CI: 0.90-3.71); p = 0.0936) as the factors independently associated with HCC. PNPLA3 genotype I148M is one of risk factors for developing HCC in Japanese CHC patients, and is one of risk factors for progress to cirrhosis in the patients without past history of interferon treatment.
Is parenting style a predictor of suicide attempts in a representative sample of adolescents?
Donath, Carolin; Graessel, Elmar; Baier, Dirk; Bleich, Stefan; Hillemacher, Thomas
2014-04-26
Suicidal ideation and suicide attempts are serious but not rare conditions in adolescents. However, there are several research and practical suicide-prevention initiatives that discuss the possibility of preventing serious self-harm. Profound knowledge about risk and protective factors is therefore necessary. The aim of this study is a) to clarify the role of parenting behavior and parenting styles in adolescents' suicide attempts and b) to identify other statistically significant and clinically relevant risk and protective factors for suicide attempts in a representative sample of German adolescents. In the years 2007/2008, a representative written survey of N = 44,610 students in the 9th grade of different school types in Germany was conducted. In this survey, the lifetime prevalence of suicide attempts was investigated as well as potential predictors including parenting behavior. A three-step statistical analysis was carried out: I) As basic model, the association between parenting and suicide attempts was explored via binary logistic regression controlled for age and sex. II) The predictive values of 13 additional potential risk/protective factors were analyzed with single binary logistic regression analyses for each predictor alone. Non-significant predictors were excluded in Step III. III) In a multivariate binary logistic regression analysis, all significant predictor variables from Step II and the parenting styles were included after testing for multicollinearity. Three parental variables showed a relevant association with suicide attempts in adolescents - (all protective): mother's warmth and father's warmth in childhood and mother's control in adolescence (Step I). In the full model (Step III), Authoritative parenting (protective: OR: .79) and Rejecting-Neglecting parenting (risk: OR: 1.63) were identified as significant predictors (p < .001) for suicidal attempts. Seven further variables were interpreted to be statistically significant and clinically relevant: ADHD, female sex, smoking, Binge Drinking, absenteeism/truancy, migration background, and parental separation events. Parenting style does matter. While children of Authoritative parents profit, children of Rejecting-Neglecting parents are put at risk - as we were able to show for suicide attempts in adolescence. Some of the identified risk factors contribute new knowledge and potential areas of intervention for special groups such as migrants or children diagnosed with ADHD.
Applications of statistics to medical science, III. Correlation and regression.
Watanabe, Hiroshi
2012-01-01
In this third part of a series surveying medical statistics, the concepts of correlation and regression are reviewed. In particular, methods of linear regression and logistic regression are discussed. Arguments related to survival analysis will be made in a subsequent paper.
Schell, Greggory J; Lavieri, Mariel S; Stein, Joshua D; Musch, David C
2013-12-21
Open-angle glaucoma (OAG) is a prevalent, degenerate ocular disease which can lead to blindness without proper clinical management. The tests used to assess disease progression are susceptible to process and measurement noise. The aim of this study was to develop a methodology which accounts for the inherent noise in the data and improve significant disease progression identification. Longitudinal observations from the Collaborative Initial Glaucoma Treatment Study (CIGTS) were used to parameterize and validate a Kalman filter model and logistic regression function. The Kalman filter estimates the true value of biomarkers associated with OAG and forecasts future values of these variables. We develop two logistic regression models via generalized estimating equations (GEE) for calculating the probability of experiencing significant OAG progression: one model based on the raw measurements from CIGTS and another model based on the Kalman filter estimates of the CIGTS data. Receiver operating characteristic (ROC) curves and associated area under the ROC curve (AUC) estimates are calculated using cross-fold validation. The logistic regression model developed using Kalman filter estimates as data input achieves higher sensitivity and specificity than the model developed using raw measurements. The mean AUC for the Kalman filter-based model is 0.961 while the mean AUC for the raw measurements model is 0.889. Hence, using the probability function generated via Kalman filter estimates and GEE for logistic regression, we are able to more accurately classify patients and instances as experiencing significant OAG progression. A Kalman filter approach for estimating the true value of OAG biomarkers resulted in data input which improved the accuracy of a logistic regression classification model compared to a model using raw measurements as input. This methodology accounts for process and measurement noise to enable improved discrimination between progression and nonprogression in chronic diseases.
Computing group cardinality constraint solutions for logistic regression problems.
Zhang, Yong; Kwon, Dongjin; Pohl, Kilian M
2017-01-01
We derive an algorithm to directly solve logistic regression based on cardinality constraint, group sparsity and use it to classify intra-subject MRI sequences (e.g. cine MRIs) of healthy from diseased subjects. Group cardinality constraint models are often applied to medical images in order to avoid overfitting of the classifier to the training data. Solutions within these models are generally determined by relaxing the cardinality constraint to a weighted feature selection scheme. However, these solutions relate to the original sparse problem only under specific assumptions, which generally do not hold for medical image applications. In addition, inferring clinical meaning from features weighted by a classifier is an ongoing topic of discussion. Avoiding weighing features, we propose to directly solve the group cardinality constraint logistic regression problem by generalizing the Penalty Decomposition method. To do so, we assume that an intra-subject series of images represents repeated samples of the same disease patterns. We model this assumption by combining series of measurements created by a feature across time into a single group. Our algorithm then derives a solution within that model by decoupling the minimization of the logistic regression function from enforcing the group sparsity constraint. The minimum to the smooth and convex logistic regression problem is determined via gradient descent while we derive a closed form solution for finding a sparse approximation of that minimum. We apply our method to cine MRI of 38 healthy controls and 44 adult patients that received reconstructive surgery of Tetralogy of Fallot (TOF) during infancy. Our method correctly identifies regions impacted by TOF and generally obtains statistically significant higher classification accuracy than alternative solutions to this model, i.e., ones relaxing group cardinality constraints. Copyright © 2016 Elsevier B.V. All rights reserved.
Ren, Yilong; Wang, Yunpeng; Wu, Xinkai; Yu, Guizhen; Ding, Chuan
2016-10-01
Red light running (RLR) has become a major safety concern at signalized intersection. To prevent RLR related crashes, it is critical to identify the factors that significantly impact the drivers' behaviors of RLR, and to predict potential RLR in real time. In this research, 9-month's RLR events extracted from high-resolution traffic data collected by loop detectors from three signalized intersections were applied to identify the factors that significantly affect RLR behaviors. The data analysis indicated that occupancy time, time gap, used yellow time, time left to yellow start, whether the preceding vehicle runs through the intersection during yellow, and whether there is a vehicle passing through the intersection on the adjacent lane were significantly factors for RLR behaviors. Furthermore, due to the rare events nature of RLR, a modified rare events logistic regression model was developed for RLR prediction. The rare events logistic regression method has been applied in many fields for rare events studies and shows impressive performance, but so far none of previous research has applied this method to study RLR. The results showed that the rare events logistic regression model performed significantly better than the standard logistic regression model. More importantly, the proposed RLR prediction method is purely based on loop detector data collected from a single advance loop detector located 400 feet away from stop-bar. This brings great potential for future field applications of the proposed method since loops have been widely implemented in many intersections and can collect data in real time. This research is expected to contribute to the improvement of intersection safety significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Eken, Cenker; Bilge, Ugur; Kartal, Mutlu; Eray, Oktay
2009-06-03
Logistic regression is the most common statistical model for processing multivariate data in the medical literature. Artificial intelligence models like an artificial neural network (ANN) and genetic algorithm (GA) may also be useful to interpret medical data. The purpose of this study was to perform artificial intelligence models on a medical data sheet and compare to logistic regression. ANN, GA, and logistic regression analysis were carried out on a data sheet of a previously published article regarding patients presenting to an emergency department with flank pain suspicious for renal colic. The study population was composed of 227 patients: 176 patients had a diagnosis of urinary stone, while 51 ultimately had no calculus. The GA found two decision rules in predicting urinary stones. Rule 1 consisted of being male, pain not spreading to back, and no fever. In rule 2, pelvicaliceal dilatation on bedside ultrasonography replaced no fever. ANN, GA rule 1, GA rule 2, and logistic regression had a sensitivity of 94.9, 67.6, 56.8, and 95.5%, a specificity of 78.4, 76.47, 86.3, and 47.1%, a positive likelihood ratio of 4.4, 2.9, 4.1, and 1.8, and a negative likelihood ratio of 0.06, 0.42, 0.5, and 0.09, respectively. The area under the curve was found to be 0.867, 0.720, 0.715, and 0.713 for all applications, respectively. Data mining techniques such as ANN and GA can be used for predicting renal colic in emergency settings and to constitute clinical decision rules. They may be an alternative to conventional multivariate analysis applications used in biostatistics.
NASA Astrophysics Data System (ADS)
Duman, T. Y.; Can, T.; Gokceoglu, C.; Nefeslioglu, H. A.; Sonmez, H.
2006-11-01
As a result of industrialization, throughout the world, cities have been growing rapidly for the last century. One typical example of these growing cities is Istanbul, the population of which is over 10 million. Due to rapid urbanization, new areas suitable for settlement and engineering structures are necessary. The Cekmece area located west of the Istanbul metropolitan area is studied, because the landslide activity is extensive in this area. The purpose of this study is to develop a model that can be used to characterize landslide susceptibility in map form using logistic regression analysis of an extensive landslide database. A database of landslide activity was constructed using both aerial-photography and field studies. About 19.2% of the selected study area is covered by deep-seated landslides. The landslides that occur in the area are primarily located in sandstones with interbedded permeable and impermeable layers such as claystone, siltstone and mudstone. About 31.95% of the total landslide area is located at this unit. To apply logistic regression analyses, a data matrix including 37 variables was constructed. The variables used in the forwards stepwise analyses are different measures of slope, aspect, elevation, stream power index (SPI), plan curvature, profile curvature, geology, geomorphology and relative permeability of lithological units. A total of 25 variables were identified as exerting strong influence on landslide occurrence, and included by the logistic regression equation. Wald statistics values indicate that lithology, SPI and slope are more important than the other parameters in the equation. Beta coefficients of the 25 variables included the logistic regression equation provide a model for landslide susceptibility in the Cekmece area. This model is used to generate a landslide susceptibility map that correctly classified 83.8% of the landslide-prone areas.
Loerbroks, Adrian; Meng, Heng; Chen, Min-Li; Herr, Raphael; Angerer, Peter; Li, Jian
2014-01-01
We examined associations of organizational justice (OJ) and effort-reward imbalance (ERI) with burnout and intentions to leave the teaching profession (ILTP) among primary school teachers in China. Six primary schools located in Wuhan, China, were randomly selected from three different socioeconomic areas in 2010. In total, these schools employed 533 teachers, and 436 of these (82 %) participated in a cross-sectional survey. OJ and ERI were assessed by 13-item and 10-item questionnaires, respectively. Burnout was measured using the emotional exhaustion subscale of the Chinese Maslach Burnout Inventory. ILTP were operationalized based on the frequency of thoughts about turnover during the past year. Logistic regression-based odds ratios (ORs) with 95 % confidence intervals (CIs) were estimated separately for OJ and ERI. In a second step, these work stress scales were entered into the same regression model. Separate regression models suggested moderate to strong associations of OJ and ERI with burnout and ILTP. After simultaneous adjustment, the overall OJ score remained associated with burnout and ILTP, but ERI appeared to be the stronger and more consistent determinant of both outcomes. For instance, an increase of 1 standard deviation of the ERI score was associated with an OR of 2.60 (95 % CI 1.97-3.43) for burnout and with an OR of 2.26 (95 % CI 1.66-3.08) for ILTP. Organizational justice and in particular ERI appeared to be determinants of burnout and ILTP among primary school teachers in China.
Mayanja, Yunia; Kamacooko, Onesmus; Bagiire, Daniel; Namale, Gertrude; Kaleebu, Pontiano; Seeley, Janet
2018-03-01
Data on implementation of 'Test and Treat' among key populations in sub-Saharan Africa are still limited. We examined factors associated with prompt antiretroviral therapy/ART (within 1 month of HIV-positive diagnosis or 1 week if pregnant) among 343 women at high risk for HIV infection in Kampala-Uganda, of whom 28% initiated prompt ART. Most (95%) reported paid sex within 3 months prior to enrolment. Multivariable logistic regression was used to determine baseline characteristics associated with prompt ART. Sex work as main job, younger age and being widowed/separated were associated with lower odds of prompt ART; being enrolled after 12 months of implementing the intervention was associated with higher odds of prompt ART. Younger women, widowed/separated and those reporting sex work as their main job need targeted interventions to start ART promptly after testing. Staff supervision and mentoring may need strengthening during the first year of implementing 'test and treat' interventions.
Factors affecting the sustainability of solid waste management system-the case of Palestine.
Al-Khateeb, Ammar J; Al-Sari, Majed I; Al-Khatib, Issam A; Anayah, Fathi
2017-02-01
Understanding the predictors of sustainability in solid waste management (SWM) systems can significantly contribute to eliminate many waste management problems. In this paper, the sustainability elements of SWM systems of interest are (1) attitudes toward separation at the source, (2) behaviour regarding reuse and/or recycling and (3) willingness to pay for an improved service of SWM. The predictors affecting these three elements were studied in two Palestinian cities: Ramallah and Jericho. The data were collected via structured questionnaires and direct interviews with the respondents, and the analysis utilized a logistic regression model. The results showed that the place of residence and dwelling premises are the significant factors influencing attitudes toward separation at the source; the place of residence and age are the significant factors explaining behaviour regarding reuse and/or recycling; while the dwelling premises, gender, level of education and being received education on waste management are the significant factors affecting willingness to pay for an improved service of SWM.
New robust statistical procedures for the polytomous logistic regression models.
Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro
2018-05-17
This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.
Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.
2016-06-30
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.
NASA Astrophysics Data System (ADS)
Kneringer, Philipp; Dietz, Sebastian; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Low-visibility conditions have a large impact on aviation safety and economic efficiency of airports and airlines. To support decision makers, we develop a statistical probabilistic nowcasting tool for the occurrence of capacity-reducing operations related to low visibility. The probabilities of four different low visibility classes are predicted with an ordered logistic regression model based on time series of meteorological point measurements. Potential predictor variables for the statistical models are visibility, humidity, temperature and wind measurements at several measurement sites. A stepwise variable selection method indicates that visibility and humidity measurements are the most important model inputs. The forecasts are tested with a 30 minute forecast interval up to two hours, which is a sufficient time span for tactical planning at Vienna Airport. The ordered logistic regression models outperform persistence and are competitive with human forecasters.
Wang, Shuang; Jiang, Xiaoqian; Wu, Yuan; Cui, Lijuan; Cheng, Samuel; Ohno-Machado, Lucila
2013-06-01
We developed an EXpectation Propagation LOgistic REgRession (EXPLORER) model for distributed privacy-preserving online learning. The proposed framework provides a high level guarantee for protecting sensitive information, since the information exchanged between the server and the client is the encrypted posterior distribution of coefficients. Through experimental results, EXPLORER shows the same performance (e.g., discrimination, calibration, feature selection, etc.) as the traditional frequentist logistic regression model, but provides more flexibility in model updating. That is, EXPLORER can be updated one point at a time rather than having to retrain the entire data set when new observations are recorded. The proposed EXPLORER supports asynchronized communication, which relieves the participants from coordinating with one another, and prevents service breakdown from the absence of participants or interrupted communications. Copyright © 2013 Elsevier Inc. All rights reserved.
A computational approach to compare regression modelling strategies in prediction research.
Pajouheshnia, Romin; Pestman, Wiebe R; Teerenstra, Steven; Groenwold, Rolf H H
2016-08-25
It is often unclear which approach to fit, assess and adjust a model will yield the most accurate prediction model. We present an extension of an approach for comparing modelling strategies in linear regression to the setting of logistic regression and demonstrate its application in clinical prediction research. A framework for comparing logistic regression modelling strategies by their likelihoods was formulated using a wrapper approach. Five different strategies for modelling, including simple shrinkage methods, were compared in four empirical data sets to illustrate the concept of a priori strategy comparison. Simulations were performed in both randomly generated data and empirical data to investigate the influence of data characteristics on strategy performance. We applied the comparison framework in a case study setting. Optimal strategies were selected based on the results of a priori comparisons in a clinical data set and the performance of models built according to each strategy was assessed using the Brier score and calibration plots. The performance of modelling strategies was highly dependent on the characteristics of the development data in both linear and logistic regression settings. A priori comparisons in four empirical data sets found that no strategy consistently outperformed the others. The percentage of times that a model adjustment strategy outperformed a logistic model ranged from 3.9 to 94.9 %, depending on the strategy and data set. However, in our case study setting the a priori selection of optimal methods did not result in detectable improvement in model performance when assessed in an external data set. The performance of prediction modelling strategies is a data-dependent process and can be highly variable between data sets within the same clinical domain. A priori strategy comparison can be used to determine an optimal logistic regression modelling strategy for a given data set before selecting a final modelling approach.
Murto, C.; Kaplan, C.; Ariza, L.; Schwarz, K.; Alencar, C. H.; da Costa, L. M. M.; Heukelbach, J.
2013-01-01
In Brazil, leprosy is endemic and concentrated in high-risk clusters. Internal migration is common in the country and may influence leprosy transmission and hamper control efforts. We performed a cross-sectional study with two separate analyses evaluating factors associated with migration in Brazil's Northeast: one among individuals newly diagnosed with leprosy and the other among a clinically unapparent population with no symptoms of leprosy for comparison. We included 394 individuals newly diagnosed with leprosy and 391 from the clinically unapparent population. Of those with leprosy, 258 (65.5%) were birth migrants, 105 (26.6%) were past five-year migrants, and 43 (10.9%) were circular migrants. In multivariate logistic regression, three independent factors were found to be significantly associated with migration among those with leprosy: (1) alcohol consumption, (2) separation from family/friends, and (3) difficulty reaching the healthcare facility. Separation from family/friends was also associated with migration in the clinically unapparent population. The health sector may consider adapting services to meet the needs of migrating populations. Future research is needed to explore risks associated with leprosy susceptibility from life stressors, such as separation from family and friends, access to healthcare facilities, and alcohol consumption to establish causal relationships. PMID:24194769
Science of Test Research Consortium: Year Two Final Report
2012-10-02
July 2012. Analysis of an Intervention for Small Unmanned Aerial System ( SUAS ) Accidents, submitted to Quality Engineering, LQEN-2012-0056. Stone... Systems Engineering. Wolf, S. E., R. R. Hill, and J. J. Pignatiello. June 2012. Using Neural Networks and Logistic Regression to Model Small Unmanned ...Human Retina. 6. Wolf, S. E. March 2012. Modeling Small Unmanned Aerial System Mishaps using Logistic Regression and Artificial Neural Networks. 7
ERIC Educational Resources Information Center
Hidalgo, Mª Dolores; Gómez-Benito, Juana; Zumbo, Bruno D.
2014-01-01
The authors analyze the effectiveness of the R[superscript 2] and delta log odds ratio effect size measures when using logistic regression analysis to detect differential item functioning (DIF) in dichotomous items. A simulation study was carried out, and the Type I error rate and power estimates under conditions in which only statistical testing…
Brian S. Cade; Barry R. Noon; Rick D. Scherer; John J. Keane
2017-01-01
Counts of avian fledglings, nestlings, or clutch size that are bounded below by zero and above by some small integer form a discrete random variable distribution that is not approximated well by conventional parametric count distributions such as the Poisson or negative binomial. We developed a logistic quantile regression model to provide estimates of the empirical...
Mohammed, Mohammed A; Manktelow, Bradley N; Hofer, Timothy P
2016-04-01
There is interest in deriving case-mix adjusted standardised mortality ratios so that comparisons between healthcare providers, such as hospitals, can be undertaken in the controversial belief that variability in standardised mortality ratios reflects quality of care. Typically standardised mortality ratios are derived using a fixed effects logistic regression model, without a hospital term in the model. This fails to account for the hierarchical structure of the data - patients nested within hospitals - and so a hierarchical logistic regression model is more appropriate. However, four methods have been advocated for deriving standardised mortality ratios from a hierarchical logistic regression model, but their agreement is not known and neither do we know which is to be preferred. We found significant differences between the four types of standardised mortality ratios because they reflect a range of underlying conceptual issues. The most subtle issue is the distinction between asking how an average patient fares in different hospitals versus how patients at a given hospital fare at an average hospital. Since the answers to these questions are not the same and since the choice between these two approaches is not obvious, the extent to which profiling hospitals on mortality can be undertaken safely and reliably, without resolving these methodological issues, remains questionable. © The Author(s) 2012.
Chan, Siew Foong; Deeks, Jonathan J; Macaskill, Petra; Irwig, Les
2008-01-01
To compare three predictive models based on logistic regression to estimate adjusted likelihood ratios allowing for interdependency between diagnostic variables (tests). This study was a review of the theoretical basis, assumptions, and limitations of published models; and a statistical extension of methods and application to a case study of the diagnosis of obstructive airways disease based on history and clinical examination. Albert's method includes an offset term to estimate an adjusted likelihood ratio for combinations of tests. Spiegelhalter and Knill-Jones method uses the unadjusted likelihood ratio for each test as a predictor and computes shrinkage factors to allow for interdependence. Knottnerus' method differs from the other methods because it requires sequencing of tests, which limits its application to situations where there are few tests and substantial data. Although parameter estimates differed between the models, predicted "posttest" probabilities were generally similar. Construction of predictive models using logistic regression is preferred to the independence Bayes' approach when it is important to adjust for dependency of tests errors. Methods to estimate adjusted likelihood ratios from predictive models should be considered in preference to a standard logistic regression model to facilitate ease of interpretation and application. Albert's method provides the most straightforward approach.
Cameron, Isobel M; Scott, Neil W; Adler, Mats; Reid, Ian C
2014-12-01
It is important for clinical practice and research that measurement scales of well-being and quality of life exhibit only minimal differential item functioning (DIF). DIF occurs where different groups of people endorse items in a scale to different extents after being matched by the intended scale attribute. We investigate the equivalence or otherwise of common methods of assessing DIF. Three methods of measuring age- and sex-related DIF (ordinal logistic regression, Rasch analysis and Mantel χ(2) procedure) were applied to Hospital Anxiety Depression Scale (HADS) data pertaining to a sample of 1,068 patients consulting primary care practitioners. Three items were flagged by all three approaches as having either age- or sex-related DIF with a consistent direction of effect; a further three items identified did not meet stricter criteria for important DIF using at least one method. When applying strict criteria for significant DIF, ordinal logistic regression was slightly less sensitive. Ordinal logistic regression, Rasch analysis and contingency table methods yielded consistent results when identifying DIF in the HADS depression and HADS anxiety scales. Regardless of methods applied, investigators should use a combination of statistical significance, magnitude of the DIF effect and investigator judgement when interpreting the results.
NASA Astrophysics Data System (ADS)
Cao, Faxian; Yang, Zhijing; Ren, Jinchang; Ling, Wing-Kuen; Zhao, Huimin; Marshall, Stephen
2017-12-01
Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework.
Latin hypercube approach to estimate uncertainty in ground water vulnerability
Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.
2007-01-01
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.
Predictors of infant foster care in cases of maternal psychiatric disorders
Glangeaud-Freudenthal, Nine M.-C.; Sutter-Dallay, Anne-Laure; Thieulin, Anne-Claire; Dagens, Véronique; Zimmermann, Marie-Agathe; Debourg, Alain; Amzallag, Corinne; Cazas, Odile; Cammas, Rafaële; Klopfert, Marie-Emmanuelle; Rainelli, Christine; Tielemans, Pascale; Mertens, Claudine; Maron, Michel; Nezelof, Sylvie; Poinso, François
2013-01-01
Purpose Our aim was to investigate the factors associated with mother-child separation at discharge, after joint hospitalization in psychiatric mother-baby units (MBUs) in France and Belgium. Because parents with postpartum psychiatric disorders are at risk of disturbed parent-infant interactions, their infants have an increased risk of an unstable early foundation. They may be particularly vulnerable to environmental stress and have a higher risk of developing some psychiatric disorders in adulthood. Methods: This prospective longitudinal study of 1018 women with postpartum psychiatric disorders, jointly admitted with their infant, to 16 French and Belgian psychiatric mother-baby units (MBUs), used multifactorial logistic regression models to assess the risk factors for mother-child separation at discharge from MBUs. Those factors include some infant characteristics associated with personal vulnerability, parents’ pathology and psychosocial context. Results Most children were discharged with their mothers, but 151 (15%) were separated from their mothers at discharge. Risk factors independently associated with separation were: i) neonatal or infant medical problems or complications; ii) maternal psychiatric disorder; iii) paternal psychiatric disorder; iv) maternal lack of good relationships with others; v) mother receipt of disability benefits; vi) low social class. Conclusions This study highlights the existence of factors other than maternal pathology that lead to decisions to separate mother and child for the child’s protection in a population of mentally ill mothers jointly hospitalized with the baby in the postpartum period. PMID:22706788
Assari, Shervin; Dejman, Masoumeh; Neighbors, Harold W
2016-09-01
The aim of this study was to explore ethnic differences in the separate and additive effects of anxiety and depression on self-rated mental health (SRMH) of Blacks in the USA. With a cross-sectional design, we used data from a national household probability sample of African Americans (n = 3570) and Caribbean Blacks (n = 1621) who participated in the National Survey of American Life, 2001-2003. Demographic factors, socio-economic factors, 12-month general anxiety disorder (GAD) and major depressive disorder (MDD), and current SRMH were measured. In each ethnic group, three logistic regressions were used to assess the effects of GAD, MDD, and their combinations on SRMH. Among African Americans, GAD and MDD had separate effects on SRMH. Among Caribbean Blacks, only MDD but not GAD had separate effect on SRMH. Among African Americans, when the combined effects of GAD and MDD were tested, GAD but not MDD was associated with SRMH. The separate and additive effects of GAD and MDD on SRMH among Blacks depend on ethnicity. Although single-item SRMH measures are easy methods for the screening of mental health need, community-based programs that aim to meet the need for mental health services among Blacks in the USA should consider within-race ethnic differences in the applicability of such instruments.
Predictors of infant foster care in cases of maternal psychiatric disorders.
Glangeaud-Freudenthal, Nine M-C; Sutter-Dallay, Anne-Laure; Thieulin, Anne-Claire; Dagens, Véronique; Zimmermann, Marie-Agathe; Debourg, Alain; Amzallag, Corinne; Cazas, Odile; Cammas, Rafaële; Klopfert, Marie-Emmanuelle; Rainelli, Christine; Tielemans, Pascale; Mertens, Claudine; Maron, Michel; Nezelof, Sylvie; Poinso, François
2013-04-01
Our aim was to investigate the factors associated with mother-child separation at discharge, after joint hospitalization in psychiatric mother-baby units (MBUs) in France and Belgium. Because parents with postpartum psychiatric disorders are at risk of disturbed parent-infant interactions, their infants have an increased risk of an unstable early foundation. They may be particularly vulnerable to environmental stress and have a higher risk of developing some psychiatric disorders in adulthood. This prospective longitudinal study of 1,018 women with postpartum psychiatric disorders, jointly admitted with their infant to 16 French and Belgian psychiatric mother-baby units (MBUs), used multifactorial logistic regression models to assess the risk factors for mother-child separation at discharge from MBUs. Those factors include some infant characteristics associated with personal vulnerability, parents' pathology and psychosocial context. Most children were discharged with their mothers, but 151 (15 %) were separated from their mothers at discharge. Risk factors independently associated with separation were: (1) neonatal or infant medical problems or complications; (2) maternal psychiatric disorder; (3) paternal psychiatric disorder; (4) maternal lack of good relationship with others; (5) mother receipt of disability benefits; (6) low social class. This study highlights the existence of factors other than maternal pathology that lead to decisions to separate mother and child for the child's protection in a population of mentally ill mothers jointly hospitalized with the baby in the postpartum period.
NASA Astrophysics Data System (ADS)
Tsangaratos, Paraskevas; Ilia, Ioanna; Loupasakis, Constantinos; Papadakis, Michalis; Karimalis, Antonios
2017-04-01
The main objective of the present study was to apply two machine learning methods for the production of a landslide susceptibility map in the Finikas catchment basin, located in North Peloponnese, Greece and to compare their results. Specifically, Logistic Regression and Random Forest were utilized, based on a database of 40 sites classified into two categories, non-landslide and landslide areas that were separated into a training dataset (70% of the total data) and a validation dataset (remaining 30%). The identification of the areas was established by analyzing airborne imagery, extensive field investigation and the examination of previous research studies. Six landslide related variables were analyzed, namely: lithology, elevation, slope, aspect, distance to rivers and distance to faults. Within the Finikas catchment basin most of the reported landslides were located along the road network and within the residential complexes, classified as rotational and translational slides, and rockfalls, mainly caused due to the physical conditions and the general geotechnical behavior of the geological formation that cover the area. Each landslide susceptibility map was reclassified by applying the Geometric Interval classification technique into five classes, namely: very low susceptibility, low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility. The comparison and validation of the outcomes of each model were achieved using statistical evaluation measures, the receiving operating characteristic and the area under the success and predictive rate curves. The computation process was carried out using RStudio an integrated development environment for R language and ArcGIS 10.1 for compiling the data and producing the landslide susceptibility maps. From the outcomes of the Logistic Regression analysis it was induced that the highest b coefficient is allocated to lithology and slope, which was 2.8423 and 1.5841, respectively. From the estimation of the mean decrease in Gini coefficient performed during the application of Random Forest and the mean decrease in accuracy the most important variable is slope followed by lithology, aspect, elevation, distance from river network, and distance from faults, while the most used variables during the training phase were the variable aspect (21.45%), slope (20.53%) and lithology (19.84%). The outcomes of the analysis are consistent with previous studies concerning the area of research, which have indicated the high influence of lithology and slope in the manifestation of landslides. High percentage of landslide occurrence has been observed in Plio-Pleistocene sediments, flysch formations, and Cretaceous limestone. Also the presences of landslides have been associated with the degree of weathering and fragmentation, the orientation of the discontinuities surfaces and the intense morphological relief. The most accurate model was Random Forest which identified correctly 92.00% of the instances during the training phase, followed by the Logistic Regression 89.00%. The same pattern of accuracy was calculated during the validation phase, in which the Random Forest achieved a classification accuracy of 93.00%, while the Logistic Regression model achieved an accuracy of 91.00%. In conclusion, the outcomes of the study could be a useful cartographic product to local authorities and government agencies during the implementation of successful decision-making and land use planning strategies. Keywords: Landslide Susceptibility, Logistic Regression, Random Forest, GIS, Greece.
Kupek, Emil
2006-03-15
Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100) random sample of the data generated and on a real data set. SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.
Boivin, Rémi; Leclerc, Chloé
2016-01-01
This article analyzes reported incidents of domestic violence according to the source of the complaint and whether the victim initially supported judicial action against the offender. Almost three quarters of incidents studied were reported by the victim (72%), and a little more than half of victims initially wanted to press charges (55%). Using multinomial logistic regression models, situational and individual factors are used to distinguish 4 incident profiles. Incidents in which the victim made the initial report to the police and wished to press charges are the most distinct and involve partners who were already separated at the time of the incident or had a history of domestic violence. The other profiles also show important differences.
Gender difference in health and its determinants in the old-aged population in India.
Dhak, Biplab
2009-09-01
This paper examines the gender differential in health and its socioeconomic and demographic determinants in the old-age population of India based on the National Sample Survey 60th round data collected in 2004. As in developed countries, older women in India report poorer self-reported health and experience greater immobility compared with men. Stepwise logistic regression analysis shows that the gender differential in health is linked to various socioeconomic and demographic variables and that the gender gap could be narrowed with appropriate policy intervention. Specifically, paying special attention towards improving the socioeconomic status of widowed/separated women could attenuate a substantial portion of the observed gender gap in the health of the old-age population.
Burkhardt, John C; DesJardins, Stephen L; Teener, Carol A; Gay, Steven E; Santen, Sally A
2016-11-01
In higher education, enrollment management has been developed to accurately predict the likelihood of enrollment of admitted students. This allows evidence to dictate numbers of interviews scheduled, offers of admission, and financial aid package distribution. The applicability of enrollment management techniques for use in medical education was tested through creation of a predictive enrollment model at the University of Michigan Medical School (U-M). U-M and American Medical College Application Service data (2006-2014) were combined to create a database including applicant demographics, academic application scores, institutional financial aid offer, and choice of school attended. Binomial logistic regression and multinomial logistic regression models were estimated in order to study factors related to enrollment at the local institution versus elsewhere and to groupings of competing peer institutions. A predictive analytic "dashboard" was created for practical use. Both models were significant at P < .001 and had similar predictive performance. In the binomial model female, underrepresented minority students, grade point average, Medical College Admission Test score, admissions committee desirability score, and most individual financial aid offers were significant (P < .05). The significant covariates were similar in the multinomial model (excluding female) and provided separate likelihoods of students enrolling at different institutional types. An enrollment-management-based approach would allow medical schools to better manage the number of students they admit and target recruitment efforts to improve their likelihood of success. It also performs a key institutional research function for understanding failed recruitment of highly desirable candidates.
Davis, Matthew A; Smith, Monica; Weeks, William B
2012-01-01
Previous studies suggest a possible association between using chiropractic care and lower influenza vaccination rates. We examined adult influenza vaccination rates for chiropractic patients to determine if they are different than those for users of other complementary and alternative medicine (CAM). We used the 2007 National Health Interview Survey to examine influenza vaccination rates among adult respondents who were considered high priority for the influenza vaccine (n=12,164). We separated respondents into clinically meaningful categories according to age and whether or not they had recently used chiropractic care, some other type of CAM, or neither. We used adjusted logistic regression to determine whether user status predicted influenza vaccination. Only 33% of younger and 64% of older high priority Chiropractic Users were vaccinated in 2007; these rates approximated those of Non-CAM Users. However, younger Non-Chiropractic CAM Users were more likely than Non-CAM Users to have been vaccinated (p-value=0.05). In adjusted logistic regressions, we found statistically insignificant differences when comparing Chiropractic Users to Non-CAM Users for younger adults (OR=0.93(95% CI:0.76-1.13), or for older adults OR=0.90 (95% CI:0.64-1.20). Chiropractic Users appear no less likely to be vaccinated for influenza; whereas, younger Non-chiropractic CAM Users are more likely than Non-CAM Users to be vaccinated. Copyright © 2011 Elsevier Inc. All rights reserved.
Kaji, Tatsuhiko; Mishima, Kazuo; Kitamura, Shingo; Enomoto, Minori; Nagase, Yukihiro; Li, Lan; Kaneita, Yoshitaka; Ohida, Takashi; Nishikawa, Toru; Uchiyama, Makoto
2010-08-01
The purpose of the present study was to clarify the relationship between late-life depression and daily life stress in a representative sample of 10 969 Japanese subjects. Data on 10 969 adults aged > or =50 who participated in the Active Survey of Health and Welfare in 2000, were analyzed. The self-administered questionnaire included items on 21 reasons for life stressors and the magnitude of stress, as well as the Japanese version of the Center for Epidemiologic Studies Depression Scale (CES-D). The relationship between the incidence of life stressors and mild-moderate (D(16)) and severe (D(26)) depressive symptoms was examined using logistic regression analysis. A total of 21.9% of subjects had D(16) symptoms, and 9.3% had D(26) symptoms. Further, increased age and being female were associated with more severe depressive state. Logistic regression analysis indicated that the strongest relationship between both the incidence of D(16) and D(26) symptoms and life stressors stemmed from 'having no one to talk to' (odds ratio = 3.3 and 5.0, respectively). Late-life depression was also associated with 'loss of purpose in life', 'separation/divorce', 'having nothing to do', 'health/illness/care of self', and 'debt'. There is a relationship between late-life depression and diminished social relationships, experiences involving loss of purpose in life or human relationships, and health problems in the Japanese general population.
Hwang, In Cheol; Ahn, Hong Yup; Park, Sang Min; Shim, Jae Yong; Kim, Kyoung Kon
2013-03-01
There is scant research concerning the prediction of imminent death, and current studies simply list events "that have already occurred" around 48 h of the death. We sought to determine what events herald the onset of dying process using the length of time from "any change" to death. This is a prospective observational study with chart audit. Inclusion criteria were terminal cancer patients who passed away in a palliative care unit. The analysis was limited to 181 patients who had medical records for their final week. Commonly observed events in the terminally ill were determined and their significant changes were defined beforehand. We selected the statistically significant changes by multiple logistic regression analysis and evaluated their predictive values for "death within 48 h." The median age was 67 years and there were 103 male patients. After adjusting for age, sex, primary cancer site, metastatic site, and cancer treatment, multiple logistic regression analyses for association between the events and "death within 48 h" revealed some significant changes: confused mental state, decreased blood pressure, increased pulse pressure, low oxygen saturation, death rattle, and decreased conscious level. The events that had higher predictability for death within 48 h were decreased blood pressure and low oxygen saturation, and the positive and negative predictive values of their combination were 95.0 and 81.4%, respectively. The most reliable events to predict impending death were decreased blood pressure and low oxygen saturation.
Infant otitis media and the use of secondary heating sources.
Pettigrew, Melinda M; Gent, Janneane F; Triche, Elizabeth W; Belanger, Kathleen D; Bracken, Michael B; Leaderer, Brian P
2004-01-01
This prospective study investigated the association of exposure to indoor secondary heating sources with otitis media and recurrent otitis media risk in infants. We enrolled mothers living in nonsmoking households and delivering babies between 1993 and 1996 in 12 Connecticut and Virginia hospitals. Biweekly telephone interviews during the first year of life assessed diagnoses from doctors' office visits and use of secondary home heating sources, air conditioner use, and day care. Otitis media episodes separated by more than 21 days were considered to be unique episodes. Recurrent otitis media was defined as 4 or more episodes of otitis media. Repeated-measures logistic regression modeling evaluated the association of kerosene heater, fireplace, or wood stove use with otitis media episodes while controlling for potential confounders. Logistic regression evaluated the relation of these secondary heating sources with recurrent otitis media. None of the secondary heating sources were associated with otitis media or with recurrent otitis media. Otitis media was associated with day care, the winter heating season, birth in the fall, white race, additional children in the home, and a maternal history of allergies in multivariate models. Recurrent otitis media was associated with day care, birth in the fall, white race, and a maternal history of allergies or asthma. We found no evidence that the intermittent use of secondary home heating sources increases the risk of otitis media or recurrent otitis media. This study confirms earlier findings regarding the importance of day care with respect to otitis media risk.
Theileria annulata seroprevalence among different cattle breeds in Rajshahi Division, Bangladesh.
Ali, Md Wajed; Alauddin, Md; Azad, Md Thoufic Anam; Hasan, Md Ariful; Appiah-Kwarteng, Cornelia; Takasu, Masaki; Baba, Minami; Kitoh, Katsuya; Rahman, Moizur; Takashima, Yasuhiro
2016-11-01
An epidemiological survey of Theileria annulata infection was undertaken in a cattle population in Rajshahi Division, Bangladesh. The local cattle breeds from the area (North Bengal Gray and Deshi) and crosses between the local breeds and Holstein cattle were predominantly screened. In total, 192 cattle serum samples were collected in two areas of Rajshahi Division, the Rajshahi District (n=147) and Natore District (n=45). The samples were screened with an enzyme-linked immunosorbent assay using T. annulata surface protein (TaSP) as the antigen. The seroprevalence was 80.0% (36/45) in Natore and 20.4% (30/147) in Rajshahi. A logistic regression analysis showed that the sampling location was significantly associated with seropositivity, whereas age, sex and breed were not. Although the logistic regression analysis did not show a linear dependence on age, we considered age-specific seroprevalence separately in the two districts. Seroprevalence did not differ significantly among age categories in the Natore District. In contrast, all the cattle <1 year old in the Rajshahi District were seronegative (11/11). Seroprevalence in the 1- and 2-year-old cattle was significantly lower in the Rajshahi District than in the Natore District. In the older age categories (3, 4 and >5 years), seroprevalence did not differ significantly between the Natore and Rajshahi Districts. These results suggest that the cattle in the Rajshahi District were sporadically exposed to T. annulata, whereas most cattle in the Natore District became infected during an early phase of life.
Theileria annulata seroprevalence among different cattle breeds in Rajshahi Division, Bangladesh
ALI, Md. Wajed; ALAUDDIN, Md.; AZAD, Md. Thoufic Anam; HASAN, Md. Ariful; APPIAH-KWARTENG, Cornelia; TAKASU, Masaki; BABA, Minami; KITOH, Katsuya; RAHMAN, Moizur; TAKASHIMA, Yasuhiro
2016-01-01
An epidemiological survey of Theileria annulata infection was undertaken in a cattle population in Rajshahi Division, Bangladesh. The local cattle breeds from the area (North Bengal Gray and Deshi) and crosses between the local breeds and Holstein cattle were predominantly screened. In total, 192 cattle serum samples were collected in two areas of Rajshahi Division, the Rajshahi District (n=147) and Natore District (n=45). The samples were screened with an enzyme-linked immunosorbent assay using T. annulata surface protein (TaSP) as the antigen. The seroprevalence was 80.0% (36/45) in Natore and 20.4% (30/147) in Rajshahi. A logistic regression analysis showed that the sampling location was significantly associated with seropositivity, whereas age, sex and breed were not. Although the logistic regression analysis did not show a linear dependence on age, we considered age-specific seroprevalence separately in the two districts. Seroprevalence did not differ significantly among age categories in the Natore District. In contrast, all the cattle <1 year old in the Rajshahi District were seronegative (11/11). Seroprevalence in the 1- and 2-year-old cattle was significantly lower in the Rajshahi District than in the Natore District. In the older age categories (3, 4 and >5 years), seroprevalence did not differ significantly between the Natore and Rajshahi Districts. These results suggest that the cattle in the Rajshahi District were sporadically exposed to T. annulata, whereas most cattle in the Natore District became infected during an early phase of life. PMID:27396398
An exploration of the relationship between youth assets and engagement in risky sexual behaviors.
Evans, Alexandra E; Sanderson, Maureen; Griffin, Sarah F; Reininger, Belinda; Vincent, Murray L; Parra-Medina, Debra; Valois, Robert F; Taylor, Doug
2004-11-01
To examine the relationship between specific youth assets and adolescents' engagement in risky sexual behaviors, as measured by an Aggregate Sexual Risk score, and to specifically explore which youth assets and demographic variables were predictive of youth engagement in risky sexual intercourse. A total of 2108 sexually active high school students attending public high schools in a southern state completed a self-report questionnaire that measured youth assets. Based upon responses to items measuring risk behaviors, an Aggregate Sexual Risk score was calculated for each student. Unconditional logistic regression and multivariate logistic regression analyses were conducted to examine the relationships between the assets and the Aggregate Risk Score. Four separate analyses (white females, white males, black females, and black males) were conducted. In general, the patterns in all four groups indicated that students who had an Aggregate Risk Score of > or = 3 (high risk) possessed less of the measured youth assets. The assets that were most significantly associated with engagement in risky sexual behaviors included self peer values regarding risky behaviors, quantity of other adult support, and youths' empathetic relationships. Thus, students who reported not having these assets were significantly more likely to engage in the risky sexual behaviors. Results underscore the relationship of specific youth assets to sexual risk behaviors. Health researcher and practitioners who work to prevent teen pregnancy and sexually transmitted infections among teenagers need to understand and acknowledge these factors within this population so that the assets can be built or strengthened.
Valois, R F; Oeltmann, J E; Waller, J; Hussey, J R
1999-11-01
To examine the relationship between number of sexual partners and selected health risk behaviors in a statewide sample of public high school students. The Centers for Disease Control and Prevention Youth Risk Behavior Survey was used to secure usable sexual risk-taking, substance use, and violence/aggression data from 3805 respondents. Because simple polychotomous logistic regression analysis revealed a significant Race x Gender interaction, subsequent multivariate models were constructed separately for each race-gender group. Odds ratios and 95% confidence intervals was calculated from polychotomous logistic regression models for number of sexual intercourse partners and their potential risk behavior correlates. An increased number of sexual intercourse partners were correlated with a cluster of risk behaviors that place adolescents at risk for unintended pregnancy, human immunodeficiency virus/acquired immunodeficiency syndrome, and other sexually transmitted infections. For Black females, alcohol, tobacco, marijuana use, and dating violence behaviors were the strongest predictors of an increased number of sexual partners; white females had similar predictors with the addition of physical fighting. For white males, alcohol, tobacco, marijuana use, physical fighting, carrying weapons, and dating violence were the strongest predictors of an increased number of sexual intercourse partners. Black males had similar predictors with the addition of binge alcohol use. Prevention of adolescent sexual and other health risk behaviors calls for creative approaches in school and community settings and will require long-term intervention strategies focused on adolescent behavior changes and environmental modifications.
Sperm function and assisted reproduction technology
MAAß, GESA; BÖDEKER, ROLF‐HASSO; SCHEIBELHUT, CHRISTINE; STALF, THOMAS; MEHNERT, CLAAS; SCHUPPE, HANS‐CHRISTIAN; JUNG, ANDREAS; SCHILL, WOLF‐BERNHARD
2005-01-01
The evaluation of different functional sperm parameters has become a tool in andrological diagnosis. These assays determine the sperm's capability to fertilize an oocyte. It also appears that sperm functions and semen parameters are interrelated and interdependent. Therefore, the question arose whether a given laboratory test or a battery of tests can predict the outcome in in vitro fertilization (IVF). One‐hundred and sixty‐one patients who underwent an IVF treatment were selected from a database of 4178 patients who had been examined for male infertility 3 months before or after IVF. Sperm concentration, motility, acrosin activity, acrosome reaction, sperm morphology, maternal age, number of transferred embryos, embryo score, fertilization rate and pregnancy rate were determined. In addition, logistic regression models to describe fertilization rate and pregnancy were developed. All the parameters in the models were dichotomized and intra‐ and interindividual variability of the parameters were assessed. Although the sperm parameters showed good correlations with IVF when correlated separately, the only essential parameter in the multivariate model was morphology. The enormous intra‐ and interindividual variability of the values was striking. In conclusion, our data indicate that the andrological status at the end of the respective treatment does not necessarily represent the status at the time of IVF. Despite a relatively low correlation coefficient in the logistic regression model, it appears that among the parameters tested, the most reliable parameter to predict fertilization is normal sperm morphology. (Reprod Med Biol 2005; 4: 7–30) PMID:29699207
Patrikar, S R; Bhalwar, R; Datta, A; Basannar, D R
2008-07-01
Male Preference is well known phenomena world wide from ancient ages. A descriptive study was carried out to assess the attitude of women towards birth of son, use of contraception methods and sex determination methods in rural village Kasurdi in Pune district. Univariate analysis was carried out by considering each factor determining sex preference separately as well as using a Logistic Regression Model. Adequacy of fit of the model has also been tested. Out of 110 respondents interviewed, 62.7% felt that male child is necessary in the family. Univariate analysis revealed that sex of first child, concern undergone for second pregnancy with regards to sex of the child, number of children in family and type of family were significant factors contributing to the son preference. The analysis under the logistic regression model revealed that sex of the first child and concern undergone in second pregnancy with respect to the sex of the second child are the most dominating and significant factors in the causation of son preference. The difference between family sizes when compared with the sex of first child was statistically significant signifying that if the first child is a male then it hardly matters whether the second child is male or female, but if the sex of first child is female then the families land up with bigger family size. On an average most of the respondents favour two children with an equal share of male and female children.
Gibbs, Andrew; Carpenter, Bradley; Crankshaw, Tamaryn; Hannass-Hancock, Jill; Smit, Jennifer; Tomlinson, Mark; Butler, Lisa
2017-01-01
Intimate partner violence (IPV) experienced by pregnant and post-partum women has negative health effects for women, as well as the foetus, and the new-born child. In this study we sought to assess the prevalence and factors associated with recent IPV amongst post-partum women in one clinic in eThekwini Municipality, South Africa, and explore the relationship between IPV, depression and functional limitations/disabilities. Past 12 month IPV-victimisation was 10.55%. Logistic regression modelled relationships between IPV, functional limitations, depressive symptoms, socio-economic measures, and sexual relationship power. In logistic regression models, overall severity of functional limitations were not associated with IPV-victimisation when treated as a continuous overall score. In this model relationship power (aOR0.22, p = 0.001) and depressive symptoms (aOR1.26, p = 0.001) were significant. When the different functional limitations were separated out in a second model, significant factors were relationship power (aOR0.20, p = 0.001), depressive symptoms (aOR1.20, p = 0.011) and mobility limitations (aOR2.96, p = 0.024). The study emphasises that not all functional limitations are associated with IPV-experience, that depression and disability while overlapping can also be considered different drivers of vulnerability, and that women's experience of IPV is not dependent on pregnancy specific factors, but rather wider social factors that all women experience.
Koo, Malcolm; Chen, Jin-Cherng; Hwang, Juen-Haur
2016-01-01
Cochleovestibular symptoms, such as vertigo, tinnitus, and sudden deafness, are common manifestations of microvascular diseases. However, it is unclear whether these symptoms occurred preceding the diagnosis of peripheral artery occlusive disease (PAOD). Therefore, the aim of this case-control study was to investigate the risk of PAOD among patients with vertigo, tinnitus, and sudden deafness using a nationwide, population-based health claim database in Taiwan. We identified 5,340 adult patients with PAOD diagnosed between January 1, 2006 and December 31, 2010 and 16,020 controls, frequency matched on age interval, sex, and year of index date, from the Taiwan National Health Insurance Research Database. Risks of PAOD in patients with vertigo, tinnitus, or sudden deafness were separately evaluated with multivariate logistic regression analyses. Of the 5,340 patients with PAOD, 12.7%, 6.7%, and 0.3% were diagnosed with vertigo, tinnitus, and sudden deafness, respectively. In the controls, 10.6%, 6.1%, and 0.3% were diagnosed with vertigo (P < 0.001), tinnitus (P = 0.161), and sudden deafness (P = 0.774), respectively. Results from the multivariate logistic regression analyses showed that the risk of PAOD was significantly increased in patients with vertigo (adjusted odds ratio = 1.12, P = 0.027) but not in those with tinnitus or sudden deafness. A modest increase in the risk of PAOD was observed among Taiwanese patients with vertigo, after adjustment for comorbidities.
Kendrick, Sarah K; Zheng, Qi; Garbett, Nichola C; Brock, Guy N
2017-01-01
DSC is used to determine thermally-induced conformational changes of biomolecules within a blood plasma sample. Recent research has indicated that DSC curves (or thermograms) may have different characteristics based on disease status and, thus, may be useful as a monitoring and diagnostic tool for some diseases. Since thermograms are curves measured over a range of temperature values, they are considered functional data. In this paper we apply functional data analysis techniques to analyze differential scanning calorimetry (DSC) data from individuals from the Lupus Family Registry and Repository (LFRR). The aim was to assess the effect of lupus disease status as well as additional covariates on the thermogram profiles, and use FD analysis methods to create models for classifying lupus vs. control patients on the basis of the thermogram curves. Thermograms were collected for 300 lupus patients and 300 controls without lupus who were matched with diseased individuals based on sex, race, and age. First, functional regression with a functional response (DSC) and categorical predictor (disease status) was used to determine how thermogram curve structure varied according to disease status and other covariates including sex, race, and year of birth. Next, functional logistic regression with disease status as the response and functional principal component analysis (FPCA) scores as the predictors was used to model the effect of thermogram structure on disease status prediction. The prediction accuracy for patients with Osteoarthritis and Rheumatoid Arthritis but without Lupus was also calculated to determine the ability of the classifier to differentiate between Lupus and other diseases. Data were divided 1000 times into separate 2/3 training and 1/3 test data for evaluation of predictions. Finally, derivatives of thermogram curves were included in the models to determine whether they aided in prediction of disease status. Functional regression with thermogram as a functional response and disease status as predictor showed a clear separation in thermogram curve structure between cases and controls. The logistic regression model with FPCA scores as the predictors gave the most accurate results with a mean 79.22% correct classification rate with a mean sensitivity = 79.70%, and specificity = 81.48%. The model correctly classified OA and RA patients without Lupus as controls at a rate of 75.92% on average with a mean sensitivity = 79.70% and specificity = 77.6%. Regression models including FPCA scores for derivative curves did not perform as well, nor did regression models including covariates. Changes in thermograms observed in the disease state likely reflect covalent modifications of plasma proteins or changes in large protein-protein interacting networks resulting in the stabilization of plasma proteins towards thermal denaturation. By relating functional principal components from thermograms to disease status, our Functional Principal Component Analysis model provides results that are more easily interpretable compared to prior studies. Further, the model could also potentially be coupled with other biomarkers to improve diagnostic classification for lupus.
Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki
2017-05-01
This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Özbek, Emel; Bongers, Ilja L; Lobbestael, Jill; van Nieuwenhuizen, Chijs
2015-12-01
This study investigated the relationship between acculturation and psychological problems in Turkish and Moroccan young adults living in the Netherlands. A sample of 131 healthy young adults aged between 18 and 24 years old, with a Turkish or Moroccan background was recruited using snowball sampling. Data on acculturation, internalizing and externalizing problems, beliefs about psychological problems, attributions of psychological problems and barriers to care were collected and analyzed using Latent Class Analysis and multinomial logistic regression. Three acculturation classes were identified in moderately to highly educated, healthy Turkish or Moroccan young adults: integration, separation and diffusion. None of the participants in the sample were marginalized or assimilated. Young adults reporting diffuse acculturation reported more internalizing and externalizing problems than those who were integrated or separated. Separated young adults reported experiencing more practical barriers to care than integrated young adults. Further research with a larger sample, including young adult migrants using mental health services, is required to improve our understanding of acculturation, psychological problems and barriers to care in this population. Including experiences of discrimination in the model might improve our understanding of the relationship between different forms of acculturation and psychological problems.
ERIC Educational Resources Information Center
Kasapoglu, Koray
2014-01-01
This study aims to investigate which factors are associated with Turkey's 15-year-olds' scoring above the OECD average (493) on the PISA'09 reading assessment. Collected from a total of 4,996 15-year-old students from Turkey, data were analyzed by logistic regression analysis in order to model the data of students who were split into two: (1)…
Upgrade Summer Severe Weather Tool
NASA Technical Reports Server (NTRS)
Watson, Leela
2011-01-01
The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.
Estimating the Probability of Rare Events Occurring Using a Local Model Averaging.
Chen, Jin-Hua; Chen, Chun-Shu; Huang, Meng-Fan; Lin, Hung-Chih
2016-10-01
In statistical applications, logistic regression is a popular method for analyzing binary data accompanied by explanatory variables. But when one of the two outcomes is rare, the estimation of model parameters has been shown to be severely biased and hence estimating the probability of rare events occurring based on a logistic regression model would be inaccurate. In this article, we focus on estimating the probability of rare events occurring based on logistic regression models. Instead of selecting a best model, we propose a local model averaging procedure based on a data perturbation technique applied to different information criteria to obtain different probability estimates of rare events occurring. Then an approximately unbiased estimator of Kullback-Leibler loss is used to choose the best one among them. We design complete simulations to show the effectiveness of our approach. For illustration, a necrotizing enterocolitis (NEC) data set is analyzed. © 2016 Society for Risk Analysis.
Evaluating the perennial stream using logistic regression in central Taiwan
NASA Astrophysics Data System (ADS)
Ruljigaljig, T.; Cheng, Y. S.; Lin, H. I.; Lee, C. H.; Yu, T. T.
2014-12-01
This study produces a perennial stream head potential map, based on a logistic regression method with a Geographic Information System (GIS). Perennial stream initiation locations, indicates the location of the groundwater and surface contact, were identified in the study area from field survey. The perennial stream potential map in central Taiwan was constructed using the relationship between perennial stream and their causative factors, such as Catchment area, slope gradient, aspect, elevation, groundwater recharge and precipitation. Here, the field surveys of 272 streams were determined in the study area. The areas under the curve for logistic regression methods were calculated as 0.87. The results illustrate the importance of catchment area and groundwater recharge as key factors within the model. The results obtained from the model within the GIS were then used to produce a map of perennial stream and estimate the location of perennial stream head.
Menditto, Anthony A; Linhorst, Donald M; Coleman, James C; Beck, Niels C
2006-04-01
Development of policies and procedures to contend with the risks presented by elopement, aggression, and suicidal behaviors are long-standing challenges for mental health administrators. Guidance in making such judgments can be obtained through the use of a multivariate statistical technique known as logistic regression. This procedure can be used to develop a predictive equation that is mathematically formulated to use the best combination of predictors, rather than considering just one factor at a time. This paper presents an overview of logistic regression and its utility in mental health administrative decision making. A case example of its application is presented using data on elopements from Missouri's long-term state psychiatric hospitals. Ultimately, the use of statistical prediction analyses tempered with differential qualitative weighting of classification errors can augment decision-making processes in a manner that provides guidance and flexibility while wrestling with the complex problem of risk assessment and decision making.
Lei, Yang; Nollen, Nikki; Ahluwahlia, Jasjit S; Yu, Qing; Mayo, Matthew S
2015-04-09
Other forms of tobacco use are increasing in prevalence, yet most tobacco control efforts are aimed at cigarettes. In light of this, it is important to identify individuals who are using both cigarettes and alternative tobacco products (ATPs). Most previous studies have used regression models. We conducted a traditional logistic regression model and a classification and regression tree (CART) model to illustrate and discuss the added advantages of using CART in the setting of identifying high-risk subgroups of ATP users among cigarettes smokers. The data were collected from an online cross-sectional survey administered by Survey Sampling International between July 5, 2012 and August 15, 2012. Eligible participants self-identified as current smokers, African American, White, or Latino (of any race), were English-speaking, and were at least 25 years old. The study sample included 2,376 participants and was divided into independent training and validation samples for a hold out validation. Logistic regression and CART models were used to examine the important predictors of cigarettes + ATP users. The logistic regression model identified nine important factors: gender, age, race, nicotine dependence, buying cigarettes or borrowing, whether the price of cigarettes influences the brand purchased, whether the participants set limits on cigarettes per day, alcohol use scores, and discrimination frequencies. The C-index of the logistic regression model was 0.74, indicating good discriminatory capability. The model performed well in the validation cohort also with good discrimination (c-index = 0.73) and excellent calibration (R-square = 0.96 in the calibration regression). The parsimonious CART model identified gender, age, alcohol use score, race, and discrimination frequencies to be the most important factors. It also revealed interesting partial interactions. The c-index is 0.70 for the training sample and 0.69 for the validation sample. The misclassification rate was 0.342 for the training sample and 0.346 for the validation sample. The CART model was easier to interpret and discovered target populations that possess clinical significance. This study suggests that the non-parametric CART model is parsimonious, potentially easier to interpret, and provides additional information in identifying the subgroups at high risk of ATP use among cigarette smokers.
Akkus, Zeki; Camdeviren, Handan; Celik, Fatma; Gur, Ali; Nas, Kemal
2005-09-01
To determine the risk factors of osteoporosis using a multiple binary logistic regression method and to assess the risk variables for osteoporosis, which is a major and growing health problem in many countries. We presented a case-control study, consisting of 126 postmenopausal healthy women as control group and 225 postmenopausal osteoporotic women as the case group. The study was carried out in the Department of Physical Medicine and Rehabilitation, Dicle University, Diyarbakir, Turkey between 1999-2002. The data from the 351 participants were collected using a standard questionnaire that contains 43 variables. A multiple logistic regression model was then used to evaluate the data and to find the best regression model. We classified 80.1% (281/351) of the participants using the regression model. Furthermore, the specificity value of the model was 67% (84/126) of the control group while the sensitivity value was 88% (197/225) of the case group. We found the distribution of residual values standardized for final model to be exponential using the Kolmogorow-Smirnow test (p=0.193). The receiver operating characteristic curve was found successful to predict patients with risk for osteoporosis. This study suggests that low levels of dietary calcium intake, physical activity, education, and longer duration of menopause are independent predictors of the risk of low bone density in our population. Adequate dietary calcium intake in combination with maintaining a daily physical activity, increasing educational level, decreasing birth rate, and duration of breast-feeding may contribute to healthy bones and play a role in practical prevention of osteoporosis in Southeast Anatolia. In addition, the findings of the present study indicate that the use of multivariate statistical method as a multiple logistic regression in osteoporosis, which maybe influenced by many variables, is better than univariate statistical evaluation.
Arevalillo, Jorge M; Sztein, Marcelo B; Kotloff, Karen L; Levine, Myron M; Simon, Jakub K
2017-10-01
Immunologic correlates of protection are important in vaccine development because they give insight into mechanisms of protection, assist in the identification of promising vaccine candidates, and serve as endpoints in bridging clinical vaccine studies. Our goal is the development of a methodology to identify immunologic correlates of protection using the Shigella challenge as a model. The proposed methodology utilizes the Random Forests (RF) machine learning algorithm as well as Classification and Regression Trees (CART) to detect immune markers that predict protection, identify interactions between variables, and define optimal cutoffs. Logistic regression modeling is applied to estimate the probability of protection and the confidence interval (CI) for such a probability is computed by bootstrapping the logistic regression models. The results demonstrate that the combination of Classification and Regression Trees and Random Forests complements the standard logistic regression and uncovers subtle immune interactions. Specific levels of immunoglobulin IgG antibody in blood on the day of challenge predicted protection in 75% (95% CI 67-86). Of those subjects that did not have blood IgG at or above a defined threshold, 100% were protected if they had IgA antibody secreting cells above a defined threshold. Comparison with the results obtained by applying only logistic regression modeling with standard Akaike Information Criterion for model selection shows the usefulness of the proposed method. Given the complexity of the immune system, the use of machine learning methods may enhance traditional statistical approaches. When applied together, they offer a novel way to quantify important immune correlates of protection that may help the development of vaccines. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaeben, Helmut; Semmler, Georg
2016-09-01
The objective of prospectivity modeling is prediction of the conditional probability of the presence T = 1 or absence T = 0 of a target T given favorable or prohibitive predictors B, or construction of a two classes 0,1 classification of T. A special case of logistic regression called weights-of-evidence (WofE) is geologists' favorite method of prospectivity modeling due to its apparent simplicity. However, the numerical simplicity is deceiving as it is implied by the severe mathematical modeling assumption of joint conditional independence of all predictors given the target. General weights of evidence are explicitly introduced which are as simple to estimate as conventional weights, i.e., by counting, but do not require conditional independence. Complementary to the regression view is the classification view on prospectivity modeling. Boosting is the construction of a strong classifier from a set of weak classifiers. From the regression point of view it is closely related to logistic regression. Boost weights-of-evidence (BoostWofE) was introduced into prospectivity modeling to counterbalance violations of the assumption of conditional independence even though relaxation of modeling assumptions with respect to weak classifiers was not the (initial) purpose of boosting. In the original publication of BoostWofE a fabricated dataset was used to "validate" this approach. Using the same fabricated dataset it is shown that BoostWofE cannot generally compensate lacking conditional independence whatever the consecutively processing order of predictors. Thus the alleged features of BoostWofE are disproved by way of counterexamples, while theoretical findings are confirmed that logistic regression including interaction terms can exactly compensate violations of joint conditional independence if the predictors are indicators.
NASA Astrophysics Data System (ADS)
Nong, Yu; Du, Qingyun; Wang, Kun; Miao, Lei; Zhang, Weiwei
2008-10-01
Urban growth modeling, one of the most important aspects of land use and land cover change study, has attracted substantial attention because it helps to comprehend the mechanisms of land use change thus helps relevant policies made. This study applied multinomial logistic regression to model urban growth in the Jiayu county of Hubei province, China to discover the relationship between urban growth and the driving forces of which biophysical and social-economic factors are selected as independent variables. This type of regression is similar to binary logistic regression, but it is more general because the dependent variable is not restricted to two categories, as those previous studies did. The multinomial one can simulate the process of multiple land use competition between urban land, bare land, cultivated land and orchard land. Taking the land use type of Urban as reference category, parameters could be estimated with odds ratio. A probability map is generated from the model to predict where urban growth will occur as a result of the computation.
Parental separation in childhood and adult smoking in the 1958 British birth cohort.
Martindale, Sarah E; Lacey, Rebecca E
2017-08-01
Parental separation or divorce is a known risk factor for poorer adult health. One mechanism may operate through the uptake of risky health behaviours, such as smoking. This study investigated the association between parental separation and adult smoking in a large British birth cohort and also examined potential socioeconomic, relational and psychosocial mediators. Differences by gender and timing of parental separation were also assessed. Multiply imputed data on 11 375 participants of the National Child Development Study (the 1958 British birth cohort) were used. A series of multinomial logistic regression models were estimated to investigate the association between parental separation (0-16 years) and adult smoking status (age 42), and the role of potential socioeconomic, relational and psychosocial mediators. Parental separation in childhood was associated with an increased risk of being a current (RRR = 2.14, 95% CI: 1.77, 2.60) or ex-smoker (RRR = 1.50, 95% CI: 1.22, 1.85) at age 42. This association remained after consideration of potential socioeconomic, psychosocial and relational mediators. Relational (parent-child relationship quality, parental involvement and adult partnership status) and socioeconomic factors (overcrowding, financial hardship, housing tenure, household amenities, free school meal receipt and educational attainment) appeared to be the most important of the groups of mediators investigated. No differences by gender or the timing of parental separation were observed. Parental separation experienced in childhood was associated with increased risk of smoking. Families undergoing separation should be further supported in order to prevent the uptake of smoking and to prevent later health problems. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Spatial interpolation schemes of daily precipitation for hydrologic modeling
Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.
2012-01-01
Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.
Logistic Mixed Models to Investigate Implicit and Explicit Belief Tracking.
Lages, Martin; Scheel, Anne
2016-01-01
We investigated the proposition of a two-systems Theory of Mind in adults' belief tracking. A sample of N = 45 participants predicted the choice of one of two opponent players after observing several rounds in an animated card game. Three matches of this card game were played and initial gaze direction on target and subsequent choice predictions were recorded for each belief task and participant. We conducted logistic regressions with mixed effects on the binary data and developed Bayesian logistic mixed models to infer implicit and explicit mentalizing in true belief and false belief tasks. Although logistic regressions with mixed effects predicted the data well a Bayesian logistic mixed model with latent task- and subject-specific parameters gave a better account of the data. As expected explicit choice predictions suggested a clear understanding of true and false beliefs (TB/FB). Surprisingly, however, model parameters for initial gaze direction also indicated belief tracking. We discuss why task-specific parameters for initial gaze directions are different from choice predictions yet reflect second-order perspective taking.
Model selection for logistic regression models
NASA Astrophysics Data System (ADS)
Duller, Christine
2012-09-01
Model selection for logistic regression models decides which of some given potential regressors have an effect and hence should be included in the final model. The second interesting question is whether a certain factor is heterogeneous among some subsets, i.e. whether the model should include a random intercept or not. In this paper these questions will be answered with classical as well as with Bayesian methods. The application show some results of recent research projects in medicine and business administration.
Radiomorphometric analysis of frontal sinus for sex determination.
Verma, Saumya; Mahima, V G; Patil, Karthikeya
2014-09-01
Sex determination of unknown individuals carries crucial significance in forensic research, in cases where fragments of skull persist with no likelihood of identification based on dental arch. In these instances sex determination becomes important to rule out certain number of possibilities instantly and helps in establishing a biological profile of human remains. The aim of the study is to evaluate a mathematical method based on logistic regression analysis capable of ascertaining the sex of individuals in the South Indian population. The study was conducted in the department of Oral Medicine and Radiology. The right and left areas, maximum height, width of frontal sinus were determined in 100 Caldwell views of 50 women and 50 men aged 20 years and above, with the help of Vernier callipers and a square grid with 1 square measuring 1mm(2) in area. Student's t-test, logistic regression analysis. The mean values of variables were greater in men, based on Student's t-test at 5% level of significance. The mathematical model based on logistic regression analysis gave percentage agreement of total area to correctly predict the female gender as 55.2%, of right area as 60.9% and of left area as 55.2%. The areas of the frontal sinus and the logistic regression proved to be unreliable in sex determination. (Logit = 0.924 - 0.00217 × right area).
Genetic prediction of type 2 diabetes using deep neural network.
Kim, J; Kim, J; Kwak, M J; Bajaj, M
2018-04-01
Type 2 diabetes (T2DM) has strong heritability but genetic models to explain heritability have been challenging. We tested deep neural network (DNN) to predict T2DM using the nested case-control study of Nurses' Health Study (3326 females, 45.6% T2DM) and Health Professionals Follow-up Study (2502 males, 46.5% T2DM). We selected 96, 214, 399, and 678 single-nucleotide polymorphism (SNPs) through Fisher's exact test and L1-penalized logistic regression. We split each dataset randomly in 4:1 to train prediction models and test their performance. DNN and logistic regressions showed better area under the curve (AUC) of ROC curves than the clinical model when 399 or more SNPs included. DNN was superior than logistic regressions in AUC with 399 or more SNPs in male and 678 SNPs in female. Addition of clinical factors consistently increased AUC of DNN but failed to improve logistic regressions with 214 or more SNPs. In conclusion, we show that DNN can be a versatile tool to predict T2DM incorporating large numbers of SNPs and clinical information. Limitations include a relatively small number of the subjects mostly of European ethnicity. Further studies are warranted to confirm and improve performance of genetic prediction models using DNN in different ethnic groups. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Unconditional or Conditional Logistic Regression Model for Age-Matched Case-Control Data?
Kuo, Chia-Ling; Duan, Yinghui; Grady, James
2018-01-01
Matching on demographic variables is commonly used in case-control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case-control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case-control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls.
Unconditional or Conditional Logistic Regression Model for Age-Matched Case–Control Data?
Kuo, Chia-Ling; Duan, Yinghui; Grady, James
2018-01-01
Matching on demographic variables is commonly used in case–control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case–control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case–control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls. PMID:29552553
Austin, Peter C
2010-04-22
Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.
Zlotnik, Alexander; Alfaro, Miguel Cuchí; Pérez, María Carmen Pérez; Gallardo-Antolín, Ascensión; Martínez, Juan Manuel Montero
2016-05-01
The usage of decision support tools in emergency departments, based on predictive models, capable of estimating the probability of admission for patients in the emergency department may give nursing staff the possibility of allocating resources in advance. We present a methodology for developing and building one such system for a large specialized care hospital using a logistic regression and an artificial neural network model using nine routinely collected variables available right at the end of the triage process.A database of 255.668 triaged nonobstetric emergency department presentations from the Ramon y Cajal University Hospital of Madrid, from January 2011 to December 2012, was used to develop and test the models, with 66% of the data used for derivation and 34% for validation, with an ordered nonrandom partition. On the validation dataset areas under the receiver operating characteristic curve were 0.8568 (95% confidence interval, 0.8508-0.8583) for the logistic regression model and 0.8575 (95% confidence interval, 0.8540-0. 8610) for the artificial neural network model. χ Values for Hosmer-Lemeshow fixed "deciles of risk" were 65.32 for the logistic regression model and 17.28 for the artificial neural network model. A nomogram was generated upon the logistic regression model and an automated software decision support system with a Web interface was built based on the artificial neural network model.
Product unit neural network models for predicting the growth limits of Listeria monocytogenes.
Valero, A; Hervás, C; García-Gimeno, R M; Zurera, G
2007-08-01
A new approach to predict the growth/no growth interface of Listeria monocytogenes as a function of storage temperature, pH, citric acid (CA) and ascorbic acid (AA) is presented. A linear logistic regression procedure was performed and a non-linear model was obtained by adding new variables by means of a Neural Network model based on Product Units (PUNN). The classification efficiency of the training data set and the generalization data of the new Logistic Regression PUNN model (LRPU) were compared with Linear Logistic Regression (LLR) and Polynomial Logistic Regression (PLR) models. 92% of the total cases from the LRPU model were correctly classified, an improvement on the percentage obtained using the PLR model (90%) and significantly higher than the results obtained with the LLR model, 80%. On the other hand predictions of LRPU were closer to data observed which permits to design proper formulations in minimally processed foods. This novel methodology can be applied to predictive microbiology for describing growth/no growth interface of food-borne microorganisms such as L. monocytogenes. The optimal balance is trying to find models with an acceptable interpretation capacity and with good ability to fit the data on the boundaries of variable range. The results obtained conclude that these kinds of models might well be very a valuable tool for mathematical modeling.
Lacagnina, Valerio; Leto-Barone, Maria S; La Piana, Simona; Seidita, Aurelio; Pingitore, Giuseppe; Di Lorenzo, Gabriele
2014-01-01
This article uses the logistic regression model for diagnostic decision making in patients with chronic nasal symptoms. We studied the ability of the logistic regression model, obtained by the evaluation of a database, to detect patients with positive allergy skin-prick test (SPT) and patients with negative SPT. The model developed was validated using the data set obtained from another medical institution. The analysis was performed using a database obtained from a questionnaire administered to the patients with nasal symptoms containing personal data, clinical data, and results of allergy testing (SPT). All variables found to be significantly different between patients with positive and negative SPT (p < 0.05) were selected for the logistic regression models and were analyzed with backward stepwise logistic regression, evaluated with area under the curve of the receiver operating characteristic curve. A second set of patients from another institution was used to prove the model. The accuracy of the model in identifying, over the second set, both patients whose SPT will be positive and negative was high. The model detected 96% of patients with nasal symptoms and positive SPT and classified 94% of those with negative SPT. This study is preliminary to the creation of a software that could help the primary care doctors in a diagnostic decision making process (need of allergy testing) in patients complaining of chronic nasal symptoms.
Held, Elizabeth; Cape, Joshua; Tintle, Nathan
2016-01-01
Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised machine learning approach for predicting disease risk by genotypes to be able to incorporate gene expression data and rare variants. We then apply 2 different versions of the approach (radial and linear support vector machines) to simulated data from Genetic Analysis Workshop 19 and compare performance to logistic regression. Method performance was not radically different across the 3 methods, although the linear support vector machine tended to show small gains in predictive ability relative to a radial support vector machine and logistic regression. Importantly, as the number of genes in the models was increased, even when those genes contained causal rare variants, model predictive ability showed a statistically significant decrease in performance for both the radial support vector machine and logistic regression. The linear support vector machine showed more robust performance to the inclusion of additional genes. Further work is needed to evaluate machine learning approaches on larger samples and to evaluate the relative improvement in model prediction from the incorporation of gene expression data.
Real, J; Cleries, R; Forné, C; Roso-Llorach, A; Martínez-Sánchez, J M
In medicine and biomedical research, statistical techniques like logistic, linear, Cox and Poisson regression are widely known. The main objective is to describe the evolution of multivariate techniques used in observational studies indexed in PubMed (1970-2013), and to check the requirements of the STROBE guidelines in the author guidelines in Spanish journals indexed in PubMed. A targeted PubMed search was performed to identify papers that used logistic linear Cox and Poisson models. Furthermore, a review was also made of the author guidelines of journals published in Spain and indexed in PubMed and Web of Science. Only 6.1% of the indexed manuscripts included a term related to multivariate analysis, increasing from 0.14% in 1980 to 12.3% in 2013. In 2013, 6.7, 2.5, 3.5, and 0.31% of the manuscripts contained terms related to logistic, linear, Cox and Poisson regression, respectively. On the other hand, 12.8% of journals author guidelines explicitly recommend to follow the STROBE guidelines, and 35.9% recommend the CONSORT guideline. A low percentage of Spanish scientific journals indexed in PubMed include the STROBE statement requirement in the author guidelines. Multivariate regression models in published observational studies such as logistic regression, linear, Cox and Poisson are increasingly used both at international level, as well as in journals published in Spanish. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.
2011-01-01
Introduction Necrotizing fasciitis (NF) is a life threatening infectious disease with a high mortality rate. We carried out a microbiological characterization of the causative pathogens. We investigated the correlation of mortality in NF with bloodstream infection and with the presence of co-morbidities. Methods In this retrospective study, we analyzed 323 patients who presented with necrotizing fasciitis at two different institutions. Bloodstream infection (BSI) was defined as a positive blood culture result. The patients were categorized as survivors and non-survivors. Eleven clinically important variables which were statistically significant by univariate analysis were selected for multivariate regression analysis and a stepwise logistic regression model was developed to determine the association between BSI and mortality. Results Univariate logistic regression analysis showed that patients with hypotension, heart disease, liver disease, presence of Vibrio spp. in wound cultures, presence of fungus in wound cultures, and presence of Streptococcus group A, Aeromonas spp. or Vibrio spp. in blood cultures, had a significantly higher risk of in-hospital mortality. Our multivariate logistic regression analysis showed a higher risk of mortality in patients with pre-existing conditions like hypotension, heart disease, and liver disease. Multivariate logistic regression analysis also showed that presence of Vibrio spp in wound cultures, and presence of Streptococcus Group A in blood cultures were associated with a high risk of mortality while debridement > = 3 was associated with improved survival. Conclusions Mortality in patients with necrotizing fasciitis was significantly associated with the presence of Vibrio in wound cultures and Streptococcus group A in blood cultures. PMID:21693053
Prediction of siRNA potency using sparse logistic regression.
Hu, Wei; Hu, John
2014-06-01
RNA interference (RNAi) can modulate gene expression at post-transcriptional as well as transcriptional levels. Short interfering RNA (siRNA) serves as a trigger for the RNAi gene inhibition mechanism, and therefore is a crucial intermediate step in RNAi. There have been extensive studies to identify the sequence characteristics of potent siRNAs. One such study built a linear model using LASSO (Least Absolute Shrinkage and Selection Operator) to measure the contribution of each siRNA sequence feature. This model is simple and interpretable, but it requires a large number of nonzero weights. We have introduced a novel technique, sparse logistic regression, to build a linear model using single-position specific nucleotide compositions which has the same prediction accuracy of the linear model based on LASSO. The weights in our new model share the same general trend as those in the previous model, but have only 25 nonzero weights out of a total 84 weights, a 54% reduction compared to the previous model. Contrary to the linear model based on LASSO, our model suggests that only a few positions are influential on the efficacy of the siRNA, which are the 5' and 3' ends and the seed region of siRNA sequences. We also employed sparse logistic regression to build a linear model using dual-position specific nucleotide compositions, a task LASSO is not able to accomplish well due to its high dimensional nature. Our results demonstrate the superiority of sparse logistic regression as a technique for both feature selection and regression over LASSO in the context of siRNA design.
Guo, Huey-Ming; Shyu, Yea-Ing Lotus; Chang, Her-Kun
2006-01-01
In this article, the authors provide an overview of a research method to predict quality of care in home health nursing data set. The results of this study can be visualized through classification an regression tree (CART) graphs. The analysis was more effective, and the results were more informative since the home health nursing dataset was analyzed with a combination of the logistic regression and CART, these two techniques complete each other. And the results more informative that more patients' characters were related to quality of care in home care. The results contributed to home health nurse predict patient outcome in case management. Improved prediction is needed for interventions to be appropriately targeted for improved patient outcome and quality of care.
A general framework for the use of logistic regression models in meta-analysis.
Simmonds, Mark C; Higgins, Julian Pt
2016-12-01
Where individual participant data are available for every randomised trial in a meta-analysis of dichotomous event outcomes, "one-stage" random-effects logistic regression models have been proposed as a way to analyse these data. Such models can also be used even when individual participant data are not available and we have only summary contingency table data. One benefit of this one-stage regression model over conventional meta-analysis methods is that it maximises the correct binomial likelihood for the data and so does not require the common assumption that effect estimates are normally distributed. A second benefit of using this model is that it may be applied, with only minor modification, in a range of meta-analytic scenarios, including meta-regression, network meta-analyses and meta-analyses of diagnostic test accuracy. This single model can potentially replace the variety of often complex methods used in these areas. This paper considers, with a range of meta-analysis examples, how random-effects logistic regression models may be used in a number of different types of meta-analyses. This one-stage approach is compared with widely used meta-analysis methods including Bayesian network meta-analysis and the bivariate and hierarchical summary receiver operating characteristic (ROC) models for meta-analyses of diagnostic test accuracy. © The Author(s) 2014.
2011-01-01
Background The relationship between asthma and traffic-related pollutants has received considerable attention. The use of individual-level exposure measures, such as residence location or proximity to emission sources, may avoid ecological biases. Method This study focused on the pediatric Medicaid population in Detroit, MI, a high-risk population for asthma-related events. A population-based matched case-control analysis was used to investigate associations between acute asthma outcomes and proximity of residence to major roads, including freeways. Asthma cases were identified as all children who made at least one asthma claim, including inpatient and emergency department visits, during the three-year study period, 2004-06. Individually matched controls were randomly selected from the rest of the Medicaid population on the basis of non-respiratory related illness. We used conditional logistic regression with distance as both categorical and continuous variables, and examined non-linear relationships with distance using polynomial splines. The conditional logistic regression models were then extended by considering multiple asthma states (based on the frequency of acute asthma outcomes) using polychotomous conditional logistic regression. Results Asthma events were associated with proximity to primary roads with an odds ratio of 0.97 (95% CI: 0.94, 0.99) for a 1 km increase in distance using conditional logistic regression, implying that asthma events are less likely as the distance between the residence and a primary road increases. Similar relationships and effect sizes were found using polychotomous conditional logistic regression. Another plausible exposure metric, a reduced form response surface model that represents atmospheric dispersion of pollutants from roads, was not associated under that exposure model. Conclusions There is moderately strong evidence of elevated risk of asthma close to major roads based on the results obtained in this population-based matched case-control study. PMID:21513554
Neural network modeling for surgical decisions on traumatic brain injury patients.
Li, Y C; Liu, L; Chiu, W T; Jian, W S
2000-01-01
Computerized medical decision support systems have been a major research topic in recent years. Intelligent computer programs were implemented to aid physicians and other medical professionals in making difficult medical decisions. This report compares three different mathematical models for building a traumatic brain injury (TBI) medical decision support system (MDSS). These models were developed based on a large TBI patient database. This MDSS accepts a set of patient data such as the types of skull fracture, Glasgow Coma Scale (GCS), episode of convulsion and return the chance that a neurosurgeon would recommend an open-skull surgery for this patient. The three mathematical models described in this report including a logistic regression model, a multi-layer perceptron (MLP) neural network and a radial-basis-function (RBF) neural network. From the 12,640 patients selected from the database. A randomly drawn 9480 cases were used as the training group to develop/train our models. The other 3160 cases were in the validation group which we used to evaluate the performance of these models. We used sensitivity, specificity, areas under receiver-operating characteristics (ROC) curve and calibration curves as the indicator of how accurate these models are in predicting a neurosurgeon's decision on open-skull surgery. The results showed that, assuming equal importance of sensitivity and specificity, the logistic regression model had a (sensitivity, specificity) of (73%, 68%), compared to (80%, 80%) from the RBF model and (88%, 80%) from the MLP model. The resultant areas under ROC curve for logistic regression, RBF and MLP neural networks are 0.761, 0.880 and 0.897, respectively (P < 0.05). Among these models, the logistic regression has noticeably poorer calibration. This study demonstrated the feasibility of applying neural networks as the mechanism for TBI decision support systems based on clinical databases. The results also suggest that neural networks may be a better solution for complex, non-linear medical decision support systems than conventional statistical techniques such as logistic regression.
Green, Kimberly T.; Beckham, Jean C.; Youssef, Nagy; Elbogen, Eric B.
2013-01-01
Objective The present study sought to investigate the longitudinal effects of psychological resilience against alcohol misuse adjusting for socio-demographic factors, trauma-related variables, and self-reported history of alcohol abuse. Methodology Data were from National Post-Deployment Adjustment Study (NPDAS) participants who completed both a baseline and one-year follow-up survey (N=1090). Survey questionnaires measured combat exposure, probable posttraumatic stress disorder (PTSD), psychological resilience, and alcohol misuse, all of which were measured at two discrete time periods (baseline and one-year follow-up). Baseline resilience and change in resilience (increased or decreased) were utilized as independent variables in separate models evaluating alcohol misuse at the one-year follow-up. Results Multiple linear regression analyses controlled for age, gender, level of educational attainment, combat exposure, PTSD symptom severity, and self-reported alcohol abuse. Accounting for these covariates, findings revealed that lower baseline resilience, younger age, male gender, and self-reported alcohol abuse were related to alcohol misuse at the one-year follow-up. A separate regression analysis, adjusting for the same covariates, revealed a relationship between change in resilience (from baseline to the one-year follow-up) and alcohol misuse at the one-year follow-up. The regression model evaluating these variables in a subset of the sample in which all the participants had been deployed to Iraq and/or Afghanistan was consistent with findings involving the overall era sample. Finally, logistic regression analyses of the one-year follow-up data yielded similar results to the baseline and resilience change models. Conclusions These findings suggest that increased psychological resilience is inversely related to alcohol misuse and is protective against alcohol misuse over time. Additionally, it supports the conceptualization of resilience as a process which evolves over time. Moreover, our results underscore the importance of assessing resilience as part of alcohol use screening for preventing alcohol misuse in Iraq and Afghanistan era military veterans. PMID:24090625
2012-09-01
3,435 10,461 9.1 3.1 63 Unmarried with Children+ Unmarried without Children 439,495 0.01 10,350 43,870 10.1 2.2 64 Married with Children+ Married ...logistic regression model was used to predict the probability of eligibility for the survey (known eligibility vs . unknown eligibility). A second logistic...regression model was used to predict the probability of response among eligible sample members (complete response vs . non-response). CHAID (Chi
Habitat features and predictive habitat modeling for the Colorado chipmunk in southern New Mexico
Rivieccio, M.; Thompson, B.C.; Gould, W.R.; Boykin, K.G.
2003-01-01
Two subspecies of Colorado chipmunk (state threatened and federal species of concern) occur in southern New Mexico: Tamias quadrivittatus australis in the Organ Mountains and T. q. oscuraensis in the Oscura Mountains. We developed a GIS model of potentially suitable habitat based on vegetation and elevation features, evaluated site classifications of the GIS model, and determined vegetation and terrain features associated with chipmunk occurrence. We compared GIS model classifications with actual vegetation and elevation features measured at 37 sites. At 60 sites we measured 18 habitat variables regarding slope, aspect, tree species, shrub species, and ground cover. We used logistic regression to analyze habitat variables associated with chipmunk presence/absence. All (100%) 37 sample sites (28 predicted suitable, 9 predicted unsuitable) were classified correctly by the GIS model regarding elevation and vegetation. For 28 sites predicted suitable by the GIS model, 18 sites (64%) appeared visually suitable based on habitat variables selected from logistic regression analyses, of which 10 sites (36%) were specifically predicted as suitable habitat via logistic regression. We detected chipmunks at 70% of sites deemed suitable via the logistic regression models. Shrub cover, tree density, plant proximity, presence of logs, and presence of rock outcrop were retained in the logistic model for the Oscura Mountains; litter, shrub cover, and grass cover were retained in the logistic model for the Organ Mountains. Evaluation of predictive models illustrates the need for multi-stage analyses to best judge performance. Microhabitat analyses indicate prospective needs for different management strategies between the subspecies. Sensitivities of each population of the Colorado chipmunk to natural and prescribed fire suggest that partial burnings of areas inhabited by Colorado chipmunks in southern New Mexico may be beneficial. These partial burnings may later help avoid a fire that could substantially reduce habitat of chipmunks over a mountain range.
The logistic model for predicting the non-gonoactive Aedes aegypti females.
Reyes-Villanueva, Filiberto; Rodríguez-Pérez, Mario A
2004-01-01
To estimate, using logistic regression, the likelihood of occurrence of a non-gonoactive Aedes aegypti female, previously fed human blood, with relation to body size and collection method. This study was conducted in Monterrey, Mexico, between 1994 and 1996. Ten samplings of 60 mosquitoes of Ae. aegypti females were carried out in three dengue endemic areas: six of biting females, two of emerging mosquitoes, and two of indoor resting females. Gravid females, as well as those with blood in the gut were removed. Mosquitoes were taken to the laboratory and engorged on human blood. After 48 hours, ovaries were dissected to register whether they were gonoactive or non-gonoactive. Wing-length in mm was an indicator for body size. The logistic regression model was used to assess the likelihood of non-gonoactivity, as a binary variable, in relation to wing-length and collection method. Of the 600 females, 164 (27%) remained non-gonoactive, with a wing-length range of 1.9-3.2 mm, almost equal to that of all females (1.8-3.3 mm). The logistic regression model showed a significant likelihood of a female remaining non-gonoactive (Y=1). The collection method did not influence the binary response, but there was an inverse relationship between non-gonoactivity and wing-length. Dengue vector populations from Monterrey, Mexico display a wide-range body size. Logistic regression was a useful tool to estimate the likelihood for an engorged female to remain non-gonoactive. The necessity for a second blood meal is present in any female, but small mosquitoes are more likely to bite again within a 2-day interval, in order to attain egg maturation. The English version of this paper is available too at: http://www.insp.mx/salud/index.html.
Pfoertner, Timo-Kolja; Andress, Hans-Juergen; Janssen, Christian
2011-08-01
Current study introduces the living standard concept as an alternative approach of measuring poverty and compares its explanatory power to an income-based poverty measure with regard to subjective health status of the German population. Analyses are based on the German Socio-Economic Panel (2001, 2003 and 2005) and refer to binary logistic regressions of poor subjective health status with regard to each poverty condition, their duration and their causal influence from a previous time point. To calculate the discriminate power of both poverty indicators, initially the indicators were considered separately in regression models and subsequently, both were included simultaneously. The analyses reveal a stronger poverty-health relationship for the living standard indicator. An inadequate living standard in 2005, longer spells of an inadequate living standard between 2001, 2003 and 2005 as well as an inadequate living standard at a previous time point is significantly strongly associated with subjective health than income poverty. Our results challenge conventional measurements of the relationship between poverty and health that probably has been underestimated by income measures so far.
Sensitivity and specificity of memory and naming tests for identifying left temporal-lobe epilepsy.
Umfleet, Laura Glass; Janecek, Julie K; Quasney, Erin; Sabsevitz, David S; Ryan, Joseph J; Binder, Jeffrey R; Swanson, Sara J
2015-01-01
The sensitivity and specificity of the Selective Reminding Test (SRT) Delayed Recall, Wechsler Memory Scale (WMS) Logical Memory, the Boston Naming Test (BNT), and two nonverbal memory measures for detecting lateralized dysfunction in association with side of seizure focus was examined in a sample of 143 patients with left or right temporal-lobe epilepsy (TLE). Scores on the SRT and BNT were statistically significantly lower in the left TLE group compared with the right TLE group, whereas no group differences emerged on the Logical Memory subtest. No significant group differences were found with nonverbal memory measures. When the SRT and BNT were both entered as predictors in a logistic regression, the BNT, although significant, added minimal value to the model beyond the variance accounted for by the SRT Delayed Recall. Both variables emerged as significant predictors of side of seizure focus when entered into separate regressions. Sensitivity and specificity of the SRT and BNT ranged from 56% to 65%. The WMS Logical Memory and nonverbal memory measures were not significant predictors of the side of seizure focus.
The Application of the Cumulative Logistic Regression Model to Automated Essay Scoring
ERIC Educational Resources Information Center
Haberman, Shelby J.; Sinharay, Sandip
2010-01-01
Most automated essay scoring programs use a linear regression model to predict an essay score from several essay features. This article applied a cumulative logit model instead of the linear regression model to automated essay scoring. Comparison of the performances of the linear regression model and the cumulative logit model was performed on a…
Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C
2015-01-01
Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.
Bayesian Analysis of High Dimensional Classification
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Subhadeep; Liang, Faming
2009-12-01
Modern data mining and bioinformatics have presented an important playground for statistical learning techniques, where the number of input variables is possibly much larger than the sample size of the training data. In supervised learning, logistic regression or probit regression can be used to model a binary output and form perceptron classification rules based on Bayesian inference. In these cases , there is a lot of interest in searching for sparse model in High Dimensional regression(/classification) setup. we first discuss two common challenges for analyzing high dimensional data. The first one is the curse of dimensionality. The complexity of many existing algorithms scale exponentially with the dimensionality of the space and by virtue of that algorithms soon become computationally intractable and therefore inapplicable in many real applications. secondly, multicollinearities among the predictors which severely slowdown the algorithm. In order to make Bayesian analysis operational in high dimension we propose a novel 'Hierarchical stochastic approximation monte carlo algorithm' (HSAMC), which overcomes the curse of dimensionality, multicollinearity of predictors in high dimension and also it possesses the self-adjusting mechanism to avoid the local minima separated by high energy barriers. Models and methods are illustrated by simulation inspired from from the feild of genomics. Numerical results indicate that HSAMC can work as a general model selection sampler in high dimensional complex model space.
Figueroa, Jennifer A; Mansoor, Jim K; Allen, Roblee P; Davis, Cristina E; Walby, William F; Aksenov, Alexander A; Zhao, Weixiang; Lewis, William R; Schelegle, Edward S
2015-04-20
With ascent to altitude, certain individuals are susceptible to high altitude pulmonary edema (HAPE), which in turn can cause disability and even death. The ability to identify individuals at risk of HAPE prior to ascent is poor. The present study examined the profile of volatile organic compounds (VOC) in exhaled breath condensate (EBC) and pulmonary artery systolic pressures (PASP) before and after exposure to normobaric hypoxia (12% O2) in healthy males with and without a history of HAPE (Hx HAPE, n = 5; Control, n = 11). In addition, hypoxic ventilatory response (HVR), and PASP response to normoxic exercise were also measured. Auto-regression/partial least square regression of whole gas chromatography/mass spectrometry (GC/MS) data and binary logistic regression (BLR) of individual GC peaks and physiologic parameters resulted in models that separate individual subjects into their groups with variable success. The result of BLR analysis highlights HVR, PASP response to hypoxia and the amount of benzyl alcohol and dimethylbenzaldehyde dimethyl in expired breath as markers of HAPE history. These findings indicate the utility of EBC VOC analysis to discriminate between individuals with and without a history of HAPE and identified potential novel biomarkers that correlated with physiological responses to hypoxia.
Afulani, Patience A; Torres, Jacqueline M; Sudhinaraset, May; Asunka, Joseph
2016-11-01
Recent scholarship has focused on the role that cross-border social and economic ties play in shaping health outcomes for migrant populations. Nevertheless, the extant empirical work on this topic has paid little attention to the health impacts of cross-border separation from close family members. In this paper we examine the association between cross-border ties-and cross-border separation-with the health of sub-Saharan African (SSA) migrant adults living in metropolitan France using data from the nationally representative "Trajectoire et Origines" survey (n = 1980 SSA migrants). In logistic regression analyses we find that remitting money and having a child abroad are each associated with poor health among women, but not men. The effect of remittances on health is also modified by the location of one's children: remittance sending is associated with poor health only for SSA-migrants separated from their children. These findings underscore the importance of examining both cross-border connection and cross-border separation in studies of immigrant health, and also underscore the heterogeneous relationships between cross-border ties and health for men and women. This is the first study to our knowledge that examines the relationship between cross-border ties and health for migrants in Europe, with a focus on SSA-migrants in France. These findings have important implications for the health of the growing immigrant and refugee populations in Europe and around the globe. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fan, Hao; Tao, Fan; Wan, Hai-fang; Luo, Hong
2012-05-08
To evaluate risk factors associated with emergence agitation (EA) in pediatrics after general anesthesia. A prospective cohort study was conducted in 268 pediatric patients aged 2-9 years, who received general anesthesia for various operative procedures in our hospital between January 2008 and October 2011. The incidence of EA was assessed. Difficult parental-separation behavior, pharmacologic and non-pharmacologic interventions, and adverse events were also recorded. Univariate and multivariate analysis were used to determine the factors associated with EA. A p-value of less than 0.05 was considered significant. One hundred and sixteen children (43.3%) had EA, with an average duration of 9.1 ± 6.6 minutes. EA associated with adverse events occurred in 35 agitated children (30.2%). From univariate analysis, factors associated with EA were difficult parental-separation behavior, preschool age (2 - 5 years), and general anesthesia with sevoflurane. However, difficult parental-separation behavior, and preschool age were the only factors significantly associated with EA in the multiple Logistic regression analysis with OR = 3.091 (95%CI: 1.688, 5.465, P < 0.01) and OR = 1.965 (95%CI: 1.112, 3.318, P = 0.024), respectively. The present study indicated that the incidence of EA was high in PACU. Preschool children and difficult parental-separation behavior were the predictive factors of emergence agitation.
Ardoino, Ilaria; Lanzoni, Monica; Marano, Giuseppe; Boracchi, Patrizia; Sagrini, Elisabetta; Gianstefani, Alice; Piscaglia, Fabio; Biganzoli, Elia M
2017-04-01
The interpretation of regression models results can often benefit from the generation of nomograms, 'user friendly' graphical devices especially useful for assisting the decision-making processes. However, in the case of multinomial regression models, whenever categorical responses with more than two classes are involved, nomograms cannot be drawn in the conventional way. Such a difficulty in managing and interpreting the outcome could often result in a limitation of the use of multinomial regression in decision-making support. In the present paper, we illustrate the derivation of a non-conventional nomogram for multinomial regression models, intended to overcome this issue. Although it may appear less straightforward at first sight, the proposed methodology allows an easy interpretation of the results of multinomial regression models and makes them more accessible for clinicians and general practitioners too. Development of prediction model based on multinomial logistic regression and of the pertinent graphical tool is illustrated by means of an example involving the prediction of the extent of liver fibrosis in hepatitis C patients by routinely available markers.
Regularization Paths for Conditional Logistic Regression: The clogitL1 Package.
Reid, Stephen; Tibshirani, Rob
2014-07-01
We apply the cyclic coordinate descent algorithm of Friedman, Hastie, and Tibshirani (2010) to the fitting of a conditional logistic regression model with lasso [Formula: see text] and elastic net penalties. The sequential strong rules of Tibshirani, Bien, Hastie, Friedman, Taylor, Simon, and Tibshirani (2012) are also used in the algorithm and it is shown that these offer a considerable speed up over the standard coordinate descent algorithm with warm starts. Once implemented, the algorithm is used in simulation studies to compare the variable selection and prediction performance of the conditional logistic regression model against that of its unconditional (standard) counterpart. We find that the conditional model performs admirably on datasets drawn from a suitable conditional distribution, outperforming its unconditional counterpart at variable selection. The conditional model is also fit to a small real world dataset, demonstrating how we obtain regularization paths for the parameters of the model and how we apply cross validation for this method where natural unconditional prediction rules are hard to come by.
Regularization Paths for Conditional Logistic Regression: The clogitL1 Package
Reid, Stephen; Tibshirani, Rob
2014-01-01
We apply the cyclic coordinate descent algorithm of Friedman, Hastie, and Tibshirani (2010) to the fitting of a conditional logistic regression model with lasso (ℓ1) and elastic net penalties. The sequential strong rules of Tibshirani, Bien, Hastie, Friedman, Taylor, Simon, and Tibshirani (2012) are also used in the algorithm and it is shown that these offer a considerable speed up over the standard coordinate descent algorithm with warm starts. Once implemented, the algorithm is used in simulation studies to compare the variable selection and prediction performance of the conditional logistic regression model against that of its unconditional (standard) counterpart. We find that the conditional model performs admirably on datasets drawn from a suitable conditional distribution, outperforming its unconditional counterpart at variable selection. The conditional model is also fit to a small real world dataset, demonstrating how we obtain regularization paths for the parameters of the model and how we apply cross validation for this method where natural unconditional prediction rules are hard to come by. PMID:26257587
Ordinal logistic regression analysis on the nutritional status of children in KarangKitri village
NASA Astrophysics Data System (ADS)
Ohyver, Margaretha; Yongharto, Kimmy Octavian
2015-09-01
Ordinal logistic regression is a statistical technique that can be used to describe the relationship between ordinal response variable with one or more independent variables. This method has been used in various fields including in the health field. In this research, ordinal logistic regression is used to describe the relationship between nutritional status of children with age, gender, height, and family status. Nutritional status of children in this research is divided into over nutrition, well nutrition, less nutrition, and malnutrition. The purpose for this research is to describe the characteristics of children in the KarangKitri Village and to determine the factors that influence the nutritional status of children in the KarangKitri village. There are three things that obtained from this research. First, there are still children who are not categorized as well nutritional status. Second, there are children who come from sufficient economic level which include in not normal status. Third, the factors that affect the nutritional level of children are age, family status, and height.
Chen, Chau-Kuang; Bruce, Michelle; Tyler, Lauren; Brown, Claudine; Garrett, Angelica; Goggins, Susan; Lewis-Polite, Brandy; Weriwoh, Mirabel L; Juarez, Paul D.; Hood, Darryl B.; Skelton, Tyler
2014-01-01
The goal of this study was to analyze a 54-item instrument for assessment of perception of exposure to environmental contaminants within the context of the built environment, or exposome. This exposome was defined in five domains to include 1) home and hobby, 2) school, 3) community, 4) occupation, and 5) exposure history. Interviews were conducted with child-bearing-age minority women at Metro Nashville General Hospital at Meharry Medical College. Data were analyzed utilizing DTReg software for Support Vector Machine (SVM) modeling followed by an SPSS package for a logistic regression model. The target (outcome) variable of interest was respondent's residence by ZIP code. The results demonstrate that the rank order of important variables with respect to SVM modeling versus traditional logistic regression models is almost identical. This is the first study documenting that SVM analysis has discriminate power for determination of higher-ordered spatial relationships on an environmental exposure history questionnaire. PMID:23395953
An ultra low power feature extraction and classification system for wearable seizure detection.
Page, Adam; Pramod Tim Oates, Siddharth; Mohsenin, Tinoosh
2015-01-01
In this paper we explore the use of a variety of machine learning algorithms for designing a reliable and low-power, multi-channel EEG feature extractor and classifier for predicting seizures from electroencephalographic data (scalp EEG). Different machine learning classifiers including k-nearest neighbor, support vector machines, naïve Bayes, logistic regression, and neural networks are explored with the goal of maximizing detection accuracy while minimizing power, area, and latency. The input to each machine learning classifier is a 198 feature vector containing 9 features for each of the 22 EEG channels obtained over 1-second windows. All classifiers were able to obtain F1 scores over 80% and onset sensitivity of 100% when tested on 10 patients. Among five different classifiers that were explored, logistic regression (LR) proved to have minimum hardware complexity while providing average F-1 score of 91%. Both ASIC and FPGA implementations of logistic regression are presented and show the smallest area, power consumption, and the lowest latency when compared to the previous work.
The arcsine is asinine: the analysis of proportions in ecology.
Warton, David I; Hui, Francis K C
2011-01-01
The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.
Chen, Chau-Kuang; Bruce, Michelle; Tyler, Lauren; Brown, Claudine; Garrett, Angelica; Goggins, Susan; Lewis-Polite, Brandy; Weriwoh, Mirabel L; Juarez, Paul D; Hood, Darryl B; Skelton, Tyler
2013-02-01
The goal of this study was to analyze a 54-item instrument for assessment of perception of exposure to environmental contaminants within the context of the built environment, or exposome. This exposome was defined in five domains to include 1) home and hobby, 2) school, 3) community, 4) occupation, and 5) exposure history. Interviews were conducted with child-bearing-age minority women at Metro Nashville General Hospital at Meharry Medical College. Data were analyzed utilizing DTReg software for Support Vector Machine (SVM) modeling followed by an SPSS package for a logistic regression model. The target (outcome) variable of interest was respondent's residence by ZIP code. The results demonstrate that the rank order of important variables with respect to SVM modeling versus traditional logistic regression models is almost identical. This is the first study documenting that SVM analysis has discriminate power for determination of higher-ordered spatial relationships on an environmental exposure history questionnaire.
NASA Astrophysics Data System (ADS)
Shafizadeh-Moghadam, Hossein; Helbich, Marco
2015-03-01
The rapid growth of megacities requires special attention among urban planners worldwide, and particularly in Mumbai, India, where growth is very pronounced. To cope with the planning challenges this will bring, developing a retrospective understanding of urban land-use dynamics and the underlying driving-forces behind urban growth is a key prerequisite. This research uses regression-based land-use change models - and in particular non-spatial logistic regression models (LR) and auto-logistic regression models (ALR) - for the Mumbai region over the period 1973-2010, in order to determine the drivers behind spatiotemporal urban expansion. Both global models are complemented by a local, spatial model, the so-called geographically weighted logistic regression (GWLR) model, one that explicitly permits variations in driving-forces across space. The study comes to two main conclusions. First, both global models suggest similar driving-forces behind urban growth over time, revealing that LRs and ALRs result in estimated coefficients with comparable magnitudes. Second, all the local coefficients show distinctive temporal and spatial variations. It is therefore concluded that GWLR aids our understanding of urban growth processes, and so can assist context-related planning and policymaking activities when seeking to secure a sustainable urban future.
Using the theory of planned behavior to predict infant restraint use in Saudi Arabia.
Nelson, Anna; Modeste, Naomi N; Marshak, Helen H; Hopp, Joyce W
2014-09-01
To determine whether the theory of planned behavior (TPB) predicted intent of child restraint system (CRS) use among pregnant women in the Kingdom of Saudi Arabia (KSA). In this cross-sectional study conducted in Dallah Hospital, Riyadh, KSA during June-July 2013, 196 pregnant women completed surveys assessing their beliefs regarding CRS. Simultaneous observations were conducted among a different sample of 150 women to determine CRS usage at hospital discharge following maternity stay. Logistic regression model with TPB constructs and covariates as predictors of CRS usage intent was significant (χ2=64.986, p<0.0001) and predicted 38% of intent. There was an increase in odds of intent for attitudes (31.5%, p<0.05), subjective norm (55.3%, p<0.001), and perceived behavioral control (76.9%, p<0.001). The 3 logistic regression models testing the association of the relevant set of composite belief scores were also significant for attitudes (χ2=16.803, p<0.05), subjective norm (χ2=29.681, p<0.0001), and perceived behavioral control (χ2=20.516, p<0.05). The behavioral observation showed that none of the 150 women observed used CRS for their newborn at discharge. The TPB constructs were significantly and independently associated with higher intent for CRS usage. While TPB appears to be a useful tool to identify beliefs related to CRS usage intentions in KSA, the results of the separate behavioral observation indicate that intentions may not be related to the actual usage of CRS in the Kingdom. Further studies are recommended to examine this association.
A case-control study of the risk factors for obstetric fistula in Tigray, Ethiopia.
Lewis Wall, L; Belay, Shewaye; Haregot, Tesfahun; Dukes, Jonathan; Berhan, Eyoel; Abreha, Melaku
2017-12-01
We tested the null hypothesis that there were no differences between patients with obstetric fistula and parous controls without fistula. A unmatched case-control study was carried out comparing 75 women with a history of obstetric fistula with 150 parous controls with no history of fistula. Height and weight were measured for each participant, along with basic socio-demographic and obstetric information. Descriptive statistics were calculated and differences between the groups were analyzed using Student's t test, Mann-Whitney U test where appropriate, and Chi-squared or Fisher's exact test, along with backward stepwise logistic regression analyses to detect predictors of obstetric fistula. Associations with a p value <0.05 were considered significant. Patients with fistulas married earlier and delivered their first pregnancies earlier than controls. They had significantly less education, a higher prevalence of divorce/separation, and lived in more impoverished circumstances than controls. Fistula patients had worse reproductive histories, with greater numbers of stillbirths/abortions and higher rates of assisted vaginal delivery and cesarean section. The final logistic regression model found four significant risk factors for developing an obstetric fistula: age at marriage (OR 1.23), history of assisted vaginal delivery (OR 3.44), lack of adequate antenatal care (OR 4.43), and a labor lasting longer than 1 day (OR 14.84). Our data indicate that obstetric fistula results from the lack of access to effective obstetrical services when labor is prolonged. Rural poverty and lack of adequate transportation infrastructure are probably important co-factors in inhibiting access to needed care.
Probability of foliar injury for Acer sp. based on foliar fluoride concentrations.
McDonough, Andrew M; Dixon, Murray J; Terry, Debbie T; Todd, Aaron K; Luciani, Michael A; Williamson, Michele L; Roszak, Danuta S; Farias, Kim A
2016-12-01
Fluoride is considered one of the most phytotoxic elements to plants, and indicative fluoride injury has been associated over a wide range of foliar fluoride concentrations. The aim of this study was to determine the probability of indicative foliar fluoride injury based on Acer sp. foliar fluoride concentrations using a logistic regression model. Foliage from Acer nedundo, Acer saccharinum, Acer saccharum and Acer platanoides was collected along a distance gradient from three separate brick manufacturing facilities in southern Ontario as part of a long-term monitoring programme between 1995 and 2014. Hydrogen fluoride is the major emission source associated with the manufacturing facilities resulting with highly elevated foliar fluoride close to the facilities and decreasing with distance. Consistent with other studies, indicative fluoride injury was observed over a wide range of foliar concentrations (9.9-480.0 μg F - g -1 ). The logistic regression model was statistically significant for the Acer sp. group, A. negundo and A. saccharinum; consequently, A. negundo being the most sensitive species among the group. In addition, A. saccharum and A. platanoides were not statistically significant within the model. We are unaware of published foliar fluoride values for Acer sp. within Canada, and this research provides policy maker and scientist with probabilities of indicative foliar injury for common urban Acer sp. trees that can help guide decisions about emissions controls. Further research should focus on mechanisms driving indicative fluoride injury over wide ranging foliar fluoride concentrations and help determine foliar fluoride thresholds for damage.
Utility of a New Model to Diagnose an Alcohol Basis for Steatohepatitis
Dunn, Winston; Angulo, Paul; Sanderson, Schuyler; Jamil, Laith H.; Stadheim, Linda; Rosen, Charles; Malinchoc, Michael; Kamath, Patrick S.; Shah, Vijay
2007-01-01
Background and Aims Distinguishing an alcohol basis from a nonalcoholic basis for the clinical and histological spectrum of steatohepatitic liver disease is difficult owing to unreliability of alcohol consumption history. Unfortunately, various biomarkers have had limited utility in distinguishing alcoholic liver disease (ALD) from nonalcoholic fatty liver disease (NAFLD). Thus, the aim of our study was to create and validate a model to diagnose ALD in patients with steatohepatitis. Methods Cross-sectional cohort study was performed at Mayo Clinic; Rochester, Minnesota to create a model using multivariable logistic regression analysis. This model was validated in three independent data-sets comprising patients of varying severity of steatohepatitis spanning over 10 years. Results Logistic regression identified mean corpuscular volume, AST/ALT ratio, body-mass index, and gender as the most important variables that separated patients with ALD from NAFLD. These variables were used to generate the ALD/NAFLD Index (ANI); with ANI of greater than 0 incrementally favoring ALD, and ANI of less than 0 incrementally favoring a diagnosis of NAFLD, thus making ALD unlikely. ANI had a c-statistic of 0.989 in the derivation sample, and 0.974, 0.989, 0.767 in the three validation samples. ANI performance characteristics were significantly better than several conventional and recently proposed biomarkers used to differentiate ALD from NAFLD including the histopathological marker Protein Tyrosine Phosphatase 1b, AST/ALT ratio, gamma-glutamyl transferase and Carbohydrate Deficient Transferrin. Conclusion ANI, derived from easily available objective variables, accurately differentiates ALD from NAFLD in hospitalized, ambulatory and pre-transplant patients and compares favorably to other traditional and proposed biomarkers. PMID:17030176
Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study.
Ross, P D; Kress, B C; Parson, R E; Wasnich, R D; Armour, K A; Mizrahi, I A
2000-01-01
The aim of this study was to assess the ability of serum bone-specific alkaline phosphatase (bone ALP), creatinine-corrected urinary collagen crosslinks (CTx) and calcaneus bone mineral density (BMD) to identify postmenopausal women who have an increased risk of osteoporotic fractures. Calcaneus BMD and biochemical markers of bone turnover (serum bone ALP and urinary CTx) were measured in 512 community-dwelling postmenopausal women (mean age at baseline 69 years) participating in the Hawaii Osteoporosis Study. New spine and nonspine fractures subsequent to the BMD and biochemical bone markers measurements were recorded over an average of 2.7 years. Lateral spinal radiographs were used to identify spine fractures. Nonspine fractures were identified by self-report at the time of each examination. During the 2.7-year follow-up, at least one osteoporotic fracture occurred in 55 (10.7%) of the 512 women. Mean baseline serum bone ALP and urinary CTx were significantly higher among women who experienced an osteoporotic fracture compared with those women who did not fracture. In separate age-adjusted logistic regression models, serum bone ALP, urinary CTx and calcaneus BMD were each significantly associated with new fractures (odds ratios of 1.53, 1.54 and 1.61 per SD, respectively). Multiple variable logistic regression analysis identified BMD and serum bone ALP as significant predictors of fracture (p = 0.002 and 0.017, respectively). The results from this investigation indicate that increased bone turnover is significantly associated with an increased risk of osteoporotic fracture in postmenopausal women. This association is similar in magnitude and independent of that observed for BMD.
Yank, Veronica; Rennie, Drummond; Bero, Lisa A
2007-12-08
To determine whether financial ties to one drug company are associated with favourable results or conclusions in meta-analyses on antihypertensive drugs. Retrospective cohort study. Meta-analyses published up to December 2004 that were not duplicates and evaluated the effects of antihypertensive drugs compared with any comparator on clinical end points in adults. Financial ties were categorised as one drug company compared with all others. The main outcomes were the results and conclusions of meta-analyses, with both outcomes separately categorised as being favourable or not favourable towards the study drug. We also collected data on characteristics of meta-analyses that the literature suggested might be associated with favourable results or conclusions. 124 meta-analyses were included in the study, 49 (40%) of which had financial ties to one drug company. On univariate logistic regression analyses, meta-analyses of better methodological quality were more likely to have favourable results (odds ratio 1.16, 95% confidence interval 1.07 to 1.27). Although financial ties to one drug company were not associated with favourable results, such ties constituted the only characteristic significantly associated with favourable conclusions (4.09, 1.30 to 12.83). When controlling for other characteristics of meta-analyses in multiple logistic regression analyses, meta-analyses that had financial ties to one drug company remained more likely to report favourable conclusions (5.11, 1.54 to 16.92). Meta-analyses on antihypertensive drugs and with financial ties to one drug company are not associated with favourable results but are associated with favourable conclusions.
Paffer, Adriana Toledo de; Ferreira, Haroldo da Silva; Cabral Júnior, Cyro Rego; Miranda, Claudio Torres de
2012-01-01
Compromised maternal mental health (MMH) is considered to be a risk factor for child malnutrition in low income areas. Psychosocial variables associated with MMH are potentially different between urban and rural environments. The aim here was to investigate whether associations existed between MMH and selected sociodemographic risk factors and whether specific to urban or rural settings. Cross-sectional study on a representative population sample of mothers from the semiarid region of Alagoas. Multistage sampling was used. The subjects were mothers of children aged up to 60 months. MMH was evaluated through the Self-Reporting Questionnaire-20. Mothers' nutritional status was assessed using the body mass index and waist circumference. Univariate analysis used odds ratios (OR) and chi-square. Logistic regression was performed separately for urban and rural subsamples using MMH as the dependent variable. The sample comprised 288 mothers. The prevalences of common mental disorders (CMD) in rural and urban areas were 56.2% and 43.8%, respectively (OR = 1.03; 95% CI: 0.64-1.63). In univariate analysis and logistic regression, the variable of education remained associated with MMH (OR = 2.2; 95% CI: 1.03-4.6) in urban areas. In rural areas, the variable of lack of partner remained associated (OR = 2.6; 95% CI: 1.01-6.7). The prevalence of CMD is high among mothers of children aged up to two years in the semiarid region of Alagoas. This seems to be associated with lower educational level in urban settings and lack of partner in rural settings.
HPV Vaccination Coverage of Male Adolescents in the United States
Lu, Peng-jun; Yankey, David; Jeyarajah, Jenny; O’Halloran, Alissa; Elam-Evans, Laurie D.; Smith, Philip J.; Stokley, Shannon; Singleton, James A.; Dunne, Eileen F.
2018-01-01
Background In 2011, the Advisory Committee for Immunization Practices (ACIP) recommended routine use HPV vaccine for male adolescents. Methods We used the 2013 National Immunization Survey-Teen (NIS-Teen) data to assess HPV vaccine uptake (≥1 dose) and series completion (≥3 doses). Multivariable logistic regression analysis and a predictive marginal model were conducted to identify independent predictors of vaccination among adolescent males aged 13–17 years. Results HPV vaccination coverage with ≥1 dose was 34.6% while series completion (≥3 doses) was 13.9%. Coverage was significantly higher among non-Hispanic blacks and Hispanics compared with non-Hispanic white males. Multivariable logistic regression showed that characteristics independently associated with a higher likelihood of HPV vaccination (≥1 dose) included: being non-Hispanic black race or Hispanic ethnicity, having mothers who were widowed, divorced, or separated, having 1–3 physician contacts in the past 12 months, a well-child visit at age 11–12 years, having one or two vaccination providers, living in urban or suburban areas, and receiving vaccinations from more than one type of facility (p<0.05). Having mothers with some college or college education, having a higher family income to poverty ratio, living in South or Midwest, and receiving vaccinations from all STD/school/teen clinics or other facilities were independently associated with a lower likelihood of HPV vaccination (p<0.05). Conclusions Following recommendations for routine HPV vaccination among male adolescents, uptake in 2013 was low in males. Increased efforts are needed to improve vaccination coverage, especially for those who are least likely to be vaccinated. PMID:26504124
2013-01-01
Background Intimate partner violence (IPV) is a significant public health problem. There is a lack of data on IPV risk factors from longitudinal studies and from low and middle income countries. Identifying risk factors is needed to inform the design of appropriate IPV interventions. Methods Data were from the Rakai Community Cohort Study annual surveys between 2000 and 2009. Female participants who had at least one sexual partner during this period and had data on IPV over the study period were included in analyses (N = 15081). Factors from childhood and early adulthood as well as contemporary factors were considered in separate models. Logistic regression was used to assess early risk factors for IPV during the study period. Longitudinal data analysis was used to assess contemporary risk factors in the past year for IPV in the current year, using a population-averaged multivariable logistic regression model. Results Risk factors for IPV from childhood and early adulthood included sexual abuse in childhood or adolescence, earlier age at first sex, lower levels of education, and forced first sex. Contemporary risk factors included younger age, being married, relationships of shorter duration, having a partner who is the same age or younger, alcohol use before sex by women and by their partners, and thinking that violence is acceptable. HIV infection and pregnancy were not associated with an increased odds of IPV. Conclusions Using longitudinal data, this study identified a number of risk factors for IPV. These findings are useful for the development of prevention strategies to prevent and mitigate IPV in women. PMID:23759123
Insulin resistance in offspring of hypertensive subjects.
Mino, D; Wacher, N; Amato, D; Búrbano, G; Fonseca, M E; Revilla, C; Gordon, F; Lifshitz, A
1996-10-01
To assess whether apparently healthy subjects with a family history of systemic hypertension have a higher risk of presenting the insulin resistance syndrome. Three hundred and eighty-six subjects aged 20-65 years. A middle socio-economic class urban community from Mexico City. All subjects and, when necessary, their first-degree relatives, answered a questionnaire and underwent a physical examination with measurement of height, weight and blood pressure. Serum insulin, glucose, cholesterol and triglycerides were measured during fasting and 2 h after an oral load of 75 g glucose. A family history of systemic hypertension was present for 167 (43%) of the subjects, of whom 123 (31%) were obese. Subjects with a family history of hypertension had higher systolic blood pressures than did those without such a history (120 +/- 15 versus 115 +/- 10 mmHg). In the logistic regression model, the body mass index and age showed statistically significant effects on the fasting glucose:insulin ratio and on serum insulin levels after an oral load of glucose. When men and women were analysed separately, only in men were higher systolic and mean blood pressures and lower glucose:insulin ratios observed. In the logistic regression analysis the body mass index was a significant predictor of the glucose:insulin ratio and serum insulin levels after an oral load of glucose, especially in men. Apparently healthy male offspring of hypertensive parents have higher blood pressure levels and lower insulin sensitivities than do offspring of normotensive parents. Insulin resistance was related to obesity, but not to a family history of hypertension, as had previously been reported by other research groups.
Guillaume, Sébastien; Jaussent, Isabelle; Jollant, Fabrice; Rihmer, Zoltán; Malafosse, Alain; Courtet, Philippe
2010-04-01
Identification of patients with a bipolar disorder (BPD) among those presenting a major depressive episode is often difficult, resulting in common misdiagnosis and mistreatment. Our aim was to identify clinical variables unrelated to current depressive episode and relevant to suicidal behavior that may help to improve the detection of BPD in suicide attempters presenting with recurrent major depressive disorder. 211 patients suffering from recurrent major depressive disorder or BPD, hospitalized after a suicide attempt (SA), were interviewed by semi-structured interview and validated questionnaires about DSM-IV axis I disorders, SA characteristics and a wide range of personality traits relevant to suicidal vulnerability. Multivariate logistic regression analysis was performed to determine differences between RMDD and BPD attempters. Logistic regression analysis showed that serious SA and family history of suicide are closely associated with a diagnosis of BPD [respectively OR=2.28, p=0.0195; OR=2.98, p=0.0081]. The presence of both characteristics increase the association with BDP [OR=4.78, p=0.005]. Conversely, when looking for the features associated with a serious SA, BPD was the only associated diagnosis [OR=2.03, p=0.004]. Lastly, affect intensity was higher in BPD samples [OR=2.08, p=0.041]. Retrospective nature of the study, lack of the separate analysis of bipolar subtypes. Serious suicide attempt and a familial history of completed suicide in patients with major depression seem to be a clinical marker of bipolarity. Facing suicide attempters with recurrent depression, clinician should be awareness to these characteristics to detect BPD. Copyright 2009 Elsevier B.V. All rights reserved.
Spashett, Renee; Fernie, Gordon; Reid, Ian C; Cameron, Isobel M
2014-09-01
This study aimed to explore the relationship of Montgomery-Åsberg Depression Rating Scale (MADRS) symptom subtypes with response to electroconvulsive therapy (ECT) and subsequent ECT treatment within 12 months. A consecutive sample of 414 patients with depression receiving ECT in the North East of Scotland was assessed by retrospective chart review. Response rate was defined as greater than or equal to 50% decrease in pretreatment total MADRS score or a posttreatment total MADRS less than or equal to 10. Principal component analyses were conducted on a sample with psychotic features (n = 124) and a sample without psychotic features (n = 290). Scores on extracted factor subscales, clinical and demographic characteristics were assessed for association with response and subsequent ECT treatment within 12 months. Where more than 1 variable was associated with response or subsequent ECT, logistic regression analysis was applied. MADRS symptom subtypes formed 3 separate factors in both samples. Logistic regression revealed older age and high "Despondency" subscale score predicted response in the nonpsychotic group. Older age alone predicted response in the group with psychotic features. Nonpsychotic patients subsequently re-treated with ECT were older than those not prescribed subsequent ECT. No association of variables emerged with subsequent ECT treatment in the group with psychotic features. Being of older age and the presence of psychotic features predicted response. Presence of psychotic features alone predicted subsequent retreatment. Subscale scores of the MADRS are of limited use in predicting which patients with depression will respond to ECT, with the exception of "Despondency" subscale scores in patients without psychotic features.
[Association between adverse experiences in childhood and risk of chronic diseases in adulthood].
Nie, Junyan; Yu, Honghui; Wang, Zhiqiang; Wang, Leilei; Han, Juan; Wang, Youjie; Du, Yukai; Shen, Min
2015-09-01
To analyze the prevalence and characteristics of childhood adverse experiences among adults aged 18-59 years and understand the association between childhood adverse experiences and risk of chronic diseases in adulthood. A cross-sectional study was conducted with a questionnaire among adults aged 18-59 years selected through cluster random sampling from 3 communities in Macheng, Hubei province. Uinivariate and multivariate logistic regression analyses were conducted to evaluate the association between adverse experiences in childhood and the risk of chronic diseases in adulthood. A total of 1 767 adults aged 18-59 years were surveyed and 1 501 valid questionnaires were returned. The average age was (36.32± 10.20) years for males and (35.72±9.08) years for females. The prevalence rate of childhood adverse experiences was 66.22%. The risk of chronic disease in adults increased with the increase of the score indicating childhood adverse experiences (Z=-5.902 1, P<0.000 1). Multivariate logistic regression analysis showed that being physically abused (OR=1.93, 95% CI: 1.41-2.64), substance abuse in family (OR=2.82, 95% CI: 1.16-6.80), being bullied (OR=2.59, 95% CI: 1.39-4.80) and parents separation/divorce (OR=1.51, 95% CI: 1.09-2.09) were significantly associated with risk of chronic diseases in adulthood. The prevalence of adverse childhood experiences was high in adults aged 18-59 years, which was significantly associated with the risk of chronic diseases in adulthood. Early prevention of chronic diseases should be conducted in childhood.
Joyce, Peter R; Light, Katrina J; Rowe, Sarah L; Cloninger, C Robert; Kennedy, Martin A
2010-03-01
Self-mutilation has traditionally been associated with borderline personality disorder, and seldom examined separately from suicide attempts. Clinical experience suggests that self-mutilation is common in bipolar disorder. A family study was conducted on the molecular genetics of depression and personality, in which the proband had been treated for depression. All probands and parents or siblings were interviewed with a structured interview and completed the Temperament and Character Inventory. Fourteen per cent of subjects interviewed reported a history of self-mutilation, mostly by wrist cutting. Self-mutilation was more common in bipolar I disorder subjects then in any other diagnostic groups. In multiple logistic regression self-mutilation was predicted by mood disorder diagnosis and harm avoidance, but not by borderline personality disorder. Furthermore, the relatives of non-bipolar depressed probands with self-mutilation had higher rates of bipolar I or II disorder and higher rates of self-mutilation. Sixteen per cent of subjects reported suicide attempts and these were most common in those with bipolar I disorder and in those with borderline personality disorder. On multiple logistic regression, however, only mood disorder diagnosis and harm avoidance predicted suicide attempts. Suicide attempts, unlike self-mutilation, were not familial. Self-mutilation and suicide attempts are only partially overlapping behaviours, although both are predicted by mood disorder diagnosis and harm avoidance. Self-mutilation has a particularly strong association with bipolar disorder. Clinicians need to think of bipolar disorder, not borderline personality disorder, when assessing an individual who has a history of self-mutilation.
Kumar, Dipanshu; Anand, Ashish; Mittal, Vipula; Singh, Aparna; Aggarwal, Nidhi
2017-01-01
Aim The aim of the present study was to identify the various background variables and its influence on behavior management problems (BMP) in children. Materials and methods The study included 165 children aged 2 to 8 years. During the initial dental visit, an experienced operator obtained each child’s background variables from accompanying guardians using a standardized questionnaire. Children’s dental behavior was rated by Frankel behavior rating scale. The behavior was then analyzed in relation to the answers of the questionnaire, and a logistic regression model was used to determine the power of the variables, separately or combined, to predict BMP. Results The logistic regression analysis considering differences in background variables between children with negative or positive behavior. Four variables turned out to be as predictors: Age, the guardian’s expectation of the child’s behavior at the dental examination, the child’s anxiety when meeting unfamiliar people, and the presence and absence of toothache. Conclusion The present study concluded that by means of simple questionnaire BMP in children may be expected if one of these attributes is found. Clinical significance Information on the origin of dental fear and uncooperative behavior in a child patient prior to treatment process may help the pediatric dentist plan appropriate behavior management and treatment strategy. How to cite this article Sharma A, Kumar D, Anand A, Mittal V, Singh A, Aggarwal N. Factors predicting Behavior Management Problems during Initial Dental Examination in Children Aged 2 to 8 Years. Int J Clin Pediatr Dent 2017;10(1):5-9. PMID:28377646
Cabral, Ana Caroline; Stark, Jonathan S; Kolm, Hedda E; Martins, César C
2018-04-01
Sewage input and the relationship between chemical markers (linear alkylbenzenes and coprostanol) and fecal indicator bacteria (FIB, Escherichia coli and enterococci), were evaluated in order to establish thresholds values for chemical markers in suspended particulate matter (SPM) as indicators of sewage contamination in two subtropical estuaries in South Atlantic Brazil. Both chemical markers presented no linear relationship with FIB due to high spatial microbiological variability, however, microbiological water quality was related to coprostanol values when analyzed by logistic regression, indicating that linear models may not be the best representation of the relationship between both classes of indicators. Logistic regression was performed with all data and separately for two sampling seasons, using 800 and 100 MPN 100 mL -1 of E. coli and enterococci, respectively, as the microbiological limits of sewage contamination. Threshold values of coprostanol varied depending on the FIB and season, ranging between 1.00 and 2.23 μg g -1 SPM. The range of threshold values of coprostanol for SPM are relatively higher and more variable than those suggested in literature for sediments (0.10-0.50 μg g -1 ), probably due to higher concentration of coprostanol in SPM than in sediment. Temperature may affect the relationship between microbiological indicators and coprostanol, since the threshold value of coprostanol found here was similar to tropical areas, but lower than those found during winter in temperate areas, reinforcing the idea that threshold values should be calibrated for different climatic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Difficulties Reported by Hiv-Infected Patients Using Antiretroviral Therapy in Brazil
Guimarães, Mark Drew Crosland; Rocha, Gustavo Machado; Campos, Lorenza Nogueira; de Freitas, Felipe Melo Teixeira; Gualberto, Felipe Augusto Souza; Teixeira, Ramiro d’Ávila Rivelli; de Castilho, Fábio Morato
2008-01-01
OBJECTIVE To describe the degree of difficulty that HIV-infected patients have with therapy treatment. INTRODUCTION Patients’ perceptions about their treatment are a determinant factor for improved adherence and a better quality of life. METHODS Two cross-sectional analyses were conducted in public AIDS referral centers in Brazil among patients initiating treatment. Patients interviewed at baseline, after one month, and after seven months following the beginning of treatment were asked to classify and justify the degree of difficulty with treatment. Logistic regression was used for analysis. RESULTS Among 406 patients initiating treatment, 350 (86.2%) and 209 (51.5%) returned for their first and third visits, respectively. Treatment perceptions ranged from medium to very difficult for 51.4% and 37.3% on the first and third visits, respectively. The main difficulties reported were adverse reactions to the medication and scheduling. A separate logistic regression indicated that the HIV-seropositive status disclosure, symptoms of anxiety, absence of psychotherapy, higher CD4+ cell count (> 200/mm3) and high (> 4) adverse reaction count reported were independently associated with the degree of difficulty in the first visit, while CDC clinical category A, pill burden (> 7 pills), use of other medications, high (> 4) adverse reaction count reported and low understanding of medical orientation showed independent association for the third visit. CONCLUSIONS A significant level of difficulty was observed with treatment. Our analyses suggest the need for early assessment of difficulties with treatment, highlighting the importance of modifiable factors that may contribute to better adherence to the treatment protocol. PMID:18438569
Hwang, Juen-Haur
2016-01-01
Background Cochleovestibular symptoms, such as vertigo, tinnitus, and sudden deafness, are common manifestations of microvascular diseases. However, it is unclear whether these symptoms occurred preceding the diagnosis of peripheral artery occlusive disease (PAOD). Therefore, the aim of this case-control study was to investigate the risk of PAOD among patients with vertigo, tinnitus, and sudden deafness using a nationwide, population-based health claim database in Taiwan. Methods We identified 5,340 adult patients with PAOD diagnosed between January 1, 2006 and December 31, 2010 and 16,020 controls, frequency matched on age interval, sex, and year of index date, from the Taiwan National Health Insurance Research Database. Risks of PAOD in patients with vertigo, tinnitus, or sudden deafness were separately evaluated with multivariate logistic regression analyses. Results Of the 5,340 patients with PAOD, 12.7%, 6.7%, and 0.3% were diagnosed with vertigo, tinnitus, and sudden deafness, respectively. In the controls, 10.6%, 6.1%, and 0.3% were diagnosed with vertigo (P < 0.001), tinnitus (P = 0.161), and sudden deafness (P = 0.774), respectively. Results from the multivariate logistic regression analyses showed that the risk of PAOD was significantly increased in patients with vertigo (adjusted odds ratio = 1.12, P = 0.027) but not in those with tinnitus or sudden deafness. Conclusions A modest increase in the risk of PAOD was observed among Taiwanese patients with vertigo, after adjustment for comorbidities. PMID:27631630
Can Predictive Modeling Identify Head and Neck Oncology Patients at Risk for Readmission?
Manning, Amy M; Casper, Keith A; Peter, Kay St; Wilson, Keith M; Mark, Jonathan R; Collar, Ryan M
2018-05-01
Objective Unplanned readmission within 30 days is a contributor to health care costs in the United States. The use of predictive modeling during hospitalization to identify patients at risk for readmission offers a novel approach to quality improvement and cost reduction. Study Design Two-phase study including retrospective analysis of prospectively collected data followed by prospective longitudinal study. Setting Tertiary academic medical center. Subjects and Methods Prospectively collected data for patients undergoing surgical treatment for head and neck cancer from January 2013 to January 2015 were used to build predictive models for readmission within 30 days of discharge using logistic regression, classification and regression tree (CART) analysis, and random forests. One model (logistic regression) was then placed prospectively into the discharge workflow from March 2016 to May 2016 to determine the model's ability to predict which patients would be readmitted within 30 days. Results In total, 174 admissions had descriptive data. Thirty-two were excluded due to incomplete data. Logistic regression, CART, and random forest predictive models were constructed using the remaining 142 admissions. When applied to 106 consecutive prospective head and neck oncology patients at the time of discharge, the logistic regression model predicted readmissions with a specificity of 94%, a sensitivity of 47%, a negative predictive value of 90%, and a positive predictive value of 62% (odds ratio, 14.9; 95% confidence interval, 4.02-55.45). Conclusion Prospectively collected head and neck cancer databases can be used to develop predictive models that can accurately predict which patients will be readmitted. This offers valuable support for quality improvement initiatives and readmission-related cost reduction in head and neck cancer care.
Roland, Lauren T.; Kallogjeri, Dorina; Sinks, Belinda C.; Rauch, Steven D.; Shepard, Neil T.; White, Judith A.; Goebel, Joel A.
2015-01-01
Objective Test performance of a focused dizziness questionnaire’s ability to discriminate between peripheral and non-peripheral causes of vertigo. Study Design Prospective multi-center Setting Four academic centers with experienced balance specialists Patients New dizzy patients Interventions A 32-question survey was given to participants. Balance specialists were blinded and a diagnosis was established for all participating patients within 6 months. Main outcomes Multinomial logistic regression was used to evaluate questionnaire performance in predicting final diagnosis and differentiating between peripheral and non-peripheral vertigo. Univariate and multivariable stepwise logistic regression were used to identify questions as significant predictors of the ultimate diagnosis. C-index was used to evaluate performance and discriminative power of the multivariable models. Results 437 patients participated in the study. Eight participants without confirmed diagnoses were excluded and 429 were included in the analysis. Multinomial regression revealed that the model had good overall predictive accuracy of 78.5% for the final diagnosis and 75.5% for differentiating between peripheral and non-peripheral vertigo. Univariate logistic regression identified significant predictors of three main categories of vertigo: peripheral, central and other. Predictors were entered into forward stepwise multivariable logistic regression. The discriminative power of the final models for peripheral, central and other causes were considered good as measured by c-indices of 0.75, 0.7 and 0.78, respectively. Conclusions This multicenter study demonstrates a focused dizziness questionnaire can accurately predict diagnosis for patients with chronic/relapsing dizziness referred to outpatient clinics. Additionally, this survey has significant capability to differentiate peripheral from non-peripheral causes of vertigo and may, in the future, serve as a screening tool for specialty referral. Clinical utility of this questionnaire to guide specialty referral is discussed. PMID:26485598
Roland, Lauren T; Kallogjeri, Dorina; Sinks, Belinda C; Rauch, Steven D; Shepard, Neil T; White, Judith A; Goebel, Joel A
2015-12-01
Test performance of a focused dizziness questionnaire's ability to discriminate between peripheral and nonperipheral causes of vertigo. Prospective multicenter. Four academic centers with experienced balance specialists. New dizzy patients. A 32-question survey was given to participants. Balance specialists were blinded and a diagnosis was established for all participating patients within 6 months. Multinomial logistic regression was used to evaluate questionnaire performance in predicting final diagnosis and differentiating between peripheral and nonperipheral vertigo. Univariate and multivariable stepwise logistic regression were used to identify questions as significant predictors of the ultimate diagnosis. C-index was used to evaluate performance and discriminative power of the multivariable models. In total, 437 patients participated in the study. Eight participants without confirmed diagnoses were excluded and 429 were included in the analysis. Multinomial regression revealed that the model had good overall predictive accuracy of 78.5% for the final diagnosis and 75.5% for differentiating between peripheral and nonperipheral vertigo. Univariate logistic regression identified significant predictors of three main categories of vertigo: peripheral, central, and other. Predictors were entered into forward stepwise multivariable logistic regression. The discriminative power of the final models for peripheral, central, and other causes was considered good as measured by c-indices of 0.75, 0.7, and 0.78, respectively. This multicenter study demonstrates a focused dizziness questionnaire can accurately predict diagnosis for patients with chronic/relapsing dizziness referred to outpatient clinics. Additionally, this survey has significant capability to differentiate peripheral from nonperipheral causes of vertigo and may, in the future, serve as a screening tool for specialty referral. Clinical utility of this questionnaire to guide specialty referral is discussed.
Prediction of cold and heat patterns using anthropometric measures based on machine learning.
Lee, Bum Ju; Lee, Jae Chul; Nam, Jiho; Kim, Jong Yeol
2018-01-01
To examine the association of body shape with cold and heat patterns, to determine which anthropometric measure is the best indicator for discriminating between the two patterns, and to investigate whether using a combination of measures can improve the predictive power to diagnose these patterns. Based on a total of 4,859 subjects (3,000 women and 1,859 men), statistical analyses using binary logistic regression were performed to assess the significance of the difference and the predictive power of each anthropometric measure, and binary logistic regression and Naive Bayes with the variable selection technique were used to assess the improvement in the predictive power of the patterns using the combined measures. In women, the strongest indicators for determining the cold and heat patterns among anthropometric measures were body mass index (BMI) and rib circumference; in men, the best indicator was BMI. In experiments using a combination of measures, the values of the area under the receiver operating characteristic curve in women were 0.776 by Naive Bayes and 0.772 by logistic regression, and the values in men were 0.788 by Naive Bayes and 0.779 by logistic regression. Individuals with a higher BMI have a tendency toward a heat pattern in both women and men. The use of a combination of anthropometric measures can slightly improve the diagnostic accuracy. Our findings can provide fundamental information for the diagnosis of cold and heat patterns based on body shape for personalized medicine.
Teng, Ju-Hsi; Lin, Kuan-Chia; Ho, Bin-Shenq
2007-10-01
A community-based aboriginal study was conducted and analysed to explore the application of classification tree and logistic regression. A total of 1066 aboriginal residents in Yilan County were screened during 2003-2004. The independent variables include demographic characteristics, physical examinations, geographic location, health behaviours, dietary habits and family hereditary diseases history. Risk factors of cardiovascular diseases were selected as the dependent variables in further analysis. The completion rate for heath interview is 88.9%. The classification tree results find that if body mass index is higher than 25.72 kg m(-2) and the age is above 51 years, the predicted probability for number of cardiovascular risk factors > or =3 is 73.6% and the population is 322. If body mass index is higher than 26.35 kg m(-2) and geographical latitude of the village is lower than 24 degrees 22.8', the predicted probability for number of cardiovascular risk factors > or =4 is 60.8% and the population is 74. As the logistic regression results indicate that body mass index, drinking habit and menopause are the top three significant independent variables. The classification tree model specifically shows the discrimination paths and interactions between the risk groups. The logistic regression model presents and analyses the statistical independent factors of cardiovascular risks. Applying both models to specific situations will provide a different angle for the design and management of future health intervention plans after community-based study.
Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun
2018-03-01
Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.
Individual and community levels of maternal autonomy and child undernutrition in India.
Rajaram, Ramaprasad; Perkins, Jessica M; Joe, William; Subramanian, S V
2017-03-01
Investigate the relationship between maternal autonomy at multiple levels and the risk of child stunting, underweight, and wasting in India. Data were from a 2005-2006 nationally representative, cross-sectional sample of 51,555 children under 5 years from 29 states in India. Multilevel, multivariable, logistic regression analyses were used to estimate the odds of child stunting, underweight, and wasting in relation to maternal autonomy in healthcare, movement, and money at the individual level and community level, while adjusting for several child, maternal, and household factors. When only adjusting for child age and sex, children in communities with a high proportion of women with autonomy in healthcare, or movement, or money, separately, had a lower risk of being stunted, underweight, or wasted, separately. However, adjusting for other explanatory factors attenuated these relationships and made them statistically insignificant. Individual maternal autonomy in any of the three domains was not associated with any of the outcomes. The results suggest that caution should be taken when interpreting the direct relevance of maternal autonomy at both individual and community levels to measures of child undernutrition.
Evaluation of the Risk Factors for a Rotator Cuff Retear After Repair Surgery.
Lee, Yeong Seok; Jeong, Jeung Yeol; Park, Chan-Deok; Kang, Seung Gyoon; Yoo, Jae Chul
2017-07-01
A retear is a significant clinical problem after rotator cuff repair. However, no study has evaluated the retear rate with regard to the extent of footprint coverage. To evaluate the preoperative and intraoperative factors for a retear after rotator cuff repair, and to confirm the relationship with the extent of footprint coverage. Cohort study; Level of evidence, 3. Data were retrospectively collected from 693 patients who underwent arthroscopic rotator cuff repair between January 2006 and December 2014. All repairs were classified into 4 types of completeness of repair according to the amount of footprint coverage at the end of surgery. All patients underwent magnetic resonance imaging (MRI) after a mean postoperative duration of 5.4 months. Preoperative demographic data, functional scores, range of motion, and global fatty degeneration on preoperative MRI and intraoperative variables including the tear size, completeness of rotator cuff repair, concomitant subscapularis repair, number of suture anchors used, repair technique (single-row or transosseous-equivalent double-row repair), and surgical duration were evaluated. Furthermore, the factors associated with failure using the single-row technique and transosseous-equivalent double-row technique were analyzed separately. The retear rate was 7.22%. Univariate analysis revealed that rotator cuff retears were affected by age; the presence of inflammatory arthritis; the completeness of rotator cuff repair; the initial tear size; the number of suture anchors; mean operative time; functional visual analog scale scores; Simple Shoulder Test findings; American Shoulder and Elbow Surgeons scores; and fatty degeneration of the supraspinatus, infraspinatus, and subscapularis. Multivariate logistic regression analysis revealed patient age, initial tear size, and fatty degeneration of the supraspinatus as independent risk factors for a rotator cuff retear. Multivariate logistic regression analysis of the single-row group revealed patient age and fatty degeneration of the supraspinatus as independent risk factors for a rotator cuff retear. Multivariate logistic regression analysis of the transosseous-equivalent double-row group revealed a frozen shoulder as an independent risk factor for a rotator cuff retear. Our results suggest that patient age, initial tear size, and fatty degeneration of the supraspinatus are independent risk factors for a rotator cuff retear, whereas the completeness of rotator cuff repair based on the extent of footprint coverage and repair technique are not.
Is parenting style a predictor of suicide attempts in a representative sample of adolescents?
2014-01-01
Background Suicidal ideation and suicide attempts are serious but not rare conditions in adolescents. However, there are several research and practical suicide-prevention initiatives that discuss the possibility of preventing serious self-harm. Profound knowledge about risk and protective factors is therefore necessary. The aim of this study is a) to clarify the role of parenting behavior and parenting styles in adolescents’ suicide attempts and b) to identify other statistically significant and clinically relevant risk and protective factors for suicide attempts in a representative sample of German adolescents. Methods In the years 2007/2008, a representative written survey of N = 44,610 students in the 9th grade of different school types in Germany was conducted. In this survey, the lifetime prevalence of suicide attempts was investigated as well as potential predictors including parenting behavior. A three-step statistical analysis was carried out: I) As basic model, the association between parenting and suicide attempts was explored via binary logistic regression controlled for age and sex. II) The predictive values of 13 additional potential risk/protective factors were analyzed with single binary logistic regression analyses for each predictor alone. Non-significant predictors were excluded in Step III. III) In a multivariate binary logistic regression analysis, all significant predictor variables from Step II and the parenting styles were included after testing for multicollinearity. Results Three parental variables showed a relevant association with suicide attempts in adolescents – (all protective): mother’s warmth and father’s warmth in childhood and mother’s control in adolescence (Step I). In the full model (Step III), Authoritative parenting (protective: OR: .79) and Rejecting-Neglecting parenting (risk: OR: 1.63) were identified as significant predictors (p < .001) for suicidal attempts. Seven further variables were interpreted to be statistically significant and clinically relevant: ADHD, female sex, smoking, Binge Drinking, absenteeism/truancy, migration background, and parental separation events. Conclusions Parenting style does matter. While children of Authoritative parents profit, children of Rejecting-Neglecting parents are put at risk – as we were able to show for suicide attempts in adolescence. Some of the identified risk factors contribute new knowledge and potential areas of intervention for special groups such as migrants or children diagnosed with ADHD. PMID:24766881
A regularization corrected score method for nonlinear regression models with covariate error.
Zucker, David M; Gorfine, Malka; Li, Yi; Tadesse, Mahlet G; Spiegelman, Donna
2013-03-01
Many regression analyses involve explanatory variables that are measured with error, and failing to account for this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski-Nakamura corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression, nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses' Health Study concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast cancer. Copyright © 2013, The International Biometric Society.
Logistic Mixed Models to Investigate Implicit and Explicit Belief Tracking
Lages, Martin; Scheel, Anne
2016-01-01
We investigated the proposition of a two-systems Theory of Mind in adults’ belief tracking. A sample of N = 45 participants predicted the choice of one of two opponent players after observing several rounds in an animated card game. Three matches of this card game were played and initial gaze direction on target and subsequent choice predictions were recorded for each belief task and participant. We conducted logistic regressions with mixed effects on the binary data and developed Bayesian logistic mixed models to infer implicit and explicit mentalizing in true belief and false belief tasks. Although logistic regressions with mixed effects predicted the data well a Bayesian logistic mixed model with latent task- and subject-specific parameters gave a better account of the data. As expected explicit choice predictions suggested a clear understanding of true and false beliefs (TB/FB). Surprisingly, however, model parameters for initial gaze direction also indicated belief tracking. We discuss why task-specific parameters for initial gaze directions are different from choice predictions yet reflect second-order perspective taking. PMID:27853440
Prolonged Nightly Fasting and Breast Cancer Risk: Findings from NHANES (2009-2010).
Marinac, Catherine R; Natarajan, Loki; Sears, Dorothy D; Gallo, Linda C; Hartman, Sheri J; Arredondo, Elva; Patterson, Ruth E
2015-05-01
A novel line of research has emerged, suggesting that daily feeding-fasting schedules that are synchronized with sleep-wake cycles have metabolic implications that are highly relevant to breast cancer. We examined associations of nighttime fasting duration with biomarkers of breast cancer risk among women in the 2009-2010 U.S. National Health and Nutrition Examination Survey. Dietary, anthropometric, and HbA1c data were available for 2,212 women, and 2-hour postprandial glucose concentrations were available for 1,066 women. Nighttime fasting duration was calculated using 24-hour food records. Separate linear regression models examined associations of nighttime fasting with HbA1c and 2-hour glucose concentrations. Logistic regression modeled associations of nighttime fasting with elevated HbA1c (HbA1c ≥ 39 mmol/mol or 5.7%) and elevated 2-hour glucose (glucose ≥ 140 mg/dL). All models adjusted for age, education, race/ethnicity, body mass index, total kcal intake, evening kcal intake, and the number of eating episodes per day. Each 3-hour increase in nighttime fasting (roughly 1 SD) was associated with a 4% lower 2-hour glucose measurement [β, 0.96; 95% confidence interval (CI), 0.93-1.00; P < 0.05], and a nonstatistically significant decrease in HbA1c. Logistic regression models indicate that each 3-hour increase in nighttime fasting duration was associated with roughly a 20% reduced odds of elevated HbA1c (OR, 0.81; 95% CI, 0.68-0.97; P < 0.05) and nonsignificantly reduced odds of elevated 2-hour glucose. A longer nighttime duration was significantly associated with improved glycemic regulation. Randomized trials are needed to confirm whether prolonged nighttime fasting could improve biomarkers of glucose control, thereby reducing breast cancer risk. ©2015 American Association for Cancer Research.
Ripamonti, C; Lisi, L; Avella, M
2014-05-01
To investigate the specificity of the neck shaft angle (NSA) to predict hip fracture in males. We consecutively studied 228 males without fracture and 38 with hip fracture. A further 49 males with spine fracture were studied to evaluate the specificity of NSA for hip-fracture prediction. Femoral neck (FN) bone mineral density (FN-BMD), NSA, hip axis length and FN diameter (FND) were measured in each subject by dual X-ray absorptiometry. Between-mean differences in the studied variables were tested by the unpaired t-test. The ability of NSA to predict hip fracture was tested by logistic regression. Compared with controls, FN-BMD (p < 0.01) was significantly lower in both groups of males with fractures, whereas FND (p < 0.01) and NSA (p = 0.05) were higher only in the hip-fracture group. A significant inverse correlation (p < 0.01) was found between NSA and FN-BMD. By age-, height- and weight-corrected logistic regression, none of the tested geometric parameters, separately considered from FN-BMD, entered the best model to predict spine fracture, whereas NSA (p < 0.03) predicted hip fracture together with age (p < 0.001). When forced into the regression, FN-BMD (p < 0.001) became the only fracture predictor to enter the best model to predict both fracture types. NSA is associated with hip-fracture risk in males but is not independent of FN-BMD. The lack of ability of NSA to predict hip fracture in males independent of FN-BMD should depend on its inverse correlation with FN-BMD by capturing, as the strongest fracture predictor, some of the effects of NSA on the hip fracture. Conversely, NSA in females does not correlate with FN-BMD but independently predicts hip fractures.
Lisi, L; Avella, M
2014-01-01
Objective: To investigate the specificity of the neck shaft angle (NSA) to predict hip fracture in males. Methods: We consecutively studied 228 males without fracture and 38 with hip fracture. A further 49 males with spine fracture were studied to evaluate the specificity of NSA for hip-fracture prediction. Femoral neck (FN) bone mineral density (FN-BMD), NSA, hip axis length and FN diameter (FND) were measured in each subject by dual X-ray absorptiometry. Between-mean differences in the studied variables were tested by the unpaired t-test. The ability of NSA to predict hip fracture was tested by logistic regression. Results: Compared with controls, FN-BMD (p < 0.01) was significantly lower in both groups of males with fractures, whereas FND (p < 0.01) and NSA (p = 0.05) were higher only in the hip-fracture group. A significant inverse correlation (p < 0.01) was found between NSA and FN-BMD. By age-, height- and weight-corrected logistic regression, none of the tested geometric parameters, separately considered from FN-BMD, entered the best model to predict spine fracture, whereas NSA (p < 0.03) predicted hip fracture together with age (p < 0.001). When forced into the regression, FN-BMD (p < 0.001) became the only fracture predictor to enter the best model to predict both fracture types. Conclusion: NSA is associated with hip-fracture risk in males but is not independent of FN-BMD. Advances in knowledge: The lack of ability of NSA to predict hip fracture in males independent of FN-BMD should depend on its inverse correlation with FN-BMD by capturing, as the strongest fracture predictor, some of the effects of NSA on the hip fracture. Conversely, NSA in females does not correlate with FN-BMD but independently predicts hip fractures. PMID:24678889
Morrell, Glen R; Ikizler, Talat A; Chen, Xiaorui; Heilbrun, Marta E; Wei, Guo; Boucher, Robert; Beddhu, Srinivasan
2016-07-01
We investigate whether psoas or paraspinous muscle area measured on a single L4-L5 image is a useful measure of whole lean body mass (LBM) compared to dedicated midthigh magnetic resonance imaging (MRI). Observational study. Outpatient dialysis units and a research clinic. One hundred five adult participants on maintenance hemodialysis. No control group was used. Psoas muscle area, paraspinous muscle area, and midthigh muscle area (MTMA) were measured by magnetic resonance imaging. LBM was measured by dual-energy absorptiometry scan. In separate multivariable linear regression models, psoas, paraspinous, and MTMA were associated with increase in LBM. In separate multivariate logistic regression models, C statistics for diagnosis of sarcopenia (defined as <25th percentile of LBM) were 0.69 for paraspinous muscle area, 0.81 for psoas muscle area, and 0.89 for MTMA. With sarcopenia defined as <10th percentile of LBM, the corresponding C statistics were 0.71, 0.92, and 0.94. We conclude that psoas muscle area provides a good measure of whole-body muscle mass, better than paraspinous muscle area but slightly inferior to midthigh measurement. Hence, in body composition studies a single axial MR image at the L4-L5 level can be used to provide information on both fat and muscle and may eliminate the need for time-consuming measurement of muscle area in the thigh. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Distiller, Larry A; Joffe, Barry I; Melville, Vanessa; Welman, Tania; Distiller, Greg B
2006-01-01
The factors responsible for premature coronary atherosclerosis in patients with type 1 diabetes are ill defined. We therefore assessed carotid intima-media complex thickness (IMT) in relatively long-surviving patients with type 1 diabetes as a marker of atherosclerosis and correlated this with traditional risk factors. Cross-sectional study of 148 patients with relatively long-surviving (>18 years) type 1 diabetes (76 men and 72 women) attending the Centre for Diabetes and Endocrinology, Johannesburg. The mean common carotid artery IMT and presence or absence of plaque was evaluated by high-resolution B-mode ultrasound. Their median age was 48 years and duration of diabetes 26 years (range 18-59 years). Traditional risk factors (age, duration of diabetes, glycemic control, hypertension, smoking and lipoprotein concentrations) were recorded. Three response variables were defined and modeled. Standard multiple regression was used for a continuous IMT variable, logistic regression for the presence/absence of plaque and ordinal logistic regression to model three categories of "risk." The median common carotid IMT was 0.62 mm (range 0.44-1.23 mm) with plaque detected in 28 cases. The multiple regression model found significant associations between IMT and current age (P=.001), duration of diabetes (P=.033), BMI (P=.008) and diagnosed hypertension (P=.046) with HDL showing a protective effect (P=.022). Current age (P=.001) and diagnosed hypertension (P=.004), smoking (P=.008) and retinopathy (P=.033) were significant in the logistic regression model. Current age was also significant in the ordinal logistic regression model (P<.001), as was total cholesterol/HDL ratio (P<.001) and mean HbA(1c) concentration (P=.073). The major factors influencing common carotid IMT in patients with relatively long-surviving type 1 diabetes are age, duration of diabetes, existing hypertension and HDL (protective) with a relatively minor role ascribed to relatively long-standing glycemic control.
Correlation and simple linear regression.
Eberly, Lynn E
2007-01-01
This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.
Fu, P; Panneerselvam, A; Clifford, B; Dowlati, A; Ma, P C; Zeng, G; Halmos, B; Leidner, R S
2015-12-01
It is well known that non-small cell lung cancer (NSCLC) is a heterogeneous group of diseases. Previous studies have demonstrated genetic variation among different ethnic groups in the epidermal growth factor receptor (EGFR) in NSCLC. Research by our group and others has recently shown a lower frequency of EGFR mutations in African Americans with NSCLC, as compared to their White counterparts. In this study, we use our original study data of EGFR pathway genetics in African American NSCLC as an example to illustrate that univariate analyses based on aggregation versus partition of data leads to contradictory results, in order to emphasize the importance of controlling statistical confounding. We further investigate analytic approaches in logistic regression for data with separation, as is the case in our example data set, and apply appropriate methods to identify predictors of EGFR mutation. Our simulation shows that with separated or nearly separated data, penalized maximum likelihood (PML) produces estimates with smallest bias and approximately maintains the nominal value with statistical power equal to or better than that from maximum likelihood and exact conditional likelihood methods. Application of the PML method in our example data set shows that race and EGFR-FISH are independently significant predictors of EGFR mutation. © The Author(s) 2011.
Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.
Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A
2016-01-01
Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.
Multinomial logistic regression in workers' health
NASA Astrophysics Data System (ADS)
Grilo, Luís M.; Grilo, Helena L.; Gonçalves, Sónia P.; Junça, Ana
2017-11-01
In European countries, namely in Portugal, it is common to hear some people mentioning that they are exposed to excessive and continuous psychosocial stressors at work. This is increasing in diverse activity sectors, such as, the Services sector. A representative sample was collected from a Portuguese Services' organization, by applying a survey (internationally validated), which variables were measured in five ordered categories in Likert-type scale. A multinomial logistic regression model is used to estimate the probability of each category of the dependent variable general health perception where, among other independent variables, burnout appear as statistically significant.
Du, Qing-Yun; Wang, En-Yin; Huang, Yan; Guo, Xiao-Yi; Xiong, Yu-Jing; Yu, Yi-Ping; Yao, Gui-Dong; Shi, Sen-Lin; Sun, Ying-Pu
2016-04-01
To evaluate the independent effects of the degree of blastocoele expansion and re-expansion and the inner cell mass (ICM) and trophectoderm (TE) grades on predicting live birth after fresh and vitrified/warmed single blastocyst transfer. Retrospective study. Reproductive medical center. Women undergoing 844 fresh and 370 vitrified/warmed single blastocyst transfer cycles. None. Live-birth rate correlated with blastocyst morphology parameters by logistic regression analysis and Spearman correlations analysis. The degree of blastocoele expansion and re-expansion was the only blastocyst morphology parameter that exhibited a significant ability to predict live birth in both fresh and vitrified/warmed single blastocyst transfer cycles respectively by multivariate logistic regression and Spearman correlations analysis. Although the ICM grade was significantly related to live birth in fresh cycles according to the univariate model, its effect was not maintained in the multivariate logistic analysis. In vitrified/warmed cycles, neither ICM nor TE grade was correlated with live birth by logistic regression analysis. This study is the first to confirm that the degree of blastocoele expansion and re-expansion is a better predictor of live birth after both fresh and vitrified/warmed single blastocyst transfer cycles than ICM or TE grade. Copyright © 2016. Published by Elsevier Inc.
Zhai, L L; Wu, X Y; Xu, S J; Wan, Y H; Zhang, S C; Xu, L; Liu, W; Ma, S S; Zhang, H; Tao, F B
2017-09-06
Objective: To examine the relationship between the prevalence of self-reported myopia and outdoor activities among middle school students and to explore the influence factors of the self-reported myopia. Methods: A total of 12 979 participants were recruited from junior and senior middle school students in in Shenzhen, Nanchang, Zhengzhou and Shenyang by random cluster sampling method between December 2015 and March 2016. All participants completed an anonymous questionnaire to collect the information of demographic characteristics, self-reported myopia, outdoor activities, etc. 12 603 out of 12 979 copies of questionnaire were valid. The prevalence of self-reported myopia was compared among middle school students with different characteristics. Logistic regression models were used to analyze the relationship between myopia and outdoor activities. Results: The prevalence of self-reported myopia among middle school students was 69.6% (8 766/12 603); which was separately 52.1% (1 216/2 335) in seventh grader, 61.6% (1 459/2 369) in eighth grader, 69.0%(1 470/2 129) in ninth grader, 80.0% (1 812/2 265) in freshmen, 79.4% (1 622/2 042) in sophomore, and 81.1%(1 187/1 463) in junior. The prevalence of self-reported myopia showed an increasing trend with the increase of grade (χ(2)=639.67, P< 0.001). The prevalence of self-reported myopia was separately 63.5%(4 927/7 756) in non-myopic parents group, 78.0%(2 664/3 415)in either myopic parent group, and 82.1%(1 175/1 432) in both myopic parents group(χ(2)=328.28, P< 0.001). Outdoor activities were associated with self-reported myopia. Binary logistic regression analysis showed that the risk of self-reported myopia was significantly increased by always staying at home in extracurricular time among the middle school students ( OR= 1.58, 95 %CI: 1.36-1.82). The risk of self-reported myopia were significantly decreased by always physical exercise and recreational activities after school among middle school students: the ORs were separately 0.67 (95 %CI: 0.57-0.78) for physical exercise and 0.77 (95 %CI: 0.64-0.92) for recreational activities. After stratified analysis by the parents' myopia status, in non-myopic parents group, exercise and recreational activities after school among middle school students decreased the risk of myopia: the ORs were separately 0.68 (95 %CI: 0.55-0.82) for physical exercise and 0.76 (95 %CI: 0.61-0.95) for recreational activities; in either myopic parent group, OR (95 %CI ) were separately 0.65 (0.47-0.90) and 0.68 (0.47-0.98). Conclusion: Outdoor activities was negatively associated with self-reported myopia among middle school students. However, the parents' myopia status may affect the protective effect.
Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees.
Chung, Yi-Shih
2013-12-01
Factor complexity is a characteristic of traffic crashes. This paper proposes a novel method, namely boosted regression trees (BRT), to investigate the complex and nonlinear relationships in high-variance traffic crash data. The Taiwanese 2004-2005 single-vehicle motorcycle crash data are used to demonstrate the utility of BRT. Traditional logistic regression and classification and regression tree (CART) models are also used to compare their estimation results and external validities. Both the in-sample cross-validation and out-of-sample validation results show that an increase in tree complexity provides improved, although declining, classification performance, indicating a limited factor complexity of single-vehicle motorcycle crashes. The effects of crucial variables including geographical, time, and sociodemographic factors explain some fatal crashes. Relatively unique fatal crashes are better approximated by interactive terms, especially combinations of behavioral factors. BRT models generally provide improved transferability than conventional logistic regression and CART models. This study also discusses the implications of the results for devising safety policies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Keogh, Ruth H; Mangtani, Punam; Rodrigues, Laura; Nguipdop Djomo, Patrick
2016-01-05
Traditional analyses of standard case-control studies using logistic regression do not allow estimation of time-varying associations between exposures and the outcome. We present two approaches which allow this. The motivation is a study of vaccine efficacy as a function of time since vaccination. Our first approach is to estimate time-varying exposure-outcome associations by fitting a series of logistic regressions within successive time periods, reusing controls across periods. Our second approach treats the case-control sample as a case-cohort study, with the controls forming the subcohort. In the case-cohort analysis, controls contribute information at all times they are at risk. Extensions allow left truncation, frequency matching and, using the case-cohort analysis, time-varying exposures. Simulations are used to investigate the methods. The simulation results show that both methods give correct estimates of time-varying effects of exposures using standard case-control data. Using the logistic approach there are efficiency gains by reusing controls over time and care should be taken over the definition of controls within time periods. However, using the case-cohort analysis there is no ambiguity over the definition of controls. The performance of the two analyses is very similar when controls are used most efficiently under the logistic approach. Using our methods, case-control studies can be used to estimate time-varying exposure-outcome associations where they may not previously have been considered. The case-cohort analysis has several advantages, including that it allows estimation of time-varying associations as a continuous function of time, while the logistic regression approach is restricted to assuming a step function form for the time-varying association.
Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula
2011-01-01
Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.
Regression analysis for solving diagnosis problem of children's health
NASA Astrophysics Data System (ADS)
Cherkashina, Yu A.; Gerget, O. M.
2016-04-01
The paper includes results of scientific researches. These researches are devoted to the application of statistical techniques, namely, regression analysis, to assess the health status of children in the neonatal period based on medical data (hemostatic parameters, parameters of blood tests, the gestational age, vascular-endothelial growth factor) measured at 3-5 days of children's life. In this paper a detailed description of the studied medical data is given. A binary logistic regression procedure is discussed in the paper. Basic results of the research are presented. A classification table of predicted values and factual observed values is shown, the overall percentage of correct recognition is determined. Regression equation coefficients are calculated, the general regression equation is written based on them. Based on the results of logistic regression, ROC analysis was performed, sensitivity and specificity of the model are calculated and ROC curves are constructed. These mathematical techniques allow carrying out diagnostics of health of children providing a high quality of recognition. The results make a significant contribution to the development of evidence-based medicine and have a high practical importance in the professional activity of the author.
[Calculating Pearson residual in logistic regressions: a comparison between SPSS and SAS].
Xu, Hao; Zhang, Tao; Li, Xiao-song; Liu, Yuan-yuan
2015-01-01
To compare the results of Pearson residual calculations in logistic regression models using SPSS and SAS. We reviewed Pearson residual calculation methods, and used two sets of data to test logistic models constructed by SPSS and STATA. One model contained a small number of covariates compared to the number of observed. The other contained a similar number of covariates as the number of observed. The two software packages produced similar Pearson residual estimates when the models contained a similar number of covariates as the number of observed, but the results differed when the number of observed was much greater than the number of covariates. The two software packages produce different results of Pearson residuals, especially when the models contain a small number of covariates. Further studies are warranted.
Greeven, Anja; van Balkom, Anton J L M; Spinhoven, Philip
2014-05-01
We aimed to investigate whether personality characteristics predict time to remission and psychiatric status. The follow-up was at most 6 years and was performed within the scope of a randomized controlled trial that investigated the efficacy of cognitive behavioral therapy, paroxetine, and placebo in hypochondriasis. The Life Chart Interview was administered to investigate for each year if remission had occurred. Personality was assessed at pretest by the Abbreviated Dutch Temperament and Character Inventory. Cox's regression models for recurrent events were compared with logistic regression models. Sixteen (36.4%) of 44 patients achieved remission during the follow-up period. Cox's regression yielded approximately the same results as the logistic regression. Being less harm avoidant and more cooperative were associated with a shorter time to remission and a remitted state after the follow-up period. Personality variables seem to be relevant for describing patients with a more chronic course of hypochondriacal complaints.
Goo, Yeong-Jia James; Shen, Zone-De
2014-01-01
As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%. PMID:25302338
Steen, Paul J.; Passino-Reader, Dora R.; Wiley, Michael J.
2006-01-01
As a part of the Great Lakes Regional Aquatic Gap Analysis Project, we evaluated methodologies for modeling associations between fish species and habitat characteristics at a landscape scale. To do this, we created brook trout Salvelinus fontinalis presence and absence models based on four different techniques: multiple linear regression, logistic regression, neural networks, and classification trees. The models were tested in two ways: by application to an independent validation database and cross-validation using the training data, and by visual comparison of statewide distribution maps with historically recorded occurrences from the Michigan Fish Atlas. Although differences in the accuracy of our models were slight, the logistic regression model predicted with the least error, followed by multiple regression, then classification trees, then the neural networks. These models will provide natural resource managers a way to identify habitats requiring protection for the conservation of fish species.
Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De
2014-01-01
As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, Jamie A., E-mail: jamie.dean@icr.ac.uk; Wong, Kee H.; Gay, Hiram
Purpose: Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue–sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensionality of the dose data could overcome this limitation. Methods and Materials: FDA was applied to modeling of severe acute mucositis and dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and functional principal component analysis were used for dimensionality reduction of the dose-volume histogrammore » data. The reduced dose data were input into functional logistic regression models (functional partial least squares–logistic regression [FPLS-LR] and functional principal component–logistic regression [FPC-LR]) along with clinical data. This approach was compared with penalized logistic regression (PLR) in terms of predictive performance and the significance of treatment covariate–response associations, assessed using bootstrapping. Results: The area under the receiver operating characteristic curve for the PLR, FPC-LR, and FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/−0.67, 0.45/0.47, and 0.40/0.49, respectively, for mucositis (internal validation) and 2.5/−0.96, 0.79/−0.04, and 0.79/0.00, respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and dysphagia in the FDA models. Conclusions: FPLS and functional principal component analysis marginally improved predictive performance compared with PLR and provided robust dose-response associations. FDA is recommended for use in normal tissue complication probability modeling.« less
Dean, Jamie A; Wong, Kee H; Gay, Hiram; Welsh, Liam C; Jones, Ann-Britt; Schick, Ulrike; Oh, Jung Hun; Apte, Aditya; Newbold, Kate L; Bhide, Shreerang A; Harrington, Kevin J; Deasy, Joseph O; Nutting, Christopher M; Gulliford, Sarah L
2016-11-15
Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue-sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensionality of the dose data could overcome this limitation. FDA was applied to modeling of severe acute mucositis and dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and functional principal component analysis were used for dimensionality reduction of the dose-volume histogram data. The reduced dose data were input into functional logistic regression models (functional partial least squares-logistic regression [FPLS-LR] and functional principal component-logistic regression [FPC-LR]) along with clinical data. This approach was compared with penalized logistic regression (PLR) in terms of predictive performance and the significance of treatment covariate-response associations, assessed using bootstrapping. The area under the receiver operating characteristic curve for the PLR, FPC-LR, and FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/-0.67, 0.45/0.47, and 0.40/0.49, respectively, for mucositis (internal validation) and 2.5/-0.96, 0.79/-0.04, and 0.79/0.00, respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and dysphagia in the FDA models. FPLS and functional principal component analysis marginally improved predictive performance compared with PLR and provided robust dose-response associations. FDA is recommended for use in normal tissue complication probability modeling. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Ngo, Long H; Inouye, Sharon K; Jones, Richard N; Travison, Thomas G; Libermann, Towia A; Dillon, Simon T; Kuchel, George A; Vasunilashorn, Sarinnapha M; Alsop, David C; Marcantonio, Edward R
2017-06-06
The nested case-control study (NCC) design within a prospective cohort study is used when outcome data are available for all subjects, but the exposure of interest has not been collected, and is difficult or prohibitively expensive to obtain for all subjects. A NCC analysis with good matching procedures yields estimates that are as efficient and unbiased as estimates from the full cohort study. We present methodological considerations in a matched NCC design and analysis, which include the choice of match algorithms, analysis methods to evaluate the association of exposures of interest with outcomes, and consideration of overmatching. Matched, NCC design within a longitudinal observational prospective cohort study in the setting of two academic hospitals. Study participants are patients aged over 70 years who underwent scheduled major non-cardiac surgery. The primary outcome was postoperative delirium from in-hospital interviews and medical record review. The main exposure was IL-6 concentration (pg/ml) from blood sampled at three time points before delirium occurred. We used nonparametric signed ranked test to test for the median of the paired differences. We used conditional logistic regression to model the risk of IL-6 on delirium incidence. Simulation was used to generate a sample of cohort data on which unconditional multivariable logistic regression was used, and the results were compared to those of the conditional logistic regression. Partial R-square was used to assess the level of overmatching. We found that the optimal match algorithm yielded more matched pairs than the greedy algorithm. The choice of analytic strategy-whether to consider measured cytokine levels as the predictor or outcome-- yielded inferences that have different clinical interpretations but similar levels of statistical significance. Estimation results from NCC design using conditional logistic regression, and from simulated cohort design using unconditional logistic regression, were similar. We found minimal evidence for overmatching. Using a matched NCC approach introduces methodological challenges into the study design and data analysis. Nonetheless, with careful selection of the match algorithm, match factors, and analysis methods, this design is cost effective and, for our study, yields estimates that are similar to those from a prospective cohort study design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu
Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System weremore » used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. - Highlights: • Hypertrophy (H) and hypertrophic carcinogenesis (C) were studied by toxicogenomics. • Important genes for H and C were selected by logistic ridge regression analysis. • Amino acid biosynthesis and oxidative responses may be involved in C. • Predictive models for H and C provided 94.8% and 82.7% accuracy, respectively. • The identified genes could be useful for assessment of liver hypertrophy.« less
Zhang, Xingyu; Kim, Joyce; Patzer, Rachel E; Pitts, Stephen R; Patzer, Aaron; Schrager, Justin D
2017-10-26
To describe and compare logistic regression and neural network modeling strategies to predict hospital admission or transfer following initial presentation to Emergency Department (ED) triage with and without the addition of natural language processing elements. Using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS), a cross-sectional probability sample of United States EDs from 2012 and 2013 survey years, we developed several predictive models with the outcome being admission to the hospital or transfer vs. discharge home. We included patient characteristics immediately available after the patient has presented to the ED and undergone a triage process. We used this information to construct logistic regression (LR) and multilayer neural network models (MLNN) which included natural language processing (NLP) and principal component analysis from the patient's reason for visit. Ten-fold cross validation was used to test the predictive capacity of each model and receiver operating curves (AUC) were then calculated for each model. Of the 47,200 ED visits from 642 hospitals, 6,335 (13.42%) resulted in hospital admission (or transfer). A total of 48 principal components were extracted by NLP from the reason for visit fields, which explained 75% of the overall variance for hospitalization. In the model including only structured variables, the AUC was 0.824 (95% CI 0.818-0.830) for logistic regression and 0.823 (95% CI 0.817-0.829) for MLNN. Models including only free-text information generated AUC of 0.742 (95% CI 0.731- 0.753) for logistic regression and 0.753 (95% CI 0.742-0.764) for MLNN. When both structured variables and free text variables were included, the AUC reached 0.846 (95% CI 0.839-0.853) for logistic regression and 0.844 (95% CI 0.836-0.852) for MLNN. The predictive accuracy of hospital admission or transfer for patients who presented to ED triage overall was good, and was improved with the inclusion of free text data from a patient's reason for visit regardless of modeling approach. Natural language processing and neural networks that incorporate patient-reported outcome free text may increase predictive accuracy for hospital admission.
Cevenini, Gabriele; Barbini, Emanuela; Scolletta, Sabino; Biagioli, Bonizella; Giomarelli, Pierpaolo; Barbini, Paolo
2007-11-22
Popular predictive models for estimating morbidity probability after heart surgery are compared critically in a unitary framework. The study is divided into two parts. In the first part modelling techniques and intrinsic strengths and weaknesses of different approaches were discussed from a theoretical point of view. In this second part the performances of the same models are evaluated in an illustrative example. Eight models were developed: Bayes linear and quadratic models, k-nearest neighbour model, logistic regression model, Higgins and direct scoring systems and two feed-forward artificial neural networks with one and two layers. Cardiovascular, respiratory, neurological, renal, infectious and hemorrhagic complications were defined as morbidity. Training and testing sets each of 545 cases were used. The optimal set of predictors was chosen among a collection of 78 preoperative, intraoperative and postoperative variables by a stepwise procedure. Discrimination and calibration were evaluated by the area under the receiver operating characteristic curve and Hosmer-Lemeshow goodness-of-fit test, respectively. Scoring systems and the logistic regression model required the largest set of predictors, while Bayesian and k-nearest neighbour models were much more parsimonious. In testing data, all models showed acceptable discrimination capacities, however the Bayes quadratic model, using only three predictors, provided the best performance. All models showed satisfactory generalization ability: again the Bayes quadratic model exhibited the best generalization, while artificial neural networks and scoring systems gave the worst results. Finally, poor calibration was obtained when using scoring systems, k-nearest neighbour model and artificial neural networks, while Bayes (after recalibration) and logistic regression models gave adequate results. Although all the predictive models showed acceptable discrimination performance in the example considered, the Bayes and logistic regression models seemed better than the others, because they also had good generalization and calibration. The Bayes quadratic model seemed to be a convincing alternative to the much more usual Bayes linear and logistic regression models. It showed its capacity to identify a minimum core of predictors generally recognized as essential to pragmatically evaluate the risk of developing morbidity after heart surgery.
NASA Astrophysics Data System (ADS)
Ozdemir, Adnan
2011-07-01
SummaryThe purpose of this study is to produce a groundwater spring potential map of the Sultan Mountains in central Turkey, based on a logistic regression method within a Geographic Information System (GIS) environment. Using field surveys, the locations of the springs (440 springs) were determined in the study area. In this study, 17 spring-related factors were used in the analysis: geology, relative permeability, land use/land cover, precipitation, elevation, slope, aspect, total curvature, plan curvature, profile curvature, wetness index, stream power index, sediment transport capacity index, distance to drainage, distance to fault, drainage density, and fault density map. The coefficients of the predictor variables were estimated using binary logistic regression analysis and were used to calculate the groundwater spring potential for the entire study area. The accuracy of the final spring potential map was evaluated based on the observed springs. The accuracy of the model was evaluated by calculating the relative operating characteristics. The area value of the relative operating characteristic curve model was found to be 0.82. These results indicate that the model is a good estimator of the spring potential in the study area. The spring potential map shows that the areas of very low, low, moderate and high groundwater spring potential classes are 105.586 km 2 (28.99%), 74.271 km 2 (19.906%), 101.203 km 2 (27.14%), and 90.05 km 2 (24.671%), respectively. The interpretations of the potential map showed that stream power index, relative permeability of lithologies, geology, elevation, aspect, wetness index, plan curvature, and drainage density play major roles in spring occurrence and distribution in the Sultan Mountains. The logistic regression approach has not yet been used to delineate groundwater potential zones. In this study, the logistic regression method was used to locate potential zones for groundwater springs in the Sultan Mountains. The evolved model was found to be in strong agreement with the available groundwater spring test data. Hence, this method can be used routinely in groundwater exploration under favourable conditions.
Independent Prognostic Factors for Acute Organophosphorus Pesticide Poisoning.
Tang, Weidong; Ruan, Feng; Chen, Qi; Chen, Suping; Shao, Xuebo; Gao, Jianbo; Zhang, Mao
2016-07-01
Acute organophosphorus pesticide poisoning (AOPP) is becoming a significant problem and a potential cause of human mortality because of the abuse of organophosphate compounds. This study aims to determine the independent prognostic factors of AOPP by using multivariate logistic regression analysis. The clinical data for 71 subjects with AOPP admitted to our hospital were retrospectively analyzed. This information included the Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, admission blood cholinesterase levels, 6-h post-admission blood cholinesterase levels, cholinesterase activity, blood pH, and other factors. Univariate analysis and multivariate logistic regression analyses were conducted to identify all prognostic factors and independent prognostic factors, respectively. A receiver operating characteristic curve was plotted to analyze the testing power of independent prognostic factors. Twelve of 71 subjects died. Admission blood lactate levels, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, blood pH, and APACHE II scores were identified as prognostic factors for AOPP according to the univariate analysis, whereas only 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, and blood pH were independent prognostic factors identified by multivariate logistic regression analysis. The receiver operating characteristic analysis suggested that post-admission 6-h lactate clearance rates were of moderate diagnostic value. High 6-h post-admission blood lactate levels, low blood pH, and low post-admission 6-h lactate clearance rates were independent prognostic factors identified by multivariate logistic regression analysis. Copyright © 2016 by Daedalus Enterprises.
Sargolzaie, Narjes; Miri-Moghaddam, Ebrahim
2014-01-01
The most common differential diagnosis of β-thalassemia (β-thal) trait is iron deficiency anemia. Several red blood cell equations were introduced during different studies for differential diagnosis between β-thal trait and iron deficiency anemia. Due to genetic variations in different regions, these equations cannot be useful in all population. The aim of this study was to determine a native equation with high accuracy for differential diagnosis of β-thal trait and iron deficiency anemia for the Sistan and Baluchestan population by logistic regression analysis. We selected 77 iron deficiency anemia and 100 β-thal trait cases. We used binary logistic regression analysis and determined best equations for probability prediction of β-thal trait against iron deficiency anemia in our population. We compared diagnostic values and receiver operative characteristic (ROC) curve related to this equation and another 10 published equations in discriminating β-thal trait and iron deficiency anemia. The binary logistic regression analysis determined the best equation for best probability prediction of β-thal trait against iron deficiency anemia with area under curve (AUC) 0.998. Based on ROC curves and AUC, Green & King, England & Frazer, and then Sirdah indices, respectively, had the most accuracy after our equation. We suggest that to get the best equation and cut-off in each region, one needs to evaluate specific information of each region, specifically in areas where populations are homogeneous, to provide a specific formula for differentiating between β-thal trait and iron deficiency anemia.
Selenium in irrigated agricultural areas of the western United States
Nolan, B.T.; Clark, M.L.
1997-01-01
A logistic regression model was developed to predict the likelihood that Se exceeds the USEPA chronic criterion for aquatic life (5 ??g/L) in irrigated agricultural areas of the western USA. Preliminary analysis of explanatory variables used in the model indicated that surface-water Se concentration increased with increasing dissolved solids (DS) concentration and with the presence of Upper Cretaceous, mainly marine sediment. The presence or absence of Cretaceous sediment was the major variable affecting Se concentration in surface-water samples from the National Irrigation Water Quality Program. Median Se concentration was 14 ??g/L in samples from areas underlain by Cretaceous sediments and < 1 ??g/L in samples from areas underlain by non-Cretaceous sediments. Wilcoxon rank sum tests indicated that elevated Se concentrations in samples from areas with Cretaceous sediments, irrigated areas, and from closed lakes and ponds were statistically significant. Spearman correlations indicated that Se was positively correlated with a binary geology variable (0.64) and DS (0.45). Logistic regression models indicated that the concentration of Se in surface water was almost certain to exceed the Environmental Protection Agency aquatic-life chronic criterion of 5 ??g/L when DS was greater than 3000 mg/L in areas with Cretaceous sediments. The 'best' logistic regression model correctly predicted Se exceedances and nonexceedances 84.4% of the time, and model sensitivity was 80.7%. A regional map of Cretaceous sediment showed the location of potential problem areas. The map and logistic regression model are tools that can be used to determine the potential for Se contamination of irrigated agricultural areas in the western USA.
Fang, Xingang; Bagui, Sikha; Bagui, Subhash
2017-08-01
The readily available high throughput screening (HTS) data from the PubChem database provides an opportunity for mining of small molecules in a variety of biological systems using machine learning techniques. From the thousands of available molecular descriptors developed to encode useful chemical information representing the characteristics of molecules, descriptor selection is an essential step in building an optimal quantitative structural-activity relationship (QSAR) model. For the development of a systematic descriptor selection strategy, we need the understanding of the relationship between: (i) the descriptor selection; (ii) the choice of the machine learning model; and (iii) the characteristics of the target bio-molecule. In this work, we employed the Signature descriptor to generate a dataset on the Human kallikrein 5 (hK 5) inhibition confirmatory assay data and compared multiple classification models including logistic regression, support vector machine, random forest and k-nearest neighbor. Under optimal conditions, the logistic regression model provided extremely high overall accuracy (98%) and precision (90%), with good sensitivity (65%) in the cross validation test. In testing the primary HTS screening data with more than 200K molecular structures, the logistic regression model exhibited the capability of eliminating more than 99.9% of the inactive structures. As part of our exploration of the descriptor-model-target relationship, the excellent predictive performance of the combination of the Signature descriptor and the logistic regression model on the assay data of the Human kallikrein 5 (hK 5) target suggested a feasible descriptor/model selection strategy on similar targets. Copyright © 2017 Elsevier Ltd. All rights reserved.
(En)gendering Racial Disparities in Health Trajectories: A Life Course and Intersectional Analysis.
Richardson, Liana J; Brown, Tyson H
2016-12-01
Historically, intersectionality has been an underutilized framework in sociological research on racial/ethnic and gender inequalities in health. To demonstrate its utility and importance, we conduct an intersectional analysis of the social stratification of health using the exemplar of hypertension-a health condition in which racial/ethnic and gender differences have been well-documented. Previous research has tended to examine these differences separately and ignore how the interaction of social status dimensions may influence health over time. Using seven waves of data from the Health and Retirement Study and multilevel logistic regression models, we found a multiplicative effect of race/ethnicity and gender on hypertension risk trajectories, consistent with both an intersectionality perspective and persistent inequality hypothesis. Group differences in past and contemporaneous socioeconomic and behavioral factors did not explain this effect.
Emamgholipour Sefiddashti, Sara; Homaie Rad, Enayatollah; Arab, Mohamad; Bordbar, Shima
2016-02-01
Female labor supply has been changed dramatically in the recent yr. In this study, we examined the effects of development on the relationship between fertility and female labor supply. We used data of population and housing census of Iran and estimated three separate models. To do this we employed Logistic Regressions (BLR). The estimation results of our study showed that there was a negative relationship between fertility rate and female labor supply and there are some differences for this relationship in three models. When fertility rate increases, FLS would decreases. In addition, for higher fertility rates, the woman might be forced to work more because of the economic conditions of her family; and negative coefficients of the fertility rate effects on FLS would increase with a diminishing rate.
Antin, Jonathan F.; Stanley, Laura M.; Guo, Feng
2011-01-01
The purpose of this research effort was to compare older driver and non-driver functional impairment profiles across some 60 assessment metrics in an initial effort to contribute to the development of fitness-to-drive assessment models. Of the metrics evaluated, 21 showed statistically significant differences, almost all favoring the drivers. Also, it was shown that a logistic regression model comprised of five of the assessment scores could completely and accurately separate the two groups. The results of this study imply that older drivers are far less functionally impaired than non-drivers of similar ages, and that a parsimonious model can accurately assign individuals to either group. With such models, any driver classified or diagnosed as a non-driver would be a strong candidate for further investigation and intervention. PMID:22058607
The association of shift-level nurse staffing with adverse patient events.
Patrician, Patricia A; Loan, Lori; McCarthy, Mary; Fridman, Moshe; Donaldson, Nancy; Bingham, Mona; Brosch, Laura R
2011-02-01
The objective of this study was to demonstrate the association between nurse staffing and adverse events at the shift level. Despite a growing body of research linking nurse staffing and patient outcomes, the relationship of staffing to patient falls and medication errors remains equivocal, possibly due to dependence on aggregated data. Thirteen military hospitals participated in creating a longitudinal nursing outcomes database to monitor nurse staffing, patient falls and medication errors, and other outcomes. Unit types were analyzed separately to stratify patient and nurse staffing characteristics. Bayesian hierarchical logistic regression modeling was used to examine associations between staffing and adverse events. RN skill mix, total nursing care hours, and experience, measured by a proxy variable, were associated with shift-level adverse events. Consideration must be given to nurse staffing and experience levels on every shift.
Non-ignorable missingness in logistic regression.
Wang, Joanna J J; Bartlett, Mark; Ryan, Louise
2017-08-30
Nonresponses and missing data are common in observational studies. Ignoring or inadequately handling missing data may lead to biased parameter estimation, incorrect standard errors and, as a consequence, incorrect statistical inference and conclusions. We present a strategy for modelling non-ignorable missingness where the probability of nonresponse depends on the outcome. Using a simple case of logistic regression, we quantify the bias in regression estimates and show the observed likelihood is non-identifiable under non-ignorable missing data mechanism. We then adopt a selection model factorisation of the joint distribution as the basis for a sensitivity analysis to study changes in estimated parameters and the robustness of study conclusions against different assumptions. A Bayesian framework for model estimation is used as it provides a flexible approach for incorporating different missing data assumptions and conducting sensitivity analysis. Using simulated data, we explore the performance of the Bayesian selection model in correcting for bias in a logistic regression. We then implement our strategy using survey data from the 45 and Up Study to investigate factors associated with worsening health from the baseline to follow-up survey. Our findings have practical implications for the use of the 45 and Up Study data to answer important research questions relating to health and quality-of-life. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Prediction model for the return to work of workers with injuries in Hong Kong.
Xu, Yanwen; Chan, Chetwyn C H; Lo, Karen Hui Yu-Ling; Tang, Dan
2008-01-01
This study attempts to formulate a prediction model of return to work for a group of workers who have been suffering from chronic pain and physical injury while also being out of work in Hong Kong. The study used Case-based Reasoning (CBR) method, and compared the result with the statistical method of logistic regression model. The database of the algorithm of CBR was composed of 67 cases who were also used in the logistic regression model. The testing cases were 32 participants who had a similar background and characteristics to those in the database. The methods of setting constraints and Euclidean distance metric were used in CBR to search the closest cases to the trial case based on the matrix. The usefulness of the algorithm was tested on 32 new participants, and the accuracy of predicting return to work outcomes was 62.5%, which was no better than the 71.2% accuracy derived from the logistic regression model. The results of the study would enable us to have a better understanding of the CBR applied in the field of occupational rehabilitation by comparing with the conventional regression analysis. The findings would also shed light on the development of relevant interventions for the return-to-work process of these workers.
Ensemble of trees approaches to risk adjustment for evaluating a hospital's performance.
Liu, Yang; Traskin, Mikhail; Lorch, Scott A; George, Edward I; Small, Dylan
2015-03-01
A commonly used method for evaluating a hospital's performance on an outcome is to compare the hospital's observed outcome rate to the hospital's expected outcome rate given its patient (case) mix and service. The process of calculating the hospital's expected outcome rate given its patient mix and service is called risk adjustment (Iezzoni 1997). Risk adjustment is critical for accurately evaluating and comparing hospitals' performances since we would not want to unfairly penalize a hospital just because it treats sicker patients. The key to risk adjustment is accurately estimating the probability of an Outcome given patient characteristics. For cases with binary outcomes, the method that is commonly used in risk adjustment is logistic regression. In this paper, we consider ensemble of trees methods as alternatives for risk adjustment, including random forests and Bayesian additive regression trees (BART). Both random forests and BART are modern machine learning methods that have been shown recently to have excellent performance for prediction of outcomes in many settings. We apply these methods to carry out risk adjustment for the performance of neonatal intensive care units (NICU). We show that these ensemble of trees methods outperform logistic regression in predicting mortality among babies treated in NICU, and provide a superior method of risk adjustment compared to logistic regression.
NASA Astrophysics Data System (ADS)
Jokar Arsanjani, Jamal; Helbich, Marco; Kainz, Wolfgang; Darvishi Boloorani, Ali
2013-04-01
This research analyses the suburban expansion in the metropolitan area of Tehran, Iran. A hybrid model consisting of logistic regression model, Markov chain (MC), and cellular automata (CA) was designed to improve the performance of the standard logistic regression model. Environmental and socio-economic variables dealing with urban sprawl were operationalised to create a probability surface of spatiotemporal states of built-up land use for the years 2006, 2016, and 2026. For validation, the model was evaluated by means of relative operating characteristic values for different sets of variables. The approach was calibrated for 2006 by cross comparing of actual and simulated land use maps. The achieved outcomes represent a match of 89% between simulated and actual maps of 2006, which was satisfactory to approve the calibration process. Thereafter, the calibrated hybrid approach was implemented for forthcoming years. Finally, future land use maps for 2016 and 2026 were predicted by means of this hybrid approach. The simulated maps illustrate a new wave of suburban development in the vicinity of Tehran at the western border of the metropolis during the next decades.
A statistical method for predicting seizure onset zones from human single-neuron recordings
NASA Astrophysics Data System (ADS)
Valdez, André B.; Hickman, Erin N.; Treiman, David M.; Smith, Kris A.; Steinmetz, Peter N.
2013-02-01
Objective. Clinicians often use depth-electrode recordings to localize human epileptogenic foci. To advance the diagnostic value of these recordings, we applied logistic regression models to single-neuron recordings from depth-electrode microwires to predict seizure onset zones (SOZs). Approach. We collected data from 17 epilepsy patients at the Barrow Neurological Institute and developed logistic regression models to calculate the odds of observing SOZs in the hippocampus, amygdala and ventromedial prefrontal cortex, based on statistics such as the burst interspike interval (ISI). Main results. Analysis of these models showed that, for a single-unit increase in burst ISI ratio, the left hippocampus was approximately 12 times more likely to contain a SOZ; and the right amygdala, 14.5 times more likely. Our models were most accurate for the hippocampus bilaterally (at 85% average sensitivity), and performance was comparable with current diagnostics such as electroencephalography. Significance. Logistic regression models can be combined with single-neuron recording to predict likely SOZs in epilepsy patients being evaluated for resective surgery, providing an automated source of clinically useful information.
Gazolla, Fernanda Mussi; Neves Bordallo, Maria Alice; Madeira, Isabel Rey; de Miranda Carvalho, Cecilia Noronha; Vieira Monteiro, Alexandra Maria; Pinheiro Rodrigues, Nádia Cristina; Borges, Marcos Antonio; Collett-Solberg, Paulo Ferrez; Muniz, Bruna Moreira; de Oliveira, Cecilia Lacroix; Pinheiro, Suellen Martins; de Queiroz Ribeiro, Rebeca Mathias
2015-05-01
Early exposure to cardiovascular risk factors creates a chronic inflammatory state that could damage the endothelium followed by thickening of the carotid intima-media. To investigate the association of cardiovascular risk factors and thickening of the carotid intima. Media in prepubertal children. In this cross-sectional study, carotid intima-media thickness (cIMT) and cardiovascular risk factors were assessed in 129 prepubertal children aged from 5 to 10 year. Association was assessed by simple and multivariate logistic regression analyses. In simple logistic regression analyses, body mass index (BMI) z-score, waist circumference, and systolic blood pressure (SBP) were positively associated with increased left, right, and average cIMT, whereas diastolic blood pressure was positively associated only with increased left and average cIMT (p<0.05). In multivariate logistic regression analyses increased left cIMT was positively associated to BMI z-score and SBP, and increased average cIMT was only positively associated to SBP (p<0.05). BMI z-score and SBP were the strongest risk factors for increased cIMT.
New machine-learning algorithms for prediction of Parkinson's disease
NASA Astrophysics Data System (ADS)
Mandal, Indrajit; Sairam, N.
2014-03-01
This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.
Landslide Hazard Mapping in Rwanda Using Logistic Regression
NASA Astrophysics Data System (ADS)
Piller, A.; Anderson, E.; Ballard, H.
2015-12-01
Landslides in the United States cause more than $1 billion in damages and 50 deaths per year (USGS 2014). Globally, figures are much more grave, yet monitoring, mapping and forecasting of these hazards are less than adequate. Seventy-five percent of the population of Rwanda earns a living from farming, mostly subsistence. Loss of farmland, housing, or life, to landslides is a very real hazard. Landslides in Rwanda have an impact at the economic, social, and environmental level. In a developing nation that faces challenges in tracking, cataloging, and predicting the numerous landslides that occur each year, satellite imagery and spatial analysis allow for remote study. We have focused on the development of a landslide inventory and a statistical methodology for assessing landslide hazards. Using logistic regression on approximately 30 test variables (i.e. slope, soil type, land cover, etc.) and a sample of over 200 landslides, we determine which variables are statistically most relevant to landslide occurrence in Rwanda. A preliminary predictive hazard map for Rwanda has been produced, using the variables selected from the logistic regression analysis.
Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramer, L. M.; Rounds, J.; Burleyson, C. D.
Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone levelmore » was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less
Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.
Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less
GIS-based rare events logistic regression for mineral prospectivity mapping
NASA Astrophysics Data System (ADS)
Xiong, Yihui; Zuo, Renguang
2018-02-01
Mineralization is a special type of singularity event, and can be considered as a rare event, because within a specific study area the number of prospective locations (1s) are considerably fewer than the number of non-prospective locations (0s). In this study, GIS-based rare events logistic regression (RELR) was used to map the mineral prospectivity in the southwestern Fujian Province, China. An odds ratio was used to measure the relative importance of the evidence variables with respect to mineralization. The results suggest that formations, granites, and skarn alterations, followed by faults and aeromagnetic anomaly are the most important indicators for the formation of Fe-related mineralization in the study area. The prediction rate and the area under the curve (AUC) values show that areas with higher probability have a strong spatial relationship with the known mineral deposits. Comparing the results with original logistic regression (OLR) demonstrates that the GIS-based RELR performs better than OLR. The prospectivity map obtained in this study benefits the search for skarn Fe-related mineralization in the study area.
Sun, Shi-Guang; Li, Zi-Feng; Xie, Yan-Ming; Liu, Jian; Lu, Yan; Song, Yi-Fei; Han, Ying-Hua; Liu, Li-Da; Peng, Ting-Ting
2013-09-01
To rationalize the clinical use and safety are some of the key issues in the surveillance of traditional Chinese medicine injections (TCMIs). In this 2011 study, 240 medical records of patients who had been discharged following treatment with TCMIs between 1 and 12 month previously were randomly selected from hospital records. Consistency between clinical use and the description of TCMIs was evaluated. Research on drug use and adverse drug reactions/events using logistic regression analysis was carried out. There was poor consistency between clinical use and best practice advised in manuals on TCMIs. Over-dosage and overly concentrated administration of TCMIs occurred, with the outcome of modifying properties of the blood. Logistic regression analysis showed that, drug concentration was a valid predictor for both adverse drug reactions/events and benefits associated with TCMIs. Surveillance of rational clinical use and safety of TCMIs finds that clinical use should be consistent with technical drug manual specifications, and drug use should draw on multi-layered logistic regression analysis research to help avoid adverse drug reactions/events.
NASA Astrophysics Data System (ADS)
Oh, Hyun-Joo; Lee, Saro; Chotikasathien, Wisut; Kim, Chang Hwan; Kwon, Ju Hyoung
2009-04-01
For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.
Wang, Shuang; Zhang, Yuchen; Dai, Wenrui; Lauter, Kristin; Kim, Miran; Tang, Yuzhe; Xiong, Hongkai; Jiang, Xiaoqian
2016-01-01
Motivation: Genome-wide association studies (GWAS) have been widely used in discovering the association between genotypes and phenotypes. Human genome data contain valuable but highly sensitive information. Unprotected disclosure of such information might put individual’s privacy at risk. It is important to protect human genome data. Exact logistic regression is a bias-reduction method based on a penalized likelihood to discover rare variants that are associated with disease susceptibility. We propose the HEALER framework to facilitate secure rare variants analysis with a small sample size. Results: We target at the algorithm design aiming at reducing the computational and storage costs to learn a homomorphic exact logistic regression model (i.e. evaluate P-values of coefficients), where the circuit depth is proportional to the logarithmic scale of data size. We evaluate the algorithm performance using rare Kawasaki Disease datasets. Availability and implementation: Download HEALER at http://research.ucsd-dbmi.org/HEALER/ Contact: shw070@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26446135
Testing Gene-Gene Interactions in the Case-Parents Design
Yu, Zhaoxia
2011-01-01
The case-parents design has been widely used to detect genetic associations as it can prevent spurious association that could occur in population-based designs. When examining the effect of an individual genetic locus on a disease, logistic regressions developed by conditioning on parental genotypes provide complete protection from spurious association caused by population stratification. However, when testing gene-gene interactions, it is unknown whether conditional logistic regressions are still robust. Here we evaluate the robustness and efficiency of several gene-gene interaction tests that are derived from conditional logistic regressions. We found that in the presence of SNP genotype correlation due to population stratification or linkage disequilibrium, tests with incorrectly specified main-genetic-effect models can lead to inflated type I error rates. We also found that a test with fully flexible main genetic effects always maintains correct test size and its robustness can be achieved with negligible sacrifice of its power. When testing gene-gene interactions is the focus, the test allowing fully flexible main effects is recommended to be used. PMID:21778736
Li, Saijiao; He, Aiyan; Yang, Jing; Yin, TaiLang; Xu, Wangming
2011-01-01
To investigate factors that can affect compliance with treatment of polycystic ovary syndrome (PCOS) in infertile patients and to provide a basis for clinical treatment, specialist consultation and health education. Patient compliance was assessed via a questionnaire based on the Morisky-Green test and the treatment principles of PCOS. Then interviews were conducted with 99 infertile patients diagnosed with PCOS at Renmin Hospital of Wuhan University in China, from March to September 2009. Finally, these data were analyzed using logistic regression analysis. Logistic regression analysis revealed that a total of 23 (25.6%) of the participants showed good compliance. Factors that significantly (p < 0.05) affected compliance with treatment were the patient's body mass index, convenience of medical treatment and concerns about adverse drug reactions. Patients who are obese, experience inconvenient medical treatment or are concerned about adverse drug reactions are more likely to exhibit noncompliance. Treatment education and intervention aimed at these patients should be strengthened in the clinic to improve treatment compliance. Further research is needed to better elucidate the compliance behavior of patients with PCOS.
A general equation to obtain multiple cut-off scores on a test from multinomial logistic regression.
Bersabé, Rosa; Rivas, Teresa
2010-05-01
The authors derive a general equation to compute multiple cut-offs on a total test score in order to classify individuals into more than two ordinal categories. The equation is derived from the multinomial logistic regression (MLR) model, which is an extension of the binary logistic regression (BLR) model to accommodate polytomous outcome variables. From this analytical procedure, cut-off scores are established at the test score (the predictor variable) at which an individual is as likely to be in category j as in category j+1 of an ordinal outcome variable. The application of the complete procedure is illustrated by an example with data from an actual study on eating disorders. In this example, two cut-off scores on the Eating Attitudes Test (EAT-26) scores are obtained in order to classify individuals into three ordinal categories: asymptomatic, symptomatic and eating disorder. Diagnoses were made from the responses to a self-report (Q-EDD) that operationalises DSM-IV criteria for eating disorders. Alternatives to the MLR model to set multiple cut-off scores are discussed.
Sparse Logistic Regression for Diagnosis of Liver Fibrosis in Rat by Using SCAD-Penalized Likelihood
Yan, Fang-Rong; Lin, Jin-Guan; Liu, Yu
2011-01-01
The objective of the present study is to find out the quantitative relationship between progression of liver fibrosis and the levels of certain serum markers using mathematic model. We provide the sparse logistic regression by using smoothly clipped absolute deviation (SCAD) penalized function to diagnose the liver fibrosis in rats. Not only does it give a sparse solution with high accuracy, it also provides the users with the precise probabilities of classification with the class information. In the simulative case and the experiment case, the proposed method is comparable to the stepwise linear discriminant analysis (SLDA) and the sparse logistic regression with least absolute shrinkage and selection operator (LASSO) penalty, by using receiver operating characteristic (ROC) with bayesian bootstrap estimating area under the curve (AUC) diagnostic sensitivity for selected variable. Results show that the new approach provides a good correlation between the serum marker levels and the liver fibrosis induced by thioacetamide (TAA) in rats. Meanwhile, this approach might also be used in predicting the development of liver cirrhosis. PMID:21716672
Bingham, P; Verlander, N Q; Cheal, M J
2004-09-01
This paper examines why Snow's contention that cholera was principally spread by water was not accepted in the 1850s by the medical elite. The consequence of rejection was that hundreds in the UK continued to die. Logistic regression was used to re-analyse data, first published in 1852 by William Farr, consisting of the 1849 mortality rate from cholera and eight potential explanatory variables for the 38 registration districts of London. Logistic regression does not support Farr's original conclusion that a district's elevation above high water was the most important explanatory variable. Elevation above high water, water supply and poor rate each have an independent significant effect on district cholera mortality rate, but in terms of size of effect, it can be argued that water supply most strongly 'invited' further consideration. The science of epidemiology, that Farr helped to found, has continued to advance. Had logistic regression been available to Farr, its application to his 1852 data set would have changed his conclusion.
Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days
Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.; ...
2017-09-22
Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less
Evaluating the Locational Attributes of Education Management Organizations (EMOs)
ERIC Educational Resources Information Center
Gulosino, Charisse; Miron, Gary
2017-01-01
This study uses logistic and multinomial logistic regression models to analyze neighborhood factors affecting EMO (Education Management Organization)-operated schools' locational attributes (using census tracts) in 41 states for the 2014-2015 school year. Our research combines market-based school reform, institutional theory, and resource…
Reported gum disease as a cardiovascular risk factor in adults with intellectual disabilities.
Hsieh, K; Murthy, S; Heller, T; Rimmer, J H; Yen, G
2018-03-01
Several risk factors for cardiovascular disease (CVD) have been identified among adults with intellectual disabilities (ID). Periodontitis has been reported to increase the risk of developing a CVD in the general population. Given that individuals with ID have been reported to have a higher prevalence of poor oral health than the general population, the purpose of this study was to determine whether adults with ID with informant reported gum disease present greater reported CVD than those who do not have reported gum disease and whether gum disease can be considered a risk factor for CVD. Using baseline data from the Longitudinal Health and Intellectual Disability Study from which informant survey data were collected, 128 participants with reported gum disease and 1252 subjects without reported gum disease were identified. A series of univariate logistic regressions was conducted to identify potential confounding factors for a multiple logistic regression. The series of univariate logistic regressions identified age, Down syndrome, hypercholesterolemia, hypertension, reported gum disease, daily consumption of fruits and vegetables and the addition of table salt as significant risk factors for reported CVD. When the significant factors from the univariate logistic regression were included in the multiple logistic analysis, reported gum disease remained as an independent risk factor for reported CVD after adjusting for the remaining risk factors. Compared with the adults with ID without reported gum disease, adults in the gum disease group demonstrated a significantly higher prevalence of reported CVD (19.5% vs. 9.7%; P = .001). After controlling for other risk factors, reported gum disease among adults with ID may be associated with a higher risk of CVD. However, further research that also includes clinical indices of periodontal disease and CVD for this population is needed to determine if there is a causal relationship between gum disease and CVD. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Tangen, C M; Koch, G G
1999-03-01
In the randomized clinical trial setting, controlling for covariates is expected to produce variance reduction for the treatment parameter estimate and to adjust for random imbalances of covariates between the treatment groups. However, for the logistic regression model, variance reduction is not obviously obtained. This can lead to concerns about the assumptions of the logistic model. We introduce a complementary nonparametric method for covariate adjustment. It provides results that are usually compatible with expectations for analysis of covariance. The only assumptions required are based on randomization and sampling arguments. The resulting treatment parameter is a (unconditional) population average log-odds ratio that has been adjusted for random imbalance of covariates. Data from a randomized clinical trial are used to compare results from the traditional maximum likelihood logistic method with those from the nonparametric logistic method. We examine treatment parameter estimates, corresponding standard errors, and significance levels in models with and without covariate adjustment. In addition, we discuss differences between unconditional population average treatment parameters and conditional subpopulation average treatment parameters. Additional features of the nonparametric method, including stratified (multicenter) and multivariate (multivisit) analyses, are illustrated. Extensions of this methodology to the proportional odds model are also made.
Improving power and robustness for detecting genetic association with extreme-value sampling design.
Chen, Hua Yun; Li, Mingyao
2011-12-01
Extreme-value sampling design that samples subjects with extremely large or small quantitative trait values is commonly used in genetic association studies. Samples in such designs are often treated as "cases" and "controls" and analyzed using logistic regression. Such a case-control analysis ignores the potential dose-response relationship between the quantitative trait and the underlying trait locus and thus may lead to loss of power in detecting genetic association. An alternative approach to analyzing such data is to model the dose-response relationship by a linear regression model. However, parameter estimation from this model can be biased, which may lead to inflated type I errors. We propose a robust and efficient approach that takes into consideration of both the biased sampling design and the potential dose-response relationship. Extensive simulations demonstrate that the proposed method is more powerful than the traditional logistic regression analysis and is more robust than the linear regression analysis. We applied our method to the analysis of a candidate gene association study on high-density lipoprotein cholesterol (HDL-C) which includes study subjects with extremely high or low HDL-C levels. Using our method, we identified several SNPs showing a stronger evidence of association with HDL-C than the traditional case-control logistic regression analysis. Our results suggest that it is important to appropriately model the quantitative traits and to adjust for the biased sampling when dose-response relationship exists in extreme-value sampling designs. © 2011 Wiley Periodicals, Inc.
Syed, Hamzah; Jorgensen, Andrea L; Morris, Andrew P
2016-06-01
To evaluate the power to detect associations between SNPs and time-to-event outcomes across a range of pharmacogenomic study designs while comparing alternative regression approaches. Simulations were conducted to compare Cox proportional hazards modeling accounting for censoring and logistic regression modeling of a dichotomized outcome at the end of the study. The Cox proportional hazards model was demonstrated to be more powerful than the logistic regression analysis. The difference in power between the approaches was highly dependent on the rate of censoring. Initial evaluation of single-nucleotide polymorphism association signals using computationally efficient software with dichotomized outcomes provides an effective screening tool for some design scenarios, and thus has important implications for the development of analytical protocols in pharmacogenomic studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, W.J.; Kalasinski, L.A.
In this paper, a generalized logistic regression model for correlated observations is used to analyze epidemiologic data on the frequency of spontaneous abortion among a group of women office workers. The results are compared to those obtained from the use of the standard logistic regression model that assumes statistical independence among all the pregnancies contributed by one woman. In this example, the correlation among pregnancies from the same woman is fairly small and did not have a substantial impact on the magnitude of estimates of parameters of the model. This is due at least partly to the small average numbermore » of pregnancies contributed by each woman.« less
Jovanovic, Milos; Radovanovic, Sandro; Vukicevic, Milan; Van Poucke, Sven; Delibasic, Boris
2016-09-01
Quantification and early identification of unplanned readmission risk have the potential to improve the quality of care during hospitalization and after discharge. However, high dimensionality, sparsity, and class imbalance of electronic health data and the complexity of risk quantification, challenge the development of accurate predictive models. Predictive models require a certain level of interpretability in order to be applicable in real settings and create actionable insights. This paper aims to develop accurate and interpretable predictive models for readmission in a general pediatric patient population, by integrating a data-driven model (sparse logistic regression) and domain knowledge based on the international classification of diseases 9th-revision clinical modification (ICD-9-CM) hierarchy of diseases. Additionally, we propose a way to quantify the interpretability of a model and inspect the stability of alternative solutions. The analysis was conducted on >66,000 pediatric hospital discharge records from California, State Inpatient Databases, Healthcare Cost and Utilization Project between 2009 and 2011. We incorporated domain knowledge based on the ICD-9-CM hierarchy in a data driven, Tree-Lasso regularized logistic regression model, providing the framework for model interpretation. This approach was compared with traditional Lasso logistic regression resulting in models that are easier to interpret by fewer high-level diagnoses, with comparable prediction accuracy. The results revealed that the use of a Tree-Lasso model was as competitive in terms of accuracy (measured by area under the receiver operating characteristic curve-AUC) as the traditional Lasso logistic regression, but integration with the ICD-9-CM hierarchy of diseases provided more interpretable models in terms of high-level diagnoses. Additionally, interpretations of models are in accordance with existing medical understanding of pediatric readmission. Best performing models have similar performances reaching AUC values 0.783 and 0.779 for traditional Lasso and Tree-Lasso, respectfully. However, information loss of Lasso models is 0.35 bits higher compared to Tree-Lasso model. We propose a method for building predictive models applicable for the detection of readmission risk based on Electronic Health records. Integration of domain knowledge (in the form of ICD-9-CM taxonomy) and a data-driven, sparse predictive algorithm (Tree-Lasso Logistic Regression) resulted in an increase of interpretability of the resulting model. The models are interpreted for the readmission prediction problem in general pediatric population in California, as well as several important subpopulations, and the interpretations of models comply with existing medical understanding of pediatric readmission. Finally, quantitative assessment of the interpretability of the models is given, that is beyond simple counts of selected low-level features. Copyright © 2016 Elsevier B.V. All rights reserved.
Nagelkerke, Nico; Fidler, Vaclav
2015-01-01
The problem of discrimination and classification is central to much of epidemiology. Here we consider the estimation of a logistic regression/discrimination function from training samples, when one of the training samples is subject to misclassification or mislabeling, e.g. diseased individuals are incorrectly classified/labeled as healthy controls. We show that this leads to zero-inflated binomial model with a defective logistic regression or discrimination function, whose parameters can be estimated using standard statistical methods such as maximum likelihood. These parameters can be used to estimate the probability of true group membership among those, possibly erroneously, classified as controls. Two examples are analyzed and discussed. A simulation study explores properties of the maximum likelihood parameter estimates and the estimates of the number of mislabeled observations.
Developmental Screening Referrals: Child and Family Factors that Predict Referral Completion
ERIC Educational Resources Information Center
Jennings, Danielle J.; Hanline, Mary Frances
2013-01-01
This study researched the predictive impact of developmental screening results and the effects of child and family characteristics on completion of referrals given for evaluation. Logistical and hierarchical logistic regression analyses were used to determine the significance of 10 independent variables on the predictor variable. The number of…
Disparities in early exposure to book sharing within immigrant families.
Festa, Natalia; Loftus, Pooja D; Cullen, Mark R; Mendoza, Fernando S
2014-07-01
This study examined the early developmental context of children in immigrant families (CIF), measured by the frequency with which parents share books with their children. Trends in the frequency with which parents report book sharing, defined in this analysis as reading or sharing picture books with their young children, were analyzed across immigrant and nonimmigrant households by using data from the 2005, 2007, and 2009 California Health Interview Survey. Stepwise multivariate logistic regression assessed the likelihood that CIF shared books with parents daily. In this study, 57.5% of parents in immigrant families reported daily book sharing (DBS), compared with 75.8% of native-born parents. The lowest percentage of DBS was seen in Hispanic families with 2 foreign-born parents (47.1%). When controlling for independent variables, CIF with 2 foreign-born parents had the lowest odds of sharing books daily (odds ratio [OR]: 0.61; 95% confidence interval [CI]: 0.54-0.68). When stratified by race/ethnicity, separate multivariate logistic regressions revealed CIF status to be associated with lower odds of DBS for Asian (OR: 0.56; 95% CI: 0.38-0.81) and Hispanic CIF (OR: 0.49; 95% CI: 0.42-0.58). There is an association between the lower odds of DBS and parental immigrant status, especially for Hispanic and Asian children. This relationship holds after controlling for variables thought to explain differences in literacy-related practices, such as parental education and income. Because book sharing is central to children's development of early literacy and language skills, this disparity merits further exploration with the aim of informing future interventions. Copyright © 2014 by the American Academy of Pediatrics.
Characteristics of emerging adulthood and e-cigarette use: Findings from a pilot study.
Allem, Jon-Patrick; Forster, Myriam; Neiberger, Adam; Unger, Jennifer B
2015-11-01
Emerging adults (ages 18 to 25) are more likely to use e-cigarettes compared to other age groups, but little is known about their risk and protective factors. A next step to understanding e-cigarette use among emerging adults may involve examining how transition-to-adulthood themes are associated with e-cigarette use. It may also be important to know which specific transitions, and how the accumulated number of role transitions experienced in emerging adulthood, are associated with e-cigarette use. Emerging adults completed surveys indicating their identification with transition-to-adulthood themes, role transitions in the past year, and e-cigarette use. Logistic regression models examined the associations between transition-to-adulthood themes and e-cigarette use. Separate logistic regression models explored the association between individual role transitions, as well as the accumulated number of role transitions experienced, and e-cigarette use, controlling for age, gender, and ethnicity. Among the participants (n = 555), 21% were male, the average age was 22, 45% reported lifetime, and 12% reported past-month, e-cigarette use. Participants who felt emerging adulthood was a time of experimentation/possibility were more likely to report e-cigarette use. Several role transitions were found to be associated with e-cigarette use such as loss of a job, dating someone new, and experiencing a breakup. The relationship between the accumulated number of role transitions and e-cigarette use was curvilinear. Findings from this pilot study can be a point of departure for future studies looking to understand the risk and protective factors of e-cigarettes among emerging adults. Copyright © 2015. Published by Elsevier Ltd.
Price difference as a predictor of the selection between brand name and generic statins in Japan.
Takizawa, Osamu; Urushihara, Hisashi; Tanaka, Shiro; Kawakami, Koji
2015-05-01
This study aimed to explore the predictors of the selection between brand name drug (BR) and generic drug (GE) and to clarify the quantitative relationship about selection. We identified "incident users" who dispensed statins between April 2008 and June 2011 in commercially databases consisted of dispensing claims databases (DCD) of out-of-hospital pharmacies and hospital claims databases (HCD) of in-house pharmacies in Japan. Predictors of the selection between BR and GE, including price difference (PD), the price of BR, their interaction and percent change of the price of GE relative to BR were explored by logistic regression using DCD and HCD separately. We extracted records of 670 patients who have opportunity for selection both BR and GE. Logistic regression analysis demonstrated that PD, the price of BR, interaction between them, and prescriber affiliation were factors significantly associated with the selection in the DCD; logit (p)=9.735-0.251×PD-0.071×the price of BR+0.002×PD×the price of BR-1.816×affiliation+0.220×gender-0.008×age+0.038×monthly medical fee. PD was inversely proportional to BR choice in DCD and lead to the opposite result in HCD. Numerical simulation of selection revealed that the quantitative relationships heavily depend on situations. PD and the price of BR are predictors of the selection between BR and GE interactively in out-of-hospital pharmacies, but not in in-house pharmacies of medical facilities. Results may support policies which increase the power of out-of-hospital pharmacies for selection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Mazzarini, Lorenzo; Kotzalidis, Georgios D; Piacentino, Daria; Rizzato, Salvatore; Angst, Jules; Azorin, Jean-Michel; Bowden, Charles L; Mosolov, Sergey; Young, Allan H; Vieta, Eduard; Girardi, Paolo; Perugi, Giulio
2018-03-15
Current classifications separate Bipolar (BD) from Major Depressive Disorder (MDD) based on polarity rather than recurrence. We aimed to determine bipolar/mixed feature frequency in a large MDD multinational sample with (High-Rec) and without (Low-Rec) >3 recurrences, comparing the two subsamples. We measured frequency of bipolarity/hypomanic features during current depressive episodes (MDEs) in 2347 MDD patients from the BRIDGE-II-mix database, comparing High-Rec with Low-Rec. We used Bonferroni-corrected Student's t-test for continuous, and chi-squared test, for categorical variables. Logistic regression estimated the size of the association between clinical characteristics and High-Rec MDD. Compared to Low-Rec (n = 1084, 46.2%), High-Rec patients (n = 1263, 53.8%) were older, with earlier depressive onset, had more family history of BD, more atypical features, suicide attempts, hospitalisations, and treatment resistance and (hypo)manic switches when treated with antidepressants, higher comorbidity with borderline personality disorder, and more hypomanic symptoms during current MDE, resulting in higher rates of mixed depression according to both DSM-5 and research-based diagnostic (RBDC) criteria. Logistic regression showed age at first symptoms < 30 years, current MDE duration ≤ 1 month, hypomania/mania among first-degree relatives, past suicide attempts, treatment-resistance, antidepressant-induced swings, and atypical, mixed, or psychotic features during MDE to associate with High-Rec. Number of MDEs for defining recurrence was arbitrary; cross-sectionality did not allow assessment of conversion from MDD to BD. High-Rec MDD differed from Low-Rec group for several clinical/epidemiological variables, including bipolar/mixed features. Bipolarity specifier and RBDC were more sensitive than DSM-5 criteria in detecting bipolar and mixed features in MDD. Copyright © 2017. Published by Elsevier B.V.
Hypertension, type 2 diabetes, and blood groups in a population of African ancestry.
Nemesure, Barbara; Wu, Suh-Yuh; Hennis, Anselm; Leske, M Cristina
2006-01-01
To evaluate the possible relationship of hypertension and diabetes with the ABO, Rhesus, and Duffy blood groups, which are known markers of African ancestry. Population-based study. A random sample of 1253 Barbados residents, > or = 40 years of age. Hypertension was defined as a systolic blood pressure >140 mm Hg or a diastolic blood pressure >90 mm Hg or use of antihypertensive treatment; type 2 diabetes was defined as a glycosylated hemoglobin level >10% and/or a history of treatment in those >30 years of age. In logistic regression analyses, elevated diastolic blood pressure was positively associated with years of age (odds ratio [OR] 1.03, 95% confidence interval CI 1.02-1.05), the Rhesus D+ antigen (OR 2.68, 95% CI 1.21-5.97) and body mass index (OR 1.53, 95% CI 1.19-1.96), but negatively associated with the ABO blood group A allele (OR 0.68, 95% CI .48-.97). A separate logistic regression model indicated that the likelihood of diabetes increased with years of age (OR 1.03, 95% CI 1.01-1.04), hypertension (OR 1.56, 95% CI 1.10-2.20), body mass index (OR 1.68, 95% CI 1.29-2.20), and waist-hip ratio (OR 1.36, 95% CI 1.05-1.75), but decreased with presence of the Rhesus C+ antigen (OR .66, 95% CI .44-.97). The associations of diabetes and hypertension to these blood groups support possible genetic influences on both conditions in this and similar African-origin populations; however, further investigations in other settings are necessary to more fully elucidate these findings.
Studying "exposure" to firearms: household ownership v access
Ikeda, R; Dahlberg, L; Kresnow, M; Sacks, J; Mercy, J
2003-01-01
Background: Firearm ownership has often been used to measure access to weapons. However, persons who own a firearm may not have access to it and conversely, persons who do not own a firearm may be able to access one quickly. Objectives: To examine whether using firearm ownership is a reasonable proxy for access by describing the demographic characteristics associated with ownership and access. Methods: Data are from the 1994 Injury Control and Risk Survey, a national, random digit dial survey. Information about household firearm ownership and ready access to a loaded firearm were collected and weighted to provide national estimates. Adjusted odds ratios for three separate models were calculated using logistic regression. Results: A total of 1353 (27.9%) respondents reported both having a firearm in the household and ready access to one. An additional 313 respondents (8.1%) reported having a firearm, but were not able to access these weapons. Another 421 respondents (7.2%) did not have a firearm in or around their home, yet reported being able to retrieve and fire one within 10 minutes. Based on the logistic regression findings, the demographic characteristics of this latter group are quite different from those who report ownership. Those who do not have a firearm, but report ready access to one, are more likely to be ethnic minorities, single, and living in attached homes. Conclusions: Asking only about the presence of a firearm in a household may miss some respondents with ready access to a loaded firearm. More importantly, those who do not own a firearm, but report ready access to one, appear to be qualitatively different from those who report ownership. Caution should be exercised when using measures of ownership as a proxy for access. PMID:12642560
Gestational weight gain and perinatal outcomes of subgroups of Asian-American women, Texas, 2009.
Cheng, Hsiu-Rong; Walker, Lorraine O; Brown, Adama; Lee, Ju-Young
2015-01-01
Asian-American subgroups are heterogeneous, but few studies had addressed differences on gestational weight gain (GWG) and perinatal outcomes related to GWG among this growing and diverse population. The purposes of this study were to examine whether Asian-American women are at higher risk of inadequate or excessive GWG and adverse perinatal outcomes than non-Hispanic White (NH-White) women, and to compare those risks among Asian-American subgroups. This retrospective study included all singleton births to NH-Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnam, and NH-White women documented in 2009 Texas birth certificate data (N = 150,674). Data were analyzed using the χ(2) test, t test, multinomial logistic regression, and binary logistic regression. Chinese women were the reference group in the comparisons among Asian subgroups. Asian women had a higher risk of inadequate GWG and gestational diabetes mellitus (GDM) than NH-White women. No difference in the odds of excessive GWG was found among Asian subgroups, although Japanese women had the highest risk of inadequate GWG. After adjusting for confounders, Korean women had the lowest risk of GDM (adjusted odds ratio [AOR], 0.49), whereas Filipino women and Asian Indian had the highest risks of gestational hypertension (AOR, 2.01 and 1.61), cesarean birth (AOR, 1.44 and 1.39), and low birth weight (AOR, 1.94 and 2.51) compared with Chinese women. These results support the heterogeneity of GWG and perinatal outcomes among Asian-American subgroups. The risks of adverse perinatal outcomes should be carefully evaluated separately among Asian-American subpopulations. Copyright © 2015 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.
Vázquez-Rodríguez, Carlos F; Vázquez-Nava, Francisco; Vázquez-Rodríguez, Eliza M; Morales-Romero, Jaime; Iribar-Ibabe, María C; Peinado-Herreros, José
2012-02-01
The association between some factors of the familial and social environment with smoking in non-student adolescents with asthma has not been explored. The aim of the study was to determine the association between family structure, educational level, parental approval of smoking, parents who smoke, and smoking friends with smoking in non-student adolescents with asthma. In a cross-sectional study, data were obtained by means of a structured questionnaire applied to 4,778 non-student adolescents aged 13-18 years. Diagnosis of asthma was performed using a questionnaire based on the International Study of Asthma and Allergy in Childhood questionnaire. The smoking habit was determined by application of a self-administered questionnaire. Odds ratios (OR) were determined for smoking using logistic regression. From the total sample, asthma prevalence was 6.6% and of active smoking, 34.2%. Age at initiation of asthma symptoms was 5.15±3.52 years, and that of active smoking was 13.65±2.07 years. Percentage of non-intact family (40.1 vs. 32.7%) was greater in the group of adolescents with asthma. Logistic regression models show that parental approval of smoking (adjusted OR=5.57; 95% confidence interval=2.48-12.51) and smoking friends (adjusted OR=2.92; 95% confidence interval=1.04-8.19) are associated with smoking in non-student adolescents with asthma. In this study, parental approval of smoking and having friends who smoke appear to be associated with smoking among non-student adolescents with asthma. Copyright © 2011 SEPAR. Published by Elsevier Espana. All rights reserved.
Dutta, Sandeep; Hosmane, Balakrishna S; Awni, Walid M
2012-06-01
ABT-594, a neuronal nicotinic acetylcholine receptor ligand, is 30- to 100-fold more potent than morphine in animal models of nociceptive and neuropathic pain. Efficacy and safety of ABT-594 in subjects with painful diabetic polyneuropathy was evaluated in a phase 2 study. The objective of this work was to use a nonlinear mixed effects model-based approach for characterizing the relationship between dose and response (efficacy and safety) of ABT-594. Subjects (N = 266) were randomized into four groups in a double-blind, placebo-controlled, 7-week study to receive twice daily regimens of placebo or 150, 225, and 300 μg of ABT-594. The primary efficacy variable, pain score (11-point Likert scale), was assessed on five occasions. The probability of change from baseline pain score of ≥1, ≥2, and ≥3 was modeled using cumulative logistic regression with dose and days of treatment as explanatory variables. The incidence of five most frequently occurring adverse events (AEs) was modeled using linear logistic regression. ABT-594 ED(50) values (improvement in 50% of subjects) for improvement in pain scores of ≥1, ≥2, and ≥3 were 50, 215, and 340 μg, respectively, for the average number of days (33) on treatment. The rank order of ED(50) values for AEs was nausea, vomiting, dizziness, headache, and abnormal dreams; nicotine users were less sensitive to AEs. Population pharmacodynamic models developed to characterize the improvement in pain score and incidence of adverse events indicate an approximately twofold separation between the ED(50) values for efficacy and AEs.
Li, Tan; Chen, Shuang; Guo, Xiaofan; Yang, Jun; Sun, Yingxian
2017-07-27
The aim of this study was to assess the impact of hypertension with or without diabetes on left ventricular (LV) remodeling in rural Chinese population. A total of 10,270 participants were classified into control group, hypertension without diabetes (HT) group, and hypertension with diabetes (HT + DM) group. We compared clinical characteristics and echocardiographic parameters, and used multivariable logistic regression analysis to assess the associations of interest. HT + DM group had higher interventricular septal thickness (IVSd), posterior wall thickness (PWTd), left ventricular mass (LVM), LVM index (LVMI), relative wall thickness (RWT), left atrial diameter (LAD), A wave and lower E wave than HT group (all P < 0.05). The prevalence rates of left ventricular hypertrophy (LVH) and abnormal geometry were statistically different among three groups (P < 0.001) and eccentric hypertrophy was the highest proportion of geometry abnormality. Logistic regression analysis suggested that subjects in HT and HT + DM groups had odds ratio (OR) values of 2.81, 4.41, 2.24 and 3.94, 7.20, 2.38 for LVH, concentric hypertrophy and eccentric hypertrophy in the total population, respectively, compared to control group. When compared with HT group, those in HT + DM group had approximately 1.40-, 1.61- and 1.38-, 1.71-fold increased risk for LVH and concentric hypertrophy in the total and female population separately, but no association of HT + DM with LVH and abnormal geometrical patterns was found in men. This study demonstrated that, to varying degrees, hypertension was associated with LV remodeling in rural Chinese population, and this risk association was obviously increased for LVH and concentric hypertrophy when accompanied by diabetes, especially for women.
Zhai, Zu Wei; Yip, Sarah W; Steinberg, Marvin A; Wampler, Jeremy; Hoff, Rani A; Krishnan-Sarin, Suchitra; Potenza, Marc N
2017-12-01
The study systematically examined the relative relationships between perceived family and peer gambling and adolescent at-risk/problem gambling and binge-drinking. It also determined the likelihood of at-risk/problem gambling and binge-drinking as a function of the number of different social groups with perceived gambling. A multi-site high-school survey assessed gambling, alcohol use, presence of perceived excessive peer gambling (peer excess-PE), and family gambling prompting concern (family concern-FC) in 2750 high-school students. Adolescents were separately stratified into: (1) low-risk, at-risk, and problem/pathological gambling groups; and, (2) non-binge-drinking, low-frequency-binge-drinking, and high-frequency-binge-drinking groups. Multinomial logistic regression showed that relative to each other, FC and PE were associated with greater likelihoods of at-risk and problem/pathological gambling. However, only FC was associated with binge-drinking. Logistic regression revealed that adolescents who endorsed either FC or PE alone, compared to no endorsement, were more likely to have at-risk and problem/pathological gambling, relative to low-risk gambling. Adolescents who endorsed both FC and PE, compared to PE alone, were more likely to have problem/pathological gambling relative to low-risk and at-risk gambling. Relative to non-binge-drinking adolescents, those who endorsed both FC and PE were more likely to have low- and high-frequency-binge-drinking compared to FC alone or PE alone, respectively. Family and peer gambling individually contribute to adolescent at-risk/problem gambling and binge-drinking. Strategies that target adolescents as well as their closely affiliated family and peer members may be an important step towards prevention of harm-associated levels of gambling and alcohol use in youths.
Wong, Man Sing; Peng, Fen; Zou, Bin; Shi, Wen Zhong; Wilson, Gaines J.
2016-01-01
Recent studies have suggested that some disadvantaged socio-demographic groups face serious environmental-related inequities in Hong Kong due to the rising ambient urban temperatures. Identifying heat-vulnerable groups and locating areas of Surface Urban Heat Island (SUHI) inequities is thus important for prioritizing interventions to mitigate death/illness rates from heat. This study addresses this problem by integrating methods of remote sensing retrieval, logistic regression modelling, and spatial autocorrelation. In this process, the SUHI effect was first estimated from the Land Surface Temperature (LST) derived from a Landsat image. With the scale assimilated to the SUHI and socio-demographic data, a logistic regression model was consequently adopted to ascertain their relationships based on Hong Kong Tertiary Planning Units (TPUs). Lastly, inequity “hotspots” were derived using spatial autocorrelation methods. Results show that disadvantaged socio-demographic groups were significantly more prone to be exposed to an intense SUHI effect: over half of 287 TPUs characterized by age groups of 60+ years, secondary and matriculation education attainment, widowed, divorced and separated, low and middle incomes, and certain occupation groups of workers, have significant Odds Ratios (ORs) larger than 1.2. It can be concluded that a clustering analysis stratified by age, income, educational attainment, marital status, and occupation is an effective way to detect the inequity hotspots of SUHI exposure. Additionally, inequities explored using income, marital status and occupation factors were more significant than the age and educational attainment in these areas. The derived maps and model can be further analyzed in urban/city planning, in order to mitigate the physical and social causes of the SUHI effect. PMID:26985899
Wong, Man Sing; Peng, Fen; Zou, Bin; Shi, Wen Zhong; Wilson, Gaines J
2016-03-12
Recent studies have suggested that some disadvantaged socio-demographic groups face serious environmental-related inequities in Hong Kong due to the rising ambient urban temperatures. Identifying heat-vulnerable groups and locating areas of Surface Urban Heat Island (SUHI) inequities is thus important for prioritizing interventions to mitigate death/illness rates from heat. This study addresses this problem by integrating methods of remote sensing retrieval, logistic regression modelling, and spatial autocorrelation. In this process, the SUHI effect was first estimated from the Land Surface Temperature (LST) derived from a Landsat image. With the scale assimilated to the SUHI and socio-demographic data, a logistic regression model was consequently adopted to ascertain their relationships based on Hong Kong Tertiary Planning Units (TPUs). Lastly, inequity "hotspots" were derived using spatial autocorrelation methods. Results show that disadvantaged socio-demographic groups were significantly more prone to be exposed to an intense SUHI effect: over half of 287 TPUs characterized by age groups of 60+ years, secondary and matriculation education attainment, widowed, divorced and separated, low and middle incomes, and certain occupation groups of workers, have significant Odds Ratios (ORs) larger than 1.2. It can be concluded that a clustering analysis stratified by age, income, educational attainment, marital status, and occupation is an effective way to detect the inequity hotspots of SUHI exposure. Additionally, inequities explored using income, marital status and occupation factors were more significant than the age and educational attainment in these areas. The derived maps and model can be further analyzed in urban/city planning, in order to mitigate the physical and social causes of the SUHI effect.
Dunbar, Michael S.; Shadel, William G.; Tucker, Joan S.; Edelen, Maria O.
2016-01-01
Background Use of other tobacco products (OTPs) among smokers is increasing. Little is known about types of OTP used and the reasons for use, and how OTP use and reasons for use correlate with smoking patterns and nicotine dependence in daily and nondaily smokers. This paper addresses these gaps in the literature. Methods 656 daily smokers and 203 nondaily smokers provided information on their use of different OTPs (hookah, e-cigarettes, chew/snuff, snus, cigars, dissolvables), and reasons for using OTPs (e.g., “to cut down on smoking”), as well as their cigarette consumption and nicotine dependence. Logistic regression models assessed the association of smoking status with OTP use (ever and current) and reasons for use. Within each smoking group, separate logistic regression models examined the associations of OTP use and reasons for use with cigarette consumption and nicotine dependence. Results Compared to daily smokers, nondaily smokers were more likely to use hookah and cigars, less likely to use dissolvables, and less likely to endorse using OTPs to reduce their smoking. Among non-daily smokers, nicotine dependence was associated with a higher likelihood of current OTP use (OR=1.04 [95% CI 1.01–1.07]; p < .05), whereas cigarette consumption was not. Conclusions Results suggest OTP use in nondaily smokers does not correlate with less frequent smoking, but may correlate with higher nicotine dependence. Use of combustible OTPs among nondaily smokers may offset any potential benefits achieved through less frequent cigarette consumption. Providers should explicitly address OTP use when discussing cigarette cessation and reduction. PMID:27664553
Adverse Childhood Experiences and School-Based Victimization and Perpetration.
Forster, Myriam; Gower, Amy L; McMorris, Barbara J; Borowsky, Iris W
2017-01-01
Retrospective studies using adult self-report data have demonstrated that adverse childhood experiences (ACEs) increase risk of violence perpetration and victimization. However, research examining the associations between adolescent reports of ACE and school violence involvement is sparse. The present study examines the relationship between adolescent reported ACE and multiple types of on-campus violence (bringing a weapon to campus, being threatened with a weapon, bullying, fighting, vandalism) for boys and girls as well as the risk of membership in victim, perpetrator, and victim-perpetrator groups. The analytic sample was comprised of ninth graders who participated in the 2013 Minnesota Student Survey ( n ~ 37,000). Multinomial logistic regression models calculated the risk of membership for victim only, perpetrator only, and victim-perpetrator subgroups, relative to no violence involvement, for students with ACE as compared with those with no ACE. Separate logistic regression models assessed the association between cumulative ACE and school-based violence, adjusting for age, ethnicity, family structure, poverty status, internalizing symptoms, and school district size. Nearly 30% of students were exposed to at least one ACE. Students with ACE represent 19% of no violence, 38% of victim only, 40% of perpetrator only, and 63% of victim-perpetrator groups. There was a strong, graded relationship between ACE and the probability of school-based victimization: physical bullying for boys but not girls, being threatened with a weapon, and theft or property destruction ( ps < .001) and perpetration: bullying and bringing a weapon to campus ( ps < .001), with boys especially vulnerable to the negative effects of cumulative ACE. We recommend that schools systematically screen for ACE, particularly among younger adolescents involved in victimization and perpetration, and develop the infrastructure to increase access to trauma-informed intervention services. Future research priorities and implications are discussed.
Genetic polymorphisms of GSTO2, GSTM1, and GSTT1 and risk of gastric cancer.
Masoudi, Mohammad; Saadat, Iraj; Omidvari, Shahpour; Saadat, Mostafa
2009-04-01
The glutathione S-transferases (GSTs) are a superfamily of proteins that participates in detoxification. The GSTs were dividing into several classes including omega (GSTO), micro (GSTM) and theta (GSTT) classes. In human GSTO2, GSTM1, and GSTT1 are polymorphic. In order to study whether GSTO2, GSTM1, and GSTT1 polymorphisms are associated with increased gastric cancer risk in Iranian patients, the present case-control study was done. Genomic DNA was extracted from peripheral blood of 67 gastric cancer patients and 134 control subjects. The genotyping was performed using PCR-based method. The possible association of gastric cancer with the GSTO2 N142D polymorphism was estimated with assuming additive, dominant, and recessive effect of the variant 142D allele. To investigate whether profiles of GST genotypes are associated with the risk of gastric cancer, we used unconditional logistic regression analysis. The GSTO2 142D allele in additive, dominant and recessive models was not associated with the risk. Because GSTM1, GSTT1, and GSTO2 genes belong to low-penetrance genes which might be involved in the carcinogenesis, patients and controls without family of cancer in first-degree relatives were also analyzes separately. To investigate whether profiles of GST genotypes are associated with the risk of gastric cancer, we used unconditional logistic regression analysis with GSTM1, GSTT1, and GSTO2 genotypes as predictor factors. The GSTO2 DD genotype was associated with decreased risk as compared to GSTO2 NN genotype (OR = 0.21, 95% CI: 0.05-0.92, P = 0.038). Present findings show that GSTO2 DD genotype decreases the risk of gastric cancer in individuals without history of cancer in their first-degree relatives.
Kononen, Douglas W; Flannagan, Carol A C; Wang, Stewart C
2011-01-01
A multivariate logistic regression model, based upon National Automotive Sampling System Crashworthiness Data System (NASS-CDS) data for calendar years 1999-2008, was developed to predict the probability that a crash-involved vehicle will contain one or more occupants with serious or incapacitating injuries. These vehicles were defined as containing at least one occupant coded with an Injury Severity Score (ISS) of greater than or equal to 15, in planar, non-rollover crash events involving Model Year 2000 and newer cars, light trucks, and vans. The target injury outcome measure was developed by the Centers for Disease Control and Prevention (CDC)-led National Expert Panel on Field Triage in their recent revision of the Field Triage Decision Scheme (American College of Surgeons, 2006). The parameters to be used for crash injury prediction were subsequently specified by the National Expert Panel. Model input parameters included: crash direction (front, left, right, and rear), change in velocity (delta-V), multiple vs. single impacts, belt use, presence of at least one older occupant (≥ 55 years old), presence of at least one female in the vehicle, and vehicle type (car, pickup truck, van, and sport utility). The model was developed using predictor variables that may be readily available, post-crash, from OnStar-like telematics systems. Model sensitivity and specificity were 40% and 98%, respectively, using a probability cutpoint of 0.20. The area under the receiver operator characteristic (ROC) curve for the final model was 0.84. Delta-V (mph), seat belt use and crash direction were the most important predictors of serious injury. Due to the complexity of factors associated with rollover-related injuries, a separate screening algorithm is needed to model injuries associated with this crash mode. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mental health status and related characteristics of Chinese male rural-urban migrant workers.
Yang, Tingzhong; Xu, Xiaochao; Li, Mu; Rockett, Ian R H; Zhu, Waner; Ellison-Barnes, Alejandra
2012-06-01
To explore mental health status and related characteristics in a sample of Chinese male rural-urban migrants. Subjects were 1,595 male rural-urban migrant workers selected though a multi-stage sample survey conducted in two cities (Hangzhou and Guangzhou). Data were collected by means of a self-administered questionnaire. Both life and work stressors were examined. Stress and mental health status were measured by the Chinese Perceived Stress Scale (CPSS) and the Chinese Health Questionnaire (CHQ), respectively. Unconditional logistic regression analysis was performed to identify factors associated with probable mental disorders. There are approximately 120 million rural-urban migrants in China. The prevalence of probable mental disorders in the sample population was 24.4% (95% CI: 23.3-25.5%), which was higher than among urban residents (20.2%, 95% CI: 18.8-21.7%). Logistic regression analysis revealed that five characteristics were positively associated with risk for probable mental disorders: originating in the South (OR = 2.00; 95% CI = 1.02, 4.00), higher life stress (OR = 7.63; 95% CI = 5.88, 10.00), staying in the city for 5-9 months each year (OR = 2.56; 95% CI = 1.67, 3.85), higher work stress (OR = 2.56; 95% CI = 1.96, 3.33), and separation from wife (OR = 2.43; 95% CI = 1.61, 3.57). Employment in machinery and transportation (OR = 0.54; 95% CI = 0.36, 0.81) and higher self-worth (OR = 0.42; 95% CI = 0.28, 0.62) were negatively associated. Findings support an urgent need to develop specific policies and programs to address mental health problems among Chinese rural-urban migrants.
Chigutsa, Emmanuel; de Mendizabal, Nieves Velez; Chua, Laiyi; Heathman, Michael; Friedrich, Stuart; Jackson, Kimberley; Reich, Kristian
2018-06-07
Ixekizumab, a high-affinity monoclonal antibody, selectively targets interleukin-17A and has been shown to be efficacious in the treatment of moderate to severe psoriasis. The objective was to describe the relationship between ixekizumab concentrations and efficacy response (static Physician Global Assessment [sPGA] and the Psoriasis Activity and Severity Index [PASI) scores] after 12 weeks of ixekizumab treatment in psoriasis patients from 3 phase 3 studies. Data from 2888 psoriasis patients randomized to receive placebo or 80 mg ixekizumab every 2 weeks or every 4 weeks were analyzed. Separate logistic regression models describing the relationship between ixekizumab concentrations and sPGA or PASI scores at week 12 were used to determine the probability of patients achieving a response and to investigate the impact of various patient factors other than drug concentrations on response rates. Both dosing regimens were efficacious, with higher rates of response achieved with the higher range of observed ixekizumab concentrations after every-2-week dosing. Although higher bodyweight, palmoplantar involvement, lower baseline disease state, or high baseline C-reactive protein were associated with slightly lower response rates, the magnitude of effect of these factors on sPGA(0,1) response was small, with all subgroups able to achieve high levels of response. Other factors tested had no effect including age, sex, and antidrug antibody status. Logistic regression modeling of ixekizumab concentration and efficacy data accurately identified the proportion of responders using sPGA or PASI end points. The higher concentration ranges achieved with 80 mg every 2 weeks versus every 4 weeks were associated with higher response levels. © 2018, The American College of Clinical Pharmacology.
Blake, Khandis R; Dixson, Barnaby J W; O'Dean, Siobhan M; Denson, Thomas F
2017-04-01
Several studies report that wearing red clothing enhances women's attractiveness and signals sexual proceptivity to men. The associated hypothesis that women will choose to wear red clothing when fertility is highest, however, has received mixed support from empirical studies. One possible cause of these mixed findings may be methodological. The current study aimed to replicate recent findings suggesting a positive association between hormonal profiles associated with high fertility (high estradiol to progesterone ratios) and the likelihood of wearing red. We compared the effect of the estradiol to progesterone ratio on the probability of wearing: red versus non-red (binary logistic regression); red versus neutral, black, blue, green, orange, multi-color, and gray (multinomial logistic regression); and each of these same colors in separate binary models (e.g., green versus non-green). Red versus non-red analyses showed a positive trend between a high estradiol to progesterone ratio and wearing red, but the effect only arose for younger women and was not robust across samples. We found no compelling evidence for ovarian hormones increasing the probability of wearing red in the other analyses. However, we did find that the probability of wearing neutral was positively associated with the estradiol to progesterone ratio, though the effect did not reach conventional levels of statistical significance. Findings suggest that although ovarian hormones may affect younger women's preference for red clothing under some conditions, the effect is not robust when differentiating amongst other colors of clothing. In addition, the effect of ovarian hormones on clothing color preference may not be specific to the color red. Copyright © 2017 Elsevier Inc. All rights reserved.
Dunbar, Michael S; Shadel, William G; Tucker, Joan S; Edelen, Maria O
2016-11-01
Use of other tobacco products (OTPs) among smokers is increasing. Little is known about types of OTP used and the reasons for use, and how OTP use and reasons for use correlate with smoking patterns and nicotine dependence in daily and nondaily smokers. This paper addresses these gaps in the literature. 656 daily smokers and 203 nondaily smokers provided information on their use of different OTPs (hookah, e-cigarettes, chew/snuff, snus, cigars, dissolvables), and reasons for using OTPs (e.g., "to cut down on smoking"), as well as their cigarette consumption and nicotine dependence. Logistic regression models assessed the association of smoking status with OTP use (ever and current) and reasons for use. Within each smoking group, separate logistic regression models examined the associations of OTP use and reasons for use with cigarette consumption and nicotine dependence. Compared to daily smokers, nondaily smokers were more likely to use hookah and cigars, less likely to use dissolvables, and less likely to endorse using OTPs to reduce their smoking. Among non-daily smokers, nicotine dependence was associated with a higher likelihood of current OTP use (OR=1.04 [95% CI 1.01-1.07]; p<0.05), whereas cigarette consumption was not. Results suggest OTP use in nondaily smokers does not correlate with less frequent smoking, but may correlate with higher nicotine dependence. Use of combustible OTPs among nondaily smokers may offset any potential benefits achieved through less frequent cigarette consumption. Providers should explicitly address OTP use when discussing cigarette cessation and reduction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Torres, Albina R; Ferrão, Ygor A; Shavitt, Roseli G; Diniz, Juliana B; Costa, Daniel L C; do Rosário, Maria Conceição; Miguel, Euripedes C; Fontenelle, Leonardo F
2014-04-01
Panic Disorder (PD) and agoraphobia (AG) are frequently comorbid with obsessive-compulsive disorder (OCD), but the correlates of these comorbidities in OCD are fairly unknown. The study aims were to: 1) estimate the prevalence of PD with or without AG (PD), AG without panic (AG) and PD and/or AG (PD/AG) in a large clinical sample of OCD patients and 2) compare the characteristics of individuals with and without these comorbid conditions. A cross-sectional study with 1001 patients of the Brazilian Research Consortium on Obsessive-Compulsive Spectrum Disorders using several assessment instruments, including the Dimensional Yale-Brown Obsessive-Compulsive Scale and the Structured Clinical Interview for DSM-IV-TR Axis I Disorders. Bivariate analyses were followed by logistic regression models. The lifetime prevalence of PD was 15.3% (N=153), of AG 4.9% (N=49), and of PD/AG 20.2% (N=202). After logistic regression, hypochondriasis and specific phobia were common correlates of the three study groups. PD comorbidity was also associated with higher levels of anxiety, having children, major depression, bipolar I, generalized anxiety and posttraumatic stress disorders. Other independent correlates of AG were: dysthymia, bipolar II disorder, social phobia, impulsive-compulsive internet use, bulimia nervosa and binge eating disorder. Patients with PD/AG were also more likely to be married and to present high anxiety, separation anxiety disorder, major depression, impulsive-compulsive internet use, generalized anxiety, posttraumatic stress and binge eating disorders. Some distinct correlates were obtained for PD and AG in OCD patients, indicating the need for more specific and tailored treatment strategies for individuals with each of these clinical profiles. Copyright © 2014 Elsevier Inc. All rights reserved.
Serrano, Katrina J; Yu, Mandi; Riley, William T; Patel, Vaishali; Hughes, Penelope; Marchesini, Kathryn; Atienza, Audie A
2016-01-01
The rapid proliferation of mobile devices offers unprecedented opportunities for patients and health care professionals to exchange health information electronically, but little is known about patients' willingness to exchange various types of health information using these devices. We examined willingness to exchange different types of health information via mobile devices, and assessed whether sociodemographic characteristics and trust in clinicians were associated with willingness in a nationally representative sample. We analyzed data for 3,165 patients captured in the 2013 Health Information National Trends Survey. Multinomial logistic regression analysis was conducted to test differences in willingness. Ordinal logistic regression analysis assessed correlates of willingness to exchange 9 types of information separately. Participants were very willing to exchange appointment reminders (odds ratio [OR] = 6.66; 95% CI, 5.68-7.81), general health tips (OR = 2.03; 95% CI, 1.74-2.38), medication reminders (OR = 2.73; 95% CI, 2.35-3.19), laboratory/test results (OR = 1.76; 95% CI, 1.62-1.92), vital signs (OR = 1.63; 95% CI, 1.48-1.80), lifestyle behaviors (OR = 1.40; 95% CI, 1.24-1.58), and symptoms (OR = 1.62; 95% CI, 1.46-1.79) as compared with diagnostic information. Older adults had lower odds of being more willing to exchange any type of information. Education, income, and trust in health care professional information correlated with willingness to exchange certain types of information. Respondents were less willing to exchange via mobile devices information that may be considered sensitive or complex. Age, socioeconomic factors, and trust in professional information were associated with willingness to engage in mobile health information exchange. Both information type and demographic group should be considered when developing and tailoring mobile technologies for patient-clinician communication. © 2016 Annals of Family Medicine, Inc.
Colón-López, Vivian; Ortiz, Ana P; Banerjee, Geetanjoli; Gertz, Alida M; García, Hermes
2013-03-01
This study aimed to assess the demographic, behavioral, and clinical factors associated with HIV and syphilis infection among a sample of men attending a sexually transmitted infection clinic during 2009 to 2010 in San Juan, Puerto Rico (PR). A sample of 350 clinical records from men visiting the clinic for the first time during 2009 to 2010 was reviewed. Descriptive statistics were used to describe the study sample, and bivariate analyses were performed separately for HIV and syphilis to identify factors associated with these infectious diseases. Variables that were significantly associated (p < 0.05) with HIV and syphilis in the bivariate analysis were considered for inclusion in the logistic regression models. Overall, 11.2% and 14.1% of the men were infected with HIV and syphilis, respectively, and 5.1% were coinfected with HIV and syphilis. In multivariate logistic regression models, ever injecting drugs (POR = 8.1; 95% CI 3.0, 21.8) and being a man who has sex with men (MSM) (POR = 5.3; 95% CI 2.3, 11.9) were positively associated with HIV infection. Being a man older than 45 years (POR = 4.0; 95% CI: 1.9, 8.9) and being an MSM (POR = 2.5; 95% CI: 1.3, 4.9) were both significantly associated with syphilis infection. These findings reinforce the need for greater education and prevention efforts for HIV and other STIs among men in PR, particularly those who are MSM. However, there is a need to make an a priori assessment of the level of health literacy in the members of this group so that a culturally sensitive intervention can be provided to the men who attend this STI clinic.
Colón-López, Vivian; Ortiz, Ana P.; Banerjee, Geetanjoli; Gertz, Alida M.; García, Hermes
2013-01-01
Objective This study aimed to assess the demographic, behavioral, and clinical factors associated with HIV and syphilis infection among a sample of men attending a sexually transmitted infection clinic during 2009 to 2010 in San Juan, Puerto Rico (PR). Methods A sample of 350 clinical records from men visiting the clinic for the first time during 2009 to 2010 was reviewed. Descriptive statistics were used to describe the study sample, and bivariate analyses were performed separately for HIV and syphilis to identify factors associated with these infectious diseases. Variables that were significantly associated (p<0.05) with HIV and syphilis in the bivariate analysis were considered for inclusion in the logistic regression models. Results Overall, 11.2% and 14.1% of the men were infected with HIV and syphilis, respectively, and 5.1% were coinfected with HIV and syphilis. In multivariate logistic regression models, ever injecting drugs (POR = 8.1; 95%Cl 3.0, 21.8) and being a man who has sex with men (MSM) (POR = 5.3; 95%CI 2.3, 11.9) were positively associated with HIV infection. Being a man older than 45 years (POR = 4.0; 95%CI: 1.9, 8.9) and being an MSM (POR = 2.5; 95%CI: 1.3, 4.9) were both significantly associated with syphilis infection. Conclusion These findings reinforce the need for greater education and prevention efforts for HIV and other STIs among men in PR, particularly those who are MSM. However, there is a need to make an a priori assessment of the level of health literacy in the members of this group so that a culturally sensitive intervention can be provided to the men who attend this STI clinic. PMID:23556260
Siuly; Li, Yan; Paul Wen, Peng
2014-03-01
Motor imagery (MI) tasks classification provides an important basis for designing brain-computer interface (BCI) systems. If the MI tasks are reliably distinguished through identifying typical patterns in electroencephalography (EEG) data, a motor disabled people could communicate with a device by composing sequences of these mental states. In our earlier study, we developed a cross-correlation based logistic regression (CC-LR) algorithm for the classification of MI tasks for BCI applications, but its performance was not satisfactory. This study develops a modified version of the CC-LR algorithm exploring a suitable feature set that can improve the performance. The modified CC-LR algorithm uses the C3 electrode channel (in the international 10-20 system) as a reference channel for the cross-correlation (CC) technique and applies three diverse feature sets separately, as the input to the logistic regression (LR) classifier. The present algorithm investigates which feature set is the best to characterize the distribution of MI tasks based EEG data. This study also provides an insight into how to select a reference channel for the CC technique with EEG signals considering the anatomical structure of the human brain. The proposed algorithm is compared with eight of the most recently reported well-known methods including the BCI III Winner algorithm. The findings of this study indicate that the modified CC-LR algorithm has potential to improve the identification performance of MI tasks in BCI systems. The results demonstrate that the proposed technique provides a classification improvement over the existing methods tested. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Using the theory of planned behavior to predict infant restraint use in Saudi Arabia
Nelson, Anna; Modeste, Naomi N.; Marshak, Helen H.; Hopp, Joyce W.
2014-01-01
Objectives To determine whether the theory of planned behavior (TPB) predicted intent of child restraint system (CRS) use among pregnant women in the Kingdom of Saudi Arabia (KSA). Methods In this cross-sectional study conducted in Dallah Hospital, Riyadh, KSA during June-July 2013, 196 pregnant women completed surveys assessing their beliefs regarding CRS. Simultaneous observations were conducted among a different sample of 150 women to determine CRS usage at hospital discharge following maternity stay. Results Logistic regression model with TPB constructs and covariates as predictors of CRS usage intent was significant (χ2=64.986, p<0.0001) and predicted 38% of intent. There was an increase in odds of intent for attitudes (31.5%, p<0.05), subjective norm (55.3%, p<0.001), and perceived behavioral control (76.9%, p<0.001). The 3 logistic regression models testing the association of the relevant set of composite belief scores were also significant for attitudes (χ2=16.803, p<0.05), subjective norm (χ2=29.681, p<0.0001), and perceived behavioral control (χ2=20.516, p<0.05). The behavioral observation showed that none of the 150 women observed used CRS for their newborn at discharge. Conclusion: The TPB constructs were significantly and independently associated with higher intent for CRS usage. While TPB appears to be a useful tool to identify beliefs related to CRS usage intentions in KSA, the results of the separate behavioral observation indicate that intentions may not be related to the actual usage of CRS in the Kingdom. Further studies are recommended to examine this association. PMID:25228177
Wetz, Anna J; Perl, Thorsten; Brandes, Ivo F; Harden, Markus; Bauer, Martin; Bräuer, Anselm
2016-11-01
Perioperative hypothermia is a frequently observed phenomenon of general anesthesia and is associated with adverse patient outcome. Recently, a significant influence of core temperature before induction of anesthesia has been reported. However, there are still little existing data on core temperature before induction of anesthesia and no data regarding potential risk factors for developing preoperative hypothermia. The purpose of this investigation was to estimate the incidence of hypothermia before anesthesia and to determine if certain factors predict its incidence. Data from 7 prospective studies investigating core temperature previously initiated at our department were analyzed. Patients undergoing a variety of elective surgical procedures were included. Core temperature was measured before induction of anesthesia with an oral (314 patients), infrared tympanic (143 patients), or tympanic contact thermometer (36 patients). Available potential predictors included American Society of Anesthesiologists status, sex, age, weight, height, body mass index, adipose ratio, and lean body weight. Association with preoperative hypothermia was assessed separately for each predictor using logistic regression. Independent predictors were identified using multivariable logistic regression. A total of 493 patients were included in the study. Hypothermia was found in 105 patients (21.3%; 95% confidence interval, 17.8%-25.2%). The median core temperature was 36.3°C (25th-75th percentiles, 36.0°C-36.7°C). Two independent factors for preoperative hypothermia were identified: male sex and age (>52years). As a consequence of the high incidence of hypothermia before anesthesia, measuring core temperature should be mandatory 60 to 120minutes before induction to identify and provide adequate treatment to hypothermic patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Time trends in physical activity in the state of São Paulo, Brazil: 2002-2008.
Matsudo, Victor K R; Matsudo, Sandra M; Araújo, Timóteo L; Andrade, Douglas R; Oliveira, Luis C; Hallal, Pedro C
2010-12-01
To document time trends in physical activity in the state of São Paulo, Brazil (2002-2008). In addition, we discuss the role of Agita São Paulo at explaining such trends. Cross-sectional surveys were carried out in 2002, 2003, 2006, and 2008 in the state of São Paulo, Brazil, using comparable sampling approaches and similar sample sizes. In all surveys, physical activity was measured using the short version of the International Physical Activity Questionnaire. Separate weekly scores of walking and moderate- and vigorous-intensity physical activities were generated; cutoff points of 0 and 150 min·wk were used. Also, we created a total physical activity score by summing these three types of activity. We used logistic regression models for adjusting time trends for the different sociodemographic compositions of the samples. The prevalence of no physical activity decreased from 9.6% in 2002 to 2.7% in 2008, whereas the proportion of subjects below the 150-min threshold decreased from 43.7% in 2002 to 11.6% in 2008. These trends were mainly explained by increases in walking and moderate-intensity physical activity. Increases in physical activity were slightly greater among females than among males. Logistic regression models confirmed that these trends were not due to the different compositions of the samples. Physical activity levels are increasing in the state of São Paulo, Brazil. Considering that the few data available in Brazil using the same instrument indicate exactly the opposite trend and that Agita São Paulo primarily incentives the involvement in moderate-intensity physical activity and walking, it seems that at least part of the trends described here are explained by the Agita São Paulo program.
Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA
NASA Astrophysics Data System (ADS)
Mair, Alan; El-Kadi, Aly I.
2013-10-01
Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (> 1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach.
Iguchi, Toshihiro; Hiraki, Takao; Matsui, Yusuke; Fujiwara, Hiroyasu; Masaoka, Yoshihisa; Tanaka, Takashi; Sato, Takuya; Gobara, Hideo; Toyooka, Shinichi; Kanazawa, Susumu
2018-05-01
To retrospectively evaluate the technical success of computed tomography fluoroscopy-guided short hookwire placement before video-assisted thoracoscopic surgery and to identify the risk factors for initial placement failure. In total, 401 short hookwire placements for 401 lesions (mean diameter 9.3 mm) were reviewed. Technical success was defined as correct positioning of the hookwire. Possible risk factors for initial placement failure (i.e., requirement for placement of an additional hookwire or to abort the attempt) were evaluated using logistic regression analysis for all procedures, and for procedures performed via the conventional route separately. Of the 401 initial placements, 383 were successful and 18 failed. Short hookwires were finally placed for 399 of 401 lesions (99.5%). Univariate logistic regression analyses revealed that in all 401 procedures only the transfissural approach was a significant independent predictor of initial placement failure (odds ratio, OR, 15.326; 95% confidence interval, CI, 5.429-43.267; p < 0.001) and for the 374 procedures performed via the conventional route only lesion size was a significant independent predictor of failure (OR 0.793, 95% CI 0.631-0.996; p = 0.046). The technical success of preoperative short hookwire placement was extremely high. The transfissural approach was a predictor initial placement failure for all procedures and small lesion size was a predictor of initial placement failure for procedures performed via the conventional route. • Technical success of preoperative short hookwire placement was extremely high. • The transfissural approach was a significant independent predictor of initial placement failure for all procedures. • Small lesion size was a significant independent predictor of initial placement failure for procedures performed via the conventional route.
Ohlsson, Henrik; Merlo, Juan
2009-08-01
Therapeutic traditions at health care practices (HCPs) influence physicians' adherence to prescription guidelines for specific drugs, however, it is not known if such traditions affect all kinds of prescriptions or only specific types of drug. Our goal was to determine whether adherence to prescription guidelines is a common trait of HCPs or dependent on drug type. We fitted separate multi-level logistic regression models to all patients in the Skåne region who received a prescription for a statin drug (ATC: C10AA, n = 6232), an agent acting on the renin-angiotensin system (ATC: C09, n = 7222) or a proton pump inhibitor (ATC: A02BC, n = 11 563) at 198 HCPs from July 2006 to December 2006. There was a high clustering of adherence to prescription guidelines at HCPs for the different drug types (MOR(agents acting on the renin-angiotensin system) = 4.72 [95% CI: 3.90-5.92], MOR(Statins) = 2.71 [95% CI: 2.23-3.39] and MOR(Proton pump inhibitors) = 2.16 [95% CI: 1.95-2.45]). Compared with HCPs with low adherence to guidelines in two drug types, those HCPs with the highest level of adherence for these two drug types also showed a higher probability of adherence for the third drug type. Physicians' decisions to follow prescription guidelines seem to be influenced by therapeutic traditions at the HCP. Moreover, these therapeutic traditions seem to affect all kinds of prescriptions. This information can be used as basis for interventions to support rational and cost-effective medication use. Copyright 2009 John Wiley & Sons, Ltd.
Magnetic Resonance Fingerprinting of Adult Brain Tumors: Initial Experience
Badve, Chaitra; Yu, Alice; Dastmalchian, Sara; Rogers, Matthew; Ma, Dan; Jiang, Yun; Margevicius, Seunghee; Pahwa, Shivani; Lu, Ziang; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Sloan, Andrew; Gulani, Vikas
2016-01-01
Background Magnetic resonance fingerprinting (MRF) allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assesses the utility of MRF in differentiating between common types of adult intra-axial brain tumors. Methods MRF acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 WHO grade II lower-grade gliomas and 8 metastases. T1, T2 of the solid tumor (ST), immediate peritumoral white matter (PW), and contralateral white matter (CW) were summarized within each region of interest. Statistical comparisons on mean, standard deviation, skewness and kurtosis were performed using univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple comparisons testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases and area under the receiver operator curve (AUC) was calculated. Results Mean T2 values could differentiate solid tumor regions of lower-grade gliomas from metastases (mean±sd: 172±53ms and 105±27ms respectively, p =0.004, significant after Bonferroni correction). Mean T1 of PW surrounding lower-grade gliomas differed from PW around glioblastomas (mean±sd: 1066±218ms and 1578±331ms respectively, p=0.004, significant after Bonferroni correction). Logistic regression analysis revealed that mean T2 of ST offered best separation between glioblastomas and metastases with AUC of 0.86 (95% CI 0.69–1.00, p<0.0001). Conclusion MRF allows rapid simultaneous T1, T2 measurement in brain tumors and surrounding tissues. MRF based relaxometry can identify quantitative differences between solid-tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. PMID:28034994
MR Fingerprinting of Adult Brain Tumors: Initial Experience.
Badve, C; Yu, A; Dastmalchian, S; Rogers, M; Ma, D; Jiang, Y; Margevicius, S; Pahwa, S; Lu, Z; Schluchter, M; Sunshine, J; Griswold, M; Sloan, A; Gulani, V
2017-03-01
MR fingerprinting allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assessed the utility of MR fingerprinting in differentiating common types of adult intra-axial brain tumors. MR fingerprinting acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 World Health Organization grade II lower grade gliomas, and 8 metastases. T1, T2 of the solid tumor, immediate peritumoral white matter, and contralateral white matter were summarized within each ROI. Statistical comparisons on mean, SD, skewness, and kurtosis were performed by using the univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple-comparison testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases, and area under the receiver operator curve was calculated. Mean T2 values could differentiate solid tumor regions of lower grade gliomas from metastases (mean, 172 ± 53 ms, and 105 ± 27 ms, respectively; P = .004, significant after Bonferroni correction). The mean T1 of peritumoral white matter surrounding lower grade gliomas differed from peritumoral white matter around glioblastomas (mean, 1066 ± 218 ms, and 1578 ± 331 ms, respectively; P = .004, significant after Bonferroni correction). Logistic regression analysis revealed that the mean T2 of solid tumor offered the best separation between glioblastomas and metastases with an area under the curve of 0.86 (95% CI, 0.69-1.00; P < .0001). MR fingerprinting allows rapid simultaneous T1 and T2 measurement in brain tumors and surrounding tissues. MR fingerprinting-based relaxometry can identify quantitative differences between solid tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. © 2017 by American Journal of Neuroradiology.