ERIC Educational Resources Information Center
Laird, Robert D.; Weems, Carl F.
2011-01-01
Research on informant discrepancies has increasingly utilized difference scores. This article demonstrates the statistical equivalence of regression models using difference scores (raw or standardized) and regression models using separate scores for each informant to show that interpretations should be consistent with both models. First,…
NASA Astrophysics Data System (ADS)
Lusiana, Evellin Dewi
2017-12-01
The parameters of binary probit regression model are commonly estimated by using Maximum Likelihood Estimation (MLE) method. However, MLE method has limitation if the binary data contains separation. Separation is the condition where there are one or several independent variables that exactly grouped the categories in binary response. It will result the estimators of MLE method become non-convergent, so that they cannot be used in modeling. One of the effort to resolve the separation is using Firths approach instead. This research has two aims. First, to identify the chance of separation occurrence in binary probit regression model between MLE method and Firths approach. Second, to compare the performance of binary probit regression model estimator that obtained by MLE method and Firths approach using RMSE criteria. Those are performed using simulation method and under different sample size. The results showed that the chance of separation occurrence in MLE method for small sample size is higher than Firths approach. On the other hand, for larger sample size, the probability decreased and relatively identic between MLE method and Firths approach. Meanwhile, Firths estimators have smaller RMSE than MLEs especially for smaller sample sizes. But for larger sample sizes, the RMSEs are not much different. It means that Firths estimators outperformed MLE estimator.
Separation in Logistic Regression: Causes, Consequences, and Control.
Mansournia, Mohammad Ali; Geroldinger, Angelika; Greenland, Sander; Heinze, Georg
2018-04-01
Separation is encountered in regression models with a discrete outcome (such as logistic regression) where the covariates perfectly predict the outcome. It is most frequent under the same conditions that lead to small-sample and sparse-data bias, such as presence of a rare outcome, rare exposures, highly correlated covariates, or covariates with strong effects. In theory, separation will produce infinite estimates for some coefficients. In practice, however, separation may be unnoticed or mishandled because of software limits in recognizing and handling the problem and in notifying the user. We discuss causes of separation in logistic regression and describe how common software packages deal with it. We then describe methods that remove separation, focusing on the same penalized-likelihood techniques used to address more general sparse-data problems. These methods improve accuracy, avoid software problems, and allow interpretation as Bayesian analyses with weakly informative priors. We discuss likelihood penalties, including some that can be implemented easily with any software package, and their relative advantages and disadvantages. We provide an illustration of ideas and methods using data from a case-control study of contraceptive practices and urinary tract infection.
Yusuf, O B; Bamgboye, E A; Afolabi, R F; Shodimu, M A
2014-09-01
Logistic regression model is widely used in health research for description and predictive purposes. Unfortunately, most researchers are sometimes not aware that the underlying principles of the techniques have failed when the algorithm for maximum likelihood does not converge. Young researchers particularly postgraduate students may not know why separation problem whether quasi or complete occurs, how to identify it and how to fix it. This study was designed to critically evaluate convergence issues in articles that employed logistic regression analysis published in an African Journal of Medicine and medical sciences between 2004 and 2013. Problems of quasi or complete separation were described and were illustrated with the National Demographic and Health Survey dataset. A critical evaluation of articles that employed logistic regression was conducted. A total of 581 articles was reviewed, of which 40 (6.9%) used binary logistic regression. Twenty-four (60.0%) stated the use of logistic regression model in the methodology while none of the articles assessed model fit. Only 3 (12.5%) properly described the procedures. Of the 40 that used the logistic regression model, the problem of convergence occurred in 6 (15.0%) of the articles. Logistic regression tends to be poorly reported in studies published between 2004 and 2013. Our findings showed that the procedure may not be well understood by researchers since very few described the process in their reports and may be totally unaware of the problem of convergence or how to deal with it.
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression
Weiss, Brandi A.; Dardick, William
2015-01-01
This article introduces an entropy-based measure of data–model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data–model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data–model fit to assess how well logistic regression models classify cases into observed categories. PMID:29795897
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression.
Weiss, Brandi A; Dardick, William
2016-12-01
This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data-model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data-model fit to assess how well logistic regression models classify cases into observed categories.
A Solution to Separation and Multicollinearity in Multiple Logistic Regression
Shen, Jianzhao; Gao, Sujuan
2010-01-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286
A Solution to Separation and Multicollinearity in Multiple Logistic Regression.
Shen, Jianzhao; Gao, Sujuan
2008-10-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.
Male-initiated partner abuse during marital separation prior to divorce.
Toews, Michelle L; McKenry, Patrick C; Catlett, Beth S
2003-08-01
The purpose of this study was to assess predictors of male-initiated psychological and physical partner abuse during the separation process prior to divorce among a sample of 80 divorced fathers who reported no physical violence during their marriages. The predictor variables examined were male gender-role identity, female-initiated divorces, dependence on one's former wife, depression, anxiety, and coparental conflict. Through ordinary least square (OLS) regression techniques, it was found that male gender-role identity was positively related to male-initiated psychological abuse during separation. Logistic regression analyses revealed that male-initiated psychological abuse, anxiety level, coparental conflict, and dependence on one's former spouse increased the odds of a man engaging in physical abuse. However, depression decreased the odds of separation physical abuse. The models predicting both male-initiated psychological abuse (F = 2.20, p < .05, R2 = .15) and physical violence during the separation process were significant (Model chi2 = 35.00, df= 7, p < .001).
Premium analysis for copula model: A case study for Malaysian motor insurance claims
NASA Astrophysics Data System (ADS)
Resti, Yulia; Ismail, Noriszura; Jaaman, Saiful Hafizah
2014-06-01
This study performs premium analysis for copula models with regression marginals. For illustration purpose, the copula models are fitted to the Malaysian motor insurance claims data. In this study, we consider copula models from Archimedean and Elliptical families, and marginal distributions of Gamma and Inverse Gaussian regression models. The simulated results from independent model, which is obtained from fitting regression models separately to each claim category, and dependent model, which is obtained from fitting copula models to all claim categories, are compared. The results show that the dependent model using Frank copula is the best model since the risk premiums estimated under this model are closely approximate to the actual claims experience relative to the other copula models.
Dai, Xiaoping; Han, Yuping; Zhang, Xiaohong; Hu, Wei; Huang, Liangji; Duan, Wenpei; Li, Siyi; Liu, Xiaolu; Wang, Qian
2017-09-01
A better understanding of willingness to separate waste and waste separation behaviour can aid the design and improvement of waste management policies. Based on the intercept questionnaire survey data of undergraduate students and residents in Zhengzhou City of China, this article compared factors affecting the willingness and behaviour of students and residents to participate in waste separation using two binary logistic regression models. Improvement opportunities for waste separation were also discussed. Binary logistic regression results indicate that knowledge of and attitude to waste separation and acceptance of waste education significantly affect the willingness of undergraduate students to separate waste, and demographic factors, such as gender, age, education level, and income, significantly affect the willingness of residents to do so. Presence of waste-specific bins and attitude to waste separation are drivers of waste separation behaviour for both students and residents. Improved education about waste separation and facilities are effective to stimulate waste separation, and charging on unsorted waste may be an effective way to improve it in Zhengzhou.
Gurnani, Ashita S; John, Samantha E; Gavett, Brandon E
2015-05-01
The current study developed regression-based normative adjustments for a bi-factor model of the The Brief Test of Adult Cognition by Telephone (BTACT). Archival data from the Midlife Development in the United States-II Cognitive Project were used to develop eight separate linear regression models that predicted bi-factor BTACT scores, accounting for age, education, gender, and occupation-alone and in various combinations. All regression models provided statistically significant fit to the data. A three-predictor regression model fit best and accounted for 32.8% of the variance in the global bi-factor BTACT score. The fit of the regression models was not improved by gender. Eight different regression models are presented to allow the user flexibility in applying demographic corrections to the bi-factor BTACT scores. Occupation corrections, while not widely used, may provide useful demographic adjustments for adult populations or for those individuals who have attained an occupational status not commensurate with expected educational attainment. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Regression analysis using dependent Polya trees.
Schörgendorfer, Angela; Branscum, Adam J
2013-11-30
Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.
Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers
NASA Astrophysics Data System (ADS)
Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.
A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.
USDA-ARS?s Scientific Manuscript database
Purpose: The aim of this study was to develop a technique for the non-destructive and rapid prediction of the moisture content in red pepper powder using near-infrared (NIR) spectroscopy and a partial least squares regression (PLSR) model. Methods: Three red pepper powder products were separated in...
On The Modeling of Educational Systems: II
ERIC Educational Resources Information Center
Grauer, Robert T.
1975-01-01
A unified approach to model building is developed from the separate techniques of regression, simulation, and factorial design. The methodology is applied in the context of a suburban school district. (Author/LS)
Improved estimation of PM2.5 using Lagrangian satellite-measured aerosol optical depth
NASA Astrophysics Data System (ADS)
Olivas Saunders, Rolando
Suspended particulate matter (aerosols) with aerodynamic diameters less than 2.5 mum (PM2.5) has negative effects on human health, plays an important role in climate change and also causes the corrosion of structures by acid deposition. Accurate estimates of PM2.5 concentrations are thus relevant in air quality, epidemiology, cloud microphysics and climate forcing studies. Aerosol optical depth (AOD) retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument has been used as an empirical predictor to estimate ground-level concentrations of PM2.5 . These estimates usually have large uncertainties and errors. The main objective of this work is to assess the value of using upwind (Lagrangian) MODIS-AOD as predictors in empirical models of PM2.5. The upwind locations of the Lagrangian AOD were estimated using modeled backward air trajectories. Since the specification of an arrival elevation is somewhat arbitrary, trajectories were calculated to arrive at four different elevations at ten measurement sites within the continental United States. A systematic examination revealed trajectory model calculations to be sensitive to starting elevation. With a 500 m difference in starting elevation, the 48-hr mean horizontal separation of trajectory endpoints was 326 km. When the difference in starting elevation was doubled and tripled to 1000 m and 1500m, the mean horizontal separation of trajectory endpoints approximately doubled and tripled to 627 km and 886 km, respectively. A seasonal dependence of this sensitivity was also found: the smallest mean horizontal separation of trajectory endpoints was exhibited during the summer and the largest separations during the winter. A daily average AOD product was generated and coupled to the trajectory model in order to determine AOD values upwind of the measurement sites during the period 2003-2007. Empirical models that included in situ AOD and upwind AOD as predictors of PM2.5 were generated by multivariate linear regressions using the least squares method. The multivariate models showed improved performance over the single variable regression (PM2.5 and in situ AOD) models. The statistical significance of the improvement of the multivariate models over the single variable regression models was tested using the extra sum of squares principle. In many cases, even when the R-squared was high for the multivariate models, the improvement over the single models was not statistically significant. The R-squared of these multivariate models varied with respect to seasons, with the best performance occurring during the summer months. A set of seasonal categorical variables was included in the regressions to exploit this variability. The multivariate regression models that included these categorical seasonal variables performed better than the models that didn't account for seasonal variability. Furthermore, 71% of these regressions exhibited improvement over the single variable models that was statistically significant at a 95% confidence level.
QSAR modeling of flotation collectors using principal components extracted from topological indices.
Natarajan, R; Nirdosh, Inderjit; Basak, Subhash C; Mills, Denise R
2002-01-01
Several topological indices were calculated for substituted-cupferrons that were tested as collectors for the froth flotation of uranium. The principal component analysis (PCA) was used for data reduction. Seven principal components (PC) were found to account for 98.6% of the variance among the computed indices. The principal components thus extracted were used in stepwise regression analyses to construct regression models for the prediction of separation efficiencies (Es) of the collectors. A two-parameter model with a correlation coefficient of 0.889 and a three-parameter model with a correlation coefficient of 0.913 were formed. PCs were found to be better than partition coefficient to form regression equations, and inclusion of an electronic parameter such as Hammett sigma or quantum mechanically derived electronic charges on the chelating atoms did not improve the correlation coefficient significantly. The method was extended to model the separation efficiencies of mercaptobenzothiazoles (MBT) and aminothiophenols (ATP) used in the flotation of lead and zinc ores, respectively. Five principal components were found to explain 99% of the data variability in each series. A three-parameter equation with correlation coefficient of 0.985 and a two-parameter equation with correlation coefficient of 0.926 were obtained for MBT and ATP, respectively. The amenability of separation efficiencies of chelating collectors to QSAR modeling using PCs based on topological indices might lead to the selection of collectors for synthesis and testing from a virtual database.
Avalos, Marta; Adroher, Nuria Duran; Lagarde, Emmanuel; Thiessard, Frantz; Grandvalet, Yves; Contrand, Benjamin; Orriols, Ludivine
2012-09-01
Large data sets with many variables provide particular challenges when constructing analytic models. Lasso-related methods provide a useful tool, although one that remains unfamiliar to most epidemiologists. We illustrate the application of lasso methods in an analysis of the impact of prescribed drugs on the risk of a road traffic crash, using a large French nationwide database (PLoS Med 2010;7:e1000366). In the original case-control study, the authors analyzed each exposure separately. We use the lasso method, which can simultaneously perform estimation and variable selection in a single model. We compare point estimates and confidence intervals using (1) a separate logistic regression model for each drug with a Bonferroni correction and (2) lasso shrinkage logistic regression analysis. Shrinkage regression had little effect on (bias corrected) point estimates, but led to less conservative results, noticeably for drugs with moderate levels of exposure. Carbamates, carboxamide derivative and fatty acid derivative antiepileptics, drugs used in opioid dependence, and mineral supplements of potassium showed stronger associations. Lasso is a relevant method in the analysis of databases with large number of exposures and can be recommended as an alternative to conventional strategies.
Application of linear regression analysis in accuracy assessment of rolling force calculations
NASA Astrophysics Data System (ADS)
Poliak, E. I.; Shim, M. K.; Kim, G. S.; Choo, W. Y.
1998-10-01
Efficient operation of the computational models employed in process control systems require periodical assessment of the accuracy of their predictions. Linear regression is proposed as a tool which allows separate systematic and random prediction errors from those related to measurements. A quantitative characteristic of the model predictive ability is introduced in addition to standard statistical tests for model adequacy. Rolling force calculations are considered as an example for the application. However, the outlined approach can be used to assess the performance of any computational model.
A consistent framework for Horton regression statistics that leads to a modified Hack's law
Furey, P.R.; Troutman, B.M.
2008-01-01
A statistical framework is introduced that resolves important problems with the interpretation and use of traditional Horton regression statistics. The framework is based on a univariate regression model that leads to an alternative expression for Horton ratio, connects Horton regression statistics to distributional simple scaling, and improves the accuracy in estimating Horton plot parameters. The model is used to examine data for drainage area A and mainstream length L from two groups of basins located in different physiographic settings. Results show that confidence intervals for the Horton plot regression statistics are quite wide. Nonetheless, an analysis of covariance shows that regression intercepts, but not regression slopes, can be used to distinguish between basin groups. The univariate model is generalized to include n > 1 dependent variables. For the case where the dependent variables represent ln A and ln L, the generalized model performs somewhat better at distinguishing between basin groups than two separate univariate models. The generalized model leads to a modification of Hack's law where L depends on both A and Strahler order ??. Data show that ?? plays a statistically significant role in the modified Hack's law expression. ?? 2008 Elsevier B.V.
Nonlinear-regression groundwater flow modeling of a deep regional aquifer system
Cooley, Richard L.; Konikow, Leonard F.; Naff, Richard L.
1986-01-01
A nonlinear regression groundwater flow model, based on a Galerkin finite-element discretization, was used to analyze steady state two-dimensional groundwater flow in the areally extensive Madison aquifer in a 75,000 mi2 area of the Northern Great Plains. Regression parameters estimated include intrinsic permeabilities of the main aquifer and separate lineament zones, discharges from eight major springs surrounding the Black Hills, and specified heads on the model boundaries. Aquifer thickness and temperature variations were included as specified functions. The regression model was applied using sequential F testing so that the fewest number and simplest zonation of intrinsic permeabilities, combined with the simplest overall model, were evaluated initially; additional complexities (such as subdivisions of zones and variations in temperature and thickness) were added in stages to evaluate the subsequent degree of improvement in the model results. It was found that only the eight major springs, a single main aquifer intrinsic permeability, two separate lineament intrinsic permeabilities of much smaller values, and temperature variations are warranted by the observed data (hydraulic heads and prior information on some parameters) for inclusion in a model that attempts to explain significant controls on groundwater flow. Addition of thickness variations did not significantly improve model results; however, thickness variations were included in the final model because they are fairly well defined. Effects on the observed head distribution from other features, such as vertical leakage and regional variations in intrinsic permeability, apparently were overshadowed by measurement errors in the observed heads. Estimates of the parameters correspond well to estimates obtained from other independent sources.
Nonlinear-Regression Groundwater Flow Modeling of a Deep Regional Aquifer System
NASA Astrophysics Data System (ADS)
Cooley, Richard L.; Konikow, Leonard F.; Naff, Richard L.
1986-12-01
A nonlinear regression groundwater flow model, based on a Galerkin finite-element discretization, was used to analyze steady state two-dimensional groundwater flow in the areally extensive Madison aquifer in a 75,000 mi2 area of the Northern Great Plains. Regression parameters estimated include intrinsic permeabilities of the main aquifer and separate lineament zones, discharges from eight major springs surrounding the Black Hills, and specified heads on the model boundaries. Aquifer thickness and temperature variations were included as specified functions. The regression model was applied using sequential F testing so that the fewest number and simplest zonation of intrinsic permeabilities, combined with the simplest overall model, were evaluated initially; additional complexities (such as subdivisions of zones and variations in temperature and thickness) were added in stages to evaluate the subsequent degree of improvement in the model results. It was found that only the eight major springs, a single main aquifer intrinsic permeability, two separate lineament intrinsic permeabilities of much smaller values, and temperature variations are warranted by the observed data (hydraulic heads and prior information on some parameters) for inclusion in a model that attempts to explain significant controls on groundwater flow. Addition of thickness variations did not significantly improve model results; however, thickness variations were included in the final model because they are fairly well defined. Effects on the observed head distribution from other features, such as vertical leakage and regional variations in intrinsic permeability, apparently were overshadowed by measurement errors in the observed heads. Estimates of the parameters correspond well to estimates obtained from other independent sources.
Hemmila, April; McGill, Jim; Ritter, David
2008-03-01
To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.
Lunt, Mark
2015-07-01
In the first article in this series we explored the use of linear regression to predict an outcome variable from a number of predictive factors. It assumed that the predictive factors were measured on an interval scale. However, this article shows how categorical variables can also be included in a linear regression model, enabling predictions to be made separately for different groups and allowing for testing the hypothesis that the outcome differs between groups. The use of interaction terms to measure whether the effect of a particular predictor variable differs between groups is also explained. An alternative approach to testing the difference between groups of the effect of a given predictor, which consists of measuring the effect in each group separately and seeing whether the statistical significance differs between the groups, is shown to be misleading. © The Author 2013. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.
van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B
2016-11-24
Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.
Miller, Nathan; Prevatt, Frances
2017-10-01
The purpose of this study was to reexamine the latent structure of ADHD and sluggish cognitive tempo (SCT) due to issues with construct validity. Two proposed changes to the construct include viewing hyperactivity and sluggishness (hypoactivity) as a single continuum of activity level, and viewing inattention as a separate dimension from activity level. Data were collected from 1,398 adults using Amazon's MTurk. A new scale measuring activity level was developed, and scores of Inattention were regressed onto scores of Activity Level using curvilinear regression. The Activity Level scale showed acceptable levels of internal consistency, normality, and unimodality. Curvilinear regression indicates that a quadratic (curvilinear) model accurately explains a small but significant portion of the variance in levels of inattention. Hyperactivity and hypoactivity may be viewed as a continuum, rather than separate disorders. Inattention may have a U-shaped relationship with activity level. Linear analyses may be insufficient and inaccurate for studying ADHD.
Misleading Betas: An Educational Example
ERIC Educational Resources Information Center
Chong, James; Halcoussis, Dennis; Phillips, G. Michael
2012-01-01
The dual-beta model is a generalization of the CAPM model. In the dual-beta model, separate beta estimates are provided for up-market and down-market days. This paper uses the historical "Anscombe quartet" results which illustrated how very different datasets can produce the same regression coefficients to motivate a discussion of the…
Estimating linear temporal trends from aggregated environmental monitoring data
Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.
2017-01-01
Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.
Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi
2017-01-01
The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO2 emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO2 emissions is significantly higher than those of GDPpc and Es on per capita CO2 emissions. PMID:29236083
Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi
2017-12-13
The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO₂ emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO₂ emissions is significantly higher than those of GDPpc and Es on per capita CO₂ emissions.
Factors accounting for youth suicide attempt in Hong Kong: a model building.
Wan, Gloria W Y; Leung, Patrick W L
2010-10-01
This study aimed at proposing and testing a conceptual model of youth suicide attempt. We proposed a model that began with family factors such as a history of physical abuse and parental divorce/separation. Family relationship, presence of psychopathology, life stressors, and suicide ideation were postulated as mediators, leading to youth suicide attempt. The stepwise entry of the risk factors to a logistic regression model defined their proximity as related to suicide attempt. Path analysis further refined our proposed model of youth suicide attempt. Our originally proposed model was largely confirmed. The main revision was dropping parental divorce/separation as a risk factor in the model due to lack of significant contribution when examined alongside with other risk factors. This model was cross-validated by gender. This study moved research on youth suicide from identification of individual risk factors to model building, integrating separate findings of the past studies.
Seeing the forest and the trees: multilevel models reveal both species and community patterns
Michelle M. Jackson; Monica G. Turner; Scott M. Pearson; Anthony R. Ives
2012-01-01
Studies designed to understand species distributions and community assemblages typically use separate analytical approaches (e.g., logistic regression and ordination) to model the distribution of individual species and to relate community composition to environmental variation. Multilevel models (MLMs) offer a promising strategy for integrating species and community-...
Zhang, Xin; Liu, Pan; Chen, Yuguang; Bai, Lu; Wang, Wei
2014-01-01
The primary objective of this study was to identify whether the frequency of traffic conflicts at signalized intersections can be modeled. The opposing left-turn conflicts were selected for the development of conflict predictive models. Using data collected at 30 approaches at 20 signalized intersections, the underlying distributions of the conflicts under different traffic conditions were examined. Different conflict-predictive models were developed to relate the frequency of opposing left-turn conflicts to various explanatory variables. The models considered include a linear regression model, a negative binomial model, and separate models developed for four traffic scenarios. The prediction performance of different models was compared. The frequency of traffic conflicts follows a negative binominal distribution. The linear regression model is not appropriate for the conflict frequency data. In addition, drivers behaved differently under different traffic conditions. Accordingly, the effects of conflicting traffic volumes on conflict frequency vary across different traffic conditions. The occurrences of traffic conflicts at signalized intersections can be modeled using generalized linear regression models. The use of conflict predictive models has potential to expand the uses of surrogate safety measures in safety estimation and evaluation.
Interquantile Shrinkage in Regression Models
Jiang, Liewen; Wang, Huixia Judy; Bondell, Howard D.
2012-01-01
Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is that a predictor may have a constant effect over one region of quantile levels but varying effects in other regions. To automatically perform estimation and detection of the interquantile commonality, we develop two penalization methods. When the quantile slope coefficients indeed do not change across quantile levels, the proposed methods will shrink the slopes towards constant and thus improve the estimation efficiency. We establish the oracle properties of the two proposed penalization methods. Through numerical investigations, we demonstrate that the proposed methods lead to estimations with competitive or higher efficiency than the standard quantile regression estimation in finite samples. Supplemental materials for the article are available online. PMID:24363546
Partial least squares for efficient models of fecal indicator bacteria on Great Lakes beaches
Brooks, Wesley R.; Fienen, Michael N.; Corsi, Steven R.
2013-01-01
At public beaches, it is now common to mitigate the impact of water-borne pathogens by posting a swimmer's advisory when the concentration of fecal indicator bacteria (FIB) exceeds an action threshold. Since culturing the bacteria delays public notification when dangerous conditions exist, regression models are sometimes used to predict the FIB concentration based on readily-available environmental measurements. It is hard to know which environmental parameters are relevant to predicting FIB concentration, and the parameters are usually correlated, which can hurt the predictive power of a regression model. Here the method of partial least squares (PLS) is introduced to automate the regression modeling process. Model selection is reduced to the process of setting a tuning parameter to control the decision threshold that separates predicted exceedances of the standard from predicted non-exceedances. The method is validated by application to four Great Lakes beaches during the summer of 2010. Performance of the PLS models compares favorably to that of the existing state-of-the-art regression models at these four sites.
Brand, Tilman; Samkange-Zeeb, Florence; Ellert, Ute; Keil, Thomas; Krist, Lilian; Dragano, Nico; Jöckel, Karl-Heinz; Razum, Oliver; Reiss, Katharina; Greiser, Karin Halina; Zimmermann, Heiko; Becher, Heiko; Zeeb, Hajo
2017-06-01
We assessed the association between acculturation and health-related quality of life (HRQoL) among persons with a Turkish migrant background in Germany. 1226 adults of Turkish origin were recruited in four German cities. Acculturation was assessed using the Frankfurt Acculturation Scale resulting in four groups (integration, assimilation, separation and marginalization). Short Form-8 physical and mental components were used to assess the HRQoL. Associations were analysed with linear regression models. Of the respondents, 20% were classified as integrated, 29% assimilated, 29% separated and 19% as marginalized. Separation was associated with poorer physical and mental health (linear regression coefficient (RC) = -2.3, 95% CI -3.9 to -0.8 and RC = -2.4, 95% CI -4.4 to -0.5, respectively; reference: integration). Marginalization was associated with poorer mental health in descendants of migrants (RC = -6.4, 95% CI -12.0 to -0.8; reference: integration). Separation and marginalization are associated with a poorer HRQoL. Policies should support the integration of migrants, and health promotion interventions should target separated and marginalized migrants to improve their HRQoL.
Multi-fidelity Gaussian process regression for prediction of random fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parussini, L.; Venturi, D., E-mail: venturi@ucsc.edu; Perdikaris, P.
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgersmore » equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.« less
ERIC Educational Resources Information Center
Haberman, Shelby J.
2009-01-01
A regression procedure is developed to link simultaneously a very large number of item response theory (IRT) parameter estimates obtained from a large number of test forms, where each form has been separately calibrated and where forms can be linked on a pairwise basis by means of common items. An application is made to forms in which a…
Muscat Galea, Charlene; Didion, David; Clicq, David; Mangelings, Debby; Vander Heyden, Yvan
2017-12-01
A supercritical chromatographic method for the separation of a drug and its impurities has been developed and optimized applying an experimental design approach and chromatogram simulations. Stationary phase screening was followed by optimization of the modifier and injection solvent composition. A design-of-experiment (DoE) approach was then used to optimize column temperature, back-pressure and the gradient slope simultaneously. Regression models for the retention times and peak widths of all mixture components were built. The factor levels for different grid points were then used to predict the retention times and peak widths of the mixture components using the regression models and the best separation for the worst separated peak pair in the experimental domain was identified. A plot of the minimal resolutions was used to help identifying the factor levels leading to the highest resolution between consecutive peaks. The effects of the DoE factors were visualized in a way that is familiar to the analytical chemist, i.e. by simulating the resulting chromatogram. The mixture of an active ingredient and seven impurities was separated in less than eight minutes. The approach discussed in this paper demonstrates how SFC methods can be developed and optimized efficiently using simple concepts and tools. Copyright © 2017 Elsevier B.V. All rights reserved.
Variational dynamic background model for keyword spotting in handwritten documents
NASA Astrophysics Data System (ADS)
Kumar, Gaurav; Wshah, Safwan; Govindaraju, Venu
2013-12-01
We propose a bayesian framework for keyword spotting in handwritten documents. This work is an extension to our previous work where we proposed dynamic background model, DBM for keyword spotting that takes into account the local character level scores and global word level scores to learn a logistic regression classifier to separate keywords from non-keywords. In this work, we add a bayesian layer on top of the DBM called the variational dynamic background model, VDBM. The logistic regression classifier uses the sigmoid function to separate keywords from non-keywords. The sigmoid function being neither convex nor concave, exact inference of VDBM becomes intractable. An expectation maximization step is proposed to do approximate inference. The advantage of VDBM over the DBM is multi-fold. Firstly, being bayesian, it prevents over-fitting of data. Secondly, it provides better modeling of data and an improved prediction of unseen data. VDBM is evaluated on the IAM dataset and the results prove that it outperforms our prior work and other state of the art line based word spotting system.
A Fast Gradient Method for Nonnegative Sparse Regression With Self-Dictionary
NASA Astrophysics Data System (ADS)
Gillis, Nicolas; Luce, Robert
2018-01-01
A nonnegative matrix factorization (NMF) can be computed efficiently under the separability assumption, which asserts that all the columns of the given input data matrix belong to the cone generated by a (small) subset of them. The provably most robust methods to identify these conic basis columns are based on nonnegative sparse regression and self dictionaries, and require the solution of large-scale convex optimization problems. In this paper we study a particular nonnegative sparse regression model with self dictionary. As opposed to previously proposed models, this model yields a smooth optimization problem where the sparsity is enforced through linear constraints. We show that the Euclidean projection on the polyhedron defined by these constraints can be computed efficiently, and propose a fast gradient method to solve our model. We compare our algorithm with several state-of-the-art methods on synthetic data sets and real-world hyperspectral images.
Confounder summary scores when comparing the effects of multiple drug exposures.
Cadarette, Suzanne M; Gagne, Joshua J; Solomon, Daniel H; Katz, Jeffrey N; Stürmer, Til
2010-01-01
Little information is available comparing methods to adjust for confounding when considering multiple drug exposures. We compared three analytic strategies to control for confounding based on measured variables: conventional multivariable, exposure propensity score (EPS), and disease risk score (DRS). Each method was applied to a dataset (2000-2006) recently used to examine the comparative effectiveness of four drugs. The relative effectiveness of risedronate, nasal calcitonin, and raloxifene in preventing non-vertebral fracture, were each compared to alendronate. EPSs were derived both by using multinomial logistic regression (single model EPS) and by three separate logistic regression models (separate model EPS). DRSs were derived and event rates compared using Cox proportional hazard models. DRSs derived among the entire cohort (full cohort DRS) was compared to DRSs derived only among the referent alendronate (unexposed cohort DRS). Less than 8% deviation from the base estimate (conventional multivariable) was observed applying single model EPS, separate model EPS or full cohort DRS. Applying the unexposed cohort DRS when background risk for fracture differed between comparison drug exposure cohorts resulted in -7 to + 13% deviation from our base estimate. With sufficient numbers of exposed and outcomes, either conventional multivariable, EPS or full cohort DRS may be used to adjust for confounding to compare the effects of multiple drug exposures. However, our data also suggest that unexposed cohort DRS may be problematic when background risks differ between referent and exposed groups. Further empirical and simulation studies will help to clarify the generalizability of our findings.
Pattern Recognition Analysis of Age-Related Retinal Ganglion Cell Signatures in the Human Eye
Yoshioka, Nayuta; Zangerl, Barbara; Nivison-Smith, Lisa; Khuu, Sieu K.; Jones, Bryan W.; Pfeiffer, Rebecca L.; Marc, Robert E.; Kalloniatis, Michael
2017-01-01
Purpose To characterize macular ganglion cell layer (GCL) changes with age and provide a framework to assess changes in ocular disease. This study used data clustering to analyze macular GCL patterns from optical coherence tomography (OCT) in a large cohort of subjects without ocular disease. Methods Single eyes of 201 patients evaluated at the Centre for Eye Health (Sydney, Australia) were retrospectively enrolled (age range, 20–85); 8 × 8 grid locations obtained from Spectralis OCT macular scans were analyzed with unsupervised classification into statistically separable classes sharing common GCL thickness and change with age. The resulting classes and gridwise data were fitted with linear and segmented linear regression curves. Additionally, normalized data were analyzed to determine regression as a percentage. Accuracy of each model was examined through comparison of predicted 50-year-old equivalent macular GCL thickness for the entire cohort to a true 50-year-old reference cohort. Results Pattern recognition clustered GCL thickness across the macula into five to eight spatially concentric classes. F-test demonstrated segmented linear regression to be the most appropriate model for macular GCL change. The pattern recognition–derived and normalized model revealed less difference between the predicted macular GCL thickness and the reference cohort (average ± SD 0.19 ± 0.92 and −0.30 ± 0.61 μm) than a gridwise model (average ± SD 0.62 ± 1.43 μm). Conclusions Pattern recognition successfully identified statistically separable macular areas that undergo a segmented linear reduction with age. This regression model better predicted macular GCL thickness. The various unique spatial patterns revealed by pattern recognition combined with core GCL thickness data provide a framework to analyze GCL loss in ocular disease. PMID:28632847
Tree STEM and Canopy Biomass Estimates from Terrestrial Laser Scanning Data
NASA Astrophysics Data System (ADS)
Olofsson, K.; Holmgren, J.
2017-10-01
In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem estimate and 10-15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed for different areas with different climate and different vegetation.
Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali Aldabaa, Abdalsamad Abdalsatar; Ghosh, Rakesh Kumar; Paul, Sathi; Nasim Ali, Md
2015-05-01
Using 108 petroleum contaminated soil samples, this pilot study proposed a new analytical approach of combining visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) and portable X-ray fluorescence spectrometry (PXRF) for rapid and improved quantification of soil petroleum contamination. Results indicated that an advanced fused model where VisNIR DRS spectra-based penalized spline regression (PSR) was used to predict total petroleum hydrocarbon followed by PXRF elemental data-based random forest regression was used to model the PSR residuals, it outperformed (R(2)=0.78, residual prediction deviation (RPD)=2.19) all other models tested, even producing better generalization than using VisNIR DRS alone (RPD's of 1.64, 1.86, and 1.96 for random forest, penalized spline regression, and partial least squares regression, respectively). Additionally, unsupervised principal component analysis using the PXRF+VisNIR DRS system qualitatively separated contaminated soils from control samples. Fusion of PXRF elemental data and VisNIR derivative spectra produced an optimized model for total petroleum hydrocarbon quantification in soils. Copyright © 2015 Elsevier B.V. All rights reserved.
SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA
Fosdick, Bailey K.; Hoff, Peter D.
2014-01-01
Human mortality data sets can be expressed as multiway data arrays, the dimensions of which correspond to categories by which mortality rates are reported, such as age, sex, country and year. Regression models for such data typically assume an independent error distribution or an error model that allows for dependence along at most one or two dimensions of the data array. However, failing to account for other dependencies can lead to inefficient estimates of regression parameters, inaccurate standard errors and poor predictions. An alternative to assuming independent errors is to allow for dependence along each dimension of the array using a separable covariance model. However, the number of parameters in this model increases rapidly with the dimensions of the array and, for many arrays, maximum likelihood estimates of the covariance parameters do not exist. In this paper, we propose a submodel of the separable covariance model that estimates the covariance matrix for each dimension as having factor analytic structure. This model can be viewed as an extension of factor analysis to array-valued data, as it uses a factor model to estimate the covariance along each dimension of the array. We discuss properties of this model as they relate to ordinary factor analysis, describe maximum likelihood and Bayesian estimation methods, and provide a likelihood ratio testing procedure for selecting the factor model ranks. We apply this methodology to the analysis of data from the Human Mortality Database, and show in a cross-validation experiment how it outperforms simpler methods. Additionally, we use this model to impute mortality rates for countries that have no mortality data for several years. Unlike other approaches, our methodology is able to estimate similarities between the mortality rates of countries, time periods and sexes, and use this information to assist with the imputations. PMID:25489353
Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald
2011-06-01
Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.
2011-01-01
Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. Conclusions HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems. PMID:21627852
Guo, Yanyong; Li, Zhibin; Wu, Yao; Xu, Chengcheng
2018-06-01
Bicyclists running the red light at crossing facilities increase the potential of colliding with motor vehicles. Exploring the contributing factors could improve the prediction of running red-light probability and develop countermeasures to reduce such behaviors. However, individuals could have unobserved heterogeneities in running a red light, which make the accurate prediction more challenging. Traditional models assume that factor parameters are fixed and cannot capture the varying impacts on red-light running behaviors. In this study, we employed the full Bayesian random parameters logistic regression approach to account for the unobserved heterogeneous effects. Two types of crossing facilities were considered which were the signalized intersection crosswalks and the road segment crosswalks. Electric and conventional bikes were distinguished in the modeling. Data were collected from 16 crosswalks in urban area of Nanjing, China. Factors such as individual characteristics, road geometric design, environmental features, and traffic variables were examined. Model comparison indicates that the full Bayesian random parameters logistic regression approach is statistically superior to the standard logistic regression model. More red-light runners are predicted at signalized intersection crosswalks than at road segment crosswalks. Factors affecting red-light running behaviors are gender, age, bike type, road width, presence of raised median, separation width, signal type, green ratio, bike and vehicle volume, and average vehicle speed. Factors associated with the unobserved heterogeneity are gender, bike type, signal type, separation width, and bike volume. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shi, K-Q; Zhou, Y-Y; Yan, H-D; Li, H; Wu, F-L; Xie, Y-Y; Braddock, M; Lin, X-Y; Zheng, M-H
2017-02-01
At present, there is no ideal model for predicting the short-term outcome of patients with acute-on-chronic hepatitis B liver failure (ACHBLF). This study aimed to establish and validate a prognostic model by using the classification and regression tree (CART) analysis. A total of 1047 patients from two separate medical centres with suspected ACHBLF were screened in the study, which were recognized as derivation cohort and validation cohort, respectively. CART analysis was applied to predict the 3-month mortality of patients with ACHBLF. The accuracy of the CART model was tested using the area under the receiver operating characteristic curve, which was compared with the model for end-stage liver disease (MELD) score and a new logistic regression model. CART analysis identified four variables as prognostic factors of ACHBLF: total bilirubin, age, serum sodium and INR, and three distinct risk groups: low risk (4.2%), intermediate risk (30.2%-53.2%) and high risk (81.4%-96.9%). The new logistic regression model was constructed with four independent factors, including age, total bilirubin, serum sodium and prothrombin activity by multivariate logistic regression analysis. The performances of the CART model (0.896), similar to the logistic regression model (0.914, P=.382), exceeded that of MELD score (0.667, P<.001). The results were confirmed in the validation cohort. We have developed and validated a novel CART model superior to MELD for predicting three-month mortality of patients with ACHBLF. Thus, the CART model could facilitate medical decision-making and provide clinicians with a validated practical bedside tool for ACHBLF risk stratification. © 2016 John Wiley & Sons Ltd.
Gender differences in body consciousness and substance use among high-risk adolescents.
Black, David Scott; Sussman, Steve; Unger, Jennifer; Pokhrel, Pallav; Sun, Ping
2010-08-01
This study explores the association between private and public body consciousness and past 30-day cigarette, alcohol, marijuana, and hard drug use among adolescents. Self-reported data from alterative high school students in California were analyzed (N = 976) using multilevel regression models to account for student clustering within schools. Separate regression analyses were conducted for males and females. Both cross-sectional baseline data and one-year longitudinal prediction models indicated that body consciousness is associated with specific drug use categories differentially by gender. Findings suggest that body consciousness accounts for additional variance in substance use etiology not explained by previously recognized dispositional variables.
Schilling, K.E.; Wolter, C.F.
2005-01-01
Nineteen variables, including precipitation, soils and geology, land use, and basin morphologic characteristics, were evaluated to develop Iowa regression models to predict total streamflow (Q), base flow (Qb), storm flow (Qs) and base flow percentage (%Qb) in gauged and ungauged watersheds in the state. Discharge records from a set of 33 watersheds across the state for the 1980 to 2000 period were separated into Qb and Qs. Multiple linear regression found that 75.5 percent of long term average Q was explained by rainfall, sand content, and row crop percentage variables, whereas 88.5 percent of Qb was explained by these three variables plus permeability and floodplain area variables. Qs was explained by average rainfall and %Qb was a function of row crop percentage, permeability, and basin slope variables. Regional regression models developed for long term average Q and Qb were adapted to annual rainfall and showed good correlation between measured and predicted values. Combining the regression model for Q with an estimate of mean annual nitrate concentration, a map of potential nitrate loads in the state was produced. Results from this study have important implications for understanding geomorphic and land use controls on streamflow and base flow in Iowa watersheds and similar agriculture dominated watersheds in the glaciated Midwest. (JAWRA) (Copyright ?? 2005).
A framework for longitudinal data analysis via shape regression
NASA Astrophysics Data System (ADS)
Fishbaugh, James; Durrleman, Stanley; Piven, Joseph; Gerig, Guido
2012-02-01
Traditional longitudinal analysis begins by extracting desired clinical measurements, such as volume or head circumference, from discrete imaging data. Typically, the continuous evolution of a scalar measurement is estimated by choosing a 1D regression model, such as kernel regression or fitting a polynomial of fixed degree. This type of analysis not only leads to separate models for each measurement, but there is no clear anatomical or biological interpretation to aid in the selection of the appropriate paradigm. In this paper, we propose a consistent framework for the analysis of longitudinal data by estimating the continuous evolution of shape over time as twice differentiable flows of deformations. In contrast to 1D regression models, one model is chosen to realistically capture the growth of anatomical structures. From the continuous evolution of shape, we can simply extract any clinical measurements of interest. We demonstrate on real anatomical surfaces that volume extracted from a continuous shape evolution is consistent with a 1D regression performed on the discrete measurements. We further show how the visualization of shape progression can aid in the search for significant measurements. Finally, we present an example on a shape complex of the brain (left hemisphere, right hemisphere, cerebellum) that demonstrates a potential clinical application for our framework.
Wylie, Bruce K.; Howard, Daniel; Dahal, Devendra; Gilmanov, Tagir; Ji, Lei; Zhang, Li; Smith, Kelcy
2016-01-01
This paper presents the methodology and results of two ecological-based net ecosystem production (NEP) regression tree models capable of up scaling measurements made at various flux tower sites throughout the U.S. Great Plains. Separate grassland and cropland NEP regression tree models were trained using various remote sensing data and other biogeophysical data, along with 15 flux towers contributing to the grassland model and 15 flux towers for the cropland model. The models yielded weekly mean daily grassland and cropland NEP maps of the U.S. Great Plains at 250 m resolution for 2000–2008. The grassland and cropland NEP maps were spatially summarized and statistically compared. The results of this study indicate that grassland and cropland ecosystems generally performed as weak net carbon (C) sinks, absorbing more C from the atmosphere than they released from 2000 to 2008. Grasslands demonstrated higher carbon sink potential (139 g C·m−2·year−1) than non-irrigated croplands. A closer look into the weekly time series reveals the C fluctuation through time and space for each land cover type.
Impact of divorce on the quality of life in school-age children.
Eymann, Alfredo; Busaniche, Julio; Llera, Julián; De Cunto, Carmen; Wahren, Carlos
2009-01-01
To assess psychosocial quality of life in school-age children of divorced parents. A cross-sectional survey was conducted at the pediatric outpatient clinic of a community hospital. Children 5 to 12 years old from married families and divorced families were included. Child quality of life was assessed through maternal reports using a Child Health Questionnaire-Parent Form 50. A multiple linear regression model was constructed including clinically relevant variables significant on univariate analysis (beta coefficient and 95%CI). Three hundred and thirty families were invited to participate and 313 completed the questionnaire. Univariate analysis showed that quality of life was significantly associated with parental separation, child sex, time spent with the father, standard of living, and maternal education. In a multiple linear regression model, quality of life scores decreased in boys -4.5 (-6.8 to -2.3) and increased for time spent with the father 0.09 (0.01 to 0.2). In divorced families, multiple linear regression showed that quality of life scores increased when parents had separated by mutual agreement 6.1 (2.7 to 9.4), when the mother had university level education 5.9 (1.7 to 10.1) and for each year elapsed since separation 0.6 (0.2 to 1.1), whereas scores decreased in boys -5.4 (-9.5 to -1.3) and for each one-year increment of maternal age -0.4 (-0.7 to -0.05). Children's psychosocial quality of life was affected by divorce. The Child Health Questionnaire can be useful to detect a decline in the psychosocial quality of life.
Area-to-point regression kriging for pan-sharpening
NASA Astrophysics Data System (ADS)
Wang, Qunming; Shi, Wenzhong; Atkinson, Peter M.
2016-04-01
Pan-sharpening is a technique to combine the fine spatial resolution panchromatic (PAN) band with the coarse spatial resolution multispectral bands of the same satellite to create a fine spatial resolution multispectral image. In this paper, area-to-point regression kriging (ATPRK) is proposed for pan-sharpening. ATPRK considers the PAN band as the covariate. Moreover, ATPRK is extended with a local approach, called adaptive ATPRK (AATPRK), which fits a regression model using a local, non-stationary scheme such that the regression coefficients change across the image. The two geostatistical approaches, ATPRK and AATPRK, were compared to the 13 state-of-the-art pan-sharpening approaches summarized in Vivone et al. (2015) in experiments on three separate datasets. ATPRK and AATPRK produced more accurate pan-sharpened images than the 13 benchmark algorithms in all three experiments. Unlike the benchmark algorithms, the two geostatistical solutions precisely preserved the spectral properties of the original coarse data. Furthermore, ATPRK can be enhanced by a local scheme in AATRPK, in cases where the residuals from a global regression model are such that their spatial character varies locally.
Genetic interactions for heat stress and production level: predicting foreign from domestic data
USDA-ARS?s Scientific Manuscript database
Genetic by environmental interactions were estimated from U.S. national data by separately adding random regressions for heat stress (HS) and herd production level (HL) to the all-breed animal model to improve predictions of future records and rankings in other climate and production situations. Yie...
Reasoning about Independence in Probabilistic Models of Relational Data (Author’s Manuscript)
2014-01-06
for relational variables from A’s perspective, and this result is also applicable to one-to-many data.) To illustrate this fact more concretely ...separators. Technical Report R-254, UCLA Computer Science Department, February 1998. Robert Tibshirani. Regression shrinkage and selection via the lasso
Model for the separate collection of packaging waste in Portuguese low-performing recycling regions.
Oliveira, V; Sousa, V; Vaz, J M; Dias-Ferreira, C
2018-06-15
Separate collection of packaging waste (glass; plastic/metals; paper/cardboard), is currently a widespread practice throughout Europe. It enables the recovery of good quality recyclable materials. However, separate collection performance are quite heterogeneous, with some countries reaching higher levels than others. In the present work, separate collection of packaging waste has been evaluated in a low-performance recycling region in Portugal in order to investigate which factors are most affecting the performance in bring-bank collection system. The variability of separate collection yields (kg per inhabitant per year) among 42 municipalities was scrutinized for the year 2015 against possible explanatory factors. A total of 14 possible explanatory factors were analysed, falling into two groups: socio-economic/demographic and waste collection service related. Regression models were built in an attempt to evaluate the individual effect of each factor on separate collection yields and predict changes on the collection yields by acting on those factors. The best model obtained is capable to explain 73% of the variation found in the separate collection yields. The model includes the following statistically significant indicators affecting the success of separate collection yields: i) inhabitants per bring-bank; ii) relative accessibility to bring-banks; iii) degree of urbanization; iv) number of school years attended; and v) area. The model presented in this work was developed specifically for the bring-bank system, has an explanatory power and quantifies the impact of each factor on separate collection yields. It can therefore be used as a support tool by local and regional waste management authorities in the definition of future strategies to increase collection of recyclables of good quality and to achieve national and regional targets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.
2008-01-01
Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.
Hendricks, Brian; Mark-Carew, Miguella; Conley, Jamison
2017-11-13
Domestic dogs and cats are potentially effective sentinel populations for monitoring occurrence and spread of Lyme disease. Few studies have evaluated the public health utility of sentinel programmes using geo-analytic approaches. Confirmed Lyme disease cases diagnosed by physicians and ticks submitted by veterinarians to the West Virginia State Health Department were obtained for 2014-2016. Ticks were identified to species, and only Ixodes scapularis were incorporated in the analysis. Separate ordinary least squares (OLS) and spatial lag regression models were conducted to estimate the association between average numbers of Ix. scapularis collected on pets and human Lyme disease incidence. Regression residuals were visualised using Local Moran's I as a diagnostic tool to identify spatial dependence. Statistically significant associations were identified between average numbers of Ix. scapularis collected from dogs and human Lyme disease in the OLS (β=20.7, P<0.001) and spatial lag (β=12.0, P=0.002) regression. No significant associations were identified for cats in either regression model. Statistically significant (P≤0.05) spatial dependence was identified in all regression models. Local Moran's I maps produced for spatial lag regression residuals indicated a decrease in model over- and under-estimation, but identified a higher number of statistically significant outliers than OLS regression. Results support previous conclusions that dogs are effective sentinel populations for monitoring risk of human exposure to Lyme disease. Findings reinforce the utility of spatial analysis of surveillance data, and highlight West Virginia's unique position within the eastern United States in regards to Lyme disease occurrence.
NASA Astrophysics Data System (ADS)
Luna, Aderval S.; Gonzaga, Fabiano B.; da Rocha, Werickson F. C.; Lima, Igor C. A.
2018-01-01
Laser-induced breakdown spectroscopy (LIBS) analysis was carried out on eleven steel samples to quantify the concentrations of chromium, nickel, and manganese. LIBS spectral data were correlated to known concentrations of the samples using different strategies in partial least squares (PLS) regression models. For the PLS analysis, one predictive model was separately generated for each element, while different approaches were used for the selection of variables (VIP: variable importance in projection and iPLS: interval partial least squares) in the PLS model to quantify the contents of the elements. The comparison of the performance of the models showed that there was no significant statistical difference using the Wilcoxon signed rank test. The elliptical joint confidence region (EJCR) did not detect systematic errors in these proposed methodologies for each metal.
ERIC Educational Resources Information Center
Lassila, Nathan E.
2010-01-01
Empirical studies exploring the impact of student aid on postsecondary enrollment often stop short of the specific examination of institutional tuition discounting. This research uses separate empirical ordinary least squares (OLS) regression models to examine three questions using public choice theory, positing that enrollment decisions may be…
ERIC Educational Resources Information Center
Zullig, Keith; Ubbes, Valerie A.; Pyle, Jennifer; Valois, Robert F.
2006-01-01
This study explored the relationships among weight perceptions, dieting behavior, and breakfast eating in 4597 public high school adolescents using the Centers for Disease Control and Prevention Youth Risk Behavior Survey. Adjusted multiple logistic regression models were constructed separately for race and gender groups via SUDAAN (Survey Data…
NASA Astrophysics Data System (ADS)
Heddam, Salim; Kisi, Ozgur
2018-04-01
In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.
Robust nonlinear system identification: Bayesian mixture of experts using the t-distribution
NASA Astrophysics Data System (ADS)
Baldacchino, Tara; Worden, Keith; Rowson, Jennifer
2017-02-01
A novel variational Bayesian mixture of experts model for robust regression of bifurcating and piece-wise continuous processes is introduced. The mixture of experts model is a powerful model which probabilistically splits the input space allowing different models to operate in the separate regions. However, current methods have no fail-safe against outliers. In this paper, a robust mixture of experts model is proposed which consists of Student-t mixture models at the gates and Student-t distributed experts, trained via Bayesian inference. The Student-t distribution has heavier tails than the Gaussian distribution, and so it is more robust to outliers, noise and non-normality in the data. Using both simulated data and real data obtained from the Z24 bridge this robust mixture of experts performs better than its Gaussian counterpart when outliers are present. In particular, it provides robustness to outliers in two forms: unbiased parameter regression models, and robustness to overfitting/complex models.
Strand, Matthew; Sillau, Stefan; Grunwald, Gary K; Rabinovitch, Nathan
2014-02-10
Regression calibration provides a way to obtain unbiased estimators of fixed effects in regression models when one or more predictors are measured with error. Recent development of measurement error methods has focused on models that include interaction terms between measured-with-error predictors, and separately, methods for estimation in models that account for correlated data. In this work, we derive explicit and novel forms of regression calibration estimators and associated asymptotic variances for longitudinal models that include interaction terms, when data from instrumental and unbiased surrogate variables are available but not the actual predictors of interest. The longitudinal data are fit using linear mixed models that contain random intercepts and account for serial correlation and unequally spaced observations. The motivating application involves a longitudinal study of exposure to two pollutants (predictors) - outdoor fine particulate matter and cigarette smoke - and their association in interactive form with levels of a biomarker of inflammation, leukotriene E4 (LTE 4 , outcome) in asthmatic children. Because the exposure concentrations could not be directly observed, we used measurements from a fixed outdoor monitor and urinary cotinine concentrations as instrumental variables, and we used concentrations of fine ambient particulate matter and cigarette smoke measured with error by personal monitors as unbiased surrogate variables. We applied the derived regression calibration methods to estimate coefficients of the unobserved predictors and their interaction, allowing for direct comparison of toxicity of the different pollutants. We used simulations to verify accuracy of inferential methods based on asymptotic theory. Copyright © 2013 John Wiley & Sons, Ltd.
Composite marginal quantile regression analysis for longitudinal adolescent body mass index data.
Yang, Chi-Chuan; Chen, Yi-Hau; Chang, Hsing-Yi
2017-09-20
Childhood and adolescenthood overweight or obesity, which may be quantified through the body mass index (BMI), is strongly associated with adult obesity and other health problems. Motivated by the child and adolescent behaviors in long-term evolution (CABLE) study, we are interested in individual, family, and school factors associated with marginal quantiles of longitudinal adolescent BMI values. We propose a new method for composite marginal quantile regression analysis for longitudinal outcome data, which performs marginal quantile regressions at multiple quantile levels simultaneously. The proposed method extends the quantile regression coefficient modeling method introduced by Frumento and Bottai (Biometrics 2016; 72:74-84) to longitudinal data accounting suitably for the correlation structure in longitudinal observations. A goodness-of-fit test for the proposed modeling is also developed. Simulation results show that the proposed method can be much more efficient than the analysis without taking correlation into account and the analysis performing separate quantile regressions at different quantile levels. The application to the longitudinal adolescent BMI data from the CABLE study demonstrates the practical utility of our proposal. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
The relationship between biomechanical variables and driving performance during the golf swing.
Chu, Yungchien; Sell, Timothy C; Lephart, Scott M
2010-09-01
Swing kinematic and ground reaction force data from 308 golfers were analysed to identify the variables important to driving ball velocity. Regression models were applied at four selected events in the swing. The models accounted for 44-74% of variance in ball velocity. Based on the regression analyses, upper torso-pelvis separation (the X-Factor), delayed release (i.e. the initiation of movement) of the arms and wrists, trunk forward and lateral tilting, and weight-shifting during the swing were significantly related to ball velocity. Our results also verify several general coaching ideas that were considered important to increased ball velocity. The results of this study may serve as both skill and strength training guidelines for golfers.
Physician leadership styles and effectiveness: an empirical study.
Xirasagar, Sudha; Samuels, Michael E; Stoskopf, Carleen H
2005-12-01
The authors study the association between physician leadership styles and leadership effectiveness. Executive directors of community health centers were surveyed (269 respondents; response rate = 40.9 percent) for their perceptions of the medical director's leadership behaviors and effectiveness, using an adapted Multifactor Leadership Questionnaire (43 items on a 0-4 point Likert-type scale), with additional questions on demographics and the center's clinical goals and achievements. The authors hypothesize that transformational leadership would be more positively associated with executive directors' ratings of effectiveness, satisfaction with the leader, and subordinate extra effort, as well as the center's clinical goal achievement, than transactional or laissez-faire leadership. Separate ordinary least squares regressions were used to model each of the effectiveness measures, and general linear model regression was used to model clinical goal achievement. Results support the hypothesis and suggest that physician leadership development using the transformational leadership model may result in improved health care quality and cost control.
Early Mother-Child Separation, Parenting, and Child Well-Being in Early Head Start Families
Howard, Kimberly; Martin, Anne; Berlin, Lisa J.; Brooks-Gunn, Jeanne
2011-01-01
Drawing on theories of attachment and family instability, this study examined associations between early mother-child separation and subsequent maternal parenting behaviors and children’s outcomes in a sample of 2080 families who participated in the Early Head Start Research and Evaluation Project, the vast majority of whom were poor. Multiple regression models revealed that, controlling for baseline family and maternal characteristics and indicators of family instability, the occurrence of a mother-child separation of a week or longer within the first two years of life was related to higher levels of child negativity (at age 3) and aggression (at ages 3 and 5). The effect of separation on child aggression at age 5 was mediated by aggression at age 3, suggesting that the effects of separation on children’s aggressive behavior are early and persistent. PMID:21240692
Astrup, Aske; Pedersen, Carsten B; Mok, Pearl L H; Carr, Matthew J; Webb, Roger T
2017-01-15
Experience of child-parent separation predicts adverse outcomes in later life. We conducted a detailed epidemiological examination of this complex relationship by modelling an array of separation scenarios and trajectories and subsequent risk of self-harm. This cohort study examined persons born in Denmark during 1971-1997. We measured child-parent separations each year from birth to 15th birthday via complete residential address records in the Civil Registration System. Self-harm episodes between 15th birthday and early middle age were ascertained through linkage to psychiatric and general hospital registers. Incidence rate ratios (IRRs) from Poisson regression models were estimated against a reference category of individuals not separated from their parents. All exposure models examined indicated an association with raised self-harm risk. For example, large elevations in risk were observed in relation to separation from both parents at 15th birthday (IRR 5.50, 95% CI 5.25-5.77), experiencing five or more changes in child-parent separation status (IRR 5.24, CI 4.88-5.63), and having a shorter duration of familial cohesion during upbringing. There was no significant evidence for varying strength of association according to child's gender. Measuring child-parent separation according to differential residential addresses took no account of the reason for or circumstances of these separations. These novel findings suggest that self-harm prevention initiatives should be tailored toward exposed persons who remain psychologically distressed into adulthood. These high-risk subgroups include individuals with little experience of familial cohesion during their upbringing, those with the most complicated trajectories who lived through multiple child-parent separation transitions, and those separated from both parents during early adolescence. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Spatial interpolation schemes of daily precipitation for hydrologic modeling
Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.
2012-01-01
Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.
A novel model incorporating two variability sources for describing motor evoked potentials
Goetz, Stefan M.; Luber, Bruce; Lisanby, Sarah H.; Peterchev, Angel V.
2014-01-01
Objective Motor evoked potentials (MEPs) play a pivotal role in transcranial magnetic stimulation (TMS), e.g., for determining the motor threshold and probing cortical excitability. Sampled across the range of stimulation strengths, MEPs outline an input–output (IO) curve, which is often used to characterize the corticospinal tract. More detailed understanding of the signal generation and variability of MEPs would provide insight into the underlying physiology and aid correct statistical treatment of MEP data. Methods A novel regression model is tested using measured IO data of twelve subjects. The model splits MEP variability into two independent contributions, acting on both sides of a strong sigmoidal nonlinearity that represents neural recruitment. Traditional sigmoidal regression with a single variability source after the nonlinearity is used for comparison. Results The distribution of MEP amplitudes varied across different stimulation strengths, violating statistical assumptions in traditional regression models. In contrast to the conventional regression model, the dual variability source model better described the IO characteristics including phenomena such as changing distribution spread and skewness along the IO curve. Conclusions MEP variability is best described by two sources that most likely separate variability in the initial excitation process from effects occurring later on. The new model enables more accurate and sensitive estimation of the IO curve characteristics, enhancing its power as a detection tool, and may apply to other brain stimulation modalities. Furthermore, it extracts new information from the IO data concerning the neural variability—information that has previously been treated as noise. PMID:24794287
Does the Mean Score Mask Poor Delivery of Educational Services in School Effectiveness Ratings?
ERIC Educational Resources Information Center
Lang, Michael H.; And Others
This study investigated whether mean scores in school effectiveness ratings were masking poor delivery of educational services to low achievers in a sample of 242 Louisiana public elementary schools accounting for over 18,000 third graders tested in 1989. Ten separate multiple regression models, each producing studentized residuals used as school…
ERIC Educational Resources Information Center
Paxton, Raheem J.; Valois, Robert F.; Drane, J. Wanzer
2007-01-01
We investigated the relationship between family structure and substance use in a sample of 2,138 public middle school students in a southern state. The CDC Middle School Youth Risk Behavior Survey was utilized and adjusted logistic regression models were created separately for four race/gender categories (African American females/males, and…
ERIC Educational Resources Information Center
Kieffer, Kevin M.; Schinka, John A.; Curtiss, Glenn
2004-01-01
This study examined the contributions of the 5-Factor Model (FFM; P. T. Costa & R. R. McCrae, 1992) and RIASEC (J. L. Holland, 1994) constructs of consistency, differentiation, and person-environment congruence in predicting job performance ratings in a large sample (N = 514) of employees. Hierarchical regression analyses conducted separately by…
ERIC Educational Resources Information Center
Victoir, An; Eertmans, A.; Van den Broucke, S.; Van den Bergh, O.
2006-01-01
In this study, it was tested whether attitudes, self-efficacy, social influences and the perception of the school and home environments had different associations with intentions for adolescent non-smokers, occasional smokers and daily smokers. A regression model allowing for separate slopes of social-cognitive and environment variables accounted…
ERIC Educational Resources Information Center
May, Diane E.; Hallin, Mary J.; Kratochvil, Christopher J.; Puumala, Susan E.; Smith, Lynette S.; Reinecke, Mark A.; Silva, Susan G.; Weller, Elizabeth B.; Vitiello, Benedetto; Breland-Noble, Alfiee; March, John S.
2007-01-01
Objective: To examine factors associated with eligibility and randomization and consider the efficiency of recruitment methods. Method: Adolescents, ages 12 to 17 years, were telephone screened (N = 2,804) followed by in-person evaluation (N = 1,088) for the Treatment for Adolescents With Depression Study. Separate logistic regression models,…
Takaki, Koki; Wade, Andrew J; Collins, Chris D
2015-11-01
The aim of this study was to assess and improve the accuracy of biotransfer models for the organic pollutants (PCBs, PCDD/Fs, PBDEs, PFCAs, and pesticides) into cow's milk and beef used in human exposure assessment. Metabolic rate in cattle is known as a key parameter for this biotransfer, however few experimental data and no simulation methods are currently available. In this research, metabolic rate was estimated using existing QSAR biodegradation models of microorganisms (BioWIN) and fish (EPI-HL and IFS-HL). This simulated metabolic rate was then incorporated into the mechanistic cattle biotransfer models (RAIDAR, ACC-HUMAN, OMEGA, and CKow). The goodness of fit tests showed that RAIDAR, ACC-HUMAN, OMEGA model performances were significantly improved using either of the QSARs when comparing the new model outputs to observed data. The CKow model is the only one that separates the processes in the gut and liver. This model showed the lowest residual error of all the models tested when the BioWIN model was used to represent the ruminant metabolic process in the gut and the two fish QSARs were used to represent the metabolic process in the liver. Our testing included EUSES and CalTOX which are KOW-regression models that are widely used in regulatory assessment. New regressions based on the simulated rate of the two metabolic processes are also proposed as an alternative to KOW-regression models for a screening risk assessment. The modified CKow model is more physiologically realistic, but has equivalent usability to existing KOW-regression models for estimating cattle biotransfer of organic pollutants. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Pantaleoni, Eva
Establishing wetland gains and losses, delineating wetland boundaries, and determining their vegetative composition are major challenges that can be improved through remote sensing studies. We used the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to separate wetlands from uplands in a study of 870 locations on the Virginia Coastal Plain. We used the first five bands from each of two ASTER scenes (6 March 2005 and 16 October 2005), covering the visible to the short-wave infrared region (0.52-2.185mum). We included GIS data layers for soil survey, topography, and presence or absence of water in a logistic regression model that predicted the location of over 78% of the wetlands. While this was slightly less accurate (78% vs. 86%) than current National Wetland Inventory (NWI) aerial photo interpretation procedures of locating wetlands, satellite imagery analysis holds great promise for speeding wetland mapping, lowering costs, and improving update frequency. To estimate wetland vegetation composition classes, we generated a classification and regression tree (CART) model and a multinomial logistic regression (logit) model, and compared their accuracy in separating woody wetlands, emergent wetlands and open water. The overall accuracy of the CART model was 73.3%, while for the logit model was 76.7%. The CART producer's accuracy of the emergent wetlands was higher than the accuracy from the multinomial logit (57.1% vs. 40.7%). However, we obtained the opposite result for the woody wetland category (68.7% vs. 52.6%). A McNemar test between the two models and NWI maps showed that their accuracies were not statistically different. We conducted a subpixel analysis of the ASTER images to estimate canopy cover of forested wetlands. We used top-of-atmosphere reflectance from the visible and near infrared bands, Delta Normalized Difference Vegetation Index, and a tasseled cap brightness, greenness, and wetness in linear regression model with canopy cover as the dependent variable. The model achieved an adjusted-R 2 of 0.69 (RMSE = 2.7%) for canopy cover less than 16%, and an adjusted-R 2 of 0.04 (RMSE = 19.8%) for higher canopy cover values. Taken together, these findings suggest that satellite remote sensing, in concert with other spatial data, has strong potential for mapping both wetland presence and type.
Lafuente, Victoria; Herrera, Luis J; Pérez, María del Mar; Val, Jesús; Negueruela, Ignacio
2015-08-15
In this work, near infrared spectroscopy (NIR) and an acoustic measure (AWETA) (two non-destructive methods) were applied in Prunus persica fruit 'Calrico' (n = 260) to predict Magness-Taylor (MT) firmness. Separate and combined use of these measures was evaluated and compared using partial least squares (PLS) and least squares support vector machine (LS-SVM) regression methods. Also, a mutual-information-based variable selection method, seeking to find the most significant variables to produce optimal accuracy of the regression models, was applied to a joint set of variables (NIR wavelengths and AWETA measure). The newly proposed combined NIR-AWETA model gave good values of the determination coefficient (R(2)) for PLS and LS-SVM methods (0.77 and 0.78, respectively), improving the reliability of MT firmness prediction in comparison with separate NIR and AWETA predictions. The three variables selected by the variable selection method (AWETA measure plus NIR wavelengths 675 and 697 nm) achieved R(2) values 0.76 and 0.77, PLS and LS-SVM. These results indicated that the proposed mutual-information-based variable selection algorithm was a powerful tool for the selection of the most relevant variables. © 2014 Society of Chemical Industry.
Tay, Cheryl Sihui; Sterzing, Thorsten; Lim, Chen Yen; Ding, Rui; Kong, Pui Wah
2017-05-01
This study examined (a) the strength of four individual footwear perception factors to influence the overall preference of running shoes and (b) whether these perception factors satisfied the nonmulticollinear assumption in a regression model. Running footwear must fulfill multiple functional criteria to satisfy its potential users. Footwear perception factors, such as fit and cushioning, are commonly used to guide shoe design and development, but it is unclear whether running-footwear users are able to differentiate one factor from another. One hundred casual runners assessed four running shoes on a 15-cm visual analogue scale for four footwear perception factors (fit, cushioning, arch support, and stability) as well as for overall preference during a treadmill running protocol. Diagnostic tests showed an absence of multicollinearity between factors, where values for tolerance ranged from .36 to .72, corresponding to variance inflation factors of 2.8 to 1.4. The multiple regression model of these four footwear perception variables accounted for 77.7% to 81.6% of variance in overall preference, with each factor explaining a unique part of the total variance. Casual runners were able to rate each footwear perception factor separately, thus assigning each factor a true potential to improve overall preference for the users. The results also support the use of a multiple regression model of footwear perception factors to predict overall running shoe preference. Regression modeling is a useful tool for running-shoe manufacturers to more precisely evaluate how individual factors contribute to the subjective assessment of running footwear.
Determinants of U.S. Prescription Drug Utilization using County Level Data.
Nianogo, Thierry; Okunade, Albert; Fofana, Demba; Chen, Weiwei
2016-05-01
Prescription drugs are the third largest component of U.S. healthcare expenditures. The 2006 Medicare Part D and the 2010 Affordable Care Act are catalysts for further growths in utilization becuase of insurance expansion effects. This research investigating the determinants of prescription drug utilization is timely, methodologically novel, and policy relevant. Differences in population health status, access to care, socioeconomics, demographics, and variations in per capita number of scripts filled at retail pharmacies across the U.S.A. justify fitting separate econometric models to county data of the states partitioned into low, medium, and high prescription drug users. Given the skewed distribution of per capita number of filled prescriptions (response variable), we fit the variance stabilizing Box-Cox power transformation regression models to 2011 county level data for investigating the correlates of prescription drug utilization separately for low, medium, and high utilization states. Maximum likelihood regression parameter estimates, including the optimal Box-Cox λ power transformations, differ across high (λ = 0.214), medium (λ = 0.942), and low (λ = 0.302) prescription drug utilization models. The estimated income elasticities of -0.634, 0.031, and -0.532 in high, medium, and low utilization models suggest that the economic behavior of prescriptions is not invariant across different utilization levels. Copyright © 2015 John Wiley & Sons, Ltd.
A crash-prediction model for multilane roads.
Caliendo, Ciro; Guida, Maurizio; Parisi, Alessandra
2007-07-01
Considerable research has been carried out in recent years to establish relationships between crashes and traffic flow, geometric infrastructure characteristics and environmental factors for two-lane rural roads. Crash-prediction models focused on multilane rural roads, however, have rarely been investigated. In addition, most research has paid but little attention to the safety effects of variables such as stopping sight distance and pavement surface characteristics. Moreover, the statistical approaches have generally included Poisson and Negative Binomial regression models, whilst Negative Multinomial regression model has been used to a lesser extent. Finally, as far as the authors are aware, prediction models involving all the above-mentioned factors have still not been developed in Italy for multilane roads, such as motorways. Thus, in this paper crash-prediction models for a four-lane median-divided Italian motorway were set up on the basis of accident data observed during a 5-year monitoring period extending between 1999 and 2003. The Poisson, Negative Binomial and Negative Multinomial regression models, applied separately to tangents and curves, were used to model the frequency of accident occurrence. Model parameters were estimated by the Maximum Likelihood Method, and the Generalized Likelihood Ratio Test was applied to detect the significant variables to be included in the model equation. Goodness-of-fit was measured by means of both the explained fraction of total variation and the explained fraction of systematic variation. The Cumulative Residuals Method was also used to test the adequacy of a regression model throughout the range of each variable. The candidate set of explanatory variables was: length (L), curvature (1/R), annual average daily traffic (AADT), sight distance (SD), side friction coefficient (SFC), longitudinal slope (LS) and the presence of a junction (J). Separate prediction models for total crashes and for fatal and injury crashes only were considered. For curves it is shown that significant variables are L, 1/R and AADT, whereas for tangents they are L, AADT and junctions. The effect of rain precipitation was analysed on the basis of hourly rainfall data and assumptions about drying time. It is shown that a wet pavement significantly increases the number of crashes. The models developed in this paper for Italian motorways appear to be useful for many applications such as the detection of critical factors, the estimation of accident reduction due to infrastructure and pavement improvement, and the predictions of accidents counts when comparing different design options. Thus this research may represent a point of reference for engineers in adjusting or designing multilane roads.
Mental health status and healthcare utilization among community dwelling older adults.
Adepoju, Omolola; Lin, Szu-Hsuan; Mileski, Michael; Kruse, Clemens Scott; Mask, Andrew
2018-04-27
Shifts in mental health utilization patterns are necessary to allow for meaningful access to care for vulnerable populations. There have been long standing issues in how mental health is provided, which has caused problems in that care being efficacious for those seeking it. To assess the relationship between mental health status and healthcare utilization among adults ≥65 years. A negative binomial regression model was used to assess the relationship between mental health status and healthcare utilization related to office-based physician visits, while a two-part model, consisting of logistic regression and negative binomial regression, was used to separately model emergency visits and inpatient services. The receipt of care in office-based settings were marginally higher for subjects with mental health difficulties. Both probabilities and counts of inpatient hospitalizations were similar across mental health categories. The count of ER visits was similar across mental health categories; however, the probability of having an emergency department visit was marginally higher for older adults who reported mental health difficulties in 2012. These findings are encouraging and lend promise to the recent initiatives on addressing gaps in mental healthcare services.
Multi-model ensemble estimation of volume transport through the straits of the East/Japan Sea
NASA Astrophysics Data System (ADS)
Han, Sooyeon; Hirose, Naoki; Usui, Norihisa; Miyazawa, Yasumasa
2016-01-01
The volume transports measured at the Korea/Tsushima, Tsugaru, and Soya/La Perouse Straits remain quantitatively inconsistent. However, data assimilation models at least provide a self-consistent budget despite subtle differences among the models. This study examined the seasonal variation of the volume transport using the multiple linear regression and ridge regression of multi-model ensemble (MME) methods to estimate more accurately transport at these straits by using four different data assimilation models. The MME outperformed all of the single models by reducing uncertainties, especially the multicollinearity problem with the ridge regression. However, the regression constants turned out to be inconsistent with each other if the MME was applied separately for each strait. The MME for a connected system was thus performed to find common constants for these straits. The estimation of this MME was found to be similar to the MME result of sea level difference (SLD). The estimated mean transport (2.43 Sv) was smaller than the measurement data at the Korea/Tsushima Strait, but the calibrated transport of the Tsugaru Strait (1.63 Sv) was larger than the observed data. The MME results of transport and SLD also suggested that the standard deviation (STD) of the Korea/Tsushima Strait is larger than the STD of the observation, whereas the estimated results were almost identical to that observed for the Tsugaru and Soya/La Perouse Straits. The similarity between MME results enhances the reliability of the present MME estimation.
Paid Sick Leave and Job Stability
Hill, Heather D.
2013-01-01
A compelling, but unsubstantiated, argument for paid sick leave legislation is that workers with leave are better able to address own and family member health needs without risking a voluntary or involuntary job separation. This study tests that claim using the Medical Expenditure Panel Survey and regression models controlling for a large set of worker and job characteristics, as well as with propensity score techniques. Results suggest that paid sick leave decreases the probability of job separation by at least 2.5 percentage points, or 25%. The association is strongest for workers without paid vacation leave and for mothers. PMID:24235780
Impact of grade separator on pedestrian risk taking behavior.
Khatoon, Mariya; Tiwari, Geetam; Chatterjee, Niladri
2013-01-01
Pedestrians on Delhi roads are often exposed to high risks. This is because the basic needs of pedestrians are not recognized as a part of the urban transport infrastructure improvement projects in Delhi. Rather, an ever increasing number of cars and motorized two-wheelers encourage the construction of large numbers of flyovers/grade separators to facilitate signal free movement for motorized vehicles, exposing pedestrians to greater risk. This paper describes the statistical analysis of pedestrian risk taking behavior while crossing the road, before and after the construction of a grade separator at an intersection of Delhi. A significant number of pedestrians are willing to take risks in both before and after situations. The results indicate that absence of signals make pedestrians behave independently, leading to increased variability in their risk taking behavior. Variability in the speeds of all categories of vehicles has increased after the construction of grade separators. After the construction of the grade separator, the waiting time of pedestrians at the starting point of crossing has increased and the correlation between waiting times and gaps accepted by pedestrians show that after certain time of waiting, pedestrians become impatient and accepts smaller gap size to cross the road. A Logistic regression model is fitted by assuming that the probability of road crossing by pedestrians depends on the gap size (in s) between pedestrian and conflicting vehicles, sex, age, type of pedestrians (single or in a group) and type of conflicting vehicles. The results of Logistic regression explained that before the construction of the grade separator the probability of road crossing by the pedestrian depends on only the gap size parameter; however after the construction of the grade separator, other parameters become significant in determining pedestrian risk taking behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kendrick, Sarah K; Zheng, Qi; Garbett, Nichola C; Brock, Guy N
2017-01-01
DSC is used to determine thermally-induced conformational changes of biomolecules within a blood plasma sample. Recent research has indicated that DSC curves (or thermograms) may have different characteristics based on disease status and, thus, may be useful as a monitoring and diagnostic tool for some diseases. Since thermograms are curves measured over a range of temperature values, they are considered functional data. In this paper we apply functional data analysis techniques to analyze differential scanning calorimetry (DSC) data from individuals from the Lupus Family Registry and Repository (LFRR). The aim was to assess the effect of lupus disease status as well as additional covariates on the thermogram profiles, and use FD analysis methods to create models for classifying lupus vs. control patients on the basis of the thermogram curves. Thermograms were collected for 300 lupus patients and 300 controls without lupus who were matched with diseased individuals based on sex, race, and age. First, functional regression with a functional response (DSC) and categorical predictor (disease status) was used to determine how thermogram curve structure varied according to disease status and other covariates including sex, race, and year of birth. Next, functional logistic regression with disease status as the response and functional principal component analysis (FPCA) scores as the predictors was used to model the effect of thermogram structure on disease status prediction. The prediction accuracy for patients with Osteoarthritis and Rheumatoid Arthritis but without Lupus was also calculated to determine the ability of the classifier to differentiate between Lupus and other diseases. Data were divided 1000 times into separate 2/3 training and 1/3 test data for evaluation of predictions. Finally, derivatives of thermogram curves were included in the models to determine whether they aided in prediction of disease status. Functional regression with thermogram as a functional response and disease status as predictor showed a clear separation in thermogram curve structure between cases and controls. The logistic regression model with FPCA scores as the predictors gave the most accurate results with a mean 79.22% correct classification rate with a mean sensitivity = 79.70%, and specificity = 81.48%. The model correctly classified OA and RA patients without Lupus as controls at a rate of 75.92% on average with a mean sensitivity = 79.70% and specificity = 77.6%. Regression models including FPCA scores for derivative curves did not perform as well, nor did regression models including covariates. Changes in thermograms observed in the disease state likely reflect covalent modifications of plasma proteins or changes in large protein-protein interacting networks resulting in the stabilization of plasma proteins towards thermal denaturation. By relating functional principal components from thermograms to disease status, our Functional Principal Component Analysis model provides results that are more easily interpretable compared to prior studies. Further, the model could also potentially be coupled with other biomarkers to improve diagnostic classification for lupus.
Cakir, Ebru; Kucuk, Ulku; Pala, Emel Ebru; Sezer, Ozlem; Ekin, Rahmi Gokhan; Cakmak, Ozgur
2017-05-01
Conventional cytomorphologic assessment is the first step to establish an accurate diagnosis in urinary cytology. In cytologic preparations, the separation of low-grade urothelial carcinoma (LGUC) from reactive urothelial proliferation (RUP) can be exceedingly difficult. The bladder washing cytologies of 32 LGUC and 29 RUP were reviewed. The cytologic slides were examined for the presence or absence of the 28 cytologic features. The cytologic criteria showing statistical significance in LGUC were increased numbers of monotonous single (non-umbrella) cells, three-dimensional cellular papillary clusters without fibrovascular cores, irregular bordered clusters, atypical single cells, irregular nuclear overlap, cytoplasmic homogeneity, increased N/C ratio, pleomorphism, nuclear border irregularity, nuclear eccentricity, elongated nuclei, and hyperchromasia (p ˂ 0.05), and the cytologic criteria showing statistical significance in RUP were inflammatory background, mixture of small and large urothelial cells, loose monolayer aggregates, and vacuolated cytoplasm (p ˂ 0.05). When these variables were subjected to a stepwise logistic regression analysis, four features were selected to distinguish LGUC from RUP: increased numbers of monotonous single (non-umbrella) cells, increased nuclear cytoplasmic ratio, hyperchromasia, and presence of small and large urothelial cells (p = 0.0001). By this logistic model of the 32 cases with proven LGUC, the stepwise logistic regression analysis correctly predicted 31 (96.9%) patients with this diagnosis, and of the 29 patients with RUP, the logistic model correctly predicted 26 (89.7%) patients as having this disease. There are several cytologic features to separate LGUC from RUP. Stepwise logistic regression analysis is a valuable tool for determining the most useful cytologic criteria to distinguish these entities. © 2017 APMIS. Published by John Wiley & Sons Ltd.
González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F
2017-09-01
The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between Cr and Cd, Cu and Zn in multiple regression; and between Cr and Cd in SVM regression. Copyright © 2017 Elsevier B.V. All rights reserved.
Analyzing industrial energy use through ordinary least squares regression models
NASA Astrophysics Data System (ADS)
Golden, Allyson Katherine
Extensive research has been performed using regression analysis and calibrated simulations to create baseline energy consumption models for residential buildings and commercial institutions. However, few attempts have been made to discuss the applicability of these methodologies to establish baseline energy consumption models for industrial manufacturing facilities. In the few studies of industrial facilities, the presented linear change-point and degree-day regression analyses illustrate ideal cases. It follows that there is a need in the established literature to discuss the methodologies and to determine their applicability for establishing baseline energy consumption models of industrial manufacturing facilities. The thesis determines the effectiveness of simple inverse linear statistical regression models when establishing baseline energy consumption models for industrial manufacturing facilities. Ordinary least squares change-point and degree-day regression methods are used to create baseline energy consumption models for nine different case studies of industrial manufacturing facilities located in the southeastern United States. The influence of ambient dry-bulb temperature and production on total facility energy consumption is observed. The energy consumption behavior of industrial manufacturing facilities is only sometimes sufficiently explained by temperature, production, or a combination of the two variables. This thesis also provides methods for generating baseline energy models that are straightforward and accessible to anyone in the industrial manufacturing community. The methods outlined in this thesis may be easily replicated by anyone that possesses basic spreadsheet software and general knowledge of the relationship between energy consumption and weather, production, or other influential variables. With the help of simple inverse linear regression models, industrial manufacturing facilities may better understand their energy consumption and production behavior, and identify opportunities for energy and cost savings. This thesis study also utilizes change-point and degree-day baseline energy models to disaggregate facility annual energy consumption into separate industrial end-user categories. The baseline energy model provides a suitable and economical alternative to sub-metering individual manufacturing equipment. One case study describes the conjoined use of baseline energy models and facility information gathered during a one-day onsite visit to perform an end-point energy analysis of an injection molding facility conducted by the Alabama Industrial Assessment Center. Applying baseline regression model results to the end-point energy analysis allowed the AIAC to better approximate the annual energy consumption of the facility's HVAC system.
Green, Kimberly T.; Beckham, Jean C.; Youssef, Nagy; Elbogen, Eric B.
2013-01-01
Objective The present study sought to investigate the longitudinal effects of psychological resilience against alcohol misuse adjusting for socio-demographic factors, trauma-related variables, and self-reported history of alcohol abuse. Methodology Data were from National Post-Deployment Adjustment Study (NPDAS) participants who completed both a baseline and one-year follow-up survey (N=1090). Survey questionnaires measured combat exposure, probable posttraumatic stress disorder (PTSD), psychological resilience, and alcohol misuse, all of which were measured at two discrete time periods (baseline and one-year follow-up). Baseline resilience and change in resilience (increased or decreased) were utilized as independent variables in separate models evaluating alcohol misuse at the one-year follow-up. Results Multiple linear regression analyses controlled for age, gender, level of educational attainment, combat exposure, PTSD symptom severity, and self-reported alcohol abuse. Accounting for these covariates, findings revealed that lower baseline resilience, younger age, male gender, and self-reported alcohol abuse were related to alcohol misuse at the one-year follow-up. A separate regression analysis, adjusting for the same covariates, revealed a relationship between change in resilience (from baseline to the one-year follow-up) and alcohol misuse at the one-year follow-up. The regression model evaluating these variables in a subset of the sample in which all the participants had been deployed to Iraq and/or Afghanistan was consistent with findings involving the overall era sample. Finally, logistic regression analyses of the one-year follow-up data yielded similar results to the baseline and resilience change models. Conclusions These findings suggest that increased psychological resilience is inversely related to alcohol misuse and is protective against alcohol misuse over time. Additionally, it supports the conceptualization of resilience as a process which evolves over time. Moreover, our results underscore the importance of assessing resilience as part of alcohol use screening for preventing alcohol misuse in Iraq and Afghanistan era military veterans. PMID:24090625
NASA Astrophysics Data System (ADS)
Hegazy, Maha A.; Lotfy, Hayam M.; Rezk, Mamdouh R.; Omran, Yasmin Rostom
2015-04-01
Smart and novel spectrophotometric and chemometric methods have been developed and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and dexamethasone sodium phosphate (DSP) in presence of interfering substances without prior separation. The first method depends upon derivative subtraction coupled with constant multiplication. The second one is ratio difference method at optimum wavelengths which were selected after applying derivative transformation method via multiplying by a decoding spectrum in order to cancel the contribution of non labeled interfering substances. The third method relies on partial least squares with regression model updating. They are so simple that they do not require any preliminary separation steps. Accuracy, precision and linearity ranges of these methods were determined. Moreover, specificity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied for analysis of both drugs in their pharmaceutical formulation. The obtained results have been statistically compared to that of an official spectrophotometric method to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.
Overhead longwave infrared hyperspectral material identification using radiometric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelinski, M. E.
Material detection algorithms used in hyperspectral data processing are computationally efficient but can produce relatively high numbers of false positives. Material identification performed as a secondary processing step on detected pixels can help separate true and false positives. This paper presents a material identification processing chain for longwave infrared hyperspectral data of solid materials collected from airborne platforms. The algorithms utilize unwhitened radiance data and an iterative algorithm that determines the temperature, humidity, and ozone of the atmospheric profile. Pixel unmixing is done using constrained linear regression and Bayesian Information Criteria for model selection. The resulting product includes an optimalmore » atmospheric profile and full radiance material model that includes material temperature, abundance values, and several fit statistics. A logistic regression method utilizing all model parameters to improve identification is also presented. This paper details the processing chain and provides justification for the algorithms used. Several examples are provided using modeled data at different noise levels.« less
Potential for Bias When Estimating Critical Windows for Air Pollution in Children's Health.
Wilson, Ander; Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Wright, Robert O; Wright, Rosalind J; Coull, Brent A
2017-12-01
Evidence supports an association between maternal exposure to air pollution during pregnancy and children's health outcomes. Recent interest has focused on identifying critical windows of vulnerability. An analysis based on a distributed lag model (DLM) can yield estimates of a critical window that are different from those from an analysis that regresses the outcome on each of the 3 trimester-average exposures (TAEs). Using a simulation study, we assessed bias in estimates of critical windows obtained using 3 regression approaches: 1) 3 separate models to estimate the association with each of the 3 TAEs; 2) a single model to jointly estimate the association between the outcome and all 3 TAEs; and 3) a DLM. We used weekly fine-particulate-matter exposure data for 238 births in a birth cohort in and around Boston, Massachusetts, and a simulated outcome and time-varying exposure effect. Estimates using separate models for each TAE were biased and identified incorrect windows. This bias arose from seasonal trends in particulate matter that induced correlation between TAEs. Including all TAEs in a single model reduced bias. DLM produced unbiased estimates and added flexibility to identify windows. Analysis of body mass index z score and fat mass in the same cohort highlighted inconsistent estimates from the 3 methods. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zhuo, Lin; Tao, Hong; Wei, Hong; Chengzhen, Wu
2016-01-01
We tried to establish compatible carbon content models of individual trees for a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation from Fujian province in southeast China. In general, compatibility requires that the sum of components equal the whole tree, meaning that the sum of percentages calculated from component equations should equal 100%. Thus, we used multiple approaches to simulate carbon content in boles, branches, foliage leaves, roots and the whole individual trees. The approaches included (i) single optimal fitting (SOF), (ii) nonlinear adjustment in proportion (NAP) and (iii) nonlinear seemingly unrelated regression (NSUR). These approaches were used in combination with variables relating diameter at breast height (D) and tree height (H), such as D, D2H, DH and D&H (where D&H means two separate variables in bivariate model). Power, exponential and polynomial functions were tested as well as a new general function model was proposed by this study. Weighted least squares regression models were employed to eliminate heteroscedasticity. Model performances were evaluated by using mean residuals, residual variance, mean square error and the determination coefficient. The results indicated that models with two dimensional variables (DH, D2H and D&H) were always superior to those with a single variable (D). The D&H variable combination was found to be the most useful predictor. Of all the approaches, SOF could establish a single optimal model separately, but there were deviations in estimating results due to existing incompatibilities, while NAP and NSUR could ensure predictions compatibility. Simultaneously, we found that the new general model had better accuracy than others. In conclusion, we recommend that the new general model be used to estimate carbon content for Chinese fir and considered for other vegetation types as well. PMID:26982054
New tools for discovery from old databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.P.
1990-05-01
Very large quantities of information have been accumulated as a result of petroleum exploration and the practice of petroleum geology. New and more powerful methods to build and analyze databases have been developed. The new tools must be tested, and, as quickly as possible, combined with traditional methods to the full advantage of currently limited funds in the search for new and extended hydrocarbon reserves. A recommended combined sequence is (1) database validating, (2) category separating, (3) machine learning, (4) graphic modeling, (5) database filtering, and (6) regression for predicting. To illustrate this procedure, a database from the Railroad Commissionmore » of Texas has been analyzed. Clusters of information have been identified to prevent apples and oranges problems from obscuring the conclusions. Artificial intelligence has checked the database for potentially invalid entries and has identified rules governing the relationship between factors, which can be numeric or nonnumeric (words), or both. Graphic 3-Dimensional modeling has clarified relationships. Database filtering has physically separated the integral parts of the database, which can then be run through the sequence again, increasing the precision. Finally, regressions have been run on separated clusters giving equations, which can be used with confidence in making predictions. Advances in computer systems encourage the learning of much more from past records, and reduce the danger of prejudiced decisions. Soon there will be giant strides beyond current capabilities to the advantage of those who are ready for them.« less
Bayesian Analysis of High Dimensional Classification
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Subhadeep; Liang, Faming
2009-12-01
Modern data mining and bioinformatics have presented an important playground for statistical learning techniques, where the number of input variables is possibly much larger than the sample size of the training data. In supervised learning, logistic regression or probit regression can be used to model a binary output and form perceptron classification rules based on Bayesian inference. In these cases , there is a lot of interest in searching for sparse model in High Dimensional regression(/classification) setup. we first discuss two common challenges for analyzing high dimensional data. The first one is the curse of dimensionality. The complexity of many existing algorithms scale exponentially with the dimensionality of the space and by virtue of that algorithms soon become computationally intractable and therefore inapplicable in many real applications. secondly, multicollinearities among the predictors which severely slowdown the algorithm. In order to make Bayesian analysis operational in high dimension we propose a novel 'Hierarchical stochastic approximation monte carlo algorithm' (HSAMC), which overcomes the curse of dimensionality, multicollinearity of predictors in high dimension and also it possesses the self-adjusting mechanism to avoid the local minima separated by high energy barriers. Models and methods are illustrated by simulation inspired from from the feild of genomics. Numerical results indicate that HSAMC can work as a general model selection sampler in high dimensional complex model space.
SU-E-J-03: A Comprehensive Comparison Between Alpha and Beta Emitters for Cancer Radioimmunotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C.Y.; Guatelli, S; Oborn, B
2014-06-01
Purpose: The purpose of this study is to perform a comprehensive comparison of the therapeutic efficacy and cytotoxicity of alpha and beta emitters for Radioimmunotherapy (RIT). For each stage of cancer development, specific models were built for the separate objectives of RIT to be addressed:a) kill isolated cancer cells in transit in the lymphatic and vascular circulation,b) regress avascular cell clusters,c) regress tumor vasculature and tumors. Methods: Because of the nature of short range, high LET alpha and long energy beta radiation and heterogeneous antigen expression among cancer cells, the microdosimetric approach is essential for the RIT assessment. Geant4 basedmore » microdosimetric models are developed for the three different stages of cancer progression: cancer cells, cell clusters and tumors. The energy deposition, specific energy resulted from different source distribution in the three models was calculated separately for 4 alpha emitting radioisotopes ({sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac) and 6 beta emitters ({sup 32}P, {sup 33}P, {sup 67}Cu, {sup 90}Y, {sup 131}I and {sup 177}Lu). The cell survival, therapeutic efficacy and cytotoxicity are determined and compared between alpha and beta emitters. Results: We show that internal targeted alpha radiation has advantages over beta radiation for killing isolated cancer cells, regressing small cell clusters and also solid tumors. Alpha particles have much higher dose specificity and potency than beta particles. They can deposit 3 logs more dose than beta emitters to single cells and solid tumor. Tumor control probability relies on deep penetration of radioisotopes to cancer cell clusters and solid tumors. Conclusion: The results of this study provide a quantitative understanding of the efficacy and cytotoxicity of RIT for each stage of cancer development.« less
Multiple regression technique for Pth degree polynominals with and without linear cross products
NASA Technical Reports Server (NTRS)
Davis, J. W.
1973-01-01
A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.
Kaur, Ravneet; Albano, Peter P.; Cole, Justin G.; Hagerty, Jason; LeAnder, Robert W.; Moss, Randy H.; Stoecker, William V.
2015-01-01
Background/Purpose Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Methods Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Results Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Conclusion Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. PMID:25809473
Kaur, R; Albano, P P; Cole, J G; Hagerty, J; LeAnder, R W; Moss, R H; Stoecker, W V
2015-11-01
Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue, and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell
2013-12-01
In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR)more » spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.
2013-11-05
In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopymore » (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.« less
Garner, Rochelle E; Levallois, Patrick
2017-05-01
Cadmium has been inconsistently related to blood pressure and hypertension. The present study seeks to clarify the relationship between cadmium levels found in blood and urine, blood pressure and hypertension in a large sample of adults. The study sample included participants ages 20 through 79 from multiple cycles of the Canadian Health Measures Survey (2007 through 2013) with measured blood cadmium (n=10,099) and urinary cadmium (n=6988). Linear regression models examined the association between natural logarithm transformed cadmium levels and blood pressure (separate models for systolic and diastolic blood pressure) after controlling for known covariates. Logistic regression models were used to examine the association between cadmium and hypertension. Models were run separately by sex, smoking status, and body mass index category. Men had higher mean systolic (114.8 vs. 110.8mmHg, p<0.01) and diastolic (74.0 vs. 69.6mmHg, p<0.01) blood pressure compared to women. Although, geometric mean blood (0.46 vs. 0.38µg/L, p<0.01) and creatinine-adjusted standardized urinary cadmium levels (0.48 vs. 0.38µg/L, p<0.01) were higher among those with hypertension, these differences were no longer significant after adjustment for age, sex and smoking status. In overall regression models, increases in blood cadmium were associated with increased systolic (0.70mmHg, 95% confidence interval [CI]=0.25-1.16, p<0.01) and diastolic blood pressure (0.74mmHg, 95% CI=0.30-1.19, p<0.01). The associations between urinary cadmium, blood pressure and hypertension were not significant in overall models. Model stratification revealed significant and negative associations between urinary cadmium and hypertension among current smokers (OR=0.61, 95% CI=0.44-0.85, p<0.01), particularly female current smokers (OR=0.52, 95% CI=0.32-0.85, p=0.01). This study provides evidence of a significant association between cadmium levels, blood pressure and hypertension. However, the significance and direction of this association differs by sex, smoking status, and body mass index category. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Using global sensitivity analysis of demographic models for ecological impact assessment.
Aiello-Lammens, Matthew E; Akçakaya, H Resit
2017-02-01
Population viability analysis (PVA) is widely used to assess population-level impacts of environmental changes on species. When combined with sensitivity analysis, PVA yields insights into the effects of parameter and model structure uncertainty. This helps researchers prioritize efforts for further data collection so that model improvements are efficient and helps managers prioritize conservation and management actions. Usually, sensitivity is analyzed by varying one input parameter at a time and observing the influence that variation has over model outcomes. This approach does not account for interactions among parameters. Global sensitivity analysis (GSA) overcomes this limitation by varying several model inputs simultaneously. Then, regression techniques allow measuring the importance of input-parameter uncertainties. In many conservation applications, the goal of demographic modeling is to assess how different scenarios of impact or management cause changes in a population. This is challenging because the uncertainty of input-parameter values can be confounded with the effect of impacts and management actions. We developed a GSA method that separates model outcome uncertainty resulting from parameter uncertainty from that resulting from projected ecological impacts or simulated management actions, effectively separating the 2 main questions that sensitivity analysis asks. We applied this method to assess the effects of predicted sea-level rise on Snowy Plover (Charadrius nivosus). A relatively small number of replicate models (approximately 100) resulted in consistent measures of variable importance when not trying to separate the effects of ecological impacts from parameter uncertainty. However, many more replicate models (approximately 500) were required to separate these effects. These differences are important to consider when using demographic models to estimate ecological impacts of management actions. © 2016 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Validi, AbdoulAhad
2014-03-01
This study introduces a non-intrusive approach in the context of low-rank separated representation to construct a surrogate of high-dimensional stochastic functions, e.g., PDEs/ODEs, in order to decrease the computational cost of Markov Chain Monte Carlo simulations in Bayesian inference. The surrogate model is constructed via a regularized alternative least-square regression with Tikhonov regularization using a roughening matrix computing the gradient of the solution, in conjunction with a perturbation-based error indicator to detect optimal model complexities. The model approximates a vector of a continuous solution at discrete values of a physical variable. The required number of random realizations to achieve a successful approximation linearly depends on the function dimensionality. The computational cost of the model construction is quadratic in the number of random inputs, which potentially tackles the curse of dimensionality in high-dimensional stochastic functions. Furthermore, this vector-valued separated representation-based model, in comparison to the available scalar-valued case, leads to a significant reduction in the cost of approximation by an order of magnitude equal to the vector size. The performance of the method is studied through its application to three numerical examples including a 41-dimensional elliptic PDE and a 21-dimensional cavity flow.
General practitioners' satisfaction with and attitudes to out-of-hours services.
van Uden, Caro J T; Nieman, Fred H M; Voss, Gemma B W E; Wesseling, Geertjan; Winkens, Ron A G; Crebolder, Harry F J M
2005-03-31
In recent years, Dutch general practitioner (GP) out-of-hours service has been reorganised into large-scale GP cooperatives. Until now little is known about GPs' experiences with working at these cooperatives for out-of-hours care. The purpose of this study is to gain insight into GPs' satisfaction with working at GP cooperatives for out-of-hours care in separated and integrated cooperatives. A GP cooperative separate from the hospital Accident and Emergency (A&E) department, and a GP cooperative integrated within the A&E department of another hospital. Both cooperatives are situated in adjacent geographic regions in the South of The Netherlands. One hundred GPs were interviewed by telephone; fifty GPs working at the separated GP cooperative and fifty GPs from the integrated GP cooperative. Opinions on different aspects of GP cooperatives for out-of-hours care were measured, and regression analysis was performed to investigate if these could be related to GP satisfaction with out-of-hours care organisation. GPs from the separated model were more satisfied with the organisation of out-of-hours care than GPs from the integrated model (70 vs. 60 on a scale score from 0 to 100; P = 0.020). Satisfaction about out-of-hours care organisation was related to opinions on workload, guarantee of gatekeeper function, and attitude towards out-of-hours care as being an essential part of general practice. Cooperation with medical specialists was much more appreciated at the integrated model (77 vs. 48; P < 0.001) versus the separated model. GPs in this study appear to be generally satisfied with the organisation of GP cooperatives for out-of-hours care. Furthermore, GPs working at the separated cooperative seem to be more satisfied compared to GPs working at the integrated cooperative.
Empirical likelihood inference in randomized clinical trials.
Zhang, Biao
2017-01-01
In individually randomized controlled trials, in addition to the primary outcome, information is often available on a number of covariates prior to randomization. This information is frequently utilized to undertake adjustment for baseline characteristics in order to increase precision of the estimation of average treatment effects; such adjustment is usually performed via covariate adjustment in outcome regression models. Although the use of covariate adjustment is widely seen as desirable for making treatment effect estimates more precise and the corresponding hypothesis tests more powerful, there are considerable concerns that objective inference in randomized clinical trials can potentially be compromised. In this paper, we study an empirical likelihood approach to covariate adjustment and propose two unbiased estimating functions that automatically decouple evaluation of average treatment effects from regression modeling of covariate-outcome relationships. The resulting empirical likelihood estimator of the average treatment effect is as efficient as the existing efficient adjusted estimators 1 when separate treatment-specific working regression models are correctly specified, yet are at least as efficient as the existing efficient adjusted estimators 1 for any given treatment-specific working regression models whether or not they coincide with the true treatment-specific covariate-outcome relationships. We present a simulation study to compare the finite sample performance of various methods along with some results on analysis of a data set from an HIV clinical trial. The simulation results indicate that the proposed empirical likelihood approach is more efficient and powerful than its competitors when the working covariate-outcome relationships by treatment status are misspecified.
Multi-model ensemble combinations of the water budget in the East/Japan Sea
NASA Astrophysics Data System (ADS)
HAN, S.; Hirose, N.; Usui, N.; Miyazawa, Y.
2016-02-01
The water balance of East/Japan Sea is determined mainly by inflow and outflow through the Korea/Tsushima, Tsugaru and Soya/La Perouse Straits. However, the volume transports measured at three straits remain quantitatively unbalanced. This study examined the seasonal variation of the volume transport using the multiple linear regression and ridge regression of multi-model ensemble (MME) methods to estimate physically consistent circulation in East/Japan Sea by using four different data assimilation models. The MME outperformed all of the single models by reducing uncertainties, especially the multicollinearity problem with the ridge regression. However, the regression constants turned out to be inconsistent with each other if the MME was applied separately for each strait. The MME for a connected system was thus performed to find common constants for these straits. The estimation of this MME was found to be similar to the MME result of sea level difference (SLD). The estimated mean transport (2.42 Sv) was smaller than the measurement data at the Korea/Tsushima Strait, but the calibrated transport of the Tsugaru Strait (1.63 Sv) was larger than the observed data. The MME results of transport and SLD also suggested that the standard deviation (STD) of the Korea/Tsushima Strait is larger than the STD of the observation, whereas the estimated results were almost identical to that observed for the Tsugaru and Soya/La Perouse Straits. The similarity between MME results enhances the reliability of the present MME estimation.
Mapping of the DLQI scores to EQ-5D utility values using ordinal logistic regression.
Ali, Faraz Mahmood; Kay, Richard; Finlay, Andrew Y; Piguet, Vincent; Kupfer, Joerg; Dalgard, Florence; Salek, M Sam
2017-11-01
The Dermatology Life Quality Index (DLQI) and the European Quality of Life-5 Dimension (EQ-5D) are separate measures that may be used to gather health-related quality of life (HRQoL) information from patients. The EQ-5D is a generic measure from which health utility estimates can be derived, whereas the DLQI is a specialty-specific measure to assess HRQoL. To reduce the burden of multiple measures being administered and to enable a more disease-specific calculation of health utility estimates, we explored an established mathematical technique known as ordinal logistic regression (OLR) to develop an appropriate model to map DLQI data to EQ-5D-based health utility estimates. Retrospective data from 4010 patients were randomly divided five times into two groups for the derivation and testing of the mapping model. Split-half cross-validation was utilized resulting in a total of ten ordinal logistic regression models for each of the five EQ-5D dimensions against age, sex, and all ten items of the DLQI. Using Monte Carlo simulation, predicted health utility estimates were derived and compared against those observed. This method was repeated for both OLR and a previously tested mapping methodology based on linear regression. The model was shown to be highly predictive and its repeated fitting demonstrated a stable model using OLR as well as linear regression. The mean differences between OLR-predicted health utility estimates and observed health utility estimates ranged from 0.0024 to 0.0239 across the ten modeling exercises, with an average overall difference of 0.0120 (a 1.6% underestimate, not of clinical importance). This modeling framework developed in this study will enable researchers to calculate EQ-5D health utility estimates from a specialty-specific study population, reducing patient and economic burden.
Probabilistic Forecasting of Surface Ozone with a Novel Statistical Approach
NASA Technical Reports Server (NTRS)
Balashov, Nikolay V.; Thompson, Anne M.; Young, George S.
2017-01-01
The recent change in the Environmental Protection Agency's surface ozone regulation, lowering the surface ozone daily maximum 8-h average (MDA8) exceedance threshold from 75 to 70 ppbv, poses significant challenges to U.S. air quality (AQ) forecasters responsible for ozone MDA8 forecasts. The forecasters, supplied by only a few AQ model products, end up relying heavily on self-developed tools. To help U.S. AQ forecasters, this study explores a surface ozone MDA8 forecasting tool that is based solely on statistical methods and standard meteorological variables from the numerical weather prediction (NWP) models. The model combines the self-organizing map (SOM), which is a clustering technique, with a step wise weighted quadratic regression using meteorological variables as predictors for ozone MDA8. The SOM method identifies different weather regimes, to distinguish between various modes of ozone variability, and groups them according to similarity. In this way, when a regression is developed for a specific regime, data from the other regimes are also used, with weights that are based on their similarity to this specific regime. This approach, regression in SOM (REGiS), yields a distinct model for each regime taking into account both the training cases for that regime and other similar training cases. To produce probabilistic MDA8 ozone forecasts, REGiS weighs and combines all of the developed regression models on the basis of the weather patterns predicted by an NWP model. REGiS is evaluated over the San Joaquin Valley in California and the northeastern plains of Colorado. The results suggest that the model performs best when trained and adjusted separately for an individual AQ station and its corresponding meteorological site.
Clary, Christelle; Lewis, Daniel J; Flint, Ellen; Smith, Neil R; Kestens, Yan; Cummins, Steven
2016-12-01
Studies that explore associations between the local food environment and diet routinely use global regression models, which assume that relationships are invariant across space, yet such stationarity assumptions have been little tested. We used global and geographically weighted regression models to explore associations between the residential food environment and fruit and vegetable intake. Analyses were performed in 4 boroughs of London, United Kingdom, using data collected between April 2012 and July 2012 from 969 adults in the Olympic Regeneration in East London Study. Exposures were assessed both as absolute densities of healthy and unhealthy outlets, taken separately, and as a relative measure (proportion of total outlets classified as healthy). Overall, local models performed better than global models (lower Akaike information criterion). Locally estimated coefficients varied across space, regardless of the type of exposure measure, although changes of sign were observed only when absolute measures were used. Despite findings from global models showing significant associations between the relative measure and fruit and vegetable intake (β = 0.022; P < 0.01) only, geographically weighted regression models using absolute measures outperformed models using relative measures. This study suggests that greater attention should be given to nonstationary relationships between the food environment and diet. It further challenges the idea that a single measure of exposure, whether relative or absolute, can reflect the many ways the food environment may shape health behaviors. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Campos-Filho, N; Franco, E L
1989-02-01
A frequent procedure in matched case-control studies is to report results from the multivariate unmatched analyses if they do not differ substantially from the ones obtained after conditioning on the matching variables. Although conceptually simple, this rule requires that an extensive series of logistic regression models be evaluated by both the conditional and unconditional maximum likelihood methods. Most computer programs for logistic regression employ only one maximum likelihood method, which requires that the analyses be performed in separate steps. This paper describes a Pascal microcomputer (IBM PC) program that performs multiple logistic regression by both maximum likelihood estimation methods, which obviates the need for switching between programs to obtain relative risk estimates from both matched and unmatched analyses. The program calculates most standard statistics and allows factoring of categorical or continuous variables by two distinct methods of contrast. A built-in, descriptive statistics option allows the user to inspect the distribution of cases and controls across categories of any given variable.
Loerbroks, Adrian; Meng, Heng; Chen, Min-Li; Herr, Raphael; Angerer, Peter; Li, Jian
2014-01-01
We examined associations of organizational justice (OJ) and effort-reward imbalance (ERI) with burnout and intentions to leave the teaching profession (ILTP) among primary school teachers in China. Six primary schools located in Wuhan, China, were randomly selected from three different socioeconomic areas in 2010. In total, these schools employed 533 teachers, and 436 of these (82 %) participated in a cross-sectional survey. OJ and ERI were assessed by 13-item and 10-item questionnaires, respectively. Burnout was measured using the emotional exhaustion subscale of the Chinese Maslach Burnout Inventory. ILTP were operationalized based on the frequency of thoughts about turnover during the past year. Logistic regression-based odds ratios (ORs) with 95 % confidence intervals (CIs) were estimated separately for OJ and ERI. In a second step, these work stress scales were entered into the same regression model. Separate regression models suggested moderate to strong associations of OJ and ERI with burnout and ILTP. After simultaneous adjustment, the overall OJ score remained associated with burnout and ILTP, but ERI appeared to be the stronger and more consistent determinant of both outcomes. For instance, an increase of 1 standard deviation of the ERI score was associated with an OR of 2.60 (95 % CI 1.97-3.43) for burnout and with an OR of 2.26 (95 % CI 1.66-3.08) for ILTP. Organizational justice and in particular ERI appeared to be determinants of burnout and ILTP among primary school teachers in China.
Pesonen, Anu-Katriina; Räikkönen, Katri; Feldt, Kimmo; Heinonen, Kati; Osmond, Clive; Phillips, David I W; Barker, David J P; Eriksson, Johan G; Kajantie, Eero
2010-06-01
Animal models have linked early maternal separation with lifelong changes in hypothalamic-pituitary-adrenocortical (HPA) axis activity. Although this is paralleled in human studies, this is often in the context of other life adversities, for example, divorce or adoption, and it is not known whether early separation in the absence of these factors has long term effects on the HPA axis. The Finnish experience in World War II created a natural experiment to test whether separation from a father serving in the armed forces or from both parents due to war evacuation are associated with alterations in HPA axis response to psychosocial stress in late adulthood. 282 subjects (M=63.5 years, SD=2.5), of whom 85 were non-separated, 129 were separated from their father, and 68 were separated from both their caregivers during WWII, were enlisted to participate in a Trier Social Stress Test (TSST), during which we measured salivary cortisol and, for 215 individuals, plasma cortisol and ACTH concentrations. We used mixed models to study whether parental separation is associated with salivary and plasma cortisol or plasma ACTH reactivity, and linear regressions to analyse differences in the baseline, or incremental area under the cortisol or ACTH curves. Participants separated from their father did not differ significantly from non-separated participants. However, those separated from both parents had higher average salivary cortisol and plasma ACTH concentrations across all time points compared to the non-separated group. They also had higher salivary cortisol reactivity to the TSST. Separated women had higher baselines in plasma cortisol and ACTH, whereas men had higher reactivity in response to stress during the TSST. Participants who had experienced the separation in early childhood were more affected than children separated during infancy or school age. Separation from parents during childhood may alter an individual's stress physiology much later in adult life. Copyright 2009 Elsevier Ltd. All rights reserved.
A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.
2014-01-01
A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.
Almalik, Osama; Nijhuis, Michiel B; van den Heuvel, Edwin R
2014-01-01
Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear regression analysis combining all data from multiple storage conditions was recently proposed in the literature when variances are homogeneous across storage conditions. The combined analysis is expected to perform better than the separate analysis per storage condition, since pooling data would lead to an improved estimate of the variation and higher numbers of degrees of freedom, but this is not evident for shelf-life estimation. Indeed, the two approaches treat the observed initial batch results, the intercepts in the model, and poolability of batches differently, which may eliminate or reduce the expected advantage of the combined approach with respect to the separate approach. Therefore, a simulation study was performed to compare the distribution of simulated shelf-life estimates on several characteristics between the two approaches and to quantify the difference in shelf-life estimates. In general, the combined statistical analysis does estimate the true shelf life more consistently and precisely than the analysis per storage condition, but it did not outperform the separate analysis in all circumstances.
Statistical description of turbulent transport for flux driven toroidal plasmas
NASA Astrophysics Data System (ADS)
Anderson, J.; Imadera, K.; Kishimoto, Y.; Li, J. Q.; Nordman, H.
2017-06-01
A novel methodology to analyze non-Gaussian probability distribution functions (PDFs) of intermittent turbulent transport in global full-f gyrokinetic simulations is presented. In this work, the auto-regressive integrated moving average (ARIMA) model is applied to time series data of intermittent turbulent heat transport to separate noise and oscillatory trends, allowing for the extraction of non-Gaussian features of the PDFs. It was shown that non-Gaussian tails of the PDFs from first principles based gyrokinetic simulations agree with an analytical estimation based on a two fluid model.
Engoren, Milo; Habib, Robert H; Dooner, John J; Schwann, Thomas A
2013-08-01
As many as 14 % of patients undergoing coronary artery bypass surgery are readmitted within 30 days. Readmission is usually the result of morbidity and may lead to death. The purpose of this study is to develop and compare statistical and genetic programming models to predict readmission. Patients were divided into separate Construction and Validation populations. Using 88 variables, logistic regression, genetic programs, and artificial neural nets were used to develop predictive models. Models were first constructed and tested on the Construction populations, then validated on the Validation population. Areas under the receiver operator characteristic curves (AU ROC) were used to compare the models. Two hundred and two patients (7.6 %) in the 2,644 patient Construction group and 216 (8.0 %) of the 2,711 patient Validation group were re-admitted within 30 days of CABG surgery. Logistic regression predicted readmission with AU ROC = .675 ± .021 in the Construction group. Genetic programs significantly improved the accuracy, AU ROC = .767 ± .001, p < .001). Artificial neural nets were less accurate with AU ROC = 0.597 ± .001 in the Construction group. Predictive accuracy of all three techniques fell in the Validation group. However, the accuracy of genetic programming (AU ROC = .654 ± .001) was still trivially but statistically non-significantly better than that of the logistic regression (AU ROC = .644 ± .020, p = .61). Genetic programming and logistic regression provide alternative methods to predict readmission that are similarly accurate.
Yokoi, Masayuki; Tashiro, Takao
2014-01-01
We studied how the separation of dispensing and prescribing of medicines between pharmacies and clinics (the “separation system”) can reduce internal medicine costs. To do so, we obtained publicly available data by searching electronic databases and official web pages of the Japanese government and non-profit public service corporations on the Internet. For Japanese medical institutions, participation in the separation system is optional. Consequently, the expansion rate of the separation system for each of the administrative districts is highly variable. The data were subjected to multiple regression analysis; daily internal medicines were the objective variable and expansion rate of the separation system was the explanatory variable. A multiple regression analysis revealed that the expansion rate of the separation system and the rate of replacing brand name medicine with generic medicine showed a significant negative partial correlation with daily internal medicine costs. Thus, the separation system was as effective in reducing medicine costs as the use of generic medicines. Because of its medical economic efficiency, the separation system should be expanded, especially in Asian countries in which the system is underdeveloped. PMID:24999122
Yokoi, Masayuki; Tashiro, Takao
2014-04-07
We studied how the separation of dispensing and prescribing of medicines between pharmacies and clinics (the "separation system") can reduce internal medicine costs. To do so, we obtained publicly available data by searching electronic databases and official web pages of the Japanese government and non-profit public service corporations on the Internet. For Japanese medical institutions, participation in the separation system is optional. Consequently, the expansion rate of the separation system for each of the administrative districts is highly variable. The data were subjected to multiple regression analysis; daily internal medicines were the objective variable and expansion rate of the separation system was the explanatory variable. A multiple regression analysis revealed that the expansion rate of the separation system and the rate of replacing brand name medicine with generic medicine showed a significant negative partial correlation with daily internal medicine costs. Thus, the separation system was as effective in reducing medicine costs as the use of generic medicines. Because of its medical economic efficiency, the separation system should be expanded, especially in Asian countries in which the system is underdeveloped.
Statistical 21-cm Signal Separation via Gaussian Process Regression Analysis
NASA Astrophysics Data System (ADS)
Mertens, F. G.; Ghosh, A.; Koopmans, L. V. E.
2018-05-01
Detecting and characterizing the Epoch of Reionization and Cosmic Dawn via the redshifted 21-cm hyperfine line of neutral hydrogen will revolutionize the study of the formation of the first stars, galaxies, black holes and intergalactic gas in the infant Universe. The wealth of information encoded in this signal is, however, buried under foregrounds that are many orders of magnitude brighter. These must be removed accurately and precisely in order to reveal the feeble 21-cm signal. This requires not only the modeling of the Galactic and extra-galactic emission, but also of the often stochastic residuals due to imperfect calibration of the data caused by ionospheric and instrumental distortions. To stochastically model these effects, we introduce a new method based on `Gaussian Process Regression' (GPR) which is able to statistically separate the 21-cm signal from most of the foregrounds and other contaminants. Using simulated LOFAR-EoR data that include strong instrumental mode-mixing, we show that this method is capable of recovering the 21-cm signal power spectrum across the entire range k = 0.07 - 0.3 {h cMpc^{-1}}. The GPR method is most optimal, having minimal and controllable impact on the 21-cm signal, when the foregrounds are correlated on frequency scales ≳ 3 MHz and the rms of the signal has σ21cm ≳ 0.1 σnoise. This signal separation improves the 21-cm power-spectrum sensitivity by a factor ≳ 3 compared to foreground avoidance strategies and enables the sensitivity of current and future 21-cm instruments such as the Square Kilometre Array to be fully exploited.
Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A
2017-10-27
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.
2017-11-01
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
Agogo, George O.; van der Voet, Hilko; Veer, Pieter van’t; Ferrari, Pietro; Leenders, Max; Muller, David C.; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A.; Boshuizen, Hendriek
2014-01-01
In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model. PMID:25402487
Quantifying discrimination of Framingham risk functions with different survival C statistics.
Pencina, Michael J; D'Agostino, Ralph B; Song, Linye
2012-07-10
Cardiovascular risk prediction functions offer an important diagnostic tool for clinicians and patients themselves. They are usually constructed with the use of parametric or semi-parametric survival regression models. It is essential to be able to evaluate the performance of these models, preferably with summaries that offer natural and intuitive interpretations. The concept of discrimination, popular in the logistic regression context, has been extended to survival analysis. However, the extension is not unique. In this paper, we define discrimination in survival analysis as the model's ability to separate those with longer event-free survival from those with shorter event-free survival within some time horizon of interest. This definition remains consistent with that used in logistic regression, in the sense that it assesses how well the model-based predictions match the observed data. Practical and conceptual examples and numerical simulations are employed to examine four C statistics proposed in the literature to evaluate the performance of survival models. We observe that they differ in the numerical values and aspects of discrimination that they capture. We conclude that the index proposed by Harrell is the most appropriate to capture discrimination described by the above definition. We suggest researchers report which C statistic they are using, provide a rationale for their selection, and be aware that comparing different indices across studies may not be meaningful. Copyright © 2012 John Wiley & Sons, Ltd.
Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung
2016-01-01
A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Regionalization of harmonic-mean streamflows in Kentucky
Martin, Gary R.; Ruhl, Kevin J.
1993-01-01
Harmonic-mean streamflow (Qh), defined as the reciprocal of the arithmetic mean of the reciprocal daily streamflow values, was determined for selected stream sites in Kentucky. Daily mean discharges for the available period of record through the 1989 water year at 230 continuous record streamflow-gaging stations located in and adjacent to Kentucky were used in the analysis. Periods of record affected by regulation were identified and analyzed separately from periods of record unaffected by regulation. Record-extension procedures were applied to short-term stations to reducetime-sampling error and, thus, improve estimates of the long-term Qh. Techniques to estimate the Qh at ungaged stream sites in Kentucky were developed. A regression model relating Qh to total drainage area and streamflow-variability index was presented with example applications. The regression model has a standard error of estimate of 76 percent and a standard error of prediction of 78 percent.
Psychosocial factors influencing smokeless tobacco use by teen-age military dependents.
Lee, S; Raker, T; Chisick, M C
1994-02-01
Using bivariate and logistic regression analysis, we explored psychosocial correlates of smokeless tobacco (SLT) use in a sample of 2,257 teenage military dependents. We built separate regression models for males and females to explain triers and users of SLT. Results show female and male triers share five factors regarding SLT use--parental and peer approval, trying smoking, relatives using SLT, and athletic team membership. Male trial of SLT was additionally associated with race, difficulty in purchasing SLT, relatives who smoke, current smoking, and belief that SLT can cause mouth cancer. Male use of SLT was associated with race, seeing a dentist regularly, SLT counseling by a dentist, parental approval, trying and current smoking, and grade level. In all models, trying smoking was the strongest explanatory variable. Relatives and peers exert considerable influence on SLT use. Few triers or users had received SLT counseling from their dentist despite high dental utilization rates.
The effect of clouds on the earth's radiation budget
NASA Technical Reports Server (NTRS)
Ziskin, Daniel; Strobel, Darrell F.
1991-01-01
The radiative fluxes from the Earth Radiation Budget Experiment (ERBE) and the cloud properties from the International Satellite Cloud Climatology Project (ISCCP) over Indonesia for the months of June and July of 1985 and 1986 were analyzed to determine the cloud sensitivity coefficients. The method involved a linear least squares regression between co-incident flux and cloud coverage measurements. The calculated slope is identified as the cloud sensitivity. It was found that the correlations between the total cloud fraction and radiation parameters were modest. However, correlations between cloud fraction and IR flux were improved by separating clouds by height. Likewise, correlations between the visible flux and cloud fractions were improved by distinguishing clouds based on optical depth. Calculating correlations between the net fluxes and either height or optical depth segregated cloud fractions were somewhat improved. When clouds were classified in terms of their height and optical depth, correlations among all the radiation components were improved. Mean cloud sensitivities based on the regression of radiative fluxes against height and optical depth separated cloud types are presented. Results are compared to a one-dimensional radiation model with a simple cloud parameterization scheme.
Cost Estimation Techniques for C3I System Software.
1984-07-01
opment manmonth have been determined for maxi, midi , and mini .1 type computers. Small to median size timeshared developments used 0.2 to 1.5 hours...development schedule 1.23 1.00 1.10 2.1.3 Detailed Model The final codification of the COCOMO regressions was the development of separate effort...regardless of the software structure level being estimated: D8VC -- the expected development computer (maxi. midi . mini, micro) MODE -- the expected
Futia, Gregory L; Schlaepfer, Isabel R; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A
2017-07-01
Detection of circulating tumor cells (CTCs) in a blood sample is limited by the sensitivity and specificity of the biomarker panel used to identify CTCs over other blood cells. In this work, we present Bayesian theory that shows how test sensitivity and specificity set the rarity of cell that a test can detect. We perform our calculation of sensitivity and specificity on our image cytometry biomarker panel by testing on pure disease positive (D + ) populations (MCF7 cells) and pure disease negative populations (D - ) (leukocytes). In this system, we performed multi-channel confocal fluorescence microscopy to image biomarkers of DNA, lipids, CD45, and Cytokeratin. Using custom software, we segmented our confocal images into regions of interest consisting of individual cells and computed the image metrics of total signal, second spatial moment, spatial frequency second moment, and the product of the spatial-spatial frequency moments. We present our analysis of these 16 features. The best performing of the 16 features produced an average separation of three standard deviations between D + and D - and an average detectable rarity of ∼1 in 200. We performed multivariable regression and feature selection to combine multiple features for increased performance and showed an average separation of seven standard deviations between the D + and D - populations making our average detectable rarity of ∼1 in 480. Histograms and receiver operating characteristics (ROC) curves for these features and regressions are presented. We conclude that simple regression analysis holds promise to further improve the separation of rare cells in cytometry applications. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Huang, Yu; Griffin, Michael J
2014-01-01
This study investigated the prediction of the discomfort caused by simultaneous noise and vibration from the discomfort caused by noise and the discomfort caused by vibration when they are presented separately. A total of 24 subjects used absolute magnitude estimation to report their discomfort caused by seven levels of noise (70-88 dBA SEL), 7 magnitudes of vibration (0.146-2.318 ms(- 1.75)) and all 49 possible combinations of these noise and vibration stimuli. Vibration did not significantly influence judgements of noise discomfort, but noise reduced vibration discomfort by an amount that increased with increasing noise level, consistent with a 'masking effect' of noise on judgements of vibration discomfort. A multiple linear regression model or a root-sums-of-squares model predicted the discomfort caused by combined noise and vibration, but the root-sums-of-squares model is more convenient and provided a more accurate prediction of the discomfort produced by combined noise and vibration.
Face aging effect simulation model based on multilayer representation and shearlet transform
NASA Astrophysics Data System (ADS)
Li, Yuancheng; Li, Yan
2017-09-01
In order to extract detailed facial features, we build a face aging effect simulation model based on multilayer representation and shearlet transform. The face is divided into three layers: the global layer of the face, the local features layer, and texture layer, which separately establishes the aging model. First, the training samples are classified according to different age groups, and we use active appearance model (AAM) at the global level to obtain facial features. The regression equations of shape and texture with age are obtained by fitting the support vector machine regression, which is based on the radial basis function. We use AAM to simulate the aging of facial organs. Then, for the texture detail layer, we acquire the significant high-frequency characteristic components of the face by using the multiscale shearlet transform. Finally, we get the last simulated aging images of the human face by the fusion algorithm. Experiments are carried out on the FG-NET dataset, and the experimental results show that the simulated face images have less differences from the original image and have a good face aging simulation effect.
Lee, Kyung Hee; Kang, Seung Kwan; Goo, Jin Mo; Lee, Jae Sung; Cheon, Gi Jeong; Seo, Seongho; Hwang, Eui Jin
2017-03-01
To compare the relationship between K trans from DCE-MRI and K 1 from dynamic 13 N-NH 3 -PET, with simultaneous and separate MR/PET in the VX-2 rabbit carcinoma model. MR/PET was performed simultaneously and separately, 14 and 15 days after VX-2 tumor implantation at the paravertebral muscle. The K trans and K 1 values were estimated using an in-house software program. The relationships between K trans and K 1 were analyzed using Pearson's correlation coefficients and linear/non-linear regression function. Assuming a linear relationship, K trans and K 1 exhibited a moderate positive correlations with both simultaneous (r=0.54-0.57) and separate (r=0.53-0.69) imaging. However, while the K trans and K 1 from separate imaging were linearly correlated, those from simultaneous imaging exhibited a non-linear relationship. The amount of change in K 1 associated with a unit increase in K trans varied depending on K trans values. The relationship between K trans and K 1 may be mis-interpreted with separate MR and PET acquisition. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide
2009-01-01
The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.
Reisler, Ronald B; Gibbs, Paul H; Danner, Denise K; Boudreau, Ellen F
2012-11-26
We compared the effect on primary vaccination plaque-reduction neutralization 80% titers (PRNT80) responses of same-day administration (at different injection sites) of two similar investigational inactivated alphavirus vaccines, eastern equine encephalitis (EEE) vaccine (TSI-GSD 104) and western equine encephalitis (WEE) vaccine (TSI-GSD 210) to separate administration. Overall, primary response rate for EEE vaccine was 524/796 (66%) and overall primary response rate for WEE vaccine was 291/695 (42%). EEE vaccine same-day administration yielded a 59% response rate and a responder geometric mean titer (GMT)=89 while separate administration yielded a response rate of 69% and a responder GMT=119. WEE vaccine same-day administration yielded a 30% response rate and a responder GMT=53 while separate administration yielded a response rate of 54% and a responder GMT=79. EEE response rates for same-day administration (group A) vs. non-same-day administration (group B) were significantly affected by gender. A logistic regression model predicting response to EEE comparing group B to group A for females yielded an OR=4.10 (95% CL 1.97-8.55; p=.0002) and for males yielded an OR=1.25 (95% CL 0.76-2.07; p=.3768). WEE response rates for same-day administration vs. non-same-day administration were independent of gender. A logistic regression model predicting response to WEE comparing group B to group A yielded an OR=2.14 (95% CL 1.22-3.73; p=.0077). We report immune interference occurring with same-day administration of two completely separate formalin inactivated viral vaccines in humans. These findings combined with the findings of others regarding immune interference would argue for a renewed emphasis on studying the immunological mechanisms of induction of inactivated viral vaccine protection. Copyright © 2012. Published by Elsevier Ltd.
Yamazaki, Takeshi; Takeda, Hisato; Hagiya, Koichi; Yamaguchi, Satoshi; Sasaki, Osamu
2018-03-13
Because lactation periods in dairy cows lengthen with increasing total milk production, it is important to predict individual productivities after 305 days in milk (DIM) to determine the optimal lactation period. We therefore examined whether the random regression (RR) coefficient from 306 to 450 DIM (M2) can be predicted from those during the first 305 DIM (M1) by using a random regression model. We analyzed test-day milk records from 85690 Holstein cows in their first lactations and 131727 cows in their later (second to fifth) lactations. Data in M1 and M2 were analyzed separately by using different single-trait RR animal models. We then performed a multiple regression analysis of the RR coefficients of M2 on those of M1 during the first and later lactations. The first-order Legendre polynomials were practical covariates of random regression for the milk yields of M2. All RR coefficients for the additive genetic (AG) effect and the intercept for the permanent environmental (PE) effect of M2 had moderate to strong correlations with the intercept for the AG effect of M1. The coefficients of determination for multiple regression of the combined intercepts for the AG and PE effects of M2 on the coefficients for the AG effect of M1 were moderate to high. The daily milk yields of M2 predicted by using the RR coefficients for the AG effect of M1 were highly correlated with those obtained by using the coefficients of M2. Milk production after 305 DIM can be predicted by using the RR coefficient estimates of the AG effect during the first 305 DIM.
NASA Astrophysics Data System (ADS)
Venedikov, A. P.; Arnoso, J.; Cai, W.; Vieira, R.; Tan, S.; Velez, E. J.
2006-01-01
A 12-year series (1992-2004) of strain measurements recorded in the Geodynamics Laboratory of Lanzarote is investigated. Through a tidal analysis the non-tidal component of the data is separated in order to use it for studying signals, useful for monitoring of the volcanic activity on the island. This component contains various perturbations of meteorological and oceanic origin, which should be eliminated in order to make the useful signals discernible. The paper is devoted to the estimation and elimination of the effect of the air temperature inside the station, which strongly dominates the strainmeter data. For solving this task, a regression model is applied, which includes a linear relation with the temperature and time-dependant polynomials. The regression includes nonlinearly a set of parameters, which are estimated by a properly applied Bayesian approach. The results obtained are: the regression coefficient of the strain data on temperature is equal to (-367.4 ± 0.8) × 10 -9 °C -1, the curve of the non-tidal component reduced by the effect of the temperature and a polynomial approximation of the reduced curve. The technique used here can be helpful to investigators in the domain of the earthquake and volcano monitoring. However, the fundamental and extremely difficult problem of what kind of signals in the reduced curves might be useful in this field is not considered here.
Dillon, Paul; Phillips, L Alison; Gallagher, Paul; Smith, Susan M; Stewart, Derek; Cousins, Gráinne
2018-02-05
The Necessity-Concerns Framework (NCF) is a multidimensional theory describing the relationship between patients' positive and negative evaluations of their medication which interplay to influence adherence. Most studies evaluating the NCF have failed to account for the multidimensional nature of the theory, placing the separate dimensions of medication "necessity beliefs" and "concerns" onto a single dimension (e.g., the Beliefs about Medicines Questionnaire-difference score model). To assess the multidimensional effect of patient medication beliefs (concerns and necessity beliefs) on medication adherence using polynomial regression with response surface analysis. Community-dwelling older adults >65 years (n = 1,211) presenting their own prescription for antihypertensive medication to 106 community pharmacies in the Republic of Ireland rated their concerns and necessity beliefs to antihypertensive medications at baseline and their adherence to antihypertensive medication at 12 months via structured telephone interview. Confirmatory polynomial regression found the difference-score model to be inaccurate; subsequent exploratory analysis identified a quadratic model to be the best-fitting polynomial model. Adherence was lowest among those with strong medication concerns and weak necessity beliefs, and adherence was greatest for those with weak concerns and strong necessity beliefs (slope β = -0.77, p<.001; curvature β = -0.26, p = .004). However, novel nonreciprocal effects were also observed; patients with simultaneously high concerns and necessity beliefs had lower adherence than those with simultaneously low concerns and necessity beliefs (slope β = -0.36, p = .004; curvature β = -0.25, p = .003). The difference-score model fails to account for the potential nonreciprocal effects. Results extend evidence supporting the use of polynomial regression to assess the multidimensional effect of medication beliefs on adherence.
Detection of crossover time scales in multifractal detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Tan, Ge; Yuan, Ruozhen; Wei, ChenChen; Xu, Mangmang; Liu, Ming
2018-05-26
Association between serum calcium and magnesium versus hemorrhagic transformation (HT) remains to be identified. A total of 1212 non-thrombolysis patients with serum calcium and magnesium collected within 24 h from stroke onset were enrolled. Backward stepwise multivariate logistic regression analysis was conducted to investigate association between calcium and magnesium versus HT. Calcium and magnesium were entered into logistic regression analysis in two models, separately: model 1, as continuous variable (per 1-mmol/L increase), and model 2, as four-categorized variable (being collapsed into quartiles). HT occurred in 140 patients (11.6%). Serum calcium was slightly lower in patients with HT than in patient without HT (P = 0.273). But serum magnesium was significantly lower in patients with HT than in patients without HT (P = 0.007). In logistic regression analysis, calcium displayed no association with HT. Magnesium, as either continuous or four-categorized variable, was independently and inversely associated with HT in stroke overall and stroke of large-artery atherosclerosis (LAA). The results demonstrated that serum calcium had no association with HT in patients without thrombolysis after acute ischemic stroke. Serum magnesium in low level was independently associated with increasing HT in stroke overall and particularly in stroke of LAA.
Residential magnetic fields predicted from wiring configurations: I. Exposure model.
Bowman, J D; Thomas, D C; Jiang, L; Jiang, F; Peters, J M
1999-10-01
A physically based model for residential magnetic fields from electric transmission and distribution wiring was developed to reanalyze the Los Angeles study of childhood leukemia by London et al. For this exposure model, magnetic field measurements were fitted to a function of wire configuration attributes that was derived from a multipole expansion of the Law of Biot and Savart. The model parameters were determined by nonlinear regression techniques, using wiring data, distances, and the geometric mean of the ELF magnetic field magnitude from 24-h bedroom measurements taken at 288 homes during the epidemiologic study. The best fit to the measurement data was obtained with separate models for the two major utilities serving Los Angeles County. This model's predictions produced a correlation of 0.40 with the measured fields, an improvement on the 0.27 correlation obtained with the Wertheimer-Leeper (WL) wire code. For the leukemia risk analysis in a companion paper, the regression model predicts exposures to the 24-h geometric mean of the ELF magnetic fields in Los Angeles homes where only wiring data and distances have been obtained. Since these input parameters for the exposure model usually do not change for many years, the predicted magnetic fields will be stable over long time periods, just like the WL code. If the geometric mean is not the exposure metric associated with cancer, this regression technique could be used to estimate long-term exposures to temporal variability metrics and other characteristics of the ELF magnetic field which may be cancer risk factors.
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2013-01-01
The ability to determine noninvasively microphysical parameters (MPPs) of skin characteristic of malignant melanoma was demonstrated. The MPPs were the melanin content in dermis, saturation of tissue with blood vessels, and concentration and effective size of tissue scatterers. The proposed method was based on spatially resolved spectral measurements of skin diffuse reflectance and multiple regressions between linearly independent measurement components and skin MPPs. The regressions were established by modeling radiation transfer in skin with a wide variation of its MPPs. Errors in the determination of skin MPPs were estimated using fiber-optic measurements of its diffuse reflectance at wavelengths of commercially available semiconductor diode lasers (578, 625, 660, 760, and 806 nm) at source-detector separations of 0.23-1.38 mm.
A CNN Regression Approach for Real-Time 2D/3D Registration.
Shun Miao; Wang, Z Jane; Rui Liao
2016-05-01
In this paper, we present a Convolutional Neural Network (CNN) regression approach to address the two major limitations of existing intensity-based 2-D/3-D registration technology: 1) slow computation and 2) small capture range. Different from optimization-based methods, which iteratively optimize the transformation parameters over a scalar-valued metric function representing the quality of the registration, the proposed method exploits the information embedded in the appearances of the digitally reconstructed radiograph and X-ray images, and employs CNN regressors to directly estimate the transformation parameters. An automatic feature extraction step is introduced to calculate 3-D pose-indexed features that are sensitive to the variables to be regressed while robust to other factors. The CNN regressors are then trained for local zones and applied in a hierarchical manner to break down the complex regression task into multiple simpler sub-tasks that can be learned separately. Weight sharing is furthermore employed in the CNN regression model to reduce the memory footprint. The proposed approach has been quantitatively evaluated on 3 potential clinical applications, demonstrating its significant advantage in providing highly accurate real-time 2-D/3-D registration with a significantly enlarged capture range when compared to intensity-based methods.
Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.
Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C
2014-03-01
In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.
Genetic evaluation of aspects of temperament in Nellore-Angus calves.
Riley, D G; Gill, C A; Herring, A D; Riggs, P K; Sawyer, J E; Lunt, D K; Sanders, J O
2014-08-01
The objective of this work was to estimate heritability of each of 5 subjectively measured aspects of temperament of cattle and the genetic correlations of pairs of those traits. From 2003 to 2013, Nellore-Angus F2 and F3 calves (n = 1,816) were evaluated for aspects of temperament at an average 259 d of age, which was approximately 2 mo after weaning. Calves were separated from a group and subjectively scored from 1 (calm, good temperament) to 9 (wild, poor temperament) for aggressiveness (willingness to hit an evaluator), nervousness, flightiness, gregariousness (willingness to separate from the group), and a distinct overall score by 4 evaluators. Data were analyzed using threshold and linear models with additive genetic random effects. Two-trait animal models (nonthreshold) included the additive genetic covariance for pairs of traits and were used to estimate additive genetic correlations. Contemporary groups (n = 104) represented calves penned together for evaluation on given evaluation days. Heifers had greater (worse) means for all traits than steers (P < 0.05). The regression of score on age in days was included in final models for flightiness (P = 0.05; -0.006 ± 0.003) and gregariousness (P = 0.025; -0.007 ± 0.003). Estimates of heritability were large (0.51, 0.4, 0.45, 0.49, and 0.47 for aggressiveness, nervousness, flightiness, gregariousness, and overall temperament, respectively; SE = 0.07 for each). The ability to use this methodology to distinctly separate different aspects of calf temperament appeared to be limited, as estimates of additive genetic correlations were near unity for all pairs of traits; estimates of phenotypic correlation ranged from 0.88 ± 0.01 to 0.99 ± 0.002 for pairs of traits. Distinct subsequent analyses indicated a significant negative relationship of 4 of the various temperament scores with weight at weaning (regression coefficients ranged from -0.008 ± 0.002 for nervousness, flightiness, and gregariousness to -0.003 ± 0.002 for aggressiveness). In subsequent analyses, the regression of temperament trait on sequence of evaluation within a pen was highly significant and solutions ranged from 0.05 ± 0.007 for aggressiveness to 0.08 ± 0.007 for all other traits. The apparent large additive genetic variance for any one of these traits may be useful in identification of genes responsible for differences in cattle temperament.
Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration
NASA Astrophysics Data System (ADS)
Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim
2015-04-01
In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.
Kinetic rate constant prediction supports the conformational selection mechanism of protein binding.
Moal, Iain H; Bates, Paul A
2012-01-01
The prediction of protein-protein kinetic rate constants provides a fundamental test of our understanding of molecular recognition, and will play an important role in the modeling of complex biological systems. In this paper, a feature selection and regression algorithm is applied to mine a large set of molecular descriptors and construct simple models for association and dissociation rate constants using empirical data. Using separate test data for validation, the predicted rate constants can be combined to calculate binding affinity with accuracy matching that of state of the art empirical free energy functions. The models show that the rate of association is linearly related to the proportion of unbound proteins in the bound conformational ensemble relative to the unbound conformational ensemble, indicating that the binding partners must adopt a geometry near to that of the bound prior to binding. Mirroring the conformational selection and population shift mechanism of protein binding, the models provide a strong separate line of evidence for the preponderance of this mechanism in protein-protein binding, complementing structural and theoretical studies.
The lead time tradeoff: the case of health states better than dead.
Pinto-Prades, José Luis; Rodríguez-Míguez, Eva
2015-04-01
Lead time tradeoff (L-TTO) is a variant of the time tradeoff (TTO). L-TTO introduces a lead period in full health before illness onset, avoiding the need to use 2 different procedures for states better and worse than dead. To estimate utilities, additive separability is assumed. We tested to what extent violations of this assumption can bias utilities estimated with L-TTO. A sample of 500 members of the Spanish general population evaluated 24 health states, using face-to-face interviews. A total of 188 subjects were interviewed with L-TTO and the rest with TTO. Both samples evaluated the same set of 24 health states, divided into 4 groups with 6 health states per set. Each subject evaluated 1 of the sets. A random effects regression model was fitted to our data. Only health states better than dead were included in the regression since it is in this subset where additive separability can be tested clearly. Utilities were higher in L-TTO in relation to TTO (on average L-TTO adds about 0.2 points to the utility of health states), suggesting that additive separability is violated. The difference between methods increased with the severity of the health state. Thus, L-TTO adds about 0.14 points to the average utility of the less severe states, 0.23 to the intermediate states, and 0.28 points to the more severe estates. L-TTO produced higher utilities than TTO. Health problems are perceived as less severe if a lead period in full health is added upfront, implying that there are interactions between disjointed time periods. The advantages of this method have to be compared with the cost of modeling the interaction between periods. © The Author(s) 2014.
Recruiting Older Youths: Insights from a New Survey of Army Recruits
2014-01-01
remaining in the service at the time to be considered for promotion 8. the unconditional probability of achieving the military grade of E-5 at four years...of service 9. the unconditional probability of achieving the military grade of E-5 at six years of ser- vice. We examined both the total effects of...career outcomes for Army enlist- ees. These effects are computed from separate linear probability regression models that include only dummy variables
2014-03-28
four sub-sections were included into “System” because none of them address limits of contaminates or chemicals in the water. 24 The Hazardous...maximum contaminant levels (MCL) of chemicals, stricter emission standards, stricter control limits, greater minimum separation distances, prohibited...0.37 Indonesia Strugglers 52.29 -0.40 Malaysia Progressives 62.51 0.34 Mongolia Regressives 45.37 -0.21 Myanmar Strugglers 52.72 -1.09 Nepal
NASA Astrophysics Data System (ADS)
Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto
2000-12-01
The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.
Yang, Y-M; Lee, J; Kim, Y-I; Cho, B-H; Park, S-B
2014-08-01
This study aimed to determine the viability of using axial cervical vertebrae (ACV) as biological indicators of skeletal maturation and to build models that estimate ossification level with improved explanatory power over models based only on chronological age. The study population comprised 74 female and 47 male patients with available hand-wrist radiographs and cone-beam computed tomography images. Generalized Procrustes analysis was used to analyze the shape, size, and form of the ACV regions of interest. The variabilities of these factors were analyzed by principal component analysis. Skeletal maturation was then estimated using a multiple regression model. Separate models were developed for male and female participants. For the female estimation model, the adjusted R(2) explained 84.8% of the variability of the Sempé maturation level (SML), representing a 7.9% increase in SML explanatory power over that using chronological age alone (76.9%). For the male estimation model, the adjusted R(2) was over 90%, representing a 1.7% increase relative to the reference model. The simplest possible ACV morphometric information provided a statistically significant explanation of the portion of skeletal-maturation variability not dependent on chronological age. These results verify that ACV is a strong biological indicator of ossification status. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2011-01-01
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586
Beyond Reading Alone: The Relationship Between Aural Literacy And Asthma Management
Rosenfeld, Lindsay; Rudd, Rima; Emmons, Karen M.; Acevedo-García, Dolores; Martin, Laurie; Buka, Stephen
2010-01-01
Objectives To examine the relationship between literacy and asthma management with a focus on the oral exchange. Methods Study participants, all of whom reported asthma, were drawn from the New England Family Study (NEFS), an examination of links between education and health. NEFS data included reading, oral (speaking), and aural (listening) literacy measures. An additional survey was conducted with this group of study participants related to asthma issues, particularly asthma management. Data analysis focused on bivariate and multivariable logistic regression. Results In bivariate logistic regression models exploring aural literacy, there was a statistically significant association between those participants with lower aural literacy skills and less successful asthma management (OR:4.37, 95%CI:1.11, 17.32). In multivariable logistic regression analyses, controlling for gender, income, and race in separate models (one-at-a-time), there remained a statistically significant association between those participants with lower aural literacy skills and less successful asthma management. Conclusion Lower aural literacy skills seem to complicate asthma management capabilities. Practice Implications Greater attention to the oral exchange, in particular the listening skills highlighted by aural literacy, as well as other related literacy skills may help us develop strategies for clear communication related to asthma management. PMID:20399060
Keithley, Richard B; Wightman, R Mark
2011-06-07
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.
Leffondré, Karen; Abrahamowicz, Michal; Siemiatycki, Jack
2003-12-30
Case-control studies are typically analysed using the conventional logistic model, which does not directly account for changes in the covariate values over time. Yet, many exposures may vary over time. The most natural alternative to handle such exposures would be to use the Cox model with time-dependent covariates. However, its application to case-control data opens the question of how to manipulate the risk sets. Through a simulation study, we investigate how the accuracy of the estimates of Cox's model depends on the operational definition of risk sets and/or on some aspects of the time-varying exposure. We also assess the estimates obtained from conventional logistic regression. The lifetime experience of a hypothetical population is first generated, and a matched case-control study is then simulated from this population. We control the frequency, the age at initiation, and the total duration of exposure, as well as the strengths of their effects. All models considered include a fixed-in-time covariate and one or two time-dependent covariate(s): the indicator of current exposure and/or the exposure duration. Simulation results show that none of the models always performs well. The discrepancies between the odds ratios yielded by logistic regression and the 'true' hazard ratio depend on both the type of the covariate and the strength of its effect. In addition, it seems that logistic regression has difficulty separating the effects of inter-correlated time-dependent covariates. By contrast, each of the two versions of Cox's model systematically induces either a serious under-estimation or a moderate over-estimation bias. The magnitude of the latter bias is proportional to the true effect, suggesting that an improved manipulation of the risk sets may eliminate, or at least reduce, the bias. Copyright 2003 JohnWiley & Sons, Ltd.
An improved model for the combustion of AP composite propellants
NASA Technical Reports Server (NTRS)
Cohen, N. S.; Strand, L. D.
1981-01-01
This paper presents several improvements to the BDP model of steady-state burning of AP composite solid propellants. The Price-Boggs-Derr model of AP monopropellant burning is incorporated to represent the AP. A separate energy equation is written for the binder to permit a different surface temperature from the AP; this includes an analysis of the sharing of primary diffusion flame energy, and correction of a BDP model inconsistency in treating the binder regression rate. A method for assembling component contributions to calculate the burning rates of multimodal propellants is also presented. Results are shown in the form of representative burning rate curves, comparisons with data, and calculated internal details of interest. Ideas for future work are discussed in an Appendix.
Inferring gene regression networks with model trees
2010-01-01
Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database) is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear regressions to separate areas of the search space favoring to infer localized similarities over a more global similarity. Furthermore, experimental results show the good performance of REGNET. PMID:20950452
Jewish Women's Psychological Well-Being: The Role of Attachment, Separation, and Jewish Identity
ERIC Educational Resources Information Center
Goldberg, Julie L.; O'Brien, Karen M.
2005-01-01
The purpose of this study was to examine the contributions of attachment, separation, and Jewish identity to psychological well-being in a sample of 115 late adolescent Jewish women. Results from multiple regression analyses demonstrated that attachment to parents, separation from parents, and Jewish identity collectively accounted for variance in…
The association of health-related fitness with indicators of academic performance in Texas schools.
Welk, Gregory J; Jackson, Allen W; Morrow, James R; Haskell, William H; Meredith, Marilu D; Cooper, Kenneth H
2010-09-01
This study examined the associations between indicators of health-related physical fitness (cardiovascular fitness and body mass index) and academic performance (Texas Assessment of Knowledge and Skills). Partial correlations were generally stronger for cardiovascular fitness than body mass index and consistently stronger in the middle school grades. Mixed-model regression analyses revealed modest associations between fitness and academic achievement after controlling for potentially confounding variables. The effects of fitness on academic achievement were positive but small. A separate logistic regression analysis indicated that higher fitness rates increased the odds of schools achieving exemplary/recognized school status within the state. School fitness attainment is an indicator of higher performing schools. Direction of causality cannot be inferred due to the cross-sectional nature of the data.
Computational tools for exact conditional logistic regression.
Corcoran, C; Mehta, C; Patel, N; Senchaudhuri, P
Logistic regression analyses are often challenged by the inability of unconditional likelihood-based approximations to yield consistent, valid estimates and p-values for model parameters. This can be due to sparseness or separability in the data. Conditional logistic regression, though useful in such situations, can also be computationally unfeasible when the sample size or number of explanatory covariates is large. We review recent developments that allow efficient approximate conditional inference, including Monte Carlo sampling and saddlepoint approximations. We demonstrate through real examples that these methods enable the analysis of significantly larger and more complex data sets. We find in this investigation that for these moderately large data sets Monte Carlo seems a better alternative, as it provides unbiased estimates of the exact results and can be executed in less CPU time than can the single saddlepoint approximation. Moreover, the double saddlepoint approximation, while computationally the easiest to obtain, offers little practical advantage. It produces unreliable results and cannot be computed when a maximum likelihood solution does not exist. Copyright 2001 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Boeke, R.; Taylor, P. C.; Li, Y.
2017-12-01
Arctic cloud amount as simulated in CMIP5 models displays large intermodel spread- models disagree on the processes important for cloud formation as well as the radiative impact of clouds. The radiative response to cloud forcing can be better assessed when the drivers of Arctic cloud formation are known. Arctic cloud amount (CA) is a function of both atmospheric and surface conditions, and it is crucial to separate the influences of unique processes to understand why the models are different. This study uses a multilinear regression methodology to determine cloud changes using 3 variables as predictors: lower tropospheric stability (LTS), 500-hPa vertical velocity (ω500), and sea ice concentration (SIC). These three explanatory variables were chosen because their effects on clouds can be attributed to unique climate processes: LTS is a thermodynamic indicator of the relationship between clouds and atmospheric stability, SIC determines the interaction between clouds and the surface, and ω500 is a metric for dynamical change. Vertical, seasonal profiles of necessary variables are obtained from the Coupled Model Intercomparison Project 5 (CMIP5) historical simulation, an ocean-atmosphere couple model forced with the best-estimate natural and anthropogenic radiative forcing from 1850-2005, and statistical significance tests are used to confirm the regression equation. A unique heuristic model will be constructed for each climate model and for observations, and models will be tested by their ability to capture the observed cloud amount and behavior. Lastly, the intermodel spread in Arctic cloud amount will be attributed to individual processes, ranking the relative contributions of each factor to shed light on emergent constraints in the Arctic cloud radiative effect.
Analytical three-point Dixon method: With applications for spiral water-fat imaging.
Wang, Dinghui; Zwart, Nicholas R; Li, Zhiqiang; Schär, Michael; Pipe, James G
2016-02-01
The goal of this work is to present a new three-point analytical approach with flexible even or uneven echo increments for water-fat separation and to evaluate its feasibility with spiral imaging. Two sets of possible solutions of water and fat are first found analytically. Then, two field maps of the B0 inhomogeneity are obtained by linear regression. The initial identification of the true solution is facilitated by the root-mean-square error of the linear regression and the incorporation of a fat spectrum model. The resolved field map after a region-growing algorithm is refined iteratively for spiral imaging. The final water and fat images are recalculated using a joint water-fat separation and deblurring algorithm. Successful implementations were demonstrated with three-dimensional gradient-echo head imaging and single breathhold abdominal imaging. Spiral, high-resolution T1 -weighted brain images were shown with comparable sharpness to the reference Cartesian images. With appropriate choices of uneven echo increments, it is feasible to resolve the aliasing of the field map voxel-wise. High-quality water-fat spiral imaging can be achieved with the proposed approach. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Underwood, Kristen L.; Rizzo, Donna M.; Schroth, Andrew W.; Dewoolkar, Mandar M.
2017-12-01
Given the variable biogeochemical, physical, and hydrological processes driving fluvial sediment and nutrient export, the water science and management communities need data-driven methods to identify regions prone to production and transport under variable hydrometeorological conditions. We use Bayesian analysis to segment concentration-discharge linear regression models for total suspended solids (TSS) and particulate and dissolved phosphorus (PP, DP) using 22 years of monitoring data from 18 Lake Champlain watersheds. Bayesian inference was leveraged to estimate segmented regression model parameters and identify threshold position. The identified threshold positions demonstrated a considerable range below and above the median discharge—which has been used previously as the default breakpoint in segmented regression models to discern differences between pre and post-threshold export regimes. We then applied a Self-Organizing Map (SOM), which partitioned the watersheds into clusters of TSS, PP, and DP export regimes using watershed characteristics, as well as Bayesian regression intercepts and slopes. A SOM defined two clusters of high-flux basins, one where PP flux was predominantly episodic and hydrologically driven; and another in which the sediment and nutrient sourcing and mobilization were more bimodal, resulting from both hydrologic processes at post-threshold discharges and reactive processes (e.g., nutrient cycling or lateral/vertical exchanges of fine sediment) at prethreshold discharges. A separate DP SOM defined two high-flux clusters exhibiting a bimodal concentration-discharge response, but driven by differing land use. Our novel framework shows promise as a tool with broad management application that provides insights into landscape drivers of riverine solute and sediment export.
Albuquerque, F S; Peso-Aguiar, M C; Assunção-Albuquerque, M J T; Gálvez, L
2009-08-01
The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm). The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.
Oliveira, André; Cabral, António J R; Mendes, Jorge M; Martins, Maria R O; Cabral, Pedro
2015-11-04
Stroke risk has been shown to display varying patterns of geographic distribution amongst countries but also between regions of the same country. Traditionally a disease of older persons, a global 25% increase in incidence instead was noticed between 1990 and 2010 in persons aged 20-≤64 years, particularly in low- and medium-income countries. Understanding spatial disparities in the association between socioeconomic factors and stroke is critical to target public health initiatives aiming to mitigate or prevent this disease, including in younger persons. We aimed to identify socioeconomic determinants of geographic disparities of stroke risk in people <65 years old, in municipalities of mainland Portugal, and the spatiotemporal variation of the association between these determinants and stroke risk during two study periods (1992-1996 and 2002-2006). Poisson and negative binomial global regression models were used to explore determinants of disease risk. Geographically weighted regression (GWR) represents a distinctive approach, allowing estimation of local regression coefficients. Models for both study periods were identified. Significant variables included education attainment, work hours per week and unemployment. Local Poisson GWR models achieved the best fit and evidenced spatially varying regression coefficients. Spatiotemporal inequalities were observed in significant variables, with dissimilarities between men and women. This study contributes to a better understanding of the relationship between stroke and socioeconomic factors in the population <65 years of age, one age group seldom analysed separately. It can thus help to improve the targeting of public health initiatives, even more in a context of economic crisis.
Conners, Erin E; Swanson, Kate; Morales-Miranda, Sonia; Fernández Casanueva, Carmen; Mercer, Valerie J; Brouwer, Kimberly C
2017-07-01
This study assessed correlates of inconsistent condom use with casual partners and the prevalence of sexual risk behaviors and STIs in the Mexico/Guatemala border region using a sample of 392 migrants (303 men, 85 women) who reported current substance use or problem drinking. We ran separate univariate logistic regression models for men and women, and multivariate logistic regression models for men only. Prevalence of syphilis was 1.2% among women and 2.3% among men; HIV prevalence was 2.4% among women and 1.3% among men. Inconsistent condom use with casual partners was higher in women with greater education and lower among women who sold sex. In men, less access to free condoms, drug use with sexual partners, and drug use before sex were independently associated with inconsistent condom use with casual partners. Sexual and substance use risk behaviors were common, and HIV/STI prevention efforts should target both genders and expand beyond most-at risk populations.
Hodgson, Robert; Reason, Timothy; Trueman, David; Wickstead, Rose; Kusel, Jeanette; Jasilek, Adam; Claxton, Lindsay; Taylor, Matthew; Pulikottil-Jacob, Ruth
2017-10-01
The estimation of utility values for the economic evaluation of therapies for wet age-related macular degeneration (AMD) is a particular challenge. Previous economic models in wet AMD have been criticized for failing to capture the bilateral nature of wet AMD by modelling visual acuity (VA) and utility values associated with the better-seeing eye only. Here we present a de novo regression analysis using generalized estimating equations (GEE) applied to a previous dataset of time trade-off (TTO)-derived utility values from a sample of the UK population that wore contact lenses to simulate visual deterioration in wet AMD. This analysis allows utility values to be estimated as a function of VA in both the better-seeing eye (BSE) and worse-seeing eye (WSE). VAs in both the BSE and WSE were found to be statistically significant (p < 0.05) when regressed separately. When included without an interaction term, only the coefficient for VA in the BSE was significant (p = 0.04), but when an interaction term between VA in the BSE and WSE was included, only the constant term (mean TTO utility value) was significant, potentially a result of the collinearity between the VA of the two eyes. The lack of both formal model fit statistics from the GEE approach and theoretical knowledge to support the superiority of one model over another make it difficult to select the best model. Limitations of this analysis arise from the potential influence of collinearity between the VA of both eyes, and the use of contact lenses to reflect VA states to obtain the original dataset. Whilst further research is required to elicit more accurate utility values for wet AMD, this novel regression analysis provides a possible source of utility values to allow future economic models to capture the quality of life impact of changes in VA in both eyes. Novartis Pharmaceuticals UK Limited.
Fernandes, David Douglas Sousa; Gomes, Adriano A; Costa, Gean Bezerra da; Silva, Gildo William B da; Véras, Germano
2011-12-15
This work is concerned of evaluate the use of visible and near-infrared (NIR) range, separately and combined, to determine the biodiesel content in biodiesel/diesel blends using Multiple Linear Regression (MLR) and variable selection by Successive Projections Algorithm (SPA). Full spectrum models employing Partial Least Squares (PLS) and variables selection by Stepwise (SW) regression coupled with Multiple Linear Regression (MLR) and PLS models also with variable selection by Jack-Knife (Jk) were compared the proposed methodology. Several preprocessing were evaluated, being chosen derivative Savitzky-Golay with second-order polynomial and 17-point window for NIR and visible-NIR range, with offset correction. A total of 100 blends with biodiesel content between 5 and 50% (v/v) prepared starting from ten sample of biodiesel. In the NIR and visible region the best model was the SPA-MLR using only two and eight wavelengths with RMSEP of 0.6439% (v/v) and 0.5741 respectively, while in the visible-NIR region the best model was the SW-MLR using five wavelengths and RMSEP of 0.9533% (v/v). Results indicate that both spectral ranges evaluated showed potential for developing a rapid and nondestructive method to quantify biodiesel in blends with mineral diesel. Finally, one can still mention that the improvement in terms of prediction error obtained with the procedure for variables selection was significant. Copyright © 2011 Elsevier B.V. All rights reserved.
Predicting Ascospore Release of Monilinia vaccinii-corymbosi of Blueberry with Machine Learning.
Harteveld, Dalphy O C; Grant, Michael R; Pscheidt, Jay W; Peever, Tobin L
2017-11-01
Mummy berry, caused by Monilinia vaccinii-corymbosi, causes economic losses of highbush blueberry in the U.S. Pacific Northwest (PNW). Apothecia develop from mummified berries overwintering on soil surfaces and produce ascospores that infect tissue emerging from floral and vegetative buds. Disease control currently relies on fungicides applied on a calendar basis rather than inoculum availability. To establish a prediction model for ascospore release, apothecial development was tracked in three fields, one in western Oregon and two in northwestern Washington in 2015 and 2016. Air and soil temperature, precipitation, soil moisture, leaf wetness, relative humidity and solar radiation were monitored using in-field weather stations and Washington State University's AgWeatherNet stations. Four modeling approaches were compared: logistic regression, multivariate adaptive regression splines, artificial neural networks, and random forest. A supervised learning approach was used to train the models on two data sets: training (70%) and testing (30%). The importance of environmental factors was calculated for each model separately. Soil temperature, soil moisture, and solar radiation were identified as the most important factors influencing ascospore release. Random forest models, with 78% accuracy, showed the best performance compared with the other models. Results of this research helps PNW blueberry growers to optimize fungicide use and reduce production costs.
Non-Linear Approach in Kinesiology Should Be Preferred to the Linear--A Case of Basketball.
Trninić, Marko; Jeličić, Mario; Papić, Vladan
2015-07-01
In kinesiology, medicine, biology and psychology, in which research focus is on dynamical self-organized systems, complex connections exist between variables. Non-linear nature of complex systems has been discussed and explained by the example of non-linear anthropometric predictors of performance in basketball. Previous studies interpreted relations between anthropometric features and measures of effectiveness in basketball by (a) using linear correlation models, and by (b) including all basketball athletes in the same sample of participants regardless of their playing position. In this paper the significance and character of linear and non-linear relations between simple anthropometric predictors (AP) and performance criteria consisting of situation-related measures of effectiveness (SE) in basketball were determined and evaluated. The sample of participants consisted of top-level junior basketball players divided in three groups according to their playing time (8 minutes and more per game) and playing position: guards (N = 42), forwards (N = 26) and centers (N = 40). Linear (general model) and non-linear (general model) regression models were calculated simultaneously and separately for each group. The conclusion is viable: non-linear regressions are frequently superior to linear correlations when interpreting actual association logic among research variables.
Miller, Matthew P.; Johnson, Henry M.; Susong, David D.; Wolock, David M.
2015-01-01
Understanding how watershed characteristics and climate influence the baseflow component of stream discharge is a topic of interest to both the scientific and water management communities. Therefore, the development of baseflow estimation methods is a topic of active research. Previous studies have demonstrated that graphical hydrograph separation (GHS) and conductivity mass balance (CMB) methods can be applied to stream discharge data to estimate daily baseflow. While CMB is generally considered to be a more objective approach than GHS, its application across broad spatial scales is limited by a lack of high frequency specific conductance (SC) data. We propose a new method that uses discrete SC data, which are widely available, to estimate baseflow at a daily time step using the CMB method. The proposed approach involves the development of regression models that relate discrete SC concentrations to stream discharge and time. Regression-derived CMB baseflow estimates were more similar to baseflow estimates obtained using a CMB approach with measured high frequency SC data than were the GHS baseflow estimates at twelve snowmelt dominated streams and rivers. There was a near perfect fit between the regression-derived and measured CMB baseflow estimates at sites where the regression models were able to accurately predict daily SC concentrations. We propose that the regression-derived approach could be applied to estimate baseflow at large numbers of sites, thereby enabling future investigations of watershed and climatic characteristics that influence the baseflow component of stream discharge across large spatial scales.
NASA Astrophysics Data System (ADS)
Hapugoda, J. C.; Sooriyarachchi, M. R.
2017-09-01
Survival time of patients with a disease and the incidence of that particular disease (count) is frequently observed in medical studies with the data of a clustered nature. In many cases, though, the survival times and the count can be correlated in a way that, diseases that occur rarely could have shorter survival times or vice versa. Due to this fact, joint modelling of these two variables will provide interesting and certainly improved results than modelling these separately. Authors have previously proposed a methodology using Generalized Linear Mixed Models (GLMM) by joining the Discrete Time Hazard model with the Poisson Regression model to jointly model survival and count model. As Aritificial Neural Network (ANN) has become a most powerful computational tool to model complex non-linear systems, it was proposed to develop a new joint model of survival and count of Dengue patients of Sri Lanka by using that approach. Thus, the objective of this study is to develop a model using ANN approach and compare the results with the previously developed GLMM model. As the response variables are continuous in nature, Generalized Regression Neural Network (GRNN) approach was adopted to model the data. To compare the model fit, measures such as root mean square error (RMSE), absolute mean error (AME) and correlation coefficient (R) were used. The measures indicate the GRNN model fits the data better than the GLMM model.
ERIC Educational Resources Information Center
Jacobson, Doris S.
1978-01-01
This is the third of a series of reports on the findings from a study directed at further understanding the impact of marital separation/divorce on children during the 12-month period following the parental separation. This paper reports on parent-child communication regarding cognitive preparation of children for the parental separation. (Author)
Predicting streamflow regime metrics for ungauged streamsin Colorado, Washington, and Oregon
NASA Astrophysics Data System (ADS)
Sanborn, Stephen C.; Bledsoe, Brian P.
2006-06-01
Streamflow prediction in ungauged basins provides essential information for water resources planning and management and ecohydrological studies yet remains a fundamental challenge to the hydrological sciences. A methodology is presented for stratifying streamflow regimes of gauged locations, classifying the regimes of ungauged streams, and developing models for predicting a suite of ecologically pertinent streamflow metrics for these streams. Eighty-four streamflow metrics characterizing various flow regime attributes were computed along with physical and climatic drainage basin characteristics for 150 streams with little or no streamflow modification in Colorado, Washington, and Oregon. The diverse hydroclimatology of the study area necessitates flow regime stratification and geographically independent clusters were identified and used to develop separate predictive models for each flow regime type. Multiple regression models for flow magnitude, timing, and rate of change metrics were quite accurate with many adjusted R2 values exceeding 0.80, while models describing streamflow variability did not perform as well. Separate stratification schemes for high, low, and average flows did not considerably improve models for metrics describing those particular aspects of the regime over a scheme based on the entire flow regime. Models for streams identified as 'snowmelt' type were improved if sites in Colorado and the Pacific Northwest were separated to better stratify the processes driving streamflow in these regions thus revealing limitations of geographically independent streamflow clusters. This study demonstrates that a broad suite of ecologically relevant streamflow characteristics can be accurately modeled across large heterogeneous regions using this framework. Applications of the resulting models include stratifying biomonitoring sites and quantifying linkages between specific aspects of flow regimes and aquatic community structure. In particular, the results bode well for modeling ecological processes related to high-flow magnitude, timing, and rate of change such as the recruitment of fish and riparian vegetation across large regions.
NASA Astrophysics Data System (ADS)
Lee, Kang Il
2012-08-01
The present study aims to provide insight into the relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21-0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.
Launch Vehicle Propulsion Design with Multiple Selection Criteria
NASA Technical Reports Server (NTRS)
Shelton, Joey D.; Frederick, Robert A.; Wilhite, Alan W.
2005-01-01
The approach and techniques described herein define an optimization and evaluation approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system. The method uses Monte Carlo simulations, genetic algorithm solvers, a propulsion thermo-chemical code, power series regression curves for historical data, and statistical models in order to optimize a vehicle system. The system, including parameters for engine chamber pressure, area ratio, and oxidizer/fuel ratio, was modeled and optimized to determine the best design for seven separate design weight and cost cases by varying design and technology parameters. Significant model results show that a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Other key findings show the sensitivity of propulsion parameters, technology factors, and cost factors and how these parameters differ when cost and weight are optimized separately. Each of the three key propulsion parameters; chamber pressure, area ratio, and oxidizer/fuel ratio, are optimized in the seven design cases and results are plotted to show impacts to engine mass and overall vehicle mass.
Schmidt, Heinar; Scheier, Rico; Hopkins, David L
2013-01-01
A prototype handheld Raman system was used as a rapid non-invasive optical device to measure raw sheep meat to estimate cooked meat tenderness and cooking loss. Raman measurements were conducted on m. longissimus thoracis et lumborum samples from two sheep flocks from two different origins which had been aged for five days at 3-4°C before deep freezing and further analysis. The Raman data of 140 samples were correlated with shear force and cooking loss data using PLS regression. Both sample origins could be discriminated and separate correlation models yielded better correlations than the joint correlation model. For shear force, R(2)=0.79 and R(2)=0.86 were obtained for the two sites. Results for cooking loss were comparable: separate models yielded R(2)=0.79 and R(2)=0.83 for the two sites. The results show the potential usefulness of Raman spectra which can be recorded during meat processing for the prediction of quality traits such as tenderness and cooking loss. Copyright © 2012 Elsevier Ltd. All rights reserved.
Accounting for standard errors of vision-specific latent trait in regression models.
Wong, Wan Ling; Li, Xiang; Li, Jialiang; Wong, Tien Yin; Cheng, Ching-Yu; Lamoureux, Ecosse L
2014-07-11
To demonstrate the effectiveness of Hierarchical Bayesian (HB) approach in a modeling framework for association effects that accounts for SEs of vision-specific latent traits assessed using Rasch analysis. A systematic literature review was conducted in four major ophthalmic journals to evaluate Rasch analysis performed on vision-specific instruments. The HB approach was used to synthesize the Rasch model and multiple linear regression model for the assessment of the association effects related to vision-specific latent traits. The effectiveness of this novel HB one-stage "joint-analysis" approach allows all model parameters to be estimated simultaneously and was compared with the frequently used two-stage "separate-analysis" approach in our simulation study (Rasch analysis followed by traditional statistical analyses without adjustment for SE of latent trait). Sixty-six reviewed articles performed evaluation and validation of vision-specific instruments using Rasch analysis, and 86.4% (n = 57) performed further statistical analyses on the Rasch-scaled data using traditional statistical methods; none took into consideration SEs of the estimated Rasch-scaled scores. The two models on real data differed for effect size estimations and the identification of "independent risk factors." Simulation results showed that our proposed HB one-stage "joint-analysis" approach produces greater accuracy (average of 5-fold decrease in bias) with comparable power and precision in estimation of associations when compared with the frequently used two-stage "separate-analysis" procedure despite accounting for greater uncertainty due to the latent trait. Patient-reported data, using Rasch analysis techniques, do not take into account the SE of latent trait in association analyses. The HB one-stage "joint-analysis" is a better approach, producing accurate effect size estimations and information about the independent association of exposure variables with vision-specific latent traits. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
NASA Astrophysics Data System (ADS)
Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.
2016-02-01
Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.
Tu, Yu-Kang; Krämer, Nicole; Lee, Wen-Chung
2012-07-01
In the analysis of trends in health outcomes, an ongoing issue is how to separate and estimate the effects of age, period, and cohort. As these 3 variables are perfectly collinear by definition, regression coefficients in a general linear model are not unique. In this tutorial, we review why identification is a problem, and how this problem may be tackled using partial least squares and principal components regression analyses. Both methods produce regression coefficients that fulfill the same collinearity constraint as the variables age, period, and cohort. We show that, because the constraint imposed by partial least squares and principal components regression is inherent in the mathematical relation among the 3 variables, this leads to more interpretable results. We use one dataset from a Taiwanese health-screening program to illustrate how to use partial least squares regression to analyze the trends in body heights with 3 continuous variables for age, period, and cohort. We then use another dataset of hepatocellular carcinoma mortality rates for Taiwanese men to illustrate how to use partial least squares regression to analyze tables with aggregated data. We use the second dataset to show the relation between the intrinsic estimator, a recently proposed method for the age-period-cohort analysis, and partial least squares regression. We also show that the inclusion of all indicator variables provides a more consistent approach. R code for our analyses is provided in the eAppendix.
Genomic prediction based on data from three layer lines using non-linear regression models.
Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L
2014-11-06
Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional occurrence of large negative accuracies when the evaluated line was not included in the training dataset. Furthermore, when using a multi-line training dataset, non-linear models provided information on the genotype data that was complementary to the linear models, which indicates that the underlying data distributions of the three studied lines were indeed heterogeneous.
Method and Excel VBA Algorithm for Modeling Master Recession Curve Using Trigonometry Approach.
Posavec, Kristijan; Giacopetti, Marco; Materazzi, Marco; Birk, Steffen
2017-11-01
A new method was developed and implemented into an Excel Visual Basic for Applications (VBAs) algorithm utilizing trigonometry laws in an innovative way to overlap recession segments of time series and create master recession curves (MRCs). Based on a trigonometry approach, the algorithm horizontally translates succeeding recession segments of time series, placing their vertex, that is, the highest recorded value of each recession segment, directly onto the appropriate connection line defined by measurement points of a preceding recession segment. The new method and algorithm continues the development of methods and algorithms for the generation of MRC, where the first published method was based on a multiple linear/nonlinear regression model approach (Posavec et al. 2006). The newly developed trigonometry-based method was tested on real case study examples and compared with the previously published multiple linear/nonlinear regression model-based method. The results show that in some cases, that is, for some time series, the trigonometry-based method creates narrower overlaps of the recession segments, resulting in higher coefficients of determination R 2 , while in other cases the multiple linear/nonlinear regression model-based method remains superior. The Excel VBA algorithm for modeling MRC using the trigonometry approach is implemented into a spreadsheet tool (MRCTools v3.0 written by and available from Kristijan Posavec, Zagreb, Croatia) containing the previously published VBA algorithms for MRC generation and separation. All algorithms within the MRCTools v3.0 are open access and available free of charge, supporting the idea of running science on available, open, and free of charge software. © 2017, National Ground Water Association.
The Use of Remote Sensing Data for Modeling Air Quality in the Cities
NASA Astrophysics Data System (ADS)
Putrenko, V. V.; Pashynska, N. M.
2017-12-01
Monitoring of environmental pollution in the cities by the methods of remote sensing of the Earth is actual area of research for sustainable development. Ukraine has a poorly developed network of monitoring stations for air quality, the technical condition of which is deteriorating in recent years. Therefore, the possibility of obtaining data about the condition of air by remote sensing methods is of great importance. The paper considers the possibility of using the data about condition of atmosphere of the project AERONET to assess the air quality in Ukraine. The main pollution indicators were used data on fine particulate matter (PM2.5) and nitrogen dioxide (NO2) content in the atmosphere. The main indicator of air quality in Ukraine is the air pollution index (API). We have built regression models the relationship between indicators of NO2, which are measured by remote sensing methods and ground-based measurements of indicators. There have also been built regression models, the relationship between the data given to the land of NO2 and API. To simulate the relationship between the API and PM2.5 were used geographically weighted regression model, which allows to take into account the territorial differentiation between these indicators. As a result, the maps that show the distribution of the main types of pollution in the territory of Ukraine, were constructed. PM2.5 data modeling is complicated with using existing indicators, which requires a separate organization observation network for PM2.5 content in the atmosphere for sustainable development in cities of Ukraine.
Sensitivity of ALOS/PALSAR imagery to forest degradation by fire in northern Amazon
NASA Astrophysics Data System (ADS)
Martins, Flora da Silva Ramos Vieira; dos Santos, João Roberto; Galvão, Lênio Soares; Xaud, Haron Abrahim Magalhães
2016-07-01
We evaluated the sensitivity of the full polarimetric Phased Array type L-band Synthetic Aperture Radar (PALSAR), onboard the Advanced Land Observing Satellite (ALOS), to forest degradation caused by fires in northern Amazon, Brazil. We searched for changes in PALSAR signal and tri-dimensional polarimetric responses for different classes of fire disturbance defined by fire frequency and severity. Since the aboveground biomass (AGB) is affected by fire, multiple regression models to estimate AGB were obtained for the whole set of coherent and incoherent attributes (general model) and for each set separately (specific models). The results showed that the polarimetric L-band PALSAR attributes were sensitive to variations in canopy structure and AGB caused by forest fire. However, except for the unburned and thrice burned classes, no single PALSAR attribute was able to discriminate between the intermediate classes of forest degradation by fire. Both the coherent and incoherent polarimetric attributes were important to explain AGB variations in tropical forests affected by fire. The HV backscattering coefficient, anisotropy, double-bounce component, orientation angle, volume index and HH-VV phase difference were PALSAR attributes selected from multiple regression analysis to estimate AGB. The general regression model, combining phase and power radar metrics, presented better results than specific models using coherent or incoherent attributes. The polarimetric responses indicated the dominance of VV-oriented backscattering in primary forest and lightly burned forests. The HH-oriented backscattering predominated in heavily and frequently burned forests. The results suggested a greater contribution of horizontally arranged constituents such as fallen trunks or branches in areas severely affected by fire.
Mikulich-Gilbertson, Susan K; Wagner, Brandie D; Grunwald, Gary K; Riggs, Paula D; Zerbe, Gary O
2018-01-01
Medical research is often designed to investigate changes in a collection of response variables that are measured repeatedly on the same subjects. The multivariate generalized linear mixed model (MGLMM) can be used to evaluate random coefficient associations (e.g. simple correlations, partial regression coefficients) among outcomes that may be non-normal and differently distributed by specifying a multivariate normal distribution for their random effects and then evaluating the latent relationship between them. Empirical Bayes predictors are readily available for each subject from any mixed model and are observable and hence, plotable. Here, we evaluate whether second-stage association analyses of empirical Bayes predictors from a MGLMM, provide a good approximation and visual representation of these latent association analyses using medical examples and simulations. Additionally, we compare these results with association analyses of empirical Bayes predictors generated from separate mixed models for each outcome, a procedure that could circumvent computational problems that arise when the dimension of the joint covariance matrix of random effects is large and prohibits estimation of latent associations. As has been shown in other analytic contexts, the p-values for all second-stage coefficients that were determined by naively assuming normality of empirical Bayes predictors provide a good approximation to p-values determined via permutation analysis. Analyzing outcomes that are interrelated with separate models in the first stage and then associating the resulting empirical Bayes predictors in a second stage results in different mean and covariance parameter estimates from the maximum likelihood estimates generated by a MGLMM. The potential for erroneous inference from using results from these separate models increases as the magnitude of the association among the outcomes increases. Thus if computable, scatterplots of the conditionally independent empirical Bayes predictors from a MGLMM are always preferable to scatterplots of empirical Bayes predictors generated by separate models, unless the true association between outcomes is zero.
Brown, K M; Middaugh, S J; Haythornthwaite, J A; Bielory, L
2001-04-01
It was expected that stress and anxiety would be related to Raynaud's phenomenon (RP) attack characteristics when mild outdoor temperatures produced partial or no digital vasoconstriction. Hypotheses were that in warmer temperature categories, compared to those below 40 degrees F, higher stress or anxiety would be associated with more frequent, severe, and painful attacks. The Raynaud's Treatment Study recruited 313 participants with primary RP. Outcomes were attack rate, severity, and pain. Predictors were average daily outdoor temperature, stress, anxiety, age, gender, and a stress-by-temperature or an anxiety-by-temperature interaction. Outcomes were tested separately in multiple linear regression models. Stress and anxiety were tested in separate models. Stress was not a significant predictor of RP attack characteristics. Higher anxiety was related to more frequent attacks above 60 degrees F. It was also related to greater attack severity at all temperatures, and to greater pain above 60 degrees F and between 40 degrees and 49.9 degrees F.
Integrating uniform design and response surface methodology to optimize thiacloprid suspension
Li, Bei-xing; Wang, Wei-chang; Zhang, Xian-peng; Zhang, Da-xia; Mu, Wei; Liu, Feng
2017-01-01
A model 25% suspension concentrate (SC) of thiacloprid was adopted to evaluate an integrative approach of uniform design and response surface methodology. Tersperse2700, PE1601, xanthan gum and veegum were the four experimental factors, and the aqueous separation ratio and viscosity were the two dependent variables. Linear and quadratic polynomial models of stepwise regression and partial least squares were adopted to test the fit of the experimental data. Verification tests revealed satisfactory agreement between the experimental and predicted data. The measured values for the aqueous separation ratio and viscosity were 3.45% and 278.8 mPa·s, respectively, and the relative errors of the predicted values were 9.57% and 2.65%, respectively (prepared under the proposed conditions). Comprehensive benefits could also be obtained by appropriately adjusting the amount of certain adjuvants based on practical requirements. Integrating uniform design and response surface methodology is an effective strategy for optimizing SC formulas. PMID:28383036
NASA Astrophysics Data System (ADS)
Lombardo, L.; Cama, M.; Maerker, M.; Parisi, L.; Rotigliano, E.
2014-12-01
This study aims at comparing the performances of Binary Logistic Regression (BLR) and Boosted Regression Trees (BRT) methods in assessing landslide susceptibility for multiple-occurrence regional landslide events within the Mediterranean region. A test area was selected in the north-eastern sector of Sicily (southern Italy), corresponding to the catchments of the Briga and the Giampilieri streams both stretching for few kilometres from the Peloritan ridge (eastern Sicily, Italy) to the Ionian sea. This area was struck on the 1st October 2009 by an extreme climatic event resulting in thousands of rapid shallow landslides, mainly of debris flows and debris avalanches types involving the weathered layer of a low to high grade metamorphic bedrock. Exploiting the same set of predictors and the 2009 landslide archive, BLR- and BRT-based susceptibility models were obtained for the two catchments separately, adopting a random partition (RP) technique for validation; besides, the models trained in one of the two catchments (Briga) were tested in predicting the landslide distribution in the other (Giampilieri), adopting a spatial partition (SP) based validation procedure. All the validation procedures were based on multi-folds tests so to evaluate and compare the reliability of the fitting, the prediction skill, the coherence in the predictor selection and the precision of the susceptibility estimates. All the obtained models for the two methods produced very high predictive performances, with a general congruence between BLR and BRT in the predictor importance. In particular, the research highlighted that BRT-models reached a higher prediction performance with respect to BLR-models, for RP based modelling, whilst for the SP-based models the difference in predictive skills between the two methods dropped drastically, converging to an analogous excellent performance. However, when looking at the precision of the probability estimates, BLR demonstrated to produce more robust models in terms of selected predictors and coefficients, as well as of dispersion of the estimated probabilities around the mean value for each mapped pixel. The difference in the behaviour could be interpreted as the result of overfitting effects, which heavily affect decision tree classification more than logistic regression techniques.
Workplace bullying a risk for permanent employees.
Keuskamp, Dominic; Ziersch, Anna M; Baum, Fran E; Lamontagne, Anthony D
2012-04-01
We tested the hypothesis that the risk of experiencing workplace bullying was greater for those employed on casual contracts compared to permanent or ongoing employees. A cross-sectional population-based telephone survey was conducted in South Australia in 2009. Employment arrangements were classified by self-report into four categories: permanent, casual, fixed-term and self-employed. Self-report of workplace bullying was modelled using multiple logistic regression in relation to employment arrangement, controlling for sex, age, working hours, years in job, occupational skill level, marital status and a proxy for socioeconomic status. Workplace bullying was reported by 174 respondents (15.2%). Risk of workplace bullying was higher for being in a professional occupation, having a university education and being separated, divorced or widowed, but did not vary significantly by sex, age or job tenure. In adjusted multivariate logistic regression models, casual workers were significantly less likely than workers on permanent or fixed-term contracts to report bullying. Those separated, divorced or widowed had higher odds of reporting bullying than married, de facto or never-married workers. Contrary to expectation, workplace bullying was more often reported by permanent than casual employees. It may represent an exposure pathway not previously linked with the more idealised permanent employment arrangement. A finer understanding of psycho-social hazards across all employment arrangements is needed, with equal attention to the hazards associated with permanent as well as casual employment. © 2012 The Authors. ANZJPH © 2012 Public Health Association of Australia.
Morrell, Glen R; Ikizler, Talat A; Chen, Xiaorui; Heilbrun, Marta E; Wei, Guo; Boucher, Robert; Beddhu, Srinivasan
2016-07-01
We investigate whether psoas or paraspinous muscle area measured on a single L4-L5 image is a useful measure of whole lean body mass (LBM) compared to dedicated midthigh magnetic resonance imaging (MRI). Observational study. Outpatient dialysis units and a research clinic. One hundred five adult participants on maintenance hemodialysis. No control group was used. Psoas muscle area, paraspinous muscle area, and midthigh muscle area (MTMA) were measured by magnetic resonance imaging. LBM was measured by dual-energy absorptiometry scan. In separate multivariable linear regression models, psoas, paraspinous, and MTMA were associated with increase in LBM. In separate multivariate logistic regression models, C statistics for diagnosis of sarcopenia (defined as <25th percentile of LBM) were 0.69 for paraspinous muscle area, 0.81 for psoas muscle area, and 0.89 for MTMA. With sarcopenia defined as <10th percentile of LBM, the corresponding C statistics were 0.71, 0.92, and 0.94. We conclude that psoas muscle area provides a good measure of whole-body muscle mass, better than paraspinous muscle area but slightly inferior to midthigh measurement. Hence, in body composition studies a single axial MR image at the L4-L5 level can be used to provide information on both fat and muscle and may eliminate the need for time-consuming measurement of muscle area in the thigh. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.
2013-06-01
This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance. PMID:26926235
Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C
2015-01-01
Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Rogers, Jeffrey N.; Parrish, Christopher E.; Ward, Larry G.; Burdick, David M.
2018-03-01
Salt marsh vegetation tends to increase vertical uncertainty in light detection and ranging (lidar) derived elevation data, often causing the data to become ineffective for analysis of topographic features governing tidal inundation or vegetation zonation. Previous attempts at improving lidar data collected in salt marsh environments range from simply computing and subtracting the global elevation bias to more complex methods such as computing vegetation-specific, constant correction factors. The vegetation specific corrections can be used along with an existing habitat map to apply separate corrections to different areas within a study site. It is hypothesized here that correcting salt marsh lidar data by applying location-specific, point-by-point corrections, which are computed from lidar waveform-derived features, tidal-datum based elevation, distance from shoreline and other lidar digital elevation model based variables, using nonparametric regression will produce better results. The methods were developed and tested using full-waveform lidar and ground truth for three marshes in Cape Cod, Massachusetts, U.S.A. Five different model algorithms for nonparametric regression were evaluated, with TreeNet's stochastic gradient boosting algorithm consistently producing better regression and classification results. Additionally, models were constructed to predict the vegetative zone (high marsh and low marsh). The predictive modeling methods used in this study estimated ground elevation with a mean bias of 0.00 m and a standard deviation of 0.07 m (0.07 m root mean square error). These methods appear very promising for correction of salt marsh lidar data and, importantly, do not require an existing habitat map, biomass measurements, or image based remote sensing data such as multi/hyperspectral imagery.
Calibration Model for Apnea-Hypopnea Indices: Impact of Alternative Criteria for Hypopneas
Ho, Vu; Crainiceanu, Ciprian M.; Punjabi, Naresh M.; Redline, Susan; Gottlieb, Daniel J.
2015-01-01
Study Objective: To characterize the association among apnea-hypopnea indices (AHIs) determined using three common metrics for defining hypopnea, and to develop a model to calibrate between these AHIs. Design: Cross-sectional analysis of Sleep Heart Health Study Data. Setting: Community-based. Participants: There were 6,441 men and women age 40 y or older. Measurement and Results: Three separate AHIs have been calculated, using all apneas (defined as a decrease in airflow greater than 90% from baseline for ≥ 10 sec) plus hypopneas (defined as a decrease in airflow or chest wall or abdominal excursion greater than 30% from baseline, but not meeting apnea definitions) associated with either: (1) a 4% or greater fall in oxyhemoglobin saturation—AHI4; (2) a 3% or greater fall in oxyhemoglobin saturation—AHI3; or (3) a 3% or greater fall in oxyhemoglobin saturation or an event-related arousal—AHI3a. Median values were 5.4, 9.7, and 13.4 for AHI4, AHI3, and AHI3a, respectively (P < 0.0001). Penalized spline regression models were used to compare AHI values across the three metrics and to calculate prediction intervals. Comparison of regression models demonstrates divergence in AHI scores among the three methods at low AHI values and gradual convergence at higher levels of AHI. Conclusions: The three methods of scoring hypopneas yielded significantly different estimates of the apnea-hypopnea index (AHI), although the relative difference is reduced in severe disease. The regression models presented will enable clinicians and researchers to more appropriately compare AHI values obtained using differing metrics for hypopnea. Citation: Ho V, Crainiceanu CM, Punjabi NM, Redline S, Gottlieb DJ. Calibration model for apnea-hypopnea indices: impact of alternative criteria for hypopneas. SLEEP 2015;38(12):1887–1892. PMID:26564122
Satisfaction of active duty soldiers with family dental care.
Chisick, M C
1997-02-01
In the fall of 1992, a random, worldwide sample of 6,442 married and single parent soldiers completed a self-administered survey on satisfaction with 22 attributes of family dental care. Simple descriptive statistics for each attribute were derived, as was a composite overall satisfaction score using factor analysis. Composite scores were regressed on demographics, annual dental utilization, and access barriers to identify those factors having an impact on a soldier's overall satisfaction with family dental care. Separate regression models were constructed for single parents, childless couples, and couples with children. Results show below-average satisfaction with nearly all attributes of family dental care, with access attributes having the lowest average satisfaction scores. Factors influencing satisfaction with family dental care varied by family type with one exception: dependent dental utilization within the past year contributed positively to satisfaction across all family types.
NASA Technical Reports Server (NTRS)
Rango, A.; Salomonson, V. V.; Foster, J. L.
1975-01-01
Low resolution meteorological satellite and high resolution earth resources satellite data were used to map snowcovered area over the upper Indus River and the Wind River Mountains of Wyoming, respectively. For the Indus River, early Spring snowcovered area was extracted and related to April through June streamflow from 1967-1971 using a regression equation. Composited results from two years of data over seven Wind River Mountain watersheds indicated that LANDSAT-1 snowcover observations, separated on the basis of watershed elevation, could also be related to runoff in significant regression equations. It appears that earth resources satellite data will be useful in assisting in the prediction of seasonal streamflow for various water resources applications, nonhazardous collection of snow data from restricted-access areas, and in hydrologic modeling of snowmelt runoff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garner, Rochelle E., E-mail: rochelle.garner@canad
Background: Cadmium has been inconsistently related to blood pressure and hypertension. The present study seeks to clarify the relationship between cadmium levels found in blood and urine, blood pressure and hypertension in a large sample of adults. Methods: The study sample included participants ages 20 through 79 from multiple cycles of the Canadian Health Measures Survey (2007 through 2013) with measured blood cadmium (n=10,099) and urinary cadmium (n=6988). Linear regression models examined the association between natural logarithm transformed cadmium levels and blood pressure (separate models for systolic and diastolic blood pressure) after controlling for known covariates. Logistic regression models weremore » used to examine the association between cadmium and hypertension. Models were run separately by sex, smoking status, and body mass index category. Results: Men had higher mean systolic (114.8 vs. 110.8 mmHg, p<0.01) and diastolic (74.0 vs. 69.6 mmHg, p<0.01) blood pressure compared to women. Although, geometric mean blood (0.46 vs. 0.38 µg/L, p<0.01) and creatinine-adjusted standardized urinary cadmium levels (0.48 vs. 0.38 µg/L, p<0.01) were higher among those with hypertension, these differences were no longer significant after adjustment for age, sex and smoking status. In overall regression models, increases in blood cadmium were associated with increased systolic (0.70 mmHg, 95% confidence interval [CI]=0.25–1.16, p<0.01) and diastolic blood pressure (0.74 mmHg, 95% CI=0.30–1.19, p<0.01). The associations between urinary cadmium, blood pressure and hypertension were not significant in overall models. Model stratification revealed significant and negative associations between urinary cadmium and hypertension among current smokers (OR=0.61, 95% CI=0.44–0.85, p<0.01), particularly female current smokers (OR=0.52, 95% CI=0.32–0.85, p=0.01). Conclusion: This study provides evidence of a significant association between cadmium levels, blood pressure and hypertension. However, the significance and direction of this association differs by sex, smoking status, and body mass index category. - Highlights: • Blood and urinary cadmium levels higher among those with hypertension. • Evidence of association between cadmium levels, blood pressure and hypertension. • Significance and direction of association differs by sex, smoking status, and BMI. • Higher urinary cadmium levels lower hypertension risk for current (female) smokers.« less
Antin, Jonathan F.; Stanley, Laura M.; Guo, Feng
2011-01-01
The purpose of this research effort was to compare older driver and non-driver functional impairment profiles across some 60 assessment metrics in an initial effort to contribute to the development of fitness-to-drive assessment models. Of the metrics evaluated, 21 showed statistically significant differences, almost all favoring the drivers. Also, it was shown that a logistic regression model comprised of five of the assessment scores could completely and accurately separate the two groups. The results of this study imply that older drivers are far less functionally impaired than non-drivers of similar ages, and that a parsimonious model can accurately assign individuals to either group. With such models, any driver classified or diagnosed as a non-driver would be a strong candidate for further investigation and intervention. PMID:22058607
Adler, Philipp; Hugen, Thorsten; Wiewiora, Marzena; Kunz, Benno
2011-03-07
An unstructured model for an integrated fermentation/membrane extraction process for the production of the aroma compounds 2-phenylethanol and 2-phenylethylacetate by Kluyveromyces marxianus CBS 600 was developed. The extent to which this model, based only on data from the conventional fermentation and separation processes, provided an estimation of the integrated process was evaluated. The effect of product inhibition on specific growth rate and on biomass yield by both aroma compounds was approximated by multivariate regression. Simulations of the respective submodels for fermentation and the separation process matched well with experimental results. With respect to the in situ product removal (ISPR) process, the effect of reduced product inhibition due to product removal on specific growth rate and biomass yield was predicted adequately by the model simulations. Overall product yields were increased considerably in this process (4.0 g/L 2-PE+2-PEA vs. 1.4 g/L in conventional fermentation) and were even higher than predicted by the model. To describe the effect of product concentration on product formation itself, the model was extended using results from the conventional and the ISPR process, thus agreement between model and experimental data improved notably. Therefore, this model can be a useful tool for the development and optimization of an efficient integrated bioprocess. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmadlou, M.; Delavar, M. R.; Tayyebi, A.; Shafizadeh-Moghadam, H.
2015-12-01
Land use change (LUC) models used for modelling urban growth are different in structure and performance. Local models divide the data into separate subsets and fit distinct models on each of the subsets. Non-parametric models are data driven and usually do not have a fixed model structure or model structure is unknown before the modelling process. On the other hand, global models perform modelling using all the available data. In addition, parametric models have a fixed structure before the modelling process and they are model driven. Since few studies have compared local non-parametric models with global parametric models, this study compares a local non-parametric model called multivariate adaptive regression spline (MARS), and a global parametric model called artificial neural network (ANN) to simulate urbanization in Mumbai, India. Both models determine the relationship between a dependent variable and multiple independent variables. We used receiver operating characteristic (ROC) to compare the power of the both models for simulating urbanization. Landsat images of 1991 (TM) and 2010 (ETM+) were used for modelling the urbanization process. The drivers considered for urbanization in this area were distance to urban areas, urban density, distance to roads, distance to water, distance to forest, distance to railway, distance to central business district, number of agricultural cells in a 7 by 7 neighbourhoods, and slope in 1991. The results showed that the area under the ROC curve for MARS and ANN was 94.77% and 95.36%, respectively. Thus, ANN performed slightly better than MARS to simulate urban areas in Mumbai, India.
Fitzpatrick, Cole D; Rakasi, Saritha; Knodler, Michael A
2017-01-01
Speed is one of the most important factors in traffic safety as higher speeds are linked to increased crash risk and higher injury severities. Nearly a third of fatal crashes in the United States are designated as "speeding-related", which is defined as either "the driver behavior of exceeding the posted speed limit or driving too fast for conditions." While many studies have utilized the speeding-related designation in safety analyses, no studies have examined the underlying accuracy of this designation. Herein, we investigate the speeding-related crash designation through the development of a series of logistic regression models that were derived from the established speeding-related crash typologies and validated using a blind review, by multiple researchers, of 604 crash narratives. The developed logistic regression model accurately identified crashes which were not originally designated as speeding-related but had crash narratives that suggested speeding as a causative factor. Only 53.4% of crashes designated as speeding-related contained narratives which described speeding as a causative factor. Further investigation of these crashes revealed that the driver contributing code (DCC) of "driving too fast for conditions" was being used in three separate situations. Additionally, this DCC was also incorrectly used when "exceeding the posted speed limit" would likely have been a more appropriate designation. Finally, it was determined that the responding officer only utilized one DCC in 82% of crashes not designated as speeding-related but contained a narrative indicating speed as a contributing causal factor. The use of logistic regression models based upon speeding-related crash typologies offers a promising method by which all possible speeding-related crashes could be identified. Published by Elsevier Ltd.
Calibration and Data Analysis of the MC-130 Air Balance
NASA Technical Reports Server (NTRS)
Booth, Dennis; Ulbrich, N.
2012-01-01
Design, calibration, calibration analysis, and intended use of the MC-130 air balance are discussed. The MC-130 balance is an 8.0 inch diameter force balance that has two separate internal air flow systems and one external bellows system. The manual calibration of the balance consisted of a total of 1854 data points with both unpressurized and pressurized air flowing through the balance. A subset of 1160 data points was chosen for the calibration data analysis. The regression analysis of the subset was performed using two fundamentally different analysis approaches. First, the data analysis was performed using a recently developed extension of the Iterative Method. This approach fits gage outputs as a function of both applied balance loads and bellows pressures while still allowing the application of the iteration scheme that is used with the Iterative Method. Then, for comparison, the axial force was also analyzed using the Non-Iterative Method. This alternate approach directly fits loads as a function of measured gage outputs and bellows pressures and does not require a load iteration. The regression models used by both the extended Iterative and Non-Iterative Method were constructed such that they met a set of widely accepted statistical quality requirements. These requirements lead to reliable regression models and prevent overfitting of data because they ensure that no hidden near-linear dependencies between regression model terms exist and that only statistically significant terms are included. Finally, a comparison of the axial force residuals was performed. Overall, axial force estimates obtained from both methods show excellent agreement as the differences of the standard deviation of the axial force residuals are on the order of 0.001 % of the axial force capacity.
Multilevel joint competing risk models
NASA Astrophysics Data System (ADS)
Karunarathna, G. H. S.; Sooriyarachchi, M. R.
2017-09-01
Joint modeling approaches are often encountered for different outcomes of competing risk time to event and count in many biomedical and epidemiology studies in the presence of cluster effect. Hospital length of stay (LOS) has been the widely used outcome measure in hospital utilization due to the benchmark measurement for measuring multiple terminations such as discharge, transferred, dead and patients who have not completed the event of interest at the follow up period (censored) during hospitalizations. Competing risk models provide a method of addressing such multiple destinations since classical time to event models yield biased results when there are multiple events. In this study, the concept of joint modeling has been applied to the dengue epidemiology in Sri Lanka, 2006-2008 to assess the relationship between different outcomes of LOS and platelet count of dengue patients with the district cluster effect. Two key approaches have been applied to build up the joint scenario. In the first approach, modeling each competing risk separately using the binary logistic model, treating all other events as censored under the multilevel discrete time to event model, while the platelet counts are assumed to follow a lognormal regression model. The second approach is based on the endogeneity effect in the multilevel competing risks and count model. Model parameters were estimated using maximum likelihood based on the Laplace approximation. Moreover, the study reveals that joint modeling approach yield more precise results compared to fitting two separate univariate models, in terms of AIC (Akaike Information Criterion).
Vanneman, Megan E.; Harris, Alex H. S.; Chen, Cheng; Mohr, Beth A.; Adams, Rachel Sayko; Williams, Thomas V.; Larson, Mary Jo
2015-01-01
This study described the rate and predictors of Operation Enduring Freedom/Operation Iraqi Freedom active duty Army members’ enrollment in and use of Veterans Health Administration (VHA) services (linkage), as well as variation in linkage rates by VHA facility. We used a multivariate mixed effect regression model to predict linkage to VHA, and also calculated linkage rates in the catchment areas of each facility (n = 158). The sample included 151,122 active duty members who deployed to Iraq or Afghanistan and then separated from the Army between fiscal years 2008 and 2012. Approximately 48% of the active duty members separating utilized VHA as an enrollee within one year. There was significant variation in linkage rates by VHA facilities (31–72%). The most notable variables associated with greater linkage included probable serious injury during index deployment (odds ratio = 1.81), separation because of disability (odds ratio = 2.86), and various measures of receipt of VHA care before and after separation. Information about the individual characteristics that predict greater or lesser linkage to VHA services can be used to improve delivery of health care services at VHA as well as outreach efforts to active duty Army members. PMID:26444467
Taking Lessons Learned from a Proxy Application to a Full Application for SNAP and PARTISN
Womeldorff, Geoffrey Alan; Payne, Joshua Estes; Bergen, Benjamin Karl
2017-06-09
SNAP is a proxy application which simulates the computational motion of a neutral particle transport code, PARTISN. Here in this work, we have adapted parts of SNAP separately; we have re-implemented the iterative shell of SNAP in the task-model runtime Legion, showing an improvement to the original schedule, and we have created multiple Kokkos implementations of the computational kernel of SNAP, displaying similar performance to the native Fortran. We then translate our Kokkos experiments in SNAP to PARTISN, necessitating engineering development, regression testing, and further thought.
Competitive Swimming and Racial Disparities in Drowning
Myers, Samuel L.; Cuesta, Ana M.; Lai, Yufeng
2018-01-01
This paper provides compelling evidence of an inverse relationship between competitive swimming rates and drowning rates using Centers for Disease Control and Prevention (CDC) data on fatal drowning rates and membership rates from USA Swimming, the governing organization of competitive swimming in the United States. Tobit and Poisson regression models are estimated using panel data by state from 1999–2007 separately for males, females, African Americans and whites. The strong inverse relationship between competitive swimming rates and unintentional deaths through fatal drowning is most pronounced among African Americans males.
Taking Lessons Learned from a Proxy Application to a Full Application for SNAP and PARTISN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Womeldorff, Geoffrey Alan; Payne, Joshua Estes; Bergen, Benjamin Karl
SNAP is a proxy application which simulates the computational motion of a neutral particle transport code, PARTISN. Here in this work, we have adapted parts of SNAP separately; we have re-implemented the iterative shell of SNAP in the task-model runtime Legion, showing an improvement to the original schedule, and we have created multiple Kokkos implementations of the computational kernel of SNAP, displaying similar performance to the native Fortran. We then translate our Kokkos experiments in SNAP to PARTISN, necessitating engineering development, regression testing, and further thought.
CatReg Software for Categorical Regression Analysis (May 2016)
CatReg 3.0 is a Microsoft Windows enhanced version of the Agency’s categorical regression analysis (CatReg) program. CatReg complements EPA’s existing Benchmark Dose Software (BMDS) by greatly enhancing a risk assessor’s ability to determine whether data from separate toxicologic...
Fischer, A; Friggens, N C; Berry, D P; Faverdin, P
2018-07-01
The ability to properly assess and accurately phenotype true differences in feed efficiency among dairy cows is key to the development of breeding programs for improving feed efficiency. The variability among individuals in feed efficiency is commonly characterised by the residual intake approach. Residual feed intake is represented by the residuals of a linear regression of intake on the corresponding quantities of the biological functions that consume (or release) energy. However, the residuals include both, model fitting and measurement errors as well as any variability in cow efficiency. The objective of this study was to isolate the individual animal variability in feed efficiency from the residual component. Two separate models were fitted, in one the standard residual energy intake (REI) was calculated as the residual of a multiple linear regression of lactation average net energy intake (NEI) on lactation average milk energy output, average metabolic BW, as well as lactation loss and gain of body condition score. In the other, a linear mixed model was used to simultaneously fit fixed linear regressions and random cow levels on the biological traits and intercept using fortnight repeated measures for the variables. This method split the predicted NEI in two parts: one quantifying the population mean intercept and coefficients, and one quantifying cow-specific deviations in the intercept and coefficients. The cow-specific part of predicted NEI was assumed to isolate true differences in feed efficiency among cows. NEI and associated energy expenditure phenotypes were available for the first 17 fortnights of lactation from 119 Holstein cows; all fed a constant energy-rich diet. Mixed models fitting cow-specific intercept and coefficients to different combinations of the aforementioned energy expenditure traits, calculated on a fortnightly basis, were compared. The variance of REI estimated with the lactation average model represented only 8% of the variance of measured NEI. Among all compared mixed models, the variance of the cow-specific part of predicted NEI represented between 53% and 59% of the variance of REI estimated from the lactation average model or between 4% and 5% of the variance of measured NEI. The remaining 41% to 47% of the variance of REI estimated with the lactation average model may therefore reflect model fitting errors or measurement errors. In conclusion, the use of a mixed model framework with cow-specific random regressions seems to be a promising method to isolate the cow-specific component of REI in dairy cows.
Genetic analysis of partial egg production records in Japanese quail using random regression models.
Abou Khadiga, G; Mahmoud, B Y F; Farahat, G S; Emam, A M; El-Full, E A
2017-08-01
The main objectives of this study were to detect the most appropriate random regression model (RRM) to fit the data of monthly egg production in 2 lines (selected and control) of Japanese quail and to test the consistency of different criteria of model choice. Data from 1,200 female Japanese quails for the first 5 months of egg production from 4 consecutive generations of an egg line selected for egg production in the first month (EP1) was analyzed. Eight RRMs with different orders of Legendre polynomials were compared to determine the proper model for analysis. All criteria of model choice suggested that the adequate model included the second-order Legendre polynomials for fixed effects, and the third-order for additive genetic effects and permanent environmental effects. Predictive ability of the best model was the highest among all models (ρ = 0.987). According to the best model fitted to the data, estimates of heritability were relatively low to moderate (0.10 to 0.17) showed a descending pattern from the first to the fifth month of production. A similar pattern was observed for permanent environmental effects with greater estimates in the first (0.36) and second (0.23) months of production than heritability estimates. Genetic correlations between separate production periods were higher (0.18 to 0.93) than their phenotypic counterparts (0.15 to 0.87). The superiority of the selected line over the control was observed through significant (P < 0.05) linear contrast estimates. Significant (P < 0.05) estimates of covariate effect (age at sexual maturity) showed a decreased pattern with greater impact on egg production in earlier ages (first and second months) than later ones. A methodology based on random regression animal models can be recommended for genetic evaluation of egg production in Japanese quail. © 2017 Poultry Science Association Inc.
Hu, Meng; Clark, Kelsey L.; Gong, Xiajing; Noudoost, Behrad; Li, Mingyao; Moore, Tirin
2015-01-01
Inferotemporal (IT) neurons are known to exhibit persistent, stimulus-selective activity during the delay period of object-based working memory tasks. Frontal eye field (FEF) neurons show robust, spatially selective delay period activity during memory-guided saccade tasks. We present a copula regression paradigm to examine neural interaction of these two types of signals between areas IT and FEF of the monkey during a working memory task. This paradigm is based on copula models that can account for both marginal distribution over spiking activity of individual neurons within each area and joint distribution over ensemble activity of neurons between areas. Considering the popular GLMs as marginal models, we developed a general and flexible likelihood framework that uses the copula to integrate separate GLMs into a joint regression analysis. Such joint analysis essentially leads to a multivariate analog of the marginal GLM theory and hence efficient model estimation. In addition, we show that Granger causality between spike trains can be readily assessed via the likelihood ratio statistic. The performance of this method is validated by extensive simulations, and compared favorably to the widely used GLMs. When applied to spiking activity of simultaneously recorded FEF and IT neurons during working memory task, we observed significant Granger causality influence from FEF to IT, but not in the opposite direction, suggesting the role of the FEF in the selection and retention of visual information during working memory. The copula model has the potential to provide unique neurophysiological insights about network properties of the brain. PMID:26063909
Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.
2012-01-01
This study by the U.S. Geological Survey, prepared in cooperation with the Virginia Department of Environmental Quality, quantifies the components of the hydrologic cycle across the Commonwealth of Virginia. Long-term, mean fluxes were calculated for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971–2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. The base-flow proportion for the 48 watersheds averaged 72 percent using specific conductance, a value that was substantially higher than the 61 percent average calculated using a graphical-separation technique (the USGS program PART). Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia.
Hanke, Alexander T; Tsintavi, Eleni; Ramirez Vazquez, Maria Del Pilar; van der Wielen, Luuk A M; Verhaert, Peter D E M; Eppink, Michel H M; van de Sandt, Emile J A X; Ottens, Marcel
2016-09-01
Knowledge-based development of chromatographic separation processes requires efficient techniques to determine the physicochemical properties of the product and the impurities to be removed. These characterization techniques are usually divided into approaches that determine molecular properties, such as charge, hydrophobicity and size, or molecular interactions with auxiliary materials, commonly in the form of adsorption isotherms. In this study we demonstrate the application of a three-dimensional liquid chromatography approach to a clarified cell homogenate containing a therapeutic enzyme. Each separation dimension determines a molecular property relevant to the chromatographic behavior of each component. Matching of the peaks across the different separation dimensions and against a high-resolution reference chromatogram allows to assign the determined parameters to pseudo-components, allowing to determine the most promising technique for the removal of each impurity. More detailed process design using mechanistic models requires isotherm parameters. For this purpose, the second dimension consists of multiple linear gradient separations on columns in a high-throughput screening compatible format, that allow regression of isotherm parameters with an average standard error of 8%. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1283-1291, 2016. © 2016 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Wang, Yang; Wang, Ping; Xu, Changhua; Sun, Suqin; Zhou, Qun; Shi, Zhe; Li, Jin; Chen, Tao; Li, Zheng; Cui, Weili
2015-11-01
Paeonia lactiflora, a commonly used herbal medicine (HM) in Traditional Chinese Medicine (TCM), mainly has two species, Radix Paeoniae Alba (RPA) and Radix Paeoniae Rubra (RPR), for different clinical applications in TCM. For expounding the chemical profile of RPA and RPR and ensuring the clinical efficacy and safety, an infrared macro-fingerprint analysis-through-separation method integrated with statistical pattern recognition was developed to analyze and discriminate the two Paeonia lactifloras. In IR spectra, the major difference between the two was in the range of 1200-900 cm-1: the strongest peak of RPA was at 1024 cm-1, while that of RPR was 1049 cm-1. The difference was magnified in second derivative spectra. The findings were further verified by investigating the separation process of total glucosides, stepwisely monitored by both of IR and UPLC-MS/MS. Simultaneously, the aqueous extracts of RPA and RPR had been separated continuously to acquire the comprehensively hierarchical chemical characteristics for undoubtedly identification and subsequently discrimination of the two herbs. Moreover, 60 batches of the two HMs (30 for each) were objectively classified by principal component regression (PCR) model based on IR macro-fingerprints.
Hollier, John M; Czyzewski, Danita I; Self, Mariella M; Weidler, Erica M; Smith, E O'Brian; Shulman, Robert J
2017-03-01
This study evaluates whether certain patient or parental characteristics are associated with gastroenterology (GI) referral versus primary pediatrics care for pediatric irritable bowel syndrome (IBS). A retrospective clinical trial sample of patients meeting pediatric Rome III IBS criteria was assembled from a single metropolitan health care system. Baseline socioeconomic status (SES) and clinical symptom measures were gathered. Various instruments measured participant and parental psychosocial traits. Study outcomes were stratified by GI referral versus primary pediatrics care. Two separate analyses of SES measures and GI clinical symptoms and psychosocial measures identified key factors by univariate and multiple logistic regression analyses. For each analysis, identified factors were placed in unadjusted and adjusted multivariate logistic regression models to assess their impact in predicting GI referral. Of the 239 participants, 152 were referred to pediatric GI, and 87 were managed in primary pediatrics care. Of the SES and clinical symptom factors, child self-assessment of abdominal pain duration and lower percentage of people living in poverty were the strongest predictors of GI referral. Among the psychosocial measures, parental assessment of their child's functional disability was the sole predictor of GI referral. In multivariate logistic regression models, all selected factors continued to predict GI referral in each model. Socioeconomic environment, clinical symptoms, and functional disability are associated with GI referral. Future interventions designed to ameliorate the effect of these identified factors could reduce unnecessary specialty consultations and health care overutilization for IBS.
The impact of diabetes on employment and work productivity.
Tunceli, Kaan; Bradley, Cathy J; Nerenz, David; Williams, L Keoki; Pladevall, Manel; Elston Lafata, Jennifer
2005-11-01
The purpose of this study was to longitudinally examine the effect of diabetes on labor market outcomes. Using secondary data from the first two waves (1992 and 1994) of the Health and Retirement Study, we identified 7,055 employed respondents (51-61 years of age), 490 of whom reported having diabetes in wave 1. We estimated the effect of diabetes in wave 1 on the probability of working in wave 2 using probit regression. For those working in wave 2, we modeled the relationships between diabetic status in wave 1 and the change in hours worked and work-loss days using ordinary least-squares regressions and modeled the presence of health-related work limitations using probit regression. All models control for health status and job characteristics and are estimated separately by sex. Among individuals with diabetes, the absolute probability of working was 4.4 percentage points less for women and 7.1 percentage points less for men relative to that of their counterparts without diabetes. Change in weekly hours worked was not statistically significantly associated with diabetes. Women with diabetes had 2 more work-loss days per year compared with women without diabetes. Compared with individuals without diabetes, men and women with diabetes were 5.4 and 6 percentage points (absolute increase), respectively, more likely to have work limitations. This article provides evidence that diabetes affects patients, employers, and society not only by reducing employment but also by contributing to work loss and health-related work limitations for those who remain employed.
Risk Factors for Suicidal Ideation in People at Risk for Huntington's Disease.
Anderson, Karen E; Eberly, Shirley; Groves, Mark; Kayson, Elise; Marder, Karen; Young, Anne B; Shoulson, Ira
2016-12-15
Suicidal ideation (SI) and attempts are increased in Huntington's disease (HD), making risk factor assessment a priority. To determine whether, hopelessness, irritability, aggression, anxiety, CAG expansion status, depression, and motor signs/symptoms were associated with Suicidal Ideation (SI) in those at risk for HD. Behavioral and neurological data were collected from subjects in an observational study. Subject characteristics were calculated by CAG status and SI. Logistic regression models were adjusted for demographics. Separate logistic regressions were used to compare SI and non-SI subjects. A combined logistic regression model, including 4 pre-specified predictors, (hopelessness, irritability, aggression, anxiety) was used to assess the relationship of SI to these predictors. 801 subjects were assessed, 40 were classified as having SI, 6.3% of CAG mutation expansion carriers had SI, compared with 4.3% of non- CAG mutation expansion carriers (p = 0.2275). SI subjects had significantly increased depression (p < 0.0001), hopelessness (p < 0.0001), irritability (p < 0.0001), aggression (p = 0.0089), and anxiety (p < 0.0001), and an elevated motor score (p = 0.0098). Impulsivity, assessed in a subgroup of subjects, was also associated with SI (p = 0.0267). Hopelessness and anxiety remained significant in combined model (p < 0.001; p < 0.0198, respectively) even when motor score was included. Behavioral symptoms were significantly higher in those reporting SI. Hopelessness and anxiety showed a particularly strong association with SI. Risk identification could assist in assessment of suicidality in this group.
QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1.
Comelli, Nieves C; Duchowicz, Pablo R; Castro, Eduardo A
2014-10-01
The inhibitory activity of 103 thiophene and 33 imidazopyridine derivatives against Polo-Like Kinase 1 (PLK1) expressed as pIC50 (-logIC50) was predicted by QSAR modeling. Multivariate linear regression (MLR) was employed to model the relationship between 0D and 3D molecular descriptors and biological activities of molecules using the replacement method (MR) as variable selection tool. The 136 compounds were separated into several training and test sets. Two splitting approaches, distribution of biological data and structural diversity, and the statistical experimental design procedure D-optimal distance were applied to the dataset. The significance of the training set models was confirmed by statistically higher values of the internal leave one out cross-validated coefficient of determination (Q2) and external predictive coefficient of determination for the test set (Rtest2). The model developed from a training set, obtained with the D-optimal distance protocol and using 3D descriptor space along with activity values, separated chemical features that allowed to distinguish high and low pIC50 values reasonably well. Then, we verified that such model was sufficient to reliably and accurately predict the activity of external diverse structures. The model robustness was properly characterized by means of standard procedures and their applicability domain (AD) was analyzed by leverage method. Copyright © 2014 Elsevier B.V. All rights reserved.
Curran, Patrick J.; Howard, Andrea L.; Bainter, Sierra; Lane, Stephanie T.; McGinley, James S.
2014-01-01
Objective Although recent statistical and computational developments allow for the empirical testing of psychological theories in ways not previously possible, one particularly vexing challenge remains: how to optimally model the prospective, reciprocal relations between two constructs as they developmentally unfold over time. Several analytic methods currently exist that attempt to model these types of relations, and each approach is successful to varying degrees. However, none provide the unambiguous separation of between-person and within-person components of stability and change over time, components that are often hypothesized to exist in the psychological sciences. The goal of our paper is to propose and demonstrate a novel extension of the multivariate latent curve model to allow for the disaggregation of these effects. Method We begin with a review of the standard latent curve models and describe how these primarily capture between-person differences in change. We then extend this model to allow for regression structures among the time-specific residuals to capture within-person differences in change. Results We demonstrate this model using an artificial data set generated to mimic the developmental relation between alcohol use and depressive symptomatology spanning five repeated measures. Conclusions We obtain a specificity of results from the proposed analytic strategy that are not available from other existing methodologies. We conclude with potential limitations of our approach and directions for future research. PMID:24364798
Thompson, Ronald G; Lizardi, Dana; Keyes, Katherine M; Hasin, Deborah S
2008-12-01
This study examined whether the experiences of childhood or adolescent parental divorce/separation and parental alcohol problems affected the likelihood of offspring DSM-IV lifetime alcohol dependence, controlling for parental history of drug, depression, and antisocial behavior problems. Data were drawn from the 2001-2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC), a nationally representative United States survey of 43,093 civilian non-institutionalized participants aged 18 and older, interviewed in person. Logistic regression models were used to calculate the main and interaction effects of childhood or adolescent parental divorce/separation and parental history of alcohol problems on offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Childhood or adolescent parental divorce/separation and parental history of alcohol problems were significantly related to offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Experiencing parental divorce/separation during childhood, even in the absence of parental history of alcohol problems, remained a significant predictor of lifetime alcohol dependence. Experiencing both childhood or adolescent parental divorce/separation and parental alcohol problems had a significantly stronger impact on the risk for DSM-IV alcohol dependence than the risk incurred by either parental risk factor alone. Further research is needed to better identify the factors that increase the risk for lifetime alcohol dependence among those who experience childhood or adolescent parental divorce/separation.
Thompson, Ronald G.; Lizardi, Dana; Keyes, Katherine M.; Hasin, Deborah S.
2013-01-01
Background This study examined whether the experiences of childhood or adolescent parental divorce/separation and parental alcohol problems affected the likelihood of offspring DSM-IV lifetime alcohol dependence, controlling for parental history of drug, depression, and antisocial behavior problems. Method Data were drawn from the 2001–2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC), a nationally representative United States survey of 43,093 civilian non-institutionalized participants aged 18 and older, interviewed in person. Logistic regression models were used to calculate the main and interaction effects of childhood or adolescent parental divorce/separation and parental history of alcohol problems on offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Results Childhood or adolescent parental divorce/separation and parental history of alcohol problems were significantly related to offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Experiencing parental divorce/separation during childhood, even in the absence of parental history of alcohol problems, remained a significant predictor of lifetime alcohol dependence. Experiencing both childhood or adolescent parental divorce/separation and parental alcohol problems had a significantly stronger impact on the risk for DSM-IV alcohol dependence than the risk incurred by either parental risk factor alone. Conclusions Further research is needed to better identify the factors that increase the risk for lifetime alcohol dependence among those who experience childhood or adolescent parental divorce/separation. PMID:18757141
1989-09-01
separate network architetures would otherwise have to be performed for each 5 of the nearly 70 cross-validation regressions. Fixing the composition...presentation. The generalized delta rule says the weight of each connection should be changed by an amount proportional to the product of the processing
Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.
2010-01-01
Multilevel hierarchical modeling methodology has been developed for use in ecological data analysis. The effect of urbanization on stream macroinvertebrate communities was measured across a gradient of basins in each of nine metropolitan regions across the conterminous United States. The hierarchical nature of this dataset was harnessed in a multi-tiered model structure, predicting both invertebrate response at the basin scale and differences in invertebrate response at the region scale. Ordination site scores, total taxa richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa richness, and richness-weighted mean tolerance of organisms at a site were used to describe invertebrate responses. Percentage of urban land cover was used as a basin-level predictor variable. Regional mean precipitation, air temperature, and antecedent agriculture were used as region-level predictor variables. Multilevel hierarchical models were fit to both levels of data simultaneously, borrowing statistical strength from the complete dataset to reduce uncertainty in regional coefficient estimates. Additionally, whereas non-hierarchical regressions were only able to show differing relations between invertebrate responses and urban intensity separately for each region, the multilevel hierarchical regressions were able to explain and quantify those differences within a single model. In this way, this modeling approach directly establishes the importance of antecedent agricultural conditions in masking the response of invertebrates to urbanization in metropolitan regions such as Milwaukee-Green Bay, Wisconsin; Denver, Colorado; and Dallas-Fort Worth, Texas. Also, these models show that regions with high precipitation, such as Atlanta, Georgia; Birmingham, Alabama; and Portland, Oregon, start out with better regional background conditions of invertebrates prior to urbanization but experience faster negative rates of change with urbanization. Ultimately, this urbanization-invertebrate response example is used to detail the multilevel hierarchical construction methodology, showing how the result is a set of models that are both statistically more rigorous and ecologically more interpretable than simple linear regression models.
Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia)
Churchill, Morgan; Clementz, Mark T; Kohno, Naoki
2014-01-01
Body size plays an important role in pinniped ecology and life history. However, body size data is often absent for historical, archaeological, and fossil specimens. To estimate the body size of pinnipeds (seals, sea lions, and walruses) for today and the past, we used 14 commonly preserved cranial measurements to develop sets of single variable and multivariate predictive equations for pinniped body mass and total length. Principal components analysis (PCA) was used to test whether separate family specific regressions were more appropriate than single predictive equations for Pinnipedia. The influence of phylogeny was tested with phylogenetic independent contrasts (PIC). The accuracy of these regressions was then assessed using a combination of coefficient of determination, percent prediction error, and standard error of estimation. Three different methods of multivariate analysis were examined: bidirectional stepwise model selection using Akaike information criteria; all-subsets model selection using Bayesian information criteria (BIC); and partial least squares regression. The PCA showed clear discrimination between Otariidae (fur seals and sea lions) and Phocidae (earless seals) for the 14 measurements, indicating the need for family-specific regression equations. The PIC analysis found that phylogeny had a minor influence on relationship between morphological variables and body size. The regressions for total length were more accurate than those for body mass, and equations specific to Otariidae were more accurate than those for Phocidae. Of the three multivariate methods, the all-subsets approach required the fewest number of variables to estimate body size accurately. We then used the single variable predictive equations and the all-subsets approach to estimate the body size of two recently extinct pinniped taxa, the Caribbean monk seal (Monachus tropicalis) and the Japanese sea lion (Zalophus japonicus). Body size estimates using single variable regressions generally under or over-estimated body size; however, the all-subset regression produced body size estimates that were close to historically recorded body length for these two species. This indicates that the all-subset regression equations developed in this study can estimate body size accurately. PMID:24916814
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, H.; Kim, Rokho; Korrick, S.
1996-12-31
In an earlier report based on participants in the Veterans Administration Normative Aging Study, we found a significant association between the risk of hypertension and lead levels in tibia. To examine the possible confounding effects of education and occupation, we considered in this study five levels of education and three levels of occupation as independent variables in the statistical model. Of 1,171 active subjects seen between August 1991 and December 1994, 563 provided complete data for this analysis. In the initial logistic regression model, acre and body mass index, family history of hypertension, and dietary sodium intake, but neither cumulativemore » smoking nor alcohol ingestion, conferred increased odds ratios for being hypertensive that were statistically significant. When the lead biomarkers were added separately to this initial logistic model, tibia lead and patella lead levels were associated with significantly elevated odds ratios for hypertension. In the final backward elimination logistic regression model that included categorical variables for education and occupation, the only variables retained were body mass index, family history of hypertension, and tibia lead level. We conclude that education and occupation variables were not confounding the association between the lead biomarkers and hypertension that we reported previously. 27 refs., 3 tabs.« less
Schöni, Daniel; Lauber, Lara; Fung, Christian; Goldberg, Johannes; Müri, René; Raabe, Andreas; Nyffeler, Thomas; Beck, Jürgen
2018-05-01
Common sequelae of subarachnoid hemorrhage (SAH) include somatic and/or cognitive impairment. This can cause emotional stress, social tensions, and difficulties in relationships. To test our hypothesis that more severe somatic and cognitive impairments increased the likelihood of disruption of a relationship after SAH, we assessed the integrity of marriage or partnership status in a well-evaluated subset of SAH patients. Our sample comprised 50 SAH patients who were discharged to a neurologic, in-house rehabilitation center between 2005 and 2010. Deficits on admission to the rehabilitation center were divided into 18 categories and grouped into minor and major somatic deficits, as well as cognitive deficits. Clinical outcome scores, marital/partnership status, and duration of partnership before ictus were recorded. A follow-up questionnaire after 4.3 (2012) and 8.8 (2017) years was used to assess changes in marital/partnership status. Possible predictor parameters were estimated and included in a stepdown regression analysis. In 2012, after a mean follow-up of 4.3 years, 8 of the 50 SAH patients were divorced or separated, whereas after 8.8 years only 1 additional relationship had ended. In our regression model analysis, a "short duration of relationship" before SAH and the presence of a "few minor somatic deficits" were associated with a higher likelihood of divorce or separation in the near future and remained unchanged at long-term follow-up. Contrary to our hypothesis, neither the presence of severe somatic or cognitive deficits nor clinical evaluation scores reliably predicted divorce or separation after SAH. Copyright © 2018 Elsevier Inc. All rights reserved.
The feature-weighted receptive field: an interpretable encoding model for complex feature spaces.
St-Yves, Ghislain; Naselaris, Thomas
2017-06-20
We introduce the feature-weighted receptive field (fwRF), an encoding model designed to balance expressiveness, interpretability and scalability. The fwRF is organized around the notion of a feature map-a transformation of visual stimuli into visual features that preserves the topology of visual space (but not necessarily the native resolution of the stimulus). The key assumption of the fwRF model is that activity in each voxel encodes variation in a spatially localized region across multiple feature maps. This region is fixed for all feature maps; however, the contribution of each feature map to voxel activity is weighted. Thus, the model has two separable sets of parameters: "where" parameters that characterize the location and extent of pooling over visual features, and "what" parameters that characterize tuning to visual features. The "where" parameters are analogous to classical receptive fields, while "what" parameters are analogous to classical tuning functions. By treating these as separable parameters, the fwRF model complexity is independent of the resolution of the underlying feature maps. This makes it possible to estimate models with thousands of high-resolution feature maps from relatively small amounts of data. Once a fwRF model has been estimated from data, spatial pooling and feature tuning can be read-off directly with no (or very little) additional post-processing or in-silico experimentation. We describe an optimization algorithm for estimating fwRF models from data acquired during standard visual neuroimaging experiments. We then demonstrate the model's application to two distinct sets of features: Gabor wavelets and features supplied by a deep convolutional neural network. We show that when Gabor feature maps are used, the fwRF model recovers receptive fields and spatial frequency tuning functions consistent with known organizational principles of the visual cortex. We also show that a fwRF model can be used to regress entire deep convolutional networks against brain activity. The ability to use whole networks in a single encoding model yields state-of-the-art prediction accuracy. Our results suggest a wide variety of uses for the feature-weighted receptive field model, from retinotopic mapping with natural scenes, to regressing the activities of whole deep neural networks onto measured brain activity. Copyright © 2017. Published by Elsevier Inc.
Debrus, B; Lebrun, P; Kindenge, J Mbinze; Lecomte, F; Ceccato, A; Caliaro, G; Mbay, J Mavar Tayey; Boulanger, B; Marini, R D; Rozet, E; Hubert, Ph
2011-08-05
An innovative methodology based on design of experiments (DoE), independent component analysis (ICA) and design space (DS) was developed in previous works and was tested out with a mixture of 19 antimalarial drugs. This global LC method development methodology (i.e. DoE-ICA-DS) was used to optimize the separation of 19 antimalarial drugs to obtain a screening method. DoE-ICA-DS methodology is fully compliant with the current trend of quality by design. DoE was used to define the set of experiments to model the retention times at the beginning, the apex and the end of each peak. Furthermore, ICA was used to numerically separate coeluting peaks and estimate their unbiased retention times. Gradient time, temperature and pH were selected as the factors of a full factorial design. These retention times were modelled by stepwise multiple linear regressions. A recently introduced critical quality attribute, namely the separation criterion (S), was also used to assess the quality of separations rather than using the resolution. Furthermore, the resulting mathematical models were also studied from a chromatographic point of view to understand and investigate the chromatographic behaviour of each compound. Good adequacies were found between the mathematical models and the expected chromatographic behaviours predicted by chromatographic theory. Finally, focusing at quality risk management, the DS was computed as the multidimensional subspace where the probability for the separation criterion to lie in acceptance limits was higher than a defined quality level. The DS was computed propagating the prediction error from the modelled responses to the quality criterion using Monte Carlo simulations. DoE-ICA-DS allowed encountering optimal operating conditions to obtain a robust screening method for the 19 considered antimalarial drugs in the framework of the fight against counterfeit medicines. Moreover and only on the basis of the same data set, a dedicated method for the determination of three antimalarial compounds in a pharmaceutical formulation was optimized to demonstrate both the efficiency and flexibility of the methodology proposed in the present study. Copyright © 2011 Elsevier B.V. All rights reserved.
Multi-sensory landscape assessment: the contribution of acoustic perception to landscape evaluation.
Gan, Yonghong; Luo, Tao; Breitung, Werner; Kang, Jian; Zhang, Tianhai
2014-12-01
In this paper, the contribution of visual and acoustic preference to multi-sensory landscape evaluation was quantitatively compared. The real landscapes were treated as dual-sensory ambiance and separated into visual landscape and soundscape. Both were evaluated by 63 respondents in laboratory conditions. The analysis of the relationship between respondent's visual and acoustic preference as well as their respective contribution to landscape preference showed that (1) some common attributes are universally identified in assessing visual, aural and audio-visual preference, such as naturalness or degree of human disturbance; (2) with acoustic and visual preferences as variables, a multi-variate linear regression model can satisfactorily predict landscape preference (R(2 )= 0.740), while the coefficients of determination for a unitary linear regression model were 0.345 and 0.720 for visual and acoustic preference as predicting factors, respectively; (3) acoustic preference played a much more important role in landscape evaluation than visual preference in this study (the former is about 4.5 times of the latter), which strongly suggests a rethinking of the role of soundscape in environment perception research and landscape planning practice.
James, Andrew I W; Young, Andrew W
2013-01-01
To explore the relationships between verbal aggression, physical aggression and inappropriate sexual behaviour following acquired brain injury. Multivariate statistical modelling of observed verbal aggression, physical aggression and inappropriate sexual behaviour utilizing demographic, pre-morbid, injury-related and neurocognitive predictors. Clinical records of 152 participants with acquired brain injury were reviewed, providing an important data set as disordered behaviours had been recorded at the time of occurrence with the Brain Injury Rehabilitation Trust (BIRT) Aggression Rating Scale and complementary measures of inappropriate sexual behaviour. Three behavioural components (verbal aggression, physical aggression and inappropriate sexual behaviour) were identified and subjected to separate logistical regression modelling in a sub-set of 77 participants. Successful modelling was achieved for both verbal and physical aggression (correctly classifying 74% and 65% of participants, respectively), with use of psychotropic medication and poorer verbal function increasing the odds of aggression occurring. Pre-morbid history of aggression predicted verbal but not physical aggression. No variables predicted inappropriate sexual behaviour. Verbal aggression, physical aggression and inappropriate sexual behaviour following acquired brain injury appear to reflect separate clinical phenomena rather than general behavioural dysregulation. Clinical markers that indicate an increased risk of post-injury aggression were not related to inappropriate sexual behaviour.
Impact of job characteristics on psychological health of Chinese single working women.
Yeung, D Y; Tang, C S
2001-01-01
This study aims at investigating the impact of individual and contextual job characteristics of control, psychological and physical demand, and security on psychological distress of 193 Chinese single working women in Hong Kong. The mediating role of job satisfaction in the job characteristics-distress relation is also assessed. Multiple regression analysis results show that job satisfaction mediates the effects of job control and security in predicting psychological distress; whereas psychological job demand has an independent effect on mental distress after considering the effect of job satisfaction. This main effect model indicates that psychological distress is best predicted by small company size, high psychological job demand, and low job satisfaction. Results from a separate regression analysis fails to support the overall combined effect of job demand-control on psychological distress. However, a significant physical job demand-control interaction effect on mental distress is noted, which reduces slightly after controlling the effect of job satisfaction.
Morrell, Glen R.; Ikizler, Talat A.; Chen, Xiaorui; Heilbrun, Marta E.; Wei, Guo; Boucher, Robert; Beddhu, Srinivasan
2016-01-01
Objective We investigate whether psoas or paraspinous muscle area measured on a single L4–5 image is a useful measure of whole lean body mass compared to dedicated mid-thigh magnetic resonance imaging (MRI). Design Observational study. Setting Outpatient dialysis units and a research clinic. Subjects 105 adult participants on maintenance hemodialysis. No control group was used. Exposure variables Psoas muscle area, paraspinous muscle area, and mid-thigh muscle area (MTMA) were measured by MRI. Main outcome measure Lean body mass was measured by dual-energy absorptiometry (DEXA) scan. Results In separate multivariable linear regression models, psoas, paraspinous, and mid-thigh muscle area were associated with increase in lean body mass. In separate multivariate logistic regression models, c-statistics for diagnosis of sarcopenia (defined as < 25th percentile of lean body mass) were 0.69 for paraspinous muscle area, 0.81 for psoas muscle area, and 0.89 for mid-thigh muscle area. With sarcopenia defined as < 10th percentile of lean body mass, the corresponding c-statistics were 0.71, 0.92, and 0.94. Conclusions We conclude that psoas muscle area provides a good measure of whole body muscle mass, better than paraspinous muscle area but slightly inferior to mid thigh measurement. Hence, in body composition studies a single axial MR image at the L4–L5 level can be used to provide information on both fat and muscle and may eliminate the need for time-consuming measurement of muscle area in the thigh. PMID:26994780
Wherry, Susan A.; Wood, Tamara M.
2018-04-27
A whole lake eutrophication (WLE) model approach for phosphorus and cyanobacterial biomass in Upper Klamath Lake, south-central Oregon, is presented here. The model is a successor to a previous model developed to inform a Total Maximum Daily Load (TMDL) for phosphorus in the lake, but is based on net primary production (NPP), which can be calculated from dissolved oxygen, rather than scaling up a small-scale description of cyanobacterial growth and respiration rates. This phase 3 WLE model is a refinement of the proof-of-concept developed in phase 2, which was the first attempt to use NPP to simulate cyanobacteria in the TMDL model. The calibration of the calculated NPP WLE model was successful, with performance metrics indicating a good fit to calibration data, and the calculated NPP WLE model was able to simulate mid-season bloom decreases, a feature that previous models could not reproduce.In order to use the model to simulate future scenarios based on phosphorus load reduction, a multivariate regression model was created to simulate NPP as a function of the model state variables (phosphorus and chlorophyll a) and measured meteorological and temperature model inputs. The NPP time series was split into a low- and high-frequency component using wavelet analysis, and regression models were fit to the components separately, with moderate success.The regression models for NPP were incorporated in the WLE model, referred to as the “scenario” WLE (SWLE), and the fit statistics for phosphorus during the calibration period were mostly unchanged. The fit statistics for chlorophyll a, however, were degraded. These statistics are still an improvement over prior models, and indicate that the SWLE is appropriate for long-term predictions even though it misses some of the seasonal variations in chlorophyll a.The complete whole lake SWLE model, with multivariate regression to predict NPP, was used to make long-term simulations of the response to 10-, 20-, and 40-percent reductions in tributary nutrient loads. The long-term mean water column concentration of total phosphorus was reduced by 9, 18, and 36 percent, respectively, in response to these load reductions. The long-term water column chlorophyll a concentration was reduced by 4, 13, and 44 percent, respectively. The adjustment to a new equilibrium between the water column and sediments occurred over about 30 years.
Alishiri, Gholam Hossein; Bayat, Noushin; Fathi Ashtiani, Ali; Tavallaii, Seyed Abbas; Assari, Shervin; Moharamzad, Yashar
2008-01-01
The aim of this work was to develop two logistic regression models capable of predicting physical and mental health related quality of life (HRQOL) among rheumatoid arthritis (RA) patients. In this cross-sectional study which was conducted during 2006 in the outpatient rheumatology clinic of our university hospital, Short Form 36 (SF-36) was used for HRQOL measurements in 411 RA patients. A cutoff point to define poor versus good HRQOL was calculated using the first quartiles of SF-36 physical and mental component scores (33.4 and 36.8, respectively). Two distinct logistic regression models were used to derive predictive variables including demographic, clinical, and psychological factors. The sensitivity, specificity, and accuracy of each model were calculated. Poor physical HRQOL was positively associated with pain score, disease duration, monthly family income below 300 US$, comorbidity, patient global assessment of disease activity or PGA, and depression (odds ratios: 1.1; 1.004; 15.5; 1.1; 1.02; 2.08, respectively). The variables that entered into the poor mental HRQOL prediction model were monthly family income below 300 US$, comorbidity, PGA, and bodily pain (odds ratios: 6.7; 1.1; 1.01; 1.01, respectively). Optimal sensitivity and specificity were achieved at a cutoff point of 0.39 for the estimated probability of poor physical HRQOL and 0.18 for mental HRQOL. Sensitivity, specificity, and accuracy of the physical and mental models were 73.8, 87, 83.7% and 90.38, 70.36, 75.43%, respectively. The results show that the suggested models can be used to predict poor physical and mental HRQOL separately among RA patients using simple variables with acceptable accuracy. These models can be of use in the clinical decision-making of RA patients and to recognize patients with poor physical or mental HRQOL in advance, for better management.
The development and evaluation of accident predictive models
NASA Astrophysics Data System (ADS)
Maleck, T. L.
1980-12-01
A mathematical model that will predict the incremental change in the dependent variables (accident types) resulting from changes in the independent variables is developed. The end product is a tool for estimating the expected number and type of accidents for a given highway segment. The data segments (accidents) are separated in exclusive groups via a branching process and variance is further reduced using stepwise multiple regression. The standard error of the estimate is calculated for each model. The dependent variables are the frequency, density, and rate of 18 types of accidents among the independent variables are: district, county, highway geometry, land use, type of zone, speed limit, signal code, type of intersection, number of intersection legs, number of turn lanes, left-turn control, all-red interval, average daily traffic, and outlier code. Models for nonintersectional accidents did not fit nor validate as well as models for intersectional accidents.
Comparison of CEAS and Williams-type models for spring wheat yields in North Dakota and Minnesota
NASA Technical Reports Server (NTRS)
Barnett, T. L. (Principal Investigator)
1982-01-01
The CEAS and Williams-type yield models are both based on multiple regression analysis of historical time series data at CRD level. The CEAS model develops a separate relation for each CRD; the Williams-type model pools CRD data to regional level (groups of similar CRDs). Basic variables considered in the analyses are USDA yield, monthly mean temperature, monthly precipitation, and variables derived from these. The Williams-type model also used soil texture and topographic information. Technological trend is represented in both by piecewise linear functions of year. Indicators of yield reliability obtained from a ten-year bootstrap test of each model (1970-1979) demonstrate that the models are very similar in performance in all respects. Both models are about equally objective, adequate, timely, simple, and inexpensive. Both consider scientific knowledge on a broad scale but not in detail. Neither provides a good current measure of modeled yield reliability. The CEAS model is considered very slightly preferable for AgRISTARS applications.
Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E
2017-07-01
High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.
Maternal and peer influences on drinking among Latino college students.
Varvil-Weld, Lindsey; Turrisi, Rob; Hospital, Michelle M; Mallett, Kimberly A; Bámaca-Colbert, Mayra Y
2014-01-01
Previous research on college drinking has paid little attention to Latino students. Social development models (Catalano, Hawkins, & Miller, 1992) suggest that protective influences in one domain (e.g., mothers) can offset negative influences from other domains (e.g., peers) though this possibility has not been explored with respect to Latino college student drinking. The present study had two aims: 1) to determine whether four specific maternal influences (monitoring, positive communication, permissiveness, and modeling) and peer descriptive norms were associated with college drinking and consequences among Latino students, and 2) to determine whether maternal influences moderated the effect of peer norms on college drinking and consequences. A sample of 362 first-year students (69.9% female) completed an online assessment regarding their mothers' monitoring, positive communication, permissiveness, and modeling, peer descriptive norms, and drinking and related consequences. Main effects and two-way interactions (mother×peer) were assessed using separate hierarchical regression models for three separate outcomes: peak drinking, weekly drinking, and alcohol-related consequences. Maternal permissiveness and peer descriptive norms were positively associated with drinking and consequences. Maternal communication was negatively associated with consequences. Findings indicate that previously identified maternal and peer influences are also relevant for Latino students and highlight future directions that would address the dearth of research in this area. © 2013.
Murray, Greg; Goldstone, Eliot; Cunningham, Everarda
2007-08-01
The aim of this study was to model normal personality correlates of the predisposition(s) to bipolar disorder (BD), and in so doing explore the proposition that the tendency to bipolar depression [trait depression (T-Depression)] and the tendency to mania [trait mania (T-Mania)] can usefully be viewed as separable but correlated dimensions of BD predisposition. A well student sample (n = 176, modal age 18-25 years, 71% female) completed the NEO Personality Inventory-Revised and the General Behavior Inventory. A good-fitting model (normed chi2 = 0.60, significance of chi2 = 0.73) was identified in which T-Depression was determined solely by neuroticism, while T-Mania was determined by extraversion and (negative) agreeableness. The pathway from T-Depression to T-Mania was also significant (standardized regression weight = 0.80), with a weaker significant reciprocal path (coefficient = 0.27). A model in which bipolar vulnerability was represented as a single dimension (T-Bipolarity) also provided a good fit to the data, but provided less heuristic power. Predisposition to BD can be usefully understood in terms of two reciprocally related dimensions of vulnerability (T-Depression and T-Mania), which can be separated on the basis of their personality correlates.
Benchmarking Outpatient Rehabilitation Clinics Using Functional Status Outcomes.
Gozalo, Pedro L; Resnik, Linda J; Silver, Benjamin
2016-04-01
To utilize functional status (FS) outcomes to benchmark outpatient therapy clinics. Outpatient therapy data from clinics using Focus on Therapeutic Outcomes (FOTO) assessments. Retrospective analysis of 538 clinics, involving 2,040 therapists and 90,392 patients admitted July 2006-June 2008. FS at discharge was modeled using hierarchical regression methods with patients nested within therapists within clinics. Separate models were estimated for all patients, for those with lumbar, and for those with shoulder impairments. All models risk-adjusted for intake FS, age, gender, onset, surgery count, functional comorbidity index, fear-avoidance level, and payer type. Inverse probability weighting adjusted for censoring. Functional status was captured using computer adaptive testing at intake and at discharge. Clinic and therapist effects explained 11.6 percent of variation in FS. Clinics ranked in the lowest quartile had significantly different outcomes than those in the highest quartile (p < .01). Clinics ranked similarly in lumbar and shoulder impairments (correlation = 0.54), but some clinics ranked in the highest quintile for one condition and in the lowest for the other. Benchmarking models based on validated FS measures clearly separated high-quality from low-quality clinics, and they could be used to inform value-based-payment policies. © Health Research and Educational Trust.
NASA Astrophysics Data System (ADS)
Soja, G.; Soja, A.-M.
This study tested the usefulness of extremely simple meteorological models for the prediction of ozone indices. The models were developed with the input parameters of daily maximum temperature and sunshine duration and are based on a data collection period of three years. For a rural environment in eastern Austria, the meteorological and ozone data of three summer periods have been used to develop functions to describe three ozone exposure indices (daily maximum, 7 h mean 9.00-16.00 h, accumulated ozone dose AOT40). Data sets for other years or stations not included in the development of the models were used as test data to validate the performance of the models. Generally, optimized regression models performed better than simplest linear models, especially in the case of AOT40. For the description of the summer period from May to September, the mean absolute daily differences between observed and calculated indices were 8±6 ppb for the maximum half hour mean value, 6±5 ppb for the 7 h mean and 41±40 ppb h for the AOT40. When the parameters were further optimized to describe individual months separately, the mean absolute residuals decreased by ⩽10%. Neural network models did not always perform better than the regression models. This is attributed to the low number of inputs in this comparison and to the simple architecture of these models (2-2-1). Further factorial analyses of those days when the residuals were higher than the mean plus one standard deviation should reveal possible reasons why the models did not perform well on certain days. It was observed that overestimations by the models mainly occurred on days with partly overcast, hazy or very windy conditions. Underestimations more frequently occurred on weekdays than on weekends. It is suggested that the application of this kind of meteorological model will be more successful in topographically homogeneous regions and in rural environments with relatively constant rates of emission and long-range transport of ozone precursors. Under conditions too demanding for advanced physico/chemical models, the presented models may offer useful alternatives to derive ecologically relevant ozone indices directly from meteorological parameters.
Parental separation in childhood and adult smoking in the 1958 British birth cohort.
Martindale, Sarah E; Lacey, Rebecca E
2017-08-01
Parental separation or divorce is a known risk factor for poorer adult health. One mechanism may operate through the uptake of risky health behaviours, such as smoking. This study investigated the association between parental separation and adult smoking in a large British birth cohort and also examined potential socioeconomic, relational and psychosocial mediators. Differences by gender and timing of parental separation were also assessed. Multiply imputed data on 11 375 participants of the National Child Development Study (the 1958 British birth cohort) were used. A series of multinomial logistic regression models were estimated to investigate the association between parental separation (0-16 years) and adult smoking status (age 42), and the role of potential socioeconomic, relational and psychosocial mediators. Parental separation in childhood was associated with an increased risk of being a current (RRR = 2.14, 95% CI: 1.77, 2.60) or ex-smoker (RRR = 1.50, 95% CI: 1.22, 1.85) at age 42. This association remained after consideration of potential socioeconomic, psychosocial and relational mediators. Relational (parent-child relationship quality, parental involvement and adult partnership status) and socioeconomic factors (overcrowding, financial hardship, housing tenure, household amenities, free school meal receipt and educational attainment) appeared to be the most important of the groups of mediators investigated. No differences by gender or the timing of parental separation were observed. Parental separation experienced in childhood was associated with increased risk of smoking. Families undergoing separation should be further supported in order to prevent the uptake of smoking and to prevent later health problems. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Tarasova, Irina A; Goloborodko, Anton A; Perlova, Tatyana Y; Pridatchenko, Marina L; Gorshkov, Alexander V; Evreinov, Victor V; Ivanov, Alexander R; Gorshkov, Mikhail V
2015-07-07
The theory of critical chromatography for biomacromolecules (BioLCCC) describes polypeptide retention in reversed-phase HPLC using the basic principles of statistical thermodynamics. However, whether this theory correctly depicts a variety of empirical observations and laws introduced for peptide chromatography over the last decades remains to be determined. In this study, by comparing theoretical results with experimental data, we demonstrate that the BioLCCC: (1) fits the empirical dependence of the polypeptide retention on the amino acid sequence length with R(2) > 0.99 and allows in silico determination of the linear regression coefficients of the log-length correction in the additive model for arbitrary sequences and lengths and (2) predicts the distribution coefficients of polypeptides with an accuracy from 0.98 to 0.99 R(2). The latter enables direct calculation of the retention factors for given solvent compositions and modeling of the migration dynamics of polypeptides separated under isocratic or gradient conditions. The obtained results demonstrate that the suggested theory correctly relates the main aspects of polypeptide separation in reversed-phase HPLC.
Astudillo, Mariana; Kuendig, Hervé; Centeno-Gil, Adriana; Wicki, Matthias; Gmel, Gerhard
2014-09-01
This study investigated the associations of alcohol outlet density with specific alcohol outcomes (consumption and consequences) among young men in Switzerland and assessed the possible geographically related variations. Alcohol consumption and drinking consequences were measured in a 2010-2011 study assessing substance use risk factors (Cohort Study on Substance Use Risk Factors) among 5519 young Swiss men. Outlet density was based on the number of on- and off-premise outlets in the district of residence. Linear regression models were run separately for drinking level, heavy episodic drinking (HED) and drinking consequences. Geographically weighted regression models were estimated when variations were recorded at the district level. No consistent association was found between outlet density and drinking consequences. A positive association between drinking level and HED with on-premise outlet density was found. Geographically weighted regressions were run for drinking level and HED. The predicted values for HED were higher in the southwest part of Switzerland (French-speaking part). Among Swiss young men, the density of outlets and, in particular, the abundance of bars, clubs and other on-premise outlets was associated with drinking level and HED, even when drinking consequences were not significantly affected. These findings support the idea that outlet density needs to be considered when developing and implementing regional-based prevention initiatives. © 2014 Australasian Professional Society on Alcohol and other Drugs.
Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E; Lista, Adriana G; Fragoso, Wallace D; Pontes, Márcio J C; Araújo, Mário C U; Band, Beatriz S Fernández
2010-12-15
In this study, a novel, simple, and efficient spectrofluorimetric method to determine directly and simultaneously five phenolic compounds (hydroquinone, resorcinol, phenol, m-cresol and p-cresol) in air samples is presented. For this purpose, variable selection by the successive projections algorithm (SPA) is used in order to obtain simple multiple linear regression (MLR) models based on a small subset of wavelengths. For comparison, partial least square (PLS) regression is also employed in full-spectrum. The concentrations of the calibration matrix ranged from 0.02 to 0.2 mg L(-1) for hydroquinone, from 0.05 to 0.6 mg L(-1) for resorcinol, and from 0.05 to 0.4 mg L(-1) for phenol, m-cresol and p-cresol; incidentally, such ranges are in accordance with the Argentinean environmental legislation. To verify the accuracy of the proposed method a recovery study on real air samples of smoking environment was carried out with satisfactory results (94-104%). The advantage of the proposed method is that it requires only spectrofluorimetric measurements of samples and chemometric modeling for simultaneous determination of five phenols. With it, air is simply sampled and no pre-treatment sample is needed (i.e., separation steps and derivatization reagents are avoided) that means a great saving of time. Copyright © 2010 Elsevier B.V. All rights reserved.
Escuder-Gilabert, L; Martín-Biosca, Y; Sagrado, S; Medina-Hernández, M J
2014-10-10
The design of experiments (DOE) is a good option for rationally limiting the number of experiments required to achieve the enantioresolution (Rs) of a chiral compound in capillary electrophoresis. In some cases, the modeled Rs after DOE analysis can be unsatisfactory, maybe because the range of the explored factors (DOE domain) was not the adequate. In these cases, anticipative strategies can be an alternative to the repetition of the process (e.g. a new DOE), to save time and money. In this work, multiple linear regression (MLR)-steepest ascent and a new anticipative strategy based on a multiple response-partial least squares model (called PLS2-prediction) are examined as post-DOE strategies to anticipate new experimental conditions providing satisfactory Rs values. The new anticipative strategy allows to include the analysis time (At) and uncertainty limits into the decision making process. To demonstrate their efficiency, the chiral separation of hexaconazole and penconazole, as model compounds, is studied using highly sulfated-β-cyclodextrin (HS-β-CD) in electrokinetic chromatography (EKC). Box-Behnken DOE for three factors (background electrolyte pH, separation temperature and HS-β-CD concentration) and two responses (Rs and At) is used. Using commercially available software, the whole modeling and anticipative process is automatic, simple and requires minimal skills from the researcher. Both strategies studied have proven to successfully anticipate Rs values close to the experimental ones for EKC conditions outside the DOE domain for the two model compounds. The results in this work suggest that PLS2-prediction approach could be the strategy of choice to obtain secure anticipations in EKC. Copyright © 2014 Elsevier B.V. All rights reserved.
Victimization from Mental and Physical Bullying and Substance Use in Early Adolescence
Tharp-Taylor, Shannah; Haviland, Amelia; D'Amico, Elizabeth J.
2009-01-01
Logistic regression analyses were used to assess the association between victimization from mental and physical bullying and use of alcohol, cigarettes, marijuana, and inhalants among middle school students. Self-report data were analyzed from 926 ethnically diverse sixth through eighth grade students (43% white, 26% Latino, 7% Asian American/Pacific Islander, 3% African American, 14% mixed ethnic origin, and 5% “other”) ages 11 – 14 years from southern California. Substance use was collected at two time points (fall 2004 and spring 2005) during an academic year. Models were run for each substance separately. Results supported an association between victimization from bullying and substance use. Youths who experienced each type of bullying (mental or physical) separately or in combination were more likely to report use of each substance in spring 2005. This finding held after controlling for gender, grade level, ethnicity and substance use in fall 2004. PMID:19398162
Richardson, Miles
2017-04-01
In ergonomics there is often a need to identify and predict the separate effects of multiple factors on performance. A cost-effective fractional factorial approach to understanding the relationship between task characteristics and task performance is presented. The method has been shown to provide sufficient independent variability to reveal and predict the effects of task characteristics on performance in two domains. The five steps outlined are: selection of performance measure, task characteristic identification, task design for user trials, data collection, regression model development and task characteristic analysis. The approach can be used for furthering knowledge of task performance, theoretical understanding, experimental control and prediction of task performance. Practitioner Summary: A cost-effective method to identify and predict the separate effects of multiple factors on performance is presented. The five steps allow a better understanding of task factors during the design process.
Li, Cun-Yu; Liu, Li-Cheng; Jin, Li-Yang; Li, Hong-Yang; Peng, Guo-Ping
2017-07-01
To separate chlorogenic acid from low concentration ethanol and explore the influence of Donnan effect and solution-diffusion effect on the nanofiltration separation rule. The experiment showed that solution pH and ethanol volume percent had influences on the separation of chlorogenic acid. Within the pH values from 3 to 7 for chlorogenic acid in 30% ethanol, the rejection rate of chlorogenic acid was changed by 70.27%. Through the response surface method for quadratic regression model, an interaction had been found in molecule weight cut-off, pH and ethanol volume percent. In fixed nanofiltration apparatus, the existence states of chlorogenic acid determinedits separation rules. With the increase of ethanol concentration, the free form chlorogenic acid was easily adsorbed, dissolved on membrane surface and then caused high transmittance due to the solution-diffusion effect. However, at the same time, due to the double effects of Donnan effect and solution-diffusion effect, the ionic state of chlorogenic acid was hard to be adsorbed in membrane surface and thus caused high rejection rate. The combination of Box-Behnken design and response surface analysis can well optimize the concentrate process by nanofiltration, and the results showed that nanofiltration had several big advantages over the traditional vacuum concentrate technology, meanwhile, and solved the problems of low efficiency and serious component lossesin the Chinese medicines separation process for low concentration organic solvent-water solution. Copyright© by the Chinese Pharmaceutical Association.
Predictors of infant foster care in cases of maternal psychiatric disorders
Glangeaud-Freudenthal, Nine M.-C.; Sutter-Dallay, Anne-Laure; Thieulin, Anne-Claire; Dagens, Véronique; Zimmermann, Marie-Agathe; Debourg, Alain; Amzallag, Corinne; Cazas, Odile; Cammas, Rafaële; Klopfert, Marie-Emmanuelle; Rainelli, Christine; Tielemans, Pascale; Mertens, Claudine; Maron, Michel; Nezelof, Sylvie; Poinso, François
2013-01-01
Purpose Our aim was to investigate the factors associated with mother-child separation at discharge, after joint hospitalization in psychiatric mother-baby units (MBUs) in France and Belgium. Because parents with postpartum psychiatric disorders are at risk of disturbed parent-infant interactions, their infants have an increased risk of an unstable early foundation. They may be particularly vulnerable to environmental stress and have a higher risk of developing some psychiatric disorders in adulthood. Methods: This prospective longitudinal study of 1018 women with postpartum psychiatric disorders, jointly admitted with their infant, to 16 French and Belgian psychiatric mother-baby units (MBUs), used multifactorial logistic regression models to assess the risk factors for mother-child separation at discharge from MBUs. Those factors include some infant characteristics associated with personal vulnerability, parents’ pathology and psychosocial context. Results Most children were discharged with their mothers, but 151 (15%) were separated from their mothers at discharge. Risk factors independently associated with separation were: i) neonatal or infant medical problems or complications; ii) maternal psychiatric disorder; iii) paternal psychiatric disorder; iv) maternal lack of good relationships with others; v) mother receipt of disability benefits; vi) low social class. Conclusions This study highlights the existence of factors other than maternal pathology that lead to decisions to separate mother and child for the child’s protection in a population of mentally ill mothers jointly hospitalized with the baby in the postpartum period. PMID:22706788
Predictors of infant foster care in cases of maternal psychiatric disorders.
Glangeaud-Freudenthal, Nine M-C; Sutter-Dallay, Anne-Laure; Thieulin, Anne-Claire; Dagens, Véronique; Zimmermann, Marie-Agathe; Debourg, Alain; Amzallag, Corinne; Cazas, Odile; Cammas, Rafaële; Klopfert, Marie-Emmanuelle; Rainelli, Christine; Tielemans, Pascale; Mertens, Claudine; Maron, Michel; Nezelof, Sylvie; Poinso, François
2013-04-01
Our aim was to investigate the factors associated with mother-child separation at discharge, after joint hospitalization in psychiatric mother-baby units (MBUs) in France and Belgium. Because parents with postpartum psychiatric disorders are at risk of disturbed parent-infant interactions, their infants have an increased risk of an unstable early foundation. They may be particularly vulnerable to environmental stress and have a higher risk of developing some psychiatric disorders in adulthood. This prospective longitudinal study of 1,018 women with postpartum psychiatric disorders, jointly admitted with their infant to 16 French and Belgian psychiatric mother-baby units (MBUs), used multifactorial logistic regression models to assess the risk factors for mother-child separation at discharge from MBUs. Those factors include some infant characteristics associated with personal vulnerability, parents' pathology and psychosocial context. Most children were discharged with their mothers, but 151 (15 %) were separated from their mothers at discharge. Risk factors independently associated with separation were: (1) neonatal or infant medical problems or complications; (2) maternal psychiatric disorder; (3) paternal psychiatric disorder; (4) maternal lack of good relationship with others; (5) mother receipt of disability benefits; (6) low social class. This study highlights the existence of factors other than maternal pathology that lead to decisions to separate mother and child for the child's protection in a population of mentally ill mothers jointly hospitalized with the baby in the postpartum period.
He, Jie; Zhao, Yunfeng; Zhao, Jingli; Gao, Jin; Han, Dandan; Xu, Pao; Yang, Runqing
2017-11-02
Because of their high economic importance, growth traits in fish are under continuous improvement. For growth traits that are recorded at multiple time-points in life, the use of univariate and multivariate animal models is limited because of the variable and irregular timing of these measures. Thus, the univariate random regression model (RRM) was introduced for the genetic analysis of dynamic growth traits in fish breeding. We used a multivariate random regression model (MRRM) to analyze genetic changes in growth traits recorded at multiple time-point of genetically-improved farmed tilapia. Legendre polynomials of different orders were applied to characterize the influences of fixed and random effects on growth trajectories. The final MRRM was determined by optimizing the univariate RRM for the analyzed traits separately via penalizing adaptively the likelihood statistical criterion, which is superior to both the Akaike information criterion and the Bayesian information criterion. In the selected MRRM, the additive genetic effects were modeled by Legendre polynomials of three orders for body weight (BWE) and body length (BL) and of two orders for body depth (BD). By using the covariance functions of the MRRM, estimated heritabilities were between 0.086 and 0.628 for BWE, 0.155 and 0.556 for BL, and 0.056 and 0.607 for BD. Only heritabilities for BD measured from 60 to 140 days of age were consistently higher than those estimated by the univariate RRM. All genetic correlations between growth time-points exceeded 0.5 for either single or pairwise time-points. Moreover, correlations between early and late growth time-points were lower. Thus, for phenotypes that are measured repeatedly in aquaculture, an MRRM can enhance the efficiency of the comprehensive selection for BWE and the main morphological traits.
Yousefi, Siamak; Balasubramanian, Madhusudhanan; Goldbaum, Michael H; Medeiros, Felipe A; Zangwill, Linda M; Weinreb, Robert N; Liebmann, Jeffrey M; Girkin, Christopher A; Bowd, Christopher
2016-05-01
To validate Gaussian mixture-model with expectation maximization (GEM) and variational Bayesian independent component analysis mixture-models (VIM) for detecting glaucomatous progression along visual field (VF) defect patterns (GEM-progression of patterns (POP) and VIM-POP). To compare GEM-POP and VIM-POP with other methods. GEM and VIM models separated cross-sectional abnormal VFs from 859 eyes and normal VFs from 1117 eyes into abnormal and normal clusters. Clusters were decomposed into independent axes. The confidence limit (CL) of stability was established for each axis with a set of 84 stable eyes. Sensitivity for detecting progression was assessed in a sample of 83 eyes with known progressive glaucomatous optic neuropathy (PGON). Eyes were classified as progressed if any defect pattern progressed beyond the CL of stability. Performance of GEM-POP and VIM-POP was compared to point-wise linear regression (PLR), permutation analysis of PLR (PoPLR), and linear regression (LR) of mean deviation (MD), and visual field index (VFI). Sensitivity and specificity for detecting glaucomatous VFs were 89.9% and 93.8%, respectively, for GEM and 93.0% and 97.0%, respectively, for VIM. Receiver operating characteristic (ROC) curve areas for classifying progressed eyes were 0.82 for VIM-POP, 0.86 for GEM-POP, 0.81 for PoPLR, 0.69 for LR of MD, and 0.76 for LR of VFI. GEM-POP was significantly more sensitive to PGON than PoPLR and linear regression of MD and VFI in our sample, while providing localized progression information. Detection of glaucomatous progression can be improved by assessing longitudinal changes in localized patterns of glaucomatous defect identified by unsupervised machine learning.
Heidar, Z; Bakhtiyari, M; Mirzamoradi, M; Zadehmodarres, S; Sarfjoo, F S; Mansournia, M A
2015-09-01
The purpose of this study was to predict the poor and excessive ovarian response using anti-Müllerian hormone (AMH) levels following a long agonist protocol in IVF candidates. Through a prospective cohort study, the type of relationship and appropriate scale for AMH were determined using the fractional polynomial regression. To determine the effect of AMH on the outcomes of ovarian stimulation and different ovarian responses, the multi-nominal and negative binomial regression models were fitted using backward stepwise method. The ovarian response of study subject who entered a standard long-term treatment cycle with GnRH agonist was evaluated using prediction model, separately and in combined models with (ROC) curves. The use of standard long-term treatments with GnRH agonist led to positive pregnancy test results in 30% of treated patients. With each unit increase in the log of AMH, the odds ratio of having poor response compared to normal response decreases by 64% (OR 0.36, 95% CI 0.19-0.68). Also the results of negative binomial regression model indicated that for one unit increase in the log of AMH blood levels, the odds of releasing an oocyte increased 24% (OR 1.24, 95% CI 1.14-1.35). The optimal cut-off points of AMH for predicting excessive and poor ovarian responses were 3.4 and 1.2 ng/ml, respectively, with area under curves of 0.69 (0.60-0.77) and 0.76 (0.66-0.86), respectively. By considering the age of the patient undergoing infertility treatment as a variable affecting ovulation, use of AMH levels showed to be a good test to discriminate between different ovarian responses.
NASA Astrophysics Data System (ADS)
Shekarsaraee, Sina; Nahzomi, Hossein Taherpour; Nasiri-Touli, Elham
2017-11-01
Phase diagrams for the system water/butyric acid/propylene carbonate were plotted at T = 293.2, 303.2, 313.2 K and p = 101.3 kPa. Acidimetric titration and refractive index methods were used to determine tie-line data. Solubility data revealed that the studied system exhibits type-1 behavior of liquid-liquid equilibrium. The experimental data were regressed and acceptably correlated using the UNIQUAC and NRTL models. As a result, propylene carbonate is a suitable separating agent for aqueous mixture of butyric acid.
Lin, Ying-Ting
2013-04-30
A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.
D'Archivio, Angelo Antonio; Incani, Angela; Ruggieri, Fabrizio
2011-01-01
In this paper, we use a quantitative structure-retention relationship (QSRR) method to predict the retention times of polychlorinated biphenyls (PCBs) in comprehensive two-dimensional gas chromatography (GC×GC). We analyse the GC×GC retention data taken from the literature by comparing predictive capability of different regression methods. The various models are generated using 70 out of 209 PCB congeners in the calibration stage, while their predictive performance is evaluated on the remaining 139 compounds. The two-dimensional chromatogram is initially estimated by separately modelling retention times of PCBs in the first and in the second column ((1) t (R) and (2) t (R), respectively). In particular, multilinear regression (MLR) combined with genetic algorithm (GA) variable selection is performed to extract two small subsets of predictors for (1) t (R) and (2) t (R) from a large set of theoretical molecular descriptors provided by the popular software Dragon, which after removal of highly correlated or almost constant variables consists of 237 structure-related quantities. Based on GA-MLR analysis, a four-dimensional and a five-dimensional relationship modelling (1) t (R) and (2) t (R), respectively, are identified. Single-response partial least square (PLS-1) regression is alternatively applied to independently model (1) t (R) and (2) t (R) without the need for preliminary GA variable selection. Further, we explore the possibility of predicting the two-dimensional chromatogram of PCBs in a single calibration procedure by using a two-response PLS (PLS-2) model or a feed-forward artificial neural network (ANN) with two output neurons. In the first case, regression is carried out on the full set of 237 descriptors, while the variables previously selected by GA-MLR are initially considered as ANN inputs and subjected to a sensitivity analysis to remove the redundant ones. Results show PLS-1 regression exhibits a noticeably better descriptive and predictive performance than the other investigated approaches. The observed values of determination coefficients for (1) t (R) and (2) t (R) in calibration (0.9999 and 0.9993, respectively) and prediction (0.9987 and 0.9793, respectively) provided by PLS-1 demonstrate that GC×GC behaviour of PCBs is properly modelled. In particular, the predicted two-dimensional GC×GC chromatogram of 139 PCBs not involved in the calibration stage closely resembles the experimental one. Based on the above lines of evidence, the proposed approach ensures accurate simulation of the whole GC×GC chromatogram of PCBs using experimental determination of only 1/3 retention data of representative congeners.
Nolan, Bernard T.; Fienen, Michael N.; Lorenz, David L.
2015-01-01
We used a statistical learning framework to evaluate the ability of three machine-learning methods to predict nitrate concentration in shallow groundwater of the Central Valley, California: boosted regression trees (BRT), artificial neural networks (ANN), and Bayesian networks (BN). Machine learning methods can learn complex patterns in the data but because of overfitting may not generalize well to new data. The statistical learning framework involves cross-validation (CV) training and testing data and a separate hold-out data set for model evaluation, with the goal of optimizing predictive performance by controlling for model overfit. The order of prediction performance according to both CV testing R2 and that for the hold-out data set was BRT > BN > ANN. For each method we identified two models based on CV testing results: that with maximum testing R2 and a version with R2 within one standard error of the maximum (the 1SE model). The former yielded CV training R2 values of 0.94–1.0. Cross-validation testing R2 values indicate predictive performance, and these were 0.22–0.39 for the maximum R2 models and 0.19–0.36 for the 1SE models. Evaluation with hold-out data suggested that the 1SE BRT and ANN models predicted better for an independent data set compared with the maximum R2 versions, which is relevant to extrapolation by mapping. Scatterplots of predicted vs. observed hold-out data obtained for final models helped identify prediction bias, which was fairly pronounced for ANN and BN. Lastly, the models were compared with multiple linear regression (MLR) and a previous random forest regression (RFR) model. Whereas BRT results were comparable to RFR, MLR had low hold-out R2 (0.07) and explained less than half the variation in the training data. Spatial patterns of predictions by the final, 1SE BRT model agreed reasonably well with previously observed patterns of nitrate occurrence in groundwater of the Central Valley.
Anti-TNF levels in cord blood at birth are associated with anti-TNF type.
Kanis, Shannon L; de Lima, Alison; van der Ent, Cokkie; Rizopoulos, Dimitris; van der Woude, C Janneke
2018-05-15
Pregnancy guidelines for women with Inflammatory Bowel Disease (IBD) provide recommendations regarding anti-TNF cessation during pregnancy, in order to limit fetal exposure. Although infliximab (IFX) leads to higher anti-TNF concentrations in cord blood than adalimumab (ADA), recommendations are similar. We aimed to demonstrate the effect of anti-TNF cessation during pregnancy on fetal exposure, for IFX and ADA separately. We conducted a prospective single center cohort study. Women with IBD, using IFX or ADA, were followed-up during pregnancy. In case of sustained disease remission, anti-TNF was stopped in the third trimester. At birth, anti-TNF concentration was measured in cord blood. A linear regression model was developed to demonstrate anti-TNF concentration in cord blood at birth. In addition, outcomes such as disease activity, pregnancy outcomes and 1-year health outcomes of infants were collected. We included 131 pregnancies that resulted in a live birth (73 IFX, 58 ADA). At birth, 94 cord blood samples were obtained (52 IFX, 42 ADA), showing significantly higher levels of IFX than ADA (p<0.0001). Anti-TNF type and stop week were used in the linear regression model. During the third trimester, IFX transportation over the placenta increases exponentially, however, ADA transportation is limited and increases in a linear fashion. Overall, health outcomes were comparable. Our linear regression model shows that ADA may be continued longer during pregnancy as transportation over the placenta is lower than IFX. This may reduce relapse risk of the mother without increasing fetal anti-TNF exposure.
NASA Technical Reports Server (NTRS)
Rose, F. G.
1983-01-01
Modeled temperature data from a one-dimensional, time-dependent, initial value, planetary boundary layer model for 16 separate model runs with varying initial values of moisture availability are applied, by the use of a regression equation, to longwave infrared GOES satellite data to infer moisture availability over a regional area in the central U.S. This was done for several days during the summers of 1978 and 1980 where a large gradient in the antecedent precipitation index (API) represented the boundary between a drought area and a region of near normal precipitation. Correlations between satellite derived moisture availability and API were found to exist. Errors from the presence of clouds, water vapor and other spatial inhomogeneities made the use of the measurement for anything except the relative degree of moisture availability dubious.
Unified Computational Methods for Regression Analysis of Zero-Inflated and Bound-Inflated Data
Yang, Yan; Simpson, Douglas
2010-01-01
Bounded data with excess observations at the boundary are common in many areas of application. Various individual cases of inflated mixture models have been studied in the literature for bound-inflated data, yet the computational methods have been developed separately for each type of model. In this article we use a common framework for computing these models, and expand the range of models for both discrete and semi-continuous data with point inflation at the lower boundary. The quasi-Newton and EM algorithms are adapted and compared for estimation of model parameters. The numerical Hessian and generalized Louis method are investigated as means for computing standard errors after optimization. Correlated data are included in this framework via generalized estimating equations. The estimation of parameters and effectiveness of standard errors are demonstrated through simulation and in the analysis of data from an ultrasound bioeffect study. The unified approach enables reliable computation for a wide class of inflated mixture models and comparison of competing models. PMID:20228950
Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras
Morris, Mark; Sellers, William I.
2015-01-01
Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints. PMID:25780778
Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras.
Peyer, Kathrin E; Morris, Mark; Sellers, William I
2015-01-01
Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints.
Amount, Source, and Quality of Support as Predictors of Women's Birth Evaluations.
Simon, Richard M; Johnson, Katherine M; Liddell, Jessica
2016-09-01
This paper examines the separate effects of the perceived amount, source, and quality of support during labor and delivery on women's positive and negative evaluations of their birth experiences. Data come from the Listening to Mothers I and II (LTM) surveys (n = 2,765). Women's perception of support was regressed separately onto indices of positive and negative words that women associated with their labor and delivery. The total number of support sources, type of support person, and quality of support all impacted women's birth evaluations across different regression models, controlling for demographics, birth interventions, and other birth characteristics. Support overall had a greater effect on increasing women's positive evaluations, but was not as protective against negative evaluations. Support from medical and birth professionals (doctors, nurses, doulas) had the greatest effect on women's positive evaluations. Good partner support was complexly related: it was associated with less positive evaluations but also appeared to have a protective effect against negative birth evaluations. Support in childbirth is a complex concept with multiple dimensions that matter for women's birth evaluations. Support from nursing staff, doctors, and doulas is important for enabling positive evaluations while support from partners is more complexly related to women's evaluations. Research on support for laboring women should more extensively address the division of labor between different sources of support. © 2016 Wiley Periodicals, Inc.
Predictors of College Student Suicidal Ideation: Gender Differences
ERIC Educational Resources Information Center
Stephenson, Hugh; Pena-Shaff, Judith; Quirk, Priscilla
2006-01-01
There is a need to identify students at risk for suicide. Predictors of suicidality were examined separately for men and women in a college health survey of 630 students. Women reported higher levels of suicidal ideation than men in the previous year. Separate regression analyses for men and women accounted for significant amounts of the variance…
Spauwen, P J J; Martens, R J H; Stehouwer, C D A; Verhey, F R J; Schram, M T; Sep, S J S; van der Kallen, C J H; Dagnelie, P C; Henry, R M A; Schaper, N C; van Boxtel, M P J
2016-12-01
To determine the association of verbal intelligence, a core constituent of health literacy, with diabetic complications and walking speed in people with Type 2 diabetes. This study was performed in 228 people with Type 2 diabetes participating in the Maastricht Study, a population-based cohort study. We examined the cross-sectional associations of score on the vocabulary test of the Groningen Intelligence Test with: 1) determinants of diabetic complications (HbA 1c , blood pressure and lipid level); 2) diabetic complications: chronic kidney disease, neuropathic pain, self-reported history of cardiovascular disease and carotid intima-media thickness; and 3) walking speed. Analyses were performed using linear regression and adjusted in separate models for potential confounders and mediators. Significant age- and sex-adjusted associations were additionally adjusted for educational level in a separate model. After full adjustment, lower verbal intelligence was associated with the presence of neuropathic pain [odds ratio (OR) 1.18, 95% CI 1.02;1.36], cardiovascular disease (OR 1.14, 95% CI 1.01;1.30), and slower walking speed (regression coefficient -0.011 m/s, 95% CI -0.021; -0.002 m/s). These associations were largely explained by education. Verbal intelligence was not associated with blood pressure, glycaemic control, lipid control, chronic kidney disease or carotid intima-media thickness. Lower verbal intelligence was associated with the presence of some diabetic complications and with a slower walking speed, a measure of physical functioning. Educational level largely explained these associations. This implies that clinicians should be aware of the educational level of people with diabetes and should provide information at a level of complexity tailored to the patient. © 2016 Diabetes UK.
Li, Weiyong; Worosila, Gregory D
2005-05-13
This research note demonstrates the simultaneous quantitation of a pharmaceutical active ingredient and three excipients in a simulated powder blend containing acetaminophen, Prosolv and Crospovidone. An experimental design approach was used in generating a 5-level (%, w/w) calibration sample set that included 125 samples. The samples were prepared by weighing suitable amount of powders into separate 20-mL scintillation vials and were mixed manually. Partial least squares (PLS) regression was used in calibration model development. The models generated accurate results for quantitation of Crospovidone (at 5%, w/w) and magnesium stearate (at 0.5%, w/w). Further testing of the models demonstrated that the 2-level models were as effective as the 5-level ones, which reduced the calibration sample number to 50. The models had a small bias for quantitation of acetaminophen (at 30%, w/w) and Prosolv (at 64.5%, w/w) in the blend. The implication of the bias is discussed.
Mattu, M J; Small, G W; Arnold, M A
1997-11-15
A multivariate calibration method is described in which Fourier transform near-infrared interferogram data are used to determine clinically relevant levels of glucose in an aqueous matrix of bovine serum albumin (BSA) and triacetin. BSA and triacetin are used to model the protein and triglycerides in blood, respectively, and are present in levels spanning the normal human physiological range. A full factorial experimental design is constructed for the data collection, with glucose at 10 levels, BSA at 4 levels, and triacetin at 4 levels. Gaussian-shaped band-pass digital filters are applied to the interferogram data to extract frequencies associated with an absorption band of interest. Separate filters of various widths are positioned on the glucose band at 4400 cm-1, the BSA band at 4606 cm-1, and the triacetin band at 4446 cm-1. Each filter is applied to the raw interferogram, producing one, two, or three filtered interferograms, depending on the number of filters used. Segments of these filtered interferograms are used together in a partial least-squares regression analysis to build glucose calibration models. The optimal calibration model is realized by use of separate segments of interferograms filtered with three filters centered on the glucose, BSA, and triacetin bands. Over the physiological range of 1-20 mM glucose, this 17-term model exhibits values of R2, standard error of calibration, and standard error of prediction of 98.85%, 0.631 mM, and 0.677 mM, respectively. These results are comparable to those obtained in a conventional analysis of spectral data. The interferogram-based method operates without the use of a separate background measurement and employs only a short section of the interferogram.
Ensuring the consistancy of Flow Direction Curve reconstructions: the 'quantile solidarity' approach
NASA Astrophysics Data System (ADS)
Poncelet, Carine; Andreassian, Vazken; Oudin, Ludovic
2015-04-01
Flow Duration Curves (FDCs) are a hydrologic tool describing the distribution of streamflows at a catchment outlet. FDCs are usually used for calibration of hydrological models, managing water quality and classifying catchments, among others. For gauged catchments, empirical FDCs can be computed from streamflow records. For ungauged catchments, on the other hand, FDCs cannot be obtained from streamflow records and must therefore be obtained in another manner, for example through reconstructions. Regression-based reconstructions are methods relying on the evaluation of quantiles separately from catchments' attributes (climatic or physical features).The advantage of this category of methods is that it is informative about the processes and it is non-parametric. However, the large number of parameters required can cause unwanted artifacts, typically reconstructions that do not always produce increasing quantiles. In this paper we propose a new approach named Quantile Solidarity (QS), which is applied under strict proxy-basin test conditions (Klemes, 1986) to a set of 600 French catchments. Half of the catchments are considered as gauged and used to calibrate the regression and compute residuals of the regression. The QS approach consists in a three-step regionalization scheme, which first links quantile values to physical descriptors, then reduces the number of regression parameters and finally exploits the spatial correlation of the residuals. The innovation is the utilisation of the parameters continuity across the quantiles to dramatically reduce the number of parameters. The second half of catchment is used as an independent validation set over which we show that the QS approach ensures strictly growing FDC reconstructions in ungauged conditions. Reference: V. KLEMEŠ (1986) Operational testing of hydrological simulation models, Hydrological Sciences Journal, 31:1, 13-24
Holstiege, J; Kaluscha, R; Jankowiak, S; Krischak, G
2017-02-01
Study Objectives: The aim was to investigate the predictive value of the employment status measured in the 6 th , 12 th , 18 th and 24 th month after medical rehabilitation for long-term employment trajectories during 4 years. Methods: A retrospective study was conducted based on a 20%-sample of all patients receiving inpatient rehabilitation funded by the German pension fund. Patients aged <62 years who were treated due to musculoskeletal, cardiovascular or psychosomatic disorders during the years 2002-2005 were included and followed for 4 consecutive years. The predictive value of the employment status in 4 predefined months after discharge (6 th , 12 th , 18 th and 24 th month), for the total number of months in employment in 4 years following rehabilitative treatment was analyzed using multiple linear regression. Per time point, separate regression analyses were conducted, including the employment status (employed vs. unemployed) at the respective point in time as explanatory variable, besides a standard set of additional prognostic variables. Results: A total of 252 591 patients were eligible for study inclusion. The level of explained variance of the regression models increased with the point in time used to measure the employment status, included as explanatory variable. Overall the R²-measure increased by 30% from the regression model that included the employment status in the 6 th month (R²=0.60) to the model that included the work status in the 24 th month (R²=0.78). Conclusion: The degree of accuracy in the prognosis of long-term employment biographies increases with the point in time used to measure employment in the first 2 years following rehabilitation. These findings should be taken into consideration for the predefinition of time points used to measure the employment status in future studies. © Georg Thieme Verlag KG Stuttgart · New York.
Poisson Mixture Regression Models for Heart Disease Prediction.
Mufudza, Chipo; Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.
Poisson Mixture Regression Models for Heart Disease Prediction
Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611
Huang, Xiaobi; Elliott, Michael R.; Harlow, Siobán D.
2013-01-01
SUMMARY As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to jointly model both the mean and variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery, and failure to report. We integrate multiple imputation and time-to event modeling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women’s menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way toward increasing use of joint mean-variance models to predict health outcomes and better understand disease processes. PMID:24729638
Smith, David V.; Utevsky, Amanda V.; Bland, Amy R.; Clement, Nathan; Clithero, John A.; Harsch, Anne E. W.; Carter, R. McKell; Huettel, Scott A.
2014-01-01
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent components analysis (ICA). We estimated voxelwise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust—yet frequently ignored—neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. PMID:24662574
The impact of menopausal symptoms on quality of life, productivity, and economic outcomes.
Whiteley, Jennifer; DiBonaventura, Marco daCosta; Wagner, Jan-Samuel; Alvir, Jose; Shah, Sonali
2013-11-01
The aim of this study was to investigate the impact of menopausal symptoms and menopausal symptom severity on health-related quality of life (HRQoL), work impairment, healthcare utilization, and costs. Data from the 2005 United States National Health and Wellness Survey were used, with only women 40-64 years without a history of cancer included in the analyses (N=8,811). Women who reported experiencing menopausal symptoms (n=4,116) were compared with women not experiencing menopausal symptoms (n=4,695) on HRQoL, work impairment, and healthcare utilization using regression modeling (and controlling for demographics and health characteristic differences). Additionally, individual menopausal symptoms were used as predictors of outcomes in a separate set of regression models. The mean age of women in the analysis was 49.8 years (standard deviation,±5.9). Women experiencing menopausal symptoms reported significantly lower levels of HRQoL and significantly higher work impairment, and healthcare utilization than women without menopausal symptoms. Depression, anxiety, and joint stiffness were symptoms with the strongest associations with health outcomes. Menopausal symptoms can be a significant humanistic and economic burden on women in middle age.
Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes.
Nowak, Christoph; Carlsson, Axel C; Östgren, Carl Johan; Nyström, Fredrik H; Alam, Moudud; Feldreich, Tobias; Sundström, Johan; Carrero, Juan-Jesus; Leppert, Jerzy; Hedberg, Pär; Henriksen, Egil; Cordeiro, Antonio C; Giedraitis, Vilmantas; Lind, Lars; Ingelsson, Erik; Fall, Tove; Ärnlöv, Johan
2018-05-24
Multiplex proteomics could improve understanding and risk prediction of major adverse cardiovascular events (MACE) in type 2 diabetes. This study assessed 80 cardiovascular and inflammatory proteins for biomarker discovery and prediction of MACE in type 2 diabetes. We combined data from six prospective epidemiological studies of 30-77-year-old individuals with type 2 diabetes in whom 80 circulating proteins were measured by proximity extension assay. Multivariable-adjusted Cox regression was used in a discovery/replication design to identify biomarkers for incident MACE. We used gradient-boosted machine learning and lasso regularised Cox regression in a random 75% training subsample to assess whether adding proteins to risk factors included in the Swedish National Diabetes Register risk model would improve the prediction of MACE in the separate 25% test subsample. Of 1211 adults with type 2 diabetes (32% women), 211 experienced a MACE over a mean (±SD) of 6.4 ± 2.3 years. We replicated associations (<5% false discovery rate) between risk of MACE and eight proteins: matrix metalloproteinase (MMP)-12, IL-27 subunit α (IL-27a), kidney injury molecule (KIM)-1, fibroblast growth factor (FGF)-23, protein S100-A12, TNF receptor (TNFR)-1, TNFR-2 and TNF-related apoptosis-inducing ligand receptor (TRAIL-R)2. Addition of the 80-protein assay to established risk factors improved discrimination in the separate test sample from 0.686 (95% CI 0.682, 0.689) to 0.748 (95% CI 0.746, 0.751). A sparse model of 20 added proteins achieved a C statistic of 0.747 (95% CI 0.653, 0.842) in the test sample. We identified eight protein biomarkers, four of which are novel, for risk of MACE in community residents with type 2 diabetes, and found improved risk prediction by combining multiplex proteomics with an established risk model. Multiprotein arrays could be useful in identifying individuals with type 2 diabetes who are at highest risk of a cardiovascular event.
Hyperspectral imaging using a color camera and its application for pathogen detection
NASA Astrophysics Data System (ADS)
Yoon, Seung-Chul; Shin, Tae-Sung; Heitschmidt, Gerald W.; Lawrence, Kurt C.; Park, Bosoon; Gamble, Gary
2015-02-01
This paper reports the results of a feasibility study for the development of a hyperspectral image recovery (reconstruction) technique using a RGB color camera and regression analysis in order to detect and classify colonies of foodborne pathogens. The target bacterial pathogens were the six representative non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) grown in Petri dishes of Rainbow agar. The purpose of the feasibility study was to evaluate whether a DSLR camera (Nikon D700) could be used to predict hyperspectral images in the wavelength range from 400 to 1,000 nm and even to predict the types of pathogens using a hyperspectral STEC classification algorithm that was previously developed. Unlike many other studies using color charts with known and noise-free spectra for training reconstruction models, this work used hyperspectral and color images, separately measured by a hyperspectral imaging spectrometer and the DSLR color camera. The color images were calibrated (i.e. normalized) to relative reflectance, subsampled and spatially registered to match with counterpart pixels in hyperspectral images that were also calibrated to relative reflectance. Polynomial multivariate least-squares regression (PMLR) was previously developed with simulated color images. In this study, partial least squares regression (PLSR) was also evaluated as a spectral recovery technique to minimize multicollinearity and overfitting. The two spectral recovery models (PMLR and PLSR) and their parameters were evaluated by cross-validation. The QR decomposition was used to find a numerically more stable solution of the regression equation. The preliminary results showed that PLSR was more effective especially with higher order polynomial regressions than PMLR. The best classification accuracy measured with an independent test set was about 90%. The results suggest the potential of cost-effective color imaging using hyperspectral image classification algorithms for rapidly differentiating pathogens in agar plates.
Burkhardt, John C; DesJardins, Stephen L; Teener, Carol A; Gay, Steven E; Santen, Sally A
2016-11-01
In higher education, enrollment management has been developed to accurately predict the likelihood of enrollment of admitted students. This allows evidence to dictate numbers of interviews scheduled, offers of admission, and financial aid package distribution. The applicability of enrollment management techniques for use in medical education was tested through creation of a predictive enrollment model at the University of Michigan Medical School (U-M). U-M and American Medical College Application Service data (2006-2014) were combined to create a database including applicant demographics, academic application scores, institutional financial aid offer, and choice of school attended. Binomial logistic regression and multinomial logistic regression models were estimated in order to study factors related to enrollment at the local institution versus elsewhere and to groupings of competing peer institutions. A predictive analytic "dashboard" was created for practical use. Both models were significant at P < .001 and had similar predictive performance. In the binomial model female, underrepresented minority students, grade point average, Medical College Admission Test score, admissions committee desirability score, and most individual financial aid offers were significant (P < .05). The significant covariates were similar in the multinomial model (excluding female) and provided separate likelihoods of students enrolling at different institutional types. An enrollment-management-based approach would allow medical schools to better manage the number of students they admit and target recruitment efforts to improve their likelihood of success. It also performs a key institutional research function for understanding failed recruitment of highly desirable candidates.
A Fast Vector Radiative Transfer Model for Atmospheric and Oceanic Remote Sensing
NASA Astrophysics Data System (ADS)
Ding, J.; Yang, P.; King, M. D.; Platnick, S. E.; Meyer, K.
2017-12-01
A fast vector radiative transfer model is developed in support of atmospheric and oceanic remote sensing. This model is capable of simulating the Stokes vector observed at the top of the atmosphere (TOA) and the terrestrial surface by considering absorption, scattering, and emission. The gas absorption is parameterized in terms of atmospheric gas concentrations, temperature, and pressure. The parameterization scheme combines a regression method and the correlated-K distribution method, and can easily integrate with multiple scattering computations. The approach is more than four orders of magnitude faster than a line-by-line radiative transfer model with errors less than 0.5% in terms of transmissivity. A two-component approach is utilized to solve the vector radiative transfer equation (VRTE). The VRTE solver separates the phase matrices of aerosol and cloud into forward and diffuse parts and thus the solution is also separated. The forward solution can be expressed by a semi-analytical equation based on the small-angle approximation, and serves as the source of the diffuse part. The diffuse part is solved by the adding-doubling method. The adding-doubling implementation is computationally efficient because the diffuse component needs much fewer spherical function expansion terms. The simulated Stokes vector at both the TOA and the surface have comparable accuracy compared with the counterparts based on numerically rigorous methods.
Maertens de Noordhout, Charline; Devleesschauwer, Brecht; Salomon, Joshua A; Turner, Heather; Cassini, Alessandro; Colzani, Edoardo; Speybroeck, Niko; Polinder, Suzanne; Kretzschmar, Mirjam E; Havelaar, Arie H; Haagsma, Juanita A
2018-01-01
Abstract Background In 2015, new disability weights (DWs) for infectious diseases were constructed based on data from four European countries. In this paper, we evaluated if country, age, sex, disease experience status, income and educational levels have an impact on these DWs. Methods We analyzed paired comparison responses of the European DW study by participants’ characteristics with separate probit regression models. To evaluate the effect of participants’ characteristics, we performed correlation analyses between countries and within country by respondent characteristics and constructed seven probit regression models, including a null model and six models containing participants’ characteristics. We compared these seven models using Akaike Information Criterion (AIC). Results According to AIC, the probit model including country as covariate was the best model. We found a lower correlation of the probit coefficients between countries and income levels (range rs: 0.97–0.99, P < 0.01) than between age groups (range rs: 0.98–0.99, P < 0.01), educational level (range rs: 0.98–0.99, P < 0.01), sex (rs = 0.99, P < 0.01) and disease status (rs = 0.99, P < 0.01). Within country the lowest correlations of the probit coefficients were between low and high income level (range rs = 0.89–0.94, P < 0.01). Conclusions We observed variations in health valuation across countries and within country between income levels. These observations should be further explored in a systematic way, also in non-European countries. We recommend future researches studying the effect of other characteristics of respondents on health assessment. PMID:29020343
2014-01-01
Background This study aims to suggest an approach that integrates multilevel models and eigenvector spatial filtering methods and apply it to a case study of self-rated health status in South Korea. In many previous health-related studies, multilevel models and single-level spatial regression are used separately. However, the two methods should be used in conjunction because the objectives of both approaches are important in health-related analyses. The multilevel model enables the simultaneous analysis of both individual and neighborhood factors influencing health outcomes. However, the results of conventional multilevel models are potentially misleading when spatial dependency across neighborhoods exists. Spatial dependency in health-related data indicates that health outcomes in nearby neighborhoods are more similar to each other than those in distant neighborhoods. Spatial regression models can address this problem by modeling spatial dependency. This study explores the possibility of integrating a multilevel model and eigenvector spatial filtering, an advanced spatial regression for addressing spatial dependency in datasets. Methods In this spatially filtered multilevel model, eigenvectors function as additional explanatory variables accounting for unexplained spatial dependency within the neighborhood-level error. The specification addresses the inability of conventional multilevel models to account for spatial dependency, and thereby, generates more robust outputs. Results The findings show that sex, employment status, monthly household income, and perceived levels of stress are significantly associated with self-rated health status. Residents living in neighborhoods with low deprivation and a high doctor-to-resident ratio tend to report higher health status. The spatially filtered multilevel model provides unbiased estimations and improves the explanatory power of the model compared to conventional multilevel models although there are no changes in the signs of parameters and the significance levels between the two models in this case study. Conclusions The integrated approach proposed in this paper is a useful tool for understanding the geographical distribution of self-rated health status within a multilevel framework. In future research, it would be useful to apply the spatially filtered multilevel model to other datasets in order to clarify the differences between the two models. It is anticipated that this integrated method will also out-perform conventional models when it is used in other contexts. PMID:24571639
Parametric regression model for survival data: Weibull regression model as an example
2016-01-01
Weibull regression model is one of the most popular forms of parametric regression model that it provides estimate of baseline hazard function, as well as coefficients for covariates. Because of technical difficulties, Weibull regression model is seldom used in medical literature as compared to the semi-parametric proportional hazard model. To make clinical investigators familiar with Weibull regression model, this article introduces some basic knowledge on Weibull regression model and then illustrates how to fit the model with R software. The SurvRegCensCov package is useful in converting estimated coefficients to clinical relevant statistics such as hazard ratio (HR) and event time ratio (ETR). Model adequacy can be assessed by inspecting Kaplan-Meier curves stratified by categorical variable. The eha package provides an alternative method to model Weibull regression model. The check.dist() function helps to assess goodness-of-fit of the model. Variable selection is based on the importance of a covariate, which can be tested using anova() function. Alternatively, backward elimination starting from a full model is an efficient way for model development. Visualization of Weibull regression model after model development is interesting that it provides another way to report your findings. PMID:28149846
Woo, John H; Wang, Sumei; Melhem, Elias R; Gee, James C; Cucchiara, Andrew; McCluskey, Leo; Elman, Lauren
2014-01-01
To assess the relationship between clinically assessed Upper Motor Neuron (UMN) disease in Amyotrophic Lateral Sclerosis (ALS) and local diffusion alterations measured in the brain corticospinal tract (CST) by a tractography-driven template-space region-of-interest (ROI) analysis of Diffusion Tensor Imaging (DTI). This cross-sectional study included 34 patients with ALS, on whom DTI was performed. Clinical measures were separately obtained including the Penn UMN Score, a summary metric based upon standard clinical methods. After normalizing all DTI data to a population-specific template, tractography was performed to determine a region-of-interest (ROI) outlining the CST, in which average Mean Diffusivity (MD) and Fractional Anisotropy (FA) were estimated. Linear regression analyses were used to investigate associations of DTI metrics (MD, FA) with clinical measures (Penn UMN Score, ALSFRS-R, duration-of-disease), along with age, sex, handedness, and El Escorial category as covariates. For MD, the regression model was significant (p = 0.02), and the only significant predictors were the Penn UMN Score (p = 0.005) and age (p = 0.03). The FA regression model was also significant (p = 0.02); the only significant predictor was the Penn UMN Score (p = 0.003). Measured by the template-space ROI method, both MD and FA were linearly associated with the Penn UMN Score, supporting the hypothesis that DTI alterations reflect UMN pathology as assessed by the clinical examination.
Introduction to the use of regression models in epidemiology.
Bender, Ralf
2009-01-01
Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.
Removal of oil droplets from contaminated water using magnetic carbon nanotubes.
Wang, Haitao; Lin, Kun-Yi; Jing, Benxin; Krylova, Galyna; Sigmon, Ginger E; McGinn, Paul; Zhu, Yingxi; Na, Chongzheng
2013-08-01
Water contaminated by oil and gas production poses challenges to the management of America's water resources. Here we report the design, fabrication, and laboratory evaluation of multi-walled carbon nanotubes decorated with superparamagnetic iron-oxide nanoparticles (SPIONs) for oil-water separation. As revealed by confocal laser-scanning fluorescence microscopy, the magnetic carbon nanotubes (MCNTs) remove oil droplets through a two-step mechanism, in which MCNTs are first dispersed at the oil-water interface and then drag the droplets with them out of water by a magnet. Measurements of removal efficiency with different initial oil concentration, MCNT dose, and mixing time show that kinetics and equilibrium of the separation process can be described by the Langmuir model. Separation capacity qt is a function of MCNT dose m, mixing time t, and residual oil concentration Ce at equilibrium: [Formula in text] where qmax, kw, and K are maximum separation capacity, wrapping rate constant, and equilibrium constant, respectively. Least-square regressions using experimental data estimate qmax = 6.6(± 0.6) g-diesel g-MCNT(-1), kw = 3.36(± 0.03) L g-diesel(-1) min(-1), and K = 2.4(± 0.2) L g-diesel(-1). For used MCNTs, we further show that over 80% of the separation capacity can be restored by a 10 min wash with 1 mL ethanol for every 6 mg MCNTs. The separation by reusable MCNTs provides a promising alternative strategy for water treatment design complementary to existing ones such as coagulation, adsorption, filtration, and membrane processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Whelan, Jessica; Craven, Stephen; Glennon, Brian
2012-01-01
In this study, the application of Raman spectroscopy to the simultaneous quantitative determination of glucose, glutamine, lactate, ammonia, glutamate, total cell density (TCD), and viable cell density (VCD) in a CHO fed-batch process was demonstrated in situ in 3 L and 15 L bioreactors. Spectral preprocessing and partial least squares (PLS) regression were used to correlate spectral data with off-line reference data. Separate PLS calibration models were developed for each analyte at the 3 L laboratory bioreactor scale before assessing its transferability to the same bioprocess conducted at the 15 L pilot scale. PLS calibration models were successfully developed for all analytes bar VCD and transferred to the 15 L scale. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Reger, Mark A; Smolenski, Derek J; Skopp, Nancy A; Metzger-Abamukang, Melinda J; Kang, Han K; Bullman, Tim A; Perdue, Sondra; Gahm, Gregory A
2015-06-01
A pressing question in military suicide prevention research is whether deployment in support of Operation Enduring Freedom or Operation Iraqi Freedom relates to suicide risk. Prior smaller studies report differing results and often have not included suicides that occurred after separation from military service. To examine the association between deployment and suicide among all 3.9 million US military personnel who served during Operation Enduring Freedom or Operation Iraqi Freedom, including suicides that occurred after separation. This retrospective cohort design used administrative data to identify dates of deployment for all service members (October 7, 2001, to December 31, 2007) and suicide data (October 7, 2001, to December 31, 2009) to estimate rates of suicide-specific mortality. Hazard ratios were estimated from time-dependent Cox proportional hazards regression models to compare deployed service members with those who did not deploy. Suicide mortality from the Department of Defense Medical Mortality Registry and the National Death Index. Deployment was not associated with the rate of suicide (hazard ratio, 0.96; 99% CI, 0.87-1.05). There was an increased rate of suicide associated with separation from military service (hazard ratio, 1.63; 99% CI, 1.50-1.77), regardless of whether service members had deployed or not. Rates of suicide were also elevated for service members who separated with less than 4 years of military service or who did not separate with an honorable discharge. Findings do not support an association between deployment and suicide mortality in this cohort. Early military separation (<4 years) and discharge that is not honorable were suicide risk factors.
Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an
2013-01-01
Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel contents are present.
Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an
2013-01-01
Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel contents are present. PMID:23555040
Wang, Jie; Shen, Changwei; Liu, Na; Jin, Xin; Fan, Xueshan; Dong, Caixia; Xu, Yangchun
2017-03-08
Non-destructive and timely determination of leaf nitrogen (N) concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0), 165 (N1), 330 (N2), 660 (N3), and 990 (N4) kg·N·ha -1 . The mid-portion leaves on the year's shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB). Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe) were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN) and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index). Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets-both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration ( n = 1000) and validation ( n = 420) of this model resulted in high R² values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%). Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R² = 0.77) and 2014 (R² = 0.59). Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24-27 g/kg.
NASA Astrophysics Data System (ADS)
Ahmed, Oumer S.; Franklin, Steven E.; Wulder, Michael A.; White, Joanne C.
2015-03-01
Many forest management activities, including the development of forest inventories, require spatially detailed forest canopy cover and height data. Among the various remote sensing technologies, LiDAR (Light Detection and Ranging) offers the most accurate and consistent means for obtaining reliable canopy structure measurements. A potential solution to reduce the cost of LiDAR data, is to integrate transects (samples) of LiDAR data with frequently acquired and spatially comprehensive optical remotely sensed data. Although multiple regression is commonly used for such modeling, often it does not fully capture the complex relationships between forest structure variables. This study investigates the potential of Random Forest (RF), a machine learning technique, to estimate LiDAR measured canopy structure using a time series of Landsat imagery. The study is implemented over a 2600 ha area of industrially managed coastal temperate forests on Vancouver Island, British Columbia, Canada. We implemented a trajectory-based approach to time series analysis that generates time since disturbance (TSD) and disturbance intensity information for each pixel and we used this information to stratify the forest land base into two strata: mature forests and young forests. Canopy cover and height for three forest classes (i.e. mature, young and mature and young (combined)) were modeled separately using multiple regression and Random Forest (RF) techniques. For all forest classes, the RF models provided improved estimates relative to the multiple regression models. The lowest validation error was obtained for the mature forest strata in a RF model (R2 = 0.88, RMSE = 2.39 m and bias = -0.16 for canopy height; R2 = 0.72, RMSE = 0.068% and bias = -0.0049 for canopy cover). This study demonstrates the value of using disturbance and successional history to inform estimates of canopy structure and obtain improved estimates of forest canopy cover and height using the RF algorithm.
Prediction of Baseflow Index of Catchments using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Yadav, B.; Hatfield, K.
2017-12-01
We present the results of eight machine learning techniques for predicting the baseflow index (BFI) of ungauged basins using a surrogate of catchment scale climate and physiographic data. The tested algorithms include ordinary least squares, ridge regression, least absolute shrinkage and selection operator (lasso), elasticnet, support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Our work seeks to identify the dominant controls of BFI that can be readily obtained from ancillary geospatial databases and remote sensing measurements, such that the developed techniques can be extended to ungauged catchments. More than 800 gauged catchments spanning the continental United States were selected to develop the general methodology. The BFI calculation was based on the baseflow separated from daily streamflow hydrograph using HYSEP filter. The surrogate catchment attributes were compiled from multiple sources including digital elevation model, soil, landuse, climate data, other publicly available ancillary and geospatial data. 80% catchments were used to train the ML algorithms, and the remaining 20% of the catchments were used as an independent test set to measure the generalization performance of fitted models. A k-fold cross-validation using exhaustive grid search was used to fit the hyperparameters of each model. Initial model development was based on 19 independent variables, but after variable selection and feature ranking, we generated revised sparse models of BFI prediction that are based on only six catchment attributes. These key predictive variables selected after the careful evaluation of bias-variance tradeoff include average catchment elevation, slope, fraction of sand, permeability, temperature, and precipitation. The most promising algorithms exceeding an accuracy score (r-square) of 0.7 on test data include support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Considering both the accuracy and the computational complexity of these algorithms, we identify the extremely randomized trees as the best performing algorithm for BFI prediction in ungauged basins.
Gabriel, Mark C; Kolka, Randy; Wickman, Trent; Nater, Ed; Woodruff, Laurel
2009-06-15
The primary objective of this research is to investigate relationships between mercury in upland soil, lake water and fish tissue and explore the cause for the observed spatial variation of THg in age one yellow perch (Perca flavescens) for ten lakes within the Superior National Forest. Spatial relationships between yellow perch THg tissue concentration and a total of 45 watershed and water chemistry parameters were evaluated for two separate years: 2005 and 2006. Results show agreement with other studies where watershed area, lake water pH, nutrient levels (specifically dissolved NO(3)(-)-N) and dissolved iron are important factors controlling and/or predicting fish THg level. Exceeding all was the strong dependence of yellow perch THg level on soil A-horizon THg and, in particular, soil O-horizon THg concentrations (Spearman rho=0.81). Soil B-horizon THg concentration was significantly correlated (Pearson r=0.75) with lake water THg concentration. Lakes surrounded by a greater percentage of shrub wetlands (peatlands) had higher fish tissue THg levels, thus it is highly possible that these wetlands are main locations for mercury methylation. Stepwise regression was used to develop empirical models for the purpose of predicting the spatial variation in yellow perch THg over the studied region. The 2005 regression model demonstrates it is possible to obtain good prediction (up to 60% variance description) of resident yellow perch THg level using upland soil O-horizon THg as the only independent variable. The 2006 model shows even greater prediction (r(2)=0.73, with an overall 10 ng/g [tissue, wet weight] margin of error), using lake water dissolved iron and watershed area as the only model independent variables. The developed regression models in this study can help with interpreting THg concentrations in low trophic level fish species for untested lakes of the greater Superior National Forest and surrounding Boreal ecosystem.
Low Cancer Risk of South Asians: A Brief Report.
Tran, H Nicole; Udaltsova, Natalia; Li, Yan; Klatsky, Arthur L
2018-03-02
South Asians (ancestry in India, Pakistan, Bangladesh, or Sri Lanka) may have lower cancer risk than other racial-ethnic groups. To supplement published cohort data suggesting low cancer risk in South Asians. Logistic regression models with 7 covariates to study cancer mortality through 2012 in 273,843 persons (1117 South Asians) with baseline examination data from 1964 to 1985. Cancer mortality. Through 2012, death was attributed to cancer in 28,031 persons, of which 1555 were Asians, including 32 South Asians. The all-Asian vs white adjusted odds ratio was 1.0, and the South Asian vs white odds ratio was 0.5 (p < 0.001). In separate regressions, South Asians were at lower risk than blacks, Chinese, Filipinos, Japanese, or other Asians. The South Asian-white disparity was concentrated in men but was generally similar when strata of smoking, body mass index, baseline age, and date of death were compared. These data support the observation that compared with whites and other Asian groups, South Asians, especially men, have a lower risk of cancer.
NASA Astrophysics Data System (ADS)
Zhao, De; Wang, Wei; Li, Zhibin; Shan, Xiaonian; Sun, Xin
Bicycle facilities are quite common in China but there are not enough quantitative methods to evaluate the Level of Service (LOS) of bicycle roadways. The number of passing events, which considers the interactions between bicyclists, has been proved to be a proper indicator for evaluating bicycle LOS under the special traffic and roadway conditions in China. The primary objective of this study is to propose a model considering the delay effects of passing events and rider's overtaking motivation. Field data was collected on South Zhongshan Road and Huaihai Road in Nanjing city of China with 639 bicyclists investigated. Then a new mathematical model was built to evaluate those effects through probability and regression analyses. It was found that the delay effect of passing events and rider's overtaking motivation are significant influencing factors which cannot be omitted. Correlation test shows the fitted relationship is greater between the model prediction and field data comparing with the previous model.
Flickinger, Allison; Christensen, Eric D.
2017-01-01
The Little Blue River in Jackson County, Missouri, was listed as impaired in 2012 due to Escherichia coli (E. coli) from urban runoff and storm sewers. A study was initiated to characterize E. coli concentrations and loads to aid in the development of a total maximum daily load implementation plan. Longitudinal sampling along the stream revealed spatial and temporal variability in E. coli loads. Regression models were developed to better represent E. coli variability in the impaired reach using continuous hydrologic and water-quality parameters as predictive parameters. Daily loads calculated from main-stem samples were significantly higher downstream compared to upstream even though there was no significant difference between the upstream and downstream measured concentrations and no significant conclusions could be drawn from model-estimated loads due to model-associated uncertainty. Increasing sample frequency could decrease the bias and increase the accuracy of the modeled results.
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons
Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser
2016-01-01
Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target’s location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment. PMID:27128917
Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons.
Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser
2016-04-26
Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target's location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment.
Genetic analyses of stillbirth in relation to litter size using random regression models.
Chen, C Y; Misztal, I; Tsuruta, S; Herring, W O; Holl, J; Culbertson, M
2010-12-01
Estimates of genetic parameters for number of stillborns (NSB) in relation to litter size (LS) were obtained with random regression models (RRM). Data were collected from 4 purebred Duroc nucleus farms between 2004 and 2008. Two data sets with 6,575 litters for the first parity (P1) and 6,259 litters for the second to fifth parity (P2-5) with a total of 8,217 and 5,066 animals in the pedigree were analyzed separately. Number of stillborns was studied as a trait on sow level. Fixed effects were contemporary groups (farm-year-season) and fixed cubic regression coefficients on LS with Legendre polynomials. Models for P2-5 included the fixed effect of parity. Random effects were additive genetic effects for both data sets with permanent environmental effects included for P2-5. Random effects modeled with Legendre polynomials (RRM-L), linear splines (RRM-S), and degree 0 B-splines (RRM-BS) with regressions on LS were used. For P1, the order of polynomial, the number of knots, and the number of intervals used for respective models were quadratic, 3, and 3, respectively. For P2-5, the same parameters were linear, 2, and 2, respectively. Heterogeneous residual variances were considered in the models. For P1, estimates of heritability were 12 to 15%, 5 to 6%, and 6 to 7% in LS 5, 9, and 13, respectively. For P2-5, estimates were 15 to 17%, 4 to 5%, and 4 to 6% in LS 6, 9, and 12, respectively. For P1, average estimates of genetic correlations between LS 5 to 9, 5 to 13, and 9 to 13 were 0.53, -0.29, and 0.65, respectively. For P2-5, same estimates averaged for RRM-L and RRM-S were 0.75, -0.21, and 0.50, respectively. For RRM-BS with 2 intervals, the correlation was 0.66 between LS 5 to 7 and 8 to 13. Parameters obtained by 3 RRM revealed the nonlinear relationship between additive genetic effect of NSB and the environmental deviation of LS. The negative correlations between the 2 extreme LS might possibly indicate different genetic bases on incidence of stillbirth.
Barth, Amy E.; Barnes, Marcia; Francis, David J.; Vaughn, Sharon; York, Mary
2015-01-01
Separate mixed model analyses of variance (ANOVA) were conducted to examine the effect of textual distance on the accuracy and speed of text consistency judgments among adequate and struggling comprehenders across grades 6–12 (n = 1203). Multiple regressions examined whether accuracy in text consistency judgments uniquely accounted for variance in comprehension. Results suggest that there is considerable growth across the middle and high school years, particularly for adequate comprehenders in those text integration processes that maintain local coherence. Accuracy in text consistency judgments accounted for significant unique variance for passage-level, but not sentence-level comprehension, particularly for adequate comprehenders. PMID:26166946
Regression approach to non-invasive determination of bilirubin in neonatal blood
NASA Astrophysics Data System (ADS)
Lysenko, S. A.; Kugeiko, M. M.
2012-07-01
A statistical ensemble of structural and biophysical parameters of neonatal skin was modeled based on experimental data. Diffuse scattering coefficients of the skin in the visible and infrared regions were calculated by applying a Monte-Carlo method to each realization of the ensemble. The potential accuracy of recovering the bilirubin concentration in dermis (which correlates closely with that in blood) was estimated from spatially resolved spectrometric measurements of diffuse scattering. The possibility to determine noninvasively the bilirubin concentration was shown by measurements of diffuse scattering at λ = 460, 500, and 660 nm at three source-detector separations under conditions of total variability of the skin biophysical parameters.
Özbek, Emel; Bongers, Ilja L; Lobbestael, Jill; van Nieuwenhuizen, Chijs
2015-12-01
This study investigated the relationship between acculturation and psychological problems in Turkish and Moroccan young adults living in the Netherlands. A sample of 131 healthy young adults aged between 18 and 24 years old, with a Turkish or Moroccan background was recruited using snowball sampling. Data on acculturation, internalizing and externalizing problems, beliefs about psychological problems, attributions of psychological problems and barriers to care were collected and analyzed using Latent Class Analysis and multinomial logistic regression. Three acculturation classes were identified in moderately to highly educated, healthy Turkish or Moroccan young adults: integration, separation and diffusion. None of the participants in the sample were marginalized or assimilated. Young adults reporting diffuse acculturation reported more internalizing and externalizing problems than those who were integrated or separated. Separated young adults reported experiencing more practical barriers to care than integrated young adults. Further research with a larger sample, including young adult migrants using mental health services, is required to improve our understanding of acculturation, psychological problems and barriers to care in this population. Including experiences of discrimination in the model might improve our understanding of the relationship between different forms of acculturation and psychological problems.
Hordge, LaQuana N; McDaniel, Kiara L; Jones, Derick D; Fakayode, Sayo O
2016-05-15
The endocrine disruption property of estrogens necessitates the immediate need for effective monitoring and development of analytical protocols for their analyses in biological and human specimens. This study explores the first combined utility of a steady-state fluorescence spectroscopy and multivariate partial-least-square (PLS) regression analysis for the simultaneous determination of two estrogens (17α-ethinylestradiol (EE) and norgestimate (NOR)) concentrations in bovine serum albumin (BSA) and human serum albumin (HSA) samples. The influence of EE and NOR concentrations and temperature on the emission spectra of EE-HSA EE-BSA, NOR-HSA, and NOR-BSA complexes was also investigated. The binding of EE with HSA and BSA resulted in increase in emission characteristics of HSA and BSA and a significant blue spectra shift. In contrast, the interaction of NOR with HSA and BSA quenched the emission characteristics of HSA and BSA. The observed emission spectral shifts preclude the effective use of traditional univariate regression analysis of fluorescent data for the determination of EE and NOR concentrations in HSA and BSA samples. Multivariate partial-least-squares (PLS) regression analysis was utilized to correlate the changes in emission spectra with EE and NOR concentrations in HSA and BSA samples. The figures-of-merit of the developed PLS regression models were excellent, with limits of detection as low as 1.6×10(-8) M for EE and 2.4×10(-7) M for NOR and good linearity (R(2)>0.994985). The PLS models correctly predicted EE and NOR concentrations in independent validation HSA and BSA samples with a root-mean-square-percent-relative-error (RMS%RE) of less than 6.0% at physiological condition. On the contrary, the use of univariate regression resulted in poor predictions of EE and NOR in HSA and BSA samples, with RMS%RE larger than 40% at physiological conditions. High accuracy, low sensitivity, simplicity, low-cost with no prior analyte extraction or separation required makes this method promising, compelling, and attractive alternative for the rapid determination of estrogen concentrations in biomedical and biological specimens, pharmaceuticals, or environmental samples. Published by Elsevier B.V.
Unresolved Galaxy Classifier for ESA/Gaia mission: Support Vector Machines approach
NASA Astrophysics Data System (ADS)
Bellas-Velidis, Ioannis; Kontizas, Mary; Dapergolas, Anastasios; Livanou, Evdokia; Kontizas, Evangelos; Karampelas, Antonios
A software package Unresolved Galaxy Classifier (UGC) is being developed for the ground-based pipeline of ESA's Gaia mission. It aims to provide an automated taxonomic classification and specific parameters estimation analyzing Gaia BP/RP instrument low-dispersion spectra of unresolved galaxies. The UGC algorithm is based on a supervised learning technique, the Support Vector Machines (SVM). The software is implemented in Java as two separate modules. An offline learning module provides functions for SVM-models training. Once trained, the set of models can be repeatedly applied to unknown galaxy spectra by the pipeline's application module. A library of galaxy models synthetic spectra, simulated for the BP/RP instrument, is used to train and test the modules. Science tests show a very good classification performance of UGC and relatively good regression performance, except for some of the parameters. Possible approaches to improve the performance are discussed.
Jandera, Pavel; Vyňuchalová, Kateřina; Nečilová, Kateřina
2013-11-22
Combined effects of temperature and mobile-phase composition on retention and separation selectivity of phenolic acids and flavonoid compounds were studied in liquid chromatography on a polydentate Blaze C8 silica based column. The temperature effects on the retention can be described by van't Hoff equation. Good linearity of lnk versus 1/T graphs indicates that the retention is controlled by a single mechanism in the mobile phase and temperature range studied. Enthalpic and entropic contributions to the retention were calculated from the regression lines. Generally, enthalpic contributions control the retention at lower temperatures and in mobile phases with lower concentrations of methanol in water. Semi-empirical retention models describe the simultaneous effects of temperature and the volume fraction of the organic solvent in the mobile phase. Using the linear free energy-retention model, selective dipolarity/polarizability, hydrogen-bond donor, hydrogen-bond acceptor and molecular size contributions to retention were estimated at various mobile phase compositions and temperatures. In addition to mobile phase gradients, temperature programming can be used to reduce separation times. Copyright © 2013 Elsevier B.V. All rights reserved.
Comparison of Predictive Modeling Methods of Aircraft Landing Speed
NASA Technical Reports Server (NTRS)
Diallo, Ousmane H.
2012-01-01
Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.
Decoding of finger trajectory from ECoG using deep learning.
Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek
2018-06-01
Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.
Decoding of finger trajectory from ECoG using deep learning
NASA Astrophysics Data System (ADS)
Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek
2018-06-01
Objective. Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. Approach. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. Main results. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. Significance. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.
Predictive ability of a comprehensive incremental test in mountain bike marathon.
Ahrend, Marc-Daniel; Schneeweiss, Patrick; Martus, Peter; Niess, Andreas M; Krauss, Inga
2018-01-01
Traditional performance tests in mountain bike marathon (XCM) primarily quantify aerobic metabolism and may not describe the relevant capacities in XCM. We aimed to validate a comprehensive test protocol quantifying its intermittent demands. Forty-nine athletes (38.8±9.1 years; 38 male; 11 female) performed a laboratory performance test, including an incremental test, to determine individual anaerobic threshold (IAT), peak power output (PPO) and three maximal efforts (10 s all-out sprint, 1 min maximal effort and 5 min maximal effort). Within 2 weeks, the athletes participated in one of three XCM races (n=15, n=9 and n=25). Correlations between test variables and race times were calculated separately. In addition, multiple regression models of the predictive value of laboratory outcomes were calculated for race 3 and across all races (z-transformed data). All variables were correlated with race times 1, 2 and 3: 10 s all-out sprint (r=-0.72; r=-0.59; r=-0.61), 1 min maximal effort (r=-0.85; r=-0.84; r=-0.82), 5 min maximal effort (r=-0.57; r=-0.85; r=-0.76), PPO (r=-0.77; r=-0.73; r=-0.76) and IAT (r=-0.71; r=-0.67; r=-0.68). The best-fitting multiple regression models for race 3 (r 2 =0.868) and across all races (r 2 =0.757) comprised 1 min maximal effort, IAT and body weight. Aerobic and intermittent variables correlated least strongly with race times. Their use in a multiple regression model confirmed additional explanatory power to predict XCM performance. These findings underline the usefulness of the comprehensive incremental test to predict performance in that sport more precisely.
Jaime-Pérez, José Carlos; Jiménez-Castillo, Raúl Alberto; Vázquez-Hernández, Karina Elizabeth; Salazar-Riojas, Rosario; Méndez-Ramírez, Nereida; Gómez-Almaguer, David
2017-10-01
Advances in automated cell separators have improved the efficiency of plateletpheresis and the possibility of obtaining double products (DP). We assessed cell processor accuracy of predicted platelet (PLT) yields with the goal of a better prediction of DP collections. This retrospective proof-of-concept study included 302 plateletpheresis procedures performed on a Trima Accel v6.0 at the apheresis unit of a hematology department. Donor variables, software predicted yield and actual PLT yield were statistically evaluated. Software prediction was optimized by linear regression analysis and its optimal cut-off to obtain a DP assessed by receiver operating characteristic curve (ROC) modeling. Three hundred and two plateletpheresis procedures were performed; in 271 (89.7%) occasions, donors were men and in 31 (10.3%) women. Pre-donation PLT count had the best direct correlation with actual PLT yield (r = 0.486. P < .001). Means of software machine-derived values differed significantly from actual PLT yield, 4.72 × 10 11 vs.6.12 × 10 11 , respectively, (P < .001). The following equation was developed to adjust these values: actual PLT yield= 0.221 + (1.254 × theoretical platelet yield). ROC curve model showed an optimal apheresis device software prediction cut-off of 4.65 × 10 11 to obtain a DP, with a sensitivity of 82.2%, specificity of 93.3%, and an area under the curve (AUC) of 0.909. Trima Accel v6.0 software consistently underestimated PLT yields. Simple correction derived from linear regression analysis accurately corrected this underestimation and ROC analysis identified a precise cut-off to reliably predict a DP. © 2016 Wiley Periodicals, Inc.
Watanabe, Hiroyuki; Miyazaki, Hiroyasu
2006-01-01
Over- and/or under-correction of QT intervals for changes in heart rate may lead to misleading conclusions and/or masking the potential of a drug to prolong the QT interval. This study examines a nonparametric regression model (Loess Smoother) to adjust the QT interval for differences in heart rate, with an improved fitness over a wide range of heart rates. 240 sets of (QT, RR) observations collected from each of 8 conscious and non-treated beagle dogs were used as the materials for investigation. The fitness of the nonparametric regression model to the QT-RR relationship was compared with four models (individual linear regression, common linear regression, and Bazett's and Fridericia's correlation models) with reference to Akaike's Information Criterion (AIC). Residuals were visually assessed. The bias-corrected AIC of the nonparametric regression model was the best of the models examined in this study. Although the parametric models did not fit, the nonparametric regression model improved the fitting at both fast and slow heart rates. The nonparametric regression model is the more flexible method compared with the parametric method. The mathematical fit for linear regression models was unsatisfactory at both fast and slow heart rates, while the nonparametric regression model showed significant improvement at all heart rates in beagle dogs.
Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J
2016-03-01
Previously published statistical models of driving posture have been effective for vehicle design but have not taken into account the effects of age. The present study developed new statistical models for predicting driving posture. Driving postures of 90 U.S. drivers with a wide range of age and body size were measured in laboratory mockup in nine package conditions. Posture-prediction models for female and male drivers were separately developed by employing a stepwise regression technique using age, body dimensions, vehicle package conditions, and two-way interactions, among other variables. Driving posture was significantly associated with age, and the effects of other variables depended on age. A set of posture-prediction models is presented for women and men. The results are compared with a previously developed model. The present study is the first study of driver posture to include a large cohort of older drivers and the first to report a significant effect of age. The posture-prediction models can be used to position computational human models or crash-test dummies for vehicle design and assessment. © 2015, Human Factors and Ergonomics Society.
Modeling demand for public transit services in rural areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attaluri, P.; Seneviratne, P.N.; Javid, M.
1997-05-01
Accurate estimates of demand are critical for planning, designing, and operating public transit systems. Previous research has demonstrated that the expected demand in rural areas is a function of both demographic and transit system variables. Numerous models have been proposed to describe the relationship between the aforementioned variables. However, most of them are site specific and their validity over time and space is not reported or perhaps has not been tested. Moreover, input variables in some cases are extremely difficult to quantify. In this article, the estimation of demand using the generalized linear modeling technique is discussed. Two separate models,more » one for fixed-route and another for demand-responsive services, are presented. These models, calibrated with data from systems in nine different states, are used to demonstrate the appropriateness and validity of generalized linear models compared to the regression models. They explain over 70% of the variation in expected demand for fixed-route services and 60% of the variation in expected demand for demand-responsive services. It was found that the models are spatially transferable and that data for calibration are easily obtainable.« less
Amen, Daniel G; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A
2016-04-25
National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This study carries implications for the neurological safety of NFL players.
Amen, Daniel G.; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A.
2016-01-01
Background: National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. Objective: To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. Method: A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. Results: NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Conclusion: Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This study carries implications for the neurological safety of NFL players. PMID:27128374
Modified Regression Correlation Coefficient for Poisson Regression Model
NASA Astrophysics Data System (ADS)
Kaengthong, Nattacha; Domthong, Uthumporn
2017-09-01
This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).
Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A
2015-05-19
In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model predicted the pH of this validation data set within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH online in applications such as nuclear fuel reprocessing.
A Global Study of GPP focusing on Light Use Efficiency in a Random Forest Regression Model
NASA Astrophysics Data System (ADS)
Fang, W.; Wei, S.; Yi, C.; Hendrey, G. R.
2016-12-01
Light use efficiency (LUE) is at the core of mechanistic modeling of global gross primary production (GPP). However, most LUE estimates in global models are satellite-based and coarsely measured with emphasis on environmental variables. Others are from eddy covariance towers with much greater spatial and temporal data quality and emphasis on mechanistic processes, but in a limited number of sites. In this paper, we conducted a comprehensive global study of tower-based LUE from 237 FLUXNET towers, and scaled up LUEs from in-situ tower level to global biome level. We integrated key environmental and biological variables into the tower-based LUE estimates, at 0.5o x 0.5o grid-cell resolution, using a random forest regression (RFR) approach. We then developed an RFR-LUE-GPP model using the grid-cell LUE data, and compared it to a tower-LUE-GPP model by the conventional way of treating LUE as a series of biome-specific constants. In order to calibrate the LUE models, we developed a data-driven RFR-GPP model using a random forest regression method. Our results showed that LUE varies largely with latitude. We estimated a global area-weighted average of LUE at 1.21 gC m-2 MJ-1 APAR, which led to an estimated global GPP of 102.9 Gt C /year from 2000 to 2005. The tower-LUE-GPP model tended to overestimate forest GPP in tropical and boreal regions. Large uncertainties exist in GPP estimates over sparsely vegetated areas covered by savannas and woody savannas around the middle to low latitudes (i.g. 20oS to 40oS and 5oN to 15oN) due to lack of available data. Model results were improved by incorporating Köppen climate types to represent climate /meteorological information in machine learning modeling. This shed new light on the recognized issues of climate dependence of spring onset of photosynthesis and the challenges in modeling the biome GPP of evergreen broad leaf forests (EBF) accurately. The divergent responses of GPP to temperature and precipitation at mid-high latitudes and at mid-low latitudes echoed the necessity of modeling GPP separately by latitudes. This work provided a global distribution of LUE estimate, and developed a comprehensive algorithm modeling global terrestrial carbon with high spatial and temporal resolutions.
The scope and control of attention as separate aspects of working memory.
Shipstead, Zach; Redick, Thomas S; Hicks, Kenny L; Engle, Randall W
2012-01-01
The present study examines two varieties of working memory (WM) capacity task: visual arrays (i.e., a measure of the amount of information that can be maintained in working memory) and complex span (i.e., a task that taps WM-related attentional control). Using previously collected data sets we employ confirmatory factor analysis to demonstrate that visual arrays and complex span tasks load on separate, but correlated, factors. A subsequent series of structural equation models and regression analyses demonstrate that these factors contribute both common and unique variance to the prediction of general fluid intelligence (Gf). However, while visual arrays does contribute uniquely to higher cognition, its overall correlation to Gf is largely mediated by variance associated with the complex span factor. Thus we argue that visual arrays performance is not strictly driven by a limited-capacity storage system (e.g., the focus of attention; Cowan, 2001), but may also rely on control processes such as selective attention and controlled memory search.
Factors affecting the sustainability of solid waste management system-the case of Palestine.
Al-Khateeb, Ammar J; Al-Sari, Majed I; Al-Khatib, Issam A; Anayah, Fathi
2017-02-01
Understanding the predictors of sustainability in solid waste management (SWM) systems can significantly contribute to eliminate many waste management problems. In this paper, the sustainability elements of SWM systems of interest are (1) attitudes toward separation at the source, (2) behaviour regarding reuse and/or recycling and (3) willingness to pay for an improved service of SWM. The predictors affecting these three elements were studied in two Palestinian cities: Ramallah and Jericho. The data were collected via structured questionnaires and direct interviews with the respondents, and the analysis utilized a logistic regression model. The results showed that the place of residence and dwelling premises are the significant factors influencing attitudes toward separation at the source; the place of residence and age are the significant factors explaining behaviour regarding reuse and/or recycling; while the dwelling premises, gender, level of education and being received education on waste management are the significant factors affecting willingness to pay for an improved service of SWM.
Gobbi, Gabriella; Low, Nancy C P; Dugas, Erika; Sylvestre, Marie-Pierre; Contreras, Gisèle; O'Loughlin, Jennifer
2015-10-01
To determine if separation from a father is associated with short-term changes in mental health or substance use in adolescents. Every 3 months, during a 5-year period, we followed 1160 Grade 7 students participating in the Nicotine Dependence in Teens Study who were living with both parents. Participants who reported not living with their father for 6 or more consecutive months during follow-up were categorized as separated from father. Pooled regressions within the framework of generalized estimating equations were used to model the associations between separation from father and indicators of mental health (depressive symptoms, and worry and [or] stress about family relationships or the family situation) and substance use (alcohol use and cigarette smoking) 4 to 6 and 7 to 9 months postseparation, controlling for age, sex, and baseline level of the outcome variable. Compared with adolescents living with both parents, adolescent offspring separated from their fathers were more likely to report depressive symptoms (β = 0.17, 95% CI 0.01 to 0.33) 4 to 6 months postseparation, as well as worry and (or) stress about their parents separating or divorcing (OR 2.39, 95% CI 1.29 to 4.43), a new family (OR 4.25, 95% CI 2.33 to 7.76), and the family financial situation (OR 2.35, 95% CI 1.53 to 3.60). Separation from father was also marginally significantly related to worry and (or) stress about their relationship with their father (OR 1.53; 95% CI 0.98 to 2.39). At 7 to 9 months postseparation, separation from father continued to be associated with worry and (or) stress about their parents separating or divorcing, a new family, and the family financial situation. Separation from father was no longer associated with worry and (or) stress about their relationship with their father, but it was associated with worry and (or) stress about their relationship with their mother. Separation from father was not related to use of alcohol or cigarettes. Adolescent offspring experienced family-related stress and transient depression symptoms in the 4- to 9-month period following separation from their fathers.
Kononen, Douglas W; Flannagan, Carol A C; Wang, Stewart C
2011-01-01
A multivariate logistic regression model, based upon National Automotive Sampling System Crashworthiness Data System (NASS-CDS) data for calendar years 1999-2008, was developed to predict the probability that a crash-involved vehicle will contain one or more occupants with serious or incapacitating injuries. These vehicles were defined as containing at least one occupant coded with an Injury Severity Score (ISS) of greater than or equal to 15, in planar, non-rollover crash events involving Model Year 2000 and newer cars, light trucks, and vans. The target injury outcome measure was developed by the Centers for Disease Control and Prevention (CDC)-led National Expert Panel on Field Triage in their recent revision of the Field Triage Decision Scheme (American College of Surgeons, 2006). The parameters to be used for crash injury prediction were subsequently specified by the National Expert Panel. Model input parameters included: crash direction (front, left, right, and rear), change in velocity (delta-V), multiple vs. single impacts, belt use, presence of at least one older occupant (≥ 55 years old), presence of at least one female in the vehicle, and vehicle type (car, pickup truck, van, and sport utility). The model was developed using predictor variables that may be readily available, post-crash, from OnStar-like telematics systems. Model sensitivity and specificity were 40% and 98%, respectively, using a probability cutpoint of 0.20. The area under the receiver operator characteristic (ROC) curve for the final model was 0.84. Delta-V (mph), seat belt use and crash direction were the most important predictors of serious injury. Due to the complexity of factors associated with rollover-related injuries, a separate screening algorithm is needed to model injuries associated with this crash mode. Copyright © 2010 Elsevier Ltd. All rights reserved.
Growth in Reading Performance during the First Four Years in School. Research Report. ETS RR-07-39
ERIC Educational Resources Information Center
Rock, Donald A.
2007-01-01
This study addressed concerns about the potential for differential gains in reading during the first 2 years of formal schooling (K-1) versus the next 2 years of schooling (1st-3rd grade). A multilevel piecewise regression with a node at spring 1st grade was used in order to define separate regressions for the two time periods. Empirical Bayes…
Calibration power of the Braden scale in predicting pressure ulcer development.
Chen, Hong-Lin; Cao, Ying-Juan; Wang, Jing; Huai, Bao-Sha
2016-11-02
Calibration is the degree of correspondence between the estimated probability produced by a model and the actual observed probability. The aim of this study was to investigate the calibration power of the Braden scale in predicting pressure ulcer development (PU). A retrospective analysis was performed among consecutive patients in 2013. The patients were separated into training a group and a validation group. The predicted incidence was calculated using a logistic regression model in the training group and the Hosmer-Lemeshow test was used for assessing the goodness of fit. In the validation cohort, the observed and the predicted incidence were compared by the Chi-square (χ 2 ) goodness of fit test for calibration power. We included 2585 patients in the study, of these 78 patients (3.0%) developed a PU. Between the training and validation groups the patient characteristics were non-significant (p>0.05). In the training group, the logistic regression model for predicting pressure ulcer was Logit(P) = -0.433*Braden score+2.616. The Hosmer-Lemeshow test showed no goodness fit (χ 2 =13.472; p=0.019). In the validation group, the predicted pressure ulcer incidence also did not fit well with the observed incidence (χ 2 =42.154, p=0.000 by Braden scores; and χ 2 =17.223, p=0.001 by Braden scale risk classification). The Braden scale has low calibration power in predicting PU formation.
Fox, Claudia K; Barr-Anderson, Daheia; Neumark-Sztainer, Dianne; Wall, Melanie
2010-01-01
Previous studies have found that higher physical activity levels are associated with greater academic achievement among students. However, it remains unclear whether associations are due to the physical activity itself or sports team participation, which may involve requirements for maintaining certain grades, for example. The purpose of this study is to examine the associations between sports team participation, physical activity, and academic outcomes in middle and high school students. Data were drawn from Project EAT (Eating Among Teens), a survey of middle and high school students (n = 4746). Students self-reported their weekly hours of physical activity, sports team participation, and academic letter grades. Two statistical models were considered: first, 2 separate regression analyses with grade point average (GPA) as the outcome and either sports team participation or physical activity as the predictor; second, a single regression with GPA as the outcome and both sports team participation and physical activity as the simultaneous predictors. For high school girls, both physical activity and sports team participation were each independently associated with a higher GPA. For high school boys, only sports team participation was independently associated with a higher GPA. For middle school students, the positive association between physical activity and GPA could not be separated from the relationship between sports team participation and a higher GPA. Regardless of whether academic success was related to the physical activity itself or to participation on sports teams, findings indicated positive associations between physical activity involvement and academic achievement among students.
Hirsh, Adam T; George, Steven Z; Bialosky, Joel E; Robinson, Michael E
2008-09-01
Pain-related fear and catastrophizing are important variables of consideration in an individual's pain experience. Methodological limitations of previous studies limit strong conclusions regarding these relationships. In this follow-up study, we examined the relationships between fear of pain, pain catastrophizing, and experimental pain perception. One hundred healthy volunteers completed the Fear of Pain Questionnaire (FPQ-III), Pain Catastrophizing Scale (PCS), and Coping Strategies Questionnaire-Catastrophizing scale (CSQ-CAT) before undergoing the cold pressor test (CPT). The CSQ-CAT and PCS were completed again after the CPT, with participants instructed to complete these measures based on their experience during the procedure. Measures of pain threshold, tolerance, and intensity were collected and served as dependent variables in separate regression models. Sex, pain catastrophizing, and pain-related fear were included as predictor variables. Results of regression analyses indicated that after controlling for sex, pain-related fear was a consistently stronger predictor of pain in comparison to catastrophizing. These results were consistent when separate measures (CSQ-CAT vs PCS) and time points (pretask vs "in vivo") of catastrophizing were used. These findings largely corroborate those from our previous study and are suggestive of the absolute and relative importance of pain-related fear in the experimental pain experience. Although pain-related fear has received less attention in the experimental literature than pain catastrophizing, results of the current study are consistent with clinical reports highlighting this variable as an important aspect of the experience of pain.
Sato, Takako; Zaitsu, Kei; Tsuboi, Kento; Nomura, Masakatsu; Kusano, Maiko; Shima, Noriaki; Abe, Shuntaro; Ishii, Akira; Tsuchihashi, Hitoshi; Suzuki, Koichi
2015-05-01
Estimation of postmortem interval (PMI) is an important goal in judicial autopsy. Although many approaches can estimate PMI through physical findings and biochemical tests, accurate PMI calculation by these conventional methods remains difficult because PMI is readily affected by surrounding conditions, such as ambient temperature and humidity. In this study, Sprague-Dawley (SD) rats (10 weeks) were sacrificed by suffocation, and blood was collected by dissection at various time intervals (0, 3, 6, 12, 24, and 48 h; n = 6) after death. A total of 70 endogenous metabolites were detected in plasma by gas chromatography-tandem mass spectrometry (GC-MS/MS). Each time group was separated from each other on the principal component analysis (PCA) score plot, suggesting that the various endogenous metabolites changed with time after death. To prepare a prediction model of a PMI, a partial least squares (or projection to latent structure, PLS) regression model was constructed using the levels of significantly different metabolites determined by variable importance in the projection (VIP) score and the Kruskal-Wallis test (P < 0.05). Because the constructed PLS regression model could successfully predict each PMI, this model was validated with another validation set (n = 3). In conclusion, plasma metabolic profiling demonstrated its ability to successfully estimate PMI under a certain condition. This result can be considered to be the first step for using the metabolomics method in future forensic casework.
Dabbour, Essam; Easa, Said; Haider, Murtaza
2017-10-01
This study attempts to identify significant factors that affect the severity of drivers' injuries when colliding with trains at railroad-grade crossings by analyzing the individual-specific heterogeneity related to those factors over a period of 15 years. Both fixed-parameter and random-parameter ordered regression models were used to analyze records of all vehicle-train collisions that occurred in the United States from January 1, 2001 to December 31, 2015. For fixed-parameter ordered models, both probit and negative log-log link functions were used. The latter function accounts for the fact that lower injury severity levels are more probable than higher ones. Separate models were developed for heavy and light-duty vehicles. Higher train and vehicle speeds, female, and young drivers (below the age of 21 years) were found to be consistently associated with higher severity of drivers' injuries for both heavy and light-duty vehicles. Furthermore, favorable weather, light-duty trucks (including pickup trucks, panel trucks, mini-vans, vans, and sports-utility vehicles), and senior drivers (above the age of 65 years) were found be consistently associated with higher severity of drivers' injuries for light-duty vehicles only. All other factors (e.g. air temperature, the type of warning devices, darkness conditions, and highway pavement type) were found to be temporally unstable, which may explain the conflicting findings of previous studies related to those factors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Howell, Kathryn H; Thurston, Idia B; Hasselle, Amanda J; Decker, Kristina; Jamison, Lacy E
2018-04-01
Children are frequently present in homes in which intimate partner violence (IPV) occurs. Following exposure to IPV, children may develop behavioral health difficulties, struggle with regulating emotions, or exhibit aggression. Despite the negative outcomes associated with witnessing IPV, many children also display resilience. Guided by Bronfenbrenner's bioecological model, this study examined person-level, process-level (microsystem), and context-level (mesosystem) factors associated with positive and negative functioning among youth exposed to IPV. Participants were 118 mothers who reported on their 6- to 14-year-old children. All mothers experienced severe physical, psychological, and/or sexual IPV in the past 6 months. Linear regression modeling was conducted separately for youth maladaptive functioning and prosocial skills. The linear regression model for maladaptive functioning was significant, F(6, 110) = 9.32, p < .001, adj R 2 = 27%, with more severe IPV (β = .18, p < .05) and more negative parenting practices (β = .34, p < .001) associated with worse child outcomes. The model for prosocial skills was also significant, F(6, 110) = 3.34, p < .01, adj. R 2 = 14%, with less negative parenting practices (β = -.26, p < .001) and greater community connectedness (β = .17, p < .05) linked to more prosocial skills. These findings provide critical knowledge on specific mutable factors associated with positive and negative functioning among children in the context of IPV exposure. Such factors could be incorporated into strength-based interventions following family violence.
NASA Astrophysics Data System (ADS)
Mills, Leila A.
This study examines middle school students' perceptions of a future career in a science, math, engineering, or technology (STEM) career field. Gender, grade, predispositions to STEM contents, and learner dispositions are examined for changing perceptions and development in career-related choice behavior. Student perceptions as measured by validated measurement instruments are analyzed pre and post participation in a STEM intervention energy-monitoring program that was offered in several U.S. middle schools during the 2009-2010, 2010-2011 school years. A multiple linear regression (MLR) model, developed by incorporating predictors identified by an examination of the literature and a hypothesis-generating pilot study for prediction of STEM career interest, is introduced. Theories on the career choice development process from authors such as Ginzberg, Eccles, and Lent are examined as the basis for recognition of career concept development among students. Multiple linear regression statistics, correlation analysis, and analyses of means are used to examine student data from two separate program years. Study research questions focus on predictive ability, RSQ, of MLR models by gender/grade, and significance of model predictors in order to determine the most significant predictors of STEM career interest, and changes in students' perceptions pre and post program participation. Analysis revealed increases in the perceptions of a science career, decreases in perceptions of a STEM career, increase of the significance of science and mathematics to predictive models, and significant increases in students' perceptions of creative tendencies.
Predictors of physical activity in persons with mental illness: Testing a social cognitive model.
Zechner, Michelle R; Gill, Kenneth J
2016-12-01
This study examined whether the social cognitive theory (SCT) model can be used to explain the variance in physical exercise among persons with serious mental illnesses. A cross-sectional, correlational design was employed. Participants from community mental health centers and supported housing programs (N = 120) completed 9 measures on exercise, social support, self-efficacy, outcome expectations, barriers, and goal-setting. Hierarchical regression tested the relationship between self-report physical activity and SCT determinants while controlling for personal characteristics. The model explained 25% of the variance in exercise. Personal characteristics explained 18% of the variance in physical activity, SCT variables of social support, self-efficacy, outcome expectations, barriers, and goals were entered simultaneously, and they added an r2 change value of .07. Gender (β = -.316, p = .001) and Brief Symptom Inventory Depression subscale (β = -2.08, p < .040) contributed significantly to the prediction of exercise. In a separate stepwise multiple regression, we entered only SCT variables as potential predictors of exercise. Goal-setting was the single significant predictor, F(1, 118) = 13.59, p < .01), r2 = .10. SCT shows promise as an explanatory model of exercise in persons with mental illnesses. Goal-setting practices, self-efficacy, outcome expectations and social support from friends for exercise should be encouraged by psychiatric rehabilitation practitioners. People with more depressive symptoms and women exercise less. More work is needed on theoretical exploration of predictors of exercise. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Sperm function and assisted reproduction technology
MAAß, GESA; BÖDEKER, ROLF‐HASSO; SCHEIBELHUT, CHRISTINE; STALF, THOMAS; MEHNERT, CLAAS; SCHUPPE, HANS‐CHRISTIAN; JUNG, ANDREAS; SCHILL, WOLF‐BERNHARD
2005-01-01
The evaluation of different functional sperm parameters has become a tool in andrological diagnosis. These assays determine the sperm's capability to fertilize an oocyte. It also appears that sperm functions and semen parameters are interrelated and interdependent. Therefore, the question arose whether a given laboratory test or a battery of tests can predict the outcome in in vitro fertilization (IVF). One‐hundred and sixty‐one patients who underwent an IVF treatment were selected from a database of 4178 patients who had been examined for male infertility 3 months before or after IVF. Sperm concentration, motility, acrosin activity, acrosome reaction, sperm morphology, maternal age, number of transferred embryos, embryo score, fertilization rate and pregnancy rate were determined. In addition, logistic regression models to describe fertilization rate and pregnancy were developed. All the parameters in the models were dichotomized and intra‐ and interindividual variability of the parameters were assessed. Although the sperm parameters showed good correlations with IVF when correlated separately, the only essential parameter in the multivariate model was morphology. The enormous intra‐ and interindividual variability of the values was striking. In conclusion, our data indicate that the andrological status at the end of the respective treatment does not necessarily represent the status at the time of IVF. Despite a relatively low correlation coefficient in the logistic regression model, it appears that among the parameters tested, the most reliable parameter to predict fertilization is normal sperm morphology. (Reprod Med Biol 2005; 4: 7–30) PMID:29699207
VO2 estimation using 6-axis motion sensor with sports activity classification.
Nagata, Takashi; Nakamura, Naoteru; Miyatake, Masato; Yuuki, Akira; Yomo, Hiroyuki; Kawabata, Takashi; Hara, Shinsuke
2016-08-01
In this paper, we focus on oxygen consumption (VO2) estimation using 6-axis motion sensor (3-axis accelerometer and 3-axis gyroscope) for people playing sports with diverse intensities. The VO2 estimated with a small motion sensor can be used to calculate the energy expenditure, however, its accuracy depends on the intensities of various types of activities. In order to achieve high accuracy over a wide range of intensities, we employ an estimation framework that first classifies activities with a simple machine-learning based classification algorithm. We prepare different coefficients of linear regression model for different types of activities, which are determined with training data obtained by experiments. The best-suited model is used for each type of activity when VO2 is estimated. The accuracy of the employed framework depends on the trade-off between the degradation due to classification errors and improvement brought by applying separate, optimum model to VO2 estimation. Taking this trade-off into account, we evaluate the accuracy of the employed estimation framework by using a set of experimental data consisting of VO2 and motion data of people with a wide range of intensities of exercises, which were measured by a VO2 meter and motion sensor, respectively. Our numerical results show that the employed framework can improve the estimation accuracy in comparison to a reference method that uses a common regression model for all types of activities.
Gibbs, Andrew; Carpenter, Bradley; Crankshaw, Tamaryn; Hannass-Hancock, Jill; Smit, Jennifer; Tomlinson, Mark; Butler, Lisa
2017-01-01
Intimate partner violence (IPV) experienced by pregnant and post-partum women has negative health effects for women, as well as the foetus, and the new-born child. In this study we sought to assess the prevalence and factors associated with recent IPV amongst post-partum women in one clinic in eThekwini Municipality, South Africa, and explore the relationship between IPV, depression and functional limitations/disabilities. Past 12 month IPV-victimisation was 10.55%. Logistic regression modelled relationships between IPV, functional limitations, depressive symptoms, socio-economic measures, and sexual relationship power. In logistic regression models, overall severity of functional limitations were not associated with IPV-victimisation when treated as a continuous overall score. In this model relationship power (aOR0.22, p = 0.001) and depressive symptoms (aOR1.26, p = 0.001) were significant. When the different functional limitations were separated out in a second model, significant factors were relationship power (aOR0.20, p = 0.001), depressive symptoms (aOR1.20, p = 0.011) and mobility limitations (aOR2.96, p = 0.024). The study emphasises that not all functional limitations are associated with IPV-experience, that depression and disability while overlapping can also be considered different drivers of vulnerability, and that women's experience of IPV is not dependent on pregnancy specific factors, but rather wider social factors that all women experience.
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
Evaluation of statistical models for forecast errors from the HBV model
NASA Astrophysics Data System (ADS)
Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur
2010-04-01
SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.
Rodopoulou, Sophia; Samoli, Evangelia; Analitis, Antonis; Atkinson, Richard W; de'Donato, Francesca K; Katsouyanni, Klea
2015-11-01
Epidemiological time series studies suggest daily temperature and humidity are associated with adverse health effects including increased mortality and hospital admissions. However, there is no consensus over which metric or lag best describes the relationships. We investigated which temperature and humidity model specification most adequately predicted mortality in three large European cities. Daily counts of all-cause mortality, minimum, maximum and mean temperature and relative humidity and apparent temperature (a composite measure of ambient and dew point temperature) were assembled for Athens, London, and Rome for 6 years between 1999 and 2005. City-specific Poisson regression models were fitted separately for warm (April-September) and cold (October-March) periods adjusting for seasonality, air pollution, and public holidays. We investigated goodness of model fit for each metric for delayed effects up to 13 days using three model fit criteria: sum of the partial autocorrelation function, AIC, and GCV. No uniformly best index for all cities and seasonal periods was observed. The effects of temperature were uniformly shown to be more prolonged during cold periods and the majority of models suggested separate temperature and humidity variables performed better than apparent temperature in predicting mortality. Our study suggests that the nature of the effects of temperature and humidity on mortality vary between cities for unknown reasons which require further investigation but may relate to city-specific population, socioeconomic, and environmental characteristics. This may have consequences on epidemiological studies and local temperature-related warning systems.
NASA Astrophysics Data System (ADS)
Rodopoulou, Sophia; Samoli, Evangelia; Analitis, Antonis; Atkinson, Richard W.; de'Donato, Francesca K.; Katsouyanni, Klea
2015-11-01
Epidemiological time series studies suggest daily temperature and humidity are associated with adverse health effects including increased mortality and hospital admissions. However, there is no consensus over which metric or lag best describes the relationships. We investigated which temperature and humidity model specification most adequately predicted mortality in three large European cities. Daily counts of all-cause mortality, minimum, maximum and mean temperature and relative humidity and apparent temperature (a composite measure of ambient and dew point temperature) were assembled for Athens, London, and Rome for 6 years between 1999 and 2005. City-specific Poisson regression models were fitted separately for warm (April-September) and cold (October-March) periods adjusting for seasonality, air pollution, and public holidays. We investigated goodness of model fit for each metric for delayed effects up to 13 days using three model fit criteria: sum of the partial autocorrelation function, AIC, and GCV. No uniformly best index for all cities and seasonal periods was observed. The effects of temperature were uniformly shown to be more prolonged during cold periods and the majority of models suggested separate temperature and humidity variables performed better than apparent temperature in predicting mortality. Our study suggests that the nature of the effects of temperature and humidity on mortality vary between cities for unknown reasons which require further investigation but may relate to city-specific population, socioeconomic, and environmental characteristics. This may have consequences on epidemiological studies and local temperature-related warning systems.
The Application of the Cumulative Logistic Regression Model to Automated Essay Scoring
ERIC Educational Resources Information Center
Haberman, Shelby J.; Sinharay, Sandip
2010-01-01
Most automated essay scoring programs use a linear regression model to predict an essay score from several essay features. This article applied a cumulative logit model instead of the linear regression model to automated essay scoring. Comparison of the performances of the linear regression model and the cumulative logit model was performed on a…
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture
Li, Lingling; Wang, Pengchong; Chao, Kuei-Hsiang; Zhou, Yatong; Xie, Yang
2016-01-01
The remaining useful life (RUL) prediction of Lithium-ion batteries is closely related to the capacity degeneration trajectories. Due to the self-charging and the capacity regeneration, the trajectories have the property of multimodality. Traditional prediction models such as the support vector machines (SVM) or the Gaussian Process regression (GPR) cannot accurately characterize this multimodality. This paper proposes a novel RUL prediction method based on the Gaussian Process Mixture (GPM). It can process multimodality by fitting different segments of trajectories with different GPR models separately, such that the tiny differences among these segments can be revealed. The method is demonstrated to be effective for prediction by the excellent predictive result of the experiments on the two commercial and chargeable Type 1850 Lithium-ion batteries, provided by NASA. The performance comparison among the models illustrates that the GPM is more accurate than the SVM and the GPR. In addition, GPM can yield the predictive confidence interval, which makes the prediction more reliable than that of traditional models. PMID:27632176
Slopen, Natalie; Loucks, Eric B; Appleton, Allison A; Kawachi, Ichiro; Kubzansky, Laura D; Non, Amy L; Buka, Stephen; Gilman, Stephen E
2015-01-01
Children exposed to social adversity carry a greater risk of poor physical and mental health into adulthood. This increased risk is thought to be due, in part, to inflammatory processes associated with early adversity that contribute to the etiology of many adult illnesses. The current study asks whether aspects of the prenatal social environment are associated with levels of inflammation in adulthood, and whether prenatal and childhood adversity both contribute to adult inflammation. We examined associations of prenatal and childhood adversity assessed through direct interviews of participants in the Collaborative Perinatal Project between 1959 and 1974 with blood levels of C-reactive protein in 355 offspring interviewed in adulthood (mean age=42.2 years). Linear and quantile regression models were used to estimate the effects of prenatal adversity and childhood adversity on adult inflammation, adjusting for age, sex, and race and other potential confounders. In separate linear regression models, high levels of prenatal and childhood adversity were associated with higher CRP in adulthood. When prenatal and childhood adversity were analyzed together, our results support the presence of an effect of prenatal adversity on (log) CRP level in adulthood (β=0.73, 95% CI: 0.26, 1.20) that is independent of childhood adversity and potential confounding factors including maternal health conditions reported during pregnancy. Supplemental analyses revealed similar findings using quantile regression models and logistic regression models that used a clinically-relevant CRP threshold (>3mg/L). In a fully-adjusted model that included childhood adversity, high prenatal adversity was associated with a 3-fold elevated odds (95% CI: 1.15, 8.02) of having a CRP level in adulthood that indicates high risk of cardiovascular disease. Social adversity during the prenatal period is a risk factor for elevated inflammation in adulthood independent of adversities during childhood. This evidence is consistent with studies demonstrating that adverse exposures in the maternal environment during gestation have lasting effects on development of the immune system. If these results reflect causal associations, they suggest that interventions to improve the social and environmental conditions of pregnancy would promote health over the life course. It remains necessary to identify the mechanisms that link maternal conditions during pregnancy to the development of fetal immune and other systems involved in adaptation to environmental stressors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hill, Benjamin David; Womble, Melissa N; Rohling, Martin L
2015-01-01
This study utilized logistic regression to determine whether performance patterns on Concussion Vital Signs (CVS) could differentiate known groups with either genuine or feigned performance. For the embedded measure development group (n = 174), clinical patients and undergraduate students categorized as feigning obtained significantly lower scores on the overall test battery mean for the CVS, Shipley-2 composite score, and California Verbal Learning Test-Second Edition subtests than did genuinely performing individuals. The final full model of 3 predictor variables (Verbal Memory immediate hits, Verbal Memory immediate correct passes, and Stroop Test complex reaction time correct) was significant and correctly classified individuals in their known group 83% of the time (sensitivity = .65; specificity = .97) in a mixed sample of young-adult clinical cases and simulators. The CVS logistic regression function was applied to a separate undergraduate college group (n = 378) that was asked to perform genuinely and identified 5% as having possibly feigned performance indicating a low false-positive rate. The failure rate was 11% and 16% at baseline cognitive testing in samples of high school and college athletes, respectively. These findings have particular relevance given the increasing use of computerized test batteries for baseline cognitive testing and return-to-play decisions after concussion.
Reference value of impulse oscillometry in taiwanese preschool children.
Lai, Shen-Hao; Yao, Tsung-Chieh; Liao, Sui-Ling; Tsai, Ming-Han; Hua, Men-Chin; Yeh, Kuo-Wei; Huang, Jing-Long
2015-06-01
Impulse oscillometry is a potential technique for assessing the respiratory mechanism-which includes airway resistance and reactance during tidal breathing-in minimally cooperative young children. The reference values available in Asian preschool children are limited, especially in children of Chinese ethnicity. This study aimed to develop reference equations for lung function measurements using impulse oscillometry in Taiwanese children for future clinical application and research exploitation. Impulse oscillometry was performed in 150 healthy Taiwanese children (aged 2-6 years) to measure airway resistance and reactance at various frequencies. We used regression analysis to generate predictive equations separately by age, body height, body weight, and gender. The stepwise regression model revealed that body height was the most significant determinant of airway resistance and reactance in preschool young children. With the growth in height, a decrease in airway resistance and a paradoxical increase in reactance occurred at different frequencies. The regression curve of resistance at 5 Hz was comparable to previous reference values. This study provided reference values for several variables of the impulse oscillometry measurements in healthy Taiwanese children aged 2-6 years. With these reference data, clinical application of impulse oscillometry would be expedient in diagnosing respiratory diseases in preschool children. Copyright © 2014. Published by Elsevier B.V.
Figueroa, Jennifer A; Mansoor, Jim K; Allen, Roblee P; Davis, Cristina E; Walby, William F; Aksenov, Alexander A; Zhao, Weixiang; Lewis, William R; Schelegle, Edward S
2015-04-20
With ascent to altitude, certain individuals are susceptible to high altitude pulmonary edema (HAPE), which in turn can cause disability and even death. The ability to identify individuals at risk of HAPE prior to ascent is poor. The present study examined the profile of volatile organic compounds (VOC) in exhaled breath condensate (EBC) and pulmonary artery systolic pressures (PASP) before and after exposure to normobaric hypoxia (12% O2) in healthy males with and without a history of HAPE (Hx HAPE, n = 5; Control, n = 11). In addition, hypoxic ventilatory response (HVR), and PASP response to normoxic exercise were also measured. Auto-regression/partial least square regression of whole gas chromatography/mass spectrometry (GC/MS) data and binary logistic regression (BLR) of individual GC peaks and physiologic parameters resulted in models that separate individual subjects into their groups with variable success. The result of BLR analysis highlights HVR, PASP response to hypoxia and the amount of benzyl alcohol and dimethylbenzaldehyde dimethyl in expired breath as markers of HAPE history. These findings indicate the utility of EBC VOC analysis to discriminate between individuals with and without a history of HAPE and identified potential novel biomarkers that correlated with physiological responses to hypoxia.
Moderation analysis using a two-level regression model.
Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott
2014-10-01
Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.
Smith, David V; Utevsky, Amanda V; Bland, Amy R; Clement, Nathan; Clithero, John A; Harsch, Anne E W; McKell Carter, R; Huettel, Scott A
2014-07-15
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent component analysis (ICA). We estimated voxel-wise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust-yet frequently ignored-neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
The microcomputer scientific software series 2: general linear model--regression.
Harold M. Rauscher
1983-01-01
The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...
Gulliver, John; Morley, David; Dunster, Chrissi; McCrea, Adrienne; van Nunen, Erik; Tsai, Ming-Yi; Probst-Hensch, Nicoltae; Eeftens, Marloes; Imboden, Medea; Ducret-Stich, Regina; Naccarati, Alessio; Galassi, Claudia; Ranzi, Andrea; Nieuwenhuijsen, Mark; Curto, Ariadna; Donaire-Gonzalez, David; Cirach, Marta; Vermeulen, Roel; Vineis, Paolo; Hoek, Gerard; Kelly, Frank J
2018-01-01
Oxidative potential (OP) of particulate matter (PM) is proposed as a biologically-relevant exposure metric for studies of air pollution and health. We aimed to evaluate the spatial variability of the OP of measured PM 2.5 using ascorbate (AA) and (reduced) glutathione (GSH), and develop land use regression (LUR) models to explain this spatial variability. We estimated annual average values (m -3 ) of OP AA and OP GSH for five areas (Basel, CH; Catalonia, ES; London-Oxford, UK (no OP GSH ); the Netherlands; and Turin, IT) using PM 2.5 filters. OP AA and OP GSH LUR models were developed using all monitoring sites, separately for each area and combined-areas. The same variables were then used in repeated sub-sampling of monitoring sites to test sensitivity of variable selection; new variables were offered where variables were excluded (p > .1). On average, measurements of OP AA and OP GSH were moderately correlated (maximum Pearson's maximum Pearson's R = = .7) with PM 2.5 and other metrics (PM 2.5 absorbance, NO 2 , Cu, Fe). HOV (hold-out validation) R 2 for OP AA models was .21, .58, .45, .53, and .13 for Basel, Catalonia, London-Oxford, the Netherlands and Turin respectively. For OP GSH , the only model achieving at least moderate performance was for the Netherlands (R 2 = .31). Combined models for OP AA and OP GSH were largely explained by study area with weak local predictors of intra-area contrasts; we therefore do not endorse them for use in epidemiologic studies. Given the moderate correlation of OP AA with other pollutants, the three reasonably performing LUR models for OP AA could be used independently of other pollutant metrics in epidemiological studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA
NASA Astrophysics Data System (ADS)
Mair, Alan; El-Kadi, Aly I.
2013-10-01
Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (> 1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach.
Friendships Lost: The Social Consequences of Violent Victimization.
Wallace, Lacey N; Ménard, Kim S
2017-01-01
Few studies have examined the impact of violent victimization on friendship networks. This study used two waves of data from the National Longitudinal Study of Adolescent to Adult Health (Add Health) to examine the effects of violent victimization on number peer- and self-reported friendships. Guided by stigma theory (Goffman, 1963), fixed-effect regression models controlling for depression, delinquency, substance use, and school engagement were completed to predict changes in number of friends following victimization. Consistent with the theory, results indicate that experiencing violent victimization (e.g., jumped, stabbed, shot at) was associated with a decrease in number of friends. These effects were magnified for females and for individuals with a greater number of depressive symptoms. These results were consistent even when models were run separately for each individual type of victimization. Treatment and prevention implications are discussed.
Emamgholipour Sefiddashti, Sara; Homaie Rad, Enayatollah; Arab, Mohamad; Bordbar, Shima
2016-02-01
Female labor supply has been changed dramatically in the recent yr. In this study, we examined the effects of development on the relationship between fertility and female labor supply. We used data of population and housing census of Iran and estimated three separate models. To do this we employed Logistic Regressions (BLR). The estimation results of our study showed that there was a negative relationship between fertility rate and female labor supply and there are some differences for this relationship in three models. When fertility rate increases, FLS would decreases. In addition, for higher fertility rates, the woman might be forced to work more because of the economic conditions of her family; and negative coefficients of the fertility rate effects on FLS would increase with a diminishing rate.
Hua, Hairui; Burke, Danielle L; Crowther, Michael J; Ensor, Joie; Tudur Smith, Catrin; Riley, Richard D
2017-02-28
Stratified medicine utilizes individual-level covariates that are associated with a differential treatment effect, also known as treatment-covariate interactions. When multiple trials are available, meta-analysis is used to help detect true treatment-covariate interactions by combining their data. Meta-regression of trial-level information is prone to low power and ecological bias, and therefore, individual participant data (IPD) meta-analyses are preferable to examine interactions utilizing individual-level information. However, one-stage IPD models are often wrongly specified, such that interactions are based on amalgamating within- and across-trial information. We compare, through simulations and an applied example, fixed-effect and random-effects models for a one-stage IPD meta-analysis of time-to-event data where the goal is to estimate a treatment-covariate interaction. We show that it is crucial to centre patient-level covariates by their mean value in each trial, in order to separate out within-trial and across-trial information. Otherwise, bias and coverage of interaction estimates may be adversely affected, leading to potentially erroneous conclusions driven by ecological bias. We revisit an IPD meta-analysis of five epilepsy trials and examine age as a treatment effect modifier. The interaction is -0.011 (95% CI: -0.019 to -0.003; p = 0.004), and thus highly significant, when amalgamating within-trial and across-trial information. However, when separating within-trial from across-trial information, the interaction is -0.007 (95% CI: -0.019 to 0.005; p = 0.22), and thus its magnitude and statistical significance are greatly reduced. We recommend that meta-analysts should only use within-trial information to examine individual predictors of treatment effect and that one-stage IPD models should separate within-trial from across-trial information to avoid ecological bias. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bejranonda, W.; Koch, M.
2010-12-01
Because of the imminent threat of the water resources of the eastern seaboard of Thailand, a climate impact study has been carried out there. To that avail, a hydrological watershed model is being used to simulate the future water availability in the wake of possible climate change in the region. The hydrological model is forced by predictions from global climate models (GCMs) that are to be downscaled in an appropriate manner. The challenge at that stage of the climate impact analysis lies then the in the choice of the best GCM and the (statistical) downscaling method. In this study the selection of coarse grid resolution output of the GCMs, transferring information to the fine grid of local climate-hydrology is achieved by cross-correlation and multiple linear regression using meteorological data in the eastern seaboard of Thailand observed between 1970-1999. The grids of 20 atmosphere/ocean global climate models (AOGCM), covering latitude 12.5-15.0 N and longitude 100.0-102.5 E were examined using the Climate-Change Scenario Generator (SCENGEN). With that tool the model efficiency of the prediction of daily precipitation and mean temperature was calculated by comparing the 1980-1999 ECMWF reanalysis predictions with the observed data during that time period. The root means square errors of the predictions were considered and ranked to select the top 5 models, namely, BCCR-BCM2.0, GISS-ER, ECHO-G, ECHAM5/MPI-OM and PCM. The daily time-series of 338 predictors in 9 runs of the 5 selected models were gathered from the CMIP3 multi-model database. Monthly time-serial cross-correlations between the climate predictors and the meteorological measurements from 25 rainfall, 4 minimum and maximum temperature, 4 humidity and 2 solar radiation stations in the study area were then computed and ranked. Using the ranked predictors, a multiple-linear regression model (downscaling transfer model) to forecast the local climate was set up. To improve the prediction power of this GCM downscaling approach, the regression equations were considered as a dynamic regression model that can alter the predictor by seasonal variation. The possible seasonal effect was examined for the 1974-1999 period which was equally divided into a calibration and verification sub-period. The calibrated model using the whole observed time-series was compared with the models separated into 2 seasons; dry and wet, 3 seasons; winter, summer and rainy, and 4 seasons; dry, pre-monsoon, first monsoon and second monsoon. The verification power of the various model variants was measured considering Akaike's information criterion (AIC) and the Nash-Sutcliffe coefficient of the corresponding model fit. The results show that the 4-seasons-variation prediction works best. The highest efficiency for the prediction of rainfall is achieved for the dry season, Oct-Mar, whereas the smallest efficiency is obtained in the monsoon seasons. The overall number of predictor giving top efficiency lies between 3 and 20 in the regression models. In the next, still ongoing stage of the climate impact study the predictions from this new, seasonally optimized downscaling transfer model are being used in the simulations of the future hydrological water budget in that region of Thailand.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Bi, Peng; Hiller, Janet
2008-01-01
This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990-2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.
Prolonged Nightly Fasting and Breast Cancer Risk: Findings from NHANES (2009-2010).
Marinac, Catherine R; Natarajan, Loki; Sears, Dorothy D; Gallo, Linda C; Hartman, Sheri J; Arredondo, Elva; Patterson, Ruth E
2015-05-01
A novel line of research has emerged, suggesting that daily feeding-fasting schedules that are synchronized with sleep-wake cycles have metabolic implications that are highly relevant to breast cancer. We examined associations of nighttime fasting duration with biomarkers of breast cancer risk among women in the 2009-2010 U.S. National Health and Nutrition Examination Survey. Dietary, anthropometric, and HbA1c data were available for 2,212 women, and 2-hour postprandial glucose concentrations were available for 1,066 women. Nighttime fasting duration was calculated using 24-hour food records. Separate linear regression models examined associations of nighttime fasting with HbA1c and 2-hour glucose concentrations. Logistic regression modeled associations of nighttime fasting with elevated HbA1c (HbA1c ≥ 39 mmol/mol or 5.7%) and elevated 2-hour glucose (glucose ≥ 140 mg/dL). All models adjusted for age, education, race/ethnicity, body mass index, total kcal intake, evening kcal intake, and the number of eating episodes per day. Each 3-hour increase in nighttime fasting (roughly 1 SD) was associated with a 4% lower 2-hour glucose measurement [β, 0.96; 95% confidence interval (CI), 0.93-1.00; P < 0.05], and a nonstatistically significant decrease in HbA1c. Logistic regression models indicate that each 3-hour increase in nighttime fasting duration was associated with roughly a 20% reduced odds of elevated HbA1c (OR, 0.81; 95% CI, 0.68-0.97; P < 0.05) and nonsignificantly reduced odds of elevated 2-hour glucose. A longer nighttime duration was significantly associated with improved glycemic regulation. Randomized trials are needed to confirm whether prolonged nighttime fasting could improve biomarkers of glucose control, thereby reducing breast cancer risk. ©2015 American Association for Cancer Research.
Veerkamp, R F; Koenen, E P; De Jong, G
2001-10-01
Twenty type classifiers scored body condition (BCS) of 91,738 first-parity cows from 601 sires and 5518 maternal grandsires. Fertility data during first lactation were extracted for 177,220 cows, of which 67,278 also had a BCS observation, and first-lactation 305-d milk, fat, and protein yields were added for 180,631 cows. Heritabilities and genetic correlations were estimated using a sire-maternal grandsire model. Heritability of BCS was 0.38. Heritabilities for fertility traits were low (0.01 to 0.07), but genetic standard deviations were substantial, 9 d for days to first service and calving interval, 0.25 for number of services, and 5% for first-service conception. Phenotypic correlations between fertility and yield or BCS were small (-0.15 to 0.20). Genetic correlations between yield and all fertility traits were unfavorable (0.37 to 0.74). Genetic correlations with BCS were between -0.4 and -0.6 for calving interval and days to first service. Random regression analysis (RR) showed that correlations changed with days in milk for BCS. Little agreement was found between variances and correlations from RR, and analysis including a single month (mo 1 to 10) of data for BCS, especially during early and late lactation. However, this was due to excluding data from the conventional analysis, rather than due to the polynomials used. RR and a conventional five-traits model where BCS in mo 1, 4, 7, and 10 was treated as a separate traits (plus yield or fertility) gave similar results. Thus a parsimonious random regression model gave more realistic estimates for the (co)variances than a series of bivariate analysis on subsets of the data for BCS. A higher genetic merit for yield has unfavorable effects on fertility, but the genetic correlation suggests that BCS (at some stages of lactation) might help to alleviate the unfavorable effect of selection for higher yield on fertility.
Brain Natriuretic Hormone Predicts Stress Induced Alterations in Diastolic Function
Choksy, Pratik; Davis, Harry C.; Januzzi, James; Thayer, Julian; Harshfield, Gregory; Robinson, Vincent JB; Kapuku, Gaston K.
2015-01-01
Background Mental stress (MS) reduces diastolic function (DF) and may lead to congestive heart failure with preserved systolic function. Whether brain natriuretic hormone (BNP) mediates the relationship of MS with DF is unknown. Method and Results 160 individuals aged 30 to 50 years underwent 2 hour protocol of 40 minutes rest, videogame stressor and recovery. Hemodynamics, pro-BNP samples and DF indices were obtained throughout the protocol. Separate regression analyses were conducted using rest and stress E/A, E’ and E/E’ as dependent variables. Predictor variables were entered into the stepwise regression models in a hierarchical fashion. At the first level age, sex, race, height, BMI, pro-BNP, and LVM were permitted to enter the models. The second level consisted of SBP, DBP and HR. The final level contained cross-product terms of race by SBP, DBP and HR. E/A ratio was lower during stress compared to rest, and recovery (p<0.01). Resting E/A ratio was predicted by a regression model of age (−.31), pro-BNP (.16), HR (−.40) and DBP (−.23) with an R2 = .33. Stress E/A ratio was predicted by age (−.24), pro-BNP (.08), HR (−.38), and SBP (−.21), total R2 = .22. Resting E’ model consisted of age (−.22), pro-BNP (.26), DBP (−.27) and LVM (−.15) with an R2 = .29. Stress E’ was predicted by age (−.18), pro-BNP (.35) and LVM (−.18) with an R2 = .18. Resting E/E’ was predicted by race (.17, B>W) and DBP (.24) with an R2 = .10. Stress E/E’ consisted of pro-BNP (−.36), height (−.26) and HR (−.21) with R2 = .15. Conclusion pro-BNP predicts both resting and stress DF suggesting that lower BNP during MS may be a maker of diastolic dysfunction in apparently healthy individuals. PMID:24841419
Hunter, Paul R
2009-12-01
Household water treatment (HWT) is being widely promoted as an appropriate intervention for reducing the burden of waterborne disease in poor communities in developing countries. A recent study has raised concerns about the effectiveness of HWT, in part because of concerns over the lack of blinding and in part because of considerable heterogeneity in the reported effectiveness of randomized controlled trials. This study set out to attempt to investigate the causes of this heterogeneity and so identify factors associated with good health gains. Studies identified in an earlier systematic review and meta-analysis were supplemented with more recently published randomized controlled trials. A total of 28 separate studies of randomized controlled trials of HWT with 39 intervention arms were included in the analysis. Heterogeneity was studied using the "metareg" command in Stata. Initial analyses with single candidate predictors were undertaken and all variables significant at the P < 0.2 level were included in a final regression model. Further analyses were done to estimate the effect of the interventions over time by MonteCarlo modeling using @Risk and the parameter estimates from the final regression model. The overall effect size of all unblinded studies was relative risk = 0.56 (95% confidence intervals 0.51-0.63), but after adjusting for bias due to lack of blinding the effect size was much lower (RR = 0.85, 95% CI = 0.76-0.97). Four main variables were significant predictors of effectiveness of intervention in a multipredictor meta regression model: Log duration of study follow-up (regression coefficient of log effect size = 0.186, standard error (SE) = 0.072), whether or not the study was blinded (coefficient 0.251, SE 0.066) and being conducted in an emergency setting (coefficient -0.351, SE 0.076) were all significant predictors of effect size in the final model. Compared to the ceramic filter all other interventions were much less effective (Biosand 0.247, 0.073; chlorine and safe waste storage 0.295, 0.061; combined coagulant-chlorine 0.2349, 0.067; SODIS 0.302, 0.068). A Monte Carlo model predicted that over 12 months ceramic filters were likely to be still effective at reducing disease, whereas SODIS, chlorination, and coagulation-chlorination had little if any benefit. Indeed these three interventions are predicted to have the same or less effect than what may be expected due purely to reporting bias in unblinded studies With the currently available evidence ceramic filters are the most effective form of HWT in the longterm, disinfection-only interventions including SODIS appear to have poor if any longterm public health benefit.
Uranium Associations with Kidney Outcomes Vary by Urine Concentration Adjustment Method
Shelley, Rebecca; Kim, Nam-Soo; Parsons, Patrick J.; Lee, Byung-Kook; Agnew, Jacqueline; Jaar, Bernard G.; Steuerwald, Amy J.; Matanoski, Genevieve; Fadrowski, Jeffrey; Schwartz, Brian S.; Todd, Andrew C.; Simon, David; Weaver, Virginia M.
2017-01-01
Uranium is a ubiquitous metal that is nephrotoxic at high doses. Few epidemiologic studies have examined the kidney filtration impact of chronic environmental exposure. In 684 lead workers environmentally exposed to uranium, multiple linear regression was used to examine associations of uranium measured in a four-hour urine collection with measured creatinine clearance, serum creatinine- and cystatin-C-based estimated glomerular filtration rates, and N-acetyl-β-D-glucosaminidase (NAG). Three methods were utilized, in separate models, to adjust uranium levels for urine concentration - μg uranium/g creatinine; μg uranium/L and urine creatinine as separate covariates; and μg uranium/4 hr. Median urine uranium levels were 0.07 μg/g creatinine and 0.02 μg/4 hr and were highly correlated (rs =0.95). After adjustment, higher ln-urine uranium was associated with lower measured creatinine clearance and higher NAG in models that used urine creatinine to adjust for urine concentration but not in models that used total uranium excreted (μg/4 hr). These results suggest that, in some instances, associations between urine toxicants and kidney outcomes may be statistical, due to the use of urine creatinine in both exposure and outcome metrics, rather than nephrotoxic. These findings support consideration of non-creatinine-based methods of adjustment for urine concentration in nephrotoxicant research. PMID:23591699
[Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].
Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L
2017-03-10
To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.
Topp, Marie; Vestbo, Jørgen; Mortensen, Erik Lykke
2016-12-01
Previous research has shown that personality traits are associated with self-reported health status in the general population. COPD Assessment Test (CAT) is increasingly used to assess health status such as the impact of chronic obstructive pulmonary disease (COPD) on patients' daily life, but knowledge about the influence of personality traits on CAT score is lacking. The aim of this study was to examine the influence of Big Five personality traits on CAT score and the relation between personality traits and mental symptoms with respect to their influence on CAT score. A sample of 168 patients diagnosed with COPD was consecutively recruited in a secondary care outpatient clinic. All participants completed CAT, NEO Five-Factor Inventory, and Hospital Depression and Anxiety Scale. Multiple linear regression analysis was used to explore the association between personality traits and CAT scores and how this association was influenced by mental symptoms. The personality traits neuroticism, agreeableness and conscientiousness; and the mental symptoms depression and anxiety showed significant influence on CAT score when analysed in separate regression models. Identical R-square (R = 0.24) was found for personality traits and mental symptoms, but combining personality traits and mental symptoms in one regression model showed substantially reduced effect estimates of neuroticism, conscientiousness and anxiety, reflecting the strong correlations between personality traits and mental symptoms. We found that the impact of COPD on daily life measured by CAT was related to personality and mental symptoms, which illustrates the necessity of taking individual differences in personality and mental status into account in the management of COPD.
Association of hospitalizations for asthma with seasonal and pandemic influenza.
Gerke, Alicia K; Yang, Ming; Tang, Fan; Foster, Eric D; Cavanaugh, Joseph E; Polgreen, Philip M
2014-01-01
Although influenza has been associated with asthma exacerbations, it is not clear the extent to which this association affects health care use in the United States. The first goal of this project was to determine whether, and to what extent, the incidence of asthma hospitalizations is associated with seasonal variation in influenza. Second, we used influenza trends (2000-2008) to help predict asthma admissions during the 2009 H1N1 influenza pandemic. We identified all hospitalizations between 1998 and 2008 in the Nationwide Inpatient Sample from the Healthcare Cost and Utilization Project during which a primary diagnosis of asthma was recorded. Separately, we identified all hospitalizations during which a diagnosis of influenza was recorded. We performed time series regression analyses to investigate the association of monthly asthma admissions with influenza incidence. Finally, we applied these time series regression models using 1998-2008 data, to forecast monthly asthma admissions during the 2009 influenza pandemic. Based on time series regression models, a strong, significant association exists between concurrent influenza activity and incidence of asthma hospitalizations (P-value < 0.0001). Use of influenza data to predict asthma admissions during the 2009 H1N1 pandemic improved the mean squared prediction error by 60.2%. Influenza activity in the population is significantly associated with asthma hospitalizations in the United States, and this association can be exploited to more accurately forecast asthma admissions. Our results suggest that improvements in influenza surveillance, prevention and treatment may decrease hospitalizations of asthma patients. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L
2016-02-10
Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.
Odonkor, Charles A.; Schonberger, Robert B.; Dai, Feng; Shelley, Kirk H.; Silverman, David G.; Barash, Paul G.
2013-01-01
Objective The primary aim of this study was to design prediction models based on a functional marker (preoperative gait-speed) to predict readiness for home discharge time of ≤ 90 minutes, and to identify those at risk for unplanned admissions, after elective ambulatory surgery. Design This prospective observational cohort study evaluated all patients scheduled for elective ambulatory surgery. Home discharge readiness and unplanned admissions were the primary outcomes. Independent variables included preoperative gait speed, heart rate, and total anesthesia time. The relationship between all predictors and each primary outcome was determined in separate multivariable logistic regression models. Results After adjustment for covariates, gait speed with adjusted odds ratio = 3.71 (95% CI: 1.21-11.26), p=0.02; was independently associated with early home discharge readiness ≤90 minutes. Importantly, gait speed dichotomized as greater or less than 1 m/s predicted unplanned admissions with odds ratio = 0.35 (95% CI: 0.16 to 0.76, p=0.008) for those with speeds ≥ 1 m/s in comparison to those with speed < 1 m/s. In a separate model, prior history of cardiac surgery with adjusted odds ratio =7.5 (95% CI: 2.34-24.41)(p=0.001) was independently associated with unplanned admissions after elective ambulatory surgery, when other covariates were held constant. Conclusions This study demonstrates use of novel prediction models based on gait speed testing to predict early home discharge and to identify those patients at risk for unplanned admissions, after elective ambulatory surgery. PMID:24051992
Evaluation of weighted regression and sample size in developing a taper model for loblolly pine
Kenneth L. Cormier; Robin M. Reich; Raymond L. Czaplewski; William A. Bechtold
1992-01-01
A stem profile model, fit using pseudo-likelihood weighted regression, was used to estimate merchantable volume of loblolly pine (Pinus taeda L.) in the southeast. The weighted regression increased model fit marginally, but did not substantially increase model performance. In all cases, the unweighted regression models performed as well as the...
Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
NASA Astrophysics Data System (ADS)
Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami
2017-06-01
A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.
NASA Astrophysics Data System (ADS)
Prahutama, Alan; Suparti; Wahyu Utami, Tiani
2018-03-01
Regression analysis is an analysis to model the relationship between response variables and predictor variables. The parametric approach to the regression model is very strict with the assumption, but nonparametric regression model isn’t need assumption of model. Time series data is the data of a variable that is observed based on a certain time, so if the time series data wanted to be modeled by regression, then we should determined the response and predictor variables first. Determination of the response variable in time series is variable in t-th (yt), while the predictor variable is a significant lag. In nonparametric regression modeling, one developing approach is to use the Fourier series approach. One of the advantages of nonparametric regression approach using Fourier series is able to overcome data having trigonometric distribution. In modeling using Fourier series needs parameter of K. To determine the number of K can be used Generalized Cross Validation method. In inflation modeling for the transportation sector, communication and financial services using Fourier series yields an optimal K of 120 parameters with R-square 99%. Whereas if it was modeled by multiple linear regression yield R-square 90%.
Werner, Jan; Griebeler, Eva Maria
2014-01-01
We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of the two thermoregulation strategies for studied dinosaurs.
Werner, Jan; Griebeler, Eva Maria
2014-01-01
We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of the two thermoregulation strategies for studied dinosaurs. PMID:24586409
The mental well-being of Central American transmigrant men in Mexico.
Altman, Claire E; Gorman, Bridget K; Chávez, Sergio; Ramos, Federico; Fernández, Isaac
2018-04-01
To understand the mental health status of Central American migrant men travelling through Mexico to the U.S., we analysed the association between migration-related circumstances/stressors and psychological disorders. In-person interviews and a psychiatric assessment were conducted in 2010 and 2014 with 360 primarily Honduran transmigrant young adult males. The interviews were conducted at three Casas del Migrante (or migrant safe houses) in the migration-corridor cities of Monterrey, and Guadalupe, Nuevo Leon; and Saltillo, Coahuila. The results indicated high levels of migration-related stressors including abuse and a high prevalence of major depressive episodes (MDEs), alcohol dependency, and alcohol abuse. Nested logistic regression models were used to separately predict MDEs, alcohol dependency, and alcohol abuse, assessing their association with migration experiences and socio-demographic characteristics. Logistic regression models showed that characteristics surrounding migration (experiencing abuse, migration duration, and attempts) are predictive of depression. Alcohol dependency and abuse were both associated with marital status and having family/friends in the intended U.S. destination, while the number of migration attempts also predicted alcohol dependency. The results provide needed information on the association between transit migration through Mexico to the U.S. among unauthorised Central American men and major depressive disorder and alcohol abuse and dependency.
Buschmann, Robert N; Prochaska, John D; Cutchin, Malcolm P; Peek, M Kristen
2018-03-29
Neighborhood quality is associated with health. Increasingly, researchers are focusing on the mechanisms underlying that association, including the role of stress, risky health behaviors, and subclinical measures such as allostatic load (AL). This study uses mixed-effects regression modeling to examine the association between two objective measures and one subjective measure of neighborhood quality and AL in an ethnically diverse population-based sample (N = 2706) from a medium-sized Texas city. We also examine whether several measures of psychological stress and health behaviors mediate any relationship between neighborhood quality and AL. In this sample, all three separate measures of neighborhood quality were associated with individual AL (P < .01). However, only the subjective measure, perceived neighborhood quality, was associated with AL after adjusting for covariates. In mixed-effects multiple regression models there was no evidence of mediation by either stress or health behaviors. In this study, only one measure of neighborhood quality was related to a measure of health, which contrasts with considerable previous research in this area. In this sample, neighborhood quality may affect AL through other mechanisms, or there may be other health-affecting factors is this area that share that overshadow local neighborhood variation. Copyright © 2018 Elsevier Inc. All rights reserved.
Failure of Standard Training Sets in the Analysis of Fast-Scan Cyclic Voltammetry Data.
Johnson, Justin A; Rodeberg, Nathan T; Wightman, R Mark
2016-03-16
The use of principal component regression, a multivariate calibration method, in the analysis of in vivo fast-scan cyclic voltammetry data allows for separation of overlapping signal contributions, permitting evaluation of the temporal dynamics of multiple neurotransmitters simultaneously. To accomplish this, the technique relies on information about current-concentration relationships across the scan-potential window gained from analysis of training sets. The ability of the constructed models to resolve analytes depends critically on the quality of these data. Recently, the use of standard training sets obtained under conditions other than those of the experimental data collection (e.g., with different electrodes, animals, or equipment) has been reported. This study evaluates the analyte resolution capabilities of models constructed using this approach from both a theoretical and experimental viewpoint. A detailed discussion of the theory of principal component regression is provided to inform this discussion. The findings demonstrate that the use of standard training sets leads to misassignment of the current-concentration relationships across the scan-potential window. This directly results in poor analyte resolution and, consequently, inaccurate quantitation, which may lead to erroneous conclusions being drawn from experimental data. Thus, it is strongly advocated that training sets be obtained under the experimental conditions to allow for accurate data analysis.
NASA Astrophysics Data System (ADS)
Laborda, Francisco; Medrano, Jesús; Castillo, Juan R.
2004-06-01
The quality of the quantitative results obtained from transient signals in high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) was investigated under multielement conditions. Quantification methods were based on multiple-point calibration by simple and weighted linear regression, and double-point calibration (measurement of the baseline and one standard). An uncertainty model, which includes the main sources of uncertainty from FI-ICPMS and HPLC-ICPMS (signal measurement, sample flow rate and injection volume), was developed to estimate peak area uncertainties and statistical weights used in weighted linear regression. The behaviour of the ICPMS instrument was characterized in order to be considered in the model, concluding that the instrument works as a concentration detector when it is used to monitorize transient signals from flow injection or chromatographic separations. Proper quantification by the three calibration methods was achieved when compared to reference materials, although the double-point calibration allowed to obtain results of the same quality as the multiple-point calibration, shortening the calibration time. Relative expanded uncertainties ranged from 10-20% for concentrations around the LOQ to 5% for concentrations higher than 100 times the LOQ.
NASA Astrophysics Data System (ADS)
Hoss, F.; Fischbeck, P. S.
2014-10-01
This study further develops the method of quantile regression (QR) to predict exceedance probabilities of flood stages by post-processing forecasts. Using data from the 82 river gages, for which the National Weather Service's North Central River Forecast Center issues forecasts daily, this is the first QR application to US American river gages. Archived forecasts for lead times up to six days from 2001-2013 were analyzed. Earlier implementations of QR used the forecast itself as the only independent variable (Weerts et al., 2011; López López et al., 2014). This study adds the rise rate of the river stage in the last 24 and 48 h and the forecast error 24 and 48 h ago to the QR model. Including those four variables significantly improved the forecasts, as measured by the Brier Skill Score (BSS). Mainly, the resolution increases, as the original QR implementation already delivered high reliability. Combining the forecast with the other four variables results in much less favorable BSSs. Lastly, the forecast performance does not depend on the size of the training dataset, but on the year, the river gage, lead time and event threshold that are being forecast. We find that each event threshold requires a separate model configuration or at least calibration.
Nishiura, Akiko; Sasaki, Osamu; Aihara, Mitsuo; Takeda, Hisato; Satoh, Masahiro
2015-12-01
We estimated the genetic parameters of fat-to-protein ratio (FPR) and the genetic correlations between FPR and milk yield or somatic cell score in the first three lactations in dairy cows. Data included 3,079,517 test-day records of 201,138 Holstein cows in Japan from 2006 to 2011. Genetic parameters were estimated with a multiple-trait random regression model in which the records within and between parities were treated as separate traits. The phenotypic values of FPR increased soon after parturition and peaked at 10 to 20 days in milk, then decreased slowly in mid- and late lactation. Heritability estimates for FPR yielded moderate values. Genetic correlations of FPR among parities were low in early lactation. Genetic correlations between FPR and milk yield were positive and low in early lactation, but only in the first lactation. Genetic correlations between FPR and somatic cell score were positive in early lactation and decreased to become negative in mid- to late lactation. By using these results for genetic evaluation it should be possible to improve energy balance in dairy cows. © 2015 Japanese Society of Animal Science.
The relationship between worry and dimensions of anxiety symptoms in children and adolescents
Rabner, Jonathan; Mian, Nicholas D.; Langer, David A.; Comer, Jonathan S.; Pincus, Donna
2017-01-01
Background Worry is a common feature across many anxiety disorders. It is important to understand how and when worry presents from childhood to adolescence to prevent long-term negative outcomes. However, most of the existing studies that examine the relationship between worry and anxiety disorders utilize adult samples. Aims The present study aimed to assess the level of worry in children and adolescents and how relationships between worry and symptoms of separation anxiety disorder (SAD) and social anxiety disorder (Soc) may present differently at different ages. Method 127 children (age 8–12) and adolescents (age 13–18), diagnosed with any anxiety disorder, presenting at a child anxiety outpatient clinic, completed measures of worry, anxiety, and depression. Results Worry scores did not differ by age group. Soc symptoms were significantly correlated with worry in both age groups; however, SAD symptoms were only significantly correlated with worry in younger participants. After the inclusion of covariates, SAD symptoms but not Soc symptoms remained significant in the regression model with younger children, and Soc symptoms remained significant in the regression model with older children. Conclusions The finding that worry was comparable in both groups lends support for worry as a stable construct associated with anxiety disorders throughout late childhood and early adolescence. PMID:27852349
Konrad, Stephanie; Paduraru, Peggy; Romero-Barrios, Pablo; Henderson, Sarah B; Galanis, Eleni
2017-08-31
Vibrio parahaemolyticus (Vp) is a naturally occurring bacterium found in marine environments worldwide. It can cause gastrointestinal illness in humans, primarily through raw oyster consumption. Water temperatures, and potentially other environmental factors, play an important role in the growth and proliferation of Vp in the environment. Quantifying the relationships between environmental variables and indicators or incidence of Vp illness is valuable for public health surveillance to inform and enable suitable preventative measures. This study aimed to assess the relationship between environmental parameters and Vp in British Columbia (BC), Canada. The study used Vp counts in oyster meat from 2002-2015 and laboratory confirmed Vp illnesses from 2011-2015 for the province of BC. The data were matched to environmental parameters from publicly available sources, including remote sensing measurements of nighttime sea surface temperature (SST) obtained from satellite readings at a spatial resolution of 1 km. Using three separate models, this paper assessed the relationship between (1) daily SST and Vp counts in oyster meat, (2) weekly mean Vp counts in oysters and weekly Vp illnesses, and (3) weekly mean SST and weekly Vp illnesses. The effects of salinity and chlorophyll a were also evaluated. Linear regression was used to quantify the relationship between SST and Vp, and piecewise regression was used to identify SST thresholds of concern. A total of 2327 oyster samples and 293 laboratory confirmed illnesses were included. In model 1, both SST and salinity were significant predictors of log(Vp) counts in oyster meat. In model 2, the mean log(Vp) count in oyster meat was a significant predictor of Vp illnesses. In model 3, weekly mean SST was a significant predictor of weekly Vp illnesses. The piecewise regression models identified a SST threshold of approximately 14 o C for both model 1 and 3, indicating increased risk of Vp in oyster meat and Vp illnesses at higher temperatures. Monitoring of SST, particularly through readily accessible remote sensing data, could serve as a warning signal for Vp and help inform the introduction and cessation of preventative or control measures.
Photonic single nonlinear-delay dynamical node for information processing
NASA Astrophysics Data System (ADS)
Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel
2012-06-01
An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.
Fashion alienation: older adults and the mass media.
Kaiser, S B; Chandler, J L
1984-01-01
A self-administered questionnaire including questions related to fashion alienation, frequency of use of mass media for fashion information, and demographics was completed by 209 "50-plus" aged consumers in Northern California. Fashion alienation was measured using ten separate statements related to 1) degree of identification with fashion symbols in the media and 2) feelings of social and economic estrangement from fashion. Two of the statements produced significant regression models. In both statements, age was positively related to fashion alienation, and there was an inverse relationship between frequency of use of media for fashion information and fashion alienation. The data provide implications for a conceptual distinction between information and meaning processing with regard to fashion.
Beliefs about God and mental health among American adults.
Silton, Nava R; Flannelly, Kevin J; Galek, Kathleen; Ellison, Christopher G
2014-10-01
This study examines the association between beliefs about God and psychiatric symptoms in the context of Evolutionary Threat Assessment System Theory, using data from the 2010 Baylor Religion Survey of US Adults (N = 1,426). Three beliefs about God were tested separately in ordinary least squares regression models to predict five classes of psychiatric symptoms: general anxiety, social anxiety, paranoia, obsession, and compulsion. Belief in a punitive God was positively associated with four psychiatric symptoms, while belief in a benevolent God was negatively associated with four psychiatric symptoms, controlling for demographic characteristics, religiousness, and strength of belief in God. Belief in a deistic God and one's overall belief in God were not significantly related to any psychiatric symptoms.
NASA Astrophysics Data System (ADS)
Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.
2018-05-01
Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.
NASA Astrophysics Data System (ADS)
Messner, Mark C.; Rhee, Moono; Arsenlis, Athanasios; Barton, Nathan R.
2017-06-01
This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning—feature selection by regularized regression and cross-validation—to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.
Revisiting tests for neglected nonlinearity using artificial neural networks.
Cho, Jin Seo; Ishida, Isao; White, Halbert
2011-05-01
Tests for regression neglected nonlinearity based on artificial neural networks (ANNs) have so far been studied by separately analyzing the two ways in which the null of regression linearity can hold. This implies that the asymptotic behavior of general ANN-based tests for neglected nonlinearity is still an open question. Here we analyze a convenient ANN-based quasi-likelihood ratio statistic for testing neglected nonlinearity, paying careful attention to both components of the null. We derive the asymptotic null distribution under each component separately and analyze their interaction. Somewhat remarkably, it turns out that the previously known asymptotic null distribution for the type 1 case still applies, but under somewhat stronger conditions than previously recognized. We present Monte Carlo experiments corroborating our theoretical results and showing that standard methods can yield misleading inference when our new, stronger regularity conditions are violated.
Analyzing big data with the hybrid interval regression methods.
Huang, Chia-Hui; Yang, Keng-Chieh; Kao, Han-Ying
2014-01-01
Big data is a new trend at present, forcing the significant impacts on information technologies. In big data applications, one of the most concerned issues is dealing with large-scale data sets that often require computation resources provided by public cloud services. How to analyze big data efficiently becomes a big challenge. In this paper, we collaborate interval regression with the smooth support vector machine (SSVM) to analyze big data. Recently, the smooth support vector machine (SSVM) was proposed as an alternative of the standard SVM that has been proved more efficient than the traditional SVM in processing large-scale data. In addition the soft margin method is proposed to modify the excursion of separation margin and to be effective in the gray zone that the distribution of data becomes hard to be described and the separation margin between classes.
Analyzing Big Data with the Hybrid Interval Regression Methods
Kao, Han-Ying
2014-01-01
Big data is a new trend at present, forcing the significant impacts on information technologies. In big data applications, one of the most concerned issues is dealing with large-scale data sets that often require computation resources provided by public cloud services. How to analyze big data efficiently becomes a big challenge. In this paper, we collaborate interval regression with the smooth support vector machine (SSVM) to analyze big data. Recently, the smooth support vector machine (SSVM) was proposed as an alternative of the standard SVM that has been proved more efficient than the traditional SVM in processing large-scale data. In addition the soft margin method is proposed to modify the excursion of separation margin and to be effective in the gray zone that the distribution of data becomes hard to be described and the separation margin between classes. PMID:25143968
Applying Kaplan-Meier to Item Response Data
ERIC Educational Resources Information Center
McNeish, Daniel
2018-01-01
Some IRT models can be equivalently modeled in alternative frameworks such as logistic regression. Logistic regression can also model time-to-event data, which concerns the probability of an event occurring over time. Using the relation between time-to-event models and logistic regression and the relation between logistic regression and IRT, this…
Longitudinal change in the BODE index predicts mortality in severe emphysema.
Martinez, Fernando J; Han, Meilan K; Andrei, Adin-Cristian; Wise, Robert; Murray, Susan; Curtis, Jeffrey L; Sternberg, Alice; Criner, Gerard; Gay, Steven E; Reilly, John; Make, Barry; Ries, Andrew L; Sciurba, Frank; Weinmann, Gail; Mosenifar, Zab; DeCamp, Malcolm; Fishman, Alfred P; Celli, Bartolome R
2008-09-01
The predictive value of longitudinal change in BODE (Body mass index, airflow Obstruction, Dyspnea, and Exercise capacity) index has received limited attention. We hypothesized that decrease in a modified BODE (mBODE) would predict survival in National Emphysema Treatment Trial (NETT) patients. To determine how the mBODE score changes in patients with lung volume reduction surgery versus medical therapy and correlations with survival. Clinical data were recorded using standardized instruments. The mBODE was calculated and patient-specific mBODE trajectories during 6, 12, and 24 months of follow-up were estimated using separate regressions for each patient. Patients were classified as having decreasing, stable, increasing, or missing mBODE based on their absolute change from baseline. The predictive ability of mBODE change on survival was assessed using multivariate Cox regression models. The index of concordance was used to directly compare the predictive ability of mBODE and its separate components. The entire cohort (610 treated medically and 608 treated surgically) was characterized by severe airflow obstruction, moderate breathlessness, and increased mBODE at baseline. A wide distribution of change in mBODE was seen at follow-up. An increase in mBODE of more than 1 point was associated with increased mortality in surgically and medically treated patients. Surgically treated patients were less likely to experience death or an increase greater than 1 in mBODE. Indices of concordance showed that mBODE change predicted survival better than its separate components. The mBODE demonstrates short- and intermediate-term responsiveness to intervention in severe chronic obstructive pulmonary disease. Increase in mBODE of more than 1 point from baseline to 6, 12, and 24 months of follow-up was predictive of subsequent mortality. Change in mBODE may prove a good surrogate measure of survival in therapeutic trials in severe chronic obstructive pulmonary disease. Clinical trial registered with www.clinicaltrials.gov (NCT 00000606).
Structural Time Series Model for El Niño Prediction
NASA Astrophysics Data System (ADS)
Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodo, Xavier
2015-04-01
ENSO is a dominant feature of climate variability on inter-annual time scales destabilizing weather patterns throughout the globe, and having far-reaching socio-economic consequences. It does not only lead to extensive rainfall and flooding in some regions of the world, and anomalous droughts in others, thus ruining local agriculture, but also substantially affects the marine ecosystems and the sustained exploitation of marine resources in particular coastal zones, especially the Pacific South American coast. As a result, forecasting of ENSO and especially of the warm phase of the oscillation (El Niño/EN) has long been a subject of intense research and improvement. Thus, the present study explores a novel method for the prediction of the Niño 3.4 index. In the state-of-the-art the advantageous statistical modeling approach of Structural Time Series Analysis has not been applied. Therefore, we have developed such a model using a State Space approach for the unobserved components of the time series. Its distinguishing feature is that observations consist of various components - level, seasonality, cycle, disturbance, and regression variables incorporated as explanatory covariates. These components are aimed at capturing the various modes of variability of the N3.4 time series. They are modeled separately, then combined in a single model for analysis and forecasting. Customary statistical ENSO prediction models essentially use SST, SLP and wind stress in the equatorial Pacific. We introduce new regression variables - subsurface ocean temperature in the western equatorial Pacific, motivated by recent (Ramesh and Murtugudde, 2012) and classical research (Jin, 1997), (Wyrtki, 1985), showing that subsurface processes and heat accumulation there are fundamental for initiation of an El Niño event; and a southern Pacific temperature-difference tracer, the Rossbell dipole, leading EN by about nine months (Ballester, 2011).
Veldhuijzen van Zanten, Sophie E M; Lane, Adam; Heymans, Martijn W; Baugh, Joshua; Chaney, Brooklyn; Hoffman, Lindsey M; Doughman, Renee; Jansen, Marc H A; Sanchez, Esther; Vandertop, William P; Kaspers, Gertjan J L; van Vuurden, Dannis G; Fouladi, Maryam; Jones, Blaise V; Leach, James
2017-08-01
We aimed to perform external validation of the recently developed survival prediction model for diffuse intrinsic pontine glioma (DIPG), and discuss its utility. The DIPG survival prediction model was developed in a cohort of patients from the Netherlands, United Kingdom and Germany, registered in the SIOPE DIPG Registry, and includes age <3 years, longer symptom duration and receipt of chemotherapy as favorable predictors, and presence of ring-enhancement on MRI as unfavorable predictor. Model performance was evaluated by analyzing the discrimination and calibration abilities. External validation was performed using an unselected cohort from the International DIPG Registry, including patients from United States, Canada, Australia and New Zealand. Basic comparison with the results of the original study was performed using descriptive statistics, and univariate- and multivariable regression analyses in the validation cohort. External validation was assessed following a variety of analyses described previously. Baseline patient characteristics and results from the regression analyses were largely comparable. Kaplan-Meier curves of the validation cohort reproduced separated groups of standard (n = 39), intermediate (n = 125), and high-risk (n = 78) patients. This discriminative ability was confirmed by similar values for the hazard ratios across these risk groups. The calibration curve in the validation cohort showed a symmetric underestimation of the predicted survival probabilities. In this external validation study, we demonstrate that the DIPG survival prediction model has acceptable cross-cohort calibration and is able to discriminate patients with short, average, and increased survival. We discuss how this clinico-radiological model may serve a useful role in current clinical practice.
2015-10-30
pressure values onto the SD card. The addition of free and open-source Arduino libraries allowed for the seamless integration of the shield into the...alert the user when replacing the separator is necessary. Methods: A sensor was built to measure and record differential pressure values within the...from the transducers during simulated blockages were transformed into pressure values using linear regression equations from the calibration data
Validation of test-day models for genetic evaluation of dairy goats in Norway.
Andonov, S; Ødegård, J; Boman, I A; Svendsen, M; Holme, I J; Adnøy, T; Vukovic, V; Klemetsdal, G
2007-10-01
Test-day data for daily milk yield and fat, protein, and lactose content were sampled from the years 1988 to 2003 in 17 flocks belonging to 2 genetically well-tied buck circles. In total, records from 2,111 to 2,215 goats for content traits and 2,371 goats for daily milk yield were included in the analysis, averaging 2.6 and 4.8 observations per goat for the 2 groups of traits, respectively. The data were analyzed by using 4 test-day models with different modeling of fixed effects. Model [0] (the reference model) contained a fixed effect of year-season of kidding with regression on Ali-Schaeffer polynomials nested within the year-season classes, and a random effect of flock test-day. In model [1], the lactation curve effect from model [0] was replaced by a fixed effect of days in milk (in 3-d periods), the same for all year-seasons of kidding. Models [2] and [3] were obtained from model [1] by removing the fixed year-season of kidding effect and considering the flock test-day effect as either fixed or random, respectively. The models were compared by using 2 criteria: mean-squared error of prediction and a test of bias affecting the genetic trend. The first criterion indicated a preference for model [3], whereas the second criterion preferred model [1]. Mean-squared error of prediction is based on model fit, whereas the second criterion tests the ability of the model to produce unbiased genetic evaluation (i.e., its capability of separating environmental and genetic time trends). Thus, a fixed structure with year (year, year-season, or possibly flock-year) was indicated to appropriately separate time trends. Heritability estimates for daily milk yield and milk content were 0.26 and 0.24 to 0.27, respectively.
ERIC Educational Resources Information Center
Liou, Pey-Yan
2009-01-01
The current study examines three regression models: OLS (ordinary least square) linear regression, Poisson regression, and negative binomial regression for analyzing count data. Simulation results show that the OLS regression model performed better than the others, since it did not produce more false statistically significant relationships than…
Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G
2011-06-28
We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.
Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A
2014-08-01
Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluating differential effects using regression interactions and regression mixture models
Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung
2015-01-01
Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903
Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models
ERIC Educational Resources Information Center
Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung
2015-01-01
Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…
Does employment security modify the effect of housing affordability on mental health?
Bentley, Rebecca; Baker, Emma; LaMontagne, Anthony; King, Tania; Mason, Kate; Kavanagh, Anne
2016-12-01
This paper uses longitudinal data to examine the interrelationship between two central social determinants of mental health - employment security and housing affordability. Data from ten annual waves of the longitudinal Household, Income and Labour Dynamics in Australia (HILDA) survey (which commenced in 2000/1 and is ongoing) were analysed using fixed-effects longitudinal linear regression. Change in the SF-36 Mental Component Summary (MCS) score of working age individuals (25-64 years) (51,885 observations of 10,776 people), associated with changes in housing affordability was examined. Models were adjusted for income, age, survey year, experience of serious injury/illness and separation/divorce. We tested for an additive interaction between the security of a household's employment arrangements and housing affordability. People in insecurely employed households appear more vulnerable than people in securely employed households to negative mental health effects of housing becoming unaffordable. In adjusted models, people in insecurely employed households whose housing became unaffordable experienced a decline in mental health (B=-1.06, 95% CI -1.75 to -0.38) while people in securely employed households experienced no difference on average. To progress our understanding of the Social Determinants of Health this analysis provides evidence of the need to bridge the (largely artificial) separation of social determinants, and understand how they are related.
Schmitt, Neal; Golubovich, Juliya; Leong, Frederick T L
2011-12-01
The impact of measurement invariance and the provision for partial invariance in confirmatory factor analytic models on factor intercorrelations, latent mean differences, and estimates of relations with external variables is investigated for measures of two sets of widely assessed constructs: Big Five personality and the six Holland interests (RIASEC). In comparing models that include provisions for partial invariance with models that do not, the results indicate quite small differences in parameter estimates involving the relations between factors, one relatively large standardized mean difference in factors between the subgroups compared and relatively small differences in the regression coefficients when the factors are used to predict external variables. The results provide support for the use of partially invariant models, but there does not seem to be a great deal of difference between structural coefficients when the measurement model does or does not include separate estimates of subgroup parameters that differ across subgroups. Future research should include simulations in which the impact of various factors related to invariance is estimated.
NASA Astrophysics Data System (ADS)
Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian
2017-03-01
Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I + II + III (FI + II + III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (Rp2), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501 g/L, 0.465 g/L and 5.57 for TP, and 0.969, 0.530 g/L, 0.341 g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI + II + III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS.
Poll, Gerard H; Miller, Carol A; Mainela-Arnold, Elina; Adams, Katharine Donnelly; Misra, Maya; Park, Ji Sook
2013-01-01
More limited working memory capacity and slower processing for language and cognitive tasks are characteristics of many children with language difficulties. Individual differences in processing speed have not consistently been found to predict language ability or severity of language impairment. There are conflicting views on whether working memory and processing speed are integrated or separable abilities. To evaluate four models for the relations of individual differences in children's processing speed and working memory capacity in sentence imitation. The models considered whether working memory and processing speed are integrated or separable, as well as the effect of the number of operations required per sentence. The role of working memory as a mediator of the effect of processing speed on sentence imitation was also evaluated. Forty-six children with varied language and reading abilities imitated sentences. Working memory was measured with the Competing Language Processing Task (CLPT), and processing speed was measured with a composite of truth-value judgment and rapid automatized naming tasks. Mixed-effects ordinal regression models evaluated the CLPT and processing speed as predictors of sentence imitation item scores. A single mediator model evaluated working memory as a mediator of the effect of processing speed on sentence imitation total scores. Working memory was a reliable predictor of sentence imitation accuracy, but processing speed predicted sentence imitation only as a component of a processing speed by number of operations interaction. Processing speed predicted working memory capacity, and there was evidence that working memory acted as a mediator of the effect of processing speed on sentence imitation accuracy. The findings support a refined view of working memory and processing speed as separable factors in children's sentence imitation performance. Processing speed does not independently explain sentence imitation accuracy for all sentence types, but contributes when the task requires more mental operations. Processing speed also has an indirect effect on sentence imitation by contributing to working memory capacity. © 2013 Royal College of Speech and Language Therapists.
Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian
2017-03-15
Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I+II+III (FI+II+III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (R p 2 ), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501g/L, 0.465g/L and 5.57 for TP, and 0.969, 0.530g/L, 0.341g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI+II+III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew G. Peterson; J. Timothy Ball; Yiqi Luo
1998-09-25
Estimation of leaf photosynthetic rate (A) from leaf nitrogen content (N) is both conceptually and numerically important in models of plant, ecosystem and biosphere responses to global change. The relationship between A and N has been studied extensively at ambient CO{sub 2} but much less at elevated CO{sub 2}. This study was designed to (1) assess whether the A-N relationship was more similar for species within than between community and vegetation types, and (2) examine how growth at elevated CO{sub 2} affects the A-N relationship. Data were obtained for 39 C{sub 3} species grown at ambient CO{sub 2} and 10more » C{sub 3} species grown at ambient and elevated CO{sub 2}. A regression model was applied to each species as well as to species pooled within different community and vegetation types. Cluster analysis of the regression coefficients indicated that species measured at ambient CO{sub 2} did not separate into distinct groups matching community or vegetation type. Instead, most community and vegetation types shared the same general parameter space for regression coefficients. Growth at elevated CO{sub 2} increased photosynthetic nitrogen use efficiency for pines and deciduous trees. When species were pooled by vegetation type, the A-N relationship for deciduous trees expressed on a leaf-mass bask was not altered by elevated CO{sub 2}, while the intercept increased for pines. When regression coefficients were averaged to give mean responses for different vegetation types, elevated CO{sub 2} increased the intercept and the slope for deciduous trees but increased only the intercept for pines. There were no statistical differences between the pines and deciduous trees for the effect of CO{sub 2}. Generalizations about the effect of elevated CO{sub 2} on the A-N relationship, and differences between pines and deciduous trees will be enhanced as more data become available.« less
Secular trends in Cherokee cranial morphology: Eastern vs Western bands.
Sutphin, Rebecca; Ross, Ann H; Jantz, Richard L
2014-01-01
The research objective was to examine if secular trends can be identified for cranial data commissioned by Boas in 1892, specifically for cranial breadth and cranial length of the Eastern and Western band Cherokee who experienced environmental hardships. Multiple regression analysis was used to test the degree of relationship between each of the cranial measures: cranial length, cranial breadth and cephalic index, along with predictor variables (year-of-birth, location, sex, admixture); the model revealed a significant difference for all craniometric variables. Additional regression analysis was performed with smoothing Loess plots to observe cranial length and cranial breadth change over time (year-of-birth) separately for Eastern and Western Cherokee band females and males born between 1783-1874. This revealed the Western and Eastern bands show a decrease in cranial length over time. Eastern band individuals maintain a relatively constant head breadth, while Western Band individuals show a sharp decline beginning around 1860. These findings support negative secular trend occurring for both Cherokee bands where the environment made a detrimental impact; this is especially marked with the Western Cherokee band.
Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen
2017-10-11
Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.
Yubero, Santiago; Larrañaga, Elisa; Villora, Beatriz; Navarro, Raúl
2017-10-05
The present study examines the relationship between different roles in cyberbullying behaviors (cyberbullies, cybervictims, cyberbullies-victims, and uninvolved) and self-reported digital piracy. In a region of central Spain, 643 (49.3% females, 50.7% males) students (grades 7-10) completed a number of self-reported measures, including cyberbullying victimization and perpetration, self-reported digital piracy, ethical considerations of digital piracy, time spent on the Internet, and leisure activities related with digital content. The results of a series of hierarchical multiple regression models for the whole sample indicate that cyberbullies and cyberbullies-victims are associated with more reports of digital piracy. Subsequent hierarchical multiple regression analyses, done separately for males and females, indicate that the relationship between cyberbullying and self-reported digital piracy is sustained only for males. The ANCOVA analysis show that, after controlling for gender, self-reported digital piracy and time spent on the Internet, cyberbullies and cyberbullies-victims believe that digital piracy is a more ethically and morally acceptable behavior than victims and uninvolved adolescents believe. The results provide insight into the association between two deviant behaviors.
Pfoertner, Timo-Kolja; Andress, Hans-Juergen; Janssen, Christian
2011-08-01
Current study introduces the living standard concept as an alternative approach of measuring poverty and compares its explanatory power to an income-based poverty measure with regard to subjective health status of the German population. Analyses are based on the German Socio-Economic Panel (2001, 2003 and 2005) and refer to binary logistic regressions of poor subjective health status with regard to each poverty condition, their duration and their causal influence from a previous time point. To calculate the discriminate power of both poverty indicators, initially the indicators were considered separately in regression models and subsequently, both were included simultaneously. The analyses reveal a stronger poverty-health relationship for the living standard indicator. An inadequate living standard in 2005, longer spells of an inadequate living standard between 2001, 2003 and 2005 as well as an inadequate living standard at a previous time point is significantly strongly associated with subjective health than income poverty. Our results challenge conventional measurements of the relationship between poverty and health that probably has been underestimated by income measures so far.
Bliss, Donna Z.; Gurvich, Olga; Savik, Kay; Eberly, Lynn E.; Harms, Susan; Mueller, Christine; Wyman, Jean F.; Garrard, Judith; Virnig, Beth
2017-01-01
Objective The objective of this study was to assess whether there are racial and ethnic disparities in the time to development of a pressure ulcer and number of pressure ulcer treatments in individuals aged 65 and older after nursing home admission. Method Multi-level predictors of time to a pressure ulcer from three national surveys were analyzed using Cox proportional hazards regression for White Non-Hispanic residents. Using the Peters–Belson method to assess for disparities, estimates from the regression models were applied to American Indians/Alaskan Natives, Asians/ Pacific Islanders, Blacks, and Hispanics separately resulting in estimates of expected outcomes as if they were White Non-Hispanic, and were then compared with their observed outcomes. Results More Blacks developed pressure ulcers sooner than expected. No disparities in time to a pressure ulcer disadvantaging other racial/ethnic groups were found. There were no disparities in pressure ulcer treatment for any group. Discussion Reducing disparities in pressure ulcer development offers a strategy to improve the quality of nursing home care. PMID:25260648
Bliss, Donna Z; Gurvich, Olga; Savik, Kay; Eberly, Lynn E; Harms, Susan; Mueller, Christine; Wyman, Jean F; Garrard, Judith; Virnig, Beth
2015-06-01
The objective of this study was to assess whether there are racial and ethnic disparities in the time to development of a pressure ulcer and number of pressure ulcer treatments in individuals aged 65 and older after nursing home admission. Multi-level predictors of time to a pressure ulcer from three national surveys were analyzed using Cox proportional hazards regression for White Non-Hispanic residents. Using the Peters-Belson method to assess for disparities, estimates from the regression models were applied to American Indians/Alaskan Natives, Asians/Pacific Islanders, Blacks, and Hispanics separately resulting in estimates of expected outcomes as if they were White Non-Hispanic, and were then compared with their observed outcomes. More Blacks developed pressure ulcers sooner than expected. No disparities in time to a pressure ulcer disadvantaging other racial/ethnic groups were found. There were no disparities in pressure ulcer treatment for any group. Reducing disparities in pressure ulcer development offers a strategy to improve the quality of nursing home care. © The Author(s) 2014.
Sensitivity and specificity of memory and naming tests for identifying left temporal-lobe epilepsy.
Umfleet, Laura Glass; Janecek, Julie K; Quasney, Erin; Sabsevitz, David S; Ryan, Joseph J; Binder, Jeffrey R; Swanson, Sara J
2015-01-01
The sensitivity and specificity of the Selective Reminding Test (SRT) Delayed Recall, Wechsler Memory Scale (WMS) Logical Memory, the Boston Naming Test (BNT), and two nonverbal memory measures for detecting lateralized dysfunction in association with side of seizure focus was examined in a sample of 143 patients with left or right temporal-lobe epilepsy (TLE). Scores on the SRT and BNT were statistically significantly lower in the left TLE group compared with the right TLE group, whereas no group differences emerged on the Logical Memory subtest. No significant group differences were found with nonverbal memory measures. When the SRT and BNT were both entered as predictors in a logistic regression, the BNT, although significant, added minimal value to the model beyond the variance accounted for by the SRT Delayed Recall. Both variables emerged as significant predictors of side of seizure focus when entered into separate regressions. Sensitivity and specificity of the SRT and BNT ranged from 56% to 65%. The WMS Logical Memory and nonverbal memory measures were not significant predictors of the side of seizure focus.
Ifoulis, A A; Savopoulou-Soultani, M
2006-10-01
The purpose of this research was to quantify the spatial pattern and develop a sampling program for larvae of Lobesia botrana Denis and Schiffermüller (Lepidoptera: Tortricidae), an important vineyard pest in northern Greece. Taylor's power law and Iwao's patchiness regression were used to model the relationship between the mean and the variance of larval counts. Analysis of covariance was carried out, separately for infestation and injury, with combined second and third generation data, for vine and half-vine sample units. Common regression coefficients were estimated to permit use of the sampling plan over a wide range of conditions. Optimum sample sizes for infestation and injury, at three levels of precision, were developed. An investigation of a multistage sampling plan with a nested analysis of variance showed that if the goal of sampling is focusing on larval infestation, three grape clusters should be sampled in a half-vine; if the goal of sampling is focusing on injury, then two grape clusters per half-vine are recommended.
NASA Astrophysics Data System (ADS)
Afolagboye, Lekan Olatayo; Talabi, Abel Ojo; Oyelami, Charles Adebayo
2017-05-01
This study assessed the possibility of using index tests to determine the mechanical properties of crushed aggregates. The aggregates used in this study were derived from major Precambrian basement rocks in Ado-Ekiti, Nigeria. Regression analyses were performed to determine the empirical relations that mechanical properties of the aggregates may have with the point load strength (IS(50)), Schmidt rebound hammer value (SHR) and unconfined compressive strength (UCS) of the rocks. For all the data, strong correlation coefficients were found between IS(50), SHR, UCS, and mechanical properties of the aggregates. The regression analysis conducted on the different rocks separately showed that correlations coefficients obtained between the IS(50), SHR, UCS and mechanical properties of the aggregates were stronger than those of the grouped rocks. The T-test and F-test showed that the derived models were valid. This study has shown that the mechanical properties of the aggregates can be estimated from IS(50), SHR and USC but the influence of rock type on the relationships should be taken into consideration.
Gender differences in social support and leisure-time physical activity.
Oliveira, Aldair J; Lopes, Claudia S; Rostila, Mikael; Werneck, Guilherme Loureiro; Griep, Rosane Härter; Leon, Antônio Carlos Monteiro Ponce de; Faerstein, Eduardo
2014-08-01
To identify gender differences in social support dimensions' effect on adults' leisure-time physical activity maintenance, type, and time. Longitudinal study of 1,278 non-faculty public employees at a university in Rio de Janeiro, RJ, Southeastern Brazil. Physical activity was evaluated using a dichotomous question with a two-week reference period, and further questions concerning leisure-time physical activity type (individual or group) and time spent on the activity. Social support was measured with the Medical Outcomes Study Social Support Scale. For the analysis, logistic regression models were adjusted separately by gender. A multinomial logistic regression showed an association between material support and individual activities among women (OR = 2.76; 95%CI 1.2;6.5). Affective support was associated with time spent on leisure-time physical activity only among men (OR = 1.80; 95%CI 1.1;3.2). All dimensions of social support that were examined influenced either the type of, or the time spent on, leisure-time physical activity. In some social support dimensions, the associations detected varied by gender. Future studies should attempt to elucidate the mechanisms involved in these gender differences.
Rasmussen, Andrew; Cissé, Aïcha; Han, Ying; Roubeni, Sonia
2018-02-12
Immigrants make up large proportions of many low-income neighborhoods, but have been largely ignored in the neighborhood safety literature. We examined perceived safety's association with migration using a six-item, child-specific measure of parents' perceptions of school-aged (5-12 years of age) children's safety in a sample of 93 West African immigrant parents in New York City. Aims of the study were (a) to identify pre-migration correlates (e.g., trauma in home countries), (b) to identify migration-related correlates (e.g., immigration status, time spent separated from children during migration), and (c) to identify pre-migration and migration correlates that accounted for variance after controlling for non-migration-related correlates (e.g., neighborhood crime, parents' psychological distress). In a linear regression model, children's safety was associated with borough of residence, greater English ability, less emotional distress, less parenting difficulty, and a history of child separation. Parents' and children's gender, parents' immigration status, and the number of contacts in the U.S. pre-migration and pre-migration trauma were not associated with children's safety. That child separation was positively associated with safety perceptions suggests that the processes that facilitate parent-child separation might be reconceptualized as strengths for transnational families. Integrating migration-related factors into the discussion of neighborhood safety for immigrant populations allows for more nuanced views of immigrant families' well-being in host countries. © Society for Community Research and Action 2018.
Modeling absolute differences in life expectancy with a censored skew-normal regression approach
Clough-Gorr, Kerri; Zwahlen, Marcel
2015-01-01
Parameter estimates from commonly used multivariable parametric survival regression models do not directly quantify differences in years of life expectancy. Gaussian linear regression models give results in terms of absolute mean differences, but are not appropriate in modeling life expectancy, because in many situations time to death has a negative skewed distribution. A regression approach using a skew-normal distribution would be an alternative to parametric survival models in the modeling of life expectancy, because parameter estimates can be interpreted in terms of survival time differences while allowing for skewness of the distribution. In this paper we show how to use the skew-normal regression so that censored and left-truncated observations are accounted for. With this we model differences in life expectancy using data from the Swiss National Cohort Study and from official life expectancy estimates and compare the results with those derived from commonly used survival regression models. We conclude that a censored skew-normal survival regression approach for left-truncated observations can be used to model differences in life expectancy across covariates of interest. PMID:26339544
NASA Astrophysics Data System (ADS)
Holbrook, John M.; Bhattacharya, Janok P.
2012-07-01
The sequence-bounding unconformity bears the key defining traits of being "a surface separating younger from older strata, along which there is evidence of subaerial erosional truncation … or subaerial exposure, with a significant hiatus indicated (Van Wagoner et al., 1988)." This subaerial component of sequence boundaries (subaerial unconformity—SU) is also broadly considered to form as a topographic surface of sediment bypass, carved during relative sea level fall and buried by backfilling during relative sea level rise. Accordingly, the SU is commonly presumed to record an approximate time barrier, which separates older from younger strata along its full length. In this paper we show that regional composite scour (RCS) surfaces that are traditionally mapped as an integral component of the SU were never a single subaerial topographic surface characterized by sediment bypass, are not unconformities, do not record an effective time barrier, and form diachronously at the channel-belt scale over the entire fall to rise of a base-level cycle. These RCS surfaces, and by inference the SU surfaces they comprise, thus do not fully fit key defining characteristics embodied in the conceptual sequence boundary. Flume observations and field data show that the RCS is buried by fluvial sediment simultaneously as it is scoured. Accordingly, the RCS is perennially covered with stored sediment during formation, is only exposed as a subaerial topographic surface at the local place and time where it is undergoing active growth, and forms over the duration of local marine drainage during a relative sea-level cycle. This "cut-and-cover" model differs greatly from more established "bypass" models, which assume that the RCS was roughly sediment free and subaerially exposed for long durations of incision during regression and thus preserves a significant depositional hiatus upon later burial. Instead, the RCS may commonly and locally record a hiatus more typical of a facies-bounding diastem without a lacuna significantly greater than that of surfaces within the strata it binds. Fragments of fluvial strata may commonly and sporadically be preserved above the RCS that are older than underlying marine units overrun by this surface. Consequently, the RCS is not an effective time barrier. Lateral planation by migrating and avulsing channels as the RCS expands laterally after nucleation can place younger fluvial strata over much older units, which means that this surface is also composite and highly diachronous laterally at the scale of channel belts. The cut-and-cover model has additional implications not captured by the bypass model. First, significant sediments may be stored within fluvial strata above the RCS during regression that are not available for contemporary falling stage and lowstand marine shorelines. This can result in marine sediment starvation, particularly of the sand fraction, and in extreme cases can result in sand autodetachment and an absence of regressive marine reservoir sandstones. Second, cutting of the RCS co-generates a suprafluvial surface above the covering fluvial strata during regression that may be used as a mappable proxy for the conceptual maximum regressive surface (MRS). The MRS may be raised above this surface locally by low-accommodation aggradation during lowstand normal regression, but in either case preserves an approximate time line where not reworked during later transgression. Third, valley development across the RCS does not exclusively form by landward knickpoint growth, and may include complexly formed and potentially cross-cutting buffer valleys. SU valley incision can be divided into four modes, which include denudation, structural, buttress, and buffer valley components, which may work together locally and tend to have variable importance along the shore-to-hinterland profile. Although the RCS is not a good rock proxy for the conceptual sequence boundary it remains a very mappable surface which may separate facies of potentially very different origin and reservoir quality. The RCS is also inseparable from the SU and typically the only terrestrial erosional surface of extent in most short-duration sequences. Its nullification as a sequence boundary would mean abandonment of depositional sequence stratigraphy as a correlation and interpretive tool within these sections. An alternative to abandonment of the SU as a sequence boundary is to loosen the definition of a sequence boundary to 'a discrete surface of erosional truncation carved landward of contemporary shorelines that is traceable beyond the scale of a single valley or comparable local system, and its correlative surfaces of conformity and/or non-deposition', and continue its use as before.
Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C
2018-06-29
A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.
Busch, Robert; Han, MeiLan K; Bowler, Russell P; Dransfield, Mark T; Wells, J Michael; Regan, Elizabeth A; Hersh, Craig P
2016-02-10
Despite inhaled medications that decrease exacerbation risk, some COPD patients experience frequent exacerbations. We determined prospective risk factors for exacerbations among subjects in the COPDGene Study taking inhaled medications. 2113 COPD subjects were categorized into four medication use patterns: triple therapy with tiotropium (TIO) plus long-acting beta-agonist/inhaled-corticosteroid (ICS ± LABA), tiotropium alone, ICS ± LABA, and short-acting bronchodilators. Self-reported exacerbations were recorded in telephone and web-based longitudinal follow-up surveys. Associations with exacerbations were determined within each medication group using four separate logistic regression models. A head-to-head analysis compared exacerbation risk among subjects using tiotropium vs. ICS ± LABA. In separate logistic regression models, the presence of gastroesophageal reflux, female gender, and higher scores on the St. George's Respiratory Questionnaire were significant predictors of exacerbator status within multiple medication groups (reflux: OR 1.62-2.75; female gender: OR 1.53 - OR 1.90; SGRQ: OR 1.02-1.03). Subjects taking either ICS ± LABA or tiotropium had similar baseline characteristics, allowing comparison between these two groups. In the head-to-head comparison, tiotropium users showed a trend towards lower rates of exacerbations (OR = 0.69 [95 % CI 0.45, 1.06], p = 0.09) compared with ICS ± LABA users, especially in subjects without comorbid asthma (OR = 0.56 [95% CI 0.31, 1.00], p = 0.05). Each common COPD medication usage group showed unique risk factor patterns associated with increased risk of exacerbations, which may help clinicians identify subjects at risk. Compared to similar subjects using ICS ± LABA, those taking tiotropium showed a trend towards reduced exacerbation risk, especially in subjects without asthma. ClinicalTrials.gov NCT00608764, first received 1/28/2008.
Lu, Yuyan; Zhu, Mengyun; Bai, Bin; Chi, Chen; Yu, Shikai; Teliewubai, Jiadela; Xu, Henry; Wang, Kai; Xiong, Jing; Zhou, Yiwu; Ji, Hongwei; Fan, Ximin; Yu, Xuejing; Li, Jue; Blacher, Jacques; Zhang, Yi; Xu, Yawei
2017-02-20
Carotid-femoral pulse-wave velocity (cf-PWV) and brachial-ankle PWV (ba-PWV) are the 2 most frequently applied PWV measurements. However, little is known about the comparison of hypertensive target organ damage (TOD) with cf-PWV and ba-PWV. A total of 1599 community-dwelling elderly subjects (age >65 years) in northern Shanghai were recruited from June 2014 to August 2015. Both cf-PWV and ba-PWV were measured using SphygmoCor and VP1000 systems, respectively. Within the framework of comprehensive cardiovascular examinations, risk factors were assessed, and asymptomatic TOD, including left ventricular mass index, peak transmitral pulsed Doppler velocity/early diastolic tissue Doppler velocity (E/Ea), carotid intima-media thickness, arterial plaque, creatinine clearance rate, and urinary albumin-creatinine ratio were all evaluated. Both PWVs were significantly associated with male sex, age, waist/hip circumference, fasting plasma glucose, and systolic blood pressure, and ba-PWV was also significantly related to body mass index. Both PWVs were significantly correlated with most TOD. When cf-PWV and ba-PWV were both or separately put into the stepwise linear regression model together with cardiovascular risk factors and treatment, only cf-PWV, but not ba-PWV, was significantly associated with carotid intima-media thickness and creatinine clearance rate ( P <0.05). When cf-PWV and ba-PWV were both or separately put into the same full-mode model after adjustment for confounders, only cf-PWV, but not ba-PWV, showed significant association with carotid intima-media thickness and creatinine clearance rate ( P <0.05). Similar results were observed in logistic regression analysis. Taken together, in the community-dwelling elderly Chinese, cf-PWV seems to be more closely associated with hypertensive TOD, especially vascular and renal TOD, as compared with ba-PWV. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02368938. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
ERIC Educational Resources Information Center
Chen, Chau-Kuang
2005-01-01
Logistic and Cox regression methods are practical tools used to model the relationships between certain student learning outcomes and their relevant explanatory variables. The logistic regression model fits an S-shaped curve into a binary outcome with data points of zero and one. The Cox regression model allows investigators to study the duration…
Robust geographically weighted regression of modeling the Air Polluter Standard Index (APSI)
NASA Astrophysics Data System (ADS)
Warsito, Budi; Yasin, Hasbi; Ispriyanti, Dwi; Hoyyi, Abdul
2018-05-01
The Geographically Weighted Regression (GWR) model has been widely applied to many practical fields for exploring spatial heterogenity of a regression model. However, this method is inherently not robust to outliers. Outliers commonly exist in data sets and may lead to a distorted estimate of the underlying regression model. One of solution to handle the outliers in the regression model is to use the robust models. So this model was called Robust Geographically Weighted Regression (RGWR). This research aims to aid the government in the policy making process related to air pollution mitigation by developing a standard index model for air polluter (Air Polluter Standard Index - APSI) based on the RGWR approach. In this research, we also consider seven variables that are directly related to the air pollution level, which are the traffic velocity, the population density, the business center aspect, the air humidity, the wind velocity, the air temperature, and the area size of the urban forest. The best model is determined by the smallest AIC value. There are significance differences between Regression and RGWR in this case, but Basic GWR using the Gaussian kernel is the best model to modeling APSI because it has smallest AIC.
Bayesian Unimodal Density Regression for Causal Inference
ERIC Educational Resources Information Center
Karabatsos, George; Walker, Stephen G.
2011-01-01
Karabatsos and Walker (2011) introduced a new Bayesian nonparametric (BNP) regression model. Through analyses of real and simulated data, they showed that the BNP regression model outperforms other parametric and nonparametric regression models of common use, in terms of predictive accuracy of the outcome (dependent) variable. The other,…
Bayesian Estimation of Multivariate Latent Regression Models: Gauss versus Laplace
ERIC Educational Resources Information Center
Culpepper, Steven Andrew; Park, Trevor
2017-01-01
A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…
Vaeth, Michael; Skovlund, Eva
2004-06-15
For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.
Schnittger, Rebecca I B; Wherton, Joseph; Prendergast, David; Lawlor, Brian A
2012-01-01
To develop biopsychosocial models of loneliness and social support thereby identifying their key risk factors in an Irish sample of community-dwelling older adults. Additionally, to investigate indirect effects of social support on loneliness through mediating risk factors. A total of 579 participants (400 females; 179 males) were given a battery of biopsychosocial assessments with the primary measures being the De Jong Gierveld Loneliness Scale and the Lubben Social Network Scale along with a broad range of secondary measures. Bivariate correlation analyses identified items to be included in separate psychosocial, cognitive, biological and demographic multiple regression analyses. The resulting model items were then entered into further multiple regression analyses to obtain overall models. Following this, bootstrapping mediation analyses was conducted to examine indirect effects of social support on the subtypes (emotional and social) of loneliness. The overall model for (1) emotional loneliness included depression, neuroticism, perceived stress, living alone and accommodation type, (2) social loneliness included neuroticism, perceived stress, animal naming and number of grandchildren and (3) social support included extraversion, executive functioning (Trail Making Test B-time), history of falls, age and whether the participant drives or not. Social support influenced emotional loneliness predominantly through indirect means, while its effect on social loneliness was more direct. These results characterise the biopsychosocial risk factors of emotional loneliness, social loneliness and social support and identify key pathways by which social support influences emotional and social loneliness. These findings highlight issues with the potential for consideration in the development of targeted interventions.
Utility of a New Model to Diagnose an Alcohol Basis for Steatohepatitis
Dunn, Winston; Angulo, Paul; Sanderson, Schuyler; Jamil, Laith H.; Stadheim, Linda; Rosen, Charles; Malinchoc, Michael; Kamath, Patrick S.; Shah, Vijay
2007-01-01
Background and Aims Distinguishing an alcohol basis from a nonalcoholic basis for the clinical and histological spectrum of steatohepatitic liver disease is difficult owing to unreliability of alcohol consumption history. Unfortunately, various biomarkers have had limited utility in distinguishing alcoholic liver disease (ALD) from nonalcoholic fatty liver disease (NAFLD). Thus, the aim of our study was to create and validate a model to diagnose ALD in patients with steatohepatitis. Methods Cross-sectional cohort study was performed at Mayo Clinic; Rochester, Minnesota to create a model using multivariable logistic regression analysis. This model was validated in three independent data-sets comprising patients of varying severity of steatohepatitis spanning over 10 years. Results Logistic regression identified mean corpuscular volume, AST/ALT ratio, body-mass index, and gender as the most important variables that separated patients with ALD from NAFLD. These variables were used to generate the ALD/NAFLD Index (ANI); with ANI of greater than 0 incrementally favoring ALD, and ANI of less than 0 incrementally favoring a diagnosis of NAFLD, thus making ALD unlikely. ANI had a c-statistic of 0.989 in the derivation sample, and 0.974, 0.989, 0.767 in the three validation samples. ANI performance characteristics were significantly better than several conventional and recently proposed biomarkers used to differentiate ALD from NAFLD including the histopathological marker Protein Tyrosine Phosphatase 1b, AST/ALT ratio, gamma-glutamyl transferase and Carbohydrate Deficient Transferrin. Conclusion ANI, derived from easily available objective variables, accurately differentiates ALD from NAFLD in hospitalized, ambulatory and pre-transplant patients and compares favorably to other traditional and proposed biomarkers. PMID:17030176
NASA Astrophysics Data System (ADS)
Lukman, Iing; Ibrahim, Noor A.; Daud, Isa B.; Maarof, Fauziah; Hassan, Mohd N.
2002-03-01
Survival analysis algorithm is often applied in the data mining process. Cox regression is one of the survival analysis tools that has been used in many areas, and it can be used to analyze the failure times of aircraft crashed. Another survival analysis tool is the competing risks where we have more than one cause of failure acting simultaneously. Lunn-McNeil analyzed the competing risks in the survival model using Cox regression with censored data. The modified Lunn-McNeil technique is a simplify of the Lunn-McNeil technique. The Kalbfleisch-Prentice technique is involving fitting models separately from each type of failure, treating other failure types as censored. To compare the two techniques, (the modified Lunn-McNeil and Kalbfleisch-Prentice) a simulation study was performed. Samples with various sizes and censoring percentages were generated and fitted using both techniques. The study was conducted by comparing the inference of models, using Root Mean Square Error (RMSE), the power tests, and the Schoenfeld residual analysis. The power tests in this study were likelihood ratio test, Rao-score test, and Wald statistics. The Schoenfeld residual analysis was conducted to check the proportionality of the model through its covariates. The estimated parameters were computed for the cause-specific hazard situation. Results showed that the modified Lunn-McNeil technique was better than the Kalbfleisch-Prentice technique based on the RMSE measurement and Schoenfeld residual analysis. However, the Kalbfleisch-Prentice technique was better than the modified Lunn-McNeil technique based on power tests measurement.
NASA Astrophysics Data System (ADS)
Huijsmans, J. F. M.; Vermeulen, G. D.; Hol, J. M. G.; Goedhart, P. W.
2018-01-01
Field data on ammonia emission after liquid cattle manure ('slurry') application to grassland were statistically analysed to reveal the effect of manure and field characteristics and of weather conditions in eight consecutive periods after manure application. Logistic regression models, modelling the emission expressed as a percentage of the ammonia still present at the start of each period as the response variable, were developed separately for broadcast spreading, narrow band application (trailing shoe) and shallow injection. Wind speed, temperature, soil type, total ammoniacal nitrogen (TAN) content and dry matter content of the manure, application rate and grass height were selected as significant explanatory variables. Their effects differed for each application method and among periods. Temperature and wind speed were generally the most important drivers for emission. The fitted regression models were used to reveal seasonal trends in NH3 emission employing historical meteorological data for the years 1991-2014. The overall average emission was higher in early and midsummer than in early spring and late summer. This seasonal trend was most pronounced for broadcast spreading followed by narrow band application, and was almost absent for shallow injection. However, due to the large variation in weather conditions, emission on a particular day in early spring can be higher than on a particular day in summer. The analysis further revealed that, in a specific scenario and depending on the application technique, emission could be reduced with 20-30% by restricting manure application to favourable days, i.e. with weather conditions with minimal emission levels.
Xiao, C; Miller, A H; Felger, J; Mister, D; Liu, T; Torres, M A
2017-07-01
Psychosocial and inflammatory factors have been associated with fatigue in breast cancer survivors. Nevertheless, the relative contribution and/or interaction of these factors with cancer-related fatigue have not been well documented. This cross-sectional study enrolled 111 stage 0-III breast cancer patients treated with breast surgery followed by whole breast radiotherapy. Fatigue was measured by the total score of the Multidimensional Fatigue Inventory-20. Potential risk factors included inflammatory markers (plasma cytokines and their receptors and C-reactive protein; CRP), depressive symptoms (as assessed by the Inventory of Depressive Symptomatology-Self Reported), sleep (as assessed by the Pittsburgh Sleep Quality Index) and perceived stress (as assessed by the Perceived Stress Scale) as well as age, race, marital status, smoking history, menopause status, endocrine treatment, chemotherapy and cancer stage. Linear regression modeling was employed to examine risk factors of fatigue. Only risk factors with a significance level <0.10 were included in the initial regression model. A post-hoc mediation model using PROCESS SPSS was conducted to examine the association among depressive symptoms, sleep problems, stress, inflammation and fatigue. At 1 year post-radiotherapy, depressive symptoms (p<0.0001) and inflammatory markers (CRP: p = 0.015; interleukin-1 receptor antagonist: p = 0.014; soluble tumor necrosis factor receptor-2: p = 0.009 in separate models) were independent risk factors of fatigue. Mediation analysis showed that depressive symptoms also mediated the associations of fatigue with sleep and stress. Depressive symptoms and inflammation were independent risk factors for cancer-related fatigue at 1 year post-radiotherapy, and thus represent independent treatment targets for this debilitating symptom.
Reduced cost mission design using surrogate models
NASA Astrophysics Data System (ADS)
Feldhacker, Juliana D.; Jones, Brandon A.; Doostan, Alireza; Hampton, Jerrad
2016-01-01
This paper uses surrogate models to reduce the computational cost associated with spacecraft mission design in three-body dynamical systems. Sampling-based least squares regression is used to project the system response onto a set of orthogonal bases, providing a representation of the ΔV required for rendezvous as a reduced-order surrogate model. Models are presented for mid-field rendezvous of spacecraft in orbits in the Earth-Moon circular restricted three-body problem, including a halo orbit about the Earth-Moon L2 libration point (EML-2) and a distant retrograde orbit (DRO) about the Moon. In each case, the initial position of the spacecraft, the time of flight, and the separation between the chaser and the target vehicles are all considered as design inputs. The results show that sample sizes on the order of 102 are sufficient to produce accurate surrogates, with RMS errors reaching 0.2 m/s for the halo orbit and falling below 0.01 m/s for the DRO. A single function call to the resulting surrogate is up to two orders of magnitude faster than computing the same solution using full fidelity propagators. The expansion coefficients solved for in the surrogates are then used to conduct a global sensitivity analysis of the ΔV on each of the input parameters, which identifies the separation between the spacecraft as the primary contributor to the ΔV cost. Finally, the models are demonstrated to be useful for cheap evaluation of the cost function in constrained optimization problems seeking to minimize the ΔV required for rendezvous. These surrogate models show significant advantages for mission design in three-body systems, in terms of both computational cost and capabilities, over traditional Monte Carlo methods.
Prediction of Classroom Reverberation Time using Neural Network
NASA Astrophysics Data System (ADS)
Liyana Zainudin, Fathin; Kadir Mahamad, Abd; Saon, Sharifah; Nizam Yahya, Musli
2018-04-01
In this paper, an alternative method for predicting the reverberation time (RT) using neural network (NN) for classroom was designed and explored. Classroom models were created using Google SketchUp software. The NN applied training dataset from the classroom models with RT values that were computed from ODEON 12.10 software. The NN was conducted separately for 500Hz, 1000Hz, and 2000Hz as absorption coefficient that is one of the prominent input variable is frequency dependent. Mean squared error (MSE) and regression (R) values were obtained to examine the NN efficiency. Overall, the NN shows a good result with MSE < 0.005 and R > 0.9. The NN also managed to achieve a percentage of accuracy of 92.53% for 500Hz, 93.66% for 1000Hz, and 93.18% for 2000Hz and thus displays a good and efficient performance. Nevertheless, the optimum RT value is range between 0.75 – 0.9 seconds.
Robust Foregrounds Removal for 21-cm Experiments
NASA Astrophysics Data System (ADS)
Mertens, F.; Ghosh, A.; Koopmans, L. V. E.
2018-05-01
Direct detection of the Epoch of Reionization via the redshifted 21-cm line will have unprecedented implications on the study of structure formation in the early Universe. To fulfill this promise current and future 21-cm experiments will need to detect the weak 21-cm signal over foregrounds several order of magnitude greater. This requires accurate modeling of the galactic and extragalactic emission and of its contaminants due to instrument chromaticity, ionosphere and imperfect calibration. To solve for this complex modeling, we propose a new method based on Gaussian Process Regression (GPR) which is able to cleanly separate the cosmological signal from most of the foregrounds contaminants. We also propose a new imaging method based on a maximum likelihood framework which solves for the interferometric equation directly on the sphere. Using this method, chromatic effects causing the so-called ``wedge'' are effectively eliminated (i.e. deconvolved) in the cylindrical (k⊥, k∥) power spectrum.
Predictors of Indoor Air Concentrations in Smoking and Non-Smoking Residences
Héroux, Marie-Eve; Clark, Nina; Van Ryswyk, Keith; Mallick, Ranjeeta; Gilbert, Nicolas L.; Harrison, Ian; Rispler, Kathleen; Wang, Daniel; Anastassopoulos, Angelos; Guay, Mireille; MacNeill, Morgan; Wheeler, Amanda J.
2010-01-01
Indoor concentrations of air pollutants (benzene, toluene, formaldehyde, acetaldehyde, acrolein, nitrogen dioxide, particulate matter, elemental carbon and ozone) were measured in residences in Regina, Saskatchewan, Canada. Data were collected in 106 homes in winter and 111 homes in summer of 2007, with 71 homes participating in both seasons. In addition, data for relative humidity, temperature, air exchange rates, housing characteristics and occupants’ activities during sampling were collected. Multiple linear regression analysis was used to construct season-specific models for the air pollutants. Where smoking was a major contributor to indoor concentrations, separate models were constructed for all homes and for those homes with no cigarette smoke exposure. The housing characteristics and occupants’ activities investigated in this study explained between 11% and 53% of the variability in indoor air pollutant concentrations, with ventilation, age of home and attached garage being important predictors for many pollutants. PMID:20948949
Perceived Risk of Burglary and Fear of Crime: Individual- and Country-Level Mixed Modeling.
Chon, Don Soo; Wilson, Mary
2016-02-01
Given the scarcity of prior studies, the current research introduced country-level variables, along with individual-level ones, to test how they are related to an individual's perceived risk of burglary (PRB) and fear of crime (FC), separately, by using mixed-level logistic regression analyses. The analyses of 104,218 individuals, residing in 50 countries, showed that country-level poverty was positively associated with FC only. However, individual-level variables, such as prior property crime victimization and female gender, had consistently positive relationships with both PRB and FC. However, age group and socioeconomic status were inconsistent between those two models, suggesting that PRB and FC are two different concepts. Finally, no significant difference in the pattern of PRB and FC was found between a highly developed group of countries and a less developed one. © The Author(s) 2014.
Snowden, Aleksandra J; Freiburger, Tina L
2015-05-01
We estimated spatially lagged regression and spatial regime models to determine if the variation in total, on-premise, and off-premise alcohol outlet(1) density is related to robbery density, while controlling for direct and moderating effects of social disorganization.(2) Results suggest that the relationship between alcohol outlet density and robbery density is sensitive to the measurement of social disorganization levels. Total alcohol outlet density and off-premise alcohol outlet density were significantly associated with robbery density when social disorganization variables were included separately in the models. However, when social disorganization levels were captured as a four item index, only the association between off-premise alcohol outlets and robbery density remained significant. More work is warranted in identifying the role of off-premise alcohol outlets and their characteristics in robbery incidents. Copyright © 2015 Elsevier Inc. All rights reserved.
Learning-related skills and academic achievement in academically at-risk first graders
Cerda, Carissa A.; Im, Myung Hee; Hughes, Jan N.
2015-01-01
Using an academically at-risk, ethnically diverse sample of 744 first-grade children, this study tested a multi-method (i.e., child performance measures, teacher ratings, and peer ratings) measurement model of learning-related skills (i.e., effortful control [EC], behavioral self-regulation [BSR], and social competence [SC]), and their shared and unique contributions to children's reading and math achievement, above the effect of demographic variables. The hypothesized correlated factor measurement model demonstrated relatively good fit, with BSR and SC correlated highly with one another and moderately with EC. When entered in separate regression equations, EC and BSR each predicted children's reading and math achievement; SC only predicted reading achievement. When considered simultaneously, neither EC, BSR, nor SC contributed independently to reading achievement; however, EC had a direct effect on math achievement and an indirect effect on reading achievement via both BSR and SC. Implications for research and early intervention efforts are discussed. PMID:25908886
Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics.
Ni, Yongnian; Wang, Lin; Kokot, Serge
2011-01-01
A novel differential pulse voltammetry method (DPV) was researched and developed for the simultaneous determination of Pendimethalin, Dinoseb and sodium 5-nitroguaiacolate (5NG) with the aid of chemometrics. The voltammograms of these three compounds overlapped significantly, and to facilitate the simultaneous determination of the three analytes, chemometrics methods were applied. These included classical least squares (CLS), principal component regression (PCR), partial least squares (PLS) and radial basis function-artificial neural networks (RBF-ANN). A separately prepared verification data set was used to confirm the calibrations, which were built from the original and first derivative data matrices of the voltammograms. On the basis relative prediction errors and recoveries of the analytes, the RBF-ANN and the DPLS (D - first derivative spectra) models performed best and are particularly recommended for application. The DPLS calibration model was applied satisfactorily for the prediction of the three analytes from market vegetables and lake water samples.
Comparative evaluation of urban storm water quality models
NASA Astrophysics Data System (ADS)
Vaze, J.; Chiew, Francis H. S.
2003-10-01
The estimation of urban storm water pollutant loads is required for the development of mitigation and management strategies to minimize impacts to receiving environments. Event pollutant loads are typically estimated using either regression equations or "process-based" water quality models. The relative merit of using regression models compared to process-based models is not clear. A modeling study is carried out here to evaluate the comparative ability of the regression equations and process-based water quality models to estimate event diffuse pollutant loads from impervious surfaces. The results indicate that, once calibrated, both the regression equations and the process-based model can estimate event pollutant loads satisfactorily. In fact, the loads estimated using the regression equation as a function of rainfall intensity and runoff rate are better than the loads estimated using the process-based model. Therefore, if only estimates of event loads are required, regression models should be used because they are simpler and require less data compared to process-based models.
Multilevel Effects of Wealth on Women's Contraceptive Use in Mozambique
Dias, José G.; de Oliveira, Isabel Tiago
2015-01-01
Objective This paper analyzes the impact of wealth on the use of contraception in Mozambique unmixing the contextual effects due to community wealth from the individual effects associated with the women's situation within the community of residence. Methods Data from the 2011 Mozambican Demographic and Health Survey on women who are married or living together are analyzed for the entire country and also for the rural and urban areas separately. We used single level and multilevel probit regression models. Findings A single level probit regression reveals that region, religion, age, previous fertility, education, and wealth impact contraceptive behavior. The multilevel analysis shows that average community wealth and the women’s relative socioeconomic position within the community have significant positive effects on the use of modern contraceptives. The multilevel framework proved to be necessary in rural settings but not relevant in urban areas. Moreover, the contextual effects due to community wealth are greater in rural than in urban areas and this feature is associated with the higher socioeconomic heterogeneity within the richest communities. Conclusion This analysis highlights the need for the studies on contraceptive behavior to specifically address the individual and contextual effects arising from the poverty-wealth dimension in rural and urban areas separately. The inclusion in a particular community of residence is not relevant in urban areas, but it is an important feature in rural areas. Although the women's individual position within the community of residence has a similar effect on contraceptive adoption in rural and urban settings, the impact of community wealth is greater in rural areas and smaller in urban areas. PMID:25786228
Metabolomics Tools for Describing Complex Pesticide Exposure in Pregnant Women in Brittany (France)
Bonvallot, Nathalie; Tremblay-Franco, Marie; Chevrier, Cécile; Canlet, Cécile; Warembourg, Charline; Cravedi, Jean-Pierre; Cordier, Sylvaine
2013-01-01
Background The use of pesticides and the related environmental contaminations can lead to human exposure to various molecules. In early-life, such exposures could be responsible for adverse developmental effects. However, human health risks associated with exposure to complex mixtures are currently under-explored. Objective This project aims at answering the following questions: What is the influence of exposures to multiple pesticides on the metabolome? What mechanistic pathways could be involved in the metabolic changes observed? Methods Based on the PELAGIE cohort (Brittany, France), 83 pregnant women who provided a urine sample in early pregnancy, were classified in 3 groups according to the surface of land dedicated to agricultural cereal activities in their town of residence. Nuclear magnetic resonance-based metabolomics analyses were performed on urine samples. Partial Least Squares Regression-Discriminant Analysis (PLS-DA) and polytomous regressions were used to separate the urinary metabolic profiles from the 3 exposure groups after adjusting for potential confounders. Results The 3 groups of exposure were correctly separated with a PLS-DA model after implementing an orthogonal signal correction with pareto standardizations (R2 = 90.7% and Q2 = 0.53). After adjusting for maternal age, parity, body mass index and smoking habits, the most statistically significant changes were observed for glycine, threonine, lactate and glycerophosphocholine (upward trend), and for citrate (downward trend). Conclusion This work suggests that an exposure to complex pesticide mixtures induces modifications of metabolic fingerprints. It can be hypothesized from identified discriminating metabolites that the pesticide mixtures could increase oxidative stress and disturb energy metabolism. PMID:23704985
NASA Astrophysics Data System (ADS)
McKean, John R.; Johnson, Donn; Taylor, R. Garth
2003-04-01
An alternate travel cost model is applied to an on-site sample to estimate the value of flat water recreation on the impounded lower Snake River. Four contiguous reservoirs would be eliminated if the dams are breached to protect endangered Pacific salmon and steelhead trout. The empirical method applies truncated negative binomial regression with adjustment for endogenous stratification. The two-stage decision model assumes that recreationists allocate their time among work and leisure prior to deciding among consumer goods. The allocation of time and money among goods in the second stage is conditional on the predetermined work time and income. The second stage is a disequilibrium labor market which also applies if employers set work hours or if recreationists are not in the labor force. When work time is either predetermined, fixed by contract, or nonexistent, recreationists must consider separate prices and budgets for time and money.
Falkenberg, A; Nyfjäll, M; Hellgren, C; Vingård, E
2012-01-01
The aim of this longitudinal study is to investigate how different aspects of social support at work and in leisure time are associated with self rated health and sickness absence. The 541 participants in the study were representative for a working population in the public sector in Sweden with a majority being woman. Most of the variables were created from data from a questionnaire in March-April 2005. There were four independent variables and two dependent variables. The dependent were based on data from November 2006. A logistic regression model was used for the analysis of associations. A separate model was adapted for each of the explanatory variables for each outcome, which gave five models per independent variable. The study has given a greater awareness of the importance of employees receiving social support, regardless of type of support or from whom the support is coming. Social support has a strong association with SRH in a longitudinal perspective and no association between social support and sickness absence.
Rodwell, John; Demir, Defne; Gulyas, Andre
2015-08-01
Employees in aged care are at high risk of workplace aggression. Research rarely examines the individual and contextual antecedents of aggression for specific types of workers within these settings, such as nurses and certified nursing assistants (CNAs). The study aimed to explore characteristics of the job demands-resources model (JD-R), negative affectivity (NA) and demographics related to workplace aggression for aged care workers. The survey study was based on 208 nurses and 83 CNAs working within aged care. Data from each group were analysed separately using ordinal regressions. Both aged care nurses and CNAs reported high rates of bullying, external emotional abuse, threat of assault and physical assault. Elements of the JD-R model and individual characteristics were related to aggression types for both groups. Characteristics of the JD-R model, NA and demographics are important in understanding the antecedents of aggression observed among aged care workers. © 2015 Wiley Publishing Asia Pty Ltd.
Multivariate meta-analysis using individual participant data
Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.
2016-01-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484
Takaki, Koki; Wade, Andrew J; Collins, Chris D
2017-02-01
New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.
Batterham, Philip J; Bunce, David; Mackinnon, Andrew J; Christensen, Helen
2014-01-01
very few studies have examined the association between intra-individual reaction time variability and subsequent mortality. Furthermore, the ability of simple measures of variability to predict mortality has not been compared with more complex measures. a prospective cohort study of 896 community-based Australian adults aged 70+ were interviewed up to four times from 1990 to 2002, with vital status assessed until June 2007. From this cohort, 770-790 participants were included in Cox proportional hazards regression models of survival. Vital status and time in study were used to conduct survival analyses. The mean reaction time and three measures of intra-individual reaction time variability were calculated separately across 20 trials of simple and choice reaction time tasks. Models were adjusted for a range of demographic, physical health and mental health measures. greater intra-individual simple reaction time variability, as assessed by the raw standard deviation (raw SD), coefficient of variation (CV) or the intra-individual standard deviation (ISD), was strongly associated with an increased hazard of all-cause mortality in adjusted Cox regression models. The mean reaction time had no significant association with mortality. intra-individual variability in simple reaction time appears to have a robust association with mortality over 17 years. Health professionals such as neuropsychologists may benefit in their detection of neuropathology by supplementing neuropsychiatric testing with the straightforward process of testing simple reaction time and calculating raw SD or CV.
Generative Topographic Mapping of Conformational Space.
Horvath, Dragos; Baskin, Igor; Marcou, Gilles; Varnek, Alexandre
2017-10-01
Herein, Generative Topographic Mapping (GTM) was challenged to produce planar projections of the high-dimensional conformational space of complex molecules (the 1LE1 peptide). GTM is a probability-based mapping strategy, and its capacity to support property prediction models serves to objectively assess map quality (in terms of regression statistics). The properties to predict were total, non-bonded and contact energies, surface area and fingerprint darkness. Map building and selection was controlled by a previously introduced evolutionary strategy allowed to choose the best-suited conformational descriptors, options including classical terms and novel atom-centric autocorrellograms. The latter condensate interatomic distance patterns into descriptors of rather low dimensionality, yet precise enough to differentiate between close favorable contacts and atom clashes. A subset of 20 K conformers of the 1LE1 peptide, randomly selected from a pool of 2 M geometries (generated by the S4MPLE tool) was employed for map building and cross-validation of property regression models. The GTM build-up challenge reached robust three-fold cross-validated determination coefficients of Q 2 =0.7…0.8, for all modeled properties. Mapping of the full 2 M conformer set produced intuitive and information-rich property landscapes. Functional and folding subspaces appear as well-separated zones, even though RMSD with respect to the PDB structure was never used as a selection criterion of the maps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Patrikar, S R; Bhalwar, R; Datta, A; Basannar, D R
2008-07-01
Male Preference is well known phenomena world wide from ancient ages. A descriptive study was carried out to assess the attitude of women towards birth of son, use of contraception methods and sex determination methods in rural village Kasurdi in Pune district. Univariate analysis was carried out by considering each factor determining sex preference separately as well as using a Logistic Regression Model. Adequacy of fit of the model has also been tested. Out of 110 respondents interviewed, 62.7% felt that male child is necessary in the family. Univariate analysis revealed that sex of first child, concern undergone for second pregnancy with regards to sex of the child, number of children in family and type of family were significant factors contributing to the son preference. The analysis under the logistic regression model revealed that sex of the first child and concern undergone in second pregnancy with respect to the sex of the second child are the most dominating and significant factors in the causation of son preference. The difference between family sizes when compared with the sex of first child was statistically significant signifying that if the first child is a male then it hardly matters whether the second child is male or female, but if the sex of first child is female then the families land up with bigger family size. On an average most of the respondents favour two children with an equal share of male and female children.
Gabriel, M.C.; Kolka, R.; Wickman, T.; Nater, E.; Woodruff, Laurel G.
2009-01-01
The primary objective of this research is to investigate relationships between mercury in upland soil, lake water and fish tissue and explore the cause for the observed spatial variation of THg in age one yellow perch (Perca flavescens) for ten lakes within the Superior National Forest. Spatial relationships between yellow perch THg tissue concentration and a total of 45 watershed and water chemistry parameters were evaluated for two separate years: 2005 and 2006. Results show agreement with other studies where watershed area, lake water pH, nutrient levels (specifically dissolved NO3−-N) and dissolved iron are important factors controlling and/or predicting fish THg level. Exceeding all was the strong dependence of yellow perch THg level on soil A-horizon THg and, in particular, soil O-horizon THg concentrations (Spearman ρ = 0.81). Soil B-horizon THg concentration was significantly correlated (Pearson r = 0.75) with lake water THg concentration. Lakes surrounded by a greater percentage of shrub wetlands (peatlands) had higher fish tissue THg levels, thus it is highly possible that these wetlands are main locations for mercury methylation. Stepwise regression was used to develop empirical models for the purpose of predicting the spatial variation in yellow perch THg over the studied region. The 2005 regression model demonstrates it is possible to obtain good prediction (up to 60% variance description) of resident yellow perch THg level using upland soil O-horizon THg as the only independent variable. The 2006 model shows even greater prediction (r2 = 0.73, with an overall 10 ng/g [tissue, wet weight] margin of error), using lake water dissolved iron and watershed area as the only model independent variables. The developed regression models in this study can help with interpreting THg concentrations in low trophic level fish species for untested lakes of the greater Superior National Forest and surrounding Boreal ecosystem.
NASA Astrophysics Data System (ADS)
Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodó, Xavier
2017-02-01
El Niño (EN) is a dominant feature of climate variability on inter-annual time scales driving changes in the climate throughout the globe, and having wide-spread natural and socio-economic consequences. In this sense, its forecast is an important task, and predictions are issued on a regular basis by a wide array of prediction schemes and climate centres around the world. This study explores a novel method for EN forecasting. In the state-of-the-art the advantageous statistical technique of unobserved components time series modeling, also known as structural time series modeling, has not been applied. Therefore, we have developed such a model where the statistical analysis, including parameter estimation and forecasting, is based on state space methods, and includes the celebrated Kalman filter. The distinguishing feature of this dynamic model is the decomposition of a time series into a range of stochastically time-varying components such as level (or trend), seasonal, cycles of different frequencies, irregular, and regression effects incorporated as explanatory covariates. These components are modeled separately and ultimately combined in a single forecasting scheme. Customary statistical models for EN prediction essentially use SST and wind stress in the equatorial Pacific. In addition to these, we introduce a new domain of regression variables accounting for the state of the subsurface ocean temperature in the western and central equatorial Pacific, motivated by our analysis, as well as by recent and classical research, showing that subsurface processes and heat accumulation there are fundamental for the genesis of EN. An important feature of the scheme is that different regression predictors are used at different lead months, thus capturing the dynamical evolution of the system and rendering more efficient forecasts. The new model has been tested with the prediction of all warm events that occurred in the period 1996-2015. Retrospective forecasts of these events were made for long lead times of at least two and a half years. Hence, the present study demonstrates that the theoretical limit of ENSO prediction should be sought much longer than the commonly accepted "Spring Barrier". The high correspondence between the forecasts and observations indicates that the proposed model outperforms all current operational statistical models, and behaves comparably to the best dynamical models used for EN prediction. Thus, the novel way in which the modeling scheme has been structured could also be used for improving other statistical and dynamical modeling systems.
Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.
Mones, Letif; Bernstein, Noam; Csányi, Gábor
2016-10-11
Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.
Method for enhanced accuracy in predicting peptides using liquid separations or chromatography
Kangas, Lars J.; Auberry, Kenneth J.; Anderson, Gordon A.; Smith, Richard D.
2006-11-14
A method for predicting the elution time of a peptide in chromatographic and electrophoretic separations by first providing a data set of known elution times of known peptides, then creating a plurality of vectors, each vector having a plurality of dimensions, and each dimension representing the elution time of amino acids present in each of these known peptides from the data set. The elution time of any protein is then be predicted by first creating a vector by assigning dimensional values for the elution time of amino acids of at least one hypothetical peptide and then calculating a predicted elution time for the vector by performing a multivariate regression of the dimensional values of the hypothetical peptide using the dimensional values of the known peptides. Preferably, the multivariate regression is accomplished by the use of an artificial neural network and the elution times are first normalized using a transfer function.
A generalized right truncated bivariate Poisson regression model with applications to health data.
Islam, M Ataharul; Chowdhury, Rafiqul I
2017-01-01
A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model.
A generalized right truncated bivariate Poisson regression model with applications to health data
Islam, M. Ataharul; Chowdhury, Rafiqul I.
2017-01-01
A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model. PMID:28586344
Short separation channel location impacts the performance of short channel regression in NIRS
Gagnon, Louis; Cooper, Robert J.; Yücel, Meryem A.; Perdue, Katherine L.; Greve, Douglas N.; Boas, David A.
2011-01-01
Near-Infrared Spectroscopy (NIRS) allows the recovery of cortical oxy-and deoxyhemoglobin changes associated with evoked brain activity. NIRS is a back-reflection measurement making it very sensitive to the superficial layers of the head, i.e. the skin and the skull, where systemic interference occurs. As a result, the NIRS signal is strongly contaminated with systemic interference of superficial origin. A recent approach to overcome this problem has been the use of additional short source-detector separation optodes as regressors. Since these additional measurements are mainly sensitive to superficial layers in adult humans, they can be used to remove the systemic interference present in longer separation measurements, improving the recovery of the cortical hemodynamic response function (HRF). One question that remains to answer is whether or not a short separation measurement is required in close proximity to each long separation NIRS channel. Here, we show that the systemic interference occurring in the superficial layers of the human head is inhomogeneous across the surface of the scalp. As a result, the improvement obtained by using a short separation optode decreases as the relative distance between the short and the long measurement is increased. NIRS data was acquired on 6 human subjects both at rest and during a motor task consisting of finger tapping. The effect of distance between the short and the long channel was first quantified by recovering a synthetic hemodynamic response added over the resting-state data. The effect was also observed in the functional data collected during the finger tapping task. Together, these results suggest that the short separation measurement must be located as close as 1.5 cm from the standard NIRS channel in order to provide an improvement which is of practical use. In this case, the improvement in Contrast-to-Noise Ratio (CNR) compared to a standard General Linear Model (GLM) procedure without using any small separation optode reached 50 % for HbO and 100 % for HbR. Using small separations located farther than 2 cm away resulted in mild or negligible improvements only. PMID:21945793
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
NASA Astrophysics Data System (ADS)
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
Spatial Assessment of Model Errors from Four Regression Techniques
Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove
2005-01-01
Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study...
Francq, Bernard G; Govaerts, Bernadette
2016-06-30
Two main methodologies for assessing equivalence in method-comparison studies are presented separately in the literature. The first one is the well-known and widely applied Bland-Altman approach with its agreement intervals, where two methods are considered interchangeable if their differences are not clinically significant. The second approach is based on errors-in-variables regression in a classical (X,Y) plot and focuses on confidence intervals, whereby two methods are considered equivalent when providing similar measures notwithstanding the random measurement errors. This paper reconciles these two methodologies and shows their similarities and differences using both real data and simulations. A new consistent correlated-errors-in-variables regression is introduced as the errors are shown to be correlated in the Bland-Altman plot. Indeed, the coverage probabilities collapse and the biases soar when this correlation is ignored. Novel tolerance intervals are compared with agreement intervals with or without replicated data, and novel predictive intervals are introduced to predict a single measure in an (X,Y) plot or in a Bland-Atman plot with excellent coverage probabilities. We conclude that the (correlated)-errors-in-variables regressions should not be avoided in method comparison studies, although the Bland-Altman approach is usually applied to avert their complexity. We argue that tolerance or predictive intervals are better alternatives than agreement intervals, and we provide guidelines for practitioners regarding method comparison studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Can We Use Regression Modeling to Quantify Mean Annual Streamflow at a Global-Scale?
NASA Astrophysics Data System (ADS)
Barbarossa, V.; Huijbregts, M. A. J.; Hendriks, J. A.; Beusen, A.; Clavreul, J.; King, H.; Schipper, A.
2016-12-01
Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF using observations of discharge and catchment characteristics from 1,885 catchments worldwide, ranging from 2 to 106 km2 in size. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB [van Beek et al., 2011] by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area, mean annual precipitation and air temperature, average slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error values were lower (0.29 - 0.38 compared to 0.49 - 0.57) and the modified index of agreement was higher (0.80 - 0.83 compared to 0.72 - 0.75). Our regression model can be applied globally at any point of the river network, provided that the input parameters are within the range of values employed in the calibration of the model. The performance is reduced for water scarce regions and further research should focus on improving such an aspect for regression-based global hydrological models.
Developing a predictive tropospheric ozone model for Tabriz
NASA Astrophysics Data System (ADS)
Khatibi, Rahman; Naghipour, Leila; Ghorbani, Mohammad A.; Smith, Michael S.; Karimi, Vahid; Farhoudi, Reza; Delafrouz, Hadi; Arvanaghi, Hadi
2013-04-01
Predictive ozone models are becoming indispensable tools by providing a capability for pollution alerts to serve people who are vulnerable to the risks. We have developed a tropospheric ozone prediction capability for Tabriz, Iran, by using the following five modeling strategies: three regression-type methods: Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and Gene Expression Programming (GEP); and two auto-regression-type models: Nonlinear Local Prediction (NLP) to implement chaos theory and Auto-Regressive Integrated Moving Average (ARIMA) models. The regression-type modeling strategies explain the data in terms of: temperature, solar radiation, dew point temperature, and wind speed, by regressing present ozone values to their past values. The ozone time series are available at various time intervals, including hourly intervals, from August 2010 to March 2011. The results for MLR, ANN and GEP models are not overly good but those produced by NLP and ARIMA are promising for the establishing a forecasting capability.
Unitary Response Regression Models
ERIC Educational Resources Information Center
Lipovetsky, S.
2007-01-01
The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…
Keeping in touch with children after separation: the point of view of fathers.
Le Bourdais, Céline; Juby, Heather; Marcil-Gratton, Nicole
2002-01-01
The amount of father-child contact after separation is closely linked to the probability that father fulfill their financial obligations towards their children. Determining the factors that encourage this contact is, therefore, crucial to the process of reducing the risk of poverty to which children of separated parents are exposed. Based on data collected from fathers at the 1995 Canadian General Social Survey of the Family, this paper uses multi-level regression analysis to identify factors associated with higher levels of contact between fathers and children, including socio-demographic characteristics of children and fathers, variables associated with attitudes, and fathers' satisfaction with custody and access arrangements.
Dutta, Sandeep; Hosmane, Balakrishna S; Awni, Walid M
2012-06-01
ABT-594, a neuronal nicotinic acetylcholine receptor ligand, is 30- to 100-fold more potent than morphine in animal models of nociceptive and neuropathic pain. Efficacy and safety of ABT-594 in subjects with painful diabetic polyneuropathy was evaluated in a phase 2 study. The objective of this work was to use a nonlinear mixed effects model-based approach for characterizing the relationship between dose and response (efficacy and safety) of ABT-594. Subjects (N = 266) were randomized into four groups in a double-blind, placebo-controlled, 7-week study to receive twice daily regimens of placebo or 150, 225, and 300 μg of ABT-594. The primary efficacy variable, pain score (11-point Likert scale), was assessed on five occasions. The probability of change from baseline pain score of ≥1, ≥2, and ≥3 was modeled using cumulative logistic regression with dose and days of treatment as explanatory variables. The incidence of five most frequently occurring adverse events (AEs) was modeled using linear logistic regression. ABT-594 ED(50) values (improvement in 50% of subjects) for improvement in pain scores of ≥1, ≥2, and ≥3 were 50, 215, and 340 μg, respectively, for the average number of days (33) on treatment. The rank order of ED(50) values for AEs was nausea, vomiting, dizziness, headache, and abnormal dreams; nicotine users were less sensitive to AEs. Population pharmacodynamic models developed to characterize the improvement in pain score and incidence of adverse events indicate an approximately twofold separation between the ED(50) values for efficacy and AEs.
Use of iDXA spine scans to evaluate total and visceral abdominal fat.
Bea, J W; Hsu, C-H; Blew, R M; Irving, A P; Caan, B J; Kwan, M L; Abraham, I; Going, S B
2018-01-01
Abdominal fat may be a better predictor than body mass index (BMI) for risk of metabolically-related diseases, such as diabetes, cardiovascular disease, and some cancers. We sought to validate the percent fat reported on dual energy X-ray absorptiometry (DXA) regional spine scans (spine fat fraction, SFF) against abdominal fat obtained from total body scans using the iDXA machine (General Electric, Madison, WI), as previously done on the Prodigy model. Total body scans and regional spine scans were completed on the same day (N = 50). In alignment with the Prodigy-based study, the following regions of interest (ROI) were assessed from total body scans and compared to the SFF from regional spine scans: total abdominal fat at (1) lumbar vertebrae L2-L4 and (2) L2-Iliac Crest (L2-IC); (3) total trunk fat; and (4) visceral fat in the android region. Separate linear regression models were used to predict each total body scan ROI from SFF; models were validated by bootstrapping. The sample was 84% female, a mean age of 38.5 ± 17.4 years, and mean BMI of 23.0 ± 3.8 kg/m 2 . The SFF, adjusted for BMI, predicted L2-L4 and L2-IC total abdominal fat (%; Adj. R 2 : 0.90) and total trunk fat (%; Adj. R 2 : 0.88) well; visceral fat (%) adjusted R 2 was 0.83. Linear regression models adjusted for additional participant characteristics resulted in similar adjusted R 2 values. This replication of the strong correlation between SFF and abdominal fat measures on the iDXA in a new population confirms the previous Prodigy model findings and improves generalizability. © 2017 Wiley Periodicals, Inc.
Smooth individual level covariates adjustment in disease mapping.
Huque, Md Hamidul; Anderson, Craig; Walton, Richard; Woolford, Samuel; Ryan, Louise
2018-05-01
Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available "indiCAR" model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log-linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non-log-linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth-indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two-step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth-indiCAR through simulation. Our results indicate that the smooth-indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NAT2, meat consumption and colorectal cancer incidence: an ecological study among 27 countries.
Ognjanovic, Simona; Yamamoto, Jennifer; Maskarinec, Gertraud; Le Marchand, Loïc
2006-11-01
The polymorphic gene NAT2 is a major determinant of N-acetyltransferase activity and, thus, may be responsible for differences in one's ability to bioactivate heterocyclic amines, a class of procarcinogens in cooked meat. An unusually marked geographic variation in enzyme activity has been described for NAT2. The present study re-examines the international direct correlation reported for meat intake and colorectal cancer (CRC) incidence, and evaluates the potential modifying effects of NAT2 phenotype and other lifestyle factors on this correlation. Country-specific CRC incidence data, per capita consumption data for meat and other dietary factors, prevalence of the rapid/intermediate NAT2 phenotype, and prevalence of smoking for 27 countries were used. Multiple linear regression models were fit and partial correlation coefficients (PCCs) were computed for men and women separately. Inclusion of the rapid/intermediate NAT2 phenotype with meat consumption improved the fit of the regression model for CRC incidence in both sexes (males-R (2) = 0.78, compared to 0.70 for meat alone; p for difference in model fit-0.009; females-R (2) = 0.76 compared to 0.69 for meat alone; p = 0.02). Vegetable consumption (inversely and in both sexes) and fish consumption (directly and in men only) were also weakly correlated with CRC, whereas smoking prevalence and alcohol consumption had no effects on the models. The PCC between NAT2 and CRC incidence was 0.46 in males and 0.48 in females when meat consumption was included in the model, compared to 0.14 and 0.15, respectively, when it was not. These data suggest that, in combination with meat intake, some proportion of the international variability in CRC incidence may be attributable to genetic susceptibility to heterocyclic amines, as determined by NAT2 genotype.
Modelling infant mortality rate in Central Java, Indonesia use generalized poisson regression method
NASA Astrophysics Data System (ADS)
Prahutama, Alan; Sudarno
2018-05-01
The infant mortality rate is the number of deaths under one year of age occurring among the live births in a given geographical area during a given year, per 1,000 live births occurring among the population of the given geographical area during the same year. This problem needs to be addressed because it is an important element of a country’s economic development. High infant mortality rate will disrupt the stability of a country as it relates to the sustainability of the population in the country. One of regression model that can be used to analyze the relationship between dependent variable Y in the form of discrete data and independent variable X is Poisson regression model. Recently The regression modeling used for data with dependent variable is discrete, among others, poisson regression, negative binomial regression and generalized poisson regression. In this research, generalized poisson regression modeling gives better AIC value than poisson regression. The most significant variable is the Number of health facilities (X1), while the variable that gives the most influence to infant mortality rate is the average breastfeeding (X9).
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.
An interactive tool for semi-automatic feature extraction of hyperspectral data
NASA Astrophysics Data System (ADS)
Kovács, Zoltán; Szabó, Szilárd
2016-09-01
The spectral reflectance of the surface provides valuable information about the environment, which can be used to identify objects (e.g. land cover classification) or to estimate quantities of substances (e.g. biomass). We aimed to develop an MS Excel add-in - Hyperspectral Data Analyst (HypDA) - for a multipurpose quantitative analysis of spectral data in VBA programming language. HypDA was designed to calculate spectral indices from spectral data with user defined formulas (in all possible combinations involving a maximum of 4 bands) and to find the best correlations between the quantitative attribute data of the same object. Different types of regression models reveal the relationships, and the best results are saved in a worksheet. Qualitative variables can also be involved in the analysis carried out with separability and hypothesis testing; i.e. to find the wavelengths responsible for separating data into predefined groups. HypDA can be used both with hyperspectral imagery and spectrometer measurements. This bivariate approach requires significantly fewer observations than popular multivariate methods; it can therefore be applied to a wide range of research areas.
Impact of multicollinearity on small sample hydrologic regression models
NASA Astrophysics Data System (ADS)
Kroll, Charles N.; Song, Peter
2013-06-01
Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.
Shteingart, Hanan; Loewenstein, Yonatan
2016-01-01
There is a long history of experiments in which participants are instructed to generate a long sequence of binary random numbers. The scope of this line of research has shifted over the years from identifying the basic psychological principles and/or the heuristics that lead to deviations from randomness, to one of predicting future choices. In this paper, we used generalized linear regression and the framework of Reinforcement Learning in order to address both points. In particular, we used logistic regression analysis in order to characterize the temporal sequence of participants' choices. Surprisingly, a population analysis indicated that the contribution of the most recent trial has only a weak effect on behavior, compared to more preceding trials, a result that seems irreconcilable with standard sequential effects that decay monotonously with the delay. However, when considering each participant separately, we found that the magnitudes of the sequential effect are a monotonous decreasing function of the delay, yet these individual sequential effects are largely averaged out in a population analysis because of heterogeneity. The substantial behavioral heterogeneity in this task is further demonstrated quantitatively by considering the predictive power of the model. We show that a heterogeneous model of sequential dependencies captures the structure available in random sequence generation. Finally, we show that the results of the logistic regression analysis can be interpreted in the framework of reinforcement learning, allowing us to compare the sequential effects in the random sequence generation task to those in an operant learning task. We show that in contrast to the random sequence generation task, sequential effects in operant learning are far more homogenous across the population. These results suggest that in the random sequence generation task, different participants adopt different cognitive strategies to suppress sequential dependencies when generating the "random" sequences.
Bottema-Beutel, Kristen
2016-10-01
Using a structured literature search and meta-regression procedures, this study sought to determine whether associations between joint attention and language are moderated by group (autism spectrum disorder [ASD] vs. typical development [TD]), joint attention type (responding to joint attention [RJA] vs. other), and other study design features and participant characteristics. Studies were located using database searches, hand searches, and electronic requests for data from experts in the field. This resulted in 71 reports or datasets and 605 effect sizes, representing 1,859 participants with ASD and 1,835 TD participants. Meta-regression was used to answer research questions regarding potential moderators of the effect sizes of interest, which were Pearson's r values quantifying the association between joint attention and language variables. In the final models, conducted separately for each language variable, effect sizes were significantly higher for the ASD group as compared to the TD group, and for RJA as compared to non-RJA joint attention types. Approximate mental age trended toward significance for the expressive language model. Joint attention may be more tightly tied to language in children with ASD as compared to TD children because TD children exhibit joint attention at sufficient thresholds so that language development becomes untethered to variations in joint attention. Conversely, children with ASD who exhibit deficits in joint attention develop language contingent upon their joint attention abilities. Because RJA was more strongly related to language than other types of joint attention, future research should involve careful consideration of the operationalization and measurement of joint attention constructs. Autism Res 2016, 9: 1021-1035. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Real estate value prediction using multivariate regression models
NASA Astrophysics Data System (ADS)
Manjula, R.; Jain, Shubham; Srivastava, Sharad; Rajiv Kher, Pranav
2017-11-01
The real estate market is one of the most competitive in terms of pricing and the same tends to vary significantly based on a lot of factors, hence it becomes one of the prime fields to apply the concepts of machine learning to optimize and predict the prices with high accuracy. Therefore in this paper, we present various important features to use while predicting housing prices with good accuracy. We have described regression models, using various features to have lower Residual Sum of Squares error. While using features in a regression model some feature engineering is required for better prediction. Often a set of features (multiple regressions) or polynomial regression (applying a various set of powers in the features) is used for making better model fit. For these models are expected to be susceptible towards over fitting ridge regression is used to reduce it. This paper thus directs to the best application of regression models in addition to other techniques to optimize the result.
Antidepressant sales and regional variations of suicide mortality in Germany.
Blüml, Victor; Helbich, Marco; Mayr, Michael; Turnwald, Roland; Vyssoki, Benjamin; Lewitzka, Ute; Hartung, Sebastian; Plener, Paul L; Fegert, Jörg M; Kapusta, Nestor D
2017-04-01
Suicides account for over one million deaths per year worldwide with depression among the most important risk factors. Epidemiological research into the relationship between antidepressant utilization and suicide mortality has shown heterogeneous and contradictory results. Different methodological approaches and limitations could at least partially explain varying results. This is the first study assessing the association of suicide mortality and antidepressant sales across Germany using complex statistical approaches in order to control for possible confounding factors including spatial dependency of data. German suicide counts were analyzed on a district level (n = 402) utilizing ecological Poisson regressions within a hierarchical Bayesian framework. Due to significant spatial effects between adjacent districts spatial models were calculated in addition to a baseline non-spatial model. Models were adjusted for several confounders including socioeconomic variables, quality of psychosocial care, and depression prevalence. Separate analyses were performed for Eastern and Western Germany and for different classes of antidepressants (SSRIs and TCAs). Overall antidepressant sales were significantly negatively associated with suicide mortality in the non-spatial baseline model, while after adjusting for spatially structured and unstructured effects the association turned out to be insignificant. In sub-analyses, analogue results were found for SSRIs and TCAs separately. Suicide risk shows a distinct heterogeneous pattern with a pronounced relative risk in Southeast Germany. In conclusion, the results reflect the heterogeneous findings of previous studies on the association between suicide mortality and antidepressant sales and point to the complexity of this hypothesized link. Furthermore, the findings support tailored suicide preventive efforts within high risk areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Odonkor, Charles A; Schonberger, Robert B; Dai, Feng; Shelley, Kirk H; Silverman, David G; Barash, Paul G
2013-10-01
The primary aims of this study were to design prediction models based on a functional marker (preoperative gait speed) to predict readiness for home discharge time of 90 mins or less and to identify those at risk for unplanned admissions after elective ambulatory surgery. This prospective observational cohort study evaluated all patients scheduled for elective ambulatory surgery. Home discharge readiness and unplanned admissions were the primary outcomes. Independent variables included preoperative gait speed, heart rate, and total anesthesia time. The relationship between all predictors and each primary outcome was determined in separate multivariable logistic regression models. After adjustment for covariates, gait speed with adjusted odds ratio of 3.71 (95% confidence interval, 1.21-11.26), P = 0.02, was independently associated with early home discharge readiness of 90 mins or less. Importantly, gait speed dichotomized as greater or less than 1 m/sec predicted unplanned admissions, with odds ratio of 0.35 (95% confidence interval, 0.16-0.76, P = 0.008) for those with speeds 1 m/sec or greater in comparison with those with speeds less than 1 m/sec. In a separate model, history of cardiac surgery with adjusted odds ratio of 7.5 (95% confidence interval, 2.34-24.41; P = 0.001) was independently associated with unplanned admissions after elective ambulatory surgery, when other covariates were held constant. This study demonstrates the use of novel prediction models based on gait speed testing to predict early home discharge and to identify those patients at risk for unplanned admissions after elective ambulatory surgery.
Carlisle, Daren M.; Bryant, Wade L.
2011-01-01
Many physicochemical factors potentially impair stream ecosystems in urbanizing basins, but few studies have evaluated their relative importance simultaneously, especially in different environmental settings. We used data collected in 25 to 30 streams along a gradient of urbanization in each of 6 metropolitan areas (MAs) to evaluate the relative importance of 11 physicochemical factors on the condition of algal, macroinvertebrate, and fish assemblages. For each assemblage, biological condition was quantified using 2 separate metrics, nonmetric multidimensional scaling ordination site scores and the ratio of observed/expected taxa, both derived in previous studies. Separate linear regression models with 1 or 2 factors as predictors were developed for each MA and assemblage metric. Model parsimony was evaluated based on Akaike’s Information Criterion for small sample size (AICc) and Akaike weights, and variable importance was estimated by summing the Akaike weights across models containing each stressor variable. Few of the factors were strongly correlated (Pearson |r| > 0.7) within MAs. Physicochemical factors explained 17 to 81% of variance in biological condition. Most (92 of 118) of the most plausible models contained 2 predictors, and generally more variance could be explained by the additive effects of 2 factors than by any single factor alone. None of the factors evaluated was universally important for all MAs or biological assemblages. The relative importance of factors varied for different measures of biological condition, biological assemblages, and MA. Our results suggest that the suite of physicochemical factors affecting urban stream ecosystems varies across broad geographic areas, along gradients of urban intensity, and among basins within single MAs.
Philip Ye, X; Liu, Lu; Hayes, Douglas; Womac, Alvin; Hong, Kunlun; Sokhansanj, Shahab
2008-10-01
The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.
Applying the Expectancy-Value Model to understand health values.
Zhang, Xu-Hao; Xie, Feng; Wee, Hwee-Lin; Thumboo, Julian; Li, Shu-Chuen
2008-03-01
Expectancy-Value Model (EVM) is the most structured model in psychology to predict attitudes by measuring attitudinal attributes (AAs) and relevant external variables. Because health value could be categorized as attitude, we aimed to apply EVM to explore its usefulness in explaining variances in health values and investigate underlying factors. Focus group discussion was carried out to identify the most common and significant AAs toward 5 different health states (coded as 11111, 11121, 21221, 32323, and 33333 in EuroQol Five-Dimension (EQ-5D) descriptive system). AAs were measured in a sum of multiplications of subjective probability (expectancy) and perceived value of attributes with 7-point Likert scales. Health values were measured using visual analog scales (VAS, range 0-1). External variables (age, sex, ethnicity, education, housing, marital status, and concurrent chronic diseases) were also incorporated into survey questionnaire distributed by convenience sampling among eligible respondents. Univariate analyses were used to identify external variables causing significant differences in VAS. Multiple linear regression model (MLR) and hierarchical regression model were used to investigate the explanatory power of AAs and possible significant external variable(s) separately or in combination, for each individual health state and a mixed scenario of five states, respectively. Four AAs were identified, namely, "worsening your quality of life in terms of health" (WQoL), "adding a burden to your family" (BTF), "making you less independent" (MLI) and "unable to work or study" (UWS). Data were analyzed based on 232 respondents (mean [SD] age: 27.7 [15.07] years, 49.1% female). Health values varied significantly across 5 health states, ranging from 0.12 (33333) to 0.97 (11111). With no significant external variables identified, EVM explained up to 62% of the variances in health values across 5 health states. The explanatory power of 4 AAs were found to be between 13% and 28% in separate MLR models (P < 0.05). When data were analyzed for each health state, variances in health values became small and explanatory power of EVM was reduced to a range between 8% and 23%. EVM was useful in explaining variances of health values and predicting important factors. Its power to explain small variances might be restricted due to limitations of 7-point Likert scale to measure AAs accurately. With further improvement and validation of a compatible continuous scale for more accurate measurement, EVM is expected to explain health values to a larger extent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Jared Matthew; Daum, Keith Alvin; Kalival, J. H.
2003-01-01
This initial study evaluates the use of ion mobility spectrometry (IMS) as a rapid test procedure for potential detection of adulterated perfumes and speciation of plant life. Sample types measured consist of five genuine perfumes, two species of sagebrush, and four species of flowers. Each sample type is treated as a separate classification problem. It is shown that discrimination using principal component analysis with K-nearest neighbors can distinguish one class from another. Discriminatory models generated using principal component regressions are not as effective. Results from this examination are encouraging and represent an initial phase demonstrating that perfumes and plants possessmore » characteristic chemical signatures that can be used for reliable identification.« less
Boivin, Rémi; Leclerc, Chloé
2016-01-01
This article analyzes reported incidents of domestic violence according to the source of the complaint and whether the victim initially supported judicial action against the offender. Almost three quarters of incidents studied were reported by the victim (72%), and a little more than half of victims initially wanted to press charges (55%). Using multinomial logistic regression models, situational and individual factors are used to distinguish 4 incident profiles. Incidents in which the victim made the initial report to the police and wished to press charges are the most distinct and involve partners who were already separated at the time of the incident or had a history of domestic violence. The other profiles also show important differences.
Lee, K-M; Chapman, R S; Shen, M; Lubin, J H; Silverman, D T; He, X; Hosgood, H D; Chen, B E; Rajaraman, P; Caporaso, N E; Fraumeni, J F; Blair, A; Lan, Q
2010-08-24
In Xuanwei County, Yunnan Province, China, lung cancer mortality rates in both males and females are among the highest in China. We evaluated differential effects of smoking on lung cancer mortality before and after household stove improvement with chimney to reduce exposure to smoky coal emissions in the unique cohort in Xuanwei, China. Effects of independent variables on lung cancer mortality were measured as hazard ratios and 95% confidence intervals using a multivariable Cox regression model that included separate time-dependent variables for smoking duration (years) before and after stove improvement. We found that the effect of smoking on lung cancer risk becomes considerably stronger after chimney installation and consequent reduction of indoor coal smoke exposure.
Lau, Ying; Wong, Daniel Fu Keung; Wang, Yuqiong; Kwong, Dennis Ho Keung; Wang, Ying
2014-10-01
A community-based sample of 755 pregnant Chinese women were recruited to test the direct and moderating effects of social support in mitigating perceived stress associated with antenatal depressive or anxiety symptoms. The Social Support Rating Scale, the Perceived Stress Scale, the Edinburgh Depressive Postnatal Scale and the Zung Self-Rating Anxiety Scale were used. Social support was found to have direct effects and moderating effects on the women's perceived stress on antenatal depressive and anxiety symptoms in multiple linear regression models. This knowledge of the separate effects of social support on behavioral health is important to psychiatric nurse in planning preventive interventions. Copyright © 2014 Elsevier Inc. All rights reserved.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-01-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-12-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.
Clustering performance comparison using K-means and expectation maximization algorithms.
Jung, Yong Gyu; Kang, Min Soo; Heo, Jun
2014-11-14
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.
Predictive ability of a comprehensive incremental test in mountain bike marathon
Schneeweiss, Patrick; Martus, Peter; Niess, Andreas M; Krauss, Inga
2018-01-01
Objectives Traditional performance tests in mountain bike marathon (XCM) primarily quantify aerobic metabolism and may not describe the relevant capacities in XCM. We aimed to validate a comprehensive test protocol quantifying its intermittent demands. Methods Forty-nine athletes (38.8±9.1 years; 38 male; 11 female) performed a laboratory performance test, including an incremental test, to determine individual anaerobic threshold (IAT), peak power output (PPO) and three maximal efforts (10 s all-out sprint, 1 min maximal effort and 5 min maximal effort). Within 2 weeks, the athletes participated in one of three XCM races (n=15, n=9 and n=25). Correlations between test variables and race times were calculated separately. In addition, multiple regression models of the predictive value of laboratory outcomes were calculated for race 3 and across all races (z-transformed data). Results All variables were correlated with race times 1, 2 and 3: 10 s all-out sprint (r=−0.72; r=−0.59; r=−0.61), 1 min maximal effort (r=−0.85; r=−0.84; r=−0.82), 5 min maximal effort (r=−0.57; r=−0.85; r=−0.76), PPO (r=−0.77; r=−0.73; r=−0.76) and IAT (r=−0.71; r=−0.67; r=−0.68). The best-fitting multiple regression models for race 3 (r2=0.868) and across all races (r2=0.757) comprised 1 min maximal effort, IAT and body weight. Conclusion Aerobic and intermittent variables correlated least strongly with race times. Their use in a multiple regression model confirmed additional explanatory power to predict XCM performance. These findings underline the usefulness of the comprehensive incremental test to predict performance in that sport more precisely. PMID:29387445
A Semiparametric Approach for Composite Functional Mapping of Dynamic Quantitative Traits
Yang, Runqing; Gao, Huijiang; Wang, Xin; Zhang, Ji; Zeng, Zhao-Bang; Wu, Rongling
2007-01-01
Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval mapping. Within this so-called composite functional-mapping framework, functional mapping models the time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful parametric function, whereas composite interval mapping models the time-dependent genetic effects of the markers outside the test interval to control the genome background using a flexible nonparametric approach based on Legendre polynomials. Such a semiparametric framework was formulated by a maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the test of the mathematical parameters that define the QTL effects and the regression coefficients of the Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate the statistical behavior of composite functional mapping and compare its advantage in separating multiple linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the same chromosome, that control the developmental trajectory of leaf age. PMID:17947431
The influence of teamwork culture on physician and nurse resignation rates in hospitals.
Mohr, David C; Burgess, James F; Young, Gary J
2008-02-01
Employee turnover is a critical concern, particularly for hospitals, because they face a very tight labour market for hiring replacements, and high turnover itself may have substantial negative effects on the continuity and quality of patient care. Hospitals with a stronger teamwork culture may experience lower turnover but this has not been formally studied. Research on determinants of employee turnover has not separated out resignations from the larger, more inclusive definition of turnover that includes retirement. This study investigated the relationship between the teamwork culture of hospitals and physician and nurse resignation rates. The study setting was the Veterans Health Administration (VHA). Each hospital was assessed on teamwork culture based on a survey of current employees. Hospital-level resignation rates were obtained for physicians and nurses. Separate multivariate regression models on physicians and nurses were employed. The models included hospital-level characteristics and labour market variables. Analysis of covariance was also performed to attempt to further reveal effects in high versus low teamwork culture hospitals. Teamwork culture was negatively associated with nurse and physician resignation rates, but was statistically significant in the nurse resignation model only. Additional analyses indicated a 0.47 standard deviation (SD) difference in nurse resignation rates and a 0.40 SD difference in physician resignation rates between hospitals in the top and bottom quartiles of the distribution for teamwork culture. In conclusion, these results suggest that developing and emphasizing a teamwork culture may facilitate greater retention of health-care employees, especially nurses.
Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Volden, Thomas R.
2010-01-01
The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.
Panel regressions to estimate low-flow response to rainfall variability in ungaged basins
Bassiouni, Maoya; Vogel, Richard M.; Archfield, Stacey A.
2016-01-01
Multicollinearity and omitted-variable bias are major limitations to developing multiple linear regression models to estimate streamflow characteristics in ungaged areas and varying rainfall conditions. Panel regression is used to overcome limitations of traditional regression methods, and obtain reliable model coefficients, in particular to understand the elasticity of streamflow to rainfall. Using annual rainfall and selected basin characteristics at 86 gaged streams in the Hawaiian Islands, regional regression models for three stream classes were developed to estimate the annual low-flow duration discharges. Three panel-regression structures (random effects, fixed effects, and pooled) were compared to traditional regression methods, in which space is substituted for time. Results indicated that panel regression generally was able to reproduce the temporal behavior of streamflow and reduce the standard errors of model coefficients compared to traditional regression, even for models in which the unobserved heterogeneity between streams is significant and the variance inflation factor for rainfall is much greater than 10. This is because both spatial and temporal variability were better characterized in panel regression. In a case study, regional rainfall elasticities estimated from panel regressions were applied to ungaged basins on Maui, using available rainfall projections to estimate plausible changes in surface-water availability and usable stream habitat for native species. The presented panel-regression framework is shown to offer benefits over existing traditional hydrologic regression methods for developing robust regional relations to investigate streamflow response in a changing climate.
Panel regressions to estimate low-flow response to rainfall variability in ungaged basins
NASA Astrophysics Data System (ADS)
Bassiouni, Maoya; Vogel, Richard M.; Archfield, Stacey A.
2016-12-01
Multicollinearity and omitted-variable bias are major limitations to developing multiple linear regression models to estimate streamflow characteristics in ungaged areas and varying rainfall conditions. Panel regression is used to overcome limitations of traditional regression methods, and obtain reliable model coefficients, in particular to understand the elasticity of streamflow to rainfall. Using annual rainfall and selected basin characteristics at 86 gaged streams in the Hawaiian Islands, regional regression models for three stream classes were developed to estimate the annual low-flow duration discharges. Three panel-regression structures (random effects, fixed effects, and pooled) were compared to traditional regression methods, in which space is substituted for time. Results indicated that panel regression generally was able to reproduce the temporal behavior of streamflow and reduce the standard errors of model coefficients compared to traditional regression, even for models in which the unobserved heterogeneity between streams is significant and the variance inflation factor for rainfall is much greater than 10. This is because both spatial and temporal variability were better characterized in panel regression. In a case study, regional rainfall elasticities estimated from panel regressions were applied to ungaged basins on Maui, using available rainfall projections to estimate plausible changes in surface-water availability and usable stream habitat for native species. The presented panel-regression framework is shown to offer benefits over existing traditional hydrologic regression methods for developing robust regional relations to investigate streamflow response in a changing climate.