Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi
2013-07-01
We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Benefits under another retirement system for Federal employees based on the most recent separation. 837.802 Section 837.802 Administrative... system for Federal employees based on the most recent separation. (a) Generally. An annuitant who has...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Benefits under another retirement system for Federal employees based on the most recent separation. 837.802 Section 837.802 Administrative... system for Federal employees based on the most recent separation. (a) Generally. An annuitant who has...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Benefits under another retirement system for Federal employees based on the most recent separation. 837.802 Section 837.802 Administrative... system for Federal employees based on the most recent separation. (a) Generally. An annuitant who has...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Benefits under another retirement system for Federal employees based on the most recent separation. 837.802 Section 837.802 Administrative... system for Federal employees based on the most recent separation. (a) Generally. An annuitant who has...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Benefits under another retirement system for Federal employees based on the most recent separation. 837.802 Section 837.802 Administrative... system for Federal employees based on the most recent separation. (a) Generally. An annuitant who has...
A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems
NASA Technical Reports Server (NTRS)
Hall, Nancy Rabel
2006-01-01
A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.
Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA
2011-10-11
Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.
Quantitative Magnetic Separation of Particles and Cells using Gradient Magnetic Ratcheting
Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino
2016-01-01
Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting (MACS), are robust but perform coarse, qualitative separations based on surface antigen expression. We report a quantitative magnetic separation technology using high-force magnetic ratcheting over arrays of magnetically soft micro-pillars with gradient spacing, and use the system to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micro-pillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic-field. Particles with higher IOC separate and equilibrate along the miro-pillar array at larger pitches. We develop a semi-analytical model that predicts behavior for particles and cells. Using the system, LNCaP cells were separated based on the bound quantity of 1μm anti-EpCAM particles as a metric for expression. The ratcheting cytometry system was able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof of concept, EpCAM-labeled cells from patient blood were isolated with 74% purity, demonstrating potential towards a quantitative magnetic separation instrument. PMID:26890496
Porcar, Raúl; Nuevo, Daniel; García-Verdugo, Eduardo; Lozano, Pedro; Sanchez-Marcano, José; Burguete, M Isabel; Luis, Santiago V
2018-03-07
Porous monolithic advanced functional materials based on supported ionic liquid-like phase (SILLP) systems were used for the preparation of oleophilic and hydrophobic cylindrical membranes and successfully tested as eco-friendly and safe systems for oil/water separation and for the continuous integration of catalytic and separation processes in an aqueous-organic biphasic reaction system.
Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.
Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino
2016-04-13
Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji
2018-06-09
Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin
2015-05-01
Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. © The Author(s) 2015.
Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology.
Brown, Leslie; Earle, Martyn J; Gîlea, Manuela A; Plechkova, Natalia V; Seddon, Kenneth R
2017-08-10
Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous character of ionic liquid-based solvent systems to be used in a wide variety of separations (including transition metal salts, arenes, alkenes, alkanes, bio-oils and sugars).
Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei
2018-03-15
Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system's lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system's ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection.
Robust high-performance control for robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1991-01-01
Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies have been merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal component that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and a feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nominal feedforward signal.
Robust high-performance control for robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies were merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal componet that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nomical feedforward signal.
Of four systems available from the literature, based on cyclodextrins, dioctylsulfosuccinate, bile salts, and molecular micelles consisting of oligomers of undecylenic acid, the most successful separation system in our hands is based on the molecular micelles, oligomers of sodiu...
Lattice-Boltzmann-based simulations of diffusiophoresis of colloids and cells
NASA Astrophysics Data System (ADS)
Kreft Pearce, Jennifer; Castigliego, Joshua
Increasing environmental degradation due to plastic pollutants requires innovative solutions that facilitate the extraction of pollutants without harming local biota. We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on diffusiophoresis and the separation of particles within the system. A gradient in viscosity that simulates a concentration gradient in a dissolved polymer allows us to separate various types of particles based on their deformability. As seen in previous experiments, simulated particles that have a higher deformability react differently to the polymer matrix than those with a lower deformability. Therefore, the particles can be separated from each other. The system described above was simulated with various concentration gradients as well as various Soret coefficients in order to optimize the separation of the particles. This simulation, in particular, was intended to model an oceanic system where the particles of interest were motile and nonmotile plankton and microplastics. The separation of plankton from the microplastics was achieved.
Blind speech separation system for humanoid robot with FastICA for audio filtering and separation
NASA Astrophysics Data System (ADS)
Budiharto, Widodo; Santoso Gunawan, Alexander Agung
2016-07-01
Nowadays, there are many developments in building intelligent humanoid robot, mainly in order to handle voice and image. In this research, we propose blind speech separation system using FastICA for audio filtering and separation that can be used in education or entertainment. Our main problem is to separate the multi speech sources and also to filter irrelevant noises. After speech separation step, the results will be integrated with our previous speech and face recognition system which is based on Bioloid GP robot and Raspberry Pi 2 as controller. The experimental results show the accuracy of our blind speech separation system is about 88% in command and query recognition cases.
Sandmann, Gerhard
2010-01-01
Acetonitrile-based HPLC systems are the most commonly used for carotenoid analysis from different plant tissues. Because of the acetonitrile shortage, an HPLC system for the separation of carotenoids on C(18) reversed-phase columns was developed in which an acetonitrile-alcohol-based mobile phase was replaced by nitromethane. This solvent comes closest to acetonitrile with respect to its elutrophic property. Our criterion was to obtain similar separation and retention times for a range of differently structured carotenoids. This was achieved by further increase in the lipophilicity with ethylacetate. For all the carotenoids which we tested, we found co-elution only of β-cryptoxanthin and lycopene. By addition of 1% of water, separation of this pair of carotenoids was also achieved. The final recommended mobile phase consisted of nitromethane : 2-propanol : ethyl acetate : water (79 : 10 : 10 : 1, by volume). On Nucleosil C(18) columns and related ones like Hypersil C(18), we obtained separation of carotenes, hydroxyl, epoxy and keto derivatives, which resembles the excellent separation properties of acetonitrile-based mobile phases on C(18) reversed phase columns. We successfully applied the newly developed HPLC system to the separation of carotenoids from different vegetables and fruit. Copyright © 2010 John Wiley & Sons, Ltd.
Rényi and Tsallis formulations of separability conditions in finite dimensions
NASA Astrophysics Data System (ADS)
Rastegin, Alexey E.
2017-12-01
Separability conditions for a bipartite quantum system of finite-dimensional subsystems are formulated in terms of Rényi and Tsallis entropies. Entropic uncertainty relations often lead to entanglement criteria. We propose new approach based on the convolution of discrete probability distributions. Measurements on a total system are constructed of local ones according to the convolution scheme. Separability conditions are derived on the base of uncertainty relations of the Maassen-Uffink type as well as majorization relations. On each of subsystems, we use a pair of sets of subnormalized vectors that form rank-one POVMs. We also obtain entropic separability conditions for local measurements with a special structure, such as mutually unbiased bases and symmetric informationally complete measurements. The relevance of the derived separability conditions is demonstrated with several examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amitava Sarkar; James K. Neathery; Burtron H. Davis
A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of ironmore » catalyst particles and the formation of ultra-fine particles.« less
29 CFR 1604.3 - Separate lines of progression and seniority systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GUIDELINES ON DISCRIMINATION BECAUSE OF SEX § 1604.3 Separate lines of progression and seniority systems. (a... lines of progression or separate seniority lists based on sex where this would adversely affect any employee unless sex is a bona fide occupational qualification for that job. Accordingly, employment...
Stability of model-based event-triggered control systems: a separation property
NASA Astrophysics Data System (ADS)
Hao, Fei; Yu, Hao
2017-04-01
To save resource of communication, this paper investigates the model-based event-triggered control systems. Two main problems are considered in this paper. One is, for given plant and model, to design event conditions to guarantee the stability of the systems. The other is to consider the effect of the model matrices on the stability. The results show that the closed-loop systems can be asymptotically stabilised with any model matrices in compact sets if the parameters in the event conditions are within the designed ranges. Then, a separation property of model-based event-triggered control is proposed. Namely, the design of the controller gain and the event condition can be separated from the selection of the model matrices. Based on this property, an adaption mechanism is introduced to the model-based event-triggered control systems, which can further improve the sampling performance. Finally, a numerical example is given to show the efficiency and feasibility of the developed results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, Pulak; Twary, Scott N.
Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.
Quality testing of an innovative cascade separation system for multiple cell separation
NASA Astrophysics Data System (ADS)
Pierzchalski, Arkadiusz; Moszczynska, Aleksandra; Albrecht, Bernd; Heinrich, Jan-Michael; Tarnok, Attila
2012-03-01
Isolation of different cell types from mixed samples in one separation step by FACS is feasible but expensive and slow. It is cheaper and faster but still challenging by magnetic separation. An innovative bead-based cascade-system (pluriSelect GmbH, Leipzig, Germany) relies on simultaneous physical separation of different cell types. It is based on antibody-mediated binding of cells to beads of different size and isolation with sieves of different mesh-size. We validated pluriSelect system for single parameter (CD3) and simultaneous separation of CD3 and CD15 cells from EDTA blood-samples. Results were compared with those obtained by MACS (Miltenyi-Biotech) magnetic separation (CD3 separation). pluriSelect separation was done in whole blood, MACS on Ficoll gradient isolated leukocytes, according to the manufacturer's protocols. Isolated and residual cells were immunophenotyped (7-color 8-antibody panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLADR) on a CyFlowML flow cytometer (Partec GmbH). Cell count (Coulter), purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (92-98%), yield (50-60%) and viability (92-98%) of isolated cells. PluriSelect separation was slightly faster than MACS (1.15 h versus 1.5h). Moreover, no preenrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two cell subpopulation directly from whole blood and can provide a simple alternative to FACS. The isolated cells can be used for further research applications.
Highly accurate and fast optical penetration-based silkworm gender separation system
NASA Astrophysics Data System (ADS)
Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn
2015-07-01
Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.
Yang, Fang; Liao, Xiangzhi; Tian, Yuan; Li, Guiying
2017-04-01
Exosomes, nanovesicles secreted by most types of cells, exist in virtually all bodily fluids. Their rich nucleic acid and protein content make them potentially valuable biomarkers for noninvasive molecular diagnostics. They also show promise, after further development, to serve as a drug delivery system. Unfortunately, existing exosome separation technologies, such as ultracentrifugation and methods incorporating magnetic beads, are time-consuming, laborious and separate only exosomes of low purity. Thus, a more effective separation method is highly desirable. Microfluidic platforms are ideal tools for exosome separation, since they enable fast, cost-efficient, portable and precise processing of nanoparticles and small volumes of liquid samples. Recently, several microfluidic-based exosome separation technologies have been studied. In this article, the advantages of the most recent technologies, as well as their limitations, challenges and potential uses in novel microfluidic exosome separation and collection applications is reviewed. This review outlines the uses of new powerful microfluidic exosome detection tools for biologists and clinicians, as well as exosome separation tools for microfluidic engineers. Current challenges of exosome separation methodologies are also described, in order to highlight areas for future research and development. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Capillary electrophoresis in two-dimensional separation systems: Techniques and applications.
Kohl, Felix J; Sánchez-Hernández, Laura; Neusüß, Christian
2015-01-01
The analysis of complex samples requires powerful separation techniques. Here, 2D chromatographic separation techniques (e.g. LC-LC, GC-GC) are increasingly applied in many fields. Electrophoretic separation techniques show a different selectivity in comparison to LC and GC and very high separation efficiency. Thus, 2D separation systems containing at least one CE-based separation technique are an interesting alternative featuring potentially a high degree of orthogonality. However, the generally small volumes and strong electrical fields in CE require special coupling techniques. These technical developments are reviewed in this work, discussing benefits and drawbacks of offline and online systems. Emphasis is placed on the design of the systems, their coupling, and the detector used. Moreover, the employment of strategies to improve peak capacity, resolution, or sensitivity is highlighted. Various applications of 2D separations with CE are summarized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
5 CFR 843.311 - Annuity based on death of a separated employee.
Code of Federal Regulations, 2010 CFR
2010-01-01
... beginning on the day after the death of the separated employee. (ii) The rate of the adjusted annuity equals... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Annuity based on death of a separated... SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-DEATH BENEFITS AND EMPLOYEE REFUNDS...
5 CFR 843.311 - Annuity based on death of a separated employee.
Code of Federal Regulations, 2012 CFR
2012-01-01
... beginning on the day after the death of the separated employee. (ii) The rate of the adjusted annuity equals... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Annuity based on death of a separated... SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-DEATH BENEFITS AND EMPLOYEE REFUNDS...
5 CFR 843.311 - Annuity based on death of a separated employee.
Code of Federal Regulations, 2011 CFR
2011-01-01
... beginning on the day after the death of the separated employee. (ii) The rate of the adjusted annuity equals... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Annuity based on death of a separated... SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-DEATH BENEFITS AND EMPLOYEE REFUNDS...
5 CFR 843.311 - Annuity based on death of a separated employee.
Code of Federal Regulations, 2014 CFR
2014-01-01
... beginning on the day after the death of the separated employee. (ii) The rate of the adjusted annuity equals... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Annuity based on death of a separated... SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-DEATH BENEFITS AND EMPLOYEE REFUNDS...
5 CFR 843.311 - Annuity based on death of a separated employee.
Code of Federal Regulations, 2013 CFR
2013-01-01
... beginning on the day after the death of the separated employee. (ii) The rate of the adjusted annuity equals... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Annuity based on death of a separated... SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-DEATH BENEFITS AND EMPLOYEE REFUNDS...
Removing Grit During Wastewater Treatment: CFD Analysis of HDVS Performance.
Meroney, Robert N; Sheker, Robert E
2016-05-01
Computational Fluid Dynamics (CFD) was used to simulate the grit and sand separation effectiveness of a typical hydrodynamic vortex separator (HDVS) system. The analysis examined the influences on the separator efficiency of: flow rate, fluid viscosities, total suspended solids (TSS), and particle size and distribution. It was found that separator efficiency for a wide range of these independent variables could be consolidated into a few curves based on the particle fall velocity to separator inflow velocity ratio, Ws/Vin. Based on CFD analysis it was also determined that systems of different sizes with length scale ratios ranging from 1 to 10 performed similarly when Ws/Vin and TSS were held constant. The CFD results have also been compared to a limited range of experimental data.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.
2011-01-01
An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.
Airborne Tactical Intent-Based Conflict Resolution Capability
NASA Technical Reports Server (NTRS)
Wing, David J.; Vivona, Robert A.; Roscoe, David A.
2009-01-01
Trajectory-based operations with self-separation involve the aircraft taking the primary role in the management of its own trajectory in the presence of other traffic. In this role, the flight crew assumes the responsibility for ensuring that the aircraft remains separated from all other aircraft by at least a minimum separation standard. These operations are enabled by cooperative airborne surveillance and by airborne automation systems that provide essential monitoring and decision support functions for the flight crew. An airborne automation system developed and used by NASA for research investigations of required functionality is the Autonomous Operations Planner. It supports the flight crew in managing their trajectory when responsible for self-separation by providing monitoring and decision support functions for both strategic and tactical flight modes. The paper focuses on the latter of these modes by describing a capability for tactical intent-based conflict resolution and its role in a comprehensive suite of automation functions supporting trajectory-based operations with self-separation.
Commissioning of inline ECE system within waveguide based ECRH transmission systems on ASDEX upgrade
NASA Astrophysics Data System (ADS)
Bongers, W. A.; Kasparek, W.; Doelman, N.; van den Braber, R.; van den Brand, H.; Meo, F.; de Baar, M. R.; Amerongen, F. J.; Donné, A. J. H.; Elzendoorn, B. S. Q.; Erckmann, V.; Goede, A. P. H.; Giannone, L.; Grünwald, G.; Hollman, F.; Kaas, G.; Krijger, B.; Michel, G.; Lubyako, L.; Monaco, F.; Noke, F.; Petelin, M.; Plaum, B.; Purps, F.; ten Pierik, J. G. W.; Schüller, C.; Slob, J. W.; Stober, J. K.; Schütz, H.; Wagner, D.; Westerhof, E.; Ronden, D. M. S.
2012-09-01
A CW capable inline electron cyclotron emission (ECE) separation system for feedback control, featuring oversized corrugated waveguides, is commissioned on ASDEX upgrade (AUG). The system is based on a combination of a polarization independent, non-resonant, Mach-Zehnder diplexer equipped with dielectric plate beam splitters [2, 3] employed as corrugated oversized waveguide filter, and a resonant Fast Directional Switch, FADIS [4, 5, 6, 7] as ECE/ECCD separation system. This paper presents an overview of the system, the low power characterisation tests and first high power commissioning on AUG.
Application of Satellite Based Augmentation Systems to Altitude Separation
NASA Astrophysics Data System (ADS)
Magny, Jean Pierre
This paper presents the application of GNSS1, or more precisely of Satellite Based Augmentation Systems (SBAS), to vertical separation for en-route, approach and landing operations. Potential improvements in terms of operational benefit and of safety are described for two main applications. First, vertical separation between en-route aircraft, which requires a system available across wide areas. SBAS (EGNOS, WAAS, and MSAS) are very well suited for this purpose before GNSS2 becomes available. And secondly, vertical separation from the ground during approach and landing, for which preliminary design principles of instrument approach procedures and safety issues are presented. Approach and landing phases are the subject of discussions within ICAO GNSS-P. En-route phases have been listed as GNSS-P future work and by RTCA for development of new equipments.
49 CFR 1242.79 - Communication systems operations (account XX-55-77).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Communication systems operations (account XX-55-77...-Transportation § 1242.79 Communication systems operations (account XX-55-77). Separate common expenses on bases of the percentages calculated for the separation of Communication Systems (account XX-19-20), § 1242...
Thibodeau, C; Monette, F; Glaus, M; Laflamme, C B
2011-01-01
The black water and grey water source-separation sanitation system aims at efficient use of energy (biogas), water and nutrients but currently lacks evidence of economic viability to be considered a credible alternative to the conventional system. This study intends to demonstrate economic viability, identify main cost contributors and assess critical influencing factors. A technico-economic model was built based on a new neighbourhood in a Canadian context. Three implementation scales of source-separation system are defined: 500, 5,000 and 50,000 inhabitants. The results show that the source-separation system is 33% to 118% more costly than the conventional system, with the larger cost differential obtained by lower source-separation system implementation scales. A sensitivity analysis demonstrates that vacuum toilet flow reduction from 1.0 to 0.25 L/flush decreases source-separation system cost between 23 and 27%. It also shows that high resource costs can be beneficial or unfavourable to the source-separation system depending on whether the vacuum toilet flow is low or normal. Therefore, the future of this configuration of the source-separation system lies mainly in vacuum toilet flow reduction or the introduction of new efficient effluent volume reduction processes (e.g. reverse osmosis).
Sample injection and electrophoretic separation on a simple laminated paper based analytical device.
Xu, Chunxiu; Zhong, Minghua; Cai, Longfei; Zheng, Qingyu; Zhang, Xiaojun
2016-02-01
We described a strategy to perform multistep operations on a simple laminated paper-based separation device by using electrokinetic flow to manipulate the fluids. A laminated crossed-channel paper-based separation device was fabricated by cutting a filter paper sheet followed by lamination. Multiple function units including sample loading, sample injection, and electrophoretic separation were integrated on a single paper based analytical device for the first time, by applying potential at different reservoirs for sample, sample waste, buffer, and buffer waste. As a proof-of-concept demonstration, mixed sample solution containing carmine and sunset yellow were loaded in the sampling channel, and then injected into separation channel followed by electrophoretic separation, by adjusting the potentials applied at the four terminals of sampling and separation channel. The effects of buffer pH, buffer concentration, channel width, and separation time on resolution of electrophoretic separation were studied. This strategy may be used to perform multistep operations such as reagent dilution, sample injection, mixing, reaction, and separation on a single microfluidic paper based analytical device, which is very attractive for building micro total analysis systems on microfluidic paper based analytical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Information Systems for University Planning.
ERIC Educational Resources Information Center
Robinson, Robert J.
This paper proposes construction of a separate data base environment for university planning information, distinct from data bases and systems supporting operational functioning and management. The data base would receive some of its input from the management information systems (MIS)/transactional data bases and systems through a process of…
NASA Astrophysics Data System (ADS)
Lozovaya, S. Y.; Lozovoy, N. M.; Okunev, A. N.
2018-03-01
This article is devoted to the theoretical validation of the change in magnetic fields created by the permanent magnet systems of the drum separators. In the article, using the example of a magnetic separator for enrichment of highly magnetic ores, the method of analytical calculation of the magnetic fields of systems of permanent magnets based on the Biot-Savart-Laplace law, the equivalent solenoid method, and the superposition principle of fields is considered.
2017-01-01
Polymeric nanoparticles have become indispensable in modern society with a wide array of applications ranging from waterborne coatings to drug-carrier-delivery systems. While a large range of techniques exist to determine a multitude of properties of these particles, relating physicochemical properties of the particle to the chemical structure of the intrinsic polymers is still challenging. A novel, highly orthogonal separation system based on comprehensive two-dimensional liquid chromatography (LC × LC) has been developed. The system combines hydrodynamic chromatography (HDC) in the first-dimension to separate the particles based on their size, with ultrahigh-performance size-exclusion chromatography (SEC) in the second dimension to separate the constituting polymer molecules according to their hydrodynamic radius for each of 80 to 100 separated fractions. A chip-based mixer is incorporated to transform the sample by dissolving the separated nanoparticles from the first-dimension online in tetrahydrofuran. The polymer bands are then focused using stationary-phase-assisted modulation to enhance sensitivity, and the water from the first-dimension eluent is largely eliminated to allow interaction-free SEC. Using the developed system, the combined two-dimensional distribution of the particle-size and the molecular-size of a mixture of various polystyrene (PS) and polyacrylate (PACR) nanoparticles has been obtained within 60 min. PMID:28745485
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilden, Andreas; Lumetta, Gregg J.; Sadowski, Fabian
A solvent extraction system has been developed for separating trivalent actinides from lanthanides. This “Advanced TALSPEAK” system uses 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester to extract the lanthanides into a n-dodecane-based solvent phase, while the actinides are retained in a citrate-buffered aqueous phase by complexation to N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid. Batch distribution measurements indicate that the separation of americium from the light lanthanides decreases as the pH decreases. For example, the separation factor between La and Am increases from 2.5 at pH 2.0 to 19.3 at pH 3.0. However, previous investigations indicated that the extraction rates for the heavier lanthanides decrease with increasing pH.more » So, a balance between these two competing effects is required. An aqueous phase in which the pH was set at 2.6 was chosen for further process development because this offered optimal separation, with a minimum separation factor of ~8.4, based on the separation between La and Am. Centrifugal contactor single-stage efficiencies were measured to characterize the performance of the system under flow conditions.« less
Microfluidic thread based electroanalytical system for green chromatographic separations.
Agustini, Deonir; Fedalto, Lucas; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto
2018-02-13
The use of miniaturized chromatographic systems is an important strategy for reducing the consumption of supplies related to separations, allowing the development of more sustainable analytical methodologies. However, the high cost and complexity in the production of these systems combined with the operational difficulties and the need for the use of solvent and sample pretreatment are challenges to be overcome in order to make the chromatographic methods greener. Here, we report the construction and development of a low cost microfluidic system for green and solvent-free chromatographic separations with electrochemical detection integrated into cotton threads without the use of any mechanical pumping to transport the solutions. The manufacture of the proposed system was performed by simple assembly of the components, with the separation of the species based on an ion exchange mechanism and detection using gold electrodes manufactured directly on the cotton threads. A linear range of 0.025-5.0 mM was obtained for the effective separation of ascorbic acid (AA) and dopamine (DA) with detection limits of 2.89 μM (for AA) and 4.41 μM (for DA). Each analysis was performed at a low cost (less than 0.01 dollars), and with a small volume of waste generated (107.1 μL). So, the proposed system was successfully employed to determine the levels of AA and DA present in the tears of healthy volunteers without sample pretreatment, indicating the good analytical performance of the system and the possibility of performing greener chromatographic separations.
Method and System for Determining Relative Displacement and Heading for Navigation
NASA Technical Reports Server (NTRS)
Sheikh, Suneel Ismail (Inventor); Pines, Darryll J. (Inventor); Conroy, Joseph Kim (Inventor); Spiridonov, Timofey N. (Inventor)
2015-01-01
A system and method for determining a location of a mobile object is provided. The system determines the location of the mobile object by determining distances between a plurality of sensors provided on a first and second movable parts of the mobile object. A stride length, heading, and separation distance between the first and second movable parts are computed based on the determined distances and the location of the mobile object is determined based on the computed stride length, heading, and separation distance.
Emulsion stability measurements by single electrode capacitance probe (SeCaP) technology
NASA Astrophysics Data System (ADS)
Schüller, R. B.; Løkra, S.; Salas-Bringas, C.; Egelandsdal, B.; Engebretsen, B.
2008-08-01
This paper describes a new and novel method for the determination of the stability of emulsions. The method is based on the single electrode capacitance technology (SeCaP). A measuring system consisting of eight individual measuring cells, each with a volume of approximately 10 ml, is described in detail. The system has been tested on an emulsion system based on whey proteins (WPC80), oil and water. Xanthan was added to modify the emulsion stability. The results show that the new measuring system is able to quantify the stability of the emulsion in terms of a differential variable. The whole separation process is observed much faster in the SeCaP system than in a conventional separation column. The complete separation process observed visually over 30 h is seen in less than 1.4 h in the SeCaP system.
Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same
Gerald, II, Rex E.; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL
2011-03-08
The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.
Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL
2011-02-15
The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.
A system of {sup 99m}Tc production based on distributed electron accelerators and thermal separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, R.G.; Christian, J.D.; Petti, D.A.
1999-04-01
A system has been developed for the production of {sup 99m}Tc based on distributed electron accelerators and thermal separation. The radioactive decay parent of {sup 99m}Tc, {sup 99}Mo, is produced from {sup 100}Mo by a photoneutron reaction. Two alternative thermal separation processes have been developed to extract {sup 99m}Tc. Experiments have been performed to verify the technical feasibility of the production and assess the efficiency of the extraction processes. A system based on this technology enables the economical supply of {sup 99m}Tc for a large nuclear pharmacy. Twenty such production centers distributed near major metropolitan areas could produce the entiremore » US supply of {sup 99m}Tc at a cost less than the current subsidized price.« less
Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation
NASA Technical Reports Server (NTRS)
Yuan, S. W. K.; Frederking, T. H. K.
1989-01-01
Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.
Multi-stage separations based on dielectrophoresis
Mariella, Jr., Raymond P.
2004-07-13
A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.
Development of RLV-TD Stage Separation System
NASA Astrophysics Data System (ADS)
Mohan, Ganesh; Rao, Y. Naga Sreenivasa; Prakash, P.; Subramanian, U. A.; Purushothaman, P.; Premdas, M.; Abraham, Baby; Kishorenath, V.; Jayachandran, T.
2017-12-01
Hyper Sonic Experiment (HEX-01), with main focus on the aero thermodynamic characterization and end to end autonomous mission management, is the first in a series of demonstrators planned by ISRO for the development of a Reusable Launch Vehicle (RLV). This paper gives the evolution of the split collet based separation system used in the separation of the spent booster stage from the RLV-Technology Demonstrator Vehicle (TDV). The separation mechanism is very compact, yet has a very high load bearing capacity. The design details and the challenges faced during flight qualification of the system are discussed in this paper. There are a lot of promising areas where this system can be used.
Usage of the Upgraded Vassilissa Separator for Synthesis of Super-Heavy Elements
NASA Astrophysics Data System (ADS)
Yeremin, A. V.; Malyshev, O. N.; Popeko, A. G.; Sagaidak, R. N.; Chepigin, V. I.; Kabachenko, A. P.; Belozerov, A. V.; Chelnokov, M. L.; Gorshkov, V. A.; Svirikhin, A. I.; Korotkov, S. P.; Rohach, J.; Brida, I.; Berek, G.
2002-12-01
Electrostatic separator VASSILISSA is used for exploring complete fussion nuclear reactions. The magnetic analyzer, based on D37 dipole magnet, was installed after the second triplet of quadrupole lenses of the separator for the mass identification of evaporation residues. Mass identification is an powerful tool for identification of recoil atoms of super-heavy elements. The new detection system consisting of the time-of-fiight system and 32-strips position-sensitive detector array was installed in the focal plane of the separator. The mass resolution of the separator after upgrade was found to be about 2.5 %.
Luo, Tao; Fan, Lei; Zeng, Yixiao; Liu, Ya; Chen, Shuxun; Tan, Qiulin; Lam, Raymond H W; Sun, Dong
2018-05-04
Prefocusing of the cell mixture is necessary for achieving a high-efficiency and continuous dielectrophoretic (DEP) cell separation. However, prefocusing through sheath flow requires a complex and tedious peripheral system for multi-channel fluid control, hindering the integration of DEP separation systems with other microfluidic functionalities for comprehensive clinical and biological tasks. This paper presented a simplified sheathless cell separation approach that combines gravitational-sedimentation-based sheathless prefocusing and DEP separation methods. Through gravitational sedimentation in a tubing, which was inserted into the inlet of a microfluidic chip with an adjustable steering angle, the cells were focused into a stream at the upstream region of a microchannel prior to separation. Then, a DEP force was applied at the downstream region of the microchannel for the active separation of the cells. Through this combined strategy, the peripheral system for the sheath flow was no longer required, and thus the integration of cell separation system with additional microfluidic functionalities was facilitated. The proposed sheathless scheme focused the mixture of cells with different sizes and dielectric properties into a stream in a wide range of flow rates without changing the design of the microfluidic chip. The DEP method is a label-free approach that can continuously separate cells on the basis of the sizes or dielectric properties of the cells and thus capable of greatly flexible cell separation. The efficiency of the proposed approach was experimentally assessed according to its performance in the separation of human acute monocytic leukemia THP-1 cells from yeast cells with respect to different sizes and THP-1 cells from human acute myelomonocytic leukemia OCI-AML3 cells with respect to different dielectric properties. The experimental results revealed that the separation efficiency of the method can surpass 90% and thus effective in separating cells on the basis of either size or dielectric property.
NASA Astrophysics Data System (ADS)
Hayashi, S.; Mishima, F.; Akiyama, Y.; Nishijima, S.
2011-11-01
In the industrial plants processing highly viscous fluid such as foods or industrial products, it is necessary to remove the metallic wear debris originating from pipe in manufacturing line which triggers quality loss. In this study, we developed a high gradient magnetic separation (HGMS) system which consists of superconducting magnet to remove the metallic wear debris. The magnetic separation experiment and the particle trajectory simulation were conducted with polyvinyl alcohol (PVA) as a model material (viscosity coefficient was 10 Pa s, which is 10,000 times higher than that in water). In order to develop a magnetic separation system for practical use, the particle trajectory simulation by using solenoidal superconducting magnet was conducted, and the possibility of the magnetic separation for removing ferromagnetic stainless steel (SUS) particles in highly viscous fluid of 10 Pa s was indicated. Based on the results, the number of filters to obtain required separation efficiency was examined to design the practical separation system.
Rifai Chai; Naik, Ganesh R; Tran, Yvonne; Sai Ho Ling; Craig, Ashley; Nguyen, Hung T
2015-08-01
An electroencephalography (EEG)-based counter measure device could be used for fatigue detection during driving. This paper explores the classification of fatigue and alert states using power spectral density (PSD) as a feature extractor and fuzzy swarm based-artificial neural network (ANN) as a classifier. An independent component analysis of entropy rate bound minimization (ICA-ERBM) is investigated as a novel source separation technique for fatigue classification using EEG analysis. A comparison of the classification accuracy of source separator versus no source separator is presented. Classification performance based on 43 participants without the inclusion of the source separator resulted in an overall sensitivity of 71.67%, a specificity of 75.63% and an accuracy of 73.65%. However, these results were improved after the inclusion of a source separator module, resulting in an overall sensitivity of 78.16%, a specificity of 79.60% and an accuracy of 78.88% (p <; 0.05).
Grisales Díaz, Víctor Hugo; Olivar Tost, Gerard
2017-01-01
Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems. The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3 ® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements. Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53-0.57 and 0.81-0.84, respectively. The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.
Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kai-Jian; Qin, S.-J., E-mail: shuijie.qin@gmail.com; Bai, Zhong-Chen
2013-11-21
A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid andmore » a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.« less
NASA Technical Reports Server (NTRS)
Chung, William W.; Linse, Dennis J.; Alaverdi, Omeed; Ifarraguerri, Carlos; Seifert, Scott C.; Salvano, Dan; Calender, Dale
2012-01-01
This study investigates the effects of two technical enablers: Automatic Dependent Surveillance - Broadcast (ADS-B) and digital datalink communication, of the Federal Aviation Administration s Next Generation Air Transportation System (NextGen) under two separation assurance (SA) system architectures: ground-based SA and airborne SA, on overall separation assurance performance. Datalink performance such as successful reception probability in both surveillance and communication messages, and surveillance accuracy are examined in various operational conditions. Required SA performance is evaluated as a function of subsystem performance, using availability, continuity, and integrity metrics to establish overall required separation assurance performance, under normal and off-nominal conditions.
NPDES Permit for Peterson Air Force Base Municipal Separate Storm Sewer System in Colorado
NPDES permit CO-R042006, authorizes Peterson AFB to discharge from all municipal separate storm sewer system outfalls to receiving waters which include the East Fork of Sand Creek and others within exterior AFB boundaries in El Paso County, Colorado.
NASA Astrophysics Data System (ADS)
Xu, Kangning; Wang, Chengwen; Zheng, Min; Yuan, Xin
2010-11-01
This study aimed to construct an on-site eco-sewerage system for modern office buildings in urban area based on combined innovative technologies of vacuum and source-separation. Results showed that source-separated grey water had low concentrations of pollutants, which helped the reuse of grey water. However, the system had a low separation efficiency between the yellow water and the brown water, which was caused by the plug problem in the urine collection from the urine-diverting toilets. During the storage of yellow water for liquid fertilizer production, nearly all urea nitrogen transferred to ammonium nitrogen and about 2/3 phosphorus was lost because of the struvite precipitation. Total bacteria and coliforms increased first in the storage, but then decreased to low concentrations. The anaerobic/anoxic/aerobic MBR had high elimination rates of COD, ammonium nitrogen and total nitrogen of the brown water, which were 94.2%, 98.1% and 95.1%, respectively. However, the effluent still had high contents of colority, nitrate and phosphorus, which affected the application of the effluent for flushing water. Even though, the effluent might be used as dilution water for the yellow water fertilizer. Based on the results and the assumption of an ideal operation of the vacuum source-separation system, a future plan for on-site eco-sewerage system of modern office buildings was constructed. Its sustainability was validated by the analysis of the substances flow of water and nutrients.
Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper
2017-10-25
Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.
Are Binary Separations related to their System Mass?
NASA Astrophysics Data System (ADS)
Sterzik, M. F.; Durisen, R. H.
2004-08-01
We compile most recent multiplicity fractions and binary separation distributions for different primary masses, including very low-mass and brown dwarf primaries, and compare them with dynamical decay models of small-N clusters. The model predictions are based on detailed numerical calculations of the internal cluster dynamics, as well as on Monte-Carlo methods. Both observations and models reflect the same trends: (1) The multiplicity fraction is an increasing function of the primary mass. (2) The mean binary separations are increasing with the system mass in the sense that very low-mass binaries have average separations around ≈ 4AU, while the binary separation distribution for solar-type primaries peaks at ≈ 40AU. M-type binary systems apparently preferentially populate intermediate separations. Similar specific energy at the time of cluster formation for all cluster masses can possibly explain this trend.
Analysis of Traffic Conflicts in a Mixed-Airspace Evaluation of Airborne Separation Assurance
NASA Technical Reports Server (NTRS)
Lewis, Timothy A.
2013-01-01
A pair of human-in-the-loop simulation evaluations of a distributed air/ground separation assurance system have been conducted to investigate the function allocation between humans and automation systems as well as ground-based and airborne agents in the Next Generation Air Transportation System and beyond. This paper focuses on an analysis of certain critical conflicts observed between self-separating aircraft and ground-managed traffic in the same airspace. The principal cause of each conflict is identified and potential mitigations are discussed, such as: the sharing of trajectory intent information between the ground and the air; more cautious trajectory planning by the self-separating aircraft; and more equitable rules-of-the-road between the self-separating aircraft and ground-managed aircraft. This analysis will inform the ongoing design of an airborne separation assurance automation tool.
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step...
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...
High speed capillary liquid chromatographic separations using a simple home made system constructed from readily available inexpensive components have been studied. Using thermally stable zirconia and titania based packing, the separation of eight alkylbenzene...
NASA Technical Reports Server (NTRS)
Retallick, F. D.
1980-01-01
Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.
Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei
2018-01-01
Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system’s lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system’s ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection. PMID:29543733
Sheathless Size-Based Acoustic Particle Separation
Guldiken, Rasim; Jo, Myeong Chan; Gallant, Nathan D.; Demirci, Utkan; Zhe, Jiang
2012-01-01
Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications. PMID:22368502
47 CFR 90.475 - Operation of internal transmitter control systems in specially equipped systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... systems involving fixed systems whose base stations are controlled by such systems may automatically access these base stations through the microwave or operational fixed systems from positions in the PSTN, so long as the base stations and mobile units meet the requirements of § 90.483 and if a separate...
2D non-separable linear canonical transform (2D-NS-LCT) based cryptography
NASA Astrophysics Data System (ADS)
Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.
2017-05-01
The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.
Space-time modeling using environmental constraints in a mobile robot system
NASA Technical Reports Server (NTRS)
Slack, Marc G.
1990-01-01
Grid-based models of a robot's local environment have been used by many researchers building mobile robot control systems. The attraction of grid-based models is their clear parallel between the internal model and the external world. However, the discrete nature of such representations does not match well with the continuous nature of actions and usually serves to limit the abilities of the robot. This work describes a spatial modeling system that extracts information from a grid-based representation to form a symbolic representation of the robot's local environment. The approach makes a separation between the representation provided by the sensing system and the representation used by the action system. Separation allows asynchronous operation between sensing and action in a mobile robot, as well as the generation of a more continuous representation upon which to base actions.
Combined Power Generation and Carbon Sequestration Using Direct FuelCell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossein Ghezel-Ayagh
2006-03-01
The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based onmore » carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.« less
NOTE: Entropy-based automated classification of independent components separated from fMCG
NASA Astrophysics Data System (ADS)
Comani, S.; Srinivasan, V.; Alleva, G.; Romani, G. L.
2007-03-01
Fetal magnetocardiography (fMCG) is a noninvasive technique suitable for the prenatal diagnosis of the fetal heart function. Reliable fetal cardiac signals can be reconstructed from multi-channel fMCG recordings by means of independent component analysis (ICA). However, the identification of the separated components is usually accomplished by visual inspection. This paper discusses a novel automated system based on entropy estimators, namely approximate entropy (ApEn) and sample entropy (SampEn), for the classification of independent components (ICs). The system was validated on 40 fMCG datasets of normal fetuses with the gestational age ranging from 22 to 37 weeks. Both ApEn and SampEn were able to measure the stability and predictability of the physiological signals separated with ICA, and the entropy values of the three categories were significantly different at p <0.01. The system performances were compared with those of a method based on the analysis of the time and frequency content of the components. The outcomes of this study showed a superior performance of the entropy-based system, in particular for early gestation, with an overall ICs detection rate of 98.75% and 97.92% for ApEn and SampEn respectively, as against a value of 94.50% obtained with the time-frequency-based system.
NASA Astrophysics Data System (ADS)
Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.
2015-09-01
Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.
Handy elementary algebraic properties of the geometry of entanglement
NASA Astrophysics Data System (ADS)
Blair, Howard A.; Alsing, Paul M.
2013-05-01
The space of separable states of a quantum system is a hyperbolic surface in a high dimensional linear space, which we call the separation surface, within the exponentially high dimensional linear space containing the quantum states of an n component multipartite quantum system. A vector in the linear space is representable as an n-dimensional hypermatrix with respect to bases of the component linear spaces. A vector will be on the separation surface iff every determinant of every 2-dimensional, 2-by-2 submatrix of the hypermatrix vanishes. This highly rigid constraint can be tested merely in time asymptotically proportional to d, where d is the dimension of the state space of the system due to the extreme interdependence of the 2-by-2 submatrices. The constraint on 2-by-2 determinants entails an elementary closed formformula for a parametric characterization of the entire separation surface with d-1 parameters in the char- acterization. The state of a factor of a partially separable state can be calculated in time asymptotically proportional to the dimension of the state space of the component. If all components of the system have approximately the same dimension, the time complexity of calculating a component state as a function of the parameters is asymptotically pro- portional to the time required to sort the basis. Metric-based entanglement measures of pure states are characterized in terms of the separation hypersurface.
Ares I Stage Separation System Design Certification Testing
NASA Technical Reports Server (NTRS)
Mayers, Stephen L.; Beard, Bernard B.; Smith, R. Kenneth; Patterson, Alan
2009-01-01
NASA is committed to the development of a new crew launch vehicle, the Ares I, that can support human missions to low Earth orbit (LEO) and the moon with unprecedented safety and reliability. NASA's Constellation program comprises the Ares I and Ares V launch vehicles, the Orion crew vehicle, and the Altair lunar lander. Based on historical precedent, stage separation is one of the most significant technical and systems engineering challenges that must be addressed in order to achieve this commitment. This paper surveys historical separation system tests that have been completed in order to ensure staging of other launch vehicles. Key separation system design trades evaluated for Ares I include single vs. dual separation plane options, retro-rockets vs. pneumatic gas actuators, small solid motor quantity/placement/timing, and continuous vs. clamshell interstage configuration options. Both subscale and full-scale tests are required to address the prediction of complex dynamic loading scenarios present during staging events. Test objectives such as separation system functionality, and pyroshock and debris field measurements for the full-scale tests are described. Discussion about the test article, support infrastructure and instrumentation are provided.
A new database on urban runoff pollution: comparison of separate and combined sewer systems.
Brombach, H; Weiss, G; Fuchs, S
2005-01-01
For a long time people have questioned what the "best" sewer system is for limiting the pollution load released into the receiving waters. In this paper the traditional separate and combined sewer systems are compared using a pollution load balance. The investigation is based on measured concentration data for a range of pollutant parameters in the sewer from the new database "ATV-DVWK Datenpool 2001". The approach also accounted for the wastewater treatment plant outflow which contributes to the total pollutant load considerably. In spite of a number of neglected effects, the results show that the separate system is superior to the combined for some parameters only, such as nutrients, whereas for other parameters, e.g. heavy metals and COD, the combined system yields less total loads. Any uncritical preference of the separate system as a particularly advantageous solution is thus questionable. Individual investigations case by case are recommended.
NASA Astrophysics Data System (ADS)
Tanaka, Yukinobu; Ogata, Takeshi; Imagawa, Seiji
2015-09-01
We developed a decoupled direct tracking control system for multilayer optical disk that uses a separate guide layer. Data marks are recorded on a recording layer immediately above the guide layer by using two spatially separated spots with different wavelengths. Accurate data mark recording requires that the relative positions of the corresponding spots on the recording layer and guide layer are maintained. However, a disk tilt can shift their relative positions and cause previously recorded data marks to be overwritten. Additionally, a two-input/two-output control system is susceptible to mutual interference phenomenon between the two outputs, which can destabilize tracking control. A tracking control system based on use of data marks previously recorded as a virtual track has been developed that prevents spot shifting and mutual interference even if the disk tilt reaches 0.7°, thereby preventing overwriting.
Wang, Rui; Jin, Xin; Wang, Ziyuan; Gu, Wantao; Wei, Zhechao; Huang, Yuanjie; Qiu, Zhuang; Jin, Pengkang
2018-01-01
This paper proposes a new system of multilevel reuse with source separation in printing and dyeing wastewater (PDWW) treatment in order to dramatically improve the water reuse rate to 35%. By analysing the characteristics of the sources and concentrations of pollutants produced in different printing and dyeing processes, special, highly, and less contaminated wastewaters (SCW, HCW, and LCW, respectively) were collected and treated separately. Specially, a large quantity of LCW was sequentially reused at multiple levels to meet the water quality requirements for different production processes. Based on this concept, a multilevel reuse system with a source separation process was established in a typical printing and dyeing enterprise. The water reuse rate increased dramatically to 62%, and the reclaimed water was reused in different printing and dyeing processes based on the water quality. This study provides promising leads in water management for wastewater reclamation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sorbent-based Oxygen Production for Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethi, Vijay
Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO 2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a majormore » advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O 2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.« less
Impact of Pilot Delay and Non-Responsiveness on the Safety Performance of Airborne Separation
NASA Technical Reports Server (NTRS)
Consiglio, Maria; Hoadley, Sherwood; Wing, David; Baxley, Brian; Allen, Bonnie Danette
2008-01-01
Assessing the safety effects of prediction errors and uncertainty on automationsupported functions in the Next Generation Air Transportation System concept of operations is of foremost importance, particularly safety critical functions such as separation that involve human decision-making. Both ground-based and airborne, the automation of separation functions must be designed to account for, and mitigate the impact of, information uncertainty and varying human response. This paper describes an experiment that addresses the potential impact of operator delay when interacting with separation support systems. In this study, we evaluated an airborne separation capability operated by a simulated pilot. The experimental runs are part of the Safety Performance of Airborne Separation (SPAS) experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assistance systems. Pilot actions required by the airborne separation automation to resolve traffic conflicts were delayed within a wide range, varying from five to 240 seconds while a percentage of randomly selected pilots were programmed to completely miss the conflict alerts and therefore take no action. Results indicate that the strategicAirborne Separation Assistance System (ASAS) functions exercised in the experiment can sustain pilot response delays of up to 90 seconds and more, depending on the traffic density. However, when pilots or operators fail to respond to conflict alerts the safety effects are substantial, particularly at higher traffic densities.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2000-01-01
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2006-02-21
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2004-08-24
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Improving Olefin Purification Using Metal Organic Frameworks with Open Metal Sites.
Luna-Triguero, A; Vicent-Luna, J M; Poursaeidesfahani, A; Vlugt, T J H; Sánchez-de-Armas, R; Gómez-Álvarez, P; Calero, S
2018-05-16
The separation and purification of light hydrocarbons is challenging in the industry. Recently, a ZJNU-30 metal-organic framework (MOF) has been found to have the potential for adsorption-based separation of olefins and diolefins with four carbon atoms [H. M. Liu et al. Chem.-Eur. J. 2016, 22, 14988-14997]. Our study corroborates this finding but reveals Fe-MOF-74 as a more efficient candidate for the separation because of the open metal sites. We performed adsorption-based separation, transient breakthrough curves, and density functional theory calculations. This combination of techniques provides an extensive understanding of the studied system. Using this MOF, we propose a separation scheme to obtain a high-purity product.
Modeling and testing of a tube-in-tube separation mechanism of bodies in space
NASA Astrophysics Data System (ADS)
Michaels, Dan; Gany, Alon
2016-12-01
A tube-in-tube concept for separation of bodies in space was investigated theoretically and experimentally. The separation system is based on generation of high pressure gas by combustion of solid propellant and restricting the expansion of the gas only by ejecting the two bodies in opposite directions, in such a fashion that maximizes generated impulse. An interior ballistics model was developed in order to investigate the potential benefits of the separation system for a large range of space body masses and for different design parameters such as geometry and propellant. The model takes into account solid propellant combustion, heat losses, and gas phase chemical reactions. The model shows that for large bodies (above 100 kg) and typical separation velocities of 5 m/s, the proposed separation mechanism may be characterized by a specific impulse of 25,000 s, two order of magnitude larger than that of conventional solid rockets. It means that the proposed separation system requires only 1% of the propellant mass that would be needed for a conventional rocket for the same mission. Since many existing launch vehicles obtain such separation velocities by using conventional solid rocket motors (retro-rockets), the implementation of the new separation system design can reduce dramatically the mass of the separation system and increase safety. A dedicated experimental setup was built in order to demonstrate the concept and validate the model. The experimental results revealed specific impulse values of up to 27,000 s and showed good correspondence with the model.
Kan, Hyo; Tsukagoshi, Kazuhiko
2017-07-01
Protein mixtures were separated using tube radial distribution chromatography (TRDC) in a polytetrafluoroethylene (PTFE) capillary (internal diameter=100µm) separation tube. Separation by TRDC is based on the annular flow in phase separation multiphase flow and features an open-tube capillary without the use of specific packing agents or application of high voltages. Preliminary experiments were conducted to examine the effects of pH and salt concentration on the phase diagram of the ternary mixed solvent solution of water-acetonitrile-ethyl acetate (8:2:1 volume ratio) and on the TRDC system using the ternary mixed solvent solution. A model protein mixture containing peroxidase, lysozyme, and bovine serum albumin was analyzed via TRDC with the ternary mixed solvent solution at various pH values, i.e., buffer-acetonitrile-ethyl acetate (8:2:1 volume ratio). Protein was separated on the chromatograms by the TRDC system, where the elution order was determined by the relation between the isoelectric points of protein and the pH values of the solvent solution. Copyright © 2017 Elsevier B.V. All rights reserved.
Formal Specification of Information Systems Requirements.
ERIC Educational Resources Information Center
Kampfner, Roberto R.
1985-01-01
Presents a formal model for specification of logical requirements of computer-based information systems that incorporates structural and dynamic aspects based on two separate models: the Logical Information Processing Structure and the Logical Information Processing Network. The model's role in systems development is discussed. (MBR)
ERIC Educational Resources Information Center
Crittenden, Barry D.
1991-01-01
A simple liquid-liquid equilibrium (LLE) system involving a constant partition coefficient based on solute ratios is used to develop an algebraic understanding of multistage contacting in a first-year separation processes course. This algebraic approach to the LLE system is shown to be operable for the introduction of graphical techniques…
Didar, Tohid Fatanat; Li, Kebin; Veres, Teodor; Tabrizian, Maryam
2013-07-01
Despite the advances made in the field of regenerative medicine, the progress in cutting-edge technologies for separating target therapeutic cells are still at early stage of development. These cells are often rare, such as stem cells or progenitor cells that their overall properties should be maintained during the separation process for their subsequent application in regenerative medicine. This work, presents separation of oligodendrocyte progenitor cells (OPCs) from rat brain primary cultures using an integrated thermoplastic elastomeric (TPE)- based multilayer microfluidic device fabricated using hot-embossing technology. OPCs are frequently used in recovery, repair and regeneration of central nervous system after injuries. Indeed, their ability to differentiate in vitro into myelinating oligodendrocytes, are extremely important for myelin repair. OPCs form 5-10% of the glial cells population. The traditional macroscale techniques for OPCs separation require pre-processing of cells and/or multiple time consuming steps with low efficiency leading very often to alteration of their properties. The proposed methodology implies to separate OPCs based on their smaller size compared to other cells from the brain tissue mixture. Using aforementioned microfluidic chip embedded with a 5 μm membrane pore size and micropumping system, a separation efficiency more than 99% was achieved. This microchip was able to operate at flow rates up to 100 μl/min, capable of separating OPCs from a confluent 75 cm(2) cell culture flask in less than 10 min, which provides us with a high-throughput and highly efficient separation expected from any cell sorting techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.
Imaging, object detection, and change detection with a polarized multistatic GPR array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, N. Reginald; Paglieroni, David W.
A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and thenmore » combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.« less
Hoppe, H; Messmann, S; Giga, A; Gruening, H
2011-01-01
'Classical' real-time control (RTC) strategies in sewer systems are based on water level and flow measurements with the goal of activation of retention volume. The control system rule of 'clean (storm water) runoff into the receiving water - polluted runoff into the treatment plant' has been thwarted by rough operating conditions and lack of measurements. Due to the specific boundary conditions in the city of Wuppertal's separate sewer system (clean stream water is mixed with polluted storm water runoff) a more sophisticated--pollution-based--approach was needed. In addition the requirements to be met by the treatment of storm water runoff have become more stringent in recent years. To separate the highly-polluted storm water runoff during rain events from the cleaner stream flow a pollution-based real-time control (P-RTC) system was developed and installed. This paper describes the measurement and P-RTC equipment, the definition of total suspended solids as the pollution-indicating parameter, the serviceability of the system, and also gives a cost assessment. A sensitivity analysis and pollution load calculations have been carried out in order to improve the P-RTC algorithm. An examination of actual measurements clearly shows the ecological and economic advantages of the P-RTC strategy.
Removal of Iron Oxide Scale from Feed-water in Thermal Power Plant by Using Magnetic Separation
NASA Astrophysics Data System (ADS)
Nakanishi, Motohiro; Shibatani, Saori; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro
2017-09-01
One of the factors of deterioration in thermal power generation efficiency is adhesion of the scale to inner wall in feed-water system. Though thermal power plants have employed All Volatile Treatment (AVT) or Oxygen Treatment (OT) to prevent scale formation, these treatments cannot prevent it completely. In order to remove iron oxide scale, we proposed magnetic separation system using solenoidal superconducting magnet. Magnetic separation efficiency is influenced by component and morphology of scale which changes their property depending on the type of water treatment and temperature. In this study, we estimated component and morphology of iron oxide scale at each equipment in the feed-water system by analyzing simulated scale generated in the pressure vessel at 320 K to 550 K. Based on the results, we considered installation sites of the magnetic separation system.
Chen, Yuehua; Wang, Huiyong; Pei, Yuanchao; Wang, Jianji
2018-05-15
It is significant to develop sustainable strategies for the selective separation of rare earth from transition metals from fundamental and practical viewpoint. In this work, an environmentally friendly solvent extraction approach has been developed to selectively separate neodymium (III) from cobalt (II) and nickel (II) by using an ionic liquid-based aqueous two phase system (IL-ATPS). For this purpose, a hydrophilic ionic liquid (IL) tetrabutylphosphonate nitrate ([P 4444 ][NO 3 ]) was prepared and used for the formation of an ATPS with NaNO 3 . Binodal curves of the ATPSs have been determined for the design of extraction process. The extraction parameters such as contact time, aqueous phase pH, content of phase-formation components of NaNO 3 and the ionic liquid have been investigated systematically. It is shown that under optimal conditions, the extraction efficiency of neodymium (III) is as high as 99.7%, and neodymium (III) can be selectively separated from cobalt (II) and nickel (II) with a separation factor of 10 3 . After extraction, neodymium (III) can be stripped from the IL-rich phase by using dilute aqueous sodium oxalate, and the ILs can be quantitatively recovered and reused in the next extraction process. Since [P 4444 ][NO 3 ] works as one of the components of the ATPS and the extractant for the neodymium, no organic diluent, extra etractant and fluorinated ILs are used in the separation process. Thus, the strategy described here shows potential in green separation of neodymium from cobalt and nickel by using simple IL-based aqueous two-phase system. Copyright © 2018 Elsevier B.V. All rights reserved.
Thermally assisted acoustofluidic separation of extracellular vesicles from cells
NASA Astrophysics Data System (ADS)
Mirtaheri, Elnaz; Dolatmoradi, Ata; Pimentel, Krystine; Bhansali, Shekhar; El-Zahab, Bilal
2018-02-01
Extracellular vesicles (EVs) have been gaining increasing attention given their role in communicating information between cells. Composition-based isolation of EVs is particularly of high significance as the proteomic and lipidomic characterization of their cargo could provide valuable clues to the role of EVs in mediating the biology of various conditions. This has, however, proved to be challenging as EVs, despite their abundance, are very small and difficult to be differentiated from the other constituents of host media. In addition, currently available methods like ultracentrifugation and filtration are cumbersome and capable of achieving mostly size-based separations. In this work, we demonstrate the possibility of separating submicron EV-like vesicles from cancer cells using a thermally-assisted acoustophoretic device. In a system composed of MCF-7 breast cancer cells spiked with two different types of same-size vesicles, composition-based isolation of vesicles was shown to be realizable through opposite focusing of the system's components at the node and antinodes of the overlaid ultrasonic standing wave. By proper choice of temperature in the microchannel, we were able to achieve separations with purities exceeding 93%. Furthermore, cells recovered from the channel were shown to be viable after the separation.
Analysis of a Real-Time Separation Assurance System with Integrated Time-in-Trail Spacing
NASA Technical Reports Server (NTRS)
Aweiss, Arwa S.; Farrahi, Amir H.; Lauderdale, Todd A.; Thipphavong, Adam S.; Lee, Chu H.
2010-01-01
This paper describes the implementation and analysis of an integrated ground-based separation assurance and time-based metering prototype system into the Center-TRACON Automation System. The integration of this new capability accommodates constraints in four-dimensions: position (x-y), altitude, and meter-fix crossing time. Experiments were conducted to evaluate the performance of the integrated system and its ability to handle traffic levels up to twice that of today. Results suggest that the integrated system reduces the number and magnitude of time-in-trail spacing violations. This benefit was achieved without adversely affecting the resolution success rate of the system. Also, the data suggest that the integrated system is relatively insensitive to an increase in traffic of twice the current levels.
NASA Astrophysics Data System (ADS)
Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran
2016-10-01
A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.
Johnson, Mitchell E; Landers, James P
2004-11-01
Laser-induced fluorescence is an extremely sensitive method for detection in chemical separations. In addition, it is well-suited to detection in small volumes, and as such is widely used for capillary electrophoresis and microchip-based separations. This review explores the detailed instrumental conditions required for sub-zeptomole, sub-picomolar detection limits. The key to achieving the best sensitivity is to use an excitation and emission volume that is matched to the separation system and that, simultaneously, will keep scattering and luminescence background to a minimum. We discuss how this is accomplished with confocal detection, 90 degrees on-capillary detection, and sheath-flow detection. It is shown that each of these methods have their advantages and disadvantages, but that all can be used to produce extremely sensitive detectors for capillary- or microchip-based separations. Analysis of these capabilities allows prediction of the optimal means of achieving ultrasensitive detection on microchips.
Dong, Jun; Ni, Mingjiang; Chi, Yong; Zou, Daoan; Fu, Chao
2013-08-01
In China, the continuously increasing amount of municipal solid waste (MSW) has resulted in an urgent need for changing the current municipal solid waste management (MSWM) system based on mixed collection. A pilot program focusing on source-separated MSW collection was thus launched (2010) in Hangzhou, China, to lessen the related environmental loads. And greenhouse gas (GHG) emissions (Kyoto Protocol) are singled out in particular. This paper uses life cycle assessment modeling to evaluate the potential environmental improvement with regard to GHG emissions. The pre-existing MSWM system is assessed as baseline, while the source separation scenario is compared internally. Results show that 23 % GHG emissions can be decreased by source-separated collection compared with the base scenario. In addition, the use of composting and anaerobic digestion (AD) is suggested for further optimizing the management of food waste. 260.79, 82.21, and -86.21 thousand tonnes of GHG emissions are emitted from food waste landfill, composting, and AD, respectively, proving the emission reduction potential brought by advanced food waste treatment technologies. Realizing the fact, a modified MSWM system is proposed by taking AD as food waste substitution option, with additional 44 % GHG emissions saved than current source separation scenario. Moreover, a preliminary economic assessment is implemented. It is demonstrated that both source separation scenarios have a good cost reduction potential than mixed collection, with the proposed new system the most cost-effective one.
Printed Spacecraft Separation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmans, Walter; Dehoff, Ryan
In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly intomore » a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.« less
Separation Assurance and Scheduling Coordination in the Arrival Environment
NASA Technical Reports Server (NTRS)
Aweiss, Arwa S.; Cone, Andrew C.; Holladay, Joshua J.; Munoz, Epifanio; Lewis, Timothy A.
2016-01-01
Separation assurance (SA) automation has been proposed as either a ground-based or airborne paradigm. The arrival environment is complex because aircraft are being sequenced and spaced to the arrival fix. This paper examines the effect of the allocation of the SA and scheduling functions on the performance of the system. Two coordination configurations between an SA and an arrival management system are tested using both ground and airborne implementations. All configurations have a conflict detection and resolution (CD&R) system and either an integrated or separated scheduler. Performance metrics are presented for the ground and airborne systems based on arrival traffic headed to Dallas/ Fort Worth International airport. The total delay, time-spacing conformance, and schedule conformance are used to measure efficiency. The goal of the analysis is to use the metrics to identify performance differences between the configurations that are based on different function allocations. A surveillance range limitation of 100 nmi and a time delay for sharing updated trajectory intent of 30 seconds were implemented for the airborne system. Overall, these results indicate that the surveillance range and the sharing of trajectories and aircraft schedules are important factors in determining the efficiency of an airborne arrival management system. These parameters are not relevant to the ground-based system as modeled for this study because it has instantaneous access to all aircraft trajectories and intent. Creating a schedule external to the CD&R and the scheduling conformance system was seen to reduce total delays for the airborne system, and had a minor effect on the ground-based system. The effect of an external scheduler on other metrics was mixed.
NASA Technical Reports Server (NTRS)
Rutishauser, David; Donohue, George L.; Haynie, Rudolph C.
2003-01-01
This paper presents data and a proposed new aircraft wake vortex separation standard that argues for a fundamental re-thinking of international practice. The current static standard, under certain atmospheric conditions, presents an unnecessary restriction on system capacity. A new approach, that decreases aircraft separation when atmospheric conditions dictate, is proposed based upon the availability of new instrumentation and a better understanding of wake physics.
System identification through nonstationary data using Time-Frequency Blind Source Separation
NASA Astrophysics Data System (ADS)
Guo, Yanlin; Kareem, Ahsan
2016-06-01
Classical output-only system identification (SI) methods are based on the assumption of stationarity of the system response. However, measured response of buildings and bridges is usually non-stationary due to strong winds (e.g. typhoon, and thunder storm etc.), earthquakes and time-varying vehicle motions. Accordingly, the response data may have time-varying frequency contents and/or overlapping of modal frequencies due to non-stationary colored excitation. This renders traditional methods problematic for modal separation and identification. To address these challenges, a new SI technique based on Time-Frequency Blind Source Separation (TFBSS) is proposed. By selectively utilizing "effective" information in local regions of the time-frequency plane, where only one mode contributes to energy, the proposed technique can successfully identify mode shapes and recover modal responses from the non-stationary response where the traditional SI methods often encounter difficulties. This technique can also handle response with closely spaced modes which is a well-known challenge for the identification of large-scale structures. Based on the separated modal responses, frequency and damping can be easily identified using SI methods based on a single degree of freedom (SDOF) system. In addition to the exclusive advantage of handling non-stationary data and closely spaced modes, the proposed technique also benefits from the absence of the end effects and low sensitivity to noise in modal separation. The efficacy of the proposed technique is demonstrated using several simulation based studies, and compared to the popular Second-Order Blind Identification (SOBI) scheme. It is also noted that even some non-stationary response data can be analyzed by the stationary method SOBI. This paper also delineates non-stationary cases where SOBI and the proposed scheme perform comparably and highlights cases where the proposed approach is more advantageous. Finally, the performance of the proposed method is evaluated using a full-scale non-stationary response of a tall building during an earthquake and found it to perform satisfactorily.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonso, M. C.; Bennett, M. E.; Folden, C. M.
2015-06-20
The extraction behavior of the Rf homologs, Zr and Hf, has been studied in HCl, HNO3, and H2SO4 media using TEVA (R) (a trioctyl and tridecyl methyl ammonium-based resin) and UTEVA (R) (a diamyl amylphosphonate-based resin). All six systems were considered for the future chemical characterization of Rf. Batch uptake studies were first performed to determine which systems could separate Zr and Hf and these results were used to determine what acid concentration range to focus on for the column studies. The batch uptake studies showed that UTEVA separates Zr and Hf in all media, while the intergroup separation wasmore » only observed in HCl media with TEVA. Both HCl systems showed viability for potential extraction chromatographic studies of Rf.« less
Analog nonlinear MIMO receiver for optical mode division multiplexing transmission.
Spalvieri, Arnaldo; Boffi, Pierpaolo; Pecorino, Simone; Barletta, Luca; Magarini, Maurizio; Gatto, Alberto; Martelli, Paolo; Martinelli, Mario
2013-10-21
The complexity and the power consumption of digital signal processing are crucial issues in optical transmission systems based on mode division multiplexing and coherent multiple-input multiple-output (MIMO) processing at the receiver. In this paper the inherent characteristic of spatial separation between fiber modes is exploited, getting a MIMO system where joint demultiplexing and detection is based on spatially separated photodetectors. After photodetection, one has a MIMO system with nonlinear crosstalk between modes. The paper shows that the nonlinear crosstalk can be dealt with by a low-complexity and non-adaptive detection scheme, at least in the cases presented in the paper.
Radchenko, V; Meyer, C A L; Engle, J W; Naranjo, C M; Unc, G A; Mastren, T; Brugh, M; Birnbaum, E R; John, K D; Nortier, F M; Fassbender, M E
2016-12-16
Scandium-44g (half-life 3.97h [1]) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, 18 F, due to its favorable decay parameters. One source of 44g Sc is the long-lived parent nuclide 44 Ti (half-life 60.0 a). A 44 Ti/ 44g Sc generator would have the ability to provide radionuclidically pure 44g Sc on a daily basis. The production of 44 Ti via the 45 Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) 44 Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems based on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Results indicate that ZR resin in HCl media represents an effective 44 Ti/ 44g Sc separation system. Copyright © 2016 Elsevier B.V. All rights reserved.
Efficient image enhancement using sparse source separation in the Retinex theory
NASA Astrophysics Data System (ADS)
Yoon, Jongsu; Choi, Jangwon; Choe, Yoonsik
2017-11-01
Color constancy is the feature of the human vision system (HVS) that ensures the relative constancy of the perceived color of objects under varying illumination conditions. The Retinex theory of machine vision systems is based on the HVS. Among Retinex algorithms, the physics-based algorithms are efficient; however, they generally do not satisfy the local characteristics of the original Retinex theory because they eliminate global illumination from their optimization. We apply the sparse source separation technique to the Retinex theory to present a physics-based algorithm that satisfies the locality characteristic of the original Retinex theory. Previous Retinex algorithms have limited use in image enhancement because the total variation Retinex results in an overly enhanced image and the sparse source separation Retinex cannot completely restore the original image. In contrast, our proposed method preserves the image edge and can very nearly replicate the original image without any special operation.
Fundamentals and Application of Magnetic Particles in Cell Isolation and Enrichment
Plouffe, Brian D.; Murthy, Shashi K.; Lewis, Laura H.
2014-01-01
Magnetic sorting using magnetic beads has become a routine methodology for the separation of key cell populations from biological suspensions. Due to the inherent ability of magnets to provide forces at a distance, magnetic cell manipulation is now a standardized process step in numerous processes in tissue engineering, medicine, and in fundamental biological research. Herein we review the current status of magnetic particles to enable isolation and separation of cells, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles and on current applications of magnet-based cell separation in laboratory and clinical settings. We highlight the contribution of cell separation to biomedical research and medicine and detail modern cell separation methods (both magnetic and non-magnetic). In addition to a review of the current state-of-the-art in magnet-based cell sorting, we discuss current challenges and available opportunities for further research, development and commercialization of magnetic particle-based cell separation systems. PMID:25471081
Li, Jun; Gao, Ruixi; Zhao, Dan; Huang, Xianju; Chen, Yu; Gan, Fei; Liu, Hui; Yang, Guangzhong
2017-08-18
Xanthochymol (XCM) and guttiferone E (GFE), a pair of π bond benzophenone isomers from Garcinia xanthochymus, were once reported to be difficult or impossible to separate. The present study reports the successful separation of these two isomers through high performance liquid chromatography (HPLC), as well as their effective isolation using high speed counter-current chromatography (HSCCC) based on the silver nitrate (AgNO 3 ) coordination reaction. First, an effective HPLC separation system was developed, achieving a successful baseline separation with resolution of 2.0. Based on the partition coefficient (K) resolved by HPLC, the two-phase solvent system was determined as n-hexane, methanol and water with the uncommon volume ratio of 4:6:1. A crude extract of Garcinia xanthochymus (0.2g) was purified by normal HSCCC and refined with AgNO 3 -HSCCC. Monomers of XCM and GFE were identified by HPLC, mass spectrometry (MS) and nuclear magnetic resonance (NMR). The results demonstrate the separation and isolation of π bond benzophenone isomers using ordinary octadecyl silane (C 18 ) columns and HSCCC. Copyright © 2017 Elsevier B.V. All rights reserved.
Membrane separation systems---A research and development needs assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, R.W.; Cussler, E.L.; Eykamp, W.
1990-03-01
Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conductedmore » by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.« less
A Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems
Luo, Zhongqiang; Zhu, Lidong
2015-01-01
In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unknown user information and spreading sequence of DS-CDMA systems can be estimated only from the sampled observation signals. Theoretical analysis and simulation results show that the improved performance of the proposed algorithm in comparison with the existing conventional algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for when the number of observation samples is less and the signal to noise ratio (SNR) is low. PMID:26287209
A Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems.
Luo, Zhongqiang; Zhu, Lidong
2015-08-14
In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unknown user information and spreading sequence of DS-CDMA systems can be estimated only from the sampled observation signals. Theoretical analysis and simulation results show that the improved performance of the proposed algorithm in comparison with the existing conventional algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for when the number of observation samples is less and the signal to noise ratio (SNR) is low.
Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor
NASA Astrophysics Data System (ADS)
Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen
2016-11-01
Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.
Spatial separation and entanglement of identical particles
NASA Astrophysics Data System (ADS)
Cunden, Fabio Deelan; di Martino, Sara; Facchi, Paolo; Florio, Giuseppe
2014-04-01
We reconsider the effect of indistinguishability on the reduced density operator of the internal degrees of freedom (tracing out the spatial degrees of freedom) for a quantum system composed of identical particles located in different spatial regions. We explicitly show that if the spin measurements are performed in disjoint spatial regions then there are no constraints on the structure of the reduced state of the system. This implies that the statistics of identical particles has no role from the point of view of separability and entanglement when the measurements are spatially separated. We extend the treatment to the case of n particles and show the connection with some recent criteria for separability based on subalgebras of observables.
Method of removing an immiscible lubricant from a refrigeration system and apparatus for same
Spauschus, Hans O.; Starr, Thomas L.
1999-01-01
A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.
Separability of agricultural crops with airborne scatterometry
NASA Technical Reports Server (NTRS)
Mehta, N. C.
1983-01-01
Backscattering measurements were acquired with airborne scatterometers over a site in Cass County, North Dakota on four days in the 1981 crop growing season. Data were acquired at three frequencies (L-, C- and Ku-bands), two polarizations (like and cross) and ten incidence angles (5 degrees to 50 degrees in 5 degree steps). Crop separability is studied in an hierarchical fashion. A two-class separability measure is defined, which compares within-class to between-class variability, to determine crop separability. The scatterometer channels with the best potential for crop separability are determined, based on this separability measure. Higher frequencies are more useful for discriminating small grains, while lower frequencies tend to separate non-small grains better. Some crops are more separable when row direction is taken into account. The effect of pixel purity is to increase the separability between all crops while not changing the order of useful scatterometer channels. Crude estimates of separability errors are calculated based on these analyses. These results are useful in selecting the parameters of active microwave systems in agricultural remote sensing.
The ADvanced SEParation (ADSEP)
NASA Technical Reports Server (NTRS)
1998-01-01
The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.
Kim, Jin Yeong; Balderas-Xicohténcatl, Rafael; Zhang, Linda; Kang, Sung Gu; Hirscher, Michael; Oh, Hyunchul; Moon, Hoi Ri
2017-10-25
Deuterium plays a pivotal role in industrial and scientific research, and is irreplaceable for various applications such as isotope tracing, neutron moderation, and neutron scattering. In addition, deuterium is a key energy source for fusion reactions. Thus, the isolation of deuterium from a physico-chemically almost identical isotopic mixture is a seminal challenge in modern separation technology. However, current commercial approaches suffer from extremely low separation efficiency (i.e., cryogenic distillation, selectivity of 1.5 at 24 K), requiring a cost-effective and large-scale separation technique. Herein, we report a highly effective hydrogen isotope separation system based on metal-organic frameworks (MOFs) having the highest reported separation factor as high as ∼26 at 77 K by maximizing synergistic effects of the chemical affinity quantum sieving (CAQS) and kinetic quantum sieving (KQS). For this purpose, the MOF-74 system having high hydrogen adsorption enthalpies due to strong open metal sites is chosen for CAQS functionality, and imidazole molecules (IM) are employed to the system for enhancing the KQS effect. To the best of our knowledge, this work is not only the first attempt to implement two quantum sieving effects, KQS and CAQS, in one system, but also provides experimental validation of the utility of this system for practical industrial usage by isolating high-purity D 2 through direct selective separation studies using 1:1 D 2 /H 2 mixtures.
Meirhofer, Martina; Piringer, Gerhard; Rixrath, Doris; Sommer, Manuel; Ragossnig, Arne Michael
2013-10-01
Heavy fractions resulting from mechanical treatment stages of mechanical-biological waste treatment plants are posing very specific demands with regard to further treatment (large portions of inert and high-caloric components). Based on the current Austrian legal situation such a waste stream cannot be landfilled and must be thermally treated. The aim of this research was to evaluate if an inert fraction generated from this waste stream with advanced separation technologies, two sensor-based [near-infrared spectroscopy (NIR), X-ray transmission (XRT)] and two mechanical systems (wet and dry) is able to be disposed of. The performance of the treatment options for separation was evaluated by characterizing the resulting product streams with respect to purity and yield. Complementing the technical evaluation of the processing options, an assessment of the economic and global warming effects of the change in waste stream routing was conducted. The separated inert fraction was evaluated with regard to landfilling. The remaining high-caloric product stream was evaluated with regard to thermal utilization. The results show that, in principal, the selected treatment technologies can be used to separate high-caloric from inert components. Limitations were identified with regard to the product qualities achieved, as well as to the economic expedience of the treatment options. One of the sensor-based sorting systems (X-ray) was able to produce the highest amount of disposeable heavy fraction (44.1%), while having the lowest content of organic (2.0% C biogenic per kg waste input) components. None of the high-caloric product streams complied with the requirements for solid recovered fuels as defined in the Austrian Ordinance on Waste Incineration. The economic evaluation illustrates the highest specific treatment costs for the XRT (€ 23.15 per t), followed by the NIR-based sorting system (€ 15.67 per t), and the lowest costs for the air separation system (€ 10.79 per t). Within the ecological evaluation it can be shown that the results depend strongly on the higher heating value of the high caloric light fraction and on the content of C biogenic of the heavy fraction. Therefore, the XRT system had the best results for the overall GWP [-14 kg carbon dioxide equivalents (CO2 eq) per t of input waste] and the NIR-based the worst (193 kg CO2 eq per t of input waste). It is concluded that three of the treatment options would be suitable under the specific conditions considered here. Of these, sensor-based sorting is preferable owing to its flexibility.
Spacecraft nitrogen generation. [liquid hydrazine
NASA Technical Reports Server (NTRS)
Marshall, R. D.; Carlson, J. N.; Powell, J. D.; Kacholia, K. K.
1974-01-01
Two spacecraft nitrogen (N2) generation systems based on the catalytic dissociation of hydrazine (N2H4) were evaluated. In the first system, liquid N2H4 is catalytically dissociated to yield an N2 and hydrogen (H2) gas mixture. Separation of the N2/H2 gas mixture to yield N2 and a supply of H2 is accomplished using a polymer-electrochemical N2/H2 separator. In the second system, the N2/H2 gas mixture is separated in a two-stage palladium/silver (Pd/Ag) N2/H2 separator. The program culminated in the successful design, fabrication, and testing of a N2H4 catalytic dissociator, a polymer-electrochemical N2/H2 separator, and a two-stage Pd/Ag N2/H2 separator. The hardware developed was sized for an N2 delivery rate of 6.81 kg/d (15lb/day). Experimental results demonstrated that both spacecraft N2 generation systems are capable of producing 6.81 kg/d (15lb/day) of 99.9% pure N2 at a pressure greater than or equal to 1035 kN/m(2) (150 psia).
Airborne Separation Assurance and Traffic Management: Research of Concepts and Technology
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Wing, David J.; Hughes, Monica F.; Conway, Sheila R.
1999-01-01
To support the need for increased flexibility and capacity in the future National Airspace System, NASA is pursuing an approach that distributes air traffic separation and management tasks to both airborne and ground-based systems. Details of the distributed operations and the benefits and technical challenges of such a system are discussed. Technology requirements and research issues are outlined, and NASA s approach for establishing concept feasibility, which includes development of the airborne automation necessary to support the concept, is described.
Development of on line automatic separation device for apple and sleeve
NASA Astrophysics Data System (ADS)
Xin, Dengke; Ning, Duo; Wang, Kangle; Han, Yuhang
2018-04-01
Based on STM32F407 single chip microcomputer as control core, automatic separation device of fruit sleeve is designed. This design consists of hardware and software. In hardware, it includes mechanical tooth separator and three degree of freedom manipulator, as well as industrial control computer, image data acquisition card, end effector and other structures. The software system is based on Visual C++ development environment, to achieve localization and recognition of fruit sleeve with the technology of image processing and machine vision, drive manipulator of foam net sets of capture, transfer, the designated position task. Test shows: The automatic separation device of the fruit sleeve has the advantages of quick response speed and high separation success rate, and can realize separation of the apple and plastic foam sleeve, and lays the foundation for further studying and realizing the application of the enterprise production line.
Jáčová, Jaroslava; Gardlo, Alžběta; Friedecký, David; Adam, Tomáš; Dimandja, Jean-Marie D
2017-08-18
Orthogonality is a key parameter that is used to evaluate the separation power of chromatography-based two-dimensional systems. It is necessary to scale the separation data before the assessment of the orthogonality. Current scaling approaches are sample-dependent, and the extent of the retention space that is converted into a normalized retention space is set according to the retention times of the first and last analytes contained in a unique sample to elute. The presence or absence of a highly retained analyte in a sample can thus significantly influence the amount of information (in terms of the total amount of separation space) contained in the normalized retention space considered for the calculation of the orthogonality. We propose a Whole Separation Space Scaling (WOSEL) approach that accounts for the whole separation space delineated by the analytical method, and not the sample. This approach enables an orthogonality-based evaluation of the efficiency of the analytical system that is independent of the sample selected. The WOSEL method was compared to two currently used orthogonality approaches through the evaluation of in silico-generated chromatograms and real separations of human biofluids and petroleum samples. WOSEL exhibits sample-to-sample stability values of 3.8% on real samples, compared to 7.0% and 10.1% for the two other methods, respectively. Using real analyses, we also demonstrate that some previously developed approaches can provide misleading conclusions on the overall orthogonality of a two-dimensional chromatographic system. Copyright © 2017 Elsevier B.V. All rights reserved.
1998-10-01
The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.
Separate encoding of model-based and model-free valuations in the human brain.
Beierholm, Ulrik R; Anen, Cedric; Quartz, Steven; Bossaerts, Peter
2011-10-01
Behavioral studies have long shown that humans solve problems in two ways, one intuitive and fast (System 1, model-free), and the other reflective and slow (System 2, model-based). The neurobiological basis of dual process problem solving remains unknown due to challenges of separating activation in concurrent systems. We present a novel neuroeconomic task that predicts distinct subjective valuation and updating signals corresponding to these two systems. We found two concurrent value signals in human prefrontal cortex: a System 1 model-free reinforcement signal and a System 2 model-based Bayesian signal. We also found a System 1 updating signal in striatal areas and a System 2 updating signal in lateral prefrontal cortex. Further, signals in prefrontal cortex preceded choices that are optimal according to either updating principle, while signals in anterior cingulate cortex and globus pallidus preceded deviations from optimal choice for reinforcement learning. These deviations tended to occur when uncertainty regarding optimal values was highest, suggesting that disagreement between dual systems is mediated by uncertainty rather than conflict, confirming recent theoretical proposals. Copyright © 2011 Elsevier Inc. All rights reserved.
A Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification
Huh, Dongeun; Bahng, Joong Hwan; Ling, Yibo; Wei, Hsien-Hung; Kripfgans, Oliver D.; Fowlkes, J. Brian; Grotberg, James B.; Takayama, Shuichi
2008-01-01
This paper describes a simple microfluidic sorting system that can perform size-profiling and continuous mass-dependent separation of particles through combined use of gravity (1g) and hydrodynamic flows capable of rapidly amplifying sedimentation-based separation between particles. Operation of the device relies on two microfluidic transport processes: i) initial hydrodynamic focusing of particles in a microchannel oriented parallel to gravity, ii) subsequent sample separation where positional difference between particles with different mass generated by sedimentation is further amplified by hydrodynamic flows whose streamlines gradually widen out due to the geometry of a widening microchannel oriented perpendicular to gravity. The microfluidic sorting device was fabricated in poly(dimethylsiloxane) (PDMS), and hydrodynamic flows in microchannels were driven by gravity without using external pumps. We conducted theoretical and experimental studies on fluid dynamic characteristics of laminar flows in widening microchannels and hydrodynamic amplification of particle separation. Direct trajectory monitoring, collection, and post-analysis of separated particles were performed using polystyrene microbeads with different sizes to demonstrate rapid (< 1 min) and high-purity (> 99.9 %) separation. Finally, we demonstrated biomedical applications of our system by isolating small-sized (diameter < 6 μm) perfluorocarbon liquid droplets from polydisperse droplet emulsions, which is crucial in preparing contrast agents for safe, reliable ultrasound medical imaging, tracers for magnetic resonance imaging, or transpulmonary droplets used in ultrasound-based occlusion therapy for cancer treatment. Our method enables straightforward, rapid real-time size-monitoring and continuous separation of particles in simple stand-alone microfabricated devices without the need for bulky and complex external power sources. We believe that this system will provide a useful tool o separate colloids and particles for various analytical and preparative applications, and may hold 3 potential for separation of cells or development of diagnostic tools requiring point-of-care sample preparation or testing. PMID:17297936
Wireless power transfer based on dielectric resonators with colossal permittivity
NASA Astrophysics Data System (ADS)
Song, Mingzhao; Belov, Pavel; Kapitanova, Polina
2016-11-01
Magnetic resonant wireless power transfer system based on dielectric disk resonators made of colossal permittivity (ɛ = 1000) and low loss (tan δ = 2.5 × 10-4) microwave ceramic is experimentally investigated. The system operates at the magnetic dipole mode excited in the resonators providing maximal power transfer efficiency of 90% at the frequency 232 MHz. By applying an impedance matching technique, the efficiency of 50% is achieved within the separation between the resonators d = 16 cm (3.8 radii of the resonator). The separation, misalignment and rotation dependencies of wireless power transfer efficiency are experimentally studied.
An adhered-particle analysis system based on concave points
NASA Astrophysics Data System (ADS)
Wang, Wencheng; Guan, Fengnian; Feng, Lin
2018-04-01
Particles adhered together will influence the image analysis in computer vision system. In this paper, a method based on concave point is designed. First, corner detection algorithm is adopted to obtain a rough estimation of potential concave points after image segmentation. Then, it computes the area ratio of the candidates to accurately localize the final separation points. Finally, it uses the separation points of each particle and the neighboring pixels to estimate the original particles before adhesion and provides estimated profile images. The experimental results have shown that this approach can provide good results that match the human visual cognitive mechanism.
Separations in the STATS report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choppin, G.R.
1996-12-31
The Separations Technology and Transmutation Systems (STATS) Committee formed a Subcommittee on Separations. This subcommittee was charged with evaluating the separations proposed for the several reactor and accelerator transmutation systems. It was also asked to review the processing options for the safe management of high-level waste generated by the defense programs, in particular, the special problems involved in dealing with the waste at the U.S. Department of Energy (DOE) facility in Hanford, Washington. Based on the evaluations from the Subcommittee on Separations, the STATS Committee concluded that for the reactor transmutation programs, aqueous separations involving a combination of PUREX andmore » TRUEX solvent extraction processes could be used. However, additional research and development (R&D) would be required before full plant-scale use of the TRUEX technology could be employed. Alternate separations technology for the reactor transmutation program involves pyroprocessing. This process would require a significant amount of R&D before its full-scale application can be evaluated.« less
Method and system for extraction of chemicals from aquifer remediation effluent water
McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Barker, Donna L.
2003-01-01
A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.
GESA--a two-dimensional processing system using knowledge base techniques.
Rowlands, D G; Flook, A; Payne, P I; van Hoff, A; Niblett, T; McKee, S
1988-12-01
The successful analysis of two-dimensional (2-D) polyacrylamide electrophoresis gels demands considerable experience and understanding of the protein system under investigation as well as knowledge of the separation technique itself. The present work concerns the development of a computer system for analysing 2-D electrophoretic separations which incorporates concepts derived from artificial intelligence research such that non-experts can use the technique as a diagnostic or identification tool. Automatic analysis of 2-D gel separations has proved to be extremely difficult using statistical methods. Non-reproducibility of gel separations is also difficult to overcome using automatic systems. However, the human eye is extremely good at recognising patterns in images, and human intervention in semi-automatic computer systems can reduce the computational complexities of fully automatic systems. Moreover, the expertise and understanding of an "expert" is invaluable in reducing system complexity if it can be encapsulated satisfactorily in an expert system. The combination of user-intervention in the computer system together with the encapsulation of expert knowledge characterises the present system. The domain within which the system has been developed is that of wheat grain storage proteins (gliadins) which exhibit polymorphism to such an extent that cultivars can be uniquely identified by their gliadin patterns. The system can be adapted to other domains where a range of polymorpic protein sub-units exist. In its generalised form, the system can also be used for comparing more complex 2-D gel electrophoretic separations.
Behaviour of a series of reservoirs separated by drowned gates
NASA Astrophysics Data System (ADS)
Kolechkina, Alla; van Nooijen, Ronald
2017-04-01
Modern control systems tend to be based on computers and therefore to operate by sending commands to structures at given intervals (discrete time control system). Moreover, for almost all water management control systems there are practical lower limits on the time interval between structure adjustments and even between measurements. The water resource systems that are being controlled are physical systems whose state changes continuously. If we combine a continuously changing system and a discrete time controller we get a hybrid system. We use material from recent control theory literature to examine the behaviour of a series of reservoirs separated by drowned gates where the gates are under computer control.
Kim, Youngho; Lee, Sang Ho; Kim, Byungkyu
2009-12-01
Under the assumption that separation efficiencies are mainly affected by the velocity of flow-induced circulation due to buffer injection in a pendent drop, this paper describes an analysis of the separation efficiency of a droplet-based magnetically activated cell separation (DMACS) system. To investigate the velocity of the flow-induced circulation, we supposed that numerous flows in a pendent drop could be considered as a "theoretically normalized" flow (or conceptually normalized flow, CNF) based on the Cauchy-Goursat theorem. With the morphological characteristics (length and duration time) of a pendent drop depending on the initial volume, we obtained the velocities of the CNF. By measuring the separation efficiencies for different initial volumes and by analyzing the separation efficiency in terms of the velocity of the CNF, we found that the separation efficiencies (in the case of a low rate of buffer injection; 5 and 15 microl x min(-1)) are mainly affected by the velocity of the CNF. Moreover, we confirmed that the phenomenological features of a pendent drop cause a fluctuation of its separation efficiencies over a range of specific volumes (initial volumes ranging from 40 to 80 microl), because of the "sweeping-off" phenomenon, that is, positive cells gathered into the positive fraction are forced to move away from the magnetic side by flow-induced circulation due to buffer injection. In addition, from the variation of the duration time, that is, the interval between the beginning of injection of the buffer solution and the time at which a pendent drop detaches, it could also be confirmed that a shorter duration time leads to decrease of the number of positive cells in negative fraction regardless of the rate of buffer injection (5, 15, and 50 microl x min(-1)). Therefore, if a DMACS system is operated with a 15 microl x min(-1) buffer injection flow rate and an initial volume of 80 microl or more, we would have the best efficiency of separation in the negative fraction.
Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl
To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of themore » project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.« less
Method of removing an immiscible lubricant from a refrigeration system and apparatus for same
Spauschus, H.O.; Starr, T.L.
1999-03-30
A method is described for separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed. 3 figs.
Development Status of Low-Shock Payload Separation Mechanism for H-IIA Launch Vehicle
NASA Astrophysics Data System (ADS)
Terashima, Keita; Kamita, Toru; Horie, Youichi; Kobayashi, Masakazu; Onikura, Hiroki
2013-09-01
This paper presents the design, analysis and test results of the low-shock payload separation mechanism for the H-IIA launch vehicle. The mechanism is based on a simple and reliable four-bar linkage, which makes the release speed of the marman clamp band tension lower than the current system.The adequacy of the principle for low-shock mechanism was evaluated by some simulations and results of fundamental tests. Then, we established the reliability design model of this mechanism, and the adequacy of this model was evaluated by elemental tests.Finally, we conducted the system separation tests using the payload adapter to which the mechanism was assembled, to confirm that the actual separation shock level satisfied our target.
Rationale for two phase polymer system microgravity separation experiments
NASA Technical Reports Server (NTRS)
Brooks, D. E.; Bamberger, S. B.; Harris, J. M.; Vanalstine, J.
1984-01-01
The two-phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) are mixed at concentrations above a few percent are discussed. They provide useful media for the partition and isolation of macromolecules and cell subpopulations. By manipulating their composition, separations based on a variety of molecular and surface properties are achieved, including membrane hydrophobic properties, cell surface charge, and membrane antigenicity. Work on the mechanism of cell partition shows there is a randomizing, nonthermal energy present which reduces separation resolution. This stochastic energy is probably associated with hydrodynamic interactions present during separation. Because such factors should be markedly reduced in microgravity, a series of shuttle experiments to indicate approaches to increasing the resolution of the procedure are planned.
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...
NASA Technical Reports Server (NTRS)
Gryphon, Coranth D.; Miller, Mark D.
1991-01-01
PCLIPS (Parallel CLIPS) is a set of extensions to the C Language Integrated Production System (CLIPS) expert system language. PCLIPS is intended to provide an environment for the development of more complex, extensive expert systems. Multiple CLIPS expert systems are now capable of running simultaneously on separate processors, or separate machines, thus dramatically increasing the scope of solvable tasks within the expert systems. As a tool for parallel processing, PCLIPS allows for an expert system to add to its fact-base information generated by other expert systems, thus allowing systems to assist each other in solving a complex problem. This allows individual expert systems to be more compact and efficient, and thus run faster or on smaller machines.
Function Allocation between Automation and Human Pilot for Airborne Separation Assurance
NASA Technical Reports Server (NTRS)
Idris, Husni; Enea, Gabriele; Lewis, TImothy A.
2016-01-01
Maintaining safe separation between aircraft is a key determinant of the airspace capacity to handle air transportation. With the advent of satellite-based surveillance, aircraft equipped with the needed technologies are now capable of maintaining awareness of their location in the airspace and sharing it with their surrounding traffic. As a result, concepts and cockpit automation are emerging to enable delegating the responsibility of maintaining safe separation from traffic to the pilot; thus increasing the airspace capacity by alleviating the limitation of the current non-scalable centralized ground-based system. In this paper, an analysis of allocating separation assurance functions to the human pilot and cockpit automation is presented to support the design of these concepts and technologies. A task analysis was conducted with the help of Petri nets to identify the main separation assurance functions and their interactions. Each function was characterized by three behavior levels that may be needed to perform the task: skill, rule and knowledge based levels. Then recommendations are made for allocating each function to an automation scale based on their behavior level characterization and with the help of Subject matter experts.
DIELECTROPHORESIS-BASED MICROFLUIDIC SEPARATION AND DETECTION SYSTEMS
Yang, Jun; Vykoukal, Jody; Noshari, Jamileh; Becker, Frederick; Gascoyne, Peter; Krulevitch, Peter; Fuller, Chris; Ackler, Harold; Hamilton, Julie; Boser, Bernhard; Eldredge, Adam; Hitchens, Duncan; Andrews, Craig
2009-01-01
Diagnosis and treatment of human diseases frequently requires isolation and detection of certain cell types from a complex mixture. Compared with traditional separation and detection techniques, microfluidic approaches promise to yield easy-to-use diagnostic instruments tolerant of a wide range of operating environments and capable of accomplishing automated analyses. These approaches will enable diagnostic advances to be disseminated from sophisticated clinical laboratories to the point-of-care. Applications will include the separation and differential analysis of blood cell subpopulations for host-based detection of blood cell changes caused by disease, infection, or exposure to toxins, and the separation and analysis of surface-sensitized, custom dielectric beads for chemical, biological, and biomolecular targets. Here we report a new particle separation and analysis microsystem that uses dielectrophoretic field-flow fractionation (DEP-FFF). The system consists of a microfluidic chip with integrated sample injector, a DEP-FFF separator, and an AC impedance sensor. We show the design of a miniaturized impedance sensor integrated circuit (IC) with improved sensitivity, a new packaging approach for micro-flumes that features a slide-together compression package and novel microfluidic interconnects, and the design, control, integration and packaging of a fieldable prototype. Illustrative applications will be shown, including the separation of different sized beads and different cell types, blood cell differential analysis, and impedance sensing results for beads, spores and cells. PMID:22025905
Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process.
Zeng, Shaojuan; Zhang, Xiangping; Bai, Lu; Zhang, Xiaochun; Wang, Hui; Wang, Jianji; Bao, Di; Li, Mengdie; Liu, Xinyan; Zhang, Suojiang
2017-07-26
The inherent structure tunability, good affinity with CO 2 , and nonvolatility of ionic liquids (ILs) drive their exploration and exploitation in CO 2 separation field, and has attracted remarkable interest from both industries and academia. The aim of this Review is to give a detailed overview on the recent advances on IL-based materials, including pure ILs, IL-based solvents, and IL-based membranes for CO 2 capture and separation from the viewpoint of molecule to engineering. The effects of anions, cations and functional groups on CO 2 solubility and selectivity of ILs, as well as the studies on degradability of ILs are reviewed, and the recent developments on functionalized ILs, IL-based solvents, and IL-based membranes are also discussed. CO 2 separation mechanism with IL-based solvents and IL-based membranes are explained by combining molecular simulation and experimental characterization. Taking into consideration of the applications and industrialization, the recent achievements and developments on the transport properties of IL fluids and the process design of IL-based processes are highlighted. Finally, the future research challenges and perspectives of the commercialization of CO 2 capture and separation with IL-based materials are posed.
Pitch-informed solo and accompaniment separation towards its use in music education applications
NASA Astrophysics Data System (ADS)
Cano, Estefanía; Schuller, Gerald; Dittmar, Christian
2014-12-01
We present a system for the automatic separation of solo instruments and music accompaniment in polyphonic music recordings. Our approach is based on a pitch detection front-end and a tone-based spectral estimation. We assess the plausibility of using sound separation technologies to create practice material in a music education context. To better understand the sound separation quality requirements in music education, a listening test was conducted to determine the most perceptually relevant signal distortions that need to be improved. Results from the listening test show that solo and accompaniment tracks pose different quality requirements and should be optimized differently. We propose and evaluate algorithm modifications to better understand their effects on objective perceptual quality measures. Finally, we outline possible ways of optimizing our separation approach to better suit the requirements of music education applications.
Research on Separation of Three Powers Architecture for Trusted OS
NASA Astrophysics Data System (ADS)
Li, Yu; Zhao, Yong; Xin, Siyuan
The privilege in the operating system (OS) often results in the break of confidentiality and integrity of the system. To solve this problem, several security mechanisms are proposed, such as Role-based Access Control, Separation of Duty. However, these mechanisms can not eliminate the privilege in OS kernel layer. This paper proposes a Separation of Three Powers Architecture (STPA). The authorizations in OS are divided into three parts: System Management Subsystem (SMS), Security Management Subsystem (SEMS) and Audit Subsystem (AS). Mutual support and mutual checks and balances which are the design principles of STPA eliminate the administrator in the kernel layer. Furthermore, the paper gives the formal description for authorization division using the graph theory. Finally, the implementation of STPA is given. Proved by experiments, the Separation of Three Powers Architecture we proposed can provide reliable protection for the OS through authorization division.
Connecting Requirements to Architecture and Analysis via Model-Based Systems Engineering
NASA Technical Reports Server (NTRS)
Cole, Bjorn F.; Jenkins, J. Steven
2015-01-01
In traditional systems engineering practice, architecture, concept development, and requirements development are related but still separate activities. Concepts for operation, key technical approaches, and related proofs of concept are developed. These inform the formulation of an architecture at multiple levels, starting with the overall system composition and functionality and progressing into more detail. As this formulation is done, a parallel activity develops a set of English statements that constrain solutions. These requirements are often called "shall statements" since they are formulated to use "shall." The separation of requirements from design is exacerbated by well-meaning tools like the Dynamic Object-Oriented Requirements System (DOORS) that remained separated from engineering design tools. With the Europa Clipper project, efforts are being taken to change the requirements development approach from a separate activity to one intimately embedded in formulation effort. This paper presents a modeling approach and related tooling to generate English requirement statements from constraints embedded in architecture definition.
Turbulent Transition in Iraq: Can It Succeed? (Strategic Forum, Number 208, June 2004)
2004-06-01
council, a council of ministers including a prime minister, and a judiciary. There is separation of powers —legislative, executive, and judicial. The...defined as a system of separation of powers based on geographic and historical realities and not race, ethnicity, nationality, or religious sect
NASA Technical Reports Server (NTRS)
Alvi, Farrukh S.; Gorton, Susan (Technical Monitor)
2005-01-01
Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very little mass flow through the microjets.
Zhong, Z W; Wu, R G; Wang, Z P; Tan, H L
2015-09-01
Conventional microfluidic devices are typically complex and expensive. The devices require the use of pneumatic control systems or highly precise pumps to control the flow in the devices. This work investigates an alternative method using paper based microfluidic devices to replace conventional microfluidic devices. Size based separation and extraction experiments conducted were able to separate free dye from a mixed protein and dye solution. Experimental results showed that pure fluorescein isothiocyanate could be separated from a solution of mixed fluorescein isothiocyanate and fluorescein isothiocyanate labeled bovine serum albumin. The analysis readings obtained from a spectrophotometer clearly show that the extracted tartrazine sample did not contain any amount of Blue-BSA, because its absorbance value was 0.000 measured at a wavelength of 590nm, which correlated to Blue-BSA. These demonstrate that paper based microfluidic devices, which are inexpensive and easy to implement, can potentially replace their conventional counterparts by the use of simple geometry designs and the capillary action. These findings will potentially help in future developments of paper based microfluidic devices. Copyright © 2015 Elsevier B.V. All rights reserved.
Contingency Base Energy Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-06-09
CB-EMS is the latest implementation of DSOM (Decision Support for Operations and Maintenance), which was previously patented by PNNL. CB-EMS WAS specifically designed for contingency bases for the US Army. It is a software package that is designed to monitor energy consumption at an Army contingency base to alert the camp manager when the systems are wasting energy. It's main feature that separates it from DSOM is it's ability to add systems using a plug and play menu system.
The reliability of wind power systems in the UK
NASA Astrophysics Data System (ADS)
Newton, K.
A methodology has been developed to evaluate the performance of geographically distributed wind power systems. Results are presented for three widely separated sites based on measured meteorological data obtained over a 17-yr period. The effects of including energy storage were investigated and 150-hr storage found to be a good compromise between store capacity and system performance. When used to provide space heating, the system could have reduced the 17-yr peak demand from conventional sources (smoothed by the storage and geographical separation of sites) by an amount comparable to the mean output of the wind-system, whether or not turbines at the three sites were interconnected by the National Grid. In contrast, the fuel saving capability of the system was found to be comparatively insensitive either to storage period or geographical separation of sites; the system would have been capable of providing up to 90 percent of the total requirement. Results are also given for individual sites to indicate the possible performance of district heating schemes or domestic systems.
Chen, Haibin; Yang, Yan; Jiang, Wei; Song, Mengjie; Wang, Ying; Xiang, Tiantian
2017-02-01
A case study on the source separation of municipal solid waste (MSW) was performed in Changsha, the capital city of Hunan Province, China. The objective of this study is to analyze the effects of different separation methods and compare their effects with citizens' attitudes and inclination. An effect evaluation method based on accuracy rate and miscellany rate was proposed to study the performance of different separation methods. A large-scale questionnaire survey was conducted to determine citizens' attitudes and inclination toward source separation. Survey result shows that the vast majority of respondents hold consciously positive attitudes toward participation in source separation. Moreover, the respondents ignore the operability of separation methods and would rather choose the complex separation method involving four or more subclassed categories. For the effects of separation methods, the site experiment result demonstrates that the relatively simple separation method involving two categories (food waste and other waste) achieves the best effect with the highest accuracy rate (83.1%) and the lowest miscellany rate (16.9%) among the proposed experimental alternatives. The outcome reflects the inconsistency between people's environmental awareness and behavior. Such inconsistency and conflict may be attributed to the lack of environmental knowledge. Environmental education is assumed to be a fundamental solution to improve the effect of source separation of MSW in Changsha. Important management tips on source separation, including the reformation of the current pay-as-you-throw (PAYT) system, are presented in this work. A case study on the source separation of municipal solid waste was performed in Changsha. An effect evaluation method based on accuracy rate and miscellany rate was proposed to study the performance of different separation methods. The site experiment result demonstrates that the two-category (food waste and other waste) method achieves the best effect. The inconsistency between people's inclination and the effect of source separation exists. The proposed method can be expanded to other cities to determine the most effective separation method during planning stages or to evaluate the performance of running source separation systems.
The evolution of the ISOLDE control system
NASA Astrophysics Data System (ADS)
Jonsson, O. C.; Catherall, R.; Deloose, I.; Drumm, P.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Isolde Collaboration
The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows ™ through a Novell NetWare4 ™ local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.
The evolution of the ISOLDE control system
NASA Astrophysics Data System (ADS)
Jonsson, O. C.; Catherall, R.; Deloose, I.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Drumm, P.
1996-04-01
The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows® through a Novell NetWare4® local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.
A Prototype Knowledge-Based System for Satellite Mission Planning.
1986-12-01
used by different groups in an operational environment. 6 II. Literature Review As management science has recognized, it is not practical to separate...schedule only one satellite per set of requirements. A -4 .............. er.- Appendix B O9perational Conce~t Usin a Knowlede -Based System There are many
On Anticipatory Development of Dual Education Based on the Systemic Approach
ERIC Educational Resources Information Center
Alshynbayeva, Zhuldyz; Sarbassova, Karlygash; Galiyeva, Temir; Kaltayeva, Gulnara; Bekmagambetov, Aidos
2016-01-01
The article addresses separate theoretical and methodical aspects of the anticipatory development of dual education in the Republic of Kazakhstan based on the systemic approach. It states the need to develop orientating basis of prospective professional activities in students. We define the concepts of anticipatory cognition and anticipatory…
Liu, Dan; Zou, Xiaowei; Gao, Mingzhe; Gu, Ming; Xiao, Hongbin
2014-08-22
Hydrophilic organic/salt-containing aqueous two-phase system composing of ethanol, water and ammonium sulfate for separation polar compounds was investigated on multilayer coil associated with J-type HSCCC devices. Compared to the classical polar solvent system based on 1-butanol-water or PEG1000-ammonium sulfate-water, the water content of upper phase in ethanol-ammonium sulfate-water systems was from 53.7% to 32.8% (wt%), closed to PEG1000-ammonium sulfate-water aqueous two-phase systems and higher than 1-butanol-water (22.0%, wt%). Therefore, the polarity of ethanol-ammonium sulfate-water is in the middle of 1-butanol-water and PEG-ammonium sulfate-water system, which is quite good for separating polar compounds like phenols, nucleosides and amino acids with low partition coefficient in 1-octanol-water system. The retention of stationary phase in four elution mode on type-J counter-current chromatography devices with multilayer coil column changed from 26% to 71%. Hydrodynamic trend possess both intermediate and hydrophilic solvent system property, which closely related to the composition of solvent system. The applicability of this system was demonstrated by successful separation of adenosine, uridine guanosine and cytidine. Copyright © 2014 Elsevier B.V. All rights reserved.
Simulator for Testing Spacecraft Separation Devices
NASA Technical Reports Server (NTRS)
Johnston, Nick; Gaines, Joe; Bryan, Tom
2006-01-01
A report describes the main features of a system for testing pyrotechnic and mechanical devices used to separate spacecraft and modules of spacecraft during flight. The system includes a spacecraft simulator [also denoted a large mobility base (LMB)] equipped with air thrusters, sensors, and data-acquisition equipment. The spacecraft simulator floats on air bearings over an epoxy-covered concrete floor. This free-flotation arrangement enables simulation of motion in outer space in three degrees of freedom: translation along two orthogonal horizontal axes and rotation about a vertical axis. The system also includes a static stand. In one application, the system was used to test a bolt-retraction system (BRS) intended for separation of the lifting-body and deorbit-propulsion stages of the X- 38 spacecraft. The LMB was connected via the BRS to the static stand, then pyrotechnic devices that actuate the BRS were fired. The separation distance and acceleration were measured. The report cites a document, not yet published at the time of reporting the information for this article, that is said to present additional detailed information.
Gwarda, Radosław Ł; Dzido, Tadeusz H
2018-07-13
In our previous papers we have investigated the influence of the mobile phase composition on mechanism of retention, selectivity and efficiency of peptide separation in various high-performance thin-layer chromatography (HPTLC) systems with commercially available silica-based adsorbents. We have also investigated the influence of pH of the mobile phase buffer on migration and separation of peptides in pressurized planar electrochromatography (PPEC). Here we investigate the influence of concentration of ion-pairing additive, and concentration and type of organic modifier of the mobile phase on migration of peptides in PPEC system with octadecyl silica-based adsorbent, and with the same set of the solutes as before. We compare our current results with the results obtained before for similar HPTLC and PPEC systems, and discuss the influence of particular variables on retention, electrophoretic mobility of solutes and electroosmotic flow of the mobile phase. We show, that the final selectivity of peptide separation results from co-influence of all the three factors mentioned. Concentration of organic modifier of the mobile phase, as well as concentration of ion-pairing additive, affect the retention, the electrophoretic mobility, and the electroosmotic flow simultaneously. This makes independent optimization of these factors rather difficult. Anyway PPEC offers much faster separation of peptides with quite different selectivity, in comparison to HPTLC, with similar adsorbents and similar mobile phase composition. However, we also present and discuss the issue of extensive tailing of peptide zones in the PPEC in comparison to similar HPTLC systems. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1973-01-01
The design specifications for the programs and modules within the NASA Aerospace Safety Information System (NASIS) are presented. The purpose of the design specifications is to standardize the preparation of the specifications and to guide the program design. Each major functional module within the system is a separate entity for documentation purposes. The design specifications contain a description of, and specifications for, all detail processing which occurs in the module. Sub-modules, reference tables, and data sets which are common to several modules are documented separately.
NASA Astrophysics Data System (ADS)
Juromskiy, V. M.
2016-09-01
It is developed a mathematical model for an electric drive of high-speed separation device in terms of the modeling dynamic systems Simulink, MATLAB. The model is focused on the study of the automatic control systems of the power factor (Cosφ) of an actuator by compensating the reactive component of the total power by switching a capacitor bank in series with the actuator. The model is based on the methodology of the structural modeling of dynamic processes.
NASA Technical Reports Server (NTRS)
1973-01-01
The design specifications for the programs and modules within the NASA Aerospace Safety Information System (NASIS) are presented. The purpose of the design specifications is to standardize the preparation of the specifications and to guide the program design. Each major functional module within the system is a separate entity for documentation purposes. The design specifications contain a description of, and specifications for, all detail processing which occurs in the module. Sub-models, reference tables, and data sets which are common to several modules are documented separately.
Forced transport of self-propelled particles in a two-dimensional separate channel.
Wu, Jian-chun; Ai, Bao-quan
2016-04-01
Transport of self-propelled particles in a two-dimensional (2D) separate channel is investigated in the presence of the combined forces. By applying an ac force, the particles will be trapped by the separate walls. A dc force produces the asymmetry of the system and induces the longitudinal directed transport. Due to the competition between self-propulsion and the combined external forces, the transport is sensitive to the self-propelled speed and the particle radius, thus one can separate the particles based on these properties.
NASA Astrophysics Data System (ADS)
Deloose, I.; Pace, A.
1994-12-01
The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Wenwan
2003-01-01
Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in thismore » manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.« less
Venous tree separation in the liver: graph partitioning using a non-ising model.
O'Donnell, Thomas; Kaftan, Jens N; Schuh, Andreas; Tietjen, Christian; Soza, Grzegorz; Aach, Til
2011-01-01
Entangled tree-like vascular systems are commonly found in the body (e.g., in the peripheries and lungs). Separation of these systems in medical images may be formulated as a graph partitioning problem given an imperfect segmentation and specification of the tree roots. In this work, we show that the ubiquitous Ising-model approaches (e.g., Graph Cuts, Random Walker) are not appropriate for tackling this problem and propose a novel method based on recursive minimal paths for doing so. To motivate our method, we focus on the intertwined portal and hepatic venous systems in the liver. Separation of these systems is critical for liver intervention planning, in particular when resection is involved. We apply our method to 34 clinical datasets, each containing well over a hundred vessel branches, demonstrating its effectiveness.
Capture and release of mixed acid gasses with binding organic liquids
Heldebrant, David J.; Yonker, Clement R.
2010-09-21
Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.
Mehl, Benjamin T; Martin, R Scott
2018-01-07
The ability to use microchip-based electrophoresis for fast, high-throughput separations provides researchers with a tool for close-to real time analysis of biological systems. While PDMS-based electrophoresis devices are popular, the separation efficiency is often an issue due to the hydrophobic nature of PDMS. In this study, a hybrid microfluidic capillary device was fabricated to utilize the positive features of PDMS along with the electrophoretic performance of fused silica. A capillary loop was embedded in a polystyrene base that can be coupled with PDMS microchannels at minimal dead volume interconnects. A method for cleaning out the capillaries after a wet-polishing step was devised through the use of 3D printed syringe attachment. By comparing the separation efficiency of fluorescein and CBI-glycine with both a PDMS-based serpentine device and the embedded capillary loop device, it was shown that the embedded capillary loop device maintained higher theoretical plates for both analytes. A Pd decoupler with a carbon or Pt detection electrode were embedded along with the loop allowing integration of the electrophoretic separation with electrochemical detection. A series of catecholamines were separated to show the ability to resolve similar analytes and detect redox active species. The release of dopamine and norepinephrine from PC 12 cells was also analyzed showing the compatibility of these improved microchip separations with high ionic cell buffers associated with cell culture.
Patel, Maulik V; Nanayakkara, Imaly A; Simon, Melinda G; Lee, Abraham P
2014-10-07
We present a microfluidic platform for simultaneous on-chip pumping and size-based separation of cells and particles without external fluidic control systems required for most existing platforms. The device utilizes an array of acoustically actuated air/liquid interfaces generated using dead-end side channels termed Lateral Cavity Acoustic Transducers (LCATs). The oscillating interfaces generate local streaming flow while the angle of the LCATs relative to the main channel generates a global bulk flow from the inlet to the outlet. The interaction of these two competing velocity fields (i.e. global bulk velocity vs. local streaming velocity) is responsible for the observed separation. It is shown that the separation of 5 μm and 10 μm polystyrene beads is dependent on the ratio of these two competing velocity fields. The experimental and simulation results suggest that particle trajectories based only on Stokes drag force cannot fully explain the separation behavior and that the impact of additional forces due to the oscillating flow field must be considered to determine the trajectory of the beads and ultimately the separation behavior of the device. To demonstrate an application of this separation platform with cellular components, smaller red blood cells (7.5 ± 0.8 μm) are separated from larger K562 cells (16.3 ± 2.0 μm) with viabilities comparable to those of controls based on a trypan blue exclusion assay.
Scott, David E.; Willis, Sean D.; Gabbert, Seth; Johnson, Dave A.; Naylor, Erik; Janle, Elsa M.; Krichevsky, Janice E.; Lunte, Craig E.; Lunte, Susan M.
2015-01-01
The development of an on-animal separation-based sensor that can be employed for monitoring drug metabolism in a freely roaming sheep is described. The system consists of microdialysis sampling coupled directly to microchip electrophoresis with electrochemical detection (MD-ME-EC). Separations were accomplished using an all-glass chip with integrated platinum working and reference electrodes. Discrete samples from the microdialysis flow were introduced into the electrophoresis chip using a flow-gated injection approach. Electrochemical detection was accomplished in-channel using a two-electrode isolated potentiostat. Nitrite was separated by microchip electrophoresis using reverse polarity and a run buffer consisting of 50 mM phosphate at pH 7.4. The entire system was under telemetry control. The system was first tested with rats to monitor the production of nitrite following introduction of nitroglycerin into the subdermal tissue using a linear probe. The data acquired using the on-line MD-ME-EC system was compared to that obtained off-line analysis by liquid chromatography with electrochemical detection (LC-EC), using a second microdialysis probe implanted parallel to the first probe in the same animal. The MD-ME-EC device was then used on-animal to monitor the subdermal metabolism of nitroglycerin in sheep. The ultimate goal is to use this device to simultaneously monitor drug metabolism and behavior in a freely roaming animal. PMID:25697221
Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.
Goll, Johannes; Audo, Gregoire; Minceva, Mirjana
2015-08-07
Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.
28 CFR 51.20 - Form of submissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... set. A separate data dictionary file documenting the fields in the data set, the field separators or... data set. Proprietary or commercial software system data files (e.g., SAS, SPSS, dBase, Lotus 1-2-3... General will accept certain machine readable data in the following electronic media: 3.5 inch 1.4 megabyte...
28 CFR 51.20 - Form of submissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... set. A separate data dictionary file documenting the fields in the data set, the field separators or... data set. Proprietary or commercial software system data files (e.g., SAS, SPSS, dBase, Lotus 1-2-3... General will accept certain machine readable data in the following electronic media: 3.5 inch 1.4 megabyte...
28 CFR 51.20 - Form of submissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... set. A separate data dictionary file documenting the fields in the data set, the field separators or... data set. Proprietary or commercial software system data files (e.g., SAS, SPSS, dBase, Lotus 1-2-3... General will accept certain machine readable data in the following electronic media: 3.5 inch 1.4 megabyte...
DOE Office of Scientific and Technical Information (OSTI.GOV)
James K. Neathery; Gary Jacobs; Burtron H. Davis
In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbonmore » particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.« less
Analysis and simulation of industrial distillation processes using a graphical system design model
NASA Astrophysics Data System (ADS)
Boca, Maria Loredana; Dobra, Remus; Dragos, Pasculescu; Ahmad, Mohammad Ayaz
2016-12-01
The separation column used for experimentations one model can be configured in two ways: one - two columns of different diameters placed one within the other extension, and second way, one column with set diameter [1], [2]. The column separates the carbon isotopes based on the cryogenic distillation of pure carbon monoxide, which is fed at a constant flow rate as a gas through the feeding system [1],[2]. Based on numerical control systems used in virtual instrumentation was done some simulations of the distillation process in order to obtain of the isotope 13C at high concentrations. The experimental installation for cryogenic separation can be configured from the point of view of the separation column in two ways: Cascade - two columns of different diameters and placed one in the extension of the other column, and second one column with a set diameter. It is proposed that this installation is controlled to achieve data using a data acquisition tool and professional software that will process information from the isotopic column based on a logical dedicated algorithm. Classical isotopic column will be controlled automatically, and information about the main parameters will be monitored and properly display using one program. Take in consideration the very-low operating temperature, an efficient thermal isolation vacuum jacket is necessary. Since the "elementary separation ratio" [2] is very close to unity in order to raise the (13C) isotope concentration up to a desired level, a permanent counter current of the liquid-gaseous phases of the carbon monoxide is created by the main elements of the equipment: the boiler in the bottom-side of the column and the condenser in the top-side.
NASA Technical Reports Server (NTRS)
Homan, D. J.
1977-01-01
A computer program written to calculate the proximity aerodynamic force and moment coefficients of the Orbiter/Shuttle Carrier Aircraft (SCA) vehicles based on flight instrumentation is described. The ground reduced aerodynamic coefficients and instrumentation errors (GRACIE) program was developed as a tool to aid in flight test verification of the Orbiter/SCA separation aerodynamic data base. The program calculates the force and moment coefficients of each vehicle in proximity to the other, using the load measurement system data, flight instrumentation data and the vehicle mass properties. The uncertainty in each coefficient is determined, based on the quoted instrumentation accuracies. A subroutine manipulates the Orbiter/747 Carrier Separation Aerodynamic Data Book to calculate a comparable set of predicted coefficients for comparison to the calculated flight test data.
Estimate of the influence of muzzle smoke on function range of infrared system
NASA Astrophysics Data System (ADS)
Luo, Yan-ling; Wang, Jun; Wu, Jiang-hui; Wu, Jun; Gao, Meng; Gao, Fei; Zhao, Yu-jie; Zhang, Lei
2013-09-01
Muzzle smoke produced by weapons shooting has important influence on infrared (IR) system while detecting targets. Based on the theoretical model of detecting spot targets and surface targets of IR system while there is muzzle smoke, the function range for detecting spot targets and surface targets are deduced separately according to the definition of noise equivalent temperature difference(NETD) and minimum resolution temperature difference(MRTD). Also parameters of muzzle smoke affecting function range of IR system are analyzed. Base on measured data of muzzle smoke for single shot, the function range of an IR system for detecting typical targets are calculated separately while there is muzzle smoke and there is no muzzle smoke at 8-12 micron waveband. For our IR system function range has reduced by over 10% for detecting tank if muzzle smoke exists. The results will provide evidence for evaluating the influence of muzzle smoke on IR system and will help researchers to improve ammo craftwork.
Pantazes, Robert J; Saraf, Manish C; Maranas, Costas D
2007-08-01
In this paper, we introduce and test two new sequence-based protein scoring systems (i.e. S1, S2) for assessing the likelihood that a given protein hybrid will be functional. By binning together amino acids with similar properties (i.e. volume, hydrophobicity and charge) the scoring systems S1 and S2 allow for the quantification of the severity of mismatched interactions in the hybrids. The S2 scoring system is found to be able to significantly functionally enrich a cytochrome P450 library over other scoring methods. Given this scoring base, we subsequently constructed two separate optimization formulations (i.e. OPTCOMB and OPTOLIGO) for optimally designing protein combinatorial libraries involving recombination or mutations, respectively. Notably, two separate versions of OPTCOMB are generated (i.e. model M1, M2) with the latter allowing for position-dependent parental fragment skipping. Computational benchmarking results demonstrate the efficacy of models OPTCOMB and OPTOLIGO to generate high scoring libraries of a prespecified size.
NASA Technical Reports Server (NTRS)
Vigeant-Langlois, Laurence; Hansman, R. John, Jr.
2003-01-01
The objective of this project was to propose a means to improve aviation weather information, training procedures based on a human-centered systems approach. Methodology: cognitive analysis of pilot's tasks; trajectory-based approach to weather information; contingency planning support; and implications for improving weather information.
Information-Sharing Application Standards for Integrated Government Systems
2010-12-01
23 4. Federated Search and Role-Based Data Access ................ 24 G. LESSONS FROM HSIN...4. Federated Search and Role-Based Data Access One of the original purposes of HSIN was to facilitate information sharing...recent search paradigm, Federated Search , allows separate systems to feed external data requests without the need for a huge centralized database
Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.
NASA Astrophysics Data System (ADS)
Tao, Ye; Ren, Yukun; Yan, Hui; Jiang, Hongyuan
2016-03-01
The need to continuously separate multiple microparticles is required for the recent development of lab-on-chip technology. Dielectrophoresis(DEP)-based separation device is extensively used in kinds of microfluidic applications. However, such conventional DEP-based device is relatively complicated and difficult for fabrication. A concise microfluidic device is presented for effective continuous separation of multiple size particle mixtures. A pair of acupuncture needle electrodes are creatively employed and embedded in a PDMS(poly-dimethylsiloxane) hurdle for generating non-uniform electric field thereby achieving a continuous DEP separation. The separation mechanism is that the incoming particle samples with different sizes experience different negative DEP(nDEP) forces and then they can be transported into different downstream outlets. The DEP characterizations of particles are calculated, and their trajectories are numerically predicted by considering the combined action of the incoming laminar flow and the nDEP force field for guiding the separation experiments. The device performance is verified by successfully separating a three-sized particle mixture, including polystyrene microspheres with diameters of 3 μm, 10 μm and 25 μm. The separation purity is below 70% when the flow rate ratio is less than 3.5 or more than 5.1, while the separation purity can be up to more than 90% when the flow rate ratio is between 3.5 and 5.1 and meanwhile ensure the voltage output falls in between 120 V and 150 V. Such simple DEP-based separation device has extensive applications in future microfluidic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, M; Kochergin, V; Hess, R
2005-03-31
Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, whilemore » these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract/hydrolysis stream, and therefore was an ideal model system for developing new separation equipment. Subsequent testing used both synthetic acid hydrolysate and corn stover derived weak acid hydrolysate (NREL produced). A two-phased approach was used for the research and development described in this project. The first level of study involved testing the new concepts at the bench level. The bench-scale evaluations provided fundamental understanding of the processes, building and testing small prototype systems, and determining the efficiency of the novel processes. The second level of study, macro-level, required building larger systems that directly simulated industrial operations and provided validation of performance to minimize financial risk during commercialization. The project goals and scope included: (1) Development of low-capital alternatives to conventional crop-based purification/separation processes; and (2) Development of each process to the point that transition to commercial operation is low risk. The project reporting period was January 2001 to December 2004. This included a one year extension of the project (without additional funding).« less
Blending protein separation and peptide analysis through real-time proteolytic digestion.
Slysz, Gordon W; Schriemer, David C
2005-03-15
Typical liquid- or gel-based protein separations require enzymatic digestion as an important first step in generating protein identifications. Traditional protocols involve long-term proteolytic digestion of the separated protein, often leading to sample loss and reduced sensitivity. Previously, we presented a rapid method of proteolytic digestion that showed excellent digestion of resistant and low concentrations of protein without requiring reduction and alkylation. Here, we demonstrate on-line, real-time tryptic digestion in conjunction with reversed-phase protein separation. The studies were aimed at optimizing pH and ionic strength and the size of the digestion element, to produce maximal protein digestion with minimal effects on chromatographic integrity. Upon establishing optimal conditions, the digestion element was attached downstream from a capillary C4 reversed-phase column. A four-protein mixture was processed through the combined system, and the resulting peptides were analyzed on-line by electrospray mass spectrometry. Extracted ion chromatograms for protein chromatography based on peptide elution were generated. These were shown to emulate ion chromatograms produced in a subsequent run without the digestion element, based on protein elution. The methodology will enable rapid and sensitive analysis of liquid-based protein separations using the power of bottom-up proteomics methodologies.
Ardila, Harold Duban; Fernández, Raquel González; Higuera, Blanca Ligia; Redondo, Inmaculada; Martínez, Sixta Tulia
2014-01-01
We are currently using a 2-DE-based proteomics approach to study plant responses to pathogenic fungi by using the carnation (Dianthus caryophyllus L)-Fusarium oxysporum f. sp. dianthi pathosystem. It is clear that the protocols for the first stages of a standard proteomics workflow must be optimized to each biological system and objectives of the research. The optimization procedure for the extraction and separation of proteins by 1-DE and 2-DE in the indicated system is reported. This strategy can be extrapolated to other plant-pathogen interaction systems in order to perform an evaluation of the changes in the host protein profile caused by the pathogen and to identify proteins which, at early stages, are involved or implicated in the plant defense response.
Jana, Subrata; Samal, Prasanjit
2018-03-28
The range-separated hybrid density functionals are very successful in describing a wide range of molecular and solid-state properties accurately. In principle, such functionals are designed from spherically averaged or system averaged as well as reverse engineered exchange holes. In the present attempt, the screened range-separated hybrid functional scheme has been applied to the meta-GGA rung by using the density matrix expansion based semilocal exchange hole (or functional). The hybrid functional proposed here utilizes the spherically averaged density matrix expansion based exchange hole in the range separation scheme. For slowly varying density correction the range separation scheme is employed only through the local density approximation based exchange hole coupled with the corresponding fourth order gradient approximate Tao-Mo enhancement factor. The comprehensive testing and performance of the newly constructed functional indicates its applicability in describing several molecular properties. The most appealing feature of this present screened hybrid functional is that it will be practically very useful in describing solid-state properties at the meta-GGA level.
Capillary Electrophoresis - Optical Detection Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepaniak, M. J.
2001-08-06
Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatographymore » relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.« less
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Subhadeep
In this work, total 1592 individual leakage-free polymethylmethacrylate (PMMA) microfluidic devices as laboratory-on-a-chip systems are fabricated by maskless lithography, hot embossing lithography, and direct bonding technique. Total 1094 individual Audio Video Interleave Files as experimental outputs related to the surface-driven capillary flow have been recorded and analyzed. The influence of effective viscosity, effect of surface wettability, effect of channel aspect ratio, and effect of centrifugal force on the surface-driven microfluidic flow of aqueous microparticle suspensions have been successfully and individually investigated in these laboratory-on-a-chip systems. Also, 5 micron polystyrene particles have been separated from the aqueous microparticle suspensions in the microfluidic lab-on-a-chip systems of modified design with 98% separation efficiency, and 10 micron polystyrene particles have been separated with 100% separation efficiency. About the novelty of this work, the experimental investigations have been performed on the surface-driven microfluidic flow of aqueous microparticle suspensions with the investigations on the separation time in particle-size based separation mechanism to control these suspensions in the microfluidic lab-on-a-chip systems. This research work contains a total of 10,112 individual experimental outputs obtained using total 30 individual instruments by author’s own hands-on completely during more than three years continuously. Author has performed the experimental investigations on both the fluid statics and fluid dynamics to develop an automated fluid machine.
NASA Astrophysics Data System (ADS)
Addy, A. L.; Chow, W. L.; Korst, H. H.; White, R. A.
1983-05-01
Significant data and detailed results of a joint research effort investigating the fluid dynamic mechanisms and interactions within separated flows are presented. The results were obtained through analytical, experimental, and computational investigations of base flow related configurations. The research objectives focus on understanding the component mechanisms and interactions which establish and maintain separated flow regions. Flow models and theoretical analyses were developed to describe the base flowfield. The research approach has been to conduct extensive small-scale experiments on base flow configurations and to analyze these flows by component models and finite-difference techniques. The modeling of base flows of missiles (both powered and unpowered) for transonic and supersonic freestreams has been successful by component models. Research on plume effects and plume modeling indicated the need to match initial plume slope and plume surface curvature for valid wind tunnel simulation of an actual rocket plume. The assembly and development of a state-of-the-art laser Doppler velocimeter (LDV) system for experiments with two-dimensional small-scale models has been completed and detailed velocity and turbulence measurements are underway. The LDV experiments include the entire range of base flowfield mechanisms - shear layer development, recompression/reattachment, shock-induced separation, and plume-induced separation.
Advanced air revitalization for optimized crew and plant environments
NASA Technical Reports Server (NTRS)
Lee, M. G.; Grigger, David J.; Brown, Mariann F.
1991-01-01
The Hybrid Air Revitalization System (HARS) closed ecosystem concept presented encompasses electrochemical CO2 and O2 separators, in conjunction with a mechanical condenser/separator for maintaining CO2, O2, and humidity levels in crew and plant habitats at optimal conditions. HARS requires no expendables, and allows flexible process control on the bases of electrochemical cell current, temperature, and airflow rate variations. HARS capacity can be easily increased through the incorporation of additional chemical cells. Detailed system flowcharts are provided.
Coherent optical monolithic phased-array antenna steering system
Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.
1994-01-01
An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.
Miller, B.; Jimenez, M.; Bridle, H.
2016-01-01
Inertial focusing is a microfluidic based separation and concentration technology that has expanded rapidly in the last few years. Throughput is high compared to other microfluidic approaches although sample volumes have typically remained in the millilitre range. Here we present a strategy for achieving rapid high volume processing with stacked and cascaded inertial focusing systems, allowing for separation and concentration of particles with a large size range, demonstrated here from 30 μm–300 μm. The system is based on curved channels, in a novel toroidal configuration and a stack of 20 devices has been shown to operate at 1 L/min. Recirculation allows for efficient removal of large particles whereas a cascading strategy enables sequential removal of particles down to a final stage where the target particle size can be concentrated. The demonstration of curved stacked channels operating in a cascaded manner allows for high throughput applications, potentially replacing filtration in applications such as environmental monitoring, industrial cleaning processes, biomedical and bioprocessing and many more. PMID:27808244
Designing boosting ensemble of relational fuzzy systems.
Scherer, Rafał
2010-10-01
A method frequently used in classification systems for improving classification accuracy is to combine outputs of several classifiers. Among various types of classifiers, fuzzy ones are tempting because of using intelligible fuzzy if-then rules. In the paper we build an AdaBoost ensemble of relational neuro-fuzzy classifiers. Relational fuzzy systems bond input and output fuzzy linguistic values by a binary relation; thus, fuzzy rules have additional, comparing to traditional fuzzy systems, weights - elements of a fuzzy relation matrix. Thanks to this the system is better adjustable to data during learning. In the paper an ensemble of relational fuzzy systems is proposed. The problem is that such an ensemble contains separate rule bases which cannot be directly merged. As systems are separate, we cannot treat fuzzy rules coming from different systems as rules from the same (single) system. In the paper, the problem is addressed by a novel design of fuzzy systems constituting the ensemble, resulting in normalization of individual rule bases during learning. The method described in the paper is tested on several known benchmarks and compared with other machine learning solutions from the literature.
Microfluidic integration of parallel solid-phase liquid chromatography.
Huft, Jens; Haynes, Charles A; Hansen, Carl L
2013-03-05
We report the development of a fully integrated microfluidic chromatography system based on a recently developed column geometry that allows for robust packing of high-performance separation columns in poly(dimethylsiloxane) microfluidic devices having integrated valves made by multilayer soft lithography (MSL). The combination of parallel high-performance separation columns and on-chip plumbing was used to achieve a fully integrated system for on-chip chromatography, including all steps of automated sample loading, programmable gradient generation, separation, fluorescent detection, and sample recovery. We demonstrate this system in the separation of fluorescently labeled DNA and parallel purification of reverse transcription polymerase chain reaction (RT-PCR) amplified variable regions of mouse immunoglobulin genes using a strong anion exchange (AEX) resin. Parallel sample recovery in an immiscible oil stream offers the advantage of low sample dilution and high recovery rates. The ability to perform nucleic acid size selection and recovery on subnanogram samples of DNA holds promise for on-chip genomics applications including sequencing library preparation, cloning, and sample fractionation for diagnostics.
Electrochemical Membrane for Carbon Dioxide Capture and Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezel-Ayagh, Hossein
FuelCell Energy, Inc. (FCE), in collaboration with AECOM Corporation (formerly URS Corporation) and Pacific Northwest National Laboratory, has been developing a novel Combined Electric Power and Carbon-dioxide Separation (CEPACS) system. The CEPACS system is based on electrochemical membrane (ECM) technology derived from FCE’s carbonate fuel cell products featuring internal (methane steam) reforming and carrying the trade name of Direct FuelCell®. The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO 2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO 2-separation technology bymore » working as two devices in one: it separates the CO 2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean electric power at high efficiency using a supplementary fuel. The development effort was carried out under the U.S. Department of Energy (DOE) cooperative agreement DE-FE0007634. The overall objective of this project was to successfully demonstrate the ability of FCE’s ECM-based CEPACS system technology to separate ≥90% of the CO 2 from a simulated Pulverized Coal (PC) power plant flue gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. In addition, a key objective was to show, through the technical and economic feasibility study and bench scale testing, that the ECM-based CEPACS system is an economical alternative for CO 2 capture in PC power plants, and that it meets DOE’s objective related to the incremental cost of electricity (COE) for post-combustion CO 2 capture (no more than 35% increase in COE). The project was performed in three budget periods (BP). The specific objective for BP1 was to complete the Preliminary Technical and Economic Feasibility Study. The T&EF study was based on the carbon capture system size suitable for a reference 550 MW PC power plant. The specific objectives for BP2 were to perform (flue gas) contaminant effect evaluation tests, small area membrane tests using clean simulated flue gas, design a flue gas pretreatment system for processing of the gas feed to ECM, update the Technical & Economic Feasibility Study (T&EFS) incorporating results of contaminant effect tests and small area membrane tests, and to prepare a test facility for bench scale testing. The specific objectives for BP3 were to perform bench scale testing (parametric and long-duration testing) of a 11.7 m 2 ECM-based CO 2 capture, purification and compression system, and update (as final) the Technical and Economic Feasibility Study. In addition, an Environmental Health and Safety evaluation (assessment) of the ECM technology was included. This final technical report presents the progress made under the project.« less
Materials separation by dielectrophoresis
NASA Technical Reports Server (NTRS)
Sagar, A. D.; Rose, R. M.
1988-01-01
The feasibility of vacuum dielectrophoresis as a method for particulate materials separation in a microgravity environment was investigated. Particle separations were performed in a specially constructed miniature drop-tower with a residence time of about 0.3 sec. Particle motion in such a system is independent of size and based only on density and dielectric constant, for a given electric field. The observed separations and deflections exceeded the theoretical predictions, probably due to multiparticle effects. In any case, this approach should work well in microgravity for many classes of materials, with relatively simple apparatus and low weight and power requirements.
The Flask Security Architecture: System Support for Diverse Security Policies
2006-01-01
Flask microkernel -based operating sys tem, that successfully overcomes these obstacles to pol- icy flexibility. The cleaner separation of mechanism and...other object managers in the system to en- force those access control decisions. Although the pro totype system is microkernel -based, the security...mecha nisms do not depend on a microkernel architecture and will easily generalize beyond it. The resulting system provides policy flexibility. It sup
Sensors and filters based on nano- and microchannel membranes for biomedical technologies
NASA Astrophysics Data System (ADS)
Romanov, S. I.; Pyshnyi, D. V.; Laktionov, P. P.
2012-02-01
A new technology is presented in a concise form which enables the silicon membranes to be produced over a wide range of channel dimensions from a few nanometers to tens of micrometers. There is good reason to believe that this method based on rather simple technical processing is competitive with other technologies for fabricating nanofluidic analysis systems. Some of the completed developments involving microchannel membranes, namely, the optical DNA-sensor and the human cell separation system are demonstrated without going into details. The other applications of micro- and nanochannel membranes, namely, the electrical sensor and electrokinetic filters for detecting and separating liquids and biomolecules are shown with the first results and are in progress.
45 CFR 307.5 - Mandatory computerized support enforcement systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... hardware, operational system software, and electronic linkages with the separate components of an... plans to use and how they will interface with the base system; (3) Provide documentation that the... and for operating costs including hardware, operational software and applications software of a...
45 CFR 307.5 - Mandatory computerized support enforcement systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... hardware, operational system software, and electronic linkages with the separate components of an... plans to use and how they will interface with the base system; (3) Provide documentation that the... and for operating costs including hardware, operational software and applications software of a...
45 CFR 307.5 - Mandatory computerized support enforcement systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... hardware, operational system software, and electronic linkages with the separate components of an... plans to use and how they will interface with the base system; (3) Provide documentation that the... and for operating costs including hardware, operational software and applications software of a...
Cognitive control predicts use of model-based reinforcement learning.
Otto, A Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D
2015-02-01
Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information--in the service of overcoming habitual, stimulus-driven responses--in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior.
Nowik, Witold; Héron, Sylvie; Bonose, Myriam; Tchapla, Alain
2013-10-07
A comparison of chromatograms obtained in a series of separation conditions for a given complex mixture may be done with a series of chromatographic descriptors. In this study, we used two descriptors: the number of critical pairs and symmetry of peaks, further rescaled and converted to the corresponding critical pairs' coefficient (CPc) and symmetry coefficient (Sc). Considering the difficulty of appreciating global separation quality using CPc and Sc criteria separately, as their respective values are usually uncorrelated, a double-criteria cross-evaluation system was required. For that purpose we tested the commonly used multi-criteria decision-making method - Derringer's desirability function (D) - as well as the recently introduced sum of ranking differences (SRD). To facilitate the graphical comparison of both approaches, the desirability function (D) was used in the inverse form (Dinv). The advantages and drawbacks of both evaluation methods, especially the respective under- or over-evaluation of outliers, caused us to introduce a new ranking approach, separation system suitability (3S). The obtained suitability rankings for the three tested approaches (Dinv, SRD and 3S) are different; nevertheless, 3S appears to be the most balanced and the easiest to interpret as well. The approach developed for selection of suitable systems was applied to the problem of separation of complex mixtures through the analysis of a series of standards of anthraquinone derivatives. To judge the pertinence of this evaluation, a sample containing a number of natural anthraquinones extracted from the bark of Indian mulberry (Morinda citrifolia) was analysed. In conclusion, the proposed methodology for the cross-evaluation of the series of chromatograms using single specific descriptors (CPc and Sc) through a global composite descriptor (3S) significantly simplifies the decision that separation systems are the most suitable for the separation of complex target mixtures of compounds.
Wang, Han; Liu, Zhongzheng; Kim, Sungman; Koo, Chiwan; Cho, Younghak; Jang, Dong-Young; Kim, Yong-Joe; Han, Arum
2014-03-07
Detecting and quantifying extremely low concentrations of oil from the environment have broad applications in oil spill monitoring in ocean and coastal areas as well as in oil leakage monitoring on land. Currently available methods for low-concentration oil detection are bulky or costly with limited sensitivities. Thus they are difficult to be used as portable and field-deployable detectors in the case of oil spills or for monitoring the long-term effects of dispersed oil on marine and coastal ecosystems. Here, we present a low-concentration oil droplet trapping and detection microfluidic system based on the acoustophoresis phenomenon where oil droplets in water having a negative acoustic contrast factor move towards acoustic pressure anti-nodes. By trapping oil droplets from water samples flowing through a microfluidic channel, even very low concentrations of oil droplets can be concentrated to a detectable level for further analyses, which is a significant improvement over currently available oil detection systems. Oil droplets in water were successfully trapped and accumulated in a circular acoustophoretic trapping chamber of the microfluidic device and detected using a custom-built compact fluorescent detector based on the natural fluorescence of the trapped crude oil droplets. After the on-line detection, crude oil droplets released from the trapping chamber were successfully separated into a collection outlet by acoustophoretic force for further off-chip analyses. The developed microfluidic system provides a new way of trapping, detecting, and separating low-concentration crude oil from environmental water samples and holds promise as a low-cost field-deployable oil detector with extremely high sensitivity. The microfluidic system and operation principle are expected to be utilized in a wide range of applications where separating, concentrating, and detecting small particles having a negative acoustic contrast factor are required.
Extraction and Separation Modeling of Orion Test Vehicles with ADAMS Simulation
NASA Technical Reports Server (NTRS)
Fraire, Usbaldo, Jr.; Anderson, Keith; Cuthbert, Peter A.
2013-01-01
The Capsule Parachute Assembly System (CPAS) project has increased efforts to demonstrate the performance of fully integrated parachute systems at both higher dynamic pressures and in the presence of wake fields using a Parachute Compartment Drop Test Vehicle (PCDTV) and a Parachute Test Vehicle (PTV), respectively. Modeling the extraction and separation events has proven challenging and an understanding of the physics is required to reduce the risk of separation malfunctions. The need for extraction and separation modeling is critical to a successful CPAS test campaign. Current PTV-alone simulations, such as Decelerator System Simulation (DSS), require accurate initial conditions (ICs) drawn from a separation model. Automatic Dynamic Analysis of Mechanical Systems (ADAMS), a Commercial off the Shelf (COTS) tool, was employed to provide insight into the multi-body six degree of freedom (DOF) interaction between parachute test hardware and external and internal forces. Components of the model include a composite extraction parachute, primary vehicle (PTV or PCDTV), platform cradle, a release mechanism, aircraft ramp, and a programmer parachute with attach points. Independent aerodynamic forces were applied to the mated test vehicle/platform cradle and the separated test vehicle and platform cradle. The aero coefficients were determined from real time lookup tables which were functions of both angle of attack ( ) and sideslip ( ). The atmospheric properties were also determined from a real time lookup table characteristic of the Yuma Proving Grounds (YPG) atmosphere relative to the planned test month. Representative geometries were constructed in ADAMS with measured mass properties generated for each independent vehicle. Derived smart separation parameters were included in ADAMS as sensors with defined pitch and pitch rate criteria used to refine inputs to analogous avionics systems for optimal separation conditions. Key design variables were dispersed in a Monte Carlo analysis to provide the maximum expected range of the state variables at programmer deployment to be used as ICs in DSS. Extensive comparisons were made with Decelerator System Simulation Application (DSSA) to validate the mated portion of the ADAMS extraction trajectory. Results of the comparisons improved the fidelity of ADAMS with a ramp pitch profile update from DSSA. Post-test reconstructions resulted in improvements to extraction parachute drag area knock-down factors, extraction line modeling, and the inclusion of ball-to-socket attachments used as a release mechanism on the PTV. Modeling of two Extraction parachutes was based on United States Air Force (USAF) tow test data and integrated into ADAMS for nominal and Monte Carlo trajectory assessments. Video overlay of ADAMS animations and actual C-12 chase plane test videos supported analysis and observation efforts of extraction and separation events. The COTS ADAMS simulation has been integrated with NASA based simulations to provide complete end to end trajectories with a focus on the extraction, separation, and programmer deployment sequence. The flexibility of modifying ADAMS inputs has proven useful for sensitivity studies and extraction/separation modeling efforts. 1
Temperature-responsive chromatography for the separation of biomolecules.
Kanazawa, Hideko; Okano, Teruo
2011-12-09
Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Senkawa, K.; Nakai, Y.; Mishima, F.; Akiyama, Y.; Nishijima, S.
2011-11-01
In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.
Ma, Shufeng; Hu, Liming; Ma, Chaoyang; Lv, Wenping; Wang, Hongxin
2014-09-01
A novel on-line three-dimensional liquid chromatography method was developed to separate four main flavonoids from Rhodiola rosea. Ethyl acetate/0.5 mol/L ionic liquid 1-butyl-3-methylimidazolium chloride aqueous solution was selected as the solvent system. In the first-dimension separation, the target flavonoids were entrapped and subsequently desorbed into the second-dimension high-speed countercurrent chromatographic column for separation. In the third-dimension chromatography, the residual ionic liquid in the four separated flavonoids was removed and the used ionic liquid was recovered. As a result, 35.1 mg of compound 1, 20.4 mg of compound 2, 8.5 mg of compound 3, and 10.6 mg of compound 4 were obtained from 1.53 g R. rosea extract. They were identified as rhodiosin, rhodionin, herbacetin, and kaempferol, respectively. The recovery of ionic liquid reached 99.1% of the initial amount. The results showed that this method is a powerful technology for the separation of R. rosea flavonoids and that the ionic-liquid-based solvent system has advantages over traditional solvent systems in renewable and environmentally friendly properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fredj, Erick; Kohut, Josh; Roarty, Hugh; Lai, Jian-Wu
2017-04-01
The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as over continental shelves and the adjacent deep ocean. A skill score described in detail by (Lui et.al. 2011) was applied to estimate the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. In contrast, the Lagrangian separation distance alone gives a misleading result. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian based probability density function may be estimated. The skill score assesses The Taiwan Ocean Radar Observing System (TOROS) performance. TOROS consists of 17 SeaSonde type radars around the Taiwan Island. The currents off Taiwan are significantly influenced by the nearby Kuroshio current. The main stream of the Kuroshio flows along the east coast of Taiwan to the north throughout the year. Sometimes its branch current also bypasses the south end of Taiwan and goes north along the west coast of Taiwan. The Kuroshio is also prone to seasonal change in its speed of flow, current capacity, distribution width, and depth. The evaluations of HF-Radar National Taiwanese network performance using Lagrangian drifter records demonstrated the high quality and robustness of TOROS HF-Radar data using a purely trajectory-based non-dimensional index. Yonggang Liu and Robert H. Weisberg, "Evaluation of trajectory modeling in different dynamic regions using normalized cumulative Lagrangian separation", Journal of Geophysical Research, Vol. 116, C09013, doi:10.1029/2010JC006837, 2011
Foam separation of Rhodamine-G and Evans Blue using a simple separatory bottle system.
Dasarathy, Dhweeja; Ito, Yoichiro
2017-09-29
A simple separatory glass bottle was used to improve separation effectiveness and cost efficiency while simultaneously creating a simpler system for separating biological compounds. Additionally, it was important to develop a scalable separation method so this would be applicable to both analytical and preparative separations. Compared to conventional foam separation methods, this method easily forms stable dry foam which ensures high purity of yielded fractions. A negatively charged surfactant, sodium dodecyl sulfate (SDS), was used as the ligand to carry a positively charged Rhodamine-G, leaving a negatively charged Evans Blue in the bottle. The performance of the separatory bottle was tested for separating Rhodamine-G from Evans Blue with sample sizes ranged from 1 to 12mg in preparative separations and 1-20μg in analytical separations under optimum conditions. These conditions including N 2 gas pressure, spinning speed of contents with a magnetic stirrer, concentration of the ligand, volume of the solvent, and concentration of the sample, were all modified and optimized. Based on the calculations at their peak absorbances, Rhodamine-G and Evans Blue were efficiently separated in times ranging from 1h to 3h, depending on sample volume. Optimal conditions were found to be 60psi N 2 pressure and 2mM SDS for the affinity ligand. This novel separation method will allow for rapid separation of biological compounds while simultaneously being scalable and cost effective. Published by Elsevier B.V.
Membrane separation for non-aqueous solution
NASA Astrophysics Data System (ADS)
Widodo, S.; Khoiruddin; Ariono, D.; Subagjo; Wenten, I. G.
2018-01-01
Membrane technology has been widely used in a number of applications competing with conventional technologies in various ways. Despite the enormous applications, they are mainly used for the aqueous system. The use of membrane-based processes in a non-aqueous system is an emerging area. This is because developed membranes are still limited in separations involving aqueous solution which show several drawbacks when implemented in a non-aqueous system. The purpose of this paper is to provide a review of the current application of membrane processes in non-aqueous solutions, such as mineral oil treatment, vegetable oil processing, and organic solvent recovery. Developments of advanced membrane materials for the non-aqueous solutions such as super-hydrophobic and organic solvent resistant membranes are reviewed. In addition, challenges and future outlook of membrane separation for the non-aqueous solution are discussed.
Ward, David P; Cárdenas-Fernández, Max; Hewitson, Peter; Ignatova, Svetlana; Lye, Gary J
2015-09-11
A critical step in the bioprocessing of sustainable biomass feedstocks, such as sugar beet pulp (SBP), is the isolation of the component sugars from the hydrolysed polysaccharides. This facilitates their subsequent conversion into higher value chemicals and pharmaceutical intermediates. Separation methodologies such as centrifugal partition chromatography (CPC) offer an alternative to traditional resin-based chromatographic techniques for multicomponent sugar separations. Highly polar two-phase systems containing ethanol and aqueous ammonium sulphate are examined here for the separation of monosaccharides present in hydrolysed SBP pectin: l-rhamnose, l-arabinose, d-galactose and d-galacturonic acid. Dimethyl sulfoxide (DMSO) was selected as an effective phase system modifier improving monosaccharide separation. The best phase system identified was ethanol:DMSO:aqueous ammonium sulphate (300gL(-1)) (0.8:0.1:1.8, v:v:v) which enabled separation of the SBP monosaccharides by CPC (200mL column) in ascending mode (upper phase as mobile phase) with a mobile phase flow rate of 8mLmin(-1). A mixture containing all four monosaccharides (1.08g total sugars) in the proportions found in hydrolysed SBP was separated into three main fractions; a pure l-rhamnose fraction (>90%), a mixed l-arabinose/d-galactose fraction and a pure d-galacturonic acid fraction (>90%). The separation took less than 2h demonstrating that CPC is a promising technique for the separation of these sugars with potential for application within an integrated, whole crop biorefinery. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae
2016-01-28
In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis.
Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae
2016-01-01
In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis. PMID:26819221
13th International Conference on Magnetically Levitated Systems and Linear Drives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.
Utilization of Methacrylates and Polymer Matrices for the Synthesis of Ion Specific Resins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czerwinski, Kenneth
2013-10-29
Disposal, storage, and/or transmutation of actinides such as americium (Am) will require the development of specific separation schemes. Existing efforts focus on solvent extraction systems for achieving suitable separation of actinide from lanthanides. However, previous work has shown the feasibility of ion-imprinting polymer-based resins for use in ion-exchange-type separations with metal ion recognition. Phenolic-based resins have been shown to function well for Am-Eu separations, but these resins exhibited slow kinetics and difficulties in the imprinting process. This project addresses the need for new and innovative methods for the selective separation of actinides through novel ion-imprinted resins. The project team willmore » explore incorporation of metals into extended frameworks, including the possibility of 3D polymerized matrices that can serve as a solid-state template for specific resin preparation. For example, an anhydrous trivalent f-element chain can be formed directly from a metal carbonate, and methacrylic acid from water. From these simple coordination complexes, molecules of discrete size or shape can be formed via the utilization of coordinating ligands or by use of an anionic multi-ligand system incorporating methacrylate. Additionally, alkyl methyl methacrylates have been used successfully to create template nanospaces, which underscores their potential utility as 3D polymerized matrices. This evidence provides a unique route for the preparation of a specific metal ion template for the basis of ion-exchange separations. Such separations may prove to be excellent discriminators of metal ions, even between f-elements. Resins were prepared and evaluated for sorption behavior, column properties, and proton exchange capacity.« less
Sáez, José A; Clemente, Rafael; Bustamante, M Ángeles; Yañez, David; Bernal, M Pilar
2017-05-01
The changes in livestock production systems towards intensification frequently lead to an excess of manure generation with respect to the agricultural land available for its soil application. However, treatment technologies can help in the management of manures, especially in N-surplus areas. An integrated slurry treatment system based on solid-liquid separation, aerobic treatment of the liquid and composting the solid fraction was evaluated in a pig farm (sows and piglets) in the South of Spain. Solid fraction separation using a filter band connected to a screw press had low efficiency (38%), which was greatly improved incorporating a rotatory sieve (61%). The depuration system was very efficient for the liquid, with total removal of 84% total solids, 87% volatile solids, and 98% phosphorus. Two composting systems were tested through mechanical turning of: 1- a mixture of solid fraction stored for 1 month after solid-liquid separation and cereal straw; 2- recently-separated solid fraction mixed with cotton gin waste. System 2 was recommended for the farm, as it exhibited a fast temperature rise and a long thermophilic phase to ensure compost sanitisation, and high recovery of nutrients (TN 77%, P and K > 85%) and organic matter (45%). The composts obtained were mature, stable and showed a high degree of humification of their organic matter, absence of phytotoxicity and concentrations of nutrients similar to other composts from pig manure or separated slurry solids. However, the introduction of slurry from piglets into the solid-liquid separation system should be avoided in order to reduce the content of Zn in the compost, which lowers its quality. The slurry separation followed by composting of the solid fraction using a passive windrow system, and aeration of the liquid phase, was the most recommendable procedure for the reduction of GHG emissions on the farm. Copyright © 2017 Elsevier Ltd. All rights reserved.
The selection of adhesive systems for resin-based luting agents.
Carville, Rebecca; Quinn, Frank
2008-01-01
The use of resin-based luting agents is ever expanding with the development of adhesive dentistry. A multitude of different adhesive systems are used with resin-based luting agents, and new products are introduced to the market frequently. Traditional adhesives generally required a multiple step bonding procedure prior to cementing with active resin-based luting materials; however, combined agents offer a simple application procedure. Self-etching 'all-in-one' systems claim that there is no need for the use of a separate adhesive process. The following review addresses the advantages and disadvantages of the available adhesive systems used with resin-based luting agents.
Model-Based Prognostics of Hybrid Systems
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal
2015-01-01
Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.
Kwak, Moo Jin; Yoo, Youngmin; Lee, Han Sol; Kim, Jiyeon; Yang, Ji-Won; Han, Jong-In; Im, Sung Gap; Kwon, Jong-Hee
2016-01-13
For the efficient separation of lipid extracted from microalgae cells, a novel membrane was devised by introducing a functional polymer coating onto a membrane surface by means of an initiated chemical vapor deposition (iCVD) process. To this end, a steel-use-stainless (SUS) membrane was modified in a way that its surface energy was systemically modified. The surface modification by conformal coating of functional polymer film allowed for selective separation of oil-water mixture, by harnessing the tuned interfacial energy between each liquid phase and the membrane surface. The surface-modified membrane, when used with chloroform-based solvent, exhibited superb permeate flux, breakthrough pressure, and also separation yield: it allowed separation of 95.5 ± 1.2% of converted lipid (FAME) in the chloroform phase from the water/MeOH phase with microalgal debris. This result clearly supported that the membrane-based lipid separation is indeed facilitated by way of membrane being functionalized, enabling us to simplify the whole downstream process of microalgae-derived biodiesel production.
Chen, Bo; Xu, Junyan; Fu, Qing; Dong, Xuefang; Guo, Zhimou; Jin, Yu; Liang, Xinmiao
2015-07-07
Peptides from scorpion venom represent one of the most promising drug sources for drug discovery for some specific diseases. Current challenges in their separation include high complexity, high homologies and the huge range of peptides. In this paper, a modified strong cation exchange material, named MEX, was utilised for the two-dimensional separation of peptides from complex scorpion venom. The silica-based MEX column was bonded with two functional groups; benzenesulfonic acid and cyanopropyl. To better understand its separation mechanisms, seven standard peptides with different properties were employed in an evaluation study, the results of which showed that two interactions were involved in the MEX column: electrostatic interactions based on benzenesulfonic acid groups dominated the separation of peptides; weak hydrophobic interactions introduced by cyanopropyl groups increased the column's selectivity for peptides with the same charge. This characteristic allowed the MEX column to overcome some of the drawbacks of traditional strong cation exchange (SCX) columns. Furthermore, the study showed the great effects of the acetonitrile (ACN) content, the sodium perchlorate (NaClO4) concentration and the buffer pH in the mobile phase on the peptides' retention and separation selectivity on the MEX column. Subsequently, the MEX column was combined with a C18 column to establish an off-line 2D-MEX × C18 system to separate peptides from scorpion Buthus martensi Karsch (BmK) venom. Due to complementary separation mechanisms in each dimension, a high orthogonality of 47.62% was achieved. Moreover, a good loading capacity, excellent stability and repeatability were exhibited by the MEX column, which are beneficial for its use in future preparation experiments. Therefore, the MEX column could be an alternative to the traditional SCX columns for the separation of peptides from scorpion venom.
Contactless conductivity detector for microchip capillary electrophoresis
NASA Technical Reports Server (NTRS)
Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)
2002-01-01
A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.
Active tensor magnetic gradiometer system final report for Project MM–1514
Smith, David V.; Phillips, Jeffrey D.; Hutton, S. Raymond
2014-01-01
An interactive computer simulation program, based on physical models of system sensors, platform geometry, Earth environment, and spheroidal magnetically-permeable targets, was developed to generate synthetic magnetic field data from a conceptual tensor magnetic gradiometer system equipped with an active primary field generator. The system sensors emulate the prototype tensor magnetic gradiometer system (TMGS) developed under a separate contract for unexploded ordnance (UXO) detection and classification. Time-series data from different simulation scenarios were analyzed to recover physical dimensions of the target source. Helbig-Euler simulations were run with rectangular and rod-like source bodies to determine whether such a system could separate the induced component of the magnetization from the remanent component for each target. This report concludes with an engineering assessment of a practical system design.
NASA Astrophysics Data System (ADS)
He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi
2018-06-01
The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.
A content-based news video retrieval system: NVRS
NASA Astrophysics Data System (ADS)
Liu, Huayong; He, Tingting
2009-10-01
This paper focus on TV news programs and design a content-based news video browsing and retrieval system, NVRS, which is convenient for users to fast browsing and retrieving news video by different categories such as political, finance, amusement, etc. Combining audiovisual features and caption text information, the system automatically segments a complete news program into separate news stories. NVRS supports keyword-based news story retrieval, category-based news story browsing and generates key-frame-based video abstract for each story. Experiments show that the method of story segmentation is effective and the retrieval is also efficient.
Ultrahigh pressure fast size exclusion chromatography for top-down proteomics.
Chen, Xin; Ge, Ying
2013-09-01
Top-down MS-based proteomics has gained a solid growth over the past few years but still faces significant challenges in the LC separation of intact proteins. In top-down proteomics, it is essential to separate the high mass proteins from the low mass species due to the exponential decay in S/N as a function of increasing molecular mass. SEC is a favored LC method for size-based separation of proteins but suffers from notoriously low resolution and detrimental dilution. Herein, we reported the use of ultrahigh pressure (UHP) SEC for rapid and high-resolution separation of intact proteins for top-down proteomics. Fast separation of intact proteins (6-669 kDa) was achieved in < 7 min with high resolution and high efficiency. More importantly, we have shown that this UHP-SEC provides high-resolution separation of intact proteins using a MS-friendly volatile solvent system, allowing the direct top-down MS analysis of SEC-eluted proteins without an additional desalting step. Taken together, we have demonstrated that UHP-SEC is an attractive LC strategy for the size separation of proteins with great potential for top-down proteomics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for removing hydrocarbon contaminants from solid materials
Bala, Gregory A.; Thomas, Charles P.
1995-01-01
A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).
Method for removing hydrocarbon contaminants from solid materials
Bala, G.A.; Thomas, C.P.
1995-10-03
A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.
Apparatus for removing hydrocarbon contaminants from solid materials
Bala, G.A.; Thomas, C.P.
1996-02-13
A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.
Apparatus for removing hydrocarbon contaminants from solid materials
Bala, Gregory A.; Thomas, Charles P.
1996-01-01
A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).
Carbon emission trading system of China: a linked market vs. separated markets
NASA Astrophysics Data System (ADS)
Liu, Yu; Feng, Shenghao; Cai, Songfeng; Zhang, Yaxiong; Zhou, Xiang; Chen, Yanbin; Chen, Zhanming
2013-12-01
The Chinese government intends to upgrade its current provincial carbon emission trading pilots to a nationwide scheme by 2015. This study investigates two of scenarios: separated provincial markets and a linked inter-provincial market. The carbon abatement effects of separated and linked markets are compared using two pilot provinces of Hubei and Guangdong based on a computable general equilibrium model termed Sino-TERMCo2. Simulation results show that the linked market can improve social welfare and reduce carbon emission intensity for the nation as well as for the Hubei-Guangdong bloc compared to the separated market. However, the combined system also distributes welfare more unevenly and thus increases social inequity. On the policy ground, the current results suggest that a well-constructed, nationwide carbon market complemented with adequate welfare transfer policies can be employed to replace the current top-down abatement target disaggregation practice.
Method and apparatus for controlling carrier envelope phase
Chang, Zenghu [Manhattan, KS; Li, Chengquan [Sunnyvale, CA; Moon, Eric [Manhattan, KS
2011-12-06
A chirped pulse amplification laser system. The system generally comprises a laser source, a pulse modification apparatus including first and second pulse modification elements separated by a separation distance, a positioning element, a measurement device, and a feedback controller. The laser source is operable to generate a laser pulse and the pulse modification apparatus operable to modify at least a portion of the laser pulse. The positioning element is operable to reposition at least a portion of the pulse modification apparatus to vary the separation distance. The measurement device is operable to measure the carrier envelope phase of the generated laser pulse and the feedback controller is operable to control the positioning element based on the measured carrier envelope phase to vary the separation distance of the pulse modification elements and control the carrier envelope phase of laser pulses generated by the laser source.
Mass Separation by Metamaterials
Restrepo-Flórez, Juan Manuel; Maldovan, Martin
2016-01-01
Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419
Hvichia, G E; Parveen, Z; Wagner, C; Janning, M; Quidde, J; Stein, A; Müller, V; Loges, S; Neves, R P L; Stoecklein, N H; Wikman, H; Riethdorf, S; Pantel, K; Gorges, T M
2016-06-15
Circulating tumor cells (CTCs) were introduced as biomarkers more than 10 years ago, but capture of viable CTCs at high purity from peripheral blood of cancer patients is still a major technical challenge. Here, we report a novel microfluidic platform designed for marker independent capture of CTCs. The Parsortix™ cell separation system provides size and deformability-based enrichment with automated staining for cell identification, and subsequent recovery (harvesting) of cells from the device. Using the Parsortix™ system, average cell capture inside the device ranged between 42% and 70%. Subsequent harvest of cells from the device ranged between 54% and 69% of cells captured. Most importantly, 99% of the isolated tumor cells were viable after processing in spiking experiments as well as after harvesting from patient samples and still functional for downstream molecular analysis as demonstrated by mRNA characterization and array-based comparative genomic hybridization. Analyzing clinical blood samples from metastatic (n = 20) and nonmetastatic (n = 6) cancer patients in parallel with CellSearch(®) system, we found that there was no statistically significant difference between the quantitative behavior of the two systems in this set of twenty six paired separations. In conclusion, the epitope independent Parsortix™ system enables the isolation of viable CTCs at a very high purity. Using this system, viable tumor cells are easily accessible and ready for molecular and functional analysis. The system's ability for enumeration and molecular characterization of EpCAM-negative CTCs will help to broaden research into the mechanisms of cancer as well as facilitating the use of CTCs as "liquid biopsies." © 2016 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
Butkovskyi, A; Leal, L Hernandez; Zeeman, G; Rijnaarts, H H M
2017-07-01
The quality of anaerobic sludge and struvite from black water treatment system, aerobic sludge from grey water treatment system and effluents of both systems was assessed for organic micropollutant content in order to ensure safety when reusing these products. Use of anaerobic black water sludge and struvite as soil amendments is recommended based on the low micropollutant content. Aerobic grey water sludge is recommended for disposal, because of the relatively high micropollutant concentrations, exceeding those in sewage sludge. Effluents of black and grey water treatment systems require post-treatment prior to reuse, because the measured micropollutant concentrations in the effluents are above ecotoxicological thresholds. Copyright © 2017 Elsevier Inc. All rights reserved.
Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko
2016-01-01
Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.
[Detection of Heart Rate of Fetal ECG Based on STFT and BSS].
Wang, Xu; Cai, Kun
2016-01-01
Changes in heart rate of fetal is function regulating performance of the circulatory system and the central nervous system, it is significant to detect heart rate of fetus in perinatal fetal. This paper puts forward the fetal heart rate detection method based on short time Fourier transform and blind source separation. First of all, the mixed ECG signal was preprocessed, and then the wavelet transform technique was used to separate the fetal ECG signal with noise from mixed ECG signal, after that, the short-time Fourier transform and the blind separation were carried on it, and then calculated the correlation coefficient of it, Finally, An independent component that it has strongest correlation with the original signal was selected to make FECG peak detection and calculated the fetal instantaneous heart rate. The experimental results show that the method can improve the detection rate of the FECG peak (R), and it has high accuracy in fixing peak(R) location in the case of low signal-noise ratio.
Regaining Lost Separation in a Piloted Simulation of Autonomous Aircraft Operations
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Eischeid, Todd M.; Palmer, Michael T.; Wing, David J.
2002-01-01
NASA is currently investigating a new concept of operations for the National Airspace System, designed to improve capacity while maintaining or improving current levels of safety. This concept, known as Distributed Air/Ground Traffic Management (DAG-TM), allows appropriately equipped autonomous aircraft to maneuver freely for flight optimization while resolving conflicts with other traffic and staying out of special use airspace and hazardous weather. While Airborne Separation Assurance System (ASAS) tools would normally allow pilots to resolve conflicts before they become hazardous, evaluation of system performance in sudden, near-term conflicts is needed in order to determine concept feasibility. If an acceptable safety level can be demonstrated in these situations, then operations may be conducted with lower separation minimums. An experiment was conducted in NASA Langley s Air Traffic Operations Lab to address issues associated with resolving near-term conflicts and the potential use of lower separation minimums. Sixteen commercial airline pilots flew a total of 32 traffic scenarios that required them to use prototype ASAS tools to resolve close range pop-up conflicts. Required separation standards were set at either 3 or 5 NM lateral spacing, with 1000 ft vertical separation being used for both cases. Reducing the lateral separation from 5 to 3 NM did not appear to increase operational risk, as indicated by the proximity to the intruder aircraft. Pilots performed better when they followed tactical guidance cues provided by ASAS than when they didn't follow the guidance. As air-air separation concepts are evolved, further studies will consider integration issues between ASAS and existing Airborne Collision Avoidance Systems (ACAS).These types of non-normal events will require the ASAS to provide effective alerts and resolutions prior to the time that an Airborne Collision Avoidance System (ACAS) would give a Resolution Advisory (RA). When an RA is issued, a pilot must take immediate action in order to avoid a potential near miss. The Traffic Alert and Collision Avoidance System (TCAS) II currently functions as an ACAS aboard commercial aircraft. Depending on the own aircraft s altitude, TCAS only issues RA s 15-35 seconds prior to the Closest Point of Approach (CPA). Prior to an RA, DAG-TM pilots operating autonomous aircraft must rely solely on ASAS for resolution guidance. An additional area of DAG-TM concept feasibility relates to a potential reduction in separation standards. Lower separation standards are likely needed in order to improve NAS efficiency and capacity. Current separation minimums are based in large part on the capabilities of older radar systems. Safety assessments are needed to determine the feasibility of reduced separation minimums. They will give strong consideration to surveillance system performance, including accuracy, integrity, and availability. Candidate surveillance systems include Automatic Dependent Surveillance-Broadcast (ADS-B) and multi-lateration systems. Considering studies done for Reduced Vertical Separation Minimums (RVSM) operations, it is likely that flight technical errors will also be considered. In addition to a thorough evaluation of surveillance system performance, a potential decision to lower the separation standards should also take operational considerations into account. An ASAS Safety Assessment study identified improper maneuvering in response to a conflict (due to ambiguous or improper resolution commands or a pilot s failure to comply with the resolution) as a potential safety risk. If near-term conflicts with lower separation minimums were determined to be more challenging for pilots, the severity of these risks could be even greater.
Nondestructive testing of moisture separator reheater tubing system using Hall sensor array
NASA Astrophysics Data System (ADS)
Le, Minhhuy; Kim, Jungmin; Kim, Jisoo; Do, Hwa Sik; Lee, Jinyi
2018-01-01
This paper presents a nondestructive testing system for inspecting the moisture separator reheater (MSR) tubing system in a nuclear power plant. The technique is based on partial saturation eddy current testing in which a Hall sensor array is used to measure the radial component of the electromagnetic field distributed in the tubes. A finned MRS tube of ferritic stainless steel (SS439) with artificial, flat-bottom hole-type defects was used in the experiments. The results show that the proposed system has potential applications in the MSR system or ferromagnetic material tubes in general, which could detect the artificial defects of about 20% of the wall thickness (0.24 mm). Furthermore, the defect volume could be quantitatively evaluated.
Blind source separation for ambulatory sleep recording
Porée, Fabienne; Kachenoura, Amar; Gauvrit, Hervé; Morvan, Catherine; Carrault, Guy; Senhadji, Lotfi
2006-01-01
This paper deals with the conception of a new system for sleep staging in ambulatory conditions. Sleep recording is performed by means of five electrodes: two temporal, two frontal and a reference. This configuration enables to avoid the chin area to enhance the quality of the muscular signal and the hair region for patient convenience. The EEG, EMG and EOG signals are separated using the Independent Component Analysis approach. The system is compared to a standard sleep analysis system using polysomnographic recordings of 14 patients. The overall concordance of 67.2% is achieved between the two systems. Based on the validation results and the computational efficiency we recommend the clinical use of the proposed system in a commercial sleep analysis platform. PMID:16617618
DEMONSTRATION BULLETIN: SOIL/SEDIMENT WASHING SYSTEM BERGMANN USA
The Bergmann USA Soil/Sediment Washing System is a waste minimization technique designed to separate or "partition" soils and sediments by grain size and density. In this water-based volume reduction process, hazardous contaminants are concentrated into a small residual portion...
Output-Based Adaptive Meshing Applied to Space Launch System Booster Separation Analysis
NASA Technical Reports Server (NTRS)
Dalle, Derek J.; Rogers, Stuart E.
2015-01-01
This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid code with comparisons to Overflow viscous CFD results and a wind tunnel test performed at NASA Langley Research Center's Unitary PlanWind Tunnel. The Space Launch System (SLS) launch vehicle includes two solid-rocket boosters that burn out before the primary core stage and thus must be discarded during the ascent trajectory. The main challenges for creating an aerodynamic database for this separation event are the large number of basis variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by the booster separation motors. The solid-rocket boosters are modified from their form when used with the Space Shuttle Launch Vehicle, which has a rich flight history. However, the differences between the SLS core and the Space Shuttle External Tank result in the boosters separating with much narrower clearances, and so reducing aerodynamic uncertainty is necessary to clear the integrated system for flight. This paper discusses an approach that has been developed to analyze about 6000 wind tunnel simulations and 5000 flight vehicle simulations using Cart3D in adaptive-meshing mode. In addition, a discussion is presented of Overflow viscous CFD runs used for uncertainty quantification. Finally, the article presents lessons learned and improvements that will be implemented in future separation databases.
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
A competency-based, field-centered systems approach to elementary school teacher education was designed to bring about specified, measurable outcomes, to have evidence of its effectiveness continually available, and to be adaptive in the light of that evidence. The model was separated into two interdependent parts, the instructional model and the…
Separate Flow Nozzle Test Status Meeting
NASA Technical Reports Server (NTRS)
Saiyed, Naseem H. (Editor)
2000-01-01
NASA Glenn, in partnership with US industry, completed an exhaustive experimental study on jet noise reduction from separate flow nozzle exhaust systems. The study developed a data base on various bypass ratio nozzles, screened quietest configurations and acquired pertinent data for predicting the plume behavior and ultimately its corresponding jet noise. Several exhaust system configurations provided over 2.5 EPNdB jet noise reduction at take-off power. These data were disseminated to US aerospace industry in a conference hosted by NASA GRC whose proceedings are shown in this report.
Rusnak, James E.
1987-01-01
Due to previous systems selections, many hospitals (health care facilities) are faced with the problem of fragmented data bases containing clinical, demographic and financial information. Projects to select and implement a Case Mix Management System (CMMS) provide an opportunity to reduce the number of separate physical files and to migrate towards systems with an integrated data base. The number of CMMS candidate systems is often restricted due to data base and system interface issues. The hospital must insure the CMMS project provides a means to implement an integrated on-line hospital information data base for use by departments in operating under a DRG-based Prospective Payment System. This paper presents guidelines for use in selecting a Case Mix Mangement System to meet the hospital's financial and operations planning, budgeting, marketing, and other management needs, while considering the data base implications of the implementation.
Ground System Architectures Workshop GMSEC SERVICES SUITE (GSS): an Agile Development Story
NASA Technical Reports Server (NTRS)
Ly, Vuong
2017-01-01
The GMSEC (Goddard Mission Services Evolution Center) Services Suite (GSS) is a collection of tools and software services along with a robust customizable web-based portal that enables the user to capture, monitor, report, and analyze system-wide GMSEC data. Given our plug-and-play architecture and the needs for rapid system development, we opted to follow the Scrum Agile Methodology for software development. Being one of the first few projects to implement the Agile methodology at NASA GSFC, in this presentation we will present our approaches, tools, successes, and challenges in implementing this methodology. The GMSEC architecture provides a scalable, extensible ground and flight system for existing and future missions. GMSEC comes with a robust Application Programming Interface (GMSEC API) and a core set of Java-based GMSEC components that facilitate the development of a GMSEC-based ground system. Over the past few years, we have seen an upbeat in the number of customers who are moving from a native desktop application environment to a web based environment particularly for data monitoring and analysis. We also see a need to provide separation of the business logic from the GUI display for our Java-based components and also to consolidate all the GUI displays into one interface. This combination of separation and consolidation brings immediate value to a GMSEC-based ground system through increased ease of data access via a uniform interface, built-in security measures, centralized configuration management, and ease of feature extensibility.
Field-Controlled Electrical Switch with Liquid Metal.
Wissman, James; Dickey, Michael D; Majidi, Carmel
2017-12-01
When immersed in an electrolyte, droplets of Ga-based liquid metal (LM) alloy can be manipulated in ways not possible with conventional electrocapillarity or electrowetting. This study demonstrates how LM electrochemistry can be exploited to coalesce and separate droplets under moderate voltages of ~1-10 V. This novel approach to droplet interaction can be explained with a theory that accounts for oxidation and reduction as well as fluidic instabilities. Based on simulations and experimental analysis, this study finds that droplet separation is governed by a unique limit-point instability that arises from gradients in bipolar electrochemical reactions that lead to gradients in interfacial tension. The LM coalescence and separation are used to create a field-programmable electrical switch. As with conventional relays or flip-flop latch circuits, the system can transition between bistable (separated or coalesced) states, making it useful for memory storage, logic, and shape-programmable circuitry using entirely liquids instead of solid-state materials.
NASA Astrophysics Data System (ADS)
Plaimer, Martin; Breitfuß, Christoph; Sinz, Wolfgang; Heindl, Simon F.; Ellersdorfer, Christian; Steffan, Hermann; Wilkening, Martin; Hennige, Volker; Tatschl, Reinhard; Geier, Alexander; Schramm, Christian; Freunberger, Stefan A.
2016-02-01
Lithium-ion batteries are in widespread use in electric vehicles and hybrid vehicles. Besides features like energy density, cost, lifetime, and recyclability the safety of a battery system is of prime importance. The separator material impacts all these properties and requires therefore an informed selection. The interplay between the mechanical and electrochemical properties as key selection criteria is investigated. Mechanical properties were investigated using tensile and puncture penetration tests at abuse relevant conditions. To investigate the electrochemical performance in terms of effective conductivity a method based on impedance spectroscopy was introduced. This methodology is applied to evaluate ten commercial separators which allows for a trade-off analysis of mechanical versus electrochemical performance. Based on the results, and in combination with other factors, this offers an effective approach to select suitable separators for automotive applications.
Chen, Tao; Liu, Yongling; Zou, Denglang; Chen, Chen; You, Jinmao; Zhou, Guoying; Sun, Jing; Li, Yulin
2014-01-01
This study presents an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum. A new solvent system composed of petroleum ether/ethyl acetate/water (4:2:1, v/v/v) was developed for the liquid-liquid extraction of the crude extract from R. tanguticum. As a result, emodin, aloe-emodin, physcion, and chrysophanol were greatly enriched in the organic layer. In addition, an efficient method was successfully established to separate and purify the above anthraquinones by high-speed counter-current chromatography and preparative HPLC. This study supplies a new alternative method for the rapid enrichment, separation, and purification of emodin, aloe-emodin, physcione, and chrysophanol. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three dimensional separation trap based on dielectrophoresis and use thereof
Mariella, Jr., Raymond P.
2004-05-04
An apparatus is adapted to separate target materials from other materials in a flow containing the target materials and other materials. A dielectrophoretic trap is adapted to receive the target materials and the other materials. At least one electrode system is provided in the trap. The electrode system has a three-dimensional configuration. The electrode system includes a first electrode and a second electrode that are shaped and positioned relative to each such that application of an electrical voltage to the first electrode and the second electrode creates a dielectrophoretic force and said dielectrophoretic force does not reach zero between the first electrode and the second electrode.
Wang, Huaqing; Li, Ruitong; Tang, Gang; Yuan, Hongfang; Zhao, Qingliang; Cao, Xi
2014-01-01
A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to improve the compound faults diagnose of rolling bearings via signals’ separation, the present paper proposes a new method to identify compound faults from measured mixed-signals, which is based on ensemble empirical mode decomposition (EEMD) method and independent component analysis (ICA) technique. With the approach, a vibration signal is firstly decomposed into intrinsic mode functions (IMF) by EEMD method to obtain multichannel signals. Then, according to a cross correlation criterion, the corresponding IMF is selected as the input matrix of ICA. Finally, the compound faults can be separated effectively by executing ICA method, which makes the fault features more easily extracted and more clearly identified. Experimental results validate the effectiveness of the proposed method in compound fault separating, which works not only for the outer race defect, but also for the rollers defect and the unbalance fault of the experimental system. PMID:25289644
A Gas Chromatographic Continuous Emissions Monitoring System for the Determination of VOCs and HAPs.
Coleman, William M; Gordon, Bert M
1996-01-01
This article describes a new gas chromatography-based emissions monitoring system for measuring volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). The system is composed of a dual-column gas chromatograph equipped with thermal conductivity detectors, in which separation is optimized for fast chromatography. The system has the necessary valving for stream selection, which allows automatic calibration of the system at predetermined times and successive measurement of individual VOCs before and after a control device. Nine different VOCs (two of which are HAPs), plus methane (CH4) and carbon dioxide (CO2) are separated and quantified every two minutes. The accuracy and precision of this system has been demonstrated to be greater than 95%. The system employs a mass flow measurement device and also calculates and displays processed emission data, such as control device efficiency and total weight emitted during given time periods. Two such systems have been operational for one year in two separate gravure printing facilities; minimal upkeep is required, about one hour per month. One of these systems, used before and after a carbon adsorber, has been approved by the pertinent local permitting authority.
Physical angular momentum separation for QED
NASA Astrophysics Data System (ADS)
Sun, Weimin
2017-04-01
We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various gauge-invariant extensions (GIEs). Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.
USDA-ARS?s Scientific Manuscript database
There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...
Płocharz, Paweł; Klimek-Turek, Anna; Dzido, Tadeusz H
2010-07-16
Kinetic performance, measured by plate height, of High-Performance Thin-Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Pressurized Planar Electrochromatography (PPEC) was compared for the systems with adsorbent of the HPTLC RP18W plate from Merck as the stationary phase and the mobile phase composed of acetonitrile and buffer solution. The HPLC column was packed with the adsorbent, which was scrapped from the chromatographic plate mentioned. An additional HPLC column was also packed with adsorbent of 5 microm particle diameter, C18 type silica based (LiChrosorb RP-18 from Merck). The dependence of plate height of both HPLC and PPEC separating systems on flow velocity of the mobile phase and on migration distance of the mobile phase in TLC system was presented applying test solute (prednisolone succinate). The highest performance, amongst systems investigated, was obtained for the PPEC system. The separation efficiency of the systems investigated in the paper was additionally confirmed by the separation of test component mixture composed of six hormones. 2010 Elsevier B.V. All rights reserved.
Output transformations and separation results for feedback linearisable delay systems
NASA Astrophysics Data System (ADS)
Cacace, F.; Conte, F.; Germani, A.
2018-04-01
The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.
Zhang, S F; Zhang, L L; Luo, K; Sun, Z X; Mei, X X
2014-04-01
The separation properties of the aluminium-plastic laminates in postconsumer Tetra Pak structure were studied in this present work. The organic solvent blend of benzene-ethyl alcohol-water was used as the separation reagent. Then triangle coordinate figure analysis was taken to optimize the volume proportion of various components in the separating agent and separation process. And the separation temperature of aluminium-plastic laminates was determined by the separation time, efficiency, and total mass loss of products. The results show that cost-efficient separations perform best with low usage of solvents at certain temperatures, for certain times, and within a certain range of volume proportions of the three components in the solvent agent. It is also found that similar solubility parameters of solvents and polyethylene adhesives (range 26.06-34.85) are a key factor for the separation of the aluminium-plastic laminates. Such multisolvent processes based on the combined-system concept will be vital to applications in the recycling industry.
NASA Astrophysics Data System (ADS)
Li, Xiang; Luo, Ming; Qiu, Ying; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan; Yang, Qi
2018-02-01
In this paper, channel equalization techniques for coherent optical fiber transmission systems based on independent component analysis (ICA) are reviewed. The principle of ICA for blind source separation is introduced. The ICA based channel equalization after both single-mode fiber and few-mode fiber transmission for single-carrier and orthogonal frequency division multiplexing (OFDM) modulation formats are investigated, respectively. The performance comparisons with conventional channel equalization techniques are discussed.
NASA Astrophysics Data System (ADS)
Liu, Shuang; Liu, Fei; Hu, Shaohua; Yin, Zhenbiao
The major power information of the main transmission system in machine tools (MTSMT) during machining process includes effective output power (i.e. cutting power), input power and power loss from the mechanical transmission system, and the main motor power loss. These information are easy to obtain in the lab but difficult to evaluate in a manufacturing process. To solve this problem, a separation method is proposed here to extract the MTSMT power information during machining process. In this method, the energy flow and the mathematical models of major power information of MTSMT during the machining process are set up first. Based on the mathematical models and the basic data tables obtained from experiments, the above mentioned power information during machining process can be separated just by measuring the real time total input power of the spindle motor. The operation program of this method is also given.
Quantification of false positive reduction in nucleic acid purification on hemorrhagic fever DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Pohl, Kenneth Roy; Derzon, Mark Steven
2006-11-01
Columbia University has developed a sensitive highly multiplexed system for genetic identification of nucleic acid targets. The primary obstacle to implementing this technology is the high rate of false positives due to high levels of unbound reporters that remain within the system after hybridization. The ability to distinguish between free reporters and reporters bound to targets limits the use of this technology. We previously demonstrated a new electrokinetic method for binary separation of kb pair long DNA molecules and oligonucleotides. The purpose of this project 99864 is to take these previous demonstrations and further develop the technique and hardware formore » field use. Specifically, our objective was to implement separation in a heterogeneous sample (containing target DNA and background oligo), to perform the separation in a flow-based device, and to develop all of the components necessary for field testing a breadboard prototype system.« less
Separability criteria based on Heisenberg–Weyl representation of density matrices
NASA Astrophysics Data System (ADS)
Chang, Jingmei; Cui, Meiyu; Zhang, Tinggui; Fei, Shao-Ming
2018-03-01
Separability is an important problem in theory of quantum entanglement. By using the Bloch representation of quantum states in terms of the Heisenberg–Weyl observable basis, we present a new separability criterion for bipartite quantum systems. It is shown that this criterion can be better than the previous ones in detecting entanglement. The results are generalized to multipartite quantum states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11501153, 11661031, and 11675113) and the National Natural Science Foundation of Hainan Province, China (Grant No. 20161006).
Xu, Chun-Xiu; Yin, Xue-Feng
2011-02-04
A chip-based microfluidic system for high-throughput single-cell analysis is described. The system was integrated with continuous introduction of individual cells, rapid dynamic lysis, capillary electrophoretic (CE) separation and laser induced fluorescence (LIF) detection. A cross microfluidic chip with one sheath-flow channel located on each side of the sampling channel was designed. The labeled cells were hydrodynamically focused by sheath-flow streams and sequentially introduced into the cross section of the microchip under hydrostatic pressure generated by adjusting liquid levels in the reservoirs. Combined with the electric field applied on the separation channel, the aligned cells were driven into the separation channel and rapidly lysed within 33ms at the entry of the separation channel by Triton X-100 added in the sheath-flow solution. The maximum rate for introducing individual cells into the separation channel was about 150cells/min. The introduction of sheath-flow streams also significantly reduced the concentration of phosphate-buffered saline (PBS) injected into the separation channel along with single cells, thus reducing Joule heating during electrophoretic separation. The performance of this microfluidic system was evaluated by analysis of reduced glutathione (GSH) and reactive oxygen species (ROS) in single erythrocytes. A throughput of 38cells/min was obtained. The proposed method is simple and robust for high-throughput single-cell analysis, allowing for analysis of cell population with considerable size to generate results with statistical significance. Copyright © 2010 Elsevier B.V. All rights reserved.
Wang, Yuhe; Li, Yanbin; Wang, Ronghui; Wang, Maohua; Lin, Jianhan
2017-04-01
As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three-dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer-modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle-virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three-dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate-buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus-nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bonne, F.; Bonnay, P.; Hoa, C.; Mahoudeau, G.; Rousset, B.
2017-02-01
This papers deals with the Japan Torus-60 Super Advanced fusion experiment JT-60SA cryogenic system. A presentation of the JT-60SA cryogenic system model, from 300K to 4.4K -using the Matlab/Simulink/Simscape Simcryogenics library- will be given. As a first validation of our modelling strategy, the obtained operating point will be compared with the one obtained from HYSYS simulations. In the JT60-SA tokamak, pulsed heat loads are expected to be coming from the plasma and must be handled properly, using both appropriate refrigerator architecture and appropriate control model, to smooth the heat load. This paper presents model-based designed PID control schemes to control the helium mass inside the phase separator. The helium mass inside the phase separator as been chosen to be the variable of interest in the phase separator since it is independent of the pressure which can vary from 1 bar to 1.8 bar during load smoothing. Dynamics simulations will be shown to assess the legitimacy of the proposed strategy. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
Andersson, Camilla; Stage, Jesper
2018-03-28
Swedish legislation makes municipalities responsible for recycling or disposing of household waste. Municipalities therefore play an important role in achieving Sweden's increased levels of ambition in the waste management area and in achieving the goal of a more circular economy. This paper studies how two municipal policy instruments - weight-based waste tariffs and special systems for the collection of food waste - affect the collected volumes of different types of waste. We find that a system of collecting food waste separately is more effective overall than imposing weight-based waste tariffs in respect not only of reducing the amounts of waste destined for incineration, but also of increasing materials recycling and biological recovery, despite the fact that the direct incentive effects of these two systems should be similar. Separate food waste collection was associated with increased recycling not only of food waste but also of other waste. Introducing separate food waste collection indirectly signals to households that recycling is important and desirable, and our results suggest that this signalling effect may be as important as direct incentive effects. Copyright © 2018. Published by Elsevier Ltd.
Radchenko, Valery; Meyer, Catherine Anne Louise; Engle, Jonathan Ward; ...
2016-11-24
Scandium-44 g (half-life 3.97 h) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, 18F, due to its favorable decay parameters. One source of 44gSc is the long-lived parent nuclide 44Ti (half-life 60.0 a). A 44Ti/ 44gSc generator would have the ability to provide radionuclidically pure 44gSc on a daily basis. The production of 44Ti via the 45Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) 44Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems basedmore » on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Lastly, results indicate that ZR resin in HCl media represents an effective 44Ti/ 44gSc separation system.« less
Pattern formation in mass conserving reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Brauns, Fridtjof; Halatek, Jacob; Frey, Erwin
We present a rigorous theoretical framework able to generalize and unify pattern formation for quantitative mass conserving reaction-diffusion models. Mass redistribution controls chemical equilibria locally. Separation of diffusive mass redistribution on the level of conserved species provides a general mathematical procedure to decompose complex reaction-diffusion systems into effectively independent functional units, and to reveal the general underlying bifurcation scenarios. We apply this framework to Min protein pattern formation and identify the mechanistic roles of both involved protein species. MinD generates polarity through phase separation, whereas MinE takes the role of a control variable regulating the existence of MinD phases. Hence, polarization and not oscillations is the generic core dynamics of Min proteins in vivo. This establishes an intrinsic mechanistic link between the Min system and a broad class of intracellular pattern forming systems based on bistability and phase separation (wave-pinning). Oscillations are facilitated by MinE redistribution and can be understood mechanistically as relaxation oscillations of the polarization direction.
Englert, Michael; Vetter, Walter
2014-05-16
Countercurrent chromatography (CCC) is an efficient preparative separation technique based on the liquid-liquid distribution of compounds between two phases of a biphasic liquid system. The crucial parameter for the successful application is the selection of the solvent system. Especially for nonpolar analytes the selection options are limited. On the search for a suitable solvent system for the separation of an alkyl hydroxybenzoate homologous series, we noted that the substitution of cyclohexane with n-hexane was accompanied with unexpected differences in partitioning coefficients of the individual analytes. In this study, we investigated the influence of the subsequent substitution of n-hexane with cyclohexane in the n-hexane/cyclohexane/tert-butylmethylether/methanol/water solvent system family. Exact phase compositions and polarity, viscosity and density differences were determined to characterize the different mixtures containing n-hexane and/or cyclohexane. Findings were confirmed by performing CCC separations with different mixtures, which led to baseline resolution for positional isomers when increasing the amount of cyclohexane while the resolution between two pairs of structural isomers decreased. With the new methodology described, structurally similar compounds could be resolved by choosing a certain ratio of n-hexane to cyclohexane. Copyright © 2014 Elsevier B.V. All rights reserved.
Wagler, Patrick F; Tangen, Uwe; Maeke, Thomas; McCaskill, John S
2012-07-01
The topic addressed is that of combining self-constructing chemical systems with electronic computation to form unconventional embedded computation systems performing complex nano-scale chemical tasks autonomously. The hybrid route to complex programmable chemistry, and ultimately to artificial cells based on novel chemistry, requires a solution of the two-way massively parallel coupling problem between digital electronics and chemical systems. We present a chemical microprocessor technology and show how it can provide a generic programmable platform for complex molecular processing tasks in Field Programmable Chemistry, including steps towards the grand challenge of constructing the first electronic chemical cells. Field programmable chemistry employs a massively parallel field of electrodes, under the control of latched voltages, which are used to modulate chemical activity. We implement such a field programmable chemistry which links to chemistry in rather generic, two-phase microfluidic channel networks that are separated into weakly coupled domains. Electric fields, produced by the high-density array of electrodes embedded in the channel floors, are used to control the transport of chemicals across the hydrodynamic barriers separating domains. In the absence of electric fields, separate microfluidic domains are essentially independent with only slow diffusional interchange of chemicals. Electronic chemical cells, based on chemical microprocessors, exploit a spatially resolved sandwich structure in which the electronic and chemical systems are locally coupled through homogeneous fine-grained actuation and sensor networks and play symmetric and complementary roles. We describe how these systems are fabricated, experimentally test their basic functionality, simulate their potential (e.g. for feed forward digital electrophoretic (FFDE) separation) and outline the application to building electronic chemical cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Bezold, Franziska; Weinberger, Maria E; Minceva, Mirjana
2017-03-31
Tocopherols are a class of molecules with vitamin E activity. Among those, α-tocopherol is the most important vitamin E source in the human diet. The purification of tocopherols involving biphasic liquid systems can be challenging since these vitamins are poorly soluble in water. Deep eutectic solvents (DES) can be used to form water-free biphasic systems and have already proven applicable for centrifugal partition chromatography separations. In this work, a computational solvent system screening was performed using the predictive thermodynamic model COSMO-RS. Liquid-liquid equilibria of solvent systems composed of alkanes, alcohols and DES, as well as partition coefficients of α-tocopherol, β-tocopherol, γ-tocopherol, and σ-tocopherol in these biphasic solvent systems were calculated. From the results the best suited biphasic solvent system, namely heptane/ethanol/choline chloride-1,4-butanediol, was chosen and a batch injection of a tocopherol mixture, mainly consisting of α- and γ-tocopherol, was performed using a centrifugal partition chromatography set up (SCPE 250-BIO). A separation factor of 1.74 was achieved for α- and γ-tocopherol. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Wenlong; Jiao, Changhong; Li, Xin; Xie, Yongshu; Nakatani, Keitaro; Tian, He; Zhu, Weihong
2014-04-25
Endowing both solvent independency and excellent thermal bistability, the benzobis(thiadiazole)-bridged diarylethene system provides an efficient approach to realize extremely high photocyclization quantum yields (Φo-c , up to 90.6 %) by both separating completely pure anti-parallel conformer and suppressing intramolecular charge transfer (ICT). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polynomial fuzzy observer designs: a sum-of-squares approach.
Tanaka, Kazuo; Ohtake, Hiroshi; Seo, Toshiaki; Tanaka, Motoyasu; Wang, Hua O
2012-10-01
This paper presents a sum-of-squares (SOS) approach to polynomial fuzzy observer designs for three classes of polynomial fuzzy systems. The proposed SOS-based framework provides a number of innovations and improvements over the existing linear matrix inequality (LMI)-based approaches to Takagi-Sugeno (T-S) fuzzy controller and observer designs. First, we briefly summarize previous results with respect to a polynomial fuzzy system that is a more general representation of the well-known T-S fuzzy system. Next, we propose polynomial fuzzy observers to estimate states in three classes of polynomial fuzzy systems and derive SOS conditions to design polynomial fuzzy controllers and observers. A remarkable feature of the SOS design conditions for the first two classes (Classes I and II) is that they realize the so-called separation principle, i.e., the polynomial fuzzy controller and observer for each class can be separately designed without lack of guaranteeing the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. Although, for the last class (Class III), the separation principle does not hold, we propose an algorithm to design polynomial fuzzy controller and observer satisfying the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. All the design conditions in the proposed approach can be represented in terms of SOS and are symbolically and numerically solved via the recently developed SOSTOOLS and a semidefinite-program solver, respectively. To illustrate the validity and applicability of the proposed approach, three design examples are provided. The examples demonstrate the advantages of the SOS-based approaches for the existing LMI approaches to T-S fuzzy observer designs.
Cognitive Control Predicts Use of Model-Based Reinforcement-Learning
Otto, A. Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D.
2015-01-01
Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information—in the service of overcoming habitual, stimulus-driven responses—in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior. PMID:25170791
Architecture of an E-Learning System with Embedded Authoring Support.
ERIC Educational Resources Information Center
Baudry, Andreas; Bungenstock, Michael; Mertsching, Barbel
This paper introduces an architecture for an e-learning system with an embedded authoring system. Based on the metaphor of a construction kit, this approach offers a general solution for specific content creation and publication. The learning resources are IMS "Content Packages" with a special structure to separate content and presentation. These…
Madhwani, Tejal; McBain, Andrew J
2016-01-01
The effect of humoral immunity on the composition of the oral microbiota is less intensively investigated than hygiene and diet, in part due to a lack of simple and robust systems for investigating interactions between salivary immunoglobulins and oral bacteria. Here we report the application of an ex situ method to investigate the specificity of salivary immunoglobulins for salivary bacteria. Saliva collected from six volunteers was separated into immunoglobulin and microbial fractions, and the microbial fractions were then directly exposed to salivary immunoglobulins of "self" and "non-self" origin. Antibody-selected bacteria were separated from their congeners using a magnetic bead system, selective for IgA or IgG isotypes. The positively selected fractions were then characterized using gel-based eubacterial-specific DNA profiling. The eubacterial profiles of positively selected fractions diverged significantly from profiles of whole salivary consortia based on volunteer (P≤ 0.001%) and immunoglobulin origin (P≤ 0.001%), but not immunoglobulin isotype (P = 0.2). DNA profiles of separated microbial fractions were significantly (p≤ 0.05) less diverse than whole salivary consortia and included oral and environmental bacteria. Consortia selected using self immunoglobulins were generally less diverse than those selected with immunoglobulins of non-self origin. Magnetic bead separation facilitated the testing of interactions between salivary antibodies and oral bacteria, showing that these interactions are specific and may reflect differences in recognition by self and non-self immunoglobulins. Further development of this system could improve understanding of the relationship between the oral microbiota and the host immune system and of mechanisms underlying the compositional stability of the oral microbiota.
Automated Conflict Resolution, Arrival Management and Weather Avoidance for ATM
NASA Technical Reports Server (NTRS)
Erzberger, H.; Lauderdale, Todd A.; Chu, Yung-Cheng
2010-01-01
The paper describes a unified solution to three types of separation assurance problems that occur in en-route airspace: separation conflicts, arrival sequencing, and weather-cell avoidance. Algorithms for solving these problems play a key role in the design of future air traffic management systems such as NextGen. Because these problems can arise simultaneously in any combination, it is necessary to develop integrated algorithms for solving them. A unified and comprehensive solution to these problems provides the foundation for a future air traffic management system that requires a high level of automation in separation assurance. The paper describes the three algorithms developed for solving each problem and then shows how they are used sequentially to solve any combination of these problems. The first algorithm resolves loss-of-separation conflicts and is an evolution of an algorithm described in an earlier paper. The new version generates multiple resolutions for each conflict and then selects the one giving the least delay. Two new algorithms, one for sequencing and merging of arrival traffic, referred to as the Arrival Manager, and the other for weather-cell avoidance are the major focus of the paper. Because these three problems constitute a substantial fraction of the workload of en-route controllers, integrated algorithms to solve them is a basic requirement for automated separation assurance. The paper also reviews the Advanced Airspace Concept, a proposed design for a ground-based system that postulates redundant systems for separation assurance in order to achieve both high levels of safety and airspace capacity. It is proposed that automated separation assurance be introduced operationally in several steps, each step reducing controller workload further while increasing airspace capacity. A fast time simulation was used to determine performance statistics of the algorithm at up to 3 times current traffic levels.
Miniaturized protein separation using a liquid chromatography column on a flexible substrate
NASA Astrophysics Data System (ADS)
Yang, Yongmo; Chae, Junseok
2008-12-01
We report a prototype protein separator that successfully miniaturizes existing technology for potential use in biocompatible health monitoring implants. The prototype is a liquid chromatography (LC) column (LC mini-column) fabricated on an inexpensive, flexible, biocompatible polydimethylsiloxane (PDMS) enclosure. The LC mini-column separates a mixture of proteins using size exclusion chromatography (SEC) with polydivinylbenzene beads (5-20 µm in diameter with 10 nm pore size). The LC mini-column is smaller than any commercially available LC column by a factor of ~11 000 and successfully separates denatured and native protein mixtures at ~71 psi of the applied fluidic pressure. Separated proteins are analyzed using NuPAGE-gel electrophoresis, high-performance liquid chromatography (HPLC) and an automated electrophoresis system. Quantitative HPLC results demonstrate successful separation based on intensity change: within 12 min, the intensity between large and small protein peaks changed by a factor of ~20. In further evaluation using the automated electrophoresis system, the plate height of the LC mini-column is between 36 µm and 100 µm. The prototype LC mini-column shows the potential for real-time health monitoring in applications that require inexpensive, flexible implant technology that can function effectively under non-laboratory conditions.
UNITRAN (UNIversal TRANslator): A Principle-Based Approach to Machine Translation.
1987-12-01
C*TENDONOSLA*) C*YENDO NOS LA *))) 0 %4 APPENDIX D. TRANSLATION SYSTEM PARAMETERS 222 0 1 :MERGES I ((A EL LADO DE ) (AL-.LADO- DE )) ((ACERCA DE ...not only permits a language to be de - ’Slocuim’s system ( 1994a) relies on a separate set of context-free language-specific rules for each source and...requirements as small subject domain, narrow linguistic coverage, and enormous lexical entries (as found in exclusively semantic-based systems). Thus
Fluid dynamic mechanisms and interactions within separated flows
NASA Astrophysics Data System (ADS)
Dutton, J. C.; Addy, A. L.
1990-02-01
The significant results of a joint research effort investigating the fundamental fluid dynamic mechanisms and interactions within high-speed separated flows are presented in detail. The results have obtained through analytical and numerical approaches, but with primary emphasis on experimental investigations of missile and projectile base flow-related configurations. The objectives of the research program focus on understanding the component mechanisms and interactions which establish and maintain high-speed separated flow regions. The analytical and numerical efforts have centered on unsteady plume-wall interactions in rocket launch tubes and on predictions of the effects of base bleed on transonic and supersonic base flowfields. The experimental efforts have considered the development and use of a state-of-the-art two component laser Doppler velocimeter (LDV) system for experiments with planar, two-dimensional, small-scale models in supersonic flows. The LDV experiments have yielded high quality, well documented mean and turbulence velocity data for a variety of high-speed separated flows including initial shear layer development, recompression/reattachment processes for two supersonic shear layers, oblique shock wave/turbulent boundary layer interactions in a compression corner, and two-stream, supersonic, near-wake flow behind a finite-thickness base.
Vortex Advisory System Safety Analysis : Volume 1. Analytical Model
DOT National Transportation Integrated Search
1978-09-01
The Vortex Advisory System (VAS) is based on wind criterion--when the wind near the runway end is outside of the criterion, all interarrival Instrument Flight Rules (IFR) aircraft separations can be set at 3 nautical miles. Five years of wind data ha...
Vortex Advisory System : Volume 1. Effectiveness for Selected Airports.
DOT National Transportation Integrated Search
1980-05-01
The Vortex Advisory System (VAS) is based on wind criterion--when the wind near the runway end is outside of the criterion, all interarrival Instrument Flight Rules (IFR) aircraft separations can be set at 3 nautical miles. Five years of wind data ha...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document containes reports from the proceedings of the 1995 U.S. DOE hydrogen program review. Reports are organized under the topics of systems analysis, utilization, storage, and production. This volume, Volume I, contains the reports concerned with systems analysis and utilization. Individual reports were processed separately for the DOE data bases.
Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhen; Bian, Xin; Karniadakis, George Em, E-mail: george-karniadakis@brown.edu
2015-12-28
The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while themore » corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.« less
Real-time color image processing for forensic fiber investigations
NASA Astrophysics Data System (ADS)
Paulsson, Nils
1995-09-01
This paper describes a system for automatic fiber debris detection based on color identification. The properties of the system are fast analysis and high selectivity, a necessity when analyzing forensic fiber samples. An ordinary investigation separates the material into well above 100,000 video images to analyze. The system is based on standard techniques such as CCD-camera, motorized sample table, and IBM-compatible PC/AT with add-on-boards for video frame digitalization and stepping motor control as the main parts. It is possible to operate the instrument at full video rate (25 image/s) with aid of the HSI-color system (hue- saturation-intensity) and software optimization. High selectivity is achieved by separating the analysis into several steps. The first step is fast direct color identification of objects in the analyzed video images and the second step analyzes detected objects with a more complex and time consuming stage of the investigation to identify single fiber fragments for subsequent analysis with more selective techniques.
Separate and combined sewer systems: a long-term modelling approach.
Mannina, Giorgio; Viviani, Gaspare
2009-01-01
Sewer systems convey mostly dry weather flow, coming from domestic and industrial sanitary sewage as well as infiltration flow, and stormwater due to meteoric precipitations. Traditionally, in urban drainage two types of sewer systems are adopted: separate and combined sewers. The former convey dry and wet weather flow separately into two different networks, while the latter convey dry and wet weather flow together. Which is the best solution in terms of cost-benefit analysis still remains a controversial subject. The present study was aimed at comparing the pollution loads discharged to receiving bodies by Wastewater Treatment Plant (WWTP) and Combined Sewer Overflow (CSO) for different kinds of sewer systems (combined and separate). To accomplish this objective, a comparison between the two systems was carried out using results from simulations of catchments characterised by different dimensions, population densities and water supply rate. The analysis was based on a parsimonious mathematical model able to simulate the sewer system as well as the WWTP during both dry and wet weather. The rain series employed for the simulations was six years long. Several pollutants, both dissolved and particulate, were modelled. The results confirmed the uncertainties in the choice of one system versus the other, emphasising the concept that case-by-case solutions have to be undertaken. Further, the compared systems showed different responses in terms of effectiveness in reducing the discharged mass to the RWB in relation to the particular pollutant taken into account.
Ruggiero, Flavia; Netti, Paolo Antonio; Torino, Enza
2015-12-01
Fundamental understanding of thermodynamic of phase separation plays a key role in tuning the desired features of biomedical devices. In particular, phase separation of ternary solution is of remarkable interest in processes to obtain biodegradable and biocompatible architectures applied as artificial devices to repair, replace, or support damaged tissues or organs. In these perspectives, thermally induced phase separation (TIPS) is the most widely used technique to obtained porous morphologies and, in addition, among different ternary systems, polylactic acid (PLLA)/dioxane/water has given promising results and has been largely studied. However, to increase the control of TIPS-based processes and architectures, an investigation of the basic energetic phenomena occurring during phase separation is still required. Here we propose an experimental investigation of the selected ternary system by using isothermal titration calorimetric approach at different solvent/antisolvent ratio and a thermodynamic explanation related to the polymer-solvents interactions in terms of energetic contribution to the phase separation process. Furthermore, relevant information about the phase diagrams and interaction parameters of the studied systems are furnished in terms of liquid-liquid miscibility gap. Indeed, polymer-solvents interactions are responsible for the mechanism of the phase separation process and, therefore, of the final features of the morphologies; the knowledge of such data is fundamental to control processes for the production of membranes, scaffolds and several nanostructures. The behavior of the polymer at different solvent/nonsolvent ratios is discussed in terms of solvation mechanism and a preliminary contribution to the understanding of the role of the hydrogen bonding in the interface phenomena is also reported. It is the first time that thermodynamic data of a ternary system are collected by mean of nano-isothermal titration calorimetry (nano-ITC). Supporting Information is available.
Practical guide for implementing hybrid PET/MR clinical service: lessons learned from our experience
Parikh, Nainesh; Friedman, Kent P.; Shah, Shetal N.; Chandarana, Hersh
2015-01-01
Positron emission tomography (PET) and magnetic resonance imaging, until recently, have been performed on separate PET and MR systems with varying temporal delay between the two acquisitions. The interpretation of these two separately acquired studies requires cognitive fusion by radiologists/nuclear medicine physicians or dedicated and challenging post-processing. Recent advances in hardware and software with introduction of hybrid PET/MR systems have made it possible to acquire the PET and MR images simultaneously or near simultaneously. This review article serves as a road-map for clinical implementation of hybrid PET/MR systems and briefly discusses hardware systems, the personnel needs, safety and quality issues, and reimbursement topics based on experience at NYU Langone Medical Center and Cleveland Clinic. PMID:25985966
Analysis of separation test for automatic brake adjuster based on linear radon transformation
NASA Astrophysics Data System (ADS)
Luo, Zai; Jiang, Wensong; Guo, Bin; Fan, Weijun; Lu, Yi
2015-01-01
The linear Radon transformation is applied to extract inflection points for online test system under the noise conditions. The linear Radon transformation has a strong ability of anti-noise and anti-interference by fitting the online test curve in several parts, which makes it easy to handle consecutive inflection points. We applied the linear Radon transformation to the separation test system to solve the separating clearance of automatic brake adjuster. The experimental results show that the feature point extraction error of the gradient maximum optimal method is approximately equal to ±0.100, while the feature point extraction error of linear Radon transformation method can reach to ±0.010, which has a lower error than the former one. In addition, the linear Radon transformation is robust.
Classification of Hamilton-Jacobi separation in orthogonal coordinates with diagonal curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajaratnam, Krishan, E-mail: k2rajara@uwaterloo.ca; McLenaghan, Raymond G., E-mail: rgmclenaghan@uwaterloo.ca
2014-08-15
We find all orthogonal metrics where the geodesic Hamilton-Jacobi equation separates and the Riemann curvature tensor satisfies a certain equation (called the diagonal curvature condition). All orthogonal metrics of constant curvature satisfy the diagonal curvature condition. The metrics we find either correspond to a Benenti system or are warped product metrics where the induced metric on the base manifold corresponds to a Benenti system. Furthermore, we show that most metrics we find are characterized by concircular tensors; these metrics, called Kalnins-Eisenhart-Miller metrics, have an intrinsic characterization which can be used to obtain them on a given space. In conjunction withmore » other results, we show that the metrics we found constitute all separable metrics for Riemannian spaces of constant curvature and de Sitter space.« less
Thermal control extravehicular life support system
NASA Technical Reports Server (NTRS)
1975-01-01
The results of a comprehensive study which defined an Extravehicular Life Support System Thermal Control System (TCS) are presented. The design of the prototype hardware and a detail summary of the prototype TCS fabrication and test effort are given. Several heat rejection subsystems, water management subsystems, humidity control subsystems, pressure control schemes and temperature control schemes were evaluated. Alternative integrated TCS systems were studied, and an optimum system was selected based on quantitative weighing of weight, volume, cost, complexity and other factors. The selected subsystem contains a sublimator for heat rejection, bubble expansion tank for water management, a slurper and rotary separator for humidity control, and a pump, a temperature control valve, a gas separator and a vehicle umbilical connector for water transport. The prototype hardware complied with program objectives.
NASA Technical Reports Server (NTRS)
Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa
1990-01-01
The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.
An expert system for the design of heating, ventilating, and air-conditioning systems
NASA Astrophysics Data System (ADS)
Camejo, Pedro Jose
1989-12-01
Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.
Group-theoretical approach to the construction of bases in 2{sup n}-dimensional Hilbert space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, A.; Romero, J. L.; Klimov, A. B., E-mail: klimov@cencar.udg.mx
2011-06-15
We propose a systematic procedure to construct all the possible bases with definite factorization structure in 2{sup n}-dimensional Hilbert space and discuss an algorithm for the determination of basis separability. The results are applied for classification of bases for an n-qubit system.
Deep Learning Based Binaural Speech Separation in Reverberant Environments.
Zhang, Xueliang; Wang, DeLiang
2017-05-01
Speech signal is usually degraded by room reverberation and additive noises in real environments. This paper focuses on separating target speech signal in reverberant conditions from binaural inputs. Binaural separation is formulated as a supervised learning problem, and we employ deep learning to map from both spatial and spectral features to a training target. With binaural inputs, we first apply a fixed beamformer and then extract several spectral features. A new spatial feature is proposed and extracted to complement the spectral features. The training target is the recently suggested ideal ratio mask. Systematic evaluations and comparisons show that the proposed system achieves very good separation performance and substantially outperforms related algorithms under challenging multi-source and reverberant environments.
Aspects regarding at 13C isotope separation column control using Petri nets system
NASA Astrophysics Data System (ADS)
Boca, M. L.; Ciortea, M. E.
2015-11-01
This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.
Liu, Fan; Jiang, Li; Tan, Huei Ming; Yadav, Ashutosh; Biswas, Preetika; van der Maarel, Johan R C; Nijhuis, Christian A; van Kan, Jeroen A
2016-11-01
Brownian ratchet based particle separation systems for application in lab on chip devices have drawn interest and are subject to ongoing theoretical and experimental investigations. We demonstrate a compact microfluidic particle separation chip, which implements an extended on-off Brownian ratchet scheme that actively separates and sorts particles using periodically switching magnetic fields, asymmetric sawtooth channel sidewalls, and Brownian motion. The microfluidic chip was made with Polydimethylsiloxane (PDMS) soft lithography of SU-8 molds, which in turn was fabricated using Proton Beam Writing. After bonding of the PDMS chip to a glass substrate through surface activation by oxygen plasma treatment, embedded electromagnets were cofabricated by the injection of InSn metal into electrode channels. This fabrication process enables rapid production of high resolution and high aspect ratio features, which results in parallel electrodes accurately aligned with respect to the separation channel. The PDMS devices were tested with mixtures of 1.51 μ m, 2.47 μ m, and 2.60 μ m superparamagnetic particles suspended in water. Experimental results show that the current device design has potential for separating particles with a size difference around 130 nm. Based on the promising results, we will be working towards extending this design for the separation of cells or biomolecules.
Liu, Fan; Jiang, Li; Tan, Huei Ming; Yadav, Ashutosh; Biswas, Preetika; van der Maarel, Johan R. C.; Nijhuis, Christian A.; van Kan, Jeroen A.
2016-01-01
Brownian ratchet based particle separation systems for application in lab on chip devices have drawn interest and are subject to ongoing theoretical and experimental investigations. We demonstrate a compact microfluidic particle separation chip, which implements an extended on-off Brownian ratchet scheme that actively separates and sorts particles using periodically switching magnetic fields, asymmetric sawtooth channel sidewalls, and Brownian motion. The microfluidic chip was made with Polydimethylsiloxane (PDMS) soft lithography of SU-8 molds, which in turn was fabricated using Proton Beam Writing. After bonding of the PDMS chip to a glass substrate through surface activation by oxygen plasma treatment, embedded electromagnets were cofabricated by the injection of InSn metal into electrode channels. This fabrication process enables rapid production of high resolution and high aspect ratio features, which results in parallel electrodes accurately aligned with respect to the separation channel. The PDMS devices were tested with mixtures of 1.51 μm, 2.47 μm, and 2.60 μm superparamagnetic particles suspended in water. Experimental results show that the current device design has potential for separating particles with a size difference around 130 nm. Based on the promising results, we will be working towards extending this design for the separation of cells or biomolecules. PMID:27917252
Photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot
NASA Astrophysics Data System (ADS)
Gandhi, Neeraj; Allard, Margaret; Kim, Sungmin; Kazanzides, Peter; Lediju Bell, Muyinatu A.
2017-12-01
Death and paralysis are significant risks of modern surgeries, caused by injury to blood vessels and nerves hidden by bone and other tissue. We propose an approach to surgical guidance that relies on photoacoustic (PA) imaging to determine the separation between these critical anatomical features and to assess the extent of safety zones during surgical procedures. Images were acquired as an optical fiber was swept across vessel-mimicking targets, in the absence and presence of teleoperation with a research da Vinci Surgical System. Vessel separation distances were measured directly from PA images. Vessel positions were additionally recorded based on the fiber position (calculated from the da Vinci robot kinematics) that corresponded to an observed PA signal, and these recordings were used to indirectly measure vessel separation distances. Amplitude- and coherence-based beamforming were used to estimate vessel separations, resulting in 0.52- to 0.56-mm mean absolute errors, 0.66- to 0.71-mm root-mean-square errors, and 65% to 68% more accuracy compared to fiber position measurements obtained through the da Vinci robot kinematics. Similar accuracy was achieved in the presence of up to 4.5-mm-thick ex vivo tissue. Results indicate that PA image-based measurements of the separation among anatomical landmarks could be a viable method for real-time path planning in multiple interventional PA applications.
NASA Astrophysics Data System (ADS)
Kramer, J. L. A. M.; Ullings, A. H.; Vis, R. D.
1993-05-01
A real-time data acquisition system for microprobe analysis has been developed at the Free University of Amsterdam. The system is composed of two parts: a front-end real-time and a back-end monitoring system. The front-end consists of a VMEbus based system which reads out a CAMAC crate. The back-end is implemented on a Sun work station running the UNIX operating system. This separation allows the integration of a minimal, and consequently very fast, real-time executive within the sophisticated possibilities of advanced UNIX work stations.
Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis
Hancu, Gabriel; Simon, Brigitta; Rusu, Aura; Mircia, Eleonora; Gyéresi, Árpád
2013-01-01
Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis. PMID:24312804
Pegasus ICON Spacecraft Mate to Separation System
2018-05-09
Technicians prepare NASA's Ionospheric Connection Explorer (ICON) to be attached to the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
Pegasus ICON Spacecraft Mate to Separation System
2018-05-09
Technicians secure NASA's Ionospheric Connection Explorer (ICON) on the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
The application of improved flow diverter for first flush management.
Mrowiec, M
2010-01-01
The paper presents the investigations on first flush phenomenon based on the total suspended solids (TSS) concentration measurement during selected rainfalls at central part of Czestochowa (Poland) and also the hydrodynamic model of the catchment. The model allows to present the conception of first flush management using an improved flow diverter Septurn. Flow diverters used in the separate sewer systems create a hybrid system called "semi-separate" sewage system, which allows to treat the first flush volume in the waste water treatment plant (WWTP). Proposed construction of the flow diverter makes possible to capture significant part of the pollutant load (TSS) and simultaneously to reduce volume discharges to WWTPs during wet weather.
Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.
Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu
2017-08-03
In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.
Pseudophasic extraction method for the separation of ultra-fine minerals
Chaiko, David J.
2002-01-01
An improved aqueous-based extraction method for the separation and recovery of ultra-fine mineral particles. The process operates within the pseudophase region of the conventional aqueous biphasic extraction system where a low-molecular-weight, water soluble polymer alone is used in combination with a salt and operates within the pseudo-biphase regime of the conventional aqueous biphasic extraction system. A combination of low molecular weight, mutually immiscible polymers are used with or without a salt. This method is especially suited for the purification of clays that are useful as rheological control agents and for the preparation of nanocomposites.
A Social Systems Approach to Evaluation Research.
ERIC Educational Resources Information Center
Olien, C. N.; And Others
An information-control systems model for evaluation of adult education programs is offered and illustrated. The model is based upon identifying principal subsystems, such as source, channel and audience, which are involved in initiation, production, delivery and reception of educational messages. These subsystems are seen as separate but…
Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L
2015-03-01
Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Terminological reference of a knowledge-based system: the data dictionary.
Stausberg, J; Wormek, A; Kraut, U
1995-01-01
The development of open and integrated knowledge bases makes new demands on the definition of the used terminology. The definition should be realized in a data dictionary separated from the knowledge base. Within the works done at a reference model of medical knowledge, a data dictionary has been developed and used in different applications: a term definition shell, a documentation tool and a knowledge base. The data dictionary includes that part of terminology, which is largely independent of a certain knowledge model. For that reason, the data dictionary can be used as a basis for integrating knowledge bases into information systems, for knowledge sharing and reuse and for modular development of knowledge-based systems.
Research on moving object detection based on frog's eyes
NASA Astrophysics Data System (ADS)
Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan
2008-12-01
On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.
Poole, Colin F; Qian, Jing; Kiridena, Waruna; Dekay, Colleen; Koziol, Wladyslaw W
2006-11-17
The solvation parameter model is used to characterize the separation characteristics of two application-specific open-tubular columns (Rtx-Volatiles and Rtx-VGC) and a general purpose column for the separation of volatile organic compounds (DB-WAXetr) at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and retention factor correlation plots are then used to determine selectivity differences between the above columns and their closest neighbors in a large database of system constants and retention factors for forty-four open-tubular columns. The Rtx-Volatiles column is shown to have separation characteristics predicted for a poly(dimethyldiphenylsiloxane) stationary phase containing about 16% diphenylsiloxane monomer. The Rtx-VGC column has separation properties similar to the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 14% cyanopropylphenylsiloxane monomer DB-1701 for non-polar and dipolar/polarizable compounds but significantly different characteristics for the separation of hydrogen-bond acids. For all practical purposes the DB-WAXetr column is shown to be selectivity equivalent to poly(ethylene glycol) columns prepared using different chemistries for bonding and immobilizing the stationary phase. Principal component analysis and cluster analysis are then used to classify the system constants for the above columns and a sub-database of eleven open-tubular columns (DB-1, HP-5, DB-VRX, Rtx-20, DB-35, Rtx-50, Rtx-65, DB-1301, DB-1701, DB-200, and DB-624) commonly used for the separation of volatile organic compounds. A rationale basis for column selection based on differences in intermolecular interactions is presented as an aid to method development for the separation of volatile organic compounds.
In efforts to apply a polymer-based aqueous biphasic system (ABS) extraction to the paper pulping process, the study of the distribution of various lignin and cellulosic fractions in ABS and the effects of temperature on system composition and solute partitioning have been inv...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, H.
1999-03-31
The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performedmore » in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.« less
Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission
NASA Technical Reports Server (NTRS)
Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.
2002-01-01
We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.
NASA Technical Reports Server (NTRS)
Chan, David T.; Pinier, Jeremy T.; Wilcox, Floyd J., Jr.; Dalle, Derek J.; Rogers, Stuart E.; Gomez, Reynaldo J.
2016-01-01
The development of the aerodynamic database for the Space Launch System (SLS) booster separation environment has presented many challenges because of the complex physics of the ow around three independent bodies due to proximity e ects and jet inter- actions from the booster separation motors and the core stage engines. This aerodynamic environment is dicult to simulate in a wind tunnel experiment and also dicult to simu- late with computational uid dynamics. The database is further complicated by the high dimensionality of the independent variable space, which includes the orientation of the core stage, the relative positions and orientations of the solid rocket boosters, and the thrust lev- els of the various engines. Moreover, the clearance between the core stage and the boosters during the separation event is sensitive to the aerodynamic uncertainties of the database. This paper will present the development process for Version 3 of the SLS booster separa- tion aerodynamic database and the statistics-based uncertainty quanti cation process for the database.
Thaithet, Sujitra; Kradtap Hartwell, Supaporn; Lapanantnoppakhun, Somchai
2017-01-01
A low-pressure separation procedure of α-tocopherol and γ-oryzanol was developed based on a sequential injection chromatography (SIC) system coupled with an ultra-short (5 mm) C-18 monolithic column, as a lower cost and more compact alternative to the HPLC system. A green sample preparation, dilution with a small amount of hexane followed by liquid-liquid extraction with 80% ethanol, was proposed. Very good separation resolution (R s = 3.26), a satisfactory separation time (10 min) and a total run time including column equilibration (16 min) were achieved. The linear working range was found to be 0.4 - 40 μg with R 2 being more than 0.99. The detection limits of both analytes were 0.28 μg with the repeatability within 5% RSD (n = 7). Quantitative analyses of the two analytes in vegetable oil and nutrition supplement samples, using the proposed SIC method, agree well with the results from HPLC.
NASA Astrophysics Data System (ADS)
Bernardi, Michael P.; Milovich, Daniel; Francoeur, Mathieu
2016-09-01
Using Rytov's fluctuational electrodynamics framework, Polder and Van Hove predicted that radiative heat transfer between planar surfaces separated by a vacuum gap smaller than the thermal wavelength exceeds the blackbody limit due to tunnelling of evanescent modes. This finding has led to the conceptualization of systems capitalizing on evanescent modes such as thermophotovoltaic converters and thermal rectifiers. Their development is, however, limited by the lack of devices enabling radiative transfer between macroscale planar surfaces separated by a nanosize vacuum gap. Here we measure radiative heat transfer for large temperature differences (~120 K) using a custom-fabricated device in which the gap separating two 5 × 5 mm2 intrinsic silicon planar surfaces is modulated from 3,500 to 150 nm. A substantial enhancement over the blackbody limit by a factor of 8.4 is reported for a 150-nm-thick gap. Our device paves the way for the establishment of novel evanescent wave-based systems.
CO.sub.2 separation from low-temperature flue gases
Dilmore, Robert; Allen, Douglas; Soong, Yee; Hedges, Sheila
2010-11-30
Two methods are provide for the separation of carbon dioxide from the flue gases. The first method utilizes a phase-separating moiety dissolved in an aqueous solution of a basic moiety to capture carbon dioxide. The second method utilizes a phase-separating moiety as a suspended solid in an aqueous solution of a basic moiety to capture carbon dioxide. The first method takes advantage of the surface-independent nature of the CO.sub.2 absorption reactions in a homogeneous aqueous system. The second method also provides permanent sequestration of the carbon dioxide. Both methods incorporate the kinetic rate enhancements of amine-based scrubbing while eliminating the need to heat the entire amine solution (80% water) in order to regenerate and release CO.sub.2. Both methods also take advantage of the low-regeneration temperatures of CO.sub.2-bearing mineral systems such as Na.sub.2CO.sub.3/NaHCO.sub.3 and K.sub.2CO.sub.3/KHCO.sub.3.
Plasmons in spatially separated double-layer graphene nanoribbons
NASA Astrophysics Data System (ADS)
Bagheri, Mehran; Bahrami, Mousa
2014-05-01
Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.
[Advancements of computer chemistry in separation of Chinese medicine].
Li, Lingjuan; Hong, Hong; Xu, Xuesong; Guo, Liwei
2011-12-01
Separating technique of Chinese medicine is not only a key technique in the field of Chinese medicine' s research and development, but also a significant step in the modernization of Chinese medicinal preparation. Computer chemistry can build model and look for the regulations from Chinese medicine system which is full of complicated data. This paper analyzed the applicability, key technology, basic mode and common algorithm of computer chemistry applied in the separation of Chinese medicine, introduced the mathematic mode and the setting methods of Extraction kinetics, investigated several problems which based on traditional Chinese medicine membrane procession, and forecasted the application prospect.
Address tracing for parallel machines
NASA Technical Reports Server (NTRS)
Stunkel, Craig B.; Janssens, Bob; Fuchs, W. Kent
1991-01-01
Recently implemented parallel system address-tracing methods based on several metrics are surveyed. The issues specific to collection of traces for both shared and distributed memory parallel computers are highlighted. Five general categories of address-trace collection methods are examined: hardware-captured, interrupt-based, simulation-based, altered microcode-based, and instrumented program-based traces. The problems unique to shared memory and distributed memory multiprocessors are examined separately.
Automated seed manipulation and planting
NASA Technical Reports Server (NTRS)
Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave
1988-01-01
Activities for the Fall Semester, 1987 focused on investigating the mechanical/electrical properties of wheat seeds and forming various Seed Planting System (SPS) concepts based on those properties. The Electrical Division of the design group was formed to devise an SPS using electrostatic charge fields for seeding operations. Experiments concerning seed separation using electrical induction (rearranging of the charges within the seed) were conducted with promising results. The seeds, when exposed to the high voltage and low current field produced by a Van de Graff generator, were observed to move back and forth between two electrodes. An SPS concept has been developed based on this phenomena, and will be developed throughout the Spring Semester, 1988. The Mechanical Division centered on SPS concepts involving valves, pumps, and fluids to separate and deliver seeds. An SPS idea utilizing the pressure difference caused by air as it rushes out of holes drilled in the wall of a closed container has been formulated and will be considered for future development. Also, a system of seed separation and delivery employing a combination of centrifugal force, friction, and air flow was considered.
Belz, Steven M; Robinson, Gary S; Casali, John G
2004-01-01
This on-road field investigation employed, for the first time, a completely automated trigger-based data collection system capable of evaluating driver performance in an extended-duration real-world commercial motor vehicle environment. The study examined the use of self-assessment of fatigue (Karolinska Sleepiness Scale) and temporal separation (minimum time to collision, minimum headway, and mean headway) as indicators of driver fatigue. Without exception, the correlation analyses for both the self-rating of alertness and temporal separation yielded models low in associative ability; neither metric was found to be a valid indicator of driver fatigue. In addition, based upon the data collected for this research, preliminary evidence suggests that driver fatigue onset within a real-world driving environment does not appear to follow the standard progression of events associated with the onset of fatigue within a simulated driving environment. Application of this research includes the development of an on-board driver performance/fatigue monitoring system that could potentially assist drivers in identifying the onset of fatigue.
Antibody-immobilized column for quick cell separation based on cell rolling.
Mahara, Atsushi; Yamaoka, Tetsuji
2010-01-01
Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.
Tapered Microfluidic for Continuous Micro-Object Separation Based on Hydrodynamic Principle.
Ahmad, Ida Laila; Ahmad, Mohd Ridzuan; Takeuchi, Masaru; Nakajima, Masahiro; Hasegawa, Yasuhisa
2017-12-01
Recent advances in microfluidic technologies have created a demand for a simple and efficient separation intended for various applications such as food industries, biological preparation, and medical diagnostic. In this paper, we report a tapered microfluidic device for passive continuous separation of microparticles by using hydrodynamic separation. By exploiting the hydrodynamic properties of the fluid flow and physical characteristics of micro particles, effective size based separation is demonstrated. The tapered microfluidic device has widening geometries with respect to specific taper angle which amplify the sedimentation effect experienced by particles of different sizes. A mixture of 3-μm and 10-μm polystyrene microbeads are successfully separated using 20° and 25° taper angles. The results obtained are in agreement with three-dimensional finite element simulation conducted using Abaqus 6.12. Moreover, the feasibility of this mechanism for biological separation is demonstrated by using polydisperse samples consists of 3-μm polystyrene microbeads and human epithelial cervical carcinoma (HeLa) cells. 98% of samples purity is recovered at outlet 1 and outlet 3 with flow rate of 0.5-3.0 μl/min. Our device is interesting despite adopting passive separation approach. This method enables straightforward, label-free, and continuous separation of multiparticles in a stand-alone device without the need for bulky apparatus. Therefore, this device may become an enabling technology for point of care diagnosis tools and may hold potential for micrototal analysis system applications.
The use of LCA in selecting the best MSW management system.
De Feo, Giovanni; Malvano, Carmela
2009-06-01
This paper focuses on the study of eleven environmental impact categories produced by several municipal solid waste management systems (scenarios) operating on a provincial scale in Southern Italy. In particular, the analysis takes into account 12 management scenarios with 16 management phases for each one. The only difference among ten of the scenarios (separated kerbside collection of all recyclables, glass excepted, composting of putrescibles, RDF pressed bales production and incineration, final landfilling) is the percentage of separated collection varying in the range of 35-80%, while the other two scenarios, for 80% of separate collection, consider different alternatives in the disposal of treatment residues (dry residue sorting and final landfilling or direct disposal in landfill). The potential impacts induced on the environmental components were analysed using the life cycle assessment (LCA) procedure called "WISARD" (Waste Integrated System Assessment for Recovery and Disposal). Paper recycling was the phase with the greatest influence on avoided impacts, while the collection logistics of dry residue was the phase with the greatest influence on produced impacts. For six impact categories (renewable and total energy use, water, suspended solids and oxydable matters index, eutrophication and hazardous waste production), for high percentages of separate collection a management system based on recovery and recycling but without incineration would be preferable.
Photoelectrochemical molecular comb
Thundat, Thomas G [Knoxville, TN; Ferrell, Thomas L [Knoxville, TN; Brown,; Gilbert, M [Knoxville, TN
2007-05-01
A method, system, and apparatus are provided for separating molecules, such as biomolecules. The method, system, and apparatus utilize an electrochemical cell having at least to electrodes, one electrode comprising a photo-sensitive material capable of generating a photopotential. Molecules are moved through an electrolyte medium between the at least two electrodes based upon localized photopotentials.
Photoelectrochemical molecular comb
Thundat, Thomas G [Knoxville, TN; Ferrell, Thomas L [Knoxville, TN; Brown, Gilbert M [Knoxville, TN
2012-02-07
A method, system, and apparatus are provided for separating molecules, such as biomolecules. The method, system, and apparatus utilize an electrochemical cell having at least two electrodes, one electrode comprising a photo-sensitive material capable of generating a photopotential. Molecules are moved through an electrolyte medium between the at least two electrodes based upon localized photopotentials.
ERIC Educational Resources Information Center
Cote, L. G.
A system in which the function of the library is to acquire, store, and organize materials is proposed which separates the reference function into a group of subject specialists backed up by computerized information retrieval systems. This division of labor is caused by the scientific community's need for access to graphic and other specific (not…
Silicon Graphics' IRIS InSight: An SGML Success Story.
ERIC Educational Resources Information Center
Glushko, Robert J.; Kershner, Ken
1993-01-01
Offers a case history of the development of the Silicon Graphics "IRIS InSight" system, a system for viewing on-line documentation using Standard Generalized Markup Language. Notes that SGML's explicit encoding of structure and separation of structure and presentation make possible structure-based search, alternative structural views of…
An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening
NASA Astrophysics Data System (ADS)
Wang, Weiya; Jia, Mengyu; Gao, Feng; Yang, Lihong; Qu, Pengpeng; Zou, Changping; Liu, Pengxi; Zhao, Huijuan
2015-02-01
The cervical cancer screening at a pre-cancer stage is beneficial to reduce the mortality of women. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening is introduced in this paper. In this system, three electrodes alternately discharge to the cervical tissue and three light emitting diodes in different wavelengths alternately irradiate the cervical tissue. Then the relative optical reflectance and electrical voltage attenuation curve are obtained by optical and electrical detection, respectively. The system is based on DSP to attain the portable and cheap instrument. By adopting the relative reflectance and the voltage attenuation constant, the classification algorithm based on Support Vector Machine (SVM) discriminates abnormal cervical tissue from normal. We use particle swarm optimization to optimize the two key parameters of SVM, i.e. nuclear factor and cost factor. The clinical data were collected on 313 patients to build a clinical database of tissue responses under optical and electrical stimulations with the histopathologic examination as the gold standard. The classification result shows that the opto-electronic joint detection has higher total coincidence rate than separate optical detection or separate electrical detection. The sensitivity, specificity, and total coincidence rate increase with the increasing of sample numbers in the training set. The average total coincidence rate of the system can reach 85.1% compared with the histopathologic examination.
NASA Technical Reports Server (NTRS)
Rogers, James L.; Feyock, Stefan; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
The purpose of this research effort is to investigate the benefits that might be derived from applying artificial intelligence tools in the area of conceptual design. Therefore, the emphasis is on the artificial intelligence aspects of conceptual design rather than structural and optimization aspects. A prototype knowledge-based system, called STRUTEX, was developed to initially configure a structure to support point loads in two dimensions. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user by integrating a knowledge base interface and inference engine, a data base interface, and graphics while keeping the knowledge base and data base files separate. The system writes a file which can be input into a structural synthesis system, which combines structural analysis and optimization.
Boonloed, Anukul; Weber, Genevieve L; Ramzy, Kelly M; Dias, Veronica R; Remcho, Vincent T
2016-12-23
A centrifugal partition chromatography (CPC) method was developed for the preparative-scale isolation and purification of xylindein from the wood-staining fungi, Chlorociboria aeruginosa. Xylindein, a blue-green pigment naturally secreted from the hyphae and fruiting bodies of the fungus, has great value in the decorative wood industry and textile coloration. Xylindein has great potential for use as a fluorescent labeling agent as well as in organic semiconductor applications. However, a primary limitation of xylindein is its poor solubility in most common HPLC solvents. Consequently, it is arduous to purify using preparative liquid chromatography or solid-phase extraction (SPE). Support-free, liquid-liquid chromatographic methods, including CPC, where solutes are separated based on their different distribution coefficients (K D ) between two immiscible solvent systems, are promising alternatives for the purification of the compound on a preparative scale. In this work, a new biphasic solvent system suitable for CPC separation of xylindein was developed. Various groups of solvents were assessed for their suitability as xylindein extractants. A new solvent system suitable for CPC separation of xylindein, composed of heptane/THF/MEK/acetonitrile/acetic acid/water, was developed. This solvent system yielded a K D value for xylindein of 1.54±0.04, as determined by HPLC (n=3). The compositions of the upper phase and lower phase of the solvent system were determined by Heteronuclear Single Quantum Correlation (HSQC) NMR and proton NMR. A CPC system, equipped with a fraction collector, was used for the isolation of xylindein from crude extracts. The xylindein fractions isolated by the CPC were then analyzed using HPLC and presented as a fractogram. Based on the CPC fractogram, the purified xylindein fractions were achieved after 30min CPC separation time, yielding 71% extraction efficiency. The developed CPC method allowed for isolation of this naturally sourced xylindein in amounts suitable for further study. Copyright © 2016 Elsevier B.V. All rights reserved.
47 CFR 90.237 - Interim provisions for operation of radioteleprinter and radiofacsimile devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... devices for base station use (other than on mobile-only or paging-only frequencies) in all radio pools and... establish that the minimum separation between a proposed radioteleprinter or radiofacsimile base station and the nearest co-channel base station of another licensee operating a voice system is 120 km (75 mi) for...
NASIS data base management system - IBM 360/370 OS MVT implementation. 6: NASIS message file
NASA Technical Reports Server (NTRS)
1973-01-01
The message file for the NASA Aerospace Safety Information System (NASIS) is discussed. The message file contains all the message and term explanations for the system. The data contained in the file can be broken down into three separate sections: (1) global terms, (2) local terms, and (3) system messages. The various terms are defined and their use within the system is explained.
NASIS data base management system: IBM 360 TSS implementation. Volume 6: NASIS message file
NASA Technical Reports Server (NTRS)
1973-01-01
The message file for the NASA Aerospace Safety Information System (NASIS) is discussed. The message file contains all the message and term explanations for the system. The data contained in the file can be broken down into three separate sections: (1) global terms, (2) local terms, and (3) system messages. The various terms are defined and their use within the system is explained.
Wei, Zhishen; Fu, Qing; Cai, Jianfeng; Huan, Liyun; Zhao, Jianchao; Shi, Hui; Jin, Yu; Liang, Xinmiao
2016-06-01
In this study, two mixed-mode chromatography stationary phases (C8SAX and C8SCX) were evaluated and used to establish a two-dimensional liquid chromatography system for the separation of traditional Chinese medicine. The chromatographic properties of the mixed-mode columns were systematically evaluated by comparing with other three columns of C8, strong anion exchanger, and strong cation exchanger. The result showed that C8SAX and C8SCX had a mixed-mode retention mechanism including electrostatic interaction and hydrophobic interaction. Especially, they were suitable for separating acidic and/or basic compounds and their separation selectivities could be easily adjusted by changing pH value. Then, several off-line 2D-LC systems based on the C8SAX in the first dimension and C8SAX, C8SCX, or C8 columns in the second dimension were developed to analyze a traditional Chinese medicine-Uncaria rhynchophylla. The two-dimensional liquid chromatography system of C8SAX (pH 3.0) × C8SAX (pH 6.0) exhibited the most effective peak distribution. Finally, fractions of U. rhynchophylla prepared from the first dimension were successfully separated on the C8SAX column with a gradient pH. Thus, the mixed-mode stationary phase could provide a platform to separate the traditional Chinese medicine in practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya
2008-03-01
Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achey, R.; Rivera, O.; Wellons, M.
Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leadermore » in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.« less
Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun
2015-03-27
A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Dissociating error-based and reinforcement-based loss functions during sensorimotor learning
McGregor, Heather R.; Mohatarem, Ayman
2017-01-01
It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. PMID:28753634
Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.
Cashaback, Joshua G A; McGregor, Heather R; Mohatarem, Ayman; Gribble, Paul L
2017-07-01
It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.
Free-space laser communication system with rapid acquisition based on astronomical telescopes.
Wang, Jianmin; Lv, Junyi; Zhao, Guang; Wang, Gang
2015-08-10
The general structure of a free-space optical (FSO) communication system based on astronomical telescopes is proposed. The light path for astronomical observation and for communication can be easily switched. A separate camera is used as a star sensor to determine the pointing direction of the optical terminal's antenna. The new system exhibits rapid acquisition and is widely applicable in various astronomical telescope systems and wavelengths. We present a detailed analysis of the acquisition time, which can be decreased by one order of magnitude compared with traditional optical communication systems. Furthermore, we verify software algorithms and tracking accuracy.
Centrifugal separator devices, systems and related methods
Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Macaluso, Lawrence L [Carson City, NV
2012-03-20
Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.
Rare earth separations by selective borate crystallization
Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao
2017-01-01
Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation. PMID:28290448
Investigations of Physical Processes in Microgravity Relevant to Space Electrochemical Power Systems
NASA Technical Reports Server (NTRS)
Lvovich, Vadim F.; Green, Robert; Jakupca, Ian
2015-01-01
NASA has performed physical science microgravity flight experiments in the areas of combustion science, fluid physics, material science and fundamental physics research on the International Space Station (ISS) since 2001. The orbital conditions on the ISS provide an environment where gravity driven phenomena, such as buoyant convection, are nearly negligible. Gravity strongly affects fluid behavior by creating forces that drive motion, shape phase boundaries and compress gases. The need for a better understanding of fluid physics has created a vigorous, multidisciplinary research community whose ongoing vitality is marked by the continuous emergence of new fields in both basic and applied science. In particular, the low-gravity environment offers a unique opportunity for the study of fluid physics and transport phenomena that are very relevant to management of fluid - gas separations in fuel cell and electrolysis systems. Experiments conducted in space have yielded rich results. These results provided valuable insights into fundamental fluid and gas phase behavior that apply to space environments and could not be observed in Earth-based labs. As an example, recent capillary flow results have discovered both an unexpected sensitivity to symmetric geometries associated with fluid container shape, and identified key regime maps for design of corner or wedge-shaped passive gas-liquid phase separators. In this presentation we will also briefly review some of physical science related to flight experiments, such as boiling, that have applicability to electrochemical systems, along with ground-based (drop tower, low gravity aircraft) microgravity electrochemical research. These same buoyancy and interfacial phenomena effects will apply to electrochemical power and energy storage systems that perform two-phase separation, such as water-oxygen separation in life support electrolysis, and primary space power generation devices such as passive primary fuel cell.
Madhwani, Tejal
2016-01-01
The effect of humoral immunity on the composition of the oral microbiota is less intensively investigated than hygiene and diet, in part due to a lack of simple and robust systems for investigating interactions between salivary immunoglobulins and oral bacteria. Here we report the application of an ex situ method to investigate the specificity of salivary immunoglobulins for salivary bacteria. Saliva collected from six volunteers was separated into immunoglobulin and microbial fractions, and the microbial fractions were then directly exposed to salivary immunoglobulins of “self” and “non-self” origin. Antibody-selected bacteria were separated from their congeners using a magnetic bead system, selective for IgA or IgG isotypes. The positively selected fractions were then characterized using gel-based eubacterial-specific DNA profiling. The eubacterial profiles of positively selected fractions diverged significantly from profiles of whole salivary consortia based on volunteer (P≤ 0.001%) and immunoglobulin origin (P≤ 0.001%), but not immunoglobulin isotype (P = 0.2). DNA profiles of separated microbial fractions were significantly (p≤ 0.05) less diverse than whole salivary consortia and included oral and environmental bacteria. Consortia selected using self immunoglobulins were generally less diverse than those selected with immunoglobulins of non-self origin. Magnetic bead separation facilitated the testing of interactions between salivary antibodies and oral bacteria, showing that these interactions are specific and may reflect differences in recognition by self and non-self immunoglobulins. Further development of this system could improve understanding of the relationship between the oral microbiota and the host immune system and of mechanisms underlying the compositional stability of the oral microbiota. PMID:27483159
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitru, Irina, E-mail: aniri-dum@yahoo.com; Isar, Aurelian
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in amore » separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.« less
Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camejo, P.J.
1989-12-01
Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are neededmore » and have been developed to join the separate knowledge bases into one simple-to-use program unit.« less
On line separation of overlapped signals from multi-time photons for the GEM-based detection system
NASA Astrophysics Data System (ADS)
Czarski, T.; Pozniak, K. T.; Chernyshova, M.; Malinowski, K.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.
2015-09-01
The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector for high-resolution X-ray diagnostics of magnetic confinement fusion plasmas. Multi-channel measurement system and serial data acquisition for X-ray energy and position recognition is described. Fundamental characteristics are presented for two dimensional detector structure. Typical signals of ADC - Analog to Digital Converter are considered for charge value and position estimation. Coinciding signals for high flux radiation cause the problem for cluster charge identification. The amplifier with shaper determines time characteristics and limits the pulses frequency. Separation of coincided signals was introduced and verified for simulation experiments. On line separation of overlapped signals was implemented applying the FPGA technology with relatively simple firmware procedure. Representative results for reconstruction of coinciding signals are demonstrated.
Isotopic generator for bismuth-212 and lead-212 based on radium
Hines, J.J.; Atcher, R.W.; Friedman, A.M.
1985-01-30
Disclosed are method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.
A Socially Critical View of the "Self Managing School."
ERIC Educational Resources Information Center
Smyth, John, Ed.
This book argues that school-based management appears to be primarily concerned with dismantling centralized education systems (which have traditionally supported the work of teachers, students, and parents) and replacing them with a free-market ideology of competition and choice. School-based management separates elite policy makers and interest…
Teletext--Prestel's Big Brother.
ERIC Educational Resources Information Center
Hughes, Geoffrey
Prestel, Oracle, and Ceefax are telephone based video text systems currently in use in Great Britain. Rather than being considered as competitors, they should be viewed as complementary media with separate functions based on their differences. All use home television sets to receive information in print, and all broadcast on spare TV lines in the…
NPDES Permit for Buckley Air Force Base Municipal Separate Storm Sewer System in Colorado
Under NPDES permit CO-R042003, the U.S. Air Force is authorized to discharge from all MS4 outfalls existing as of the effective date of this permit to specified receiving waters within the exterior boundaries of Buckley Air Force Base, in Aurora, Colorado
A Social Neuroscientific Model of Vocational Behavior
ERIC Educational Resources Information Center
Hansen, Jo-Ida C.; Sullivan, Brandon A.; Luciana, Monica
2011-01-01
In this article, the separate literatures of a neurobiologically based approach system and vocational interests are reviewed and integrated into a social neuroscientific model of the processes underlying interests, based upon the idea of selective approach motivation. The authors propose that vocational interests describe the types of stimuli that…
NASA Astrophysics Data System (ADS)
Amirkhanian, Varoujan; Tsai, Shou-Kuan
2014-03-01
We introduce a novel and cost-effective capillary gel electrophoresis (CGE) system utilizing disposable pen-shaped gelcartridges for highly efficient, high speed, high throughput fluorescence detection of bio-molecules. The CGE system has been integrated with dual excitation and emission optical-fibers with micro-ball end design for fluorescence detection of bio-molecules separated and detected in a disposable pen-shaped capillary gel electrophoresis cartridge. The high-performance capillary gel electrophoresis (CGE) analyzer has been optimized for glycoprotein analysis type applications. Using commercially available labeling agent such as ANTS (8-aminonapthalene-1,3,6- trisulfonate) as an indicator, the capillary gel electrophoresis-based glycan analyzer provides high detection sensitivity and high resolving power in 2-5 minutes of separations. The system can hold total of 96 samples, which can be automatically analyzed within 4-5 hours. This affordable fiber optic based fluorescence detection system provides fast run times (4 minutes vs. 20 minutes with other CE systems), provides improved peak resolution, good linear dynamic range and reproducible migration times, that can be used in laboratories for high speed glycan (N-glycan) profiling applications. The CGE-based glycan analyzer will significantly increase the pace at which glycoprotein research is performed in the labs, saving hours of preparation time and assuring accurate, consistent and economical results.
Pre-biotic stage of life origin under non-photosynthetic conditions
NASA Technical Reports Server (NTRS)
Bartsev, S. I.; Mezhevikin, V. V.
2005-01-01
Spontaneous assembling of a simplest bacterial cell even if all necessary molecules are present in a solution seems to be extremely rare event and from the scientific standpoint has to be considered as impossible. Therefore, a predecessor of a living cell has to be very simple for providing its self-assembling and at the same time it should be able of progressive increase in complexity. Now phase-separated particles, first of all micelles, are put forward as possible predecessors of living cell. According to the offered working concept only phase-separated particles possessing autocatalytic properties can be considered as predecessors of living cells. The first stage of evolution of these phase-separated autocatalytic systems is the appearance of pre-biotic metabolism providing synthesis of amphiphiles for formation of capsules of these systems. This synthesis is maintained by the energy of a base reaction being a component of a planet-chemical cycle. Catalytic system providing functioning of pre-biotic metabolism is based on multivariate oligomeric autocatalyst, which reproduces itself from monomers, penetrating the particles from the outside. Since the autocatalyst realizes random polymerization then a collection of other oligomers possessing different catalytic functions is produced. In the paper the functioning of multivariate oligomeric autocatalyst in flow reactor is analyzed. c2005 Published by Elsevier Ltd on behalf of COSPAR.
A Universal Vacant Parking Slot Recognition System Using Sensors Mounted on Off-the-Shelf Vehicles.
Suhr, Jae Kyu; Jung, Ho Gi
2018-04-16
An automatic parking system is an essential part of autonomous driving, and it starts by recognizing vacant parking spaces. This paper proposes a method that can recognize various types of parking slot markings in a variety of lighting conditions including daytime, nighttime, and underground. The proposed method can readily be commercialized since it uses only those sensors already mounted on off-the-shelf vehicles: an around-view monitor (AVM) system, ultrasonic sensors, and in-vehicle motion sensors. This method first detects separating lines by extracting parallel line pairs from AVM images. Parking slot candidates are generated by pairing separating lines based on the geometric constraints of the parking slot. These candidates are confirmed by recognizing their entrance positions using line and corner features and classifying their occupancies using ultrasonic sensors. For more reliable recognition, this method uses the separating lines and parking slots not only found in the current image but also found in previous images by tracking their positions using the in-vehicle motion-sensor-based vehicle odometry. The proposed method was quantitatively evaluated using a dataset obtained during the day, night, and underground, and it outperformed previous methods by showing a 95.24% recall and a 97.64% precision.
A Universal Vacant Parking Slot Recognition System Using Sensors Mounted on Off-the-Shelf Vehicles
2018-01-01
An automatic parking system is an essential part of autonomous driving, and it starts by recognizing vacant parking spaces. This paper proposes a method that can recognize various types of parking slot markings in a variety of lighting conditions including daytime, nighttime, and underground. The proposed method can readily be commercialized since it uses only those sensors already mounted on off-the-shelf vehicles: an around-view monitor (AVM) system, ultrasonic sensors, and in-vehicle motion sensors. This method first detects separating lines by extracting parallel line pairs from AVM images. Parking slot candidates are generated by pairing separating lines based on the geometric constraints of the parking slot. These candidates are confirmed by recognizing their entrance positions using line and corner features and classifying their occupancies using ultrasonic sensors. For more reliable recognition, this method uses the separating lines and parking slots not only found in the current image but also found in previous images by tracking their positions using the in-vehicle motion-sensor-based vehicle odometry. The proposed method was quantitatively evaluated using a dataset obtained during the day, night, and underground, and it outperformed previous methods by showing a 95.24% recall and a 97.64% precision. PMID:29659512
Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Bartela, Łukasz; Mikosz, Dorota
2014-12-01
The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.
Simple turbulence models and their application to boundary layer separation
NASA Technical Reports Server (NTRS)
Wadcock, A. J.
1980-01-01
Measurements in the boundary layer and wake of a stalled airfoil are presented in two coordinate systems, one aligned with the airfoil chord, the other being conventional boundary layer coordinates. The NACA 4412 airfoil is studied at a single angle of attack corresponding to maximum lift, the Reynolds number based on chord being 1.5 x 10 to the 6th power. Turbulent boundary layer separation occurred at the 85 percent chord position. The two-dimensionality of the flow was documented and the momentum integral equation studied to illustrate the importance of turbulence contributions as separation is approached. The assumptions of simple eddy-viscosity and mixing-length turbulence models are checked directly against experiment. Curvature effects are found to be important as separation is approached.
Biogas desulfurization and biogas upgrading using a hybrid membrane system--modeling study.
Makaruk, A; Miltner, M; Harasek, M
2013-01-01
Membrane gas permeation using glassy membranes proved to be a suitable method for biogas upgrading and natural gas substitute production on account of low energy consumption and high compactness. Glassy membranes are very effective in the separation of bulk carbon dioxide and water from a methane-containing stream. However, the content of hydrogen sulfide can be lowered only partially. This work employs process modeling based upon the finite difference method to evaluate a hybrid membrane system built of a combination of rubbery and glassy membranes. The former are responsible for the separation of hydrogen sulfide and the latter separate carbon dioxide to produce standard-conform natural gas substitute. The evaluation focuses on the most critical upgrading parameters like achievable gas purity, methane recovery and specific energy consumption. The obtained results indicate that the evaluated hybrid membrane configuration is a potentially efficient system for the biogas processing tasks that do not require high methane recoveries, and allows effective desulfurization for medium and high hydrogen sulfide concentrations without additional process steps.
Identification and Quantitative Measurements of Chemical Species by Mass Spectrometry
NASA Technical Reports Server (NTRS)
Zondlo, Mark A.; Bomse, David S.
2005-01-01
The development of a miniature gas chromatograph/mass spectrometer system for the measurement of chemical species of interest to combustion is described. The completed system is a fully-contained, automated instrument consisting of a sampling inlet, a small-scale gas chromatograph, a miniature, quadrupole mass spectrometer, vacuum pumps, and software. A pair of computer-driven valves controls the gas sampling and introduction to the chromatographic column. The column has a stainless steel exterior and a silica interior, and contains an adsorbent of that is used to separate organic species. The detection system is based on a quadrupole mass spectrometer consisting of a micropole array, electrometer, and a computer interface. The vacuum system has two miniature pumps to maintain the low pressure needed for the mass spectrometer. A laptop computer uses custom software to control the entire system and collect the data. In a laboratory demonstration, the system separated calibration mixtures containing 1000 ppm of alkanes and alkenes.
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan
2017-01-01
This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772
KINEMATICS OF THE ORION TRAPEZIUM BASED ON DIFFRACTO-ASTROMETRY AND HISTORICAL DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivares, J.; Sánchez, L. J.; Ruelas-Mayorga, A.
2013-11-01
Using the novel Diffracto-Astrometry technique, we analyze 44 Hubble Space Telescope Wide Field Planetary Camera 2 images of the Orion Trapezium (OT) taken over a span of 12 yr (1995-2007). We measure the relative positions of the six brighter OT components (A-F) and supplement these results with measurements of the relative separations and position angles taken from the literature, thus extending our analysis time base to ∼200 yr. For every pair of components we find the relative rate of separation as well as the temporal rate of change of their position angles, which enable us to determine the relative kinematicsmore » of the system. Component E shows a velocity larger than the OT's escape velocity, thus confirming that it is escaping from the gravitational pull of this system.« less
Gutzweiler, Ludwig; Gleichmann, Tobias; Tanguy, Laurent; Koltay, Peter; Zengerle, Roland; Riegger, Lutz
2017-07-01
Gel electrophoresis is one of the most applied and standardized tools for separation and analysis of macromolecules and their fragments in academic research and in industry. In this work we present a novel approach for conducting on-demand electrophoretic separations of DNA molecules in open microfluidic (OM) systems on planar polymer substrates. The approach combines advantages of slab gel, capillary- and chip-based methods offering low consumable costs (<0.1$) circumventing cost-intensive microfluidic chip fabrication, short process times (5 min per analysis) and high sensitivity (4 ng/μL dsDNA) combined with reasonable resolution (17 bases). The open microfluidic separation system comprises two opposing reservoirs of 2-4 μL in volume, a semi-contact written gel line acting as separation channel interconnecting the reservoirs and sample injected into the line via non-contact droplet dispensing and thus enabling the precise control of the injection plug and sample concentration. Evaporation is prevented by covering aqueous structures with PCR-grade mineral oil while maintaining surface temperature at 15°C. The liquid gel line exhibits a semi-circular cross section of adaptable width (∼200-600 μm) and height (∼30-80 μm) as well as a typical length of 15-55 mm. Layout of such liquid structures is adaptable on-demand not requiring time consuming and repetitive fabrication steps. The approach was successfully demonstrated by the separation of a standard label-free DNA ladder (100-1000 bp) at 100 V/cm via in-line staining and laser induced fluorescent end-point detection using an automated prototype. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte
NASA Astrophysics Data System (ADS)
Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru; Akbay, Taner; Hosoi, Kei
The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 °C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 °C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system.
Sinville, Rondedrick; Coyne, Jennifer; Meagher, Robert J.; Cheng, Yu-Wei; Barany, Francis; Barron, Annelise; Soper, Steven A.
2010-01-01
We have developed a new method for the analysis of low abundant point mutations in genomic DNA using a combination of an allele-specific ligase detection reaction (LDR) with free-solution conjugate electrophoresis (FSCE) to generate and analyze the genetic products. FSCE eliminates the need for a polymer sieving matrix by conjugating chemically synthesized polyamide “drag-tags” onto the LDR primers. The additional drag of the charge-neutral drag-tag breaks the linear scaling of the charge-to-friction ratio of DNA and enables size-based separations of DNA in free solution using electrophoresis with no sieving matrix. We successfully demonstrate the conjugation of polyamide drag-tags onto a set of four LDR primers designed to probe the K-ras oncogene for mutations highly associated with colorectal cancer, the simultaneous generation of fluorescently-labeled LDR/drag-tagged (LDR-dt) products in a multiplexed, single-tube format with mutant:wild-type ratios as low as 1:100, respectively, and the single-base, high-resolution separation of all four LDR-dt products. Separations were conducted in free solution with no polymer network using both a commercial capillary array electrophoresis (CAE) system and a poly(methylmethacrylate), PMMA, microchip replicated via hot-embossing with only a Tris-based running buffer containing additives to suppress the electroosmotic flow (EOF). Typical analysis times for LDR-dt conjugates were 11 min using the CAE system and as low as 85 s for the PMMA microchips. With resolution comparable to traditional gel-based CAE, FSCE along with microchip electrophoresis decreased the separation time by more than a factor of 40. PMID:19053073
Process description language: an experiment in robust programming for manufacturing systems
NASA Astrophysics Data System (ADS)
Spooner, Natalie R.; Creak, G. Alan
1998-10-01
Maintaining stable, robust, and consistent software is difficult in face of the increasing rate of change of customers' preferences, materials, manufacturing techniques, computer equipment, and other characteristic features of manufacturing systems. It is argued that software is commonly difficult to keep up to date because many of the implications of these changing features on software details are obscure. A possible solution is to use a software generation system in which the transformation of system properties into system software is made explicit. The proposed generation system stores the system properties, such as machine properties, product properties and information on manufacturing techniques, in databases. As a result this information, on which system control is based, can also be made available to other programs. In particular, artificial intelligence programs such as fault diagnosis programs, can benefit from using the same information as the control system, rather than a separate database which must be developed and maintained separately to ensure consistency. Experience in developing a simplified model of such a system is presented.
NASA Technical Reports Server (NTRS)
Fraire, Usbaldo, Jr.; Anderson, Keith; Varela, Jose G.; Bernatovich, Michael A.
2015-01-01
NASA's Orion Capsule Parachute Assembly System (CPAS) project has advanced into the third generation of its parachute test campaign and requires technically comprehensive modeling capabilities to simulate multi-body dynamics (MBD) of test articles released from a C-17. Safely extracting a 30,000 lbm mated test article from a C-17 and performing stable mid-air separation maneuvers requires an understanding of the interaction between elements in the test configuration and how they are influenced by extraction parachute performance, aircraft dynamics, aerodynamics, separation dynamics, and kinetic energy experienced by the system. During the real-time extraction and deployment sequences, these influences can be highly unsteady and difficult to bound. An avionics logic window based on time, pitch, and pitch rate is used to account for these effects and target a favorable separation state in real time. The Adams simulation has been employed to fine-tune this window, as well as predict and reconstruct the coupled dynamics of the Parachute Test Vehicle (PTV) and Cradle Platform Separation System (CPSS) from aircraft extraction through the mid-air separation event. The test-technique for the extraction of CPAS test articles has evolved with increased complexity and requires new modeling concepts to ensure the test article is delivered to a stable test condition for the programmer phase. Prompted by unexpected dynamics and hardware malfunctions in drop tests, these modeling improvements provide a more accurate loads prediction by incorporating a spring-damper line-model derived from the material properties. The qualification phase of CPAS testing is on the horizon and modeling increasingly complex test-techniques with Adams is vital to successfully qualify the Orion parachute system for human spaceflight.
Park, Emily S; Jin, Chao; Guo, Quan; Ang, Richard R; Duffy, Simon P; Matthews, Kerryn; Azad, Arun; Abdi, Hamidreza; Todenhöfer, Tilman; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen
2016-04-13
Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label-free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 10(4) -fold enrichment of target cells relative to leukocytes. In patients with metastatic castration-resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Central Nervous System Control of Voice and Swallowing
Ludlow, Christy L.
2015-01-01
This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and more integrative. For voice production, a separation of the non-human vocalization system from the human learned voice production system has been posited based primarily on studies of non-human primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production has shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech, involve a common integrative system. On the other hand, recent studies of non-human primates have provided evidence of some cortical activity during vocalization and cortical changes with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and non-human primates. PMID:26241238
Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.
Frydel, Derek; Levin, Yan
2018-01-14
In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.
NASA Astrophysics Data System (ADS)
Frydel, Derek; Levin, Yan
2018-01-01
In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.
Pegasus ICON Spacecraft Mate to Separation System
2018-05-09
A crane is used to move and lower NASA's Ionospheric Connection Explorer (ICON) onto the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
A model-based executive for commanding robot teams
NASA Technical Reports Server (NTRS)
Barrett, Anthony
2005-01-01
The paper presents a way to robustly command a system of systems as a single entity. Instead of modeling each component system in isolation and then manually crafting interaction protocols, this approach starts with a model of the collective population as a single system. By compiling the model into separate elements for each component system and utilizing a teamwork model for coordination, it circumvents the complexities of manually crafting robust interaction protocols. The resulting systems are both globally responsive by virtue of a team oriented interaction model and locally responsive by virtue of a distributed approach to model-based fault detection, isolation, and recovery.
High-performance liquid-chromatographic separation of subcomponents of antimycin-A
Abidi, S.L.
1988-01-01
Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.
2015-01-01
A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused-silica capillary separation column. Analytes are rapidly separated in the fused-silica capillary, and following separation, high-sensitivity MS detection is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high-throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates, and CE separation voltages. PMID:24865952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.
2014-07-01
A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channelmore » and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.« less
Yokoi, Masayuki; Tashiro, Takao
2014-04-07
We studied how the separation of dispensing and prescribing of medicines between pharmacies and clinics (the "separation system") can reduce internal medicine costs. To do so, we obtained publicly available data by searching electronic databases and official web pages of the Japanese government and non-profit public service corporations on the Internet. For Japanese medical institutions, participation in the separation system is optional. Consequently, the expansion rate of the separation system for each of the administrative districts is highly variable. The data were subjected to multiple regression analysis; daily internal medicines were the objective variable and expansion rate of the separation system was the explanatory variable. A multiple regression analysis revealed that the expansion rate of the separation system and the rate of replacing brand name medicine with generic medicine showed a significant negative partial correlation with daily internal medicine costs. Thus, the separation system was as effective in reducing medicine costs as the use of generic medicines. Because of its medical economic efficiency, the separation system should be expanded, especially in Asian countries in which the system is underdeveloped.
Preliminary investigation of a water-based method for fast integrating mobility spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spielman, Steven R.; Hering, Susanne V.; Kuang, Chongai
A water-based condensational growth channel was developed for imaging mobility-separated particles within a parallel plate separation channel of the Fast Integrated Mobility Spectrometer (FIMS). Reported are initial tests of that system, in which the alcohol condenser of the FIMS was replaced by a water-based condensational growth channel. Tests with monodispersed sodium chloride aerosol verify that the water-condensational growth maintained the laminar flow, while providing sufficient growth for particle imaging. Particle positions mapped onto particle mobility, in accordance with theoretical expectations. Particles ranging in size from 12 nm to 100 nm were counted with the same efficiency as with a butanol-based ultrafine particlemore » counter, once inlet and line losses were taken into account.« less
Preliminary investigation of a water-based method for fast integrating mobility spectrometry
Spielman, Steven R.; Hering, Susanne V.; Kuang, Chongai; ...
2017-06-06
A water-based condensational growth channel was developed for imaging mobility-separated particles within a parallel plate separation channel of the Fast Integrated Mobility Spectrometer (FIMS). Reported are initial tests of that system, in which the alcohol condenser of the FIMS was replaced by a water-based condensational growth channel. Tests with monodispersed sodium chloride aerosol verify that the water-condensational growth maintained the laminar flow, while providing sufficient growth for particle imaging. Particle positions mapped onto particle mobility, in accordance with theoretical expectations. Particles ranging in size from 12 nm to 100 nm were counted with the same efficiency as with a butanol-based ultrafine particlemore » counter, once inlet and line losses were taken into account.« less
Lin, Sansan; Fischl, Anthony S; Bi, Xiahui; Parce, Wally
2003-03-01
Phospholipid molecules such as ceramide and phosphoinositides play crucial roles in signal transduction pathways. Lipid-modifying enzymes including sphingomyelinase and phosphoinositide kinases regulate the generation and degradation of these lipid-signaling molecules and are important therapeutic targets in drug discovery. We now report a sensitive and convenient method to separate these lipids using microfluidic chip-based technology. The method takes advantage of the high-separation power of the microchips that separate lipids based on micellar electrokinetic capillary chromatography (MEKC) and the high sensitivity of fluorescence detection. We further exploited the method to develop a homogenous assay to monitor activities of lipid-modifying enzymes. The assay format consists of two steps: an on-plate enzymatic reaction using fluorescently labeled substrates followed by an on-chip MEKC separation of the reaction products from the substrates. The utility of the assay format for high-throughput screening (HTS) is demonstrated using phospholipase A(2) on the Caliper 250 HTS system: throughput of 80min per 384-well plate can be achieved with unattended running time of 5.4h. This enabling technology for assaying lipid-modifying enzymes is ideal for HTS because it avoids the use of radioactive substrates and complicated separation/washing steps and detects both substrate and product simultaneously.
Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; ...
2014-12-31
Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less
Abbas, Syed Ali; Ding, Jiang; Wu, Sheng Hui; Fang, Jason; Boopathi, Karunakara Moorthy; Mohapatra, Anisha; Lee, Li Wei; Wang, Pen-Cheng; Chang, Chien-Cheng; Chu, Chih Wei
2017-12-26
In this paper we describe a modified (AEG/CH) coated separator for Li-S batteries in which the shuttling phenomenon of the lithium polysulfides is restrained through two types of interactions: activated expanded graphite (AEG) flakes interacted physically with the lithium polysulfides, while chitosan (CH), used to bind the AEG flakes on the separator, interacted chemically through its abundance of amino and hydroxyl functional groups. Moreover, the AEG flakes facilitated ionic and electronic transfer during the redox reaction. Live H-cell discharging experiments revealed that the modified separator was effective at curbing polysulfide shuttling; moreover, X-ray photoelectron spectroscopy analysis of the cycled separator confirmed the presence of lithium polysulfides in the AEG/CH matrix. Using this dual functional interaction approach, the lifetime of the pure sulfur-based cathode was extended to 3000 cycles at 1C-rate (1C = 1670 mA/g), decreasing the decay rate to 0.021% per cycle, a value that is among the best reported to date. A flexible battery based on this modified separator exhibited stable performance and could turn on multiple light-emitting diodes. Such modified membranes with good mechanical strength, high electronic conductivity, and anti-self-discharging shield appear to be a scalable solution for future high-energy battery systems.
An innovative cascade system for simultaneous separation of multiple cell types.
Pierzchalski, Arkadiusz; Mittag, Anja; Bocsi, Jozsef; Tarnok, Attila
2013-01-01
Isolation of different cell types from one sample by fluorescence activated cell sorting is standard but expensive and time consuming. Magnetic separation is more cost effective and faster by but requires substantial effort. An innovative pluriBead-cascade cell isolation system (pluriSelect GmbH, Leipzig, Germany) simultaneously separates two or more different cell types. It is based on antibody-mediated binding of cells to beads of different size and their isolation with sieves of different mesh-size. For the first time, we validated the pluriSelect system for simultaneous separation of CD4+- and CD8+-cells from human EDTA-blood samples. Results were compared with those obtained by magnetic activated cell sorting (MACS; two steps -first isolation of CD4+, then restaining of the residual cell suspension with anti-human CD8+ MACS antibody followed by the second isolation). pluriSelect separation was done in whole blood, MACS separation on density gradient isolated mononuclear cells. Isolated and residual cells were immunophenotyped by 7-color 9-marker panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLA-DR) using flow cytometry. Cell count, purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (MACS (median[range]: 92.4% [91.5-94.9] vs. pluriSelect 95% [94.9-96.8])) of CD4+ cells, however CD8+ isolation showed lower purity by MACS (74.8% [67.6-77.9], pluriSelect 89.9% [89.0-95.7]). Yield was not significantly different for CD4 (MACS 58.5% [54.1-67.5], pluriSelect 67.9% [56.8-69.8]) and for CD8 (MACS 57.2% [41.3-72.0], pluriSelect 67.2% [60.0-78.5]). Viability was slightly higher with MACS for CD4+ (98.4% [97.8-99.0], pluriSelect 94.1% [92.1-95.2]) and for CD8+-cells (98.8% [98.3-99.1], pluriSelect 86.7% [84.2-89.9]). pluriSelect separation was substantially faster than MACS (1h vs. 2.5h) and no pre-enrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two and more cell subpopulation directly from whole blood and provides a simple alternative to magnetic separation.
Zhang, Jing; Jin, Yu; Liu, Yanfang; Xiao, Yuansheng; Feng, Jiatao; Xue, Xingya; Zhang, Xiuli; Liang, Xinmiao
2009-06-01
An effective method utilizing the same RP chromatographic column with different pH in first and second LC dimensions has been developed for separation of the basic compounds from traditional Chinese medicines (TCMs). In this work, the alkaloids in Corydalis yanhusuo which is an important TCM were selected as a model to develop the method. The additives and pH values of the mobile phase were optimized in this work. To investigate the feasibility of this method, off-line mode separation was performed in the experiments. According to the UV-absorption intensity, there were eight fractions collected in acidic conditions. All the fractions were analyzed in basic conditions. The results showed that the chromatographic selectivities were significantly different in the separations performed with acidic and alkaline elution systems. Complementary separation was achieved in this work. It is demonstrated that this method would be an effective tool for alkaloids research. Based on the different pH of the mobile phase in this method, it could also be suitable to analyze compounds which were sensible to the pH of the solution.
The evolution of the Trigger and Data Acquisition System in the ATLAS experiment
NASA Astrophysics Data System (ADS)
Krasznahorkay, A.; Atlas Collaboration
2014-06-01
The ATLAS experiment, aimed at recording the results of LHC proton-proton collisions, is upgrading its Trigger and Data Acquisition (TDAQ) system during the current LHC first long shutdown. The purpose of the upgrade is to add robustness and flexibility to the selection and the conveyance of the physics data, simplify the maintenance of the infrastructure, exploit new technologies and, overall, make ATLAS data-taking capable of dealing with increasing event rates. The TDAQ system used to date is organised in a three-level selection scheme, including a hardware-based first-level trigger and second- and third-level triggers implemented as separate software systems distributed on separate, commodity hardware nodes. While this architecture was successfully operated well beyond the original design goals, the accumulated experience stimulated interest to explore possible evolutions. We will also be upgrading the hardware of the TDAQ system by introducing new elements to it. For the high-level trigger, the current plan is to deploy a single homogeneous system, which merges the execution of the second and third trigger levels, still separated, on a unique hardware node. Prototyping efforts already demonstrated many benefits to the simplified design. In this paper we report on the design and the development status of this new system.
Heavy equipment maintenance wastes and environmental management in the mining industry.
Guerin, Turlough F
2002-10-01
Maintenance wastes, if not managed properly, represent significant environmental issues for mining operations. Petroleum hydrocarbon liquid wastes were studied at an Australian site and a review of the literature and technology vendors was carried out to identify oil/water separation technologies. Treatment technologies and practices for managing oily wastewater, used across the broader mining industry in the Asia-Pacific region, were also identified. Key findings from the study were: (1) primary treatment is required to remove grease oil contamination and to protect secondary oily wastewater treatment systems from being overloaded; (2) selection of an effective secondary treatment system is dependent on influent oil droplet size and concentration, suspended solids concentration, flow rates (and their variability), environmental conditions, maintenance schedules and effectiveness, treatment targets and costs; and (3) oily wastewater treatment systems, based on mechanical separation, are favoured over those that are chemically based, as they simplify operational requirements. Source reduction, through housekeeping, equipment and reagent modifications, and segregation and/or consolidation of hydrocarbon waste streams, minimizes treatment costs, safety and environmental impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santamaria, L.; Siller, H. R.; Garcia-Ortiz, C. E., E-mail: cegarcia@cicese.mx
In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.
Development of an integrated control and measurement system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manges, W.W.
1984-03-01
This thesis presents a tutorial on the issues involved in the development of a minicomputer-based, distributed intelligence data acquisition and process control system to support complex experimental facilities. The particular system discussed in this thesis is under development for the Atomic Vapor Laser Isotope Separation (AVLIS) Program at the Oak Ridge Gaseous Diffusion Plant (ORGDP). In the AVLIS program, we were careful to integrate the computer sections of the implementation into the instrumentation system rather than adding them as an appendage. We then addressed the reliability and availability of the system as a separate concern. Thus, our concept of anmore » integrated control and measurement (ICAM) system forms the basis for this thesis. This thesis details the logic and philosophy that went into the development of this system and explains why the commercially available turn-key systems generally are not suitable. Also, the issues involved in the specification of the components for such an integrated system are emphasized.« less
Isolation of nanoscale exosomes using viscoelastic effect
NASA Astrophysics Data System (ADS)
Hu, Guoqing; Liu, Chao
2017-11-01
Exosomes, molecular cargos secreted by almost all mammalian cells, are considered as promising biomarkers to identify many diseases including cancers. However, the small size of exosomes (30-200 nm) poses serious challenges on their isolation from the complex media containing a variety of extracellular vesicles (EVs) of different sizes, especially in small sample volumes. Here we develop a viscoelasticity-based microfluidic system to directly separate exosomes from cell culture media or serum in a continuous, size-dependent, and label-free manner. Using a small amount of biocompatible polymer as the additive into the media to control the viscoelastic forces exerted on EVs, we are able to achieve a high separation purity (>90%) and recovery (>80%) of exosomes. The size cutoff in viscoelasticity-based microfluidics can be easily controlled using different PEO concentrations. Based on this size-dependent viscoelastic separation strategy, we envision the handling of diverse nanoscale objects, such as gold nanoparticles, DNA origami structures, and quantum dots. This work was supported financially by National Natural Science Foundation of China (11572334, 91543125).
Financing Schools in the New South Africa
ERIC Educational Resources Information Center
Reschovsky, Andrew
2006-01-01
In almost every dimension, South Africa has undergone dramatic changes since the end of apartheid. Public education in South Africa has been completely transformed from an amalgam of separate and highly unequal educational systems, defined in terms of the race and place of residence of students, into a unified system based on the principle of…
Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J
2016-02-01
Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trzonkowska, Laura; Leśniewska, Barbara; Godlewska-Żyłkiewicz, Beata
2016-07-03
The biological activity of Cr(III) and Cr(VI) species, their chemical behavior, and toxic effects are dissimilar. The speciation analysis of Cr(III) and Cr(VI) in environmental matrices is then of great importance and much research has been devoted to this area. This review presents recent developments in on-line speciation analysis of chromium in such samples. Flow systems have proved to be excellent tools for automation of sample pretreatment, separation/preconcentration of chromium species, and their detection by various instrumental techniques. Analytical strategies used in chromium speciation analysis discussed in this review are divided into categories based on selective extraction/separation of chromium species on solid sorbents and liquid-liquid extraction of chromium species. The most popular strategy is that based on solid-phase extraction. Therefore, this review shows the potential of novel materials designed and used for selective binding of chromium species. The progress in miniaturization of measurement systems is also presented.
Stage Separation Failure: Model Based Diagnostics and Prognostics
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry; Hafiychuk, Vasyl; Kulikov, Igor; Smelyanskiy, Vadim; Patterson-Hine, Ann; Hanson, John; Hill, Ashley
2010-01-01
Safety of the next-generation space flight vehicles requires development of an in-flight Failure Detection and Prognostic (FD&P) system. Development of such system is challenging task that involves analysis of many hard hitting engineering problems across the board. In this paper we report progress in the development of FD&P for the re-contact fault between upper stage nozzle and the inter-stage caused by the first stage and upper stage separation failure. A high-fidelity models and analytical estimations are applied to analyze the following sequence of events: (i) structural dynamics of the nozzle extension during the impact; (ii) structural stability of the deformed nozzle in the presence of the pressure and temperature loads induced by the hot gas flow during engine start up; and (iii) the fault induced thrust changes in the steady burning regime. The diagnostic is based on the measurements of the impact torque. The prognostic is based on the analysis of the correlation between the actuator signal and fault-induced changes in the nozzle structural stability and thrust.
Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures.
Vercesi, Valeria; Onori, Daniel; Laghezza, Francesco; Scotti, Filippo; Bogoni, Antonella; Scaffardi, Mirco
2015-04-01
We propose a novel architecture for implementing a dual-frequency lidar (DFL) exploiting differential Doppler shift measurement. The two frequency tones, needed for target velocity measurements, are selected from the spectrum of a mode-locked laser operating in the C-band. The tones' separation is easily controlled by using a programmable wavelength selective switch, thus allowing for a dynamic trade-off among robustness to atmospheric turbulence and sensitivity. Speed measurements for different tone separations equal to 10, 40, 80, and 160 GHz are demonstrated, proving the system's capability of working in different configurations. Thanks to the acquisition system based on an analog-to-digital converter and digital-signal processing, real-time velocity measurements are demonstrated. The MLL-based proposed architecture enables the integration of the DFL with a photonic-based radar that exploits the same laser for generating and receiving radio-frequency signal with high performance, thus allowing for simultaneous or complementary target observations by exploiting the advantages of both radar and lidar.
Game theory and risk-based leveed river system planning with noncooperation
NASA Astrophysics Data System (ADS)
Hui, Rui; Lund, Jay R.; Madani, Kaveh
2016-01-01
Optimal risk-based levee designs are usually developed for economic efficiency. However, in river systems with multiple levees, the planning and maintenance of different levees are controlled by different agencies or groups. For example, along many rivers, levees on opposite riverbanks constitute a simple leveed river system with each levee designed and controlled separately. Collaborative planning of the two levees can be economically optimal for the whole system. Independent and self-interested landholders on opposite riversides often are willing to separately determine their individual optimal levee plans, resulting in a less efficient leveed river system from an overall society-wide perspective (the tragedy of commons). We apply game theory to simple leveed river system planning where landholders on each riverside independently determine their optimal risk-based levee plans. Outcomes from noncooperative games are analyzed and compared with the overall economically optimal outcome, which minimizes net flood cost system-wide. The system-wide economically optimal solution generally transfers residual flood risk to the lower-valued side of the river, but is often impractical without compensating for flood risk transfer to improve outcomes for all individuals involved. Such compensation can be determined and implemented with landholders' agreements on collaboration to develop an economically optimal plan. By examining iterative multiple-shot noncooperative games with reversible and irreversible decisions, the costs of myopia for the future in making levee planning decisions show the significance of considering the externalities and evolution path of dynamic water resource problems to improve decision-making.
Pre-stack separation of PP and split PS waves in HTI media
NASA Astrophysics Data System (ADS)
Lu, Jun; Wang, Yun; Yang, Yuyong; Chen, Jingyi
2017-07-01
Separation of PP and split PS waves in transversely isotropic media with a horizontal axis of symmetry is crucial for imaging subsurface targets and for fracture prediction in a multicomponent seismic survey using P-wave sources. In conventional multicomponent processing, when a low velocity zone is present near the surface, it is often assumed that the vertical Z-component mainly records P modes and that the horizontal X- and Y-components record S modes, including split PS waves. However, this assumption does not hold when the ubiquitous presence of azimuthal anisotropy makes near surface velocity structures more complicated. Seismic wavefields recorded in each component therefore generally represent a complex waveform formed by PP and split PS waves, seriously distorting velocity analysis and seismic imaging. Most previous studies on wave separation have tended to separate P and S modes using pre-stack data and to separate split S modes using post-stack sections, under the assumption of orthogonal polarization. However, split S modes can hardly maintain their original orthogonal polarizations during propagation to the surface due to stratigraphic heterogeneity. Here, without assuming orthogonal polarization, we present a method for pre-stack separation of PP, PS1 and PS2 waves using all three components. The core of our method is the rotation of wave vectors from the Cartesian coordinate system established by Z-, R- and T-axes to a coordinate system established by the true PP-, PS1- and PS2-wave vector directions. Further, we propose a three-component superposition approach to obtain base wave vectors for the coordinate system transformation. Synthetic data testing results confirm that the performance of our wave separation method is stable under different noise levels. Application to field data from Southwest China reveals the potential of our proposed method.
NASA Astrophysics Data System (ADS)
Islam, Tariqul; Islam, Md. Saiful; Shajid-Ul-Mahmud, Md.; Hossam-E-Haider, Md
2017-12-01
An Attitude Heading Reference System (AHRS) provides 3D orientation of an aircraft (roll, pitch, and yaw) with instantaneous position and also heading information. For implementation of a low cost AHRS system Micro-electrical-Mechanical system (MEMS) based sensors are used such as accelerometer, gyroscope, and magnetometer. Accelerometers suffer from errors caused by external accelerations that sums to gravity and make accelerometers based rotation inaccurate. Gyroscopes can remove such errors but create drifting problems. So for getting the precise data additionally two very common and well known filters Complementary and Kalman are introduced to the system. In this paper a comparison of system performance using these two filters is shown separately so that one would be able to select filter with better performance for his/her system.
Connection method of separated luminal regions of intestine from CT volumes
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Hirooka, Yoshiki; Goto, Hidemi; Mori, Kensaku
2015-03-01
This paper proposes a connection method of separated luminal regions of the intestine for Crohn's disease diagnosis. Crohn's disease is an inflammatory disease of the digestive tract. Capsule or conventional endoscopic diagnosis is performed for Crohn's disease diagnosis. However, parts of the intestines may not be observed in the endoscopic diagnosis if intestinal stenosis occurs. Endoscopes cannot pass through the stenosed parts. CT image-based diagnosis is developed as an alternative choice of the Crohn's disease. CT image-based diagnosis enables physicians to observe the entire intestines even if stenosed parts exist. CAD systems for Crohn's disease using CT volumes are recently developed. Such CAD systems need to reconstruct separated luminal regions of the intestines to analyze intestines. We propose a connection method of separated luminal regions of the intestines segmented from CT volumes. The luminal regions of the intestines are segmented from a CT volume. The centerlines of the luminal regions are calculated by using a thinning process. We enumerate all the possible sequences of the centerline segments. In this work, we newly introduce a condition using distance between connected ends points of the centerline segments. This condition eliminates unnatural connections of the centerline segments. Also, this condition reduces processing time. After generating a sequence list of the centerline segments, the correct sequence is obtained by using an evaluation function. We connect the luminal regions based on the correct sequence. Our experiments using four CT volumes showed that our method connected 6.5 out of 8.0 centerline segments per case. Processing times of the proposed method were reduced from the previous method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar; Qu, Ming; Sun, Xiao-Guang
Separate sensible and latent cooling systems offer superior energy efficiency performance compared to conventional vapor compression air conditioning systems. In this paper we describe an innovative non-vapor compression system that uses electrochemical compressor (ECC) to pump hydrogen between 2-metal hydride reservoirs to provide the sensible cooling effect. The heat rejected during this process is used to regenerate the ionic liquid (IL) used for desiccant dehumidification. The overall system design is illustrated. The Xergy version 4C electrochemical compressor, while not designed as a high pressure system, develops in excess of 2 MPa (300 psia) and pressure ratios > 30. The projectedmore » base efficiency improvement of the electrochemical compressor is expected to be ~ 20% with higher efficiency when in low capacity mode due to being throttleable to lower capacity with improved efficiency. The IL was tailored to maximize the absorption/desorption rate of water vapor at moderate regeneration temperature. This IL, namely, [EMIm].OAc, is a hydrophilic IL with a working concentration range of 28.98% when operating between 25 75 C. The ECC metal hydride system is expected to show superior performance to typical vapor compression systems. As such, the combined efficiency gains from the use of ECC and separate and sensible cooling would offer significant potential savings to existing vapor compression cooling technology. A high efficiency Window Air Conditioner system is described based on this novel configuration. The system s schematic is provided. Models compared well with actual operating data obtained by running the prototype system. Finally, a model of an LiCl desiccant system in conjunction with the ECC-based metal hydride heat exchangers is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Orville T.; Olsen, Khris B.; Thomas, May-Lin P.
2008-05-01
A method for the separation and determination of total and isotopic uranium and plutonium by ICP-MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU® resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels.
Advances in microscale separations towards nanoproteomics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Lian; Piehowski, Paul D.; Shi, Tujin
Microscale separations (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. While significant advances have been achieved in MS-based proteomics, the current platforms still face a significant challenge in overall sensitivity towards nanoproteomics (i.e., with less than 1 g total amount of proteins available) applications such as cellular heterogeneity in tissue pathologies. Herein, we review recent advances in microscale separation techniques and integrated sample processing systems that improve the overall sensitivity and coverage of the proteomics workflow, and their contributionsmore » towards nanoproteomics applications.« less
Cross flow cyclonic flotation column for coal and minerals beneficiation
Lai, Ralph W.; Patton, Robert A.
2000-01-01
An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.
Transistor-based particle detection systems and methods
Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad Ashraful
2015-06-09
Transistor-based particle detection systems and methods may be configured to detect charged and non-charged particles. Such systems may include a supporting structure contacting a gate of a transistor and separating the gate from a dielectric of the transistor, and the transistor may have a near pull-in bias and a sub-threshold region bias to facilitate particle detection. The transistor may be configured to change current flow through the transistor in response to a change in stiffness of the gate caused by securing of a particle to the gate, and the transistor-based particle detection system may configured to detect the non-charged particle at least from the change in current flow.
Microprocessor-Based Neural-Pulse-Wave Analyzer
NASA Technical Reports Server (NTRS)
Kojima, G. K.; Bracchi, F.
1983-01-01
Microprocessor-based system analyzes amplitudes and rise times of neural waveforms. Displaying histograms of measured parameters helps researchers determine how many nerves contribute to signal and specify waveform characteristics of each. Results are improved noise rejection, full or partial separation of overlapping peaks, and isolation and identification of related peaks in different histograms. 2
Precision control of carrier-envelope phase in grating based chirped pulse amplifiers.
Li, Chengquan; Moon, Eric; Mashiko, Hiroki; Nakamura, Christopher M; Ranitovic, Predrag; Maharjan, Chakra M; Cocke, C Lewis; Chang, Zenghu; Paulus, Gerhard G
2006-11-13
It is demonstrated that the carrier-envelope (CE) phase of pulses from a high power ultrafast laser system with a grating-based stretcher and compressor can be stabilized to a root mean square (rms) value of 180 mrad over almost 2 hours, excluding a brief re-locking period. The stabilization was accomplished via feedback control of the grating separation in the stretcher. It shows that the long term CE phase stability of a grating based chirped pulse amplification system can be as good as that of lasers using a glass-block stretcher and a prism pair compressor. Moreover, by adjusting the grating separation to preset values, the relative CE phase could be locked to an arbitrary value in the range of 2pi. This method is better than using a pair of wedge plates to adjust the phase after the hollow-core fiber compressor. The CE phase stabilization after a hollow-core fiber compressor was confirmed by a CE-phase meter based on the measurement of the left-to-right asymmetry of electrons produced by above-threshold ionization.
NASA Astrophysics Data System (ADS)
Dhoble, Abhishek S.; Pullammanappallil, Pratap C.
2014-10-01
Waste treatment and management for manned long term exploratory missions to moon will be a challenge due to longer mission duration. The present study investigated appropriate digester technologies that could be used on the base. The effect of stirring, operation temperature, organic loading rate and reactor design on the methane production rate and methane yield was studied. For the same duration of digestion, the unmixed digester produced 20-50% more methane than mixed system. Two-stage design which separated the soluble components from the solids and treated them separately had more rapid kinetics than one stage system, producing the target methane potential in one-half the retention time than the one stage system. The two stage system degraded 6% more solids than the single stage system. The two stage design formed the basis of a prototype digester sized for a four-person crew during one year exploratory lunar mission.
A Formal Framework for the Analysis of Algorithms That Recover From Loss of Separation
NASA Technical Reports Server (NTRS)
Butler, RIcky W.; Munoz, Cesar A.
2008-01-01
We present a mathematical framework for the specification and verification of state-based conflict resolution algorithms that recover from loss of separation. In particular, we propose rigorous definitions of horizontal and vertical maneuver correctness that yield horizontal and vertical separation, respectively, in a bounded amount of time. We also provide sufficient conditions for independent correctness, i.e., separation under the assumption that only one aircraft maneuvers, and for implicitly coordinated correctness, i.e., separation under the assumption that both aircraft maneuver. An important benefit of this approach is that different aircraft can execute different algorithms and implicit coordination will still be achieved, as long as they all meet the explicit criteria of the framework. Towards this end we have sought to make the criteria as general as possible. The framework presented in this paper has been formalized and mechanically verified in the Prototype Verification System (PVS).
Mohorič, Urška; Beutner, Andrea; Krickl, Sebastian; Touraud, Didier; Kunz, Werner; Matysik, Frank-Michael
2016-12-01
Microemulsion electrokinetic chromatography (MEEKC) is a powerful tool to separate neutral species based on differences in their hydrophobic and hydrophilic properties. However, as a major drawback the conventionally used SDS based microemulsions are not compatible with electrospray ionization mass spectrometry (ESI-MS). In this work, a surfactant-free microemulsion (SFME) consisting of water, ethanol, and 1-octanol is used for surfactant-free microemulsion electrokinetic chromatography (SF-MEEKC). Ammonium acetate was added to the SFME enabling electrophoretic separations. The stability of SFMEs containing ammonium acetate was investigated using small-angle X-ray scattering and dynamic light scattering. A method for the separation of a model system of hydrophobic and hydrophilic neutral vitamins, namely the vitamins B 2 and D 3 , and the cationic vitamin B 1 was developed using UV/VIS detection. The influence of the ammonium acetate concentration on the separation performance was studied in detail. The method was characterized concerning reproducibility of migration times and peak areas and concerning the linearity of the calibration data. Furthermore, SF-MEEKC was coupled to ESI-MS investigating the compatibility between SFMEs and the ESI process. The signal intensities of ESI-MS measurements of the model analytes were comparable for SFMEs and aqueous systems. Finally, the vitamin D 3 content of a drug treating vitamin D 3 deficiency was determined by SF-MEEKC coupled to ESI-MS using 25-hydroxycholecalciferol as an internal standard. Graphical abstract The concept of surfactant-free microemulsion electrokinetic chromatography coupled to electrospray ionization mass spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radchenko, Valery; Meyer, Catherine Anne Louise; Engle, Jonathan Ward
Scandium-44 g (half-life 3.97 h) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, 18F, due to its favorable decay parameters. One source of 44gSc is the long-lived parent nuclide 44Ti (half-life 60.0 a). A 44Ti/ 44gSc generator would have the ability to provide radionuclidically pure 44gSc on a daily basis. The production of 44Ti via the 45Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) 44Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems basedmore » on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Lastly, results indicate that ZR resin in HCl media represents an effective 44Ti/ 44gSc separation system.« less
Yokoi, Masayuki; Tashiro, Takao
2014-01-01
We studied how the separation of dispensing and prescribing of medicines between pharmacies and clinics (the “separation system”) can reduce internal medicine costs. To do so, we obtained publicly available data by searching electronic databases and official web pages of the Japanese government and non-profit public service corporations on the Internet. For Japanese medical institutions, participation in the separation system is optional. Consequently, the expansion rate of the separation system for each of the administrative districts is highly variable. The data were subjected to multiple regression analysis; daily internal medicines were the objective variable and expansion rate of the separation system was the explanatory variable. A multiple regression analysis revealed that the expansion rate of the separation system and the rate of replacing brand name medicine with generic medicine showed a significant negative partial correlation with daily internal medicine costs. Thus, the separation system was as effective in reducing medicine costs as the use of generic medicines. Because of its medical economic efficiency, the separation system should be expanded, especially in Asian countries in which the system is underdeveloped. PMID:24999122
NASA Technical Reports Server (NTRS)
Vlajinac, M.; Stephens, T.; Gilliam, G.; Pertsas, N.
1972-01-01
Results of subsonic and supersonic wind-tunnel tests with a magnetic balance and suspension system on a family of bulbous based cone configurations are presented. At subsonic speeds the base flow and separation characteristics of these configurations is shown to have a pronounced effect on the static data. Results obtained with the presence of a dummy sting are compared with support interference free data. Support interference is shown to have a substantial effect on the measured aerodynamic coefficient.
The status of online Mendelian inheritance in man (OMIM) medio 1994.
Pearson, P; Francomano, C; Foster, P; Bocchini, C; Li, P; McKusick, V
1994-01-01
During the last year many changes have been introduced into the system of maintaining OMIM. There are three major components of the reorganization. First, a distributed editorial system was introduced which provides a three-tiered editorial board with senior editors, science writers and subject editors. Second, MIM entries have been restructured to provide separate gene and phenotype information and to organize them into separate catalogs. The restructuring also establishes clearly defined sections for entering new information, converts old entries to the new structure, and establishes a file maintenance and editorial system in SGML format. Third, the entry numbering and naming system has been modified. In addition, the information has been made available through a variety of output media, including books, CD-ROM and online access based on the IRx, WAIS, Gopher and WWW formats. PMID:7937048
Zhu, Hua-Xu; Duan, Jin-Ao; Guo, Li-Wei; Li, Bo; Lu, Jin; Tang, Yu-Ping; Pan, Lin-Mei
2014-05-01
Resource of traditional Chinese medicine residue is an inevitable choice to form new industries characterized of modem, environmental protection and intensive in the Chinese medicine industry. Based on the analysis of source and the main chemical composition of the herb residue, and for the advantages of membrane science and technology used in the pharmaceutical industry, especially membrane separation technology used in improvement technical reserves of traditional extraction and separation process in the pharmaceutical industry, it is proposed that membrane science and technology is one of the most important choices in technological design of traditional Chinese medicine resource industrialization. Traditional Chinese medicine residue is a very complex material system in composition and character, and scientific and effective "separation" process is the key areas of technology to re-use it. Integrated process can improve the productivity of the target product, enhance the purity of the product in the separation process, and solve many tasks which conventional separation is difficult to achieve. As integrated separation technology has the advantages of simplified process and reduced consumption, which are in line with the trend of the modern pharmaceutical industry, the membrane separation technology can provide a broad platform for integrated process, and membrane separation technology with its integrated technology have broad application prospects in achieving resource and industrialization process of traditional Chinese medicine residue. We discuss the principles, methods and applications practice of effective component resources in herb residue using membrane separation and integrated technology, describe the extraction, separation, concentration and purification application of membrane technology in traditional Chinese medicine residue, and systematically discourse suitability and feasibility of membrane technology in the process of traditional Chinese medicine resource industrialization in this paper.
Redox‐Active Separators for Lithium‐Ion Batteries
Pan, Ruijun; Ruan, Changqing; Edström, Kristina; Strømme, Maria
2017-01-01
Abstract A bilayered cellulose‐based separator design is presented that can enhance the electrochemical performance of lithium‐ion batteries (LIBs) via the inclusion of a porous redox‐active layer. The proposed flexible redox‐active separator consists of a mesoporous, insulating nanocellulose fiber layer that provides the necessary insulation between the electrodes and a porous, conductive, and redox‐active polypyrrole‐nanocellulose layer. The latter layer provides mechanical support to the nanocellulose layer and adds extra capacity to the LIBs. The redox‐active separator is mechanically flexible, and no internal short circuits are observed during the operation of the LIBs, even when the redox‐active layer is in direct contact with both electrodes in a symmetric lithium–lithium cell. By replacing a conventional polyethylene separator with a redox‐active separator, the capacity of the proof‐of‐concept LIB battery containing a LiFePO4 cathode and a Li metal anode can be increased from 0.16 to 0.276 mA h due to the capacity contribution from the redox‐active separator. As the presented redox‐active separator concept can be used to increase the capacities of electrochemical energy storage systems, this approach may pave the way for new types of functional separators. PMID:29593967
Redox-Active Separators for Lithium-Ion Batteries.
Wang, Zhaohui; Pan, Ruijun; Ruan, Changqing; Edström, Kristina; Strømme, Maria; Nyholm, Leif
2018-03-01
A bilayered cellulose-based separator design is presented that can enhance the electrochemical performance of lithium-ion batteries (LIBs) via the inclusion of a porous redox-active layer. The proposed flexible redox-active separator consists of a mesoporous, insulating nanocellulose fiber layer that provides the necessary insulation between the electrodes and a porous, conductive, and redox-active polypyrrole-nanocellulose layer. The latter layer provides mechanical support to the nanocellulose layer and adds extra capacity to the LIBs. The redox-active separator is mechanically flexible, and no internal short circuits are observed during the operation of the LIBs, even when the redox-active layer is in direct contact with both electrodes in a symmetric lithium-lithium cell. By replacing a conventional polyethylene separator with a redox-active separator, the capacity of the proof-of-concept LIB battery containing a LiFePO 4 cathode and a Li metal anode can be increased from 0.16 to 0.276 mA h due to the capacity contribution from the redox-active separator. As the presented redox-active separator concept can be used to increase the capacities of electrochemical energy storage systems, this approach may pave the way for new types of functional separators.
NASA Astrophysics Data System (ADS)
Buksa, John J.; Kirk, William L.; Cappiello, Michael W.
A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on the NERVA rocket engine has been completed. Results indicate that the coupling of the Rover reactor to a direct Brayton power conversion system can be accomplished through a number of design features. Furthermore, based on previously published and independently calculated component masses, the dual-mode system was found to have the potential to be mass competitive with propulsion/power systems that use separate reactors. The uncertainties of reactor design modification and shielding requirements were identified as important issues requiring future investigation.
Yokoi, Masayuki; Tashiro, Takao
2016-01-01
This study examined the economic efficiency of the separation of prescription and dispensation medicines between doctors in medical institutions and pharmacists in pharmacies. The separation system in Japanese prefectures was examined with publicly available data (Ministry of Health, Labour and Welfare, 2012–2014; retrieved from http://www.mhlw.go.jp/topics/medias/year). We investigated whether the separation system reduces the number of medicines or the medication cost of a prescription because of separating the economic management between prescribing and dispensing and the effect of mutual observation between doctors and pharmacists. It is optional for Japanese medical institutions to participate in the separation system. Consequently, the spreading rate of the separation system in each administrative district is highly variable. We examined the separation system effect using the National Healthcare Insurance data for three years, 2012–2014. We tested whether the separation system ratio for each prefecture was significantly correlated to the medication price or the number of medicines on a prescription. If spreading the separation system influenced the price of prescribed daily medications or the number of medicines, the correlation would be significant. As a result, the medication price was significantly negatively correlated with the separation system ratio, but the number of medicines was not significant. Therefore, the separation system was effective in reducing daily medication cost but had little influence on reducing the number of daily medicines. This was observed over three years in Japan. PMID:27157157
Testing Orions Fairing Separation System
NASA Technical Reports Server (NTRS)
Martinez, Henry; Cloutier, Chris; Lemmon, Heber; Rakes, Daniel; Oldham, Joe; Schlagel, Keith
2014-01-01
Traditional fairing systems are designed to fully encapsulate and protect their payload from the harsh ascent environment including acoustic vibrations, aerodynamic forces and heating. The Orion fairing separation system performs this function and more by also sharing approximately half of the vehicle structural load during ascent. This load-share condition through launch and during jettison allows for a substantial increase in mass to orbit. A series of component-level development tests were completed to evaluate and characterize each component within Orion's unique fairing separation system. Two full-scale separation tests were performed to verify system-level functionality and provide verification data. This paper summarizes the fairing spring, Pyramidal Separation Mechanism and forward seal system component-level development tests, system-level separation tests, and lessons learned.
A Bistable Microelectronic Circuit for Sensing Extremely Low Electric Field
2010-01-01
potential system describing the ferromagnetic ma- terials employed in the fluxgate magnetometers .1 To give a clearer picture of the separations between...this behavior in a specific prototype system comprised of three unidirectionally coupled ferromagnetic cores, the basis of a coupled core fluxgate ... magnetometer . Another prototypical quartic poten- tial based system of coupled overdamped Duffing elements has been applied to describe the dynamics
Llamas: Large-area microphone arrays and sensing systems
NASA Astrophysics Data System (ADS)
Sanz-Robinson, Josue
Large-area electronics (LAE) provides a platform to build sensing systems, based on distributing large numbers of densely spaced sensors over a physically-expansive space. Due to their flexible, "wallpaper-like" form factor, these systems can be seamlessly deployed in everyday spaces. They go beyond just supplying sensor readings, but rather they aim to transform the wealth of data from these sensors into actionable inferences about our physical environment. This requires vertically integrated systems that span the entirety of the signal processing chain, including transducers and devices, circuits, and signal processing algorithms. To this end we develop hybrid LAE / CMOS systems, which exploit the complementary strengths of LAE, enabling spatially distributed sensors, and CMOS ICs, providing computational capacity for signal processing. To explore the development of hybrid sensing systems, based on vertical integration across the signal processing chain, we focus on two main drivers: (1) thin-film diodes, and (2) microphone arrays for blind source separation: 1) Thin-film diodes are a key building block for many applications, such as RFID tags or power transfer over non-contact inductive links, which require rectifiers for AC-to-DC conversion. We developed hybrid amorphous / nanocrystalline silicon diodes, which are fabricated at low temperatures (<200 °C) to be compatible with processing on plastic, and have high current densities (5 A/cm2 at 1 V) and high frequency operation (cutoff frequency of 110 MHz). 2) We designed a system for separating the voices of multiple simultaneous speakers, which can ultimately be fed to a voice-command recognition engine for controlling electronic systems. On a device level, we developed flexible PVDF microphones, which were used to create a large-area microphone array. On a circuit level we developed localized a-Si TFT amplifiers, and a custom CMOS IC, for system control, sensor readout and digitization. On a signal processing level we developed an algorithm for blind source separation in a real, reverberant room, based on beamforming and binary masking. It requires no knowledge about the location of the speakers or microphones. Instead, it uses cluster analysis techniques to determine the time delays for beamforming; thus, adapting to the unique acoustic environment of the room.
Separators - Technology review: Ceramic based separators for secondary batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram
Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membranemore » - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.« less
Separators - Technology review: Ceramic based separators for secondary batteries
NASA Astrophysics Data System (ADS)
Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.
2014-06-01
Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.
High-speed and high-resolution UPLC separation at zero degrees Celsius
Wales, Thomas E.; Fadgen, Keith E.; Gerhardt, Geoff C.; Engen, John R.
2008-01-01
The conformational properties of proteins can be probed with hydrogen/deuterium exchange mass spectrometry (HXMS). In order to maintain the deuterium label during LC/MS analyses, chromatographic separation must be done rapidly (usually in under 8–10 minutes) and at zero degrees Celsius. Traditional RP-HPLC with ~3 micron particles has shown generally poor chromatographic performance under these conditions and thereby has been prohibitive for HXMS analyses of larger proteins and many protein complexes. Ultra performance liquid chromatography (UPLC) employs particles smaller than 2 microns in diameter to achieve superior resolution, speed, and sensitivity as compared to HPLC. UPLC has previously been shown to be compatible with the fast separation and low temperature requirements of HXMS. Here we present construction and validation of a custom UPLC system for HXMS. The system is based on the Waters nanoACQUITY platform and contains a Peltier-cooled module that houses the injection and switching valves, online pepsin digestion column, and C-18 analytical separation column. Single proteins in excess of 95 kDa and a four-protein mixture in excess of 250 kDa have been used to validate the performance of this new system. Near baseline resolution was achieved in 6 minute separations at 0 °C and displayed a median chromatographic peak width of ~2.7 sec at half height. Deuterium recovery was similar to that obtained using a conventional HPLC and icebath. This new system represents a significant advancement in HXMS technology that is expected to make the technique more accessible and mainstream in the near future. PMID:18672890
Lin, Hui; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Ou, Junjie; Zou, Hanfa
2013-09-01
A new organic-inorganic hybrid monolith was prepared by the ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with 1,4-butanediamine (BDA) using 1-propanol, 1,4-butanediol, and PEG 10,000 as a porogenic system. Benefiting from the moderate phase separation process, the resulting poly(POSS-co-BDA) hybrid monolith possessed a uniform microstructure and exhibited excellent performance in chromatographic applications. Neutral, acidic, and basic compounds were successfully separated on the hybrid monolith in capillary LC (cLC), and high column efficiencies were achieved in all of the separations. In addition, as the amino groups could generate a strong EOF, the hybrid monolith was also applied in CEC for the separation of neutral and polar compounds, and a satisfactory performance was obtained. These results demonstrate that the poly(POSS-co-BDA) hybrid monolith is a good separation media in chromatographic separations of various types of compounds by both cLC and CEC. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Configuration of Air Microfluidic Chip for Separating and Grading Respirable Dust
NASA Astrophysics Data System (ADS)
Zhu, Xiaofeng; Jia, Yiting; Sun, Jianhai; Zhao, Peiyue; Liu, Jinhua; Zhang, Yanni; Ning, Zhanwu
2018-03-01
Particulate matter (PM) is a category of airborne pollutants, and fine particles that have a diameter of 2.5 μm (PM2.5) or smaller are especially damaging to human health because of their ability to penetrate deep into our respiratory system, Therefore, Monitoring of PM is very important. In this work, an air micro- fluidic PM sensor based on MEMS was proposed, and numerical model of the sensor was simulated accurately. The sensor was able to separate particles according to their sizes, and then transports and deposits the selected particles using thermophoretic precipitation onto the surface of a microfabricated mass-sensitive film bulk acoustic resonator (FBAR), precisely weighing and providing the concentration of PM. The PM sensor has double stage separation function, and the primary separator can separate the particles with size of less 10 μm from the particles, and the secondary can separate particles with size of less 2.5 μm from the particles.
A neural network architecture for implementation of expert systems for real time monitoring
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.
1991-01-01
Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.
The Effects of Limited Intent Information Availability on Self-Separation in Mixed Operations
NASA Technical Reports Server (NTRS)
Lewis, Timothy A.; Phojanamongkolkij, Nipa; Wing, David J.
2012-01-01
This paper presents the results of a computer simulation of the NASA Autonomous Flight Rules (AFR) concept for airborne self-separation in airspace shared with conventional Instrument Flight Rules (IFR) traffic. This study was designed to determine the impact of varying levels of intent information from IFR aircraft on the performance of AFR conflict detection and resolution. The study used Automatic Dependent Surveillance-Broadcast (ADS-B) to supply IFR intent, but other methods such as an uplink from a ground-based System Wide Information Management (SWIM) network could alternatively supply this information. The independent variables of the study consist of the number of ADS-B trajectory change reports broadcast by IFR aircraft and the time interval between those reports. The conflict detection and resolution metrics include: the number of conflicts and losses of separation, the average conflict warning time, and the amount of time spent in strategic vs. tactical flight modes (i.e., whether the autoflight system was decoupled from the planned route in the Flight Management System in order to respond to a short-notice traffic conflict). The results show a measurable benefit of broadcasting IFR intent vs. relying on state-only broadcasts. The results of this study will inform ongoing separation assurance research and FAA NextGen design decisions for the sharing of trajectory intent information in the National Airspace System.
Hydrograph separation for karst watersheds using a two-domain rainfall-discharge model
Long, Andrew J.
2009-01-01
Highly parameterized, physically based models may be no more effective at simulating the relations between rainfall and outflow from karst watersheds than are simpler models. Here an antecedent rainfall and convolution model was used to separate a karst watershed hydrograph into two outflow components: one originating from focused recharge in conduits and one originating from slow flow in a porous annex system. In convolution, parameters of a complex system are lumped together in the impulse-response function (IRF), which describes the response of the system to an impulse of effective precipitation. Two parametric functions in superposition approximate the two-domain IRF. The outflow hydrograph can be separated into flow components by forward modeling with isolated IRF components, which provides an objective criterion for separation. As an example, the model was applied to a karst watershed in the Madison aquifer, South Dakota, USA. Simulation results indicate that this watershed is characterized by a flashy response to storms, with a peak response time of 1 day, but that 89% of the flow results from the slow-flow domain, with a peak response time of more than 1 year. This long response time may be the result of perched areas that store water above the main water table. Simulation results indicated that some aspects of the system are stationary but that nonlinearities also exist.
Modeling and identifying the sources of radiocesium contamination in separate sewerage systems.
Pratama, Mochamad Adhiraga; Yoneda, Minoru; Yamashiki, Yosuke; Shimada, Yoko; Matsui, Yasuto
2018-05-01
The Fukushima Dai-ichi nuclear power plant accident released radiocesium in large amounts. The released radionuclides contaminated much of the surrounding environment, including sewers in urban areas of Fukushima prefecture. In this study we attempted to identify and quantify the sources of radiocesium contamination in separate sewerage systems and developed a compartment model based on the Radionuclide Migration in Urban Environments and Drainage Systems (MUD) model. Measurements of the time-dependent radiocesium concentration in sewer sludge combined with meteorological, demographic, and radiocesium dietary intake data indicated that rainfall-derived inflow and infiltration (RDII) and human excretion were the chief contributors of radiocesium contamination in a separate sewerage system. The quantities of contamination derived from RDII and human excretion were calculated and used in the modified MUD model to simulate radiocesium contamination in sewers in three urban areas in Fukushima prefecture: Fukushima, Koriyama, and Nihonmatsu Cities. The Nash efficiency coefficient (0.88-0.92) and determination coefficient (0.89-0.93) calculated in an evaluation of our compartment model indicated that the model produced satisfactory results. We also used the model to estimate the total volume of sludge with radiocesium concentrations in excess of the clearance level, based on the number of months elapsed after the accident. Estimations by our model suggested that wastewater treatment plants (WWTPs) in Fukushima, Koriyama, and Nihonmatsu generated about 1,750,000m 3 of radioactive sludge in total, a level in good agreement with the real data. Copyright © 2017 Elsevier B.V. All rights reserved.
Kohl, Felix J; Montealegre, Cristina; Neusüß, Christian
2016-04-01
CE is becoming more and more important in many fields of bioanalytical chemistry. Besides optical detection, hyphenation to ESI-MS detection is increasingly applied for sensitive identification purposes. Unfortunately, many CE techniques and methods established in research and industry are not compatible to ESI-MS since essential components of the background electrolyte interfere in ES ionization. In order to identify unknown peaks in established CE methods, here, a heart-cut 2D-CE separation system is introduced using a fully isolated mechanical valve with an internal loop of only 20 nL. In this system, the sample is separated using potentially any non-ESI compatible method in the first separation dimension. Subsequently, the portion of interest is cut by the internal sample loop of the valve and reintroduced to the second dimension where the interfering compounds are removed, followed by ESI-MS detection. When comparing the separation efficiency of the system with the valve to a system using a continuous capillary only a slight increase in peak width is observed. Ultraviolet/visible detection is integrated in the first dimension for switching time determination, enabling reproducible cutting of peaks of interest. The feasibility of the system is successfully demonstrated by a 2D analysis of a BSA tryptic digest sample using a nonvolatile (phosphate based) background electrolyte in the first dimension. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cimpan, Ciprian; Rothmann, Marianne; Hamelin, Lorie; Wenzel, Henrik
2015-07-01
Municipal solid waste (MSW) management remains a challenge, even in Europe where several countries now possess capacity to treat all arising MSW, while others still rely on unsustainable disposal pathways. In the former, strategies to reach higher recycling levels are affecting existing waste-to-energy (WtE) treatment infrastructure, by inducing additional overcapacity and this in turn rebounds as pressure on the waste and recyclable materials markets. This study addresses such situations by documenting the effects, in terms of resource recovery, global warming potential (GWP) and cumulative energy demand (CED), of a transition from a self-sufficient waste management system based on minimal separate collection and efficient WtE, towards a system with extended separate collection of recyclable materials and biowaste. In doing so, it tackles key questions: (1) whether recycling and biological treatment are environmentally better compared to highly efficient WtE, and (2) what are the implications of overcapacity-related cascading effects, namely waste import, when included in the comparison of alternative waste management systems. System changes, such as the implementation of kerbside separate collection of recyclable materials were found to significantly increase material recovery, besides leading to substantial GWP and CED savings in comparison to the WtE-based system. Bio-waste separate collection contributed with additional savings when co-digested with manure, and even more significantly when considering future renewable energy background systems reflecting the benefits induced by the flexible use of biogas. Given the current liberalization of trade in combustible waste in Europe, waste landfilling was identified as a short-to-medium-term European-wide waste management marginal reacting to overcapacity effects induced by the implementation of increased recycling strategies. When waste import and, consequently, avoided landfilling were included in the system boundary, additional savings of up to 700 kg CO2 eq. and 16 GJ eq. of primary energy per tonne of imported waste were established. Conditions, such as energy recovery efficiency, and thresholds beyond which import-related savings potentially turn into GWP burdens were also determined. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2000-04-01
This technical summary presents the key findings of a Federal Highway Administration (FHWA) study that is fully documented in a separate report of the same title (FHWA-RD-00-026). In October 1995, FHWA initiated a study on "Magnetic-Based System for ...
Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong
2011-12-01
Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3).
Recovery of biotechnological products using aqueous two phase systems.
Phong, Win Nee; Show, Pau Loke; Chow, Yin Hui; Ling, Tau Chuan
2018-04-16
Aqueous two-phase system (ATPS) has been suggested as a promising separation tool in the biotechnological industry. This liquid-liquid extraction technique represents an interesting advance in downstream processing due to several advantages such as simplicity, rapid separation, efficiency, economy, flexibility and biocompatibility. Up to date, a range of biotechnological products have been successfully recovered from different sources with high yield using ATPS-based strategy. In view of the important potential contribution of the ATPS in downstream processing, this review article aims to provide latest information about the application of ATPS in the recovery of various biotechnological products in the past 7 years (2010-2017). Apart from that, the challenges as well as the possible future work and outlook of the ATPS-based recovery method have also been presented in this review article. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Performance analysis of a microfluidic mixer based on high gradient magnetic separation principles
NASA Astrophysics Data System (ADS)
Liu, Mengyu; Han, Xiaotao; Cao, Quanliang; Li, Liang
2017-09-01
To achieve a rapid mixing between a water-based ferrofluid and DI water in a microfluidic environment, a magnetically actuated mixing system based on high gradient magnetic separation principles is proposed in this work. The microfluidic system consists of a T-shaped mirochannel and an array of integrated soft-magnetic elements at the sidewall of the channel. With the aid of an external magnetic bias field, these elements are magnetized to produce a magnetic volume force acting on the fluids containing magnetic nanoparticles, and then to induce additional flows for improving the mixing performance. The mixing process is numerically investigated through analyzing the concentration distribution of magnetic nanoparticles using a coupled particle-fluid transport model, and mixing performances under different parametrical conditions are investigated in detail. Numerical results show that a high mixing efficiency around 97.5% can be achieved within 2 s under an inlet flow rate of 1 mm s-1 and a relatively low magnetic bias field of 50 mT. Meanwhile, it has been found that there is an optimum number of magnetic elements used for obtaining the best mixing performance. These results show the potential of the proposed mixing method in lab-on-a-chip system and could be helpful in designing and optimizing system performance.
Motegi, Toshinori; Nabika, Hideki; Fu, Yingqiang; Chen, Lili; Sun, Yinlu; Zhao, Jianwei; Murakoshi, Kei
2014-07-01
A new molecular manipulation method in the self-spreading lipid bilayer membrane by combining Brownian ratchet and molecular filtering effects is reported. The newly designed ratchet obstacle was developed to effectively separate dye-lipid molecules. The self-spreading lipid bilayer acted as both a molecular transport system and a manipulation medium. By controlling the size and shape of ratchet obstacles, we achieved a significant increase in the separation angle for dye-lipid molecules compared to that with the previous ratchet obstacle. A clear difference was observed between the experimental results and the simple random walk simulation that takes into consideration only the geometrical effect of the ratchet obstacles. This difference was explained by considering an obstacle-dependent local decrease in molecular diffusivity near the obstacles, known as the molecular filtering effect at nanospace. Our experimental findings open up a novel controlling factor in the Brownian ratchet manipulation that allow the efficient separation of molecules in the lipid bilayer based on the combination of Brownian ratchet and molecular filtering effects.
Using two MEMS deformable mirrors in an adaptive optics test bed for multiconjugate correction
NASA Astrophysics Data System (ADS)
Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.
2010-02-01
Adaptive optics systems have advanced considerably over the past decade and have become common tools for optical engineers. The most recent advances in adaptive optics technology have lead to significant reductions in the cost of most of the key components. Most significantly, the cost of deformable elements and wavefront sensor components have dropped to the point where multiple deformable mirrors and Shack- Hartmann array based wavefront sensor cameras can be included in a single system. Matched with the appropriate hardware and software, formidable systems can be operating in nearly any sized research laboratory. The significant advancement of MEMS deformable mirrors has made them very popular for use as the active corrective element in multi-conjugate adaptive optics systems so that, in particular for astronomical applications, this allows correction in more than one plane. The NRL compact AO system and atmospheric simulation systems has now been expanded to support Multi Conjugate Adaptive Optics (MCAO), taking advantage of using the liquid crystal spatial light modulator (SLM) driven aberration generators in two conjugate planes that are well separated spatially. Thus, by using two SLM based aberration generators and two separate wavefront sensors, the system can measure and apply wavefront correction with two MEMS deformable mirrors. This paper describes the multi-conjugate adaptive optics system and the testing and calibration of the system and demonstrates preliminary results with this system.
Nitrogen supply system based on hydrazine dissociation
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Quattrone, P. D.
1981-01-01
Future long-duration manned space missions will require a method of generating N2 for cabin leakage makeup and repressurization. Life Systems, working with NASA, is developing a Nitrogen Supply Subsystem (NSS) based on the dissociation of N2H4 into a mixture of H2 and N2. The latter is separated to provide the makeup N2. Recent advances in specific hardware developments have resulted in the design and fabrication of a nominal 3.6 kg/day N2 generation module. The design integrates a N2H4 catalytic dissociator, three ammonia (NH3) dissociation stages and four H2 separation stages into a 33 kg, 14 cu dm module. A technique has been devised to alternate the NH3 dissociation and H2 separation stages to give high N2 purity in the product stream. Tests have shown the product stream to contain less than 0.5 percent H2 and 20 ppm NH3. This paper discusses the development and test activities of the NSS program. It reviews the design, configuration, operation and projected performance characteristics of a 4.4 kg/day NSS suitable for NASA's planned Space Operations Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zalupski, Peter R.; Klaehn, John R.; Peterman, Dean R.
The feasibility of simultaneous separation of uranium, neptunium, plutonium, americium, and curium from a simulated dissolved used fuel simulant adjusted to 1.0 M nitric acid is investigated using a mixture of the soft donor bis(bis-3,5-trifluoromethyl)phenyl) dithiophosphinic acid (“0”) and the hard donor synergist trioctylphosphine oxide (TOPO) dissolved in toluene. The results reported in this work are compared to our recent demonstration of a complete actinide recovery from a simulated dissolved fuel solution using a synergistic combination of bis(o-trifluoromethylphenyl)dithiophosphinic acid (“1”) and TOPO dissolved in either toluene or trifluoromethylphenyl sulfone. While the extraction efficiency of americium was enhanced for the liquid-liquidmore » system containing “0”, enabling to accomplish a trivalent An/Ln separation at 1.0 M HNO3, the extraction of neptunium was drastically diminished, relative to “1”. The partitioning behavior of curium was also negatively impacted, introducing an effective opportunity for americium/curium separation. Radiometric and spectrophotometric studies demonstrate that the complete actinide recovery using the solvent based upon “0” and TOPO is not feasible. Additionally, the importance of radiolytic degradation processes is discussed through the comparisons of extraction properties of liquid-liquid systems based on both soft donor reagents.« less
Critical review: Injectability of calcium phosphate pastes and cements.
O'Neill, R; McCarthy, H O; Montufar, E B; Ginebra, M-P; Wilson, D I; Lennon, A; Dunne, N
2017-03-01
Calcium phosphate cements (CPC) have seen clinical success in many dental and orthopaedic applications in recent years. The properties of CPC essential for clinical success are reviewed in this article, which includes properties of the set cement (e.g. bioresorbability, biocompatibility, porosity and mechanical properties) and unset cement (e.g. setting time, cohesion, flow properties and ease of delivery to the surgical site). Emphasis is on the delivery of calcium phosphate (CaP) pastes and CPC, in particular the occurrence of separation of the liquid and solid components of the pastes and cements during injection; and established methods to reduce this phase separation. In addition a review of phase separation mechanisms observed during the extrusion of other biphasic paste systems and the theoretical models used to describe these mechanisms are discussed. Occurrence of phase separation of calcium phosphate pastes and cements during injection limits their full exploitation as a bone substitute in minimally invasive surgical applications. Due to lack of theoretical understanding of the phase separation mechanism(s), optimisation of an injectable CPC that satisfies clinical requirements has proven difficult. However, phase separation of pastes during delivery has been the focus across several research fields. Therefore in addition to a review of methods to reduce phase separation of CPC and the associated constraints, a review of phase separation mechanisms observed during extrusion of other pastes and the theoretical models used to describe these mechanisms is presented. It is anticipated this review will benefit future attempts to develop injectable calcium phosphate based systems. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow
NASA Astrophysics Data System (ADS)
Jones, J. P.; Sudicky, E. A.; Brookfield, A. E.; Park, Y.-J.
2006-02-01
The use of conservative geochemical and isotopic tracers along with mass balance equations to determine the pre-event groundwater contributions to streamflow during a rainfall event is widely used for hydrograph separation; however, aspects related to the influence of surface and subsurface mixing processes on the estimates of the pre-event contribution remain poorly understood. Moreover, the lack of a precise definition of "pre-event" versus "event" contributions on the one hand and "old" versus "new" water components on the other hand has seemingly led to confusion within the hydrologic community about the role of Darcian-based groundwater flow during a storm event. In this work, a fully integrated surface and subsurface flow and solute transport model is used to analyze flow system dynamics during a storm event, concomitantly with advective-dispersive tracer transport, and to investigate the role of hydrodynamic mixing processes on the estimates of the pre-event component. A number of numerical experiments are presented, including an analysis of a controlled rainfall-runoff experiment, that compare the computed Darcian-based groundwater fluxes contributing to streamflow during a rainfall event with estimates of these contributions based on a tracer-based separation. It is shown that hydrodynamic mixing processes can dramatically influence estimates of the pre-event water contribution estimated by a tracer-based separation. Specifically, it is demonstrated that the actual amount of bulk flowing groundwater contributing to streamflow may be much smaller than the quantity indirectly estimated from a separation based on tracer mass balances, even if the mixing processes are weak.
Zou, Denglang; Du, Yurong; Kuang, Jianyuan; Sun, Shihao; Ma, Jianbin; Jiang, Renwang
2018-06-08
This study presents an efficient strategy based on pH-zone-refining counter-current chromatography with a hydrophilic organic/salt-containing two-phase system composed of acetonitrile, sodium chloride and water for preparative separation of polar alkaloids from natural products. Acetonitrile-sodium chloride-water system provides a wider range of polarity for polar alkaloids than classical aqueous two-phase systems. It gets rid of the effect of free hydrogen ion, strong ionic strength, hold low viscosity and the sharp retainer border could be formed easily. So acetonitrile-sodium chloride-water system showed great advantages to pH-zone-refining counter-current chromatography for polar alkaloids. The separation of polar indole alkaloids from toad venom was selected as an example to show the advantage and practicability of this strategy. An optimized acetonitrile-sodium chloride-water (54%:5%:41%, w%) system was applied in this study, where 10 mM triethylamine (TEA) as the retainer and 15 mM hydrochloric acid (HCl) as the eluter were added. As a result, three polar indole alkaloids, including 19 mg of serotonin, 45 mg of 5-Hydroxy-N'-methyl tryptamine, 33 mg of bufotenine were simultaneously separated from 500 mg of 5% ethanol elution fraction of toad venom on macroporous resin chromatography, with the purity of 91.3%, 97.5% and 89.4%, respectively. Their structures were identified by spectroscopic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Humphreys, Michael S.; And Others
1989-01-01
An associative theory of memory is proposed to serve as a counterexample to claims that dissociations among episodic, semantic, and procedural memory tasks necessitate separate memory systems. The theory is based on task analyses of matching (recognition and familiarity judgments), retrieval (cued recall), and production (free association). (TJH)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
... municipal securities market on a systemic basis. Periodic examinations of regulated entities are an... Exchange Act. Separately, FINRA examines its members pursuant to a risk-based approach at least every four... underwriting, research, or trading. They, therefore, do not pose systemic risk to the market in these areas. \\3...
Modular architecture for robotics and teleoperation
Anderson, Robert J.
1996-12-03
Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.
Hasehira, Kayo; Miyanishi, Nobumitsu; Sumiyoshi, Wataru; Hirabayashi, Jun; Nakakita, Shin-ichi
2011-12-13
Rare sugars are monosaccharides that are found in relatively low abundance in nature. Herein, we describe a strategy for producing rare aldohexoses from ketohexoses using the classical Lobry de Bruyn-Alberda van Ekenstein transformation. Upon Schiff-base formation of keto sugars, a fluorescence-labeling reagent, 2-aminopyridine (2-AP), was used. While acting as a base catalyst, 2-AP efficiently promoted the ketose-to-aldose transformation, and acting as a Schiff-base reagent, it effectively froze the ketose-aldose equilibrium. We could also separate a mixture of Sor, Gul, and Ido in their Schiff-base forms using a normal-phase HPLC separation system. Although Gul and Ido represent the most unstable aldohexoses, our method provides a practical way to rapidly obtain these rare aldohexoses as needed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Using the adsorption chillers for waste heat utilisation from the CCS installation
NASA Astrophysics Data System (ADS)
Sztekler, Karol; Kalawa, Wojciech; Nowak, Wojciech; Stefański, Sebastian; Krzywański, Jarosław; Grabowska, Karolina
2018-06-01
Worldwide tendencies in the scope of environmental protection demonstrate the requirement for the limited carbon dioxide emission, that influences on the development of greenhouse effect. As a result of coal as a basic fuel used in the professional power industry, this industry sector is the greatest CO2 polluter and it means that works on the reduction of carbon dioxide in such industry are completely justified. In the IPSEpro programming environment, a reference block model for a conventional coal power station was elaborated, including the CO2 separation unit basing on the adsorption methods with the CO2 preparation installation to liquid state. Simulation researches were conducted with means of numeric techniques, that enabled the system analysis for the CO2 separation unit with the CO2 preparation system to the liquid state, as well as analysis was made for the use of chiller systems, basing on the adsorption technology for waste heat use originating from the compression of CO2 in a cascade system, as well as for potential opportunities for further exploitation of the produced chilled water in the CCS cycle. We analysed in these papers the opportunities for chiller systems application, based on the adsorption chillers in the CCS installation used for the reduction of CO2 emission in the coal power station and its influence on the operation of a power station cycle.
Laser capture microdissection: should an ultraviolet or infrared laser be used?
Vandewoestyne, Mado; Goossens, Karen; Burvenich, Christian; Van Soom, Ann; Peelman, Luc; Deforce, Dieter
2013-08-15
Laser capture microdissection (LCM) is a well-established cell separation technique. It combines microscopy with laser beam technology and allows targeting of specific cells or tissue regions that need to be separated from others. Consequently, this biological material can be used for genome or transcriptome analyses. Appropriate methods of sample preparation, however, are crucial for the success of downstream molecular analysis. The aim of this study was to objectively compare the two main LCM systems, one based on an ultraviolet (UV) laser and the other based on an infrared (IR) laser, on different criteria ranging from user-friendliness to sample quality. The comparison was performed on two types of samples: peripheral blood mononuclear cells and blastocysts. The UV laser LCM system had several advantages over the IR laser LCM system. Not only does the UV system allow faster and more precise sample collection, but also the obtained samples-even single cell samples-can be used for DNA extraction and downstream polymerase chain reaction (PCR) applications. RNA-based applications are more challenging for both LCM systems. Although sufficient RNA can be extracted from as few as 10 cells for reverse transcription quantitative PCR (RT-qPCR) analysis, the low RNA quality should be taken into account when designing the RT-qPCR assays. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gandhi, Neeraj; Kim, Sungmin; Kazanzides, Peter; Lediju Bell, Muyinatu A.
2017-03-01
Minimally invasive surgery carries the deadly risk of rupturing major blood vessels, such as the internal carotid arteries hidden by bone in endonasal transsphenoidal surgery. We propose a novel approach to surgical guidance that relies on photoacoustic-based vessel separation measurements to assess the extent of safety zones during these type of surgical procedures. This approach can be implemented with or without a robot or navigation system. To determine the accuracy of this approach, a custom phantom was designed and manufactured for modular placement of two 3.18-mm diameter vessel-mimicking targets separated by 10-20 mm. Photoacoustic images were acquired as the optical fiber was swept across the vessels in the absence and presence of teleoperation with a research da Vinci Surgical System. When the da Vinci was used, vessel positions were recorded based on the fiber position (calculated from the robot kinematics) that corresponded to an observed photoacoustic signal. In all cases, compounded photoacoustic data from a single sweep displayed the four vessel boundaries in one image. Amplitude- and coherence-based photoacoustic images were used to estimate vessel separations, resulting in 0.52-0.56 mm mean absolute errors, 0.66-0.71 mm root mean square errors, and 65-68% more accuracy compared to fiber position measurements obtained through the da Vinci robot kinematics. Results indicate that with further development, photoacoustic image-based measurements of anatomical landmarks could be a viable method for real-time path planning in multiple interventional photoacoustic applications.
An Independent and Coordinated Criterion for Kinematic Aircraft Maneuvers
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony J.; Munoz, Cesar A.; Hagen, George
2014-01-01
This paper proposes a mathematical definition of an aircraft-separation criterion for kinematic-based horizontal maneuvers. It has been formally proved that kinematic maneu- vers that satisfy the new criterion are independent and coordinated for repulsiveness, i.e., the distance at closest point of approach increases whether one or both aircraft maneuver according to the criterion. The proposed criterion is currently used in NASA's Airborne Coordinated Resolution and Detection (ACCoRD) set of tools for the design and analysis of separation assurance systems.
Pyrene-Tagged Ionic Liquids: Separable Organic Catalysts for SN2 Fluorination.
Taher, Abu; Lee, Kyo Chul; Han, Hye Ji; Kim, Dong Wook
2017-07-07
We prepared pyrene-substituted imidazolium-based ionic liquids (PILs) as organic catalysts for the S N 2 fluorination using alkali metal fluoride (MF). In this system, the PIL significantly enhanced the reactivity of MF due to the phase-transfer catalytic effect of the imidazolium moiety as well as the metal cation-π (pyrene) interactions. Furthermore, this homogeneous catalyst PIL was easily separated from the reaction mixture using reduced graphene oxide by π-π stacking with the pyrene of PIL.
Li, Yan; Buch, Jesse S; Rosenberger, Frederick; DeVoe, Don L; Lee, Cheng S
2004-02-01
An integrated protein concentration/separation system, combining non-native isoelectric focusing (IEF) with sodium dodecyl sulfate (SDS) gel electrophoresis on a polymer microfluidic chip, is reported. The system provides significant analyte concentration and extremely high resolving power for separated protein mixtures. The ability to introduce and isolate multiple separation media in a plastic microfluidic network is one of two key requirements for achieving multidimensional protein separations. The second requirement lies in the quantitative transfer of focused proteins from the first to second separation dimensions without significant loss in the resolution acquired from the first dimension. Rather than sequentially sampling protein analytes eluted from IEF, focused proteins are electrokinetically transferred into an array of orthogonal microchannels and further resolved by SDS gel electrophoresis in a parallel and high-throughput format. Resolved protein analytes are monitored using noncovalent, environment-sensitive, fluorescent probes such as Sypro Red. In comparison with covalently labeling proteins, the use of Sypro staining during electrophoretic separations not only presents a generic detection approach for the analysis of complex protein mixtures such as cell lysates but also avoids additional introduction of protein microheterogeneity as the result of labeling reaction. A comprehensive 2-D protein separation is completed in less than 10 min with an overall peak capacity of approximately 1700 using a chip with planar dimensions of as small as 2 cm x 3 cm. Significant enhancement in the peak capacity can be realized by simply raising the density of microchannels in the array, thereby increasing the number of IEF fractions further analyzed in the size-based separation dimension.
Polarization division multiplexing for optical data communications
NASA Astrophysics Data System (ADS)
Ivanovich, Darko; Powell, Samuel B.; Gruev, Viktor; Chamberlain, Roger D.
2018-02-01
Multiple parallel channels are ubiquitous in optical communications, with spatial division multiplexing (separate physical paths) and wavelength division multiplexing (separate optical wavelengths) being the most common forms. Here, we investigate the viability of polarization division multiplexing, the separation of distinct parallel optical communication channels through the polarization properties of light. Two or more linearly polarized optical signals (at different polarization angles) are transmitted through a common medium, filtered using aluminum nanowire optical filters fabricated on-chip, and received using individual silicon photodetectors (one per channel). The entire receiver (including optics) is compatible with standard CMOS fabrication processes. The filter model is based upon an input optical signal formed as the sum of the Stokes vectors for each individual channel, transformed by the Mueller matrix that models the filter proper, resulting in an output optical signal that impinges on each photodiode. The results show that two- and three-channel systems can operate with a fixed-threshold comparator in the receiver circuit, but four-channel systems (and larger) will require channel coding of some form. For example, in the four-channel system, 10 of 16 distinct bit patterns are separable by the receiver. The model supports investigation of the range of variability tolerable in the fabrication of the on-chip polarization filters.
Research on a dynamic workflow access control model
NASA Astrophysics Data System (ADS)
Liu, Yiliang; Deng, Jinxia
2007-12-01
In recent years, the access control technology has been researched widely in workflow system, two typical technologies of that are RBAC (Role-Based Access Control) and TBAC (Task-Based Access Control) model, which has been successfully used in the role authorizing and assigning in a certain extent. However, during the process of complicating a system's structure, these two types of technology can not be used in minimizing privileges and separating duties, and they are inapplicable when users have a request of frequently changing on the workflow's process. In order to avoid having these weakness during the applying, a variable flow dynamic role_task_view (briefly as DRTVBAC) of fine-grained access control model is constructed on the basis existed model. During the process of this model applying, an algorithm is constructed to solve users' requirements of application and security needs on fine-grained principle of privileges minimum and principle of dynamic separation of duties. The DRTVBAC model is implemented in the actual system, the figure shows that the task associated with the dynamic management of role and the role assignment is more flexible on authority and recovery, it can be met the principle of least privilege on the role implement of a specific task permission activated; separated the authority from the process of the duties completing in the workflow; prevented sensitive information discovering from concise and dynamic view interface; satisfied with the requirement of the variable task-flow frequently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostick, Debra A.; Hexel, Cole R.; Ticknor, Brian W.
2016-11-01
To shorten the lengthy and costly manual chemical purification procedures, sample preparation methods for mass spectrometry are being automated using commercial-off-the-shelf (COTS) equipment. This addresses a serious need in the nuclear safeguards community to debottleneck the separation of U and Pu in environmental samples—currently performed by overburdened chemists—with a method that allows unattended, overnight operation. In collaboration with Elemental Scientific Inc., the prepFAST-MC2 was designed based on current COTS equipment that was modified for U/Pu separations utilizing Eichrom™ TEVA and UTEVA resins. Initial verification of individual columns yielded small elution volumes with consistent elution profiles and good recovery. Combined columnmore » calibration demonstrated ample separation without crosscontamination of the eluent. Automated packing and unpacking of the built-in columns initially showed >15% deviation in resin loading by weight, which can lead to inconsistent separations. Optimization of the packing and unpacking methods led to a reduction in the variability of the packed resin to less than 5% daily. The reproducibility of the automated system was tested with samples containing 30 ng U and 15 pg Pu, which were separated in a series with alternating reagent blanks. These experiments showed very good washout of both the resin and the sample from the columns as evidenced by low blank values. Analysis of the major and minor isotope ratios for U and Pu provided values well within data quality limits for the International Atomic Energy Agency. Additionally, system process blanks spiked with 233U and 244Pu tracers were separated using the automated system after it was moved outside of a clean room and yielded levels equivalent to clean room blanks, confirming that the system can produce high quality results without the need for expensive clean room infrastructure. Comparison of the amount of personnel time necessary for successful manual vs. automated chemical separations showed a significant decrease in hands-on time from 9.8 hours to 35 minutes for seven samples, respectively. This documented time savings and reduced labor translates to a significant cost savings per sample. Overall, the system will enable faster sample reporting times at reduced costs by limiting personnel hours dedicated to the chemical separation.« less
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines
del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano
2015-01-01
Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.
del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano
2015-06-17
Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.
Image intensifier-based volume tomographic angiography imaging system: system evaluation
NASA Astrophysics Data System (ADS)
Ning, Ruola; Wang, Xiaohui; Shen, Jianjun; Conover, David L.
1995-05-01
An image intensifier-based rotational volume tomographic angiography imaging system has been constructed. The system consists of an x-ray tube and an image intensifier that are separately mounted on a gantry. This system uses an image intensifier coupled to a TV camera as a two-dimensional detector so that a set of two-dimensional projections can be acquired for a direct three-dimensional reconstruction (3D). This system has been evaluated with two phantoms: a vascular phantom and a monkey head cadaver. One hundred eighty projections of each phantom were acquired with the system. A set of three-dimensional images were directly reconstructed from the projection data. The experimental results indicate that good imaging quality can be obtained with this system.
Guihen, Elizabeth
2017-09-01
To date, alkylthiol gold nanoparticles (AuNPs) have been widely used in electro-chromatographic separation techniques as a viable alternative to traditional stationary phases. This is mainly due to their stability, chemical inertness, ease of functionality, increased phase ratio, ability to form self-assembled monolayers. They also yield versatile stationary phases with highly specific targeted functionalities. At the nanoscale region, the chemical and physical properties of a molecule display different attributes to that of the parent molecules or material, hence these features can be harnessed in electro-driven chromatographic separations. Application areas illustrating the use of AuNPs in separation science continue to grow and expand to cover many different kinds of analysis. The last decade has witnessed a successful trend in miniaturisation of chemical separation systems toward the micro and nanoscale ranges. Nanoparticle-based stationary phases fit well with performing chemical separations on microfluidic and capillary platforms. In this review the theory of the use of alkylthiol gold nanoparticles in electro-chromatographic driven separation methods will be discussed. This will be followed by details of recent and selected applications showing alkylthiol gold nanoparticles in capillary electrophoretic and open-tubular electro-chromatographic separations. This review will focus solely on alkylthiol based gold nanoparticles, therefore other kinds of chemical moieties bonded to gold nanoparticles are outside the scope of this review. Finally the future outlook of this exciting technology will be outlined in some detail in the final section. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin
2016-05-15
Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.
Design of coin sorter counter based on MCU
NASA Astrophysics Data System (ADS)
Yang, Yahan; Si, Xu
2018-04-01
With unmanned tickets, vending machines promotion, greatly increased the circulation of coins, especially bus companies, the financial sector need to classify a large number of coins every day, inventory, a huge workload. The design of the microcontroller as the control center, combined with the sensor technology and the corresponding mechanical structure to complete the separation of coins and finishing the packaging work and real-time monitoring and display of the type and number of coins function, this article details the system hardware and software design, and The test adjustment shows that the system can achieve the function of separating and sorting coins and monitoring the type and quantity of coins displayed on the coin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omkar, S.; Srikanth, R., E-mail: srik@poornaprajna.org; Banerjee, Subhashish
A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.
Fluid dynamic problems associated with air-breathing propulsive systems
NASA Technical Reports Server (NTRS)
Chow, W. L.
1979-01-01
A brief account of research activities on problems related to air-breathing propulsion is made in this final report for the step funded research grant NASA NGL 14-005-140. Problems include the aircraft ejector-nozzle propulsive system, nonconstant pressure jet mixing process, recompression and reattachment of turbulent free shear layer, supersonic turbulent base pressure, low speed separated flows, transonic boattail flow with and without small angle of attack, transonic base pressures, Mach reflection of shocks, and numerical solution of potential equation through hodograph transformation.
Commissioning and quality assurance for the treatment delivery components of the AccuBoost system.
Iftimia, Ileana; Talmadge, Mike; Ladd, Ron; Halvorsen, Per
2015-03-08
The objective for this work was to develop a commissioning methodology for the treatment delivery components of the AccuBoost system, as well as to establish a routine quality assurance program and appropriate guidance for clinical use based on the commissioning results. Various tests were developed: 1) assessment of the accuracy of the displayed separation value; 2) validation of the dwell positions within each applicator; 3) assessment of the accuracy and precision of the applicator localization system; 4) assessment of the combined dose profile of two opposed applicators to confirm that they are coaxial; 5) measurement of the absolute dose delivered with each applicator to confirm acceptable agreement with dose based on Monte Carlo modeling; 6) measurements of the skin-to-center dose ratio using optically stimulated luminescence dosimeters; and 7) assessment of the mammopad cushion's effect on the center dose. We found that the difference between the measured and the actual paddle separation is < 0.1 cm for the separation range of 3 cm to 7.5 cm. Radiochromic film measurements demonstrated that the number of dwell positions inside the applicators agree with the values from the vendor, for each applicator type and size. The shift needed for a good applicator-grid alignment was within 0.2 cm. The dry-run test using film demonstrated that the shift of the dosimetric center is within 0.15 cm. Dose measurements in water converted to polystyrene agreed within 5.0% with the Monte Carlo data in polystyrene for the same applicator type, size, and depth. A solid water-to-water (phantom) factor was obtained for each applicator, and all future annual quality assurance tests will be performed in solid water using an average value of 1.07 for the solid water-to-water factor. The skin-to-center dose ratio measurements support the Monte Carlo-based values within 5.0% agreement. For the treatment separation range of 4 cm to 8cm, the change in center dose would be < 1.0% for all applicators when using a compressed pad of 0.2 cm to 0.3 cm. The tests performed ensured that all treatment components of the AccuBoost system are functional and that a treatment plan can be delivered with acceptable accuracy. Based on the commissioning results, a quality assurance manual and guidance documents for clinical use were developed.
Surface characterization based on optical phase shifting interferometry
Mello, Michael , Rosakis; Ares, J [Altadena, CA
2011-08-02
Apparatus, techniques and systems for implementing an optical interferometer to measure surfaces, including mapping of instantaneous curvature or in-plane and out-of-plane displacement field gradients of a sample surface based on obtaining and processing four optical interferograms from a common optical reflected beam from the sample surface that are relatively separated in phase by .pi./2.
Polyphonic Music Information Retrieval Based on Multi-Label Cascade Classification System
ERIC Educational Resources Information Center
Jiang, Wenxin
2009-01-01
Recognition and separation of sounds played by various instruments is very useful in labeling audio files with semantic information. This is a non-trivial task requiring sound analysis, but the results can aid automatic indexing and browsing music data when searching for melodies played by user specified instruments. Melody match based on pitch…
Cryogenic molecular separation system for radioactive (11)C ion acceleration.
Katagiri, K; Noda, A; Suzuki, K; Nagatsu, K; Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Ramzdorf, A Yu; Nakao, M; Hojo, S; Wakui, T; Noda, K
2015-12-01
A (11)C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. In the ISOL system, (11)CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive (12)CH4 gases, which can simulate the chemical characteristics of (11)CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.
NASA Astrophysics Data System (ADS)
Luo, Chengzhi; Wan, Da; Jia, Junji; Li, Delong; Pan, Chunxu; Liao, Lei
2016-06-01
The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types.The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03928f
Wang, Yu; Gong, Xueqin; Wang, Shumei; Chen, Lixue; Sun, Li
2014-01-01
Three buffer systems of Imidazole−Acetic acid, HEPES−Imidazole/Bis-tris and Bis-tris−HEPES−MES were designed based on the principle of discontinuous polyacrylamide gel electrophoresis (PAGE) for the native PAGE which could be performed in pH 7.0 and 6.5 in order to analyze and prepare the minor components of allophycocyanin (AP) and R-phycocyanin (R-PC) from marine red macroalga Polysiphonia urceolata. These AP and R-PC phycobiliproteins are easily denatured in alkaline environments. The obtained results demonstrated that the PAGE modes performed in the buffer systems of HEPES−Imidazole/Bis-tris and Bis-tris−HEPES−MES gave the satisfactory resolution and separation of AP and R-PC proteins. The absorption and fluorescence spectra of the AP and R-PC proteins which were prepared by the established PAGE modes proved that they maintained natural spectroscopic characteristics. The established PAGE modes may also provide useful references and selections for some other proteins that are sensitive to alkaline environments or are not effectively separated by the classical PAGE modes performed normally in alkaline buffer systems. PMID:25166028
Reversed-phase thin-layer chromatography of homologs of Antimycin-A and related derivatives
Abidi, Sharon L.
1989-01-01
Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.
ERIC Educational Resources Information Center
Zeyer, Albert
2018-01-01
The present study is based on a large cross-cultural study, which showed that a systemizing cognition type has a high impact on motivation to learn science, while the impact of gender is only indirect thorough systemizing. The present study uses the same structural equation model as in the cross-cultural study and separately tests it for physics,…
2006-12-01
IACCARINO AND Q. WANG 3 Strain and stress analysis of uncertain engineering systems . D. GHOSH, C. FARHAT AND P. AVERY 17 Separated flow in a three...research in predictive science in complex systems , CTR has strived to maintain a critical mass in numerical analysis , computer science and physics based... analysis for a linear problem: heat conduction The design and analysis of complex engineering systems is challenging not only be- cause of the physical
On an interface of the online system for a stochastic analysis of the varied information flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorshenin, Andrey K.; MIREA, MGUPI; Kuzmin, Victor Yu.
The article describes a possible approach to the construction of an interface of an online asynchronous system that allows researchers to analyse varied information flows. The implemented stochastic methods are based on the mixture models and the method of moving separation of mixtures. The general ideas of the system functionality are demonstrated on an example for some moments of a finite normal mixture.
Synchronous meteorological satellite system description document, volume 3
NASA Technical Reports Server (NTRS)
Pipkin, F. B.
1971-01-01
The structural design, analysis, and mechanical integration of the synchronous meteorological satellite system are presented. The subjects discussed are: (1) spacecraft configuration, (2) structural design, (3) static load tests, (4) fixed base sinusoidal vibration survey, (5) flight configuration sinusoidal vibration tests, (6) spacecraft acoustic test, and (7) separation and shock test. Descriptions of the auxiliary propulsion subsystem, the apogee boost motor, communications system, and thermal control subsystem are included.
Political and legal institutions and their influence on drug policy: an Australian perspective.
Ryder, David
2008-07-01
Under a federal system of government, political power is separated and distributed between different institutions of government. The distribution of power to enact policies that influence alcohol and other drug use can impact on the associated harm. A description of the separation of powers under a federal system of government is followed by three case studies of alcohol and other drug policies which have been influenced by the use of power by different institutions of government. Whether or not a policy is enacted depends upon who has the power to bring such a policy into being, who has the power to prevent its enactment and whether those with such power choose to use them. The enactment of policy is a political act, needing to be understood by those wishing to see evidence-based policies brought into being. An understanding of the separation of powers under a federal system of government is one aspect of the political process that those who work in the alcohol and other drug field need to understand.
Multi-interface level in oil tanks and applications of optical fiber sensors
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Marques, Carlos; Frizera, Anselmo; Pontes, Maria José
2018-01-01
On the oil production also involves the production of water, gas and suspended solids, which are separated from the oil on three-phase separators. However, the control strategies of an oil separator are limited due to unavailability of suitable multi-interface level sensors. This paper presents a description of the multi-phase level problem on the oil industry and a review of the current technologies for multi-interface level assessment. Since optical fiber sensors present chemical stability, intrinsic safety, electromagnetic immunity, lightweight and multiplexing capabilities, it can be an alternative for multi-interface level measurement that can overcome some of the limitations of the current technologies. For this reason, Fiber Bragg Gratings (FBGs) based optical fiber sensor system for multi-interface level assessment is proposed, simulated and experimentally assessed. The results show that the proposed sensor system is capable of measuring interface level with a relative error of only 2.38%. Furthermore, the proposed sensor system is also capable of measuring the oil density with an error of 0.8 kg/m3.
Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin
2016-03-26
In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.
Lee, Hangyeore; Mun, Dong-Gi; So, Jeong Eun; Bae, Jingi; Kim, Hokeun; Masselon, Christophe; Lee, Sang-Won
2016-12-06
Proteomics aims to achieve complete profiling of the protein content and protein modifications in cells, tissues, and biofluids and to quantitatively determine changes in their abundances. This information serves to elucidate cellular processes and signaling pathways and to identify candidate protein biomarkers and/or therapeutic targets. Analyses must therefore be both comprehensive and efficient. Here, we present a novel online two-dimensional reverse-phase/reverse-phase liquid chromatography separation platform, which is based on a newly developed online noncontiguous fractionating and concatenating device (NCFC fractionator). In bottom-up proteomics analyses of a complex proteome, this system provided significantly improved exploitation of the separation space of the two RPs, considerably increasing the numbers of peptides identified compared to a contiguous 2D-RP/RPLC method. The fully automated online 2D-NCFC-RP/RPLC system bypassed a number of labor-intensive manual processes required with the previously described offline 2D-NCFC RP/RPLC method, and thus, it offers minimal sample loss in a context of highly reproducible 2D-RP/RPLC experiments.
Hierarchical Bayesian calibration of tidal orbit decay rates among hot Jupiters
NASA Astrophysics Data System (ADS)
Collier Cameron, Andrew; Jardine, Moira
2018-05-01
Transiting hot Jupiters occupy a wedge-shaped region in the mass ratio-orbital separation diagram. Its upper boundary is eroded by tidal spiral-in of massive, close-in planets and is sensitive to the stellar tidal dissipation parameter Q_s^'. We develop a simple generative model of the orbital separation distribution of the known population of transiting hot Jupiters, subject to tidal orbital decay, XUV-driven evaporation and observational selection bias. From the joint likelihood of the observed orbital separations of hot Jupiters discovered in ground-based wide-field transit surveys, measured with respect to the hyperparameters of the underlying population model, we recover narrow posterior probability distributions for Q_s^' in two different tidal forcing frequency regimes. We validate the method using mock samples of transiting planets with known tidal parameters. We find that Q_s^' and its temperature dependence are retrieved reliably over five orders of magnitude in Q_s^'. A large sample of hot Jupiters from small-aperture ground-based surveys yields log _{10} Q_s^' }=(8.26± 0.14) for 223 systems in the equilibrium-tide regime. We detect no significant dependence of Q_s^' on stellar effective temperature. A further 19 systems in the dynamical-tide regime yield log _{10} Q_s^' }=7.3± 0.4, indicating stronger coupling. Detection probabilities for transiting planets at a given orbital separation scale inversely with the increase in their tidal migration rates since birth. The resulting bias towards younger systems explains why the surface gravities of hot Jupiters correlate with their host stars' chromospheric emission fluxes. We predict departures from a linear transit-timing ephemeris of less than 4 s for WASP-18 over a 20-yr baseline.
Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.
Tejeda-Mansir, A; Montesinos, R M; Guzmán, R
2001-10-30
The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular methods for estimating the parameters that characterize the mass-transfer and adsorption mechanisms in affinity systems are described.
Face verification system for Android mobile devices using histogram based features
NASA Astrophysics Data System (ADS)
Sato, Sho; Kobayashi, Kazuhiro; Chen, Qiu
2016-07-01
This paper proposes a face verification system that runs on Android mobile devices. In this system, facial image is captured by a built-in camera on the Android device firstly, and then face detection is implemented using Haar-like features and AdaBoost learning algorithm. The proposed system verify the detected face using histogram based features, which are generated by binary Vector Quantization (VQ) histogram using DCT coefficients in low frequency domains, as well as Improved Local Binary Pattern (Improved LBP) histogram in spatial domain. Verification results with different type of histogram based features are first obtained separately and then combined by weighted averaging. We evaluate our proposed algorithm by using publicly available ORL database and facial images captured by an Android tablet.
NASA Technical Reports Server (NTRS)
Smith, Jeremy C.; Bussink, Frank J. L.
2008-01-01
This paper presents the results from a study that investigates the performance of a tactical Airborne Separation Assistance System (ASAS) in en route airspace, under varying demand levels, with realistic traffic flows. The ASAS concept studied here allows flight crews of equipped aircraft to perform separation from other air traffic autonomously. This study addresses the tactical aspects of an ASAS using aircraft state data (i.e. position and velocity) to detect and resolve projected conflicts. In addition, use of a conflict prevention system helps ASAS-equipped aircraft avoid maneuvers that may cause new conflicts. ASAS-capable aircraft are equipped with satellite-based navigation and Automatic Dependent Surveillance Broadcast (ADS-B) for transmission and receipt of aircraft state data. In addition to tactical conflict detection and resolution (CD&R), a complete, integrated ASAS is likely to incorporate a strategic CD&R component with a longer look-ahead time, using trajectory intent information. A system-wide traffic flow management (TFM) component, located at the FAA command center helps aircraft to avoid regions of excessive traffic density and complexity. A Traffic Alert and Collision Avoidance System (TCAS), as used today is the system of last resort. This integrated approach avoids sole reliance on the use of the tactical CD&R studied here, but the tactical component remains a critical element of the complete ASAS. The focus of this paper is to determine to what extent the proposed tactical component of ASAS alone can maintain aircraft separation at demand levels up to three times that of current traffic. The study also investigates the effect of mixing ASAS-equipped aircraft with unequipped aircraft (i.e. current day) that do not have the capability to self-separate. Position and velocity data for unequipped aircraft needs to be available to ASASequipped. Most likely, for this future concept, state data would be available from instrument flight rules (IFR) aircraft, equipped with at least ADS-B transmission capability. The objective is to reduce the number of losses of separation to a minimum and investigate the limits of tactical-only CD&R. Thus, the objective is not, expressly, to achieve zero losses of separation with tactical ASAS because this is one component of an integrated ASAS.
Cortical Representations of Speech in a Multitalker Auditory Scene.
Puvvada, Krishna C; Simon, Jonathan Z
2017-09-20
The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory scene, with both attended and unattended speech streams represented with almost equal fidelity. We also show that higher-order auditory cortical areas, by contrast, represent an attended speech stream separately from, and with significantly higher fidelity than, unattended speech streams. Furthermore, the unattended background streams are represented as a single undivided background object rather than as distinct background objects. Copyright © 2017 the authors 0270-6474/17/379189-08$15.00/0.
Recent developments in leishmaniasis vaccine delivery systems.
Bhowmick, Sudipta; Ali, Nahid
2008-07-01
The observation that recovery from infection with Leishmania confers immunity to reinfection suggests that control of leishmaniasis by vaccination may be possible. New generation vaccines, particularly those based on recombinant proteins and DNA, are found to be less immunogenic. There is an urgent need for the development of new and improved vaccine adjuvants. Based on their principal mechanisms of action, adjuvants can be broadly separated into two classes: immunostimulatory adjuvants and vaccine delivery systems. Vaccine delivery systems can carry both antigen and adjuvant for effective delivery to the antigen-presenting cells (APCs). In this article, we review the adjuvants, the delivery systems and their combinations used in the search of an effective vaccine against leishmaniasis. Based on current knowledge, cationic liposomes appear to have better prospects as effective delivery systems for developing a vaccine for leishmaniasis.
Optimal Control Modification Adaptive Law for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
Optimal Control Modification for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2012-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
Temporal Precedence Checking for Switched Models and its Application to a Parallel Landing Protocol
NASA Technical Reports Server (NTRS)
Duggirala, Parasara Sridhar; Wang, Le; Mitra, Sayan; Viswanathan, Mahesh; Munoz, Cesar A.
2014-01-01
This paper presents an algorithm for checking temporal precedence properties of nonlinear switched systems. This class of properties subsume bounded safety and capture requirements about visiting a sequence of predicates within given time intervals. The algorithm handles nonlinear predicates that arise from dynamics-based predictions used in alerting protocols for state-of-the-art transportation systems. It is sound and complete for nonlinear switch systems that robustly satisfy the given property. The algorithm is implemented in the Compare Execute Check Engine (C2E2) using validated simulations. As a case study, a simplified model of an alerting system for closely spaced parallel runways is considered. The proposed approach is applied to this model to check safety properties of the alerting logic for different operating conditions such as initial velocities, bank angles, aircraft longitudinal separation, and runway separation.
TITAN's multiple-reflection time-of-flight isobar separator
NASA Astrophysics Data System (ADS)
Reiter, Moritz Pascal; Titan Collaboration
2016-09-01
At the ISAC facility located at TRIUMF exotic nuclei are produced by the ISOL method. Exotic nuclei are separated by a magnetic separator and transported to TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). TITAN is a system of multiple ion traps for high precision mass measurements and in-trap decay spectroscopy. Although ISAC can deliver some of the highest yields for even many of the most exotic species many measurements suffer from a strong isobaric background. This background often prevents the high precision measurement of the species of interest. To overcome this limitation an additional isobar separator based on the Multiple-Reflection Time-Of-Flight Mass Spectrometry (MR-TOF-MS) technique has been developed for TITAN. Mass selection is achieved using dynamic re-trapping of the species of interest after a time-of-flight analysis in an electrostatic isochronous reflector system. Additionally the MR-TOF-MS will, on its own, enable mass measurements of very short-lived nuclides that are weakly produced. Being able to measure all isobars of a given mass number at the same time the MR-TOF-MS can be used for beam diagnostics or determination of beam compositions. Results from the offline commissioning showing mass resolving power and separation power will be presented.
Affinity adsorption of cells to surfaces and strategies for cell detachment.
Hubble, John
2007-01-01
The use of bio-specific interactions for the separation and recovery of bio-molecules is now widely established and in many cases the technique has successfully crossed the divide between bench and process scale operation. Although the major specificity advantage of affinity-based separations also applies to systems intended for cell fractionation, developments in this area have been slower. Many of the problems encountered result from attempts to take techniques developed for molecular systems and, with only minor modification to the conditions used, apply them for the separation of cells. This approach tends to ignore or at least trivialise the problems, which arise from the heterogeneous nature of a cell suspension and the multivalent nature of the cell/surface interaction. To develop viable separation processes on a larger scale, effective contacting strategies are required in separators that also allow detachment or recovery protocols that overcome the enhanced binding strength generated by multivalent interactions. The effects of interaction valency on interaction strength needs to be assessed and approaches developed to allow effective detachment and recovery of adsorbed cells without compromising cell viability. This article considers the influence of operating conditions on cell attachment and the extent to which multivalent interactions determine the strength of cell binding and subsequent detachment.
Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; ...
2015-07-31
The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ~6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, uponmore » CH₂Cl₂ vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 μs. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.« less
Analysis of off-axis holographic system based on improved Jamin interferometer
NASA Astrophysics Data System (ADS)
Li, Baosheng; Dong, Hang; Chen, Lijuan; Zhong, Qi
2018-02-01
In this paper, an improved Interferometer was introduced which based on traditional Jamin Interferometer to solve the twin image where appear in on-axis holographic. Adjust the angle of reference light and object light that projected onto the CCD by change the reflector of the system to separate the zero order of diffraction, the virtual image and the real image, so that could eliminate the influence of the twin image. The result of analysis shows that the system could be realized in theory. After actually building the system, the hologram of the calibration plate is reconstructed and the result is shown to be feasible.