Science.gov

Sample records for separation technique based

  1. Advanced material separation technique based on dual energy CT scanning

    NASA Astrophysics Data System (ADS)

    Zamyatin, Alexander A.; Natarajan, Anusha; Zou, Yu

    2009-02-01

    We propose a method for material separation using dual energy data. Our method is suitable to separation of three or more materials. In this work we describe our method and show results of numerical simulation and with real dual-energy data of a head phantom. The proposed method of constructing the material separation map consists of the following steps: Data-domain dual energy decomposition - Vector plot - Density plot - Clustering - Color assignment. Density plots are introduced to allow automatic cluster separation. We use special image processing methods, including Gaussian decomposition, to improve the accuracy of material separation. We also propose using the HSL color model for better visualization and to bring a new dimension in material separation display. We study applications of bone removal and virtual contrast removal. Evaluation shows improved accuracy compared to standard methods.

  2. Sound field separation technique based on equivalent source method and its application in nearfield acoustic holography.

    PubMed

    Bi, Chuan-Xing; Chen, Xin-Zhao; Chen, Jian

    2008-03-01

    A technique for separating sound fields using two closely spaced parallel measurement surfaces and based on equivalent source method is proposed. The method can separate wave components crossing two measurement surfaces in opposite directions, which makes nearfield acoustic holography (NAH) applications in a field where there exist sources on the two sides of the hologram surface, in a reverberant field or in a scattered field, possible. The method is flexible in applications, simple in computation, and very easy to implement. The measurement surfaces can be arbitrarily shaped, and they are not restricted to be regular as in the traditional field separation technique. And, because the method performs field separation calculations directly in the spatial domain-not in the wave number domain--it avoids the errors and limitations (the window effects, etc.) associated with the traditional field separation technique based on the spatial Fourier transform method. In the paper, a theoretical description is first given, and the performance of the proposed field separation technique and its application in NAH are then evaluated through experiments.

  3. Carbon Dioxide Capture and Separation Techniques for Gasification-based Power Generation Point Sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Jones, K.L.; Morsi, B.I.; Heintz, Y.J.; Ilconich, J.B.

    2007-06-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (post-combustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, dry, regenerable processes based on sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

  4. Effect of temperature on acid-base equilibria in separation techniques. A review.

    PubMed

    Gagliardi, Leonardo G; Tascon, Marcos; Castells, Cecilia B

    2015-08-19

    Studies on the theoretical principles of acid-base equilibria are reviewed and the influence of temperature on secondary chemical equilibria within the context of separation techniques, in water and also in aqueous-organic solvent mixtures, is discussed. In order to define the relationships between the retention in liquid chromatography or the migration velocity in capillary electrophoresis and temperature, the main properties of acid-base equilibria have to be taken into account for both, the analytes and the conjugate pairs chosen to control the solution pH. The focus of this review is based on liquid-liquid extraction (LLE), liquid chromatography (LC) and capillary electrophoresis (CE), with emphasis on the use of temperature as a useful variable to modify selectivity on a predictable basis. Simplified models were evaluated to achieve practical optimizations involving pH and temperature (in LLE and CE) as well as solvent composition in reversed-phase LC.

  5. Radioactive-gas separation technique

    NASA Technical Reports Server (NTRS)

    Haney, R.; King, K. J.; Nellis, D. O.; Nisson, R. S.; Robling, P.; Womack, W.

    1977-01-01

    Cryogenic technique recovers gases inexpensively. Method uses differences in vapor pressures, melting points, and boiling points of components in gaseous mixture. Series of temperature and pressure variations converts gases independently to solid and liquid states, thereby simplifying separation. Apparatus uses readily available cryogen and does not require expensive refrigeration equipment.

  6. Survey of Biochemical Separation Techniques

    ERIC Educational Resources Information Center

    Nilsson, Melanie R.

    2007-01-01

    A simple laboratory exercise is illustrated that exposes students to wide range of separation techniques in one laboratory program and provides a nice complement to a project-oriented program. Students have learned the basic principles of syringe filtration, centricon, dialysis, gel filtration and solid-phase extraction methodologies and have got…

  7. A novel human detoxification system based on nanoscale bioengineering and magnetic separation techniques.

    PubMed

    Chen, Haitao; Kaminski, Michael D; Liu, Xianqiao; Mertz, Carol J; Xie, Yumei; Torno, Michael D; Rosengart, Axel J

    2007-01-01

    We describe the conceptual approach, theoretical background and preliminary experimental data of a proposed platform technology for specific and rapid decorporation of blood-borne toxins from humans. The technology is designed for future emergent in-field or in-hospital detoxification of large numbers of biohazard-exposed victims; for example, after radiological attacks. The proposed systems is based on nanoscale technology employing biocompatible, superparamagnetic nanospheres, which are functionalized with target-specific antitoxin receptors, and freely circulate within the human blood stream after simple intravenous injection. Sequestration of the blood-borne toxins onto the nanosphere receptors generates circulating nanosphere-toxin complexes within a short time interval; mathematical modeling indicates prevailing of unbound nanosphere receptors over target toxin concentrations at most therapeutic injection dosages. After a toxin-specific time interval nanosphere-toxin complexes are generated within the blood stream and, after simple arterial or venous access, the blood is subsequently circulated via a small catheter through a portable high gradient magnetic separator device. In this device, the magnetic toxin complexes are retained by a high gradient magnetic field and the detoxified blood is then returned back to the blood circulation (extracorporeal circulation). Our preliminary in vitro experiments demonstrate >95% first pass capture efficiency of magnetic spheres within a prototype high gradient magnetic separation device. Further, based on the synthesis of novel hydrophobic magnetite nanophases with high magnetization ( approximately 55 emu/g), the first biodegradable magnetic nanospheres at a size range of approximately 280 nm and functionalized with PEG-maleimide surface groups for specific antibody attachment are described here. In future applications, we envision this technology to be suitable for emergent, in-field usage for acutely biohazard exposed

  8. Fluorous affinity-based separation techniques for the analysis of biogenic and related molecules.

    PubMed

    Hayama, Tadashi; Yoshida, Hideyuki; Yamaguchi, Masatoshi; Nohta, Hitoshi

    2014-12-01

    Perfluoroalkyl-containing compounds have a unique 'fluorous' property that refers to the remarkably specific affinity they share. Fluorous compounds can be easily isolated from non-fluorous species on the perfluoroalkyl-functionalized stationary phases used in fluorous solid-phase extraction and fluorous liquid chromatography by means of fluorous-fluorous interactions (fluorophilicity). Recently, this unique specificity has been applied to the highly selective enrichment and analysis of different classes of biogenic and related compounds in complex samples. Because the biogenic compounds are generally not 'fluorous', they must be derivatized with appropriate perfluoroalkyl group-containing reagent in order to utilize fluorous interaction. In this review, we introduce the application of fluorous affinity techniques including derivatization methods to biogenic sample analysis. PMID:24865313

  9. Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    PubMed Central

    Adib, Mani; Cretu, Edmond

    2013-01-01

    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters. PMID:23956786

  10. Magnetic separation techniques in diagnostic microbiology.

    PubMed Central

    Olsvik, O; Popovic, T; Skjerve, E; Cudjoe, K S; Hornes, E; Ugelstad, J; Uhlén, M

    1994-01-01

    The principles of magnetic separation aided by antibodies or other specific binding molecules have been used for isolation of specific viable whole organisms, antigens, or nucleic acids. Whereas growth on selective media may be helpful in isolation of a certain bacterial species, immunomagnetic separation (IMS) technology can isolate strains possessing specific and characteristic surface antigens. Further separation, cultivation, and identification of the isolate can be performed by traditional biochemical, immunologic, or molecular methods. PCR can be used for amplification and identification of genes of diagnostic importance for a target organism. The combination of IMS and PCR reduces the assay time to several hours while increasing both specificity and sensitivity. Use of streptavidin-coated magnetic beads for separation of amplified DNA fragments, containing both biotin and a signal molecule, has allowed for the conversion of the traditional PCR into an easy-to-read microtiter plate format. The bead-bound PCR amplicons can also easily be sequenced in an automated DNA sequencer. The latter technique makes it possible to obtain sequence data of 300 to 600 bases from 20 to 30 strains, starting with clinical samples, within 12 to 24 h. Sequence data can be used for both diagnostic and epidemiologic purposes. IMS has been demonstrated to be a useful method in diagnostic microbiology. Most recent publications describe IMS as a method for enhancing the specificity and sensitivity of other detection systems, such as PCR, and providing considerable savings in time compared with traditional diagnostic systems. The relevance to clinical diagnosis has, however, not yet been fully established for all of these new test principles. In the case of PCR, for example, the presence of specific DNA in a food sample does not demonstrate the presence of a live organism capable of inducing a disease. However, all tests offering increased sensitivity and specificity of detection

  11. Supramolecular structures based on regioisomers of cinnamyl-α-cyclodextrins – new media for capillary separation techniques

    PubMed Central

    Benkovics, Gabor; Hodek, Ondrej; Havlikova, Martina; Bosakova, Zuzana; Coufal, Pavel; Malanga, Milo; Fenyvesi, Eva; Darcsi, Andras; Beni, Szabolcs

    2016-01-01

    Summary This work focuses on the preparation and application of supramolecular structures based on mono-cinnamyl-α-cyclodextrins (Cin-α-CD). Pure regioisomers of Cin-α-CD having the cinnamyl moiety at the 2-O- or at the 3-O-position, respectively, were prepared, characterized and applied in capillary electrophoresis as additives to the background electrolyte. These new monomer units with a potential to self-organize into supramolecular structures were synthesized via a straightforward one-step synthetic procedure and purified using preparative reversed-phase chromatography allowing a large scale separation of the regioisomers. The ability of the monomers to self-assemble was proved by various methods including NMR spectroscopy and dynamic light scattering (DLS). The light scattering experiments showed that the monomer units have distinguishable ability to form supramolecular structures in different solvents and the size distribution of the aggregates in water can be easily modulated using different external stimuli, such as temperature or competitive guest molecules. The obtained results indicated that the two regioisomers of Cin-α-CD formed different supramolecular assemblies highlighting the fact that the position of the cinnamyl group plays an important role in the intermolecular complex formation. PMID:26877812

  12. Separation of single-walled carbon nanotubes by gel-based chromatography using surfactant step-gradient techniques and development of new instrumentation for studying SWCNT reaction processes

    NASA Astrophysics Data System (ADS)

    Breindel, Leonard M.

    Single-walled carbon nanotube (SWCNT) synthesis methods such as CoMoCATTM, HiPcoTM, pulsed laser vaporization (PLV), and catalytic chemical vapor deposition (CCVD) produce several different distributions of (n,m) SWCNT structures, where ( n,m) defines the nanotube diameter and chiral wrapping angle. Post-synthesis processing such as functionalization and/or separations must therefore be employed to yield high purity electronic or single (n,m) samples. Through the use of a surfactant gradient across a gel-based chromatographic column, separations of single (n,m) species can be achieved. Anionic surfactants such as SDS, SDBS, and AOT display different separation effectiveness for single (n,m) species. Results of near-infrared optical absorption for separated SWCNT surfactant suspensions will be discussed, leading to a broader understanding of the important factors necessary for the gel chromatography separation technique. In particular, the effects of SWCNT/surfactant micelle structure are found to be key to achieving fast, simple SWCNT electronic type separations. Additionally, development of new instrumentation for the near-infrared spectrofluorimetric analysis (NIR-SFA) of SWCNTs is useful to the advancement of fundamental SWCNT research and applications. NIR-SFA, for instance, allows for the (n,m) structures of a sample to be identified and monitored during the progress of a chemical reaction or separation experiment. Seeking to achieve the time resolutions necessary for such experiments, the design and optimizations of a system utilizing single-wavelength excitation by diode lasers coupled with a fast NIR detection system are presented.

  13. Technique to separate lidar signal and sunlight.

    PubMed

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.

  14. Technique to separate lidar signal and sunlight.

    PubMed

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise. PMID:27410314

  15. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review.

    PubMed

    Tang, Malcolm S Y; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Show, Pau Loke

    2016-08-19

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology. PMID:27396920

  16. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review

    NASA Astrophysics Data System (ADS)

    Tang, Malcolm S. Y.; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Loke Show, Pau

    2016-08-01

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.

  17. Frequency-offset separated oscillatory fields technique

    NASA Astrophysics Data System (ADS)

    Bezginov, N.; Vutha, A. C.; Ferchichi, I.; Storry, C. H.; Hessels, E. A.

    2015-05-01

    Improved measurements in atomic hydrogen are needed to shed light on the proton radius puzzle. We are measuring the Lamb shift in hydrogen (n = 2 ,S1 / 2 -->P1 / 2) using a frequency-offset separated oscillatory fields (FOSOF) method. The advantages of this method include its insensitivity to atomic beam intensity fluctuations and the microwave-system frequency response. We present experimental results obtained with this method, towards a new measurement of the proton charge radius. We acknowledge funding from NSERC, CFI, CRC, ORF, and NIST.

  18. Comparison of pixel and sub-pixel based techniques to separate Pteronia incana invaded areas using multi-temporal high resolution imagery

    NASA Astrophysics Data System (ADS)

    Odindi, John; Kakembo, Vincent

    2009-08-01

    Remote Sensing using high resolution imagery (HRI) is fast becoming an important tool in detailed land-cover mapping and analysis of plant species invasion. In this study, we sought to test the separability of Pteronia incana invader species by pixel content aggregation and pixel content de-convolution using multi-temporal infrared HRI. An invaded area in Eastern Cape, South Africa was flown in 2001, 2004 and 2006 and HRI of 1x1m resolution captured using a DCS 420 colour infrared camera. The images were separated into bands, geo-rectified and radiometrically corrected using Idrisi Kilimanjaro GIS. Value files were extracted from the bands in order to compare spectral values for P. incana, green vegetation and bare surfaces using the pixel based Perpendicular Vegetation Index (PVI), while Constrained Linear Spectral Unmixing (CLSU) surface endmembers were used to generate sub-pixel land surface image fractions. Spectroscopy was used to validate spectral trends identified from HRI. The PVI successfully separated the multi-temporal imagery surfaces and was consistent with the unmixed surface image fractions from CLSU. Separability between the respective surfaces was also achieved using reflectance measurements.

  19. Separators - Technology review: Ceramic based separators for secondary batteries

    SciTech Connect

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Meyer, Dirk C.; Schilm, Jochen; Leisegang, Tilmann

    2014-06-16

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  20. Separators - Technology review: Ceramic based separators for secondary batteries

    NASA Astrophysics Data System (ADS)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.

    2014-06-01

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  1. Filtrates and Residues: Gel Filtration--An Innovative Separation Technique.

    ERIC Educational Resources Information Center

    Blumenfeld, Fred; Gardner, James

    1985-01-01

    Gel filtration is a form of liquid chromatography that separates molecules primarily on the basis of their size. Advantages of using this technique, theoretical aspects, and experiments (including procedures used) are discussed. Several questions for students to answer (with answers) are also provided. (JN)

  2. Sample detection and analysis techniques for electrophoretic separation

    NASA Technical Reports Server (NTRS)

    Falb, R. D.; Hughes, K. E.; Powell, T. R.

    1975-01-01

    Methods for detecting and analyzing biological agents suitable for space flight operations were studied primarily by literature searches which were conducted of cell separation techniques. Detection methods discussed include: photometrometric, electric, radiometric, micrometry, ultrasonic, microscopic, and photographic. A bibliography, and a directory of vendors are included along with an index of commercial hardware.

  3. Food analysis: a continuous challenge for miniaturized separation techniques.

    PubMed

    Asensio-Ramos, María; Hernández-Borges, Javier; Rocco, Anna; Fanali, Salvatore

    2009-11-01

    One of the current trends of modern analytical chemistry is the miniaturization of the various tools daily used by a large number of researchers. Ultrafast separations, consumption of small amounts of both samples and reagents as well as a high sensitivity and automation are some of the most important goals desired to be achieved. For many years a large number of research laboratories and analytical instrument manufacturing companies have been investing their efforts in this field, which includes miniaturized extraction materials, sample pre-treatment procedures and separation techniques. Among the separation techniques, capillary electromigration methods (which also include CEC), microchip and nano-LC/capillary LC have received special attention. Besides their well-known advantages over other separation tools, the role of these miniaturized techniques in food analysis is still probably in an early stage. In fact, applications in this field carried out by CEC, microchip, nano-LC and capillary LC are only a few when compared with other more established procedures such as conventional GC or HPLC. The scope of this review is to gather and discuss the different applications of such miniaturized techniques in this field. Concerning CE, microchip-CE and CEC works, emphasis has been placed on articles published after January 2007.

  4. The use of micellar solutions for novel separation techniques

    SciTech Connect

    Roberts, B.L.

    1993-12-31

    Surfactant based separation techniques based on the solubilization of organic compounds into the nonpolar interior of a micelle or electrostatic attraction of ionized metals and metal complexes to the charged surface of a micelle were studied in this work. Micellar solutions were used to recover two model volatile organic compounds emitted by the printing and painting industries (toluene and amyl acetate) and to investigate the effect of the most important variables in the surfactant enhanced carbon regeneration (SECR) process. SECR for liquid phase applications was also investigated in which the equilibrium adsorption of cetyl pyridinium chloride (CPC) and sodium dodecyl sulfate (SDS) on activated carbon were measured. Micellar-enhanced ultrafiltration (MEUF) was investigated using spiral wound membranes for the simultaneous removal of organic compounds, metals and metal complexes dissolved in water, with emphasis on pollution control applications. Investigations of MEUF to remove 99+ per cent of trichloroethylene (TCE) from contaminated groundwater using criteria such as: membrane flux, solubilization equilibrium constant, surfactant molecular weight, and Krafft temperature led to the selection of an anionic disulfonate with a molecular weight of 642 (DOWFAX 8390). These data and results from supporting experiments were used to design a system which could clean-up water in a 100,000 gallon/day operation. A four stage process was found to be an effective design and estimated cost for such an operation were found to be in the range of the cost of mature competitive technologies.

  5. Enhanced Landfill Mining case study: Innovative separation techniques

    NASA Astrophysics Data System (ADS)

    Cuyvers, Lars; Moerenhout, Tim; Helsen, Stefan; Van de Wiele, Katrien; Behets, Tom; Umans, Luk; Wille, Eddy

    2014-05-01

    In 2011, a corporate vision on Enhanced Landfill Mining (ELFM)1 was approved by the OVAM Board of directors, which resulted in an operational programme over the period 2011-2015. OVAM (Public Waste Agency of Flanders) is the competent authority in charge of waste, Sustainable Materials Management (SMM) and contaminated soil management in Flanders. The introduction of the ELFM concept needs to be related with the concept of SMM and the broader shift to a circular economy. Within the concept of ELFM, landfills are no longer considered to be a final and static situation, but a dynamic part of the materials cycle. The main goal of this research programme is to develop a comprehensive policy on resource management to deal with the issue of former landfills. In order to investigate the opportunities of ELFM, the OVAM is applying a three step approach including mapping, surveying and mining of these former landfills. As a result of the mapping part over 2,000 landfill sites, that will need to be dealt with, were revealed. The valorisation potential of ELFM could be assigned to different goals, according to the R³P-concept : Recycling of Materials, Recovery of Energy, Reclamation of Land and Protection of drinking water supply. . On behalf of the OVAM, ECOREM was assigned to follow-up a pilot case executed on a former landfill, located in Zuienkerke, Flanders. Within this case study some technical tests were carried out on the excavated waste material to investigate the possibilities for a waste to resource conversion. The performance of both on site and off site techniques were evaluated. These testings also contribute to the mapping part of OVAM's research programme on ELFM and reveal more information on the composition of former landfills dating from different era's. In order to recover as many materials as possible, five contractors were assigned to perform separation tests on the bulk material from the Zuienkerke landfill. All used techniques were described

  6. Separation of similar yeast strains by IEF techniques.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel

    2009-06-01

    Rapid and reliable identification of the etiological agents of infectious diseases, especially species that are hardly distinguishable by routinely used laboratory methods, e.g. Candida albicans from C. dubliniensis, is necessary for early administration of an appropriate therapy. Similarly, the differentiation between biofilm-positive and biofilm-negative yeast strains is necessary for the choice of a therapeutic strategy due to higher resistance of the biofilm-positive strains to antifungals. In this study rapid separation and identification of similar strains of Candida, cells and/or their lysates, based on IEF are outlined. The isoelectric points of the monitored "similar pairs" of Candidas, C. albicans and C. dubliniensis and the biofilm-positive C. parapsilosis, C. tropicalis and their biofilm-negative strains were determined by CIEF with UV detection in the acidic pH gradient. The differences between their isoelectric points were up to 0.3 units of pI. Simultaneously, a fast and a simple technique was developed for the lysis of the outer membrane cell and characteristic fingerprints were found in lysate electrophoreograms and in gels from the capillary or the gel IEF, respectively.

  7. Cell separation technique in dilectrophoretic chip with bulk electrode

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Tay, Francis E. H.; Xu, Guolin; Yu, Liming

    2006-01-01

    This paper presents a new technique for separation of two cell populations in a dielectrophoretic chip with bulk silicon electrode. A characteristic of the dielectrophoretic chip is its "sandwich" structure: glass/silicon/glass that generates a unique definition of the microfluidic channel with conductive walls (silicon) and isolating floor and ceiling (glass). The structure confers the opportunity to use the electrodes not only to generate a gradient of the electric field but also to generate a gradient of velocity of the fluid inside the channel. This interesting combination gives rise to a new solution for dielectrophoretic separation of two cell populations. The separation method consists of four steps. First, the microchannel is field with the cells mixture. Second, the cells are trapped in different locations of the microfluidic channel, the cell population which exhibits positive dielectrophoresis is trapped in the area where the distance between the electrodes is the minimum whilst, the other population that exhibit negative dielectrophoresis is trapped where the distance between electrodes is the maximum. In the next step, increasing the flow in the microchannel will result in an increased hydrodynamic force that sweeps the cells trapped by positive dielectrophoresis out of the chip. In the last step, the electric field is removed and the second population is sweep out and collected at the outlet. The device was tested for separation of dead yeast cells from live yeast cells. The paper presents analytical aspects of the separation method a comparative study between different electrode profiles and experimental results.

  8. Detection and quantification of some plant growth regulators in a seaweed-based foliar spray employing a mass spectrometric technique sans chromatographic separation.

    PubMed

    Prasad, Kamalesh; Das, Arun Kumar; Oza, Mihir Deepak; Brahmbhatt, Harshad; Siddhanta, Arup Kumar; Meena, Ramavatar; Eswaran, Karuppanan; Rajyaguru, Mahesh Rameshchandra; Ghosh, Pushpito Kumar

    2010-04-28

    The sap expelled from the fresh harvest of Kappaphycus alvarezii , a red seaweed growing in tropical waters, has been reported to be a potent foliar spray. Tandem mass spectrometry of various organic extracts of the sap confirmed the presence of the plant growth regulators (PGRs) indole 3-acetic acid, gibberellin GA(3), kinetin, and zeatin. These PGRs were quantified in fresh state and after 1 year of storage by ESI-MS without recourse to chromatographic separation. Quantification was validated against HPLC data. The results may be useful in correlating with the efficacy of the sap. The methodology was extended to two other seaweeds. The method developed is convenient and precise and may find application in other agricultural formulations containing these growth hormones.

  9. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  10. Comparison of three separation techniques for arsenic(III) and arsenic(V) in sea water

    SciTech Connect

    Amankwah, S.A.

    1987-01-01

    Separation and determination of arsenic species in sea water is an attractive area of current research primarily due to the effects the different oxidation states of the element have on its bioavailability and toxicity. Many separation procedures for the arsenic species in sea water prior to their determination by graphite furnace-, hydride generation - atomic absorption spectrophotometry or neutron activation technique have been reported. Evaluation of three of these separation procedures based on (1) solvent extraction, (2) ion-exchange, and (3) thiol cotton is reported in this dissertation. The evaluation is based on the analytical parameters: Detection limits, Sensitivity, Reproducibility, Precision, Recovery, Accuracy, Cost and Time of analysis. The separation procedure based on solvent extraction was found to be superior to the other two procedures for routine analysis of sea water samples.

  11. Composite separators and redox flow batteries based on porous separators

    DOEpatents

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  12. Sheathless Size-Based Acoustic Particle Separation

    PubMed Central

    Guldiken, Rasim; Jo, Myeong Chan; Gallant, Nathan D.; Demirci, Utkan; Zhe, Jiang

    2012-01-01

    Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications. PMID:22368502

  13. Separation Technique for the Determination of Highly Polar Metabolites in Biological Samples

    PubMed Central

    Iwasaki, Yusuke; Sawada, Takahiro; Hatayama, Kentaro; Ohyagi, Akihito; Tsukuda, Yuri; Namekawa, Kyohei; Ito, Rie; Saito, Koichi; Nakazawa, Hiroyuki

    2012-01-01

    Metabolomics is a new approach that is based on the systematic study of the full complement of metabolites in a biological sample. Metabolomics has the potential to fundamentally change clinical chemistry and, by extension, the fields of nutrition, toxicology, and medicine. However, it can be difficult to separate highly polar compounds. Mass spectrometry (MS), in combination with capillary electrophoresis (CE), gas chromatography (GC), or high performance liquid chromatography (HPLC) is the key analytical technique on which emerging "omics" technologies, namely, proteomics, metabolomics, and lipidomics, are based. In this review, we introduce various methods for the separation of highly polar metabolites. PMID:24957644

  14. Use of Chromatography Techniques to Separate a Mixture of Substances

    ERIC Educational Resources Information Center

    Donaldson, W.

    1976-01-01

    Explains the separation of the constituents of mixtures on one piece of chromatography paper. The example presented involves a vitamin C tablet, a disprin tablet, and a glucose tablet. Outlined are two methods for separating the constituents. (GS)

  15. Developing synthesis techniques for zeolitic-imidazolate framework membranes for high resolution propylene/propane separation

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Taek

    Propylene/propane separation is one of the most challenging separations, currently achieved by energy-intensive cryogenic distillation. Despite the great potentials for energy-efficient membrane-based propylene/propane separation processes, no commercial membranes are available due to the limitations (i.e., low selectivity) of current polymeric materials. Zeolitic imidazolate frameworks (ZIFs) are promising membrane materials primarily due to their well-defined ultra-micropores with controllable surface chemistry along with their relatively high thermal/chemical stabilities. In particular, ZIF-8 with the effective aperture size of ~ 4.0 A has been shown very promising for propylene/propane separation. Despite the extensive research on ZIF-8 membranes, only a few of ZIF-8 membranes have displayed good propylene/propane separation performances presumably due to the challenges of controlling the microstructures of polycrystalline membranes. Since the membrane microstructures are greatly influenced by processing techniques, it is critically important to develop new techniques. In this dissertation, three state-of-the-art ZIF membrane synthesis techniques are developed. The first is a one-step in-situ synthesis technique based on the concept of counter diffusion. The technique enabled us to obtain highly propylene selective ZIF-8 membranes in less than a couple of hours with exceptional mechanical strength. Most importantly, due to the nature of the counter-diffusion concept, the new method offered unique opportunities such as healing defective membranes (i.e., poorly-intergrown) as well as significantly reducing the consumption of costly ligands and organic solvents. The second is a microwave-assisted seeding technique. Using this new seeding technique, we were able to prepare seeded supports with a high packing density in a couple of minutes, which subsequently grown into highly propylene-selective ZIF-8 membranes with an average propylene/propane selectivity of ~40

  16. Separation of Acids, Bases, and Neutral Compounds

    NASA Astrophysics Data System (ADS)

    Fujita, Megumi; Mah, Helen M.; Sgarbi, Paulo W. M.; Lall, Manjinder S.; Ly, Tai Wei; Browne, Lois M.

    2003-01-01

    Separation of Acids, Bases, and Neutral Compounds requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime plug-in, version compatible with your OS and browser (available from MDL); and Flash player, version 5 or higher (available from Macromedia).

  17. Multi-stage separations based on dielectrophoresis

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-07-13

    A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.

  18. A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation

    NASA Astrophysics Data System (ADS)

    Li, M.; Li, W. H.; Zhang, J.; Alici, G.; Wen, W.

    2014-02-01

    The development of lab-on-a-chip (LOC) devices over the past decade has attracted growing interest. LOC devices aim to achieve the miniaturization, integration, automation and parallelization of biological and chemical assays. One of the applications, the ability to effectively and accurately manipulate and separate micro- and nano-scale particles in an aqueous solution, is particularly appealing in biological, chemical and medical fields. Among the technologies that have been developed and implemented in microfluidic microsystems for particle manipulation and separation (such as mechanical, inertial, hydrodynamic, acoustic, optical, magnetic and electrical methodologies), dielectrophoresis (DEP) may prove to be the most popular because of its label-free nature, ability to manipulate neutral bioparticles, analyse with high selectivity and sensitivity, compatibility with LOC devices, and easy and direct interface with electronics. The required spatial electric non-uniformities for the DEP effect can be generated by patterning microelectrode arrays within microchannels, or placing insulating obstacles within a microchannel and curving the microchannels. A wide variety of electrode- and insulator-based DEP microdevices have been developed, fabricated, and successfully employed to manipulate and separate bioparticles (i.e. DNA, proteins, bacteria, viruses, mammalian and yeast cells). This review provides an overview of the state-of-the-art of microfabrication techniques and of the structures of dielectrophoretic microdevices aimed towards different applications. The techniques used for particle manipulation and separation based on microfluidics are provided in this paper. In addition, we also present the theoretical background of DEP.

  19. Validation of a simple isotopic technique for the measurement of global and separated renal function

    SciTech Connect

    Chachati, A.; Meyers, A.; Rigo, P.; Godon, J.P.

    1986-01-01

    Schlegel and Gates described an isotopic method for the measurement of global and separated glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) based on the determination by scintillation camera of the fraction of the injected dose (99mTc-DTPA-(/sup 131/I)hippuran) present in the kidneys 1-3 min after its administration. This method requires counting of the injected dose and attenuation correction, but no blood or urine sampling. We validated this technique by the simultaneous infusion of inulin and para-amino hippuric acid (PAH) in patients with various levels of renal function (anuric to normal). To better define individual renal function we studied 9 kidneys in patients either nephrectomized or with a nephrostomy enabling separated function measurement. A good correlation between inulin, PAH clearance, and isotopic GFR-ERPF measurement for both global and separate renal function was observed.

  20. A novel particle separation technique using 20-kHz-order ultrasound irradiation in water

    NASA Astrophysics Data System (ADS)

    Muramatsu, Hiroya; Yanai, Sayuri; Mizushima, Yuki; Saito, Takayuki

    2015-12-01

    Ultrasound techniques such as washing, fine-particle manipulation and mixing have been investigated. MHz-band ultrasound was usually used in the previous work, and studies of kHz-order ultrasound are very rare. In the usual manipulation technique, μm- order particles are targeted due to wavelength limitations. We discovered an interesting phenomenon that holds promise for a novel particle separation technique using kHz-order ultrasound. Here, particles with sub-mm- or mm-order diameters were flocculated into a swarm in water irradiated by 20-kHz ultrasound. To develop a practical separation process, we investigated the stationary position and dia. of the particle swarms and the sound- pressure profiles in a vessel, as well as the flocculation mechanism, by varying the irradiation frequency, water level, particle diameter and particle amount. The primary stationary position corresponded to the wavelength calculated from the resonant frequency regardless of the particle diameter. Subtle changes in the frequency and water level resulted in a significant change in the stationary position. Based on these results, we propose a new separation process based on the particle diameter for sub-mm- or mm-order particles.

  1. Using Image Processing Techniques for Cluster Analysis, and Droplet Formation in Phase Separating Fluids

    NASA Astrophysics Data System (ADS)

    Smith, Gregory; Oprisan, Ana; Hegseth, John; Oprisan, Sorinel; Lecoutre, Carole; Garrabos, Yves; Beysens, Daniel

    2009-03-01

    A series of experiments were performed using the Alice II apparatus in microgravity to study phase separation near critical temperature. Using image analysis techniques, we were able to obtain quantitative information regarding the morphology of gas-liquid interface near critical point of pure SF6 fluid in microgravity. Growth laws for liquid and gas clusters were extracted based on image segmentation both with thresholding and k-means clustering. By measuring the image features we analyzed the formation of spherical droplets during late stage of phase separation for a series of full view images. The growth of a wetting layer around the border of the cell containing the fluid was also investigated using image processing techniques.

  2. Pervaporation membranes--a novel separation technique for trace organics

    SciTech Connect

    Zhu, C.L.; Yuang, C.W.; Fried, J.R.; Greenberg, D.B.

    1983-05-01

    A viable separation of chlorinated hydrocarbons from dilute aqueous solutions can be achieved by a process known as pervaporation. It is applicable to the removal of chlorinated organics, pesticides, herbicides, etc., from industrial and municipal water supplies. The process separates trace amounts of hydrocarbons through polymer membranes by means of a liquid-vapor mass-transfer. The method involves the selective sorption of a liquid mixture, followed by diffusion, and then desorption into a vapor phase on the downstream side of the membrane. (JMT)

  3. Comparison study of solid-liquid separation techniques for oilfield pit closures

    SciTech Connect

    Wojtanowicz, A.C.; Field, S.D.; Osterman, M.C.

    1986-01-01

    Extensive bench-scale and full-scale experiments were conducted at the LSU Solids Control Environmental Laboratory in order to evaluate application of the solids-liquid separation technology to oilfield waste pit volume reduction. The experiments addressed chemical conditioning of various pit slurries such as water-base and oil-base mud reserve pit slurries, mixed sludge from offshore operations, and oil production pit slurry. Effective treatment was found for the majority of the waste samples with pH adjustment and with nonionic and low-charge anionic, high molecular weight polymers. Ultimate dewaterability of various samples was determined by use of the belt press bench simulator. Bench simulators of belt press filtration, vacuum filtration and centrifuge sedimentation were used for design and optimization of the full-scale tests. Alternative solid-liquid separation techniques such as vacuum filtration, belt press filtration, screw press filtration and centrifuging were pilot-tested using field-size equipment and 200 bbls samples of water-base mud, reserve pit slurry and production pit sludge. The test data were analyzed at various operating conditions using a new graphical technique. Also, four typical oilfield solid-bowl centrifuges and a modern solid-bowl dewatering decanter were compared in a series of full-scale tests. Finally a preliminary process study on the mechanism of centrifuge separation of flocculated sludges was performed.

  4. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds

    PubMed Central

    Freire, Carmen S. R.; Coutinho, João A. P.; Silvestre, Armando J. D.; Freire, Mara G.

    2016-01-01

    Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction–separation processes using IL aqueous solutions are suggested within a green chemistry perspective. PMID:27667965

  5. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds

    PubMed Central

    Freire, Carmen S. R.; Coutinho, João A. P.; Silvestre, Armando J. D.; Freire, Mara G.

    2016-01-01

    Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction–separation processes using IL aqueous solutions are suggested within a green chemistry perspective.

  6. Bibliography of articles and reports on mineral-separation techniques, processes, and applications

    NASA Technical Reports Server (NTRS)

    Harmon, R. S.

    1971-01-01

    A bibliography of published articles and reports on mineral-separation techniques, processes, and applications is presented along with an author and subject index. This information is intended for use in the mineral-separation facility of the Lunar Receiving Laboratory at the NASA Manned Spacecraft Center and as an aid and reference to persons involved or interested in mineral separation.

  7. Complementary home mechanical ventilation techniques. SEPAR Year 2014.

    PubMed

    Chiner, Eusebi; Sancho-Chust, José N; Landete, Pedro; Senent, Cristina; Gómez-Merino, Elia

    2014-12-01

    This is a review of the different complementary techniques that are useful for optimizing home mechanical ventilation (HMV). Airway clearance is very important in patients with HMV and many patients, particularly those with reduced peak cough flow, require airway clearance (manual or assisted) or assisted cough techniques (manual or mechanical) and suctioning procedures, in addition to ventilation. In the case of invasive HMV, good tracheostomy cannula management is essential for success. HMV patients may have sleep disturbances that must be taken into account. Sleep studies including complete polysomnography or respiratory polygraphy are helpful for identifying patient-ventilator asynchrony. Other techniques, such as bronchoscopy or nutritional support, may be required in patients on HMV, particularly if percutaneous gastrostomy is required. Information on treatment efficacy can be obtained from HMV monitoring, using methods such as pulse oximetry, capnography or the internal programs of the ventilators themselves. Finally, the importance of the patient's subjective perception is reviewed, as this may potentially affect the success of the HMV.

  8. Complementary home mechanical ventilation techniques. SEPAR Year 2014.

    PubMed

    Chiner, Eusebi; Sancho-Chust, José N; Landete, Pedro; Senent, Cristina; Gómez-Merino, Elia

    2014-12-01

    This is a review of the different complementary techniques that are useful for optimizing home mechanical ventilation (HMV). Airway clearance is very important in patients with HMV and many patients, particularly those with reduced peak cough flow, require airway clearance (manual or assisted) or assisted cough techniques (manual or mechanical) and suctioning procedures, in addition to ventilation. In the case of invasive HMV, good tracheostomy cannula management is essential for success. HMV patients may have sleep disturbances that must be taken into account. Sleep studies including complete polysomnography or respiratory polygraphy are helpful for identifying patient-ventilator asynchrony. Other techniques, such as bronchoscopy or nutritional support, may be required in patients on HMV, particularly if percutaneous gastrostomy is required. Information on treatment efficacy can be obtained from HMV monitoring, using methods such as pulse oximetry, capnography or the internal programs of the ventilators themselves. Finally, the importance of the patient's subjective perception is reviewed, as this may potentially affect the success of the HMV. PMID:25138799

  9. Separation of aracytidine and cytidine by capillary electrophoretic techniques.

    PubMed

    Krivánková, L; Kostálová, A; Vargas, G; Havel, J; Bocek, P

    1996-12-01

    Aracytidine (cytarabine, 1-beta-D-arabinofuranosylcytosine) is a synthetic analog of cytidine in which ribose is substituted by arabinose; it is used as a drug for the treatment of leukemia. A fast and reliable capillary electrophoretic method for the analysis of cytarabine and cytidine is described. The procedure utilizes the interactions with sodium dodecyl sulfate (SDS) micelles and borate, present in the background electrolyte, for the mobilization and selective separation of the analytes. The detection is carried out by UV absorbance at 275 nm. The method was applied both to pharmaceutical preparations and human serum. Analysis of an untreated serum requires 15 min; the detection limit is 0.8 microgram/mL and the relative standard deviation (RSD) is 5.3%.

  10. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  11. Fast centrifugal partition chromatography as a preparative-scale separation technique for citrus flavones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast centrifugal partition chromatography (FCPC) is a preparative-scale separations methodology based on the principles of counter current chromatography. Separations by FCPC are typically achieved with higher recoveries and with lower solvent use compared to conventional column chromatography. HSCP...

  12. Tissue proteomics using capillary isoelectric focusing-based multidimensional separations.

    PubMed

    Wang, Yueju; Balgley, Brian M; Lee, Cheng S

    2005-10-01

    The capabilities of capillary isoelectric focusing-based multidimensional separations for performing proteome analysis from minute samples create new opportunities in the pursuit of biomarker discovery using enriched and selected cell populations procured from tissue specimens. In this article, recent advances in online integration of capillary isoelectric focusing with nano-reversed phase liquid chromatography for achieving high-resolution peptide and protein separations prior to mass spectrometry analysis are reviewed, along with its potential application to tissue proteomics. These proteome technological advances combined with recently developed tissue microdissection techniques, provide powerful tools for those seeking to gain a greater understanding at the global level of the cellular machinery associated with human diseases such as cancer.

  13. A rapid technique for measuring and visualizing the extent of separated flow

    NASA Astrophysics Data System (ADS)

    Ostowari, C.

    1984-06-01

    A method is described for rapidly measuring and visualizing the extent of separated flow suitable for a wind tunnel environment. The method utilizes a continuously swinging total pressure probe. This technique permits acquiring and presenting graphical records of separated regions in a fraction of the time required by other methods. Typical results indicate the presence of highly complicated three-dimensional separated regions for a typical general aviation twin-engine aircraft at post-stall conditions.

  14. Separator reconnection at the magnetopause for predominantly northward and southward IMF: Techniques and results

    NASA Astrophysics Data System (ADS)

    Glocer, A.; Dorelli, J.; Toth, G.; Komar, C. M.; Cassak, P. A.

    2016-01-01

    In this work, we demonstrate how to track magnetic separators in three-dimensional simulated magnetic fields with or without magnetic nulls, apply these techniques to enhance our understanding of reconnection at the magnetopause. We present three methods for locating magnetic separators and apply them to 3-D resistive MHD simulations of the Earth's magnetosphere using the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme code. The techniques for finding separators and determining the reconnection rate are insensitive to interplanetary magnetic field (IMF) clock angle and can in principle be applied to any magnetospheric model. Moreover, the techniques have a number of advantages over prior separator finding techniques applied to the magnetosphere. The present work examines cases of high and low resistivity for two clock angles. We go beyond previous work examine the separator during Flux Transfer Events (FTEs). Our analysis of reconnection on the magnetopause yields a number of interesting conclusions: Reconnection occurs all along the separator even during predominately northward IMF cases. Multiple separators form in low-resistivity conditions, and in the region of an FTE the separator splits into distinct branches. Moreover, the local contribution to the reconnection rate, as determined by the local parallel electric field, drops in the vicinity of the FTE with respect to the value when there are none.

  15. Comparison Between Digital and Analog Pulse Shape Discrimination Techniques For Neutron and Gamma Ray Separation

    SciTech Connect

    R. Aryaeinejad; John K. Hartwell

    2005-11-01

    Recent advancement in digital signal processing (DSP) using fast processors and computer makes it possible to be used in pulse shape discrimination applications. In this study, we have investigated the feasibility of using a DSP to distinguish between the neutrons and gamma rays by the shape of their pulses in a liquid scintillator detector (BC501), and have investigated pulse shape-based techniques to improve the resolution performance of room-temperature cadmium zinc telluride (CZT) detectors. For the neutron/gamma discrimination, the advantage of using a DSP over the analog method is that in analog system two separate charge-sensitive ADC's are required. One ADC is used to integrate the beginning of the pulse risetime while the second ADC is for integrating the tail part. Using a DSP eliminates the need for separate ADCs as one can easily get the integration of two parts of the pulse from the digital waveforms. This work describes the performance of these DSP techniques and compares the results with the analog method.

  16. Digital microfluidic magnetic separation for particle-based immunoassays.

    PubMed

    Ng, Alphonsus H C; Choi, Kihwan; Luoma, Robert P; Robinson, John M; Wheeler, Aaron R

    2012-10-16

    We introduce a new format for particle-based immunoassays relying on digital microfluidics (DMF) and magnetic forces to separate and resuspend antibody-coated paramagnetic particles. In DMF, fluids are electrostatically controlled as discrete droplets (picoliters to microliters) on an array of insulated electrodes. By applying appropriate sequences of potentials to these electrodes, multiple droplets can be manipulated simultaneously and various droplet operations can be achieved using the same device design. This flexibility makes DMF well-suited for applications that require complex, multistep protocols such as immunoassays. Here, we report the first particle-based immunoassay on DMF without the aid of oil carrier fluid to enable droplet movement (i.e., droplets are surrounded by air instead of oil). This new format allowed the realization of a novel on-chip particle separation and resuspension method capable of removing greater than 90% of unbound reagents in one step. Using this technique, we developed methods for noncompetitive and competitive immunoassays, using thyroid stimulating hormone (TSH) and 17β-estradiol (E2) as model analytes, respectively. We show that, compared to conventional methods, the new DMF approach reported here reduced reagent volumes and analysis time by 100-fold and 10-fold, respectively, while retaining a level of analytical performance required for clinical screening. Thus, we propose that the new technique has great potential for eventual use in a fast, low-waste, and inexpensive instrument for the quantitative analysis of proteins and small molecules in low sample volumes. PMID:23013543

  17. Microparticles manipulation and enhancement of their separation in pinched flow fractionation by insulator-based dielectrophoresis.

    PubMed

    Khashei, Hesamodin; Latifi, Hamid; Seresht, Mohsen Jamshidi; Ghasemi, Amir Hossein Baradaran

    2016-03-01

    The separation and manipulation of microparticles in lab on a chip devices have importance in point of care diagnostic tools and analytical applications. The separation and sorting of particles from biological and clinical samples can be performed using active and passive techniques. In passive techniques, no external force is applied while in active techniques by applying external force (e.g. electrical), higher separation efficiency is obtained. In this article, passive (pinched flow fractionation) and active (insulator-based dielectrophoresis) methods were combined to increase the separation efficiency at lower voltages. First by simulation, appropriate values of geometry and applied voltages for better focusing, separation, and lower Joule heating were obtained. Separation of 1.5 and 6 μm polystyrene microparticles was experimentally obtained at optimized geometry and low total applied voltage (25 V). Also, the trajectory of 1.5 μm microparticles was controlled by adjusting the total applied voltage.

  18. Separation of Doppler radar-based respiratory signatures.

    PubMed

    Lee, Yee Siong; Pathirana, Pubudu N; Evans, Robin J; Steinfort, Christopher L

    2016-08-01

    Respiration detection using microwave Doppler radar has attracted significant interest primarily due to its unobtrusive form of measurement. With less preparation in comparison with attaching physical sensors on the body or wearing special clothing, Doppler radar for respiration detection and monitoring is particularly useful for long-term monitoring applications such as sleep studies (i.e. sleep apnoea, SIDS). However, motion artefacts and interference from multiple sources limit the widespread use and the scope of potential applications of this technique. Utilising the recent advances in independent component analysis (ICA) and multiple antenna configuration schemes, this work investigates the feasibility of decomposing respiratory signatures into each subject from the Doppler-based measurements. Experimental results demonstrated that FastICA is capable of separating two distinct respiratory signatures from two subjects adjacent to each other even in the presence of apnoea. In each test scenario, the separated respiratory patterns correlate closely to the reference respiration strap readings. The effectiveness of FastICA in dealing with the mixed Doppler radar respiration signals confirms its applicability in healthcare applications, especially in long-term home-based monitoring as it usually involves at least two people in the same environment (i.e. two people sleeping next to each other). Further, the use of FastICA to separate involuntary movements such as the arm swing from the respiratory signatures of a single subject was explored in a multiple antenna environment. The separated respiratory signal indeed demonstrated a high correlation with the measurements made by a respiratory strap used currently in clinical settings. PMID:26358241

  19. Separation of Doppler radar-based respiratory signatures.

    PubMed

    Lee, Yee Siong; Pathirana, Pubudu N; Evans, Robin J; Steinfort, Christopher L

    2016-08-01

    Respiration detection using microwave Doppler radar has attracted significant interest primarily due to its unobtrusive form of measurement. With less preparation in comparison with attaching physical sensors on the body or wearing special clothing, Doppler radar for respiration detection and monitoring is particularly useful for long-term monitoring applications such as sleep studies (i.e. sleep apnoea, SIDS). However, motion artefacts and interference from multiple sources limit the widespread use and the scope of potential applications of this technique. Utilising the recent advances in independent component analysis (ICA) and multiple antenna configuration schemes, this work investigates the feasibility of decomposing respiratory signatures into each subject from the Doppler-based measurements. Experimental results demonstrated that FastICA is capable of separating two distinct respiratory signatures from two subjects adjacent to each other even in the presence of apnoea. In each test scenario, the separated respiratory patterns correlate closely to the reference respiration strap readings. The effectiveness of FastICA in dealing with the mixed Doppler radar respiration signals confirms its applicability in healthcare applications, especially in long-term home-based monitoring as it usually involves at least two people in the same environment (i.e. two people sleeping next to each other). Further, the use of FastICA to separate involuntary movements such as the arm swing from the respiratory signatures of a single subject was explored in a multiple antenna environment. The separated respiratory signal indeed demonstrated a high correlation with the measurements made by a respiratory strap used currently in clinical settings.

  20. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.

    2016-02-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  1. Capillary separations enabling tissue proteomics-based biomarker discovery.

    PubMed

    Guo, Tong; Lee, Cheng S; Wang, Weijie; DeVoe, Don L; Balgley, Brian M

    2006-09-01

    Development of the capability to enable large-scale proteome studies, analogous to comprehensive gene expression analysis, will clearly have far-reaching impacts on protein biomarker investigations of human diseases such as cancer through interrogation of the archived fresh frozen and formalin-fixed and paraffin-embedded tissue collections. This review therefore focuses on the most recent advances in microdissection techniques and proteome platforms for procuring homogeneous subpopulations of tumor cells or structures and performing comprehensive analysis of protein profiles within tissue specimens, respectively. Developments in capillary separations capable of providing extremely high resolving power and selective analyte enrichment are particularly highlighted for their roles within the broader context of a state-of-the-art integrated tissue proteome effort. The capabilities of CIEF-based multidimensional separations for performing proteome analysis from minute samples create new opportunities in the pursuit of biomarker discovery using enriched and selected cell populations procured from tissue specimens. These proteome technological advances combined with recently developed tissue microdissection techniques provide powerful tools for those seeking to gain a greater understanding at the global level of the cellular machinery associated with human diseases such as cancer.

  2. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  3. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  4. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  5. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  6. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  7. Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution

    SciTech Connect

    Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi

    2013-07-01

    We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.

  8. Clusius-Dickel Separations (CDS): A new look at an old technique

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The history, applications, and theoretical basis of the CDS technique are reviewed. The advantage to be realized by conduction of CDSs in low-g, space environments are deduced. The results are reported of investigations aimed at further improving CDS efficiencies by altering convective flow patterns. The question of whether multicellular flow or turbulence can introduce a new separation mechanism which would boost separation efficiencies at least an order of magnitude is considered. Results are presented and discussed.

  9. Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants

    SciTech Connect

    Witczak, Steven C.; Winokur, Peter S.; Lacoe, Ronald C.; Mayer, Donald C.

    2000-06-01

    An improved charge separation technique for metal-oxide-silicon (MOS) capacitors is presented which accounts for the deactivation of substrate dopants by hydrogen at elevated irradiation temperatures or small irradiation biases. Using high-frequency capacitance-voltage measurements, radiation-induced inversion voltage shifts are separated into components due to oxide trapped charge, interface traps, and deactivated dopants, where the latter is computed from a reduction in Si capacitance. In the limit of no radiation-induced dopant deactivation, this approach reduces to the standard midgap charge separation technique used widely for the analysis of room-temperature irradiations. The technique is demonstrated on a p-type MOS capacitor irradiated with {sup 60}Co {gamma} rays at 100 degree sign C and zero bias, where the dopant deactivation is significant.(c) 2000 American Institute of Physics.

  10. Development of separation techniques for a direct contact thermal energy storage system

    SciTech Connect

    Min, T.C.; Tomlinson, J.J.

    1989-03-01

    In direct contact ice-making processes, the refrigerant will pick up water vapor through direct percolation and oil from the compressor. The purpose of this project is to investigate methods for separating water vapor and oil from a mixture to complete a refrigeration cycle. In this paper, we report critical review on two separation techniques. From a literature search, we have identified a third technique; and plan to evaluate this method by bench-scale experiments. A recommendation for future work is included.

  11. Optimal separable bases and molecular collisions

    SciTech Connect

    Poirier, L W

    1997-12-01

    A new methodology is proposed for the efficient determination of Green`s functions and eigenstates for quantum systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is obtained from the set of all Hilbert space operators. It is shown that this determination itself, as well as the solution of the resultant approximation, are problems of reduced dimensionality for most systems of physical interest. Moreover, the approximate eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. These distorted waves give rise to a Born series with optimized convergence properties. Analytical results are presented for an application of the method to the two-dimensional shifted harmonic oscillator system. The primary interest however, is quantum reactive scattering in molecular systems. For numerical calculations, the use of distorted waves corresponds to numerical preconditioning. The new methodology therefore gives rise to an optimized preconditioning scheme for the efficient calculation of reactive and inelastic scattering amplitudes, especially at intermediate energies. This scheme is particularly suited to discrete variable representations (DVR`s) and iterative sparse matrix methods commonly employed in such calculations. State to state and cumulative reactive scattering results obtained via the optimized preconditioner are presented for the two-dimensional collinear H + H{sub 2} {yields} H{sub 2} + H system. Computational time and memory requirements for this system are drastically reduced in comparison with other methods, and results are obtained for previously prohibitive energy regimes.

  12. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  13. Comparison study of solid/liquid separation techniques for oilfield pit closures

    SciTech Connect

    Wojtanowicz, A.K.; Field, S.D.; Osterman, M.C.

    1987-07-01

    Vacuum filtration, belt-press filtration, screw-press filtration, and centrifuging techniques were evaluated in full-scale experiments for use in oilfield waste volume reduction. Centrifuging and belt-press filtration proved applicable to oilfield pit cleanups. Also, an effective chemical conditioning (coagulation and flocculation) was found for deliquoring seven types of oilfield waste slurries before separation.

  14. A Practical Introduction to Separation and Purification Techniques for the Beginning Organic Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Leonard, Jack E.

    1981-01-01

    Describes a sequence of experiments developed at Texas A&M University for use in one-semester and two-semester (nonmajors) organic chemistry courses to teach a maximum number of separation and purification techniques such as distillations, recrystallization, liquid-liquid extraction, and chromatography. (SK)

  15. Anxiety: the importunate companion. Psychoanalytic theory of castration and separation anxieties and implications for clinical technique.

    PubMed

    Davies, Rosemary

    2012-10-01

    In this article I consider the implications of our differing psychoanalytic theories of anxiety on clinical technique. Drawing on differentiations between the focus on separation or castration anxiety and the relative neglect of the latter in contemporary writing, I look in detail at two clinical examples of psychoanalysis in borderline young adults to exemplify the issue.(1).

  16. Novel platform for minimizing cell loss on separation process: Droplet-based magnetically activated cell separator.

    PubMed

    Kim, Youngho; Hong, Su; Lee, Sang Ho; Lee, Kangsun; Yun, Seok; Kang, Yuri; Paek, Kyeong-Kap; Ju, Byeong-Kwon; Kim, Byungkyu

    2007-07-01

    To reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACS-which consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tube-we could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry. We could find that the number (3241/59 940) of cells lost in the DMACS is much less than that (22 360/59 940) in the MACS while the efficiency of cell separation in the DMACS (96.07%) is almost the same as that in the MACS (96.72%). Practically, with fluorescent images, it was visually confirmed that the statistical data are reliable. From the viability test by using Hoechst 33 342, it was also demonstrated that there was no cell damage on a gas-liquid interface. Conclusively, DMACS will be a powerful tool to separate rare cells and applicable as a separator, key component of lab-on-a-chip.

  17. Denial of separation anxiety as measured by a serial tachistoscopic technique.

    PubMed

    Rubino, I A; Grasso, S; Pezzarossa, B

    1990-12-01

    A mother-child separation stimulus was repeatedly presented by standard Defense Mechanism Test procedure, at increasing durations of tachistoscopic exposure to 60 clinical and nonclinical subjects. Subjective verbal reports were coded blindly for evidence of perceptual distortions presumably indicative of denial of separation anxiety. Low scores on two items measuring sensitivity to separation anxiety and intolerance of aloneness were, as predicted, significantly more often characterized by codings of denial on the tachistoscopic exposures than subjects with high sensitivity to separation anxiety. Stability of effect became stronger when only very low and very high scores were compared for perceptual denial on the last four presentations of the series. This technique, employing other types of anxiety-evoking stimuli, may represent a reliable instrument to reveal the presence of defences toward each of the most relevant conflictual areas of the personality. PMID:2087385

  18. Conceptual design of distillation-based hybrid separation processes.

    PubMed

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  19. ICA-based UHF RFID multi-tag hybrid data blind separation

    NASA Astrophysics Data System (ADS)

    Li, Hua; Wang, Hong-jun; Song, Zi-liang

    2013-03-01

    This work presents an ICA-based UHF RFID multi-tag hybrid data blind separation algorithm. After analysis, we find that UHF RFID multi-tag hybrid data is consistent with the requirements of ICA algorithm. Simulated experimental results show that excellent results can be obtained by using ICA techniques in blind separating of tags data. For evaluating the separation performance objectively, a new indicator- the Similarity of Sources and Results (SSR) is defined. The anti- noise performance of this algorithm is analyzed quantitatively too. A good theoretical and experimental basis for applying blind separation technology to UHF RFID tags anti-collision algorithm has been established in this paper.

  20. Balloon-based interferometric techniques

    NASA Technical Reports Server (NTRS)

    Rees, David

    1985-01-01

    A balloon-borne triple-etalon Fabry-Perot Interferometer, observing the Doppler shifts of absorption lines caused by molecular oxygen and water vapor in the far red/near infrared spectrum of backscattered sunlight, has been used to evaluate a passive spaceborne remote sensing technique for measuring winds in the troposphere and stratosphere. There have been two successful high altitude balloon flights of the prototype UCL instrument from the National Scientific Balloon Facility at Palestine, TE (May 80, Oct. 83). The results from these flights have demonstrated that an interferometer with adequate resolution, stability and sensitivity can be built. The wind data are of comparable quality to those obtained from operational techniques (balloon and rocket sonde, cloud-top drift analysis, and from the gradient wind analysis of satellite radiance measurements). However, the interferometric data can provide a regular global grid, over a height range from 5 to 50 km in regions of clear air. Between the middle troposphere (5 km) and the upper stratosphere (40 to 50 km), an optimized instrument can make wind measurements over the daylit hemisphere with an accuracy of about 3 to 5 m/sec (2 sigma). It is possible to obtain full height profiles between altitudes of 5 and 50 km, with 4 km height resolution, and a spatial resolution of about 200 km, along the orbit track. Below an altitude of about 10 km, Fraunhofer lines of solar origin are possible targets of the Doppler wind analysis. Above an altitude of 50 km, the weakness of the backscattered solar spectrum (decreasing air density) is coupled with the low absorption crosssection of all atmospheric species in the spectral region up to 800 nm (where imaging photon detectors can be used), causing the along-the-track resolution (or error) to increase beyond values useful for operational purposes. Within the region of optimum performance (5 to 50 km), however, the technique is a valuable potential complement to existing wind

  1. A soap technique for cell separation to study the seed coat of Sesbania punicea.

    PubMed

    Bevilacqua, L; Massa, G; Modenesi, P; Fossati, F

    1993-05-01

    A technique is described for separating plant cells used for morphological studies. The plant material is placed in a concentrated solution of olive oil castile soap for 1-2 days or more. The material is then thoroughly washed and placed between two glass slides. The upper glass slide is lifted from the lower one, then gently pressed down several times. Through this procedure Malpighian cells of the seed coat of Sesbania punicea, mesophyll cells of Euphorbia peplus and of Trifolium pratense and cortical cells of the aerial roots of Monstera deliciosa have been separated. Various shapes of the Malpighian cells of the Sesbania punicea seed coat can be observed along with intermediates.

  2. Radiochemical separations by the ring-oven technique-IV The system (144)Ce/(144)Pr.

    PubMed

    Klockow, D; Böhmer, R G

    1969-08-01

    By using filter papers impregnated with a manganese oxide hydrate having an average oxidation number of + 3, it is possible to separate (144)Pr from (144)Ce rapidly by the ring-oven technique. With 0.06-0.07M trichloracetic acid as wash-solution, the daughter nuclide can be concentrated in the ring zone with 80-90% yield and decontamination factors > 10(3). The half-life of the separated (144)Pr was found to be 17.60 +/- 0.05 min. The behaviour of other fission nuclides under the same conditions was also investigated. PMID:18960624

  3. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.

    2010-11-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  4. Development of novel separation techniques for biological samples in capillary electrophoresis

    SciTech Connect

    Chang, H.T.

    1994-07-27

    This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.

  5. Separation of oil-water-sludge emulsions coming from palm oil mill process through microwave techniques.

    PubMed

    Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S

    2008-01-01

    The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.

  6. New test techniques to evaluate near field effects for supersonic store carriage and separation

    NASA Technical Reports Server (NTRS)

    Sawyer, Wallace C.; Stallings, Robert L., Jr.; Wilcox, Floyd J., Jr.; Blair, A. B., Jr.; Monta, William J.; Plentovich, Elizabeth B.

    1989-01-01

    Store separation and store carriage drag studies were conducted. A primary purpose is to develop new experimental methods to evaluate near field effects of store separation and levels of store carriage drag associated with a variety of carriage techniques for different store shapes and arrangements. Flow field measurements consisting of surface pressure distributions and vapor screen photographs are used to analyze the variations of the store separation characteristics with cavity geometry. Store carriage drag measurements representative of tangent, semi-submerged, and internal carriage installations are presented and discussed. Results are included from both fully metric models and models with only metric segments (metric pallets) and the relative merits of the two are discussed. Carriage drag measurements for store installations on an aircraft parent body are compared both with prediction methods and with installations on a generic parent body.

  7. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    NASA Technical Reports Server (NTRS)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  8. Biophysical separation of Staphylococcus epidermidis strains based on antibiotic resistance.

    PubMed

    Jones, Paul V; Huey, Shannon; Davis, Paige; Yanashima, Ryan; McLemore, Ryan; McLaren, Alex; Hayes, Mark A

    2015-08-01

    Electrophoretic and dielectrophoretic approaches to separations can provide unique capabilities. In the past, capillary and microchip-based approaches to electrophoresis have demonstrated extremely high-resolution separations. More recently, dielectrophoretic systems have shown excellent results for the separation of bioparticles. Here we demonstrate resolution of a difficult pair of targets: gentamicin resistant and susceptible strains of Staphylococcus epidermidis. This separation has significant potential implications for healthcare. This establishes a foundation for biophysical separations as a direct diagnostic tool, potentially improving nearly every figure of merit for diagnostics and antibiotic stewardship. The separations are performed on a modified gradient insulator-based dielectrophoresis (g-iDEP) system and demonstrate that the presence of antibiotic resistance enzymes (or secondary effects) produces a sufficient degree of electrophysical difference to allow separation. The differentiating factor is the ratio of electrophoretic to dielectrophoretic mobilities. This factor is 4.6 ± 0.6 × 10(9) V m(-2) for the resistant strain, versus 9.2 ± 0.4 × 10(9) V m(-2) for the susceptible strain. Using g-iDEP separation, this difference produces clear and easily discerned differentiation of the two strains. PMID:26086047

  9. Biophysical separation of Staphylococcus epidermidis strains based on antibiotic resistance

    PubMed Central

    Jones, Paul V.; Huey, Shannon; Davis, Paige; McLemore, Ryan; McLaren, Alex

    2015-01-01

    Electrophoretic and dielectrophoretic approaches to separations can provide unique capabilities. In the past, capillary and microchip-based approaches to electrophoresis have demonstrated extremely high-resolution separations. More recently, dielectrophoretic systems have shown excellent results for the separation of bioparticles. Here we demonstrate resolution of a difficult pair of targets: gentamicin resistant and susceptible strains of Staphylococcus epidermidis. This separation has significant potential implications for healthcare. This establishes a foundation for biophysical separations as a direct diagnostic tool, potentially improving nearly every figure of merit for diagnostics and antibiotic stewardship. The separations are performed on a modified gradient insulator-based dielectrophoresis (g-iDEP) system and demonstrate that the presence of antibiotic resistance enzymes (or secondary effects) produces a sufficient degree of electrophysical difference to allow separation. The differentiating factor is the ratio of electrophoretic to dielectrophoretic mobilities. This factor is 4.6 ± 0.6 × 109 V m–2 for the resistant strain, versus 9.2 ± 0.4 × 109 V m–2 for the susceptible strain. Using g-iDEP separation, this difference produces clear and easily discerned differentiation of the two strains. PMID:26086047

  10. Separations based on the mechanical forces of light.

    PubMed

    Zhao, Bum Suk; Koo, Yoon-Mo; Chung, Doo Soo

    2006-01-18

    A photon as a particle has an energy and a momentum. In a matter-photon interaction, the matter and photons may exchange their momenta observing the momentum conservation law. The consequence of the momentum transfer from a photon to a matter particle is a mechanical force exerted on the particle. Several separation methods based on this force of light are reviewed. Photophoresis separations for micron-sized particles and optical force chromatography for chemical-sized molecules are discussed.

  11. Separations systems data base: a users' manual. Revision I

    SciTech Connect

    Roddy, J.W.; McDowell, W.J.

    1981-01-01

    A separations systems data base (SEPSYS), designed specifically for the retrieval of information needed in chemical separations problems (i.e., how to perform a given separation under given conditions), is described. Included are descriptions of the basic methods of searching and retrieving information from the data base, the procedure for entering records into the data base, a listing of additional references concerning the computer information process, and an example of a typical record. The initial entries are concerned primarily with liquid-liquid extraction and liquid-solid ion exchange methods for metal ions and salts; however, the data base is constructed so that almost any separation process can be accommodated. Each record is indexed with information provided under the following fields: author; title; publication source; date of publication; organization sponsoring the work; brief abstract of the work; abstract number if the work has been so referenced, and/or abstractors initials; type of separation system used (e.g., flotation); specific or generic name of the separation agent used (e.g., acetylacetone); list of substances separated (e.g., gold, copper); qualitative description of the supporting medium or matrix containing the substances before separation (e.g., nitrate); type of literature where the record was printed (e.g., book); and type of information that the article contains. Each of these fields may be searched independently of the others (or in combination), and the last six fields contain specific key words that are listed in the report. Definitions are provided for the 36 information terms.

  12. Techniques for Enhancing Web-Based Education.

    ERIC Educational Resources Information Center

    Barbieri, Kathy; Mehringer, Susan

    The Virtual Workshop is a World Wide Web-based set of modules on high performance computing developed at the Cornell Theory Center (CTC) (New York). This approach reaches a large audience, leverages staff effort, and poses challenges for developing interesting presentation techniques. This paper describes the following techniques with their…

  13. Impactless, in-tube sabot separation technique useful for modest-sized supersonic ballistic ranges

    NASA Astrophysics Data System (ADS)

    Sasoh, Akihiro; Oshiba, Shin

    2006-10-01

    A simple and high performance sabot separation technique which is useful even in about 10-m-long supersonic ballistic ranges has been developed. The normal in-flight sabot separation distance is vastly reduced by adding an addition tube with no diaphragm that may cause damage to the projectile. The launch tube of the ballistic range is subdivided to the acceleration, ventilation, and sabot separation sections. In the ventilation section, both the precursor shock wave driven by the sabot when coasting through the acceleration section and the driver gas is vented out to the dump chamber. In the sabot separation section, only the sabot experiences a great dragging pressure imbalance whereas the drag to the projectile is kept negligible. Initially, the whole system except for the driver gas chamber is connected without any diaphragm; the range operation is not accompanied by any high-speed impact among the sabot, diaphragm, and other related solid parts. The experimental environment can be kept clean. The influence of the muzzle blast is eliminated within a reasonably short distance from the muzzle because it delays owing to the ventilation section. Calibration experiments and the demonstration of flow visualization and boom measurement of supersonic flight were conducted using a 25mm bore, Mach-2 ballistic range.

  14. A Convex Geometry-Based Blind Source Separation Method for Separating Nonnegative Sources.

    PubMed

    Yang, Zuyuan; Xiang, Yong; Rong, Yue; Xie, Kan

    2015-08-01

    This paper presents a convex geometry (CG)-based method for blind separation of nonnegative sources. First, the unaccessible source matrix is normalized to be column-sum-to-one by mapping the available observation matrix. Then, its zero-samples are found by searching the facets of the convex hull spanned by the mapped observations. Considering these zero-samples, a quadratic cost function with respect to each row of the unmixing matrix, together with a linear constraint in relation to the involved variables, is proposed. Upon which, an algorithm is presented to estimate the unmixing matrix by solving a classical convex optimization problem. Unlike the traditional blind source separation (BSS) methods, the CG-based method does not require the independence assumption, nor the uncorrelation assumption. Compared with the BSS methods that are specifically designed to distinguish between nonnegative sources, the proposed method requires a weaker sparsity condition. Provided simulation results illustrate the performance of our method. PMID:25203999

  15. Modeling of the separated-aperture mine detection sensor using the transmission line matrix (TLM) technique

    NASA Astrophysics Data System (ADS)

    Sherbondy, Kelly D.; Amazeen, Charles A.

    1995-06-01

    A numerical time-domain technique known as the transmission line matrix (TLM) method was used to analyze a ground penetrating radar (GPR) concept historically known as the separated aperture technique. This GPR concept is basically a dielectric anomaly (mine) detection sensor which operates near the L band frequency. This mine sensor consists of transmit and receive broadband dipole antenna. Each antenna is contained within a metallic cavity and the cavities are connected by a metallic septum. Normally, when the mine sensor is scanned over homogeneous earth, very little transmitted power is received by the receiving antenna. The power received by the receiving antenna however, is significantly increased when the detector is scanned over a buried dielectric anomaly (mine). This technique has performed in terms of probability of detection and false-alarm rates at different sites with different mine types. The TLM method was used to analyze the separated aperture mine detector's response to targets, clutter, and to provide insight into the fundamental wave interactions.

  16. Capillarity-driven blood plasma separation on paper-based devices.

    PubMed

    Kar, Shantimoy; Maiti, Tapas Kumar; Chakraborty, Suman

    2015-10-01

    We demonstrate capillarity-driven plasma separation from whole blood on simple paper-based H-channels. This methodology, unlike other reported techniques, does not necessitate elaborate and complex instrumentation, and the usage of expensive consumables. We believe that this technique will be ideally suited to be implemented in rapid and portable blood diagnostic devices designed to be operative at locations with limited resources.

  17. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective

  18. Spectral separation of optical spin based on antisymmetric Fano resonances

    PubMed Central

    Piao, Xianji; Yu, Sunkyu; Hong, Jiho; Park, Namkyoo

    2015-01-01

    We propose a route to the spectral separation of optical spin angular momentum based on spin-dependent Fano resonances with antisymmetric spectral profiles. By developing a spin-form coupled mode theory for chiral materials, the origin of antisymmetric Fano spectra is clarified in terms of the opposite temporal phase shift for each spin, which is the result of counter-rotating spin eigenvectors. An analytical expression of a spin-density Fano parameter is derived to enable quantitative analysis of the Fano-induced spin separation in the spectral domain. As an application, we demonstrate optical spin switching utilizing the extreme spectral sensitivity of the spin-density reversal. Our result paves a path toward the conservative spectral separation of spins without any need of the magneto-optical effect or circular dichroism, achieving excellent purity in spin density superior to conventional approaches based on circular dichroism. PMID:26561372

  19. Comparison Between Digital and Analog Pulse Shape Discrimination Techniques for Neutron and Gamma Ray Separation

    SciTech Connect

    Rahmat Aryaeinejad

    2005-10-01

    Recent advancements in digital signal processing (DSP) using fast processors and a computer allows one to envision using it in pulse shape discrimination. In this study, we have investigated the feasibility of using a DSP to distinguish between neutrons and gamma rays by the shape of their pulses in a liquid scintillator detector (BC501). For neutron/gamma discrimination, the advantage of using a DSP over the analog method is that in an analog system, two separate charge-sensitive ADCs are required. One ADC is used to integrate the beginning of the pulse rise time while the second ADC is for integrating the tail part. In DSP techniques the incoming pulses coming directly from the detector are immediately digitized and can be decomposed into individual pulses waveforms. This eliminates the need for separate ADCs as one can easily get the integration of two parts of the pulse from the digital waveforms. This work describes the performance of these DSP techniques and compares the results with the analog method.

  20. Tunable electrophoretic separations using a scalable, fabric-based platform.

    PubMed

    Narahari, Tanya; Dendukuri, Dhananjaya; Murthy, Shashi K

    2015-02-17

    There is a rising need for low-cost and scalable platforms for sensitive medical diagnostic testing. Fabric weaving is a mature, scalable manufacturing technology and can be used as a platform to manufacture microfluidic diagnostic tests with controlled, tunable flow. Given its scalability, low manufacturing cost (<$0.25 per device), and potential for patterning multiplexed channel geometries, fabric is a viable platform for the development of analytical devices. In this paper, we describe a fabric-based electrophoretic platform for protein separation. Appropriate yarns were selected for each region of the device and weaved into straight channel electrophoretic chips in a single step. A wide dynamic range of analyte molecules ranging from small molecule dyes (<1 kDa) to macromolecule proteins (67-150 kDa) were separated in the device. Individual yarns behave as a chromatographic medium for electrophoresis. We therefore explored the effect of yarn and fabric parameters on separation resolution. Separation speed and resolution were enhanced by increasing the number of yarns per unit area of fabric and decreasing yarn hydrophilicity. However, for protein analytes that often require hydrophilic, passivated surfaces, these effects need to be properly tuned to achieve well-resolved separations. A fabric device tuned for protein separations was built and demonstrated. As an analytical output parameter for this device, the electrophoretic mobility of a sedimentation marker, Naphthol Blue Black bovine albumin in glycine-NaOH buffer, pH 8.58 was estimated and found to be -2.7 × 10(-8) m(2) V(-1) s(-1). The ability to tune separation may be used to predefine regions in the fabric for successive preconcentrations and separations. The device may then be applied for the multiplexed detection of low abundance proteins from complex biological samples such as serum and cell lysate.

  1. Improved Separability Criteria Based on Bloch Representation of Density Matrices

    PubMed Central

    Shen, Shu-Qian; Yu, Juan; Li, Ming; Fei, Shao-Ming

    2016-01-01

    The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria. PMID:27350031

  2. Base-Catalyzed Depolymerization of Lignin: Separation of Monomers

    SciTech Connect

    Vigneault, A.; Johnson, D. K.; Chornet, E.

    2007-12-01

    In our quest for fractionating lignocellulosic biomass and valorizing specific constitutive fractions, we have developed a strategy for the separation of 12 added value monomers generated during the hydrolytic based-catalyzed depolymerization of a Steam Exploded Aspen Lignin. The separation strategy combines liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. LLE, vacuum distillation and flash LC were tested experimentally. Batch vacuum distillation produced up to 4 fractions. Process simulation confirmed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, 3 of which require further chromatography and crystallization for purification.

  3. Application of Satellite Based Augmentation Systems to Altitude Separation

    NASA Astrophysics Data System (ADS)

    Magny, Jean Pierre

    This paper presents the application of GNSS1, or more precisely of Satellite Based Augmentation Systems (SBAS), to vertical separation for en-route, approach and landing operations. Potential improvements in terms of operational benefit and of safety are described for two main applications. First, vertical separation between en-route aircraft, which requires a system available across wide areas. SBAS (EGNOS, WAAS, and MSAS) are very well suited for this purpose before GNSS2 becomes available. And secondly, vertical separation from the ground during approach and landing, for which preliminary design principles of instrument approach procedures and safety issues are presented. Approach and landing phases are the subject of discussions within ICAO GNSS-P. En-route phases have been listed as GNSS-P future work and by RTCA for development of new equipments.

  4. Separability conditions based on local fine-grained uncertainty relations

    NASA Astrophysics Data System (ADS)

    Rastegin, Alexey E.

    2016-06-01

    Many protocols of quantum information processing use entangled states. Hence, separability criteria are of great importance. We propose new separability conditions for a bipartite finite-dimensional system. They are derived by using fine-grained uncertainty relations. Fine-grained uncertainty relations can be obtained by consideration of the spectral norms of certain positive matrices. One of possible approaches to separability conditions is connected with upper bounds on the sum of maximal probabilities. Separability conditions are often formulated for measurements that have a special structure. For instance, mutually unbiased bases and mutually unbiased measurements can be utilized for such purposes. Using resolution of the identity for each subsystem of a bipartite system, we construct some resolution of the identity in the product of Hilbert spaces. Separability conditions are then formulated in terms of maximal probabilities for a collection of specific outcomes. The presented conditions are compared with some previous formulations. Our results are exemplified with entangled states of a two-qutrit system.

  5. An algorithm based on negative probabilities for a separability criterion

    NASA Astrophysics Data System (ADS)

    de Ponte, M. A.; Mizrahi, S. S.; Moussa, M. H. Y.

    2015-09-01

    Here, we demonstrate that entangled states can be written as separable states [, 1 to N refering to the parts and to the nonnegative probabilities], although for some of the coefficients, assume negative values, while others are larger than 1 such to keep their sum equal to 1. We recognize this feature as a signature of non-separability or pseudoseparability. We systematize that kind of decomposition through an algorithm for the explicit separation of density matrices, and we apply it to illustrate the separation of some particular bipartite and tripartite states, including a multipartite one-parameter Werner-like state. We also work out an arbitrary bipartite state and show that in the particular case where this state reduces to an X-type density matrix, our algorithm leads to the separability conditions on the parameters, confirmed by the Peres-Horodecki partial transposition recipe. We finally propose a measure for quantifying the degree of entanglement based on these peculiar negative (and greater than one) probabilities.

  6. Sample preparation and separation techniques for bioanalysis of morphine and related substances.

    PubMed

    Hansen, Steen Honoré

    2009-03-01

    In present time the use or misuse of morphine and its derivatives are monitored by assaying the presence of the drug and its metabolites in biofluids. In the present review, focus is placed on the sample preparation and on the separation techniques used in the current best practices of bioanalysis of morphine and its major metabolites. However, as methods for testing the misuse of heroin, a morphine derivative, often involve bioanalytical methods that cover a number of other illicit drug substances, such methods are also included in the review. Furthermore, the review also includes bioanalysis in a broader perspective as analysis of plant materials, cell cultures and environmental samples. The review is not intended to cover all publications that include bioanalysis of morphine but is more to be considered a view into the current best practices of bioanalysis of morphine, its metabolites and other related substances.

  7. Improved error separation technique for on-machine optical lens measurement

    NASA Astrophysics Data System (ADS)

    Fu, Xingyu; Bing, Guo; Zhao, Qingliang; Rao, Zhimin; Cheng, Kai; Mulenga, Kabwe

    2016-04-01

    This paper describes an improved error separation technique (EST) for on-machine surface profile measurement which can be applied to optical lenses on precision and ultra-precision machine tools. With only one precise probe and a linear stage, improved EST not only reduces measurement costs, but also shortens the sampling interval, which implies that this method can be used to measure the profile of small-bore lenses. The improved EST with stitching method can be applied to measure the profile of high-height lenses as well. Since the improvement is simple, most of the traditional EST can be modified by this method. The theoretical analysis and experimental results in this paper show that the improved EST eliminates the slide error successfully and generates an accurate lens profile.

  8. Application of capillary fluid management techniques to the design of a phase separating microgravity bioreactor

    NASA Technical Reports Server (NTRS)

    Finger, Barry W.; Neville, Gale E., Jr.; Sager, John C.

    1993-01-01

    Manned space missions require the development of compact, efficient, and reliable life support systems. A number of aqueous biological conversion processes are associated with bioregenerative life support systems. Vessels, or bioreactors, capable of supporting these processes in microgravity must be developed. An annular flow bioreactor has been conceived. It has the potential to incorporate containment, phase separation, gas exchange, and illumination into a single vessel. The bioreactor utilizes capillary fluid management techniques and is configured as a cylindrical tube in which a two-phase liquid-gas flow is maintained. Vanes placed around the inner perimeter enhance capillary forces and cause the liquid phase to attach and flow along the interior surface of the tube. No physical barrier is required to complete phase separation. It is shown analytically that liquid film thickness is limited only by vane geometry and that an annular flow bioreactor capable of managing 284 liters would occupy 0.7 cubic m, less than half the volume of a Spacelab experiment rack.

  9. Ion separations based on electrical potentials nanoporous and microporous membranes

    NASA Astrophysics Data System (ADS)

    Armstrong, Jason

    This dissertation examines several types of ion separations in nanometer to micrometer pores in membranes. Membranes provide an attractive platform for ion separations, primarily because they operate continuously (i.e. not in a batch mode), and small pores offer the potential for ion separation based on charge and electrophoretic mobility differences. Initial studies employed charged, nanoporous membranes to separate monovalent and divalent ions. Adsorption of polyelectrolyte multilayers in nanoporous membranes afforded control over the surface charge and pore radii in track-etched membranes, and electrostatic ion-exclusion, particularly for divalent ions, occurred in these membranes because the electrical double layer filled the entire nanopore. Initial experiments employed adsorption of (PSS/PAH) multilayers in the 50-nm diameter pores of PCTE membranes to give a K+/Mg2+ selectivity of ~10 in pressure-driven dead-end filtration. Adsorption of (PSS/PAH) 1 films in 30-nm pores gave a similar K+/Mg2+ selectivity with a simpler modification procedure. Separations utilizing (PSS/PAH)1 films in 30-nm pores showed the lowest ion rejections with high ion concentrations, consistent with enhanced screening of the electrical double layer at high ionic strength. However, solutions with < 5 mM ionic strength exhibited essentially 100% Mg2+ rejections (the Mg2+ concentration in the permeate was below the method detection limit). Moreover, K+ rejections increased in the presence of Mg2+, which may stem from Mg2+-adsorption within the PEM and increased surface charge. Finally, separation of Br- and SO42- with a PSS1-modified, 30-nm PCTE membrane validated the exclusion mechanism for anions. The average Br-/SO42- selectivity was 3.4 +/- 0.8 for a solution containing 0.5 mM NaBr and 0.5 mM Na2SO4. The low selectivity in this case likely stems from a relatively large pore. The membranes used for the separation of monovalent and divalent ions also facilitated separation of

  10. Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients

    PubMed Central

    Kokkinakis, Kostas; Loizou, Philipos C.

    2008-01-01

    Bilateral cochlear implants seek to restore the advantages of binaural hearing by improving access to binaural cues. Bilateral implant users are currently fitted with two processors, one in each ear, operating independent of one another. In this work, a different approach to bilateral processing is explored based on blind source separation (BSS) by utilizing two implants driven by a single processor. Sentences corrupted by interfering speech or speech-shaped noise are presented to bilateral cochlear implant users at 0 dB signal-to-noise ratio in order to evaluate the performance of the proposed BSS method. Subjects are tested in both anechoic and reverberant settings, wherein the target and masker signals are spatially separated. Results indicate substantial improvements in performance in both anechoic and reverberant settings over the subjects’ daily strategies for both masker conditions and at various locations of the masker. It is speculated that such improvements are due to the fact that the proposed BSS algorithm capitalizes on the variations of interaural level differences and interaural time delays present in the mixtures of the signals received by the two microphones, and exploits that information to spatially separate the target from the masker signals. PMID:18397040

  11. Preliminary investigation of a technique to separate fission noble metals from fission product mixtures

    SciTech Connect

    Mellinger, G.B.; Jensen, G.A.

    1982-08-01

    A variation of the gold-ore fire assay technique was examined as a method for recovering Pd, Rh and Ru from fission products. The mixture of fission product oxides is combined with glass-forming chemicals, a metal oxide such as PbO (scavenging agent), and a reducing agent such as charcoal. When this mixture is melted, a metal button is formed which extracts the noble metals. The remainder cools to form a glass for nuclear waste storage. Recovery depended only on reduction of the scavenger oxide to metal. When such reduction was achieved, no difference in noble metal recovery efficiency was found among the scavengers studied (PbO, SnO, CuO, Bi/sub 2/O/sub 3/, Sb/sub 2/O/sub 3/). Not all reducing agents studied, however, were able to reduce all scavenger oxides to metal. Only graphite would reduce SnO and CuO and allow noble metal recovery. The scavenger oxides Sb/sub 2/O/sub 3/, Bi/sub 2/O/sub 3/, and PbO, however, were reduced by all of the reducing agents tested. Similar noble metal recovery was found with each. Lead oxide was found to be the most promising of the potential scavengers. It was reduced by all of the reducing agents tested, and its higher density may facilitate the separation. Use of lead oxide also appeared to have no deterimental effect on the glass quality. Charcoal was identified as the preferred reducing agent. As long as a separable metal phase was formed in the melt, noble metal recovery was not dependent on the amount of reducing agent and scavenger oxide. High glass viscosities inhibited separation of the molten scavenger, while low viscosities allowed volatile loss of RuO/sub 4/. A viscosity of approx. 20 poise at the processing temperature offered a good compromise between scavenger separation and Ru recovery. Glasses in which PbO was used as the scavenging agent were homogeneous in appearance. Resistance to leaching was close to that of certain waste glasses reported in the literature. 12 figures. 7 tables.

  12. Utility of magnetic cell separation as a molecular sperm preparation technique.

    PubMed

    Said, Tamer M; Agarwal, Ashok; Zborowski, Maciej; Grunewald, Sonja; Glander, Hans-Juergen; Paasch, Uwe

    2008-01-01

    Assisted reproductive techniques (ARTs) have become the treatment of choice in many cases of infertility; however, the current success rates of these procedures remain suboptimal. Programmed cell death (apoptosis) most likely contributes to failed ART and to the decrease in sperm quality after cryopreservation. There is a likelihood that some sperm selected for ART will display features of apoptosis despite their normal appearance, which may be partially responsible for the low fertilization and implantation rates seen with ART. One of the features of apoptosis is the externalization of phosphatidylserine (PS) residues, which are normally present on the inner leaflet of the sperm plasma membrane. Colloidal superparamagnetic microbeads ( approximately 50 nm in diameter) conjugated with annexin V bind to PS and are used to separate dead and apoptotic spermatozoa by magnetic-activated cell sorting (MACS). Cells with externalized PS will bind to these microbeads, whereas nonapoptotic cells with intact membranes do not bind and could be used during ARTs. We have conducted a series of experiments to investigate whether the MACS technology could be used to improve ART outcomes. Our results clearly indicate that integrating MACS as a part of sperm preparation techniques will improve semen quality and cryosurvival rates by eliminating apoptotic sperm. Nonapoptotic spermatozoa prepared by MACS display higher quality in terms of routine sperm parameters and apoptosis markers. The higher sperm quality is represented by an increased oocyte penetration potential and cryosurvival rates. Thus, the selection of nonapoptotic spermatozoa by MACS should be considered to enhance ART success rates. PMID:18077822

  13. High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

    SciTech Connect

    Wenwan Zhong

    2003-08-05

    Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in this manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.

  14. Fibre based integral field unit constructional techniques

    NASA Astrophysics Data System (ADS)

    Murray, Graham J.

    2006-06-01

    Presented here is a selected overview of constructional techniques and principles that have been developed and implemented at the University of Durham in the manufacture of successful fibre-based integral field units. The information contained herein is specifically intended to highlight the constructional methods that have been devised to assemble an efficient fibre bundle. Potential pitfalls that need to be considered when embarking upon such a deceptively simple instrument are also discussed.

  15. Laser Remote Sensing: Velocimetry Based Techniques

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Steinvall, Ove

    Laser-based velocity measurement is an area of the field of remote sensing where the coherent properties of laser radiation are the most exposed. Much of the published literature deals with the theory and techniques of remote sensing. We restrict our discussion to current trends in this area, gathered from recent conferences and professional journals. Remote wind sensing and vibrometry are promising in their new scientific, industrial, military, and biomedical applications, including improving flight safety, precise weapon correction, non-contact mine detection, optimization of wind farm operation, object identification based on its vibration signature, fluid flow studies, and vibrometry-associated diagnosis.

  16. Video based lifting technique coding system.

    PubMed

    Hsiang, S M; Brogmus, G E; Martin, S E; Bezverkhny, I B

    1998-03-01

    Despite automation and improved working conditions, many materials in industry are still handled manually. Among the basic activities involved in manual materials handling, lifting is the one most frequently associated with low-back pain (LBP). Biomechanical analysis techniques have been used to better understand the risk factors associated with manual handling, but because these techniques require specialized equipment, highly trained personnel, and interfere with normal business operations, they are limited in their usefulness. A video based lifting technique analysis system (the VidLiTeCTM System) is presented that provides for quantifiable non-invasive biomechanical analysis of the dynamic features of lifting with high inter-coder reliability and low sensitivity to absolute errors. Analysis of results from a laboratory experiment and from field-collected videotape are described that support the reliability, sensitivity, and accuracy claims of the VidLiTeCTM System. The VidLiTeCTM System allows technicians with minimal training and low-tech equipment (a camcorder) to collect large sets of lifting data without interfering with normal business operations. A reasonably accurate estimate of the peak compressive force on the L5/S1 joint can be made from the data collected. Such a system can be used to collect quantified data on lifting techniques that can be related to LBP reporting.

  17. Citrate based ``TALSPEAK`` lanthanide-actinide separation process

    SciTech Connect

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ``geological`` periods of time. The costs of building, maintaining, and operating a ``geological TRU repository`` can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ``TALSPEAK`` process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced.

  18. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  19. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  20. Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies

    SciTech Connect

    McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

    2011-09-28

    This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

  1. Hydrate-based heavy metal separation from aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  2. DNA based electrolyte/separator for lithium battery application

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Ouchen, Fahima; Smarra, Devin A.; Subramanyam, Guru; Grote, James G.

    2015-09-01

    In this study, we demonstrated the use of DNA-CTMA (DC) in combination with PolyVinylidene Fluoride (PVDF) as a host matrix or separator for Lithium based electrolyte to form solid polymer/gel like electrolyte for potential application in Li-ion batteries. The addition of DC provided a better thermal stability of the composite electrolyte as shown by the thermos-gravimetric analysis (TGA). The AC conductivity measurements suggest that the addition of DC to the gel electrolyte had no effect on the overall ionic conductivity of the composite. The obtained films are flexible with high mechanical stretch-ability as compared to the gel type electrolytes only.

  3. GC-Based Techniques for Breath Analysis: Current Status, Challenges, and Prospects.

    PubMed

    Xu, Mingjun; Tang, Zhentao; Duan, Yixiang; Liu, Yong

    2016-07-01

    Breath analysis is a noninvasive diagnostic method that profiles a person's physical state by volatile organic compounds in the breath. It has huge potential in the field of disease diagnosis. In order to offer opportunities for practical applications, various GC-based techniques have been investigated for on-line breath analysis since GC is the most preferred technique for mixed gas separation. This article reviews the development of breath analysis and GC-based techniques in basic breath research, involving sampling methods, preconcentration methods, conventional GC-based techniques, and newly developed GC techniques for breath analysis. The combination of GC and newly developed detection techniques takes advantages of the virtues of each. In addition, portable GC or micro GC are poised to become field GC-based techniques in breath analysis. Challenges faced in GC-based techniques for breath analysis are discussed candidly. Effective cooperation of experts from different fields is urgent to promote the development of breath analysis.

  4. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator.

    PubMed

    Zhang, Jianjun; Liu, Zhihong; Kong, Qingshan; Zhang, Chuanjian; Pang, Shuping; Yue, Liping; Wang, Xuejiang; Yao, Jianhua; Cui, Guanglei

    2013-01-01

    A renewable and superior thermal-resistant cellulose-based composite nonwoven was explored as lithium-ion battery separator via an electrospinning technique followed by a dip-coating process. It was demonstrated that such nanofibrous composite nonwoven possessed good electrolyte wettability, excellent heat tolerance, and high ionic conductivity. The cells using the composite separator displayed better rate capability and enhanced capacity retention, when compared to those of commercialized polypropylene separator under the same conditions. These fascinating characteristics would endow this renewable composite nonwoven a promising separator for high-power lithium-ion battery.

  5. An osmolyte-based micro-volume ultrafiltration technique.

    PubMed

    Ghosh, Raja

    2014-12-01

    This paper discusses a novel, simple, and inexpensive micro-volume ultrafiltration technique for protein concentration, desalting, buffer exchange, and size-based protein purification. The technique is suitable for processing protein samples in a high-throughput mode. It utilizes a combination of capillary action, and osmosis for drawing water and other permeable species from a micro-volume sample droplet applied on the surface of an ultrafiltration membrane. A macromolecule coated on the permeate side of the membrane functions as the osmolyte. The action of the osmolyte could, if required, be augmented by adding a supersorbent polymer layer over the osmolyte. The mildly hydrophobic surface of the polymeric ultrafiltration membrane used in this study minimized sample droplet spreading, thus making it easy to recover the retained material after separation, without sample interference and cross-contamination. High protein recoveries were observed in the micro-volume ultrafiltration experiments described in the paper. PMID:25284741

  6. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  7. Separation of Fission Products Based on Ionic Liquids: Anion Effect

    SciTech Connect

    Luo, Huimin; Dai, Sheng; Bonnesen, Peter V.

    2004-03-28

    The applications of ionic liquids (ILs) as new separation media have been actively investigated recently. The most commonly studied class of ILs for such applications is based on dialkyl imidazolium cations. In comparison with conventional molecular solvents, ILs exhibit enhanced distribution coefficients for a number of complexing neutral ligands in extraction of metal ions from aqueous solutions. The effect of the alkyl chain length of imidazolium cations on the distribution coefficients of solvent extraction using crown ethers was the subject of a number of the previous investigations. The distribution coefficients have been found to decrease with the alkyl chain length of the IL cations. This observation implies that the extraction process also involves the exchange of the IL cations with metal ions. The longer the alkyl chain lengths of the IL cations are, the more hydrophobic the IL cations are and the more difficult to be transported into aqueous phases via ion exchange. Accordingly, the ion-exchange process is another unique property of IL-based extractions involving charged species. Here, we report the investigation about the effect of the variation of IL anions on the solvent extraction of metal ions using crown ethers as extractants. The elucidation of different solvation effects involved in ionic liquids could lead to optimized separation media for these novel solvents.

  8. Chitosan-based membrane chromatography for protein adsorption and separation.

    PubMed

    Liu, Yezhuo; Feng, Zhicheng; Shao, Zhengzhong; Chen, Xin

    2012-08-01

    A chitosan-based membrane chromatography was set up by using natural chitosan/carboxymethylchitosan (CS/CMCS) blend membrane as the matrix. The dynamic adsorption property for protein (lysozyme as model protein) was detailed discussed with the change in pore size of the membrane, the flow rate and the initial concentration of the feed solution, and the layer of membrane in membrane stack. The best dynamic adsorption capacity of lysozyme on the CS/CMCS membrane chromatography was found to be 15.3mg/mL under the optimal flow conditions. Moreover, the CS/CMCS membrane chromatography exhibited good repeatability and reusability with the desorption efficiency of ~90%. As an application, lysozyme and ovalbumin were successfully separated from their binary mixture through the CS/CMCS membrane chromatography. This implies that such a natural chitosan-based membrane chromatography may have great potential on the bioseparation field in the future.

  9. Artificial Intelligence based technique for BTS placement

    NASA Astrophysics Data System (ADS)

    Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.

    2013-12-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.

  10. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation

    PubMed Central

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  11. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.

    PubMed

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  12. Analysis of alternative solid/liquid separation techniques in non-beverage fermentation ethanol production

    SciTech Connect

    Not Available

    1982-06-01

    The biochemical and process design implications of separation alternatives were analyzed. Standard batches of corn mash were prepared and the solids and liquids were separated according to three alternative sequences: (1) prior to fermentation; (2) after fermentation; and (3) after distillation. Separation methods, such as screening, filtration, and centrifugation were also examined. Biochemical tests on the supernatants and precipitates identified the effects on total precipitate, carbohydrate, protein, reducing sugars, digestible nutrients, fiber, fat, ash, nitrogen free extract, Kjeldehl nitrogen, calcium, phosphorus, potassium, pH, BOD, specific gravity, viscosity, yeast cell number, starch, dissolved oxygen, percent alcohol, percent moisture and ethanol yield. The biochemical tests demonstrate that, depending on the effectiveness of additional product recovery steps, significant variances in ethanol yields may occur as a result of separation sequence and methodology. Highest ethanol yields without additional product recovery steps were obtained using the after distillation separation sequence.

  13. Expanded separation technique for chlorophyll metabolites in Oriental tobacco leaf using non aqueous reversed phase chromatography.

    PubMed

    Ishida, Naoyuki

    2011-08-26

    An improved separation method for chlorophyll metabolites in Oriental tobacco leaf was developed. While Oriental leaf still gives the green color even after the curing process, little attention has been paid to the detailed composition of the remaining green pigments. This study aimed to identify the green pigments using non aqueous reversed phase chromatography (NARPC). To this end, liquid chromatograph (LC) equipped with a photo diode array detector (DAD) and an atmospheric pressure chemical ionization/mass spectrometer (APCI/MSD) was selected, because it is useful for detecting low polar non-volatile compounds giving green color such as pheophytin a. Identification was based on the wavelength spectrum, mass spectrum and retention time, comparing the analytes in Oriental leaf with the commercially available and synthesized components. Consequently, several chlorophyll metabolites such as hydroxypheophytin a, solanesyl pheophorbide a and solanesyl hydroxypheophorbide a were newly identified, in addition to typical green pigments such as chlorophyll a and pheophytin a. Chlorophyll metabolites bound to solanesol were considered the tobacco specific components. NARPC expanded the number of detectable low polar chlorophyll metabolites in Oriental tobacco leaf. PMID:21782189

  14. Introducing the concept of centergram. A new tool to squeeze data from separation techniques-mass spectrometry couplings.

    PubMed

    Erny, Guillaume L; Simó, Carolina; Cifuentes, Alejandro; Esteves, Valdemar I

    2014-02-21

    In separation techniques hyphenated to mass spectrometry (MS) the bulk from the separation step is continuously flowing into the mass spectrometer where the compounds, arriving at each separation time, are ionized and further separated based on their m/z ratio. An MS detector is recognized as being a universal detector, although it can also be a very selective instrument. In spite of these advantages, classical two dimensional representations from these hyphenated systems, such as those based on the base peak of electropherogram/chromatogram or on the total ion of electropherogram/chromatogram, usually hide a large number of features that if correctly assessed will show the presence of co-migrating species and/or the low abundant ones. The uses of peak picking algorithms to detect and measure as many peaks as possible from a dataset allow extracting much more information. However, a single migrating compound usually produces a multiplicity of ions, making difficult to differentiate peaks generated by the same compound from other peaks due e.g., to closely co-migrating/eluting species. In this work, a new representation is proposed and its usefulness demonstrated with experimental data from capillary electrophoresis-hyphenated to a time of flight mass spectrometer via an electrospray interface. This representation, called centergram, is obtained after using a peak picking methodology that detects electrophoretic peaks of single ions and measure their positions. The centergram is the histogram (i.e. the count of the number of observations that fall into each one of the intervals, known as bins, as determined by the user) of the measured positions. The intensity of the bars in this histogram will indicate the amount of peaks in the whole dataset whose centers are within each interval. As a compound that has been separated and has entered the MS instrument will produce multiple images at the same position along the m/z dimension, the centergram will exhibit a series of

  15. Hydrate-based heavy metal separation from aqueous solution

    PubMed Central

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-01-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01–90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b–effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b–effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater. PMID:26887357

  16. RBF-based technique for statistical demodulation of pathological tremor.

    PubMed

    Gianfelici, Francesco

    2013-10-01

    This paper presents an innovative technique based on the joint approximation capabilities of radial basis function (RBF) networks and the estimation capability of the multivariate iterated Hilbert transform (IHT) for the statistical demodulation of pathological tremor from electromyography (EMG) signals in patients with Parkinson's disease. We define a stochastic model of the multichannel high-density surface EMG by means of the RBF networks applied to the reconstruction of the stochastic process (characterizing the disease) modeled by the multivariate relationships generated by the Karhunen-Loéve transform in Hilbert spaces. Next, we perform a demodulation of the entire random field by means of the estimation capability of the multivariate IHT in a statistical setting. The proposed method is applied to both simulated signals and data recorded from three Parkinsonian patients and the results show that the amplitude modulation components of the tremor oscillation can be estimated with signal-to-noise ratio close to 30 dB with root-mean-square error for the estimates of the tremor instantaneous frequency. Additionally, the comparisons with a large number of techniques based on all the combinations of the RBF, extreme learning machine, backpropagation, support vector machine used in the first step of the algorithm; and IHT, empirical mode decomposition, multiband energy separation algorithm, periodic algebraic separation and energy demodulation used in the second step of the algorithm, clearly show the effectiveness of our technique. These results show that the proposed approach is a potential useful tool for advanced neurorehabilitation technologies that aim at tremor characterization and suppression. PMID:24808594

  17. Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; Samperi, Roberto; Laganà, Aldo

    2011-12-01

    Mass spectrometry used in combination with a wide variety of separation methods is the principal methodology for proteomics. In bottom-up approach, proteins are cleaved with a specific proteolytic enzyme, followed by peptide separation and MS identification. In top-down approach intact proteins are introduced into the mass spectrometer. The ions generated by electrospray ionization are then subjected to gas-phase separation, fragmentation, fragment separation, and automated interpretation of mass spectrometric and chromatographic data yielding both the molecular weight of the intact protein and the protein fragmentation pattern. This approach requires high accuracy mass measurement analysers capable of separating the multi-charged isotopic cluster of proteins, such as hybrid ion trap-Fourier transform instruments (LTQ-FTICR, LTQ-Orbitrap). Front-end separation technologies tailored for proteins are of primary importance to implement top-down proteomics. This review intends to provide the state of art of protein chromatographic and electrophoretic separation methods suitable for MS coupling, and to illustrate both monodimensional and multidimensional approaches used for LC-MS top-down proteomics. In addition, some recent progresses in protein chromatography that may provide an alternative to those currently employed are also discussed.

  18. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  19. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics

    PubMed Central

    Sarkar, Aniruddh; Hou, Han Wei; Mahan, Alison. E.; Han, Jongyoon; Alter, Galit

    2016-01-01

    Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary ‘bind-elute’ separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets–cells or proteins–bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients. PMID:27026280

  20. Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques

    PubMed Central

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki

    2014-01-01

    Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process. PMID:24810563

  1. Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques.

    PubMed

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki

    2014-01-01

    Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process. PMID:24810563

  2. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  3. Anion-exchange separation techniques with methanol-water solutions of hydrochloric and nitric acids.

    PubMed

    Morrow, R J

    1966-09-01

    Mixed methanol-water systems were shown to be of use in the analysis of samples containing 500-mg amounts of metallic impurities for rare earths and actinides. Detailed study of the hydrochloric acid-methanol system led to improved separation of einsteinium and californium from americium and curium as well as to lanthanideactinide separations. Comparisons of elution orders are also drawn between these systems and the corresponding lithium salt systems, with emphasis on ion-hydration theories.

  4. Stage Separation Failure: Model Based Diagnostics and Prognostics

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry; Hafiychuk, Vasyl; Kulikov, Igor; Smelyanskiy, Vadim; Patterson-Hine, Ann; Hanson, John; Hill, Ashley

    2010-01-01

    Safety of the next-generation space flight vehicles requires development of an in-flight Failure Detection and Prognostic (FD&P) system. Development of such system is challenging task that involves analysis of many hard hitting engineering problems across the board. In this paper we report progress in the development of FD&P for the re-contact fault between upper stage nozzle and the inter-stage caused by the first stage and upper stage separation failure. A high-fidelity models and analytical estimations are applied to analyze the following sequence of events: (i) structural dynamics of the nozzle extension during the impact; (ii) structural stability of the deformed nozzle in the presence of the pressure and temperature loads induced by the hot gas flow during engine start up; and (iii) the fault induced thrust changes in the steady burning regime. The diagnostic is based on the measurements of the impact torque. The prognostic is based on the analysis of the correlation between the actuator signal and fault-induced changes in the nozzle structural stability and thrust.

  5. Biomagnetic separation of Salmonella Typhimurium with high affine and specific ligand peptides isolated by phage display technique

    NASA Astrophysics Data System (ADS)

    Steingroewer, Juliane; Bley, Thomas; Bergemann, Christian; Boschke, Elke

    2007-04-01

    Analyses of food-borne pathogens are of great importance in order to minimize the health risk for customers. Thus, very sensitive and rapid detection methods are required. Current conventional culture techniques are very time consuming. Modern immunoassays and biochemical analysis also require pre-enrichment steps resulting in a turnaround time of at least 24 h. Biomagnetic separation (BMS) is a promising more rapid method. In this study we describe the isolation of high affine and specific peptides from a phage-peptide library, which combined with BMS allows the detection of Salmonella spp. with a similar sensitivity as that of immunomagnetic separation using antibodies.

  6. Protein elasticity probed with two synchrotron-based techniques.

    SciTech Connect

    Leu, B. M.; Alatas, A.; Sinn, H.; Alp, E. E.; Said, A.; Yavas, H.; Zhao, J.; Sage, J. T.; Sturhahn, W.; X-Ray Science Division; Hasylab; Northeastern Univ.

    2010-02-25

    Compressibility characterizes three interconnecting properties of a protein: dynamics, structure, and function. The compressibility values for the electron-carrying protein cytochrome c and for other proteins, as well, available in the literature vary considerably. Here, we apply two synchrotron-based techniques - nuclear resonance vibrational spectroscopy and inelastic x-ray scattering - to measure the adiabatic compressibility of this protein. This is the first report of the compressibility of any material measured with this method. Unlike the methods previously used, this novel approach probes the protein globally, at ambient pressure, does not require the separation of protein and solvent contributions to the total compressibility, and uses samples that contain the heme iron, as in the native state. We show, by comparing our results with molecular dynamics predictions, that the compressibility is almost independent of temperature. We discuss potential applications of this method to other materials beyond proteins.

  7. Electromagnetic Separation of Isotopes at Oak Ridge: An informal account of history, techniques, and accomplishments.

    PubMed

    Love, L O

    1973-10-26

    In 1960 I attended a European conference on isotope separation, after which I visited the Niels Bohr Institute in Copenhagen. A staff member there ventured the opinion that the separation of isotopes will be first on the list of important contributions to the peaceful uses of the atom when the Atomic Energy Commission's memoirs are written in the year 2000. In 1968 the AEC Division of Research contracted with the National Research Council of the National Academy of Sciences to conduct a review of the AEC program for the separation of stable isotopes by electromagnetic and thermal diffusion methods. This ad hoc panel comprised seven scientists from the fields of chemistry, classical physics, geochemistry, geophysics, medicine, and physics. In their final report on national uses and needs for separated stable isotopes (9), they referred to the store of separated isotopes as a "real national asset that attains increasing value as science and technology develop" and recommended "continuation of the program as a national resource of great value to the United States." Later, in a discussion of this report with A. M. Weinberg, J. Koch, himself a pioneer in electromagnetic isotope separation and member of the Danish Atomic Energy Program, said he would correct the statement that the Oak Ridge electromagnetic facility is a "national asset" to read "international asset." From my narrow viewpoint after an extended and complete engrossment with this program for so many years, it is gratifying to learn that such men as those mentioned above share my belief that the work has indeed been worthwhile.

  8. Separation of musical instruments based on amplitude and frequency comodulation

    NASA Astrophysics Data System (ADS)

    Jacobson, Barry D.; Cauwenberghs, Gert; Quatieri, Thomas F.

    2002-05-01

    In previous work, amplitude comodulation was investigated as a basis for monaural source separation. Amplitude comodulation refers to similarities in amplitude envelopes of individual spectral components emitted by particular types of sources. In many types of musical instruments, amplitudes of all resonant modes rise/fall, and start/stop together during the course of normal playing. We found that under certain well-defined conditions, a mixture of constant frequency, amplitude comodulated sources can unambiguously be decomposed into its constituents on the basis of these similarities. In this work, system performance was improved by relaxing the constant frequency requirement. String instruments, for example, which are normally played with vibrato, are both amplitude and frequency comodulated sources, and could not be properly tracked under the constant frequency assumption upon which our original algorithm was based. Frequency comodulation refers to similarities in frequency variations of individual harmonics emitted by these types of sources. The analytical difficulty is in defining a representation of the source which properly tracks frequency varying components. A simple, fixed filter bank can only track an individual spectral component for the duration in which it is within the passband of one of the filters. Alternatives are therefore explored which are amenable to real-time implementation.

  9. A Time Series Separation and Reconstruction (TSSR) Technique to Estimate Daily Suspended Sediment Concentrations

    EPA Science Inventory

    High suspended sediment concentrations (SSCs) from natural and anthropogenic sources are responsible for biological impairments of many streams, rivers, lakes, and estuaries, but techniques to estimate sediment concentrations or loads accurately at the daily temporal resolution a...

  10. A constrained independent component analysis technique for artery-vein separation of two-photon laser scanning microscopy images of the cerebral microvasculature.

    PubMed

    Mehrabian, Hatef; Lindvere, Liis; Stefanovic, Bojana; Martel, Anne L

    2012-01-01

    Understanding brain hemodynamics as well as the coupling between microvascular hemodynamics and neural activity is important in pathophysiology of cerebral microvasculature. When local increases in neuronal activity occur, the blood volume changes in the surrounding brain vasculature. Dynamic contrast enhanced imaging (DCE) is a powerful technique that quantifies these changes in the blood flow by repeatedly imaging the vasculature over time. Separating artery, vein and capillaries in the images and extracting their intensity-time curves from the DCE image sequence is an important first step in understanding vascular function. A constrained independent component analysis (ICA) technique is developed to analyze the two photon laser scanning microscopy (2PLSM) images of rat brain microvasculature, where a bolus of fluorescent dye is administered to the vascular system as the contrast agent. A priori information inferred from the gamma variate model of cerebral microvasculature is incorporated with the data driven technique in temporal and spatial domains using two constraints. The constraints are: no independent component (IC) is allowed to have negative contribution in forming the images (positivity constraint) and the component curves follow a gamma variate function (model fitting constraint). Experimental and simulation studies are conducted to demonstrate the improved performance of the proposed constrained ICA (CICA) technique over the most commonly used classical ICA algorithm (fast-ICA) in providing physiologically meaningful ICs and its ability to separate the model following factors from other factors are shown. The efficiency of CICA in handling noise is compared to model based techniques. Its capability in providing improved separation between artery, vein and capillaries compared to the other two techniques is also demonstrated.

  11. A TRUEX-based separation of americium from the lanthanides

    SciTech Connect

    Bruce J. Mincher; Nicholas C. Schmitt; Mary E. Case

    2011-03-01

    Abstract: The inextractability of the actinide AnO2+ ions in the TRUEX process suggests the possibility of a separation of americium from the lanthanides using oxidation to Am(V). The only current method for the direct oxidation of americium to Am(V) in strongly acidic media is with sodium bismuthate. We prepared Am(V) over a wide range of nitric acid concentrations and investigated its solvent extraction behavior for comparison to europium. While a separation is achievable in principal, the presence of macro amounts of cerium competes for the sparingly soluble oxidant and the oxidant itself competes for CMPO complexation. These factors conspire to reduce the Eu/Am separation factor from ~40 using tracer solutions to ~5 for extractions from first cycle raffinate simulant solution. To separate pentavalent americium directly from the lanthanides using the TRUEX process, an alternative oxidizing agent will be necessary.

  12. Analytical-scale separations of lanthanides : a review of techniques and fundamentals.

    SciTech Connect

    Nash, K. L.; Jensen, M. P.

    1999-10-27

    Separations chemistry is at the heart of most analytical procedures to determine the rare earth content of both man-made and naturally occurring materials. Such procedures are widely used in mineral exploration, fundamental geology and geochemistry, material science, and in the nuclear industry. Chromatographic methods that rely on aqueous solutions containing complexing agents sensitive to the lanthanide cationic radius and cation-exchange phase transfer reactions (using a variety of different solid media) have enjoyed the greatest success for these procedures. In this report, they will briefly summarize the most important methods for completing such analyses. they consider in some detail the basic aqueous (and two-phase) solution chemistry that accounts for separations that work well and offer explanations for why others are less successful.

  13. DCT-based cyber defense techniques

    NASA Astrophysics Data System (ADS)

    Amsalem, Yaron; Puzanov, Anton; Bedinerman, Anton; Kutcher, Maxim; Hadar, Ofer

    2015-09-01

    With the increasing popularity of video streaming services and multimedia sharing via social networks, there is a need to protect the multimedia from malicious use. An attacker may use steganography and watermarking techniques to embed malicious content, in order to attack the end user. Most of the attack algorithms are robust to basic image processing techniques such as filtering, compression, noise addition, etc. Hence, in this article two novel, real-time, defense techniques are proposed: Smart threshold and anomaly correction. Both techniques operate at the DCT domain, and are applicable for JPEG images and H.264 I-Frames. The defense performance was evaluated against a highly robust attack, and the perceptual quality degradation was measured by the well-known PSNR and SSIM quality assessment metrics. A set of defense techniques is suggested for improving the defense efficiency. For the most aggressive attack configuration, the combination of all the defense techniques results in 80% protection against cyber-attacks with PSNR of 25.74 db.

  14. Computational Investigations of Inboard Flow Separation and Mitigation Techniques on Multi-Megawatt Wind Turbines

    NASA Astrophysics Data System (ADS)

    Chow, Raymond

    The aerodynamic characteristics of the NREL 5-MW rotor have been examined using a Reynolds-averaged Navier-Stokes method, OVERFLOW2. A comprehensive off-body grid independence study has been performed. A strong dependence on the size of the near-body wake grid has been found. Rapid diffusion of the wake appears to generate an overprediction of power and thrust. A large, continuous near-wake grid at minimum of two rotor diameters downstream of the rotor appears to be necessary for accurate predictions of near-body forces. The NREL 5-MW rotor demonstrates significant inboard flow separation up to 30% of span. This separation appears to be highly three-dimensional, with a significant amount of radial flow increasing the size of the separated region outboard. Both integrated aerodynamic coefficients and detailed wake structures for the baseline NREL 5-MW rotor are in excellent agreement with results by Riso at Uinfinity = 8 and 11 m/s. A simple, continuous full-chord fence was applied at the maximum chord location of the blade, within the region of separation. This non-optimized device reduced the boundary-layer cross-flow and resulting separation, and increased rotor power capture by 0.9% and 0.6% at U infinity = 8 and 11 m/s, respectively. Suction side only fences perform similarly in terms of power capture but reduce the increase in rotor thrust. Fence heights from 0.5% to 17.5% of the maximum chord all demonstrate some level of effectiveness, with fences (1-2.5%cmax) showing similar performance gains to taller fences with smaller penalties in thrust. Performance in terms of power capture is not very sensitive to spanwise location when placed within the separation region. Blunt trailing edge modifications to the inboard region of the blade showed a relatively significant effect on rotor power. Over a large range of trailing edge thicknesses from hTE = 10 to 25%c, power was found to increase by 1.4%. Thrust increased proportionally with the thicknesses examined

  15. Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres

    NASA Astrophysics Data System (ADS)

    Huang, Kai-Jian; Qin, S.-J.; Bai, Zhong-Chen; Zhang, Xin; Mai, John D.

    2013-11-01

    A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid and a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.

  16. Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres

    SciTech Connect

    Huang, Kai-Jian; Qin, S.-J. Bai, Zhong-Chen; Zhang, Xin; Mai, John D.

    2013-11-21

    A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid and a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.

  17. A frequency-control particle separation device based on resultant effects of electroosmosis and dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Lin, Shiang-Chi; Tung, Yi-Chung; Lin, Chih-Ting

    2016-08-01

    Particle separation plays an important role in microfluidic sample preparation for various biomedical applications. In this paper, we report a particle manipulation and separation scheme using a microfluidic device based on low-volume/low-voltage electrokinetic frequency modulation. Utilizing a circular micro-electrode array, both electroosmosis and dielectrophoresis can be contributed to manipulate particles in the device by controlling the frequency of applied sinusoidal travelling wave signals. Theoretical simulations based on finite-element methods are employed to establish fundamental understanding of the developed scheme. For experimental demonstration, polystyrene beads (6 μm in diameter) and human promyelocytic leukaemia cells (HL-60) are used to validate the frequency-modulation effect. Furthermore, different diameter polystyrene beads (6 μm and 10 μm in diameter) are mixed to show potentials of precise particle separations (˜90% efficiency) by the reported frequency-controlled electrokinetic device. The developed technique can be exploited as an actuation scheme and particle manipulation method for microfluidic sample preparations of low ionic concentration samples.

  18. High efficiency, high temperature separations on silica based monolithic columns.

    PubMed

    Rogeberg, Magnus; Wilson, Steven Ray; Malerod, Helle; Lundanes, Elsa; Tanaka, Nobuo; Greibrokk, Tyge

    2011-10-14

    The effect of temperature on separation using reversed-phase monolithic columns has been investigated using a nano-LC pumping system for gradient separation of tryptic peptides with MS detection. A goal of this study was to find optimal conditions for high-speed separations. The chromatographic performance of the columns was evaluated by peak capacity and peak capacity per time unit. Column lengths ranging from 20 to 100 cm and intermediate gradient times from 10 to 30 min were investigated to assess the potential of these columns in a final step separation, e.g. after fractionation or specific sample preparation. Flow rates from 250 to 2000 nL/min and temperatures from 20 to 120°C were investigated. Temperature had a significant effect on fast separations, and a flow rate of 2000 nL/min and a temperature of 80°C gave the highest peak capacity per time unit. These settings produced 70% more protein identifications in a biological sample compared to a conventional packed column. Alternatively, an equal amount of protein identifications was obtained with a 40% reduction in run time compared to the conventional packed column.

  19. Environmental consequences of future biogas technologies based on separated slurry.

    PubMed

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  20. Separation of the atmospheric variability into non-Gaussian multidimensional sources by projection pursuit techniques

    NASA Astrophysics Data System (ADS)

    Pires, Carlos A. L.; Ribeiro, Andreia F. S.

    2016-04-01

    We develop an expansion of space-distributed time series into statistically independent uncorrelated subspaces (statistical sources) of low-dimension and exhibiting enhanced non-Gaussian probability distributions with geometrically simple chosen shapes (projection pursuit rationale). The method relies upon a generalization of the principal component analysis that is optimal for Gaussian mixed signals and of the independent component analysis (ICA), optimized to split non-Gaussian scalar sources. The proposed method, supported by information theory concepts and methods, is the independent subspace analysis (ISA) that looks for multi-dimensional, intrinsically synergetic subspaces such as dyads (2D) and triads (3D), not separable by ICA. Basically, we optimize rotated variables maximizing certain nonlinear correlations (contrast functions) coming from the non-Gaussianity of the joint distribution. As a by-product, it provides nonlinear variable changes `unfolding' the subspaces into nearly Gaussian scalars of easier post-processing. Moreover, the new variables still work as nonlinear data exploratory indices of the non-Gaussian variability of the analysed climatic and geophysical fields. The method (ISA, followed by nonlinear unfolding) is tested into three datasets. The first one comes from the Lorenz'63 three-dimensional chaotic model, showing a clear separation into a non-Gaussian dyad plus an independent scalar. The second one is a mixture of propagating waves of random correlated phases in which the emergence of triadic wave resonances imprints a statistical signature in terms of a non-Gaussian non-separable triad. Finally the method is applied to the monthly variability of a high-dimensional quasi-geostrophic (QG) atmospheric model, applied to the Northern Hemispheric winter. We find that quite enhanced non-Gaussian dyads of parabolic shape, perform much better than the unrotated variables in which concerns the separation of the four model's centroid regimes

  1. Localized modes of the Hirota equation: Nth order rogue wave and a separation of variable technique

    NASA Astrophysics Data System (ADS)

    Mu, Gui; Qin, Zhenyun; Chow, Kwok Wing; Ee, Bernard K.

    2016-10-01

    The Hirota equation is a special extension of the intensively studied nonlinear Schrödinger equation, by incorporating third order dispersion and one form of the self-steepening effect. Higher order rogue waves of the Hirota equation can be calculated theoretically through a Darboux-dressing transformation by a separation of variable approach. A Taylor expansion is used and no derivative calculation is invoked. Furthermore, stability of these rogue waves is studied computationally. By tracing the evolution of an exact solution perturbed by random noise, it is found that second order rogue waves are generally less stable than first order ones.

  2. 100% foundry compatible packaging and full wafer release and die separation technique for surface micromachined devices

    SciTech Connect

    OLIVER,ANDREW D.; MATZKE,CAROLYN M.

    2000-04-06

    A completely foundry compatible chip-scale package for surface micromachines has been successfully demonstrated. A pyrex (Corning 7740) glass cover is placed over the released surface micromachined die and anodically bonded to a planarized polysilicon bonding ring. Electrical feedthroughs for the surface micromachine pass underneath the polysilicon sealing ring. The package has been found to be hermetic with a leak rate of less than 5 x 10{sup {minus}8} atm cm{sup {minus}3}/s. This technology has applications in the areas of hermetic encapsulation and wafer level release and die separation.

  3. Applying knowledge compilation techniques to model-based reasoning

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    Researchers in the area of knowledge compilation are developing general purpose techniques for improving the efficiency of knowledge-based systems. In this article, an attempt is made to define knowledge compilation, to characterize several classes of knowledge compilation techniques, and to illustrate how some of these techniques can be applied to improve the performance of model-based reasoning systems.

  4. Using Essential Oils to Teach Advanced-Level Organic Chemistry Separation Techniques and Spectroscopy

    ERIC Educational Resources Information Center

    Bott, Tina M.; Wan, Hayley

    2013-01-01

    Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…

  5. Flood alert system based on bayesian techniques

    NASA Astrophysics Data System (ADS)

    Gulliver, Z.; Herrero, J.; Viesca, C.; Polo, M. J.

    2012-04-01

    The problem of floods in the Mediterranean regions is closely linked to the occurrence of torrential storms in dry regions, where even the water supply relies on adequate water management. Like other Mediterranean basins in Southern Spain, the Guadalhorce River Basin is a medium sized watershed (3856 km2) where recurrent yearly floods occur , mainly in autumn and spring periods, driven by cold front phenomena. The torrential character of the precipitation in such small basins, with a concentration time of less than 12 hours, produces flash flood events with catastrophic effects over the city of Malaga (600000 inhabitants). From this fact arises the need for specific alert tools which can forecast these kinds of phenomena. Bayesian networks (BN) have been emerging in the last decade as a very useful and reliable computational tool for water resources and for the decision making process. The joint use of Artificial Neural Networks (ANN) and BN have served us to recognize and simulate the two different types of hydrological behaviour in the basin: natural and regulated. This led to the establishment of causal relationships between precipitation, discharge from upstream reservoirs, and water levels at a gauging station. It was seen that a recurrent ANN model working at an hourly scale, considering daily precipitation and the two previous hourly values of reservoir discharge and water level, could provide R2 values of 0.86. BN's results slightly improve this fit, but contribute with uncertainty to the prediction. In our current work to Design a Weather Warning Service based on Bayesian techniques the first steps were carried out through an analysis of the correlations between the water level and rainfall at certain representative points in the basin, along with the upstream reservoir discharge. The lower correlation found between precipitation and water level emphasizes the highly regulated condition of the stream. The autocorrelations of the variables were also

  6. Evaporation-based Ge/.sup.68 Ga Separation

    DOEpatents

    Mirzadeh, Saed; Whipple, Richard E.; Grant, Patrick M.; O'Brien, Jr., Harold A.

    1981-01-01

    Micro concentrations of .sup.68 Ga in secular equilibrium with .sup.68 Ge in strong aqueous HCl solution may readily be separated in ionic form from the .sup.68 Ge for biomedical use by evaporating the solution to dryness and then leaching the .sup.68 Ga from the container walls with dilute aqueous solutions of HCl or NaCl. The chloro-germanide produced during the evaporation may be quantitatively recovered to be used again as a source of .sup.68 Ga. If the solution is distilled to remove any oxidizing agents which may be present as impurities, the separation factor may easily exceed 10.sup.5. The separation is easily completed and the .sup.68 Ga made available in ionic form in 30 minutes or less.

  7. Fetoscopic Amniotic Band Release in a Case of Chorioamniotic Separation: An Innovative New Technique.

    PubMed

    Belfort, Michael A; Whitehead, William E; Ball, Robert; Silver, Robert; Shamshirsaz, Alireza; Ruano, Rodrigo; Espinoza, Jimmy; Becker, Judith; Olutoye, Olutoyin; Hollier, Larry

    2016-04-01

    Introduction Fetoscopic release of amniotic bands has proved its life- and limb-saving potential. Rupture of the amnion and separation of chorion from the amnion and uterine wall can however preclude the standard fetoscopic approach to release the amniotic bands using a single port. Methods and Materials A 28-year-old G1P0 woman was referred to our unit at 19 weeks due to amniotic band syndrome involving the left ankle, the infrapatellar region of the right leg, and the umbilical cord. Of note, part of the fetus was seen outside the amniotic cavity by ultrasonography and the left ankle and foot were severely swollen. The patient underwent a laparotomy and fetoscopic release of the amniotic bands as well as partial amnionectomy using two uterine ports and CO2 as distention. Results The surgery and postoperative recovery course were uneventful. At 341/7 weeks the patient went into labor, which was augmented resulting vaginal delivery of a 2,460-g male infant. The infant was noted to have a shallow skin indentation on the left lower extremity near the ankle. The infant was discharged in excellent condition. Conclusion In those cases where release of an amniotic band is impossible due to membrane separation, surgery in a CO2-filled uterus offers an option. PMID:27298754

  8. Enzyme separation techniques for the study of growth of cells from layers of bovine dental pulp.

    PubMed

    Miller, W A; Everett, M M; Freedman, J T; Feagans, W C; Cramer, J F

    1976-08-01

    Effects of the enzymes trypsin, papain, bromelains and ficin on bovine dental pulp tissue were studied. Minced or whole pulps were subjected to each enzyme at 17 degrees, 20 degrees and 37 degrees C for set time intervals, after which aliquots of supernatant fluid were removed for cell counts and viability tests. Pooled samples were subsequently cultured as monolayers in Eagle's MEM plus 10% calf serum. The dissociation characteristics were quite distinct for each enzyme, although quite similar between minced and whole pulp. A parallel histological study was made of the residual pulp tissue. Ficin was found to be the most suitable enzyme for future studies on the growth of isolated pulp cells from various layers of the bovine pulp, due to its even rate of cell removal, and the good initial viability and subsequent growth of the separated cells in monolayer culture. Further studies on ficin may show that it is more suitable for enzymatic separation of tissues generally than the more commonly used trypsin, a major advantage being its use in media containing Ca2+ and Mg2+.

  9. Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea.

    PubMed

    Palit, Mousumi; Tudu, Bipan; Bhattacharyya, Nabarun; Dutta, Ankur; Dutta, Pallab Kumar; Jana, Arun; Bandyopadhyay, Rajib; Chatterjee, Anutosh

    2010-08-18

    In an electronic tongue, preprocessing on raw data precedes pattern analysis and choice of the appropriate preprocessing technique is crucial for the performance of the pattern classifier. While attempting to classify different grades of black tea using a voltammetric electronic tongue, different preprocessing techniques have been explored and a comparison of their performances is presented in this paper. The preprocessing techniques are compared first by a quantitative measurement of separability followed by principle component analysis; and then two different supervised pattern recognition models based on neural networks are used to evaluate the performance of the preprocessing techniques.

  10. NOTE: Entropy-based automated classification of independent components separated from fMCG

    NASA Astrophysics Data System (ADS)

    Comani, S.; Srinivasan, V.; Alleva, G.; Romani, G. L.

    2007-03-01

    Fetal magnetocardiography (fMCG) is a noninvasive technique suitable for the prenatal diagnosis of the fetal heart function. Reliable fetal cardiac signals can be reconstructed from multi-channel fMCG recordings by means of independent component analysis (ICA). However, the identification of the separated components is usually accomplished by visual inspection. This paper discusses a novel automated system based on entropy estimators, namely approximate entropy (ApEn) and sample entropy (SampEn), for the classification of independent components (ICs). The system was validated on 40 fMCG datasets of normal fetuses with the gestational age ranging from 22 to 37 weeks. Both ApEn and SampEn were able to measure the stability and predictability of the physiological signals separated with ICA, and the entropy values of the three categories were significantly different at p <0.01. The system performances were compared with those of a method based on the analysis of the time and frequency content of the components. The outcomes of this study showed a superior performance of the entropy-based system, in particular for early gestation, with an overall ICs detection rate of 98.75% and 97.92% for ApEn and SampEn respectively, as against a value of 94.50% obtained with the time-frequency-based system.

  11. Evaluations of mosquito age grading techniques based on morphological changes.

    PubMed

    Hugo, L E; Quick-Miles, S; Kay, B H; Ryan, P A

    2008-05-01

    Evaluations were made of the accuracy and practicality of mosquito age grading methods based on changes to mosquito morphology; including the Detinova ovarian tracheation, midgut meconium, Polovodova ovariole dilatation, ovarian injection, and daily growth line methods. Laboratory maintained Aedes vigilax (Skuse) and Culex annulirostris (Skuse) females of known chronological and physiological ages were used for these assessments. Application of the Detinova technique to laboratory reared Ae. vigilax females in a blinded trial enabled the successful identification of nulliparous and parous females in 83.7-89.8% of specimens. The success rate for identifying nulliparous females increased to 87.8-98.0% when observations of ovarian tracheation were combined with observations of the presence of midgut meconium. However, application of the Polovodova method only enabled 57.5% of nulliparous, 1-parous, 2-parous, and 3-parous Ae. vigilax females to be correctly classified, and ovarian injections were found to be unfeasible. Poor correlation was observed between the number of growth lines per phragma and the calendar age of laboratory reared Ae. vigilax females. In summary, morphological age grading methods that offer simple two-category predictions (ovarian tracheation and midgut meconium methods) were found to provide high-accuracy classifications, whereas methods that offer the separation of multiple age categories (ovariolar dilatation and growth line methods) were found to be extremely difficult and of low accuracy. The usefulness of the morphology-based methods is discussed in view of the availability of new mosquito age grading techniques based on cuticular hydrocarbon and gene transcription changes. PMID:18533427

  12. Recovery of Escherichia coli O157:H7 by immunomagnetic separation techniques and potential for regrowth in finished composts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Mature, finished compost made from various feedstocks should undergo testing for the presence of Escherichia coli O157:H7 to ensure thermal destruction of the pathogen during composting. Immunomagnetic separation (IMS) –based methods may provide an assay which can be conducted within...

  13. Gaining adequate interdental space with modified elastic separating rings: rationale and technique.

    PubMed

    Smidt, Ami; Venezia, Eyal

    2002-06-01

    Restoring a tooth with an inadequate contact point and root proximity is a challenge to the practitioner. Ignoring such situations or making compromises in the treatment plan may hinder a successful treatment outcome. Treatment options include strategic extractions, sectional orthodontics, and minor orthodontic movements. The purpose of this article is to discuss the clinical problems and difficulties arising from this situation and to present a modified treatment modality through two case reports. Elastic separating rings, which open an interdental space for placing orthodontic appliances, can be modified to serve as a preprosthetic means for solving mesiodistal crowding of teeth in daily practice. The classic method is modified by the use of elastic rings in sequentially increased thickness, so that the space gained with one ring is followed and increased with a thicker one. An orthodontic background and special instruments are not necessary. PMID:12073721

  14. Primary Energy Efficiency Analysis of Different Separate Sensible and Latent Cooling Techniques

    SciTech Connect

    Abdelaziz, Omar

    2015-01-01

    Separate Sensible and Latent cooling (SSLC) has been discussed in open literature as means to improve air conditioning system efficiency. The main benefit of SSLC is that it enables heat source optimization for the different forms of loads, sensible vs. latent, and as such maximizes the cycle efficiency. In this paper I use a thermodynamic analysis tool in order to analyse the performance of various SSLC technologies including: multi-evaporators two stage compression system, vapour compression system with heat activated desiccant dehumidification, and integrated vapour compression with desiccant dehumidification. A primary coefficient of performance is defined and used to judge the performance of the different SSLC technologies at the design conditions. Results showed the trade-off in performance for different sensible heat factor and regeneration temperatures.

  15. Risk-Based Causal Modeling of Airborne Loss of Separation

    NASA Technical Reports Server (NTRS)

    Geuther, Steven C.; Shih, Ann T.

    2015-01-01

    Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.

  16. Internal sample attenuator counting (ISAC). A new technique for separating and measuring bound and free activity in radioimmunoassays

    SciTech Connect

    Thorell, J.I.

    1981-12-01

    A new method for the separation counting of bound and free activity in radioimmunoassays is described. Particles containing a radiation-abosrbing (attenuating) material are added to the assay. They shield the radiation from either the antibody-bound or the free radioligand. This obviates such manipulations conventionally involved in the separation and counting steps of radioimmunoassays as centrifugation decanting. Bismuth oxide is used as the attenuator. Particles with different properties are described. In one type, bismuth oxide is combined with active charcoal in an agarose matrix and serves as an absorbant for the free radioligand. In another type bismuth oxide is trapped within a polyacrylamide matrix to which antibodies are coupled. This particle can be used with a first- or a second-antibody bound activity. Application of the technique is illustrated with radioimmunoassays for thyroxin, triiodothyronine, human choriogonadotropin, and lutropin (luteinizing hormone).

  17. Thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films for the hot slumping technique

    NASA Astrophysics Data System (ADS)

    Ma, Shuang; Wen, Ming-Wu; Wang, Zhan-Shan

    2016-07-01

    The thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films are studied in this paper. Several types of adhesion layers were investigated: 10.0 nm Pt, 1.5 nm Cr + 50.0 nm Pt, 2.5 nm Cr + 50.0 nm Pt and 3.5 nm Cr + 50.0 nm Pt fabricated using direct current magnetron sputtering. The variation of layer thickness, roughness, crystallization and surface topography of Pt/Cr films were analyzed by grazing incidence X-ray reflectometry, large angle X-ray diffraction and optical profiler before and after heating. 2.5 nm Cr + 50.0 nm Pt film exhibits the best thermal stability and separation characteristics according to the heating and hot slumping experiments. The film was also applied as an anti-sticking layer to optimize the maximum temperature of the hot slumping technique. Supported by CAS XTP project XDA04060605

  18. Optimization of the separation of lysergic acid diethylamide in urine by a sweeping technique using micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang

    2002-07-25

    The separation and on-line concentrations of lysergic acid diethylamide (LSD), iso-lysergic acid diethylamide (iso-LSD) and lysergic acid N,N-methylpropylamide (LAMPA) in human urine were investigated by capillary electrophoresis-fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as an anionic surfactant. A number of parameters such as buffer pH, SDS concentration, Brij-30 concentration and the content of organic solvent used in separation, were optimized. The techniques of sweeping-micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were used for determining on-line concentrations. The advantages and disadvantages of this procedure with respect to sensitivity, precision and simplicity are discussed and compared.

  19. Signal Recovery for Multiuser MIMO-OFDM Systems Using a Combination of Blind Source Separation and Semi-blind Technique

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Yamashita, Katsumi

    This paper proposes a novel signal recovery technique for multiuser multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems using a combination of blind source separation(BSS) and semi-blind method from the frequency bin(FB) viewpoint. A pre-filter is applied on each user signal before OFDM signal. The pre-filter converts user signals into transmitted signals which possess a correlation structure. At the receiver, we firstly recover signals using existing BSS algorithm at the first FB and second FB in OFDM systems, and resolve the indeterminacies nature of BSS algorithm employing a few pilot symbols at the first FB. Then separated signals at the second FB can be utilized as reference signals for the recovery of signals at next adjacent FB due to the correlation structure of transmitted signals. Also the validity of the proposed method is demonstrated by computer simulations.

  20. Component separations.

    PubMed

    Heller, Lior; McNichols, Colton H; Ramirez, Oscar M

    2012-02-01

    Component separation is a technique used to provide adequate coverage for midline abdominal wall defects such as a large ventral hernia. This surgical technique is based on subcutaneous lateral dissection, fasciotomy lateral to the rectus abdominis muscle, and dissection on the plane between external and internal oblique muscles with medial advancement of the block that includes the rectus muscle and its fascia. This release allows for medial advancement of the fascia and closure of up to 20-cm wide defects in the midline area. Since its original description, components separation technique underwent multiple modifications with the ultimate goal to decrease the morbidity associated with the traditional procedure. The extensive subcutaneous lateral dissection had been associated with ischemia of the midline skin edges, wound dehiscence, infection, and seroma. Although the current trend is to proceed with minimally invasive component separation and to reinforce the fascia with mesh, the basic principles of the techniques as described by Ramirez et al in 1990 have not changed over the years. Surgeons who deal with the management of abdominal wall defects are highly encouraged to include this technique in their collection of treatment options.

  1. Bacteriophage-based nanoprobes for rapid bacteria separation.

    PubMed

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M; Nugen, Sam R

    2015-10-21

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.

  2. Gas separation device based on electrical swing adsorption

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-10-26

    A method and apparatus for separating one constituent, especially carbon dioxide, from a fluid mixture, such as natural gas. The fluid mixture flows through an adsorbent member having an affinity for molecules of the one constituent, the molecules being adsorbed on the adsorbent member. A voltage is applied to the adsorbent member, the voltage imparting a current flow which causes the molecules of the one constituent to be desorbed from the adsorbent member.

  3. Bacteriophage-based nanoprobes for rapid bacteria separation

    NASA Astrophysics Data System (ADS)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying

  4. Liquid Tunable Microlenses based on MEMS techniques

    PubMed Central

    Zeng, Xuefeng; Jiang, Hongrui

    2013-01-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven, and those integrated within microfluidic systems. PMID:24163480

  5. Membrane gas separation. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-08-01

    The bibliography contains citations concerning the research and development of gas separation and purification techniques involving the use of plastic and metal membranes. Among the topics included are isotope separation, osmotic techniques, reverse osmosis, and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties as well as molecular structure. The selectivity of polymeric films for a variety of gases is also included. (Contains a minimum of 168 citations and includes a subject term index and title list.)

  6. Technique for repair of fractures and separations involving the cartilaginous portions of the anterior chest wall.

    PubMed

    Bonne, Stephanie L; Turnbull, Isaiah R; Southard, Robert E

    2015-06-01

    Internal fixation of the ribs has been shown in numerous studies to decrease complications following traumatic rib fractures. Anterior injuries to the chest wall causing cartilaginous fractures, although rare, can cause significant disability and can lead to a variety of complications and, therefore, pose a unique clinical problem. Here, we report the surgical technique used for four patients with internal fixation of injuries to the cartilaginous portions of the chest wall treated at our center. All patients had excellent clinical outcomes and reported improvement in symptoms, with no associated complications. Patients who have injuries to the anterior portions of the chest wall should be considered for internal fixation of the chest wall when the injuries are severe and can lead to clinical disability. PMID:26033132

  7. A search technique for planets in nearby binary stars using a ground-based interferometer

    NASA Astrophysics Data System (ADS)

    Traub, W. A.; Carleton, N. P.; Porro, I. L.

    1996-04-01

    A search for Jovian-type planets in 100 nearby binary stars could be carried out with the existing ground-based infrared-optical telescope array (IOTA) interferometer. We would study binaries with sufficiently great separation (25-50 AU; typical separation around 0.4 arcsec) that such a planet could be in a stable orbit about one member of the pair. The method is to measure the angular separation of stars in each binary, with a single-measurement accuracy sufficient to detect the amplitude of a Uranus orbiting one of the stars. The technique is based on an auxiliary device, the pupil-splitting interferometer (PSI), which substantially reduces systematic and random errors by converting a measurement of angular separation into a measurement of the differential optical delay between the two components of the binary. The program would be relatively economical, and could begin soon.

  8. A comparative study of Sephadex, glass wool and Percoll separation techniques on sperm quality and IVF results for cryopreserved bovine semen.

    PubMed

    Lee, Hae-Lee; Kim, Sue-Hee; Ji, Dong-Beom; Kim, Yong-Jun

    2009-09-01

    The aim of this study was to compare the effects of spermatozoa separation techniques on sperm quality and in-vitro fertilization (IVF) results for cryopreserved bovine semen. Sephadex, glass wool and Percoll gradient separation techniques were used for sperm separation and sperm motility, morphology and membrane integrity were evaluated before and after separation. Also, cleavage and blastocyst developmental rate were investigated after IVF with sperm recovered by each separation technique. The motility of samples obtained by the three separation techniques were greater compared to the control samples (p < 0.05). The percentage of spermatozoa with intact plasma-membrane integrity, identified by 6-carboxyfluoresceindiacetate/ propidium iodide fluorescent staining and the hypo-osmotic swelling test, was highest in the glass wool filtration samples (p < 0.05). The cleavage and blastocyst rate of total oocytes produced from glass wool filtration samples were also higher than the control and Sephadex filtration samples (p < 0.05), but were not significantly different from Percoll separation samples. However, a significantly greater number of cleaved embryos produced by glass wool filtration developed to blastocyst stage than those produced by Percoll separation (p < 0.05). These results indicate that spermatozoa with good quality can be achieved by these three separation techniques and can be used for bovine IVF. In particular, it suggests that glass wool filtration would be the most effective method of the three for improving sperm quality and embryo production for cryopreserved bovine spermatozoa.

  9. Magnetic-based microfluidic platform for biomolecular separation.

    PubMed

    Ramadan, Qasem; Samper, Victor; Poenar, Daniel; Yu, Chen

    2006-06-01

    A novel microfluidic platform for manipulation of micro/nano magnetic particles was designed, fabricated and tested for applications dealing with biomolecular separation. Recently, magnetic immunomagnetic cell separation has attracted a noticeable attention due to the high selectivity of such separation methods. Strong magnetic field gradients can be developed along the entire wire, and the miniaturized size of these current-carrying conductors strongly enhances the magnetic field gradient and therefore produces large, tunable and localized magnetic forces that can be applied on magnetic particles and confine them in very small spots. Further increases in the values of the generated magnetic field gradients can be achieved by employing miniaturized ferromagnetic structures (pillars) which can be magnetized by an external magnetic field or by micro-coils on the same chip. In this study, we demonstrate magnetic beads trapping, concentration, transportation and sensing in a liquid sample under continuous flow by employing high magnetic field gradients generated by novel multi-functional magnetic micro-devices. Each individual magnetic micro-device consists of the following components: 1. Cu micro-coils array embedded in the silicon substrate with high aspect ratio conductors for efficient magnetic field generation 2. Magnetic pillar(s) made of the magnetic alloy NiCoP for magnetic field focusing and magnetic field gradient enhancement. Each pillar is magnetized by its corresponding coil 3. Integrated sensing coil for magnetic beads detection 4. Microfluidic chamber containing all the previous components. Magnetic fields of about 0.1 T and field gradients of around 300 T/cm have been achieved, which allowed to develop a magnetic force of 3 x 10(-9) N on a magnetic particle with radius of 1 mum. This force is large enough to trap/move this particle as the required force to affect such particles in a liquid sample is on the order of approximately pN. Trapping rates of up

  10. Three dimensional separation trap based on dielectrophoresis and use thereof

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-05-04

    An apparatus is adapted to separate target materials from other materials in a flow containing the target materials and other materials. A dielectrophoretic trap is adapted to receive the target materials and the other materials. At least one electrode system is provided in the trap. The electrode system has a three-dimensional configuration. The electrode system includes a first electrode and a second electrode that are shaped and positioned relative to each such that application of an electrical voltage to the first electrode and the second electrode creates a dielectrophoretic force and said dielectrophoretic force does not reach zero between the first electrode and the second electrode.

  11. Trends and Techniques for Space Base Electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.

    1979-01-01

    Simulations of various phosphorus and boron diffusions in SOS were completed and a sputtering system, furnaces, and photolithography related equipment were set up. Double layer metal experiments initially utilized wet chemistry techniques. By incorporating ultrasonic etching of the vias, premetal cleaning a modified buffered HF, phosphorus doped vapox, and extended sintering, yields of 98% were obtained using the standard test pattern. A two dimensional modeling program was written for simulating short channel MOSFETs with nonuniform substrate doping. A key simplifying assumption used is that the majority carriers can be represented by a sheet charge at the silicon dioxide silicon interface. Although the program is incomplete, the two dimensional Poisson equation for the potential distribution was achieved. The status of other Z-D MOSFET simulation programs is summarized.

  12. An investigation of paper based microfluidic devices for size based separation and extraction applications.

    PubMed

    Zhong, Z W; Wu, R G; Wang, Z P; Tan, H L

    2015-09-01

    Conventional microfluidic devices are typically complex and expensive. The devices require the use of pneumatic control systems or highly precise pumps to control the flow in the devices. This work investigates an alternative method using paper based microfluidic devices to replace conventional microfluidic devices. Size based separation and extraction experiments conducted were able to separate free dye from a mixed protein and dye solution. Experimental results showed that pure fluorescein isothiocyanate could be separated from a solution of mixed fluorescein isothiocyanate and fluorescein isothiocyanate labeled bovine serum albumin. The analysis readings obtained from a spectrophotometer clearly show that the extracted tartrazine sample did not contain any amount of Blue-BSA, because its absorbance value was 0.000 measured at a wavelength of 590nm, which correlated to Blue-BSA. These demonstrate that paper based microfluidic devices, which are inexpensive and easy to implement, can potentially replace their conventional counterparts by the use of simple geometry designs and the capillary action. These findings will potentially help in future developments of paper based microfluidic devices.

  13. Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates

    PubMed Central

    Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura

    2016-01-01

    Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790

  14. Key Point Based Data Analysis Technique

    NASA Astrophysics Data System (ADS)

    Yang, Su; Zhang, Yong

    In this paper, a new framework for data analysis based on the "key points" in data distribution is proposed. Here, the key points contain three types of data points: bridge points, border points, and skeleton points, where our main contribution is the bridge points. For each type of key points, we have developed the corresponding detection algorithm and tested its effectiveness with several synthetic data sets. Meanwhile, we further developed a new hierarchical clustering algorithm SPHC (Skeleton Point based Hierarchical Clustering) to demonstrate the possible applications of the key points acquired. Based on some real-world data sets, we experimentally show that SPHC performs better compared with several classical clustering algorithms including Complete-Link Hierarchical Clustering, Single-Link Hierarchical Clustering, KMeans, Ncut, and DBSCAN.

  15. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2015-01-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised. PMID:25731716

  16. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

    PubMed Central

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised. PMID:25731716

  17. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2015-03-03

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised.

  18. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

    NASA Astrophysics Data System (ADS)

    Brown, Philip S.; Bhushan, Bharat

    2015-03-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised.

  19. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yanilmaz, Meltem; Lu, Yao; Zhu, Jiadeng; Zhang, Xiangwu

    2016-05-01

    Silica/polyacrylonitrile (SiO2/PAN) hybrid nanofiber membranes were fabricated by using sol-gel and electrospinning techniques and their electrochemical performance was evaluated for use as separators in lithium-ion batteries. The aim of this study was to design high-performance separator membranes with enhanced electrochemical performance and good thermal stability compared to microporous polyolefin membranes. In this study, SiO2 nanoparticle content up to 27 wt% was achieved in the membranes by using sol-gel technique. It was found that SiO2/PAN hybrid nanofiber membranes had superior electrochemical performance with good thermal stability due to their high SiO2 content and large porosity. Compared with commercial microporous polyolefin membranes, SiO2/PAN hybrid nanofiber membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN hybrid nanofiber membranes with different SiO2 contents (0, 16, 19 and 27 wt%) were also assembled into lithium/lithium iron phosphate cells, and high cell capacities and good cycling performance were demonstrated at room temperature. In addition, cells using SiO2/PAN hybrid nanofiber membranes with high SiO2 contents showed superior C-rate performance compared to those with low SiO2 contents and commercial microporous polyolefin membrane.

  20. Latent practice profiles of substance abuse treatment counselors: do evidence-based techniques displace traditional techniques?

    PubMed

    Smith, Brenda D; Liu, Junqing

    2014-04-01

    As more substance abuse treatment counselors begin to use evidence-based treatment techniques, questions arise regarding the continued use of traditional techniques. This study aims to (1) assess whether there are meaningful practice profiles among practitioners reflecting distinct combinations of cognitive-behavioral and traditional treatment techniques; and (2) if so, identify practitioner characteristics associated with the distinct practice profiles. Survey data from 278 frontline counselors working in community substance abuse treatment organizations were used to conduct latent profile analysis. The emergent practice profiles illustrate that practitioners vary most in the use of traditional techniques. Multinomial regression models suggest that practitioners with less experience, more education, and less traditional beliefs about treatment and substance abuse are least likely to mix traditional techniques with cognitive-behavioral techniques. Findings add to the understanding of how evidence-based practices are implemented in routine settings and have implications for training and support of substance abuse treatment counselors.

  1. Accelerator based techniques for contraband detection

    NASA Astrophysics Data System (ADS)

    Vourvopoulos, George

    1994-05-01

    It has been shown that narcotics, explosives, and other contraband materials, contain various chemical elements such as H, C, N, O, P, S, and Cl in quantities and ratios that differentiate them from each other and from other innocuous substances. Neutrons and γ-rays have the ability to penetrate through various materials at large depths. They are thus able, in a non-intrusive way, to interrogate volumes ranging from suitcases to Sea-Land containers, and have the ability to image the object with an appreciable degree of reliability. Neutron induced reactions such as (n, γ), (n, n') (n, p) or proton induced γ-resonance absorption are some of the reactions currently investigated for the identification of the chemical elements mentioned above. Various DC and pulsed techniques are discussed and their advantages, characteristics, and current progress are shown. Areas where use of these methods is currently under evaluation are detection of hidden explosives, illicit drug interdiction, chemical war agents identification, nuclear waste assay, nuclear weapons destruction and others.

  2. Gold nanomaterials based pseudostationary phases in capillary electrophoresis: a brand-new attempt at chondroitin sulfate isomers separation.

    PubMed

    Zhao, Ting; Zhou, Guanglian; Wu, Yuanhong; Liu, Xiumei; Wang, Fengshan

    2015-02-01

    In this work, a CE method with bare gold nanorods (GNRs) based pseudostationary phase was developed and applied for the separation of chondroitin sulfate (CS) isomers, CS, and dermatan sulfate (DS). The separation efficiency was investigated by varying the experimental parameters such as concentration and pH of the BGE, separation voltage, internal diameter of capillary, different size, and morphology of gold nanomaterials. Results showed that different size and morphology of gold nanomaterials had different effects on the separation of CS and DS. The best separation of CS and DS was achieved in the BGE composed of aqueous 150 mmol/L (mM) ethylenediamine + 20 mM sodium dihydrogen phosphate + 30% v/v GNRs, pH 4.5, at the separation voltage of -10 kV. Capillary was 59.2 cm in length (effective length 49 cm), 50 μm id capillary thermostated at 25°C. CE with bare GNRs used as pseudostationary phase was shown to be a suitable technique for the separation of CS and DS mixtures with wider peaks. RSD of migration time and peak area of CS and DS were 0.13, 0.14 and 0.86, 1.07%, respectively.

  3. Magnetic separation of iron-based nanosorbents from watery solutions

    NASA Astrophysics Data System (ADS)

    Medvedeva, Irina; Bakhteeva, Iuliia; Zhakov, Sergey; Baerner, Klaus

    2016-04-01

    Iron and iron oxide magnetic nanoparticles (MNP) both naked and with chemically modified surface are promising agents for different environmental applications, in particular for water purification and for analytical control of water and soil pollution. The MNP can be used as sorbents with selective abilities due to designed surface functionalization. While a lot of research has been devoted to the impurity sorption processes, the second part, that is the efficient removal of the MNP sorbents from the watery solution, has not been sufficiently studied so far. For that particles with magnetic cores are especially attractive due to the possibility of their subsequent magnetic separation from water without using coagulants, i.e. without a secondary water pollution, just by applying external magnetic fields B. In order to remove magnetic sorbent nanoparticles ( 10-100 nm) effectively from the water solution gradient magnetic fields are required. Depending on the MNP size, the magnetic moment, the chemical properties of the solution, the water purification conditions , either the low gradient magnetic separation (LGMS) with dB/dz < 100 T/m or the high gradient magnetic separation (HGMS) with dB/dz > 100 T/m is used. The gradient magnetic field is provided by permanent magnets or electromagnets of different configuration. In this work the sedimentation dynamics of naked Fe3O4 and Fe3O4@SiO2 nanoparticles (10-30 nm) in water was studied in a vertical gradient magnetic field (B1 ≤ 0.3T, dB/dz ≤ 0.13 T/cm). By this LGMS , the sedimentation time of the naked Fe3O4 NP is reduced down from several days to several minutes. The sedimentation time for Fe3O4@SiO2 decreases from several weeks to several hours and to several minutes when salts Na2SO4, CaCl2, NaH2PO4 are added to the solution. The results are interpreted in terms of MNP aggregate formation caused by electrostatic, steric and magnetic inter-particle interactions in the watery solution. ACKNOWLEDGMENTS The work was

  4. CANDU in-reactor quantitative visual-based inspection techniques

    NASA Astrophysics Data System (ADS)

    Rochefort, P. A.

    2009-02-01

    This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is

  5. A microchip electrophoresis-mass spectrometric platform for fast separation and identification of enantiomers employing the partial filling technique.

    PubMed

    Li, Xiangtang; Xiao, Dan; Ou, Xiao-Ming; McCullm, Cassandra; Liu, Yi-Ming

    2013-11-29

    A microchip electrophoresis-mass spectrometric (MCE-MS) method was developed for fast chiral analysis. The proposed MCE-MS platform deployed a glass/PDMS hybrid microchip with an easy-to-fabricate monolithic nanoelectrospray emitter. Enantiomeric MCE separation was achieved by means of the partial filling technique. A novel chip design with an arm channel connecting to the middle of the MCE separation channel for delivering the chiral selector was tested and proven valid. Enantiomeric separation of3.4-dihydroxyphenylalanine (DOPA), glutamic acid (Glu), and serine (Ser), the selected test compounds,were achieved within 130 s with resolution values (R(s)) of 2.4, 1.1, and 1.0, respectively. The proposed chiral MCE-MS assay was sensitive and had detection limits of 43 nM for l-DOPA and 47 nM for d-DOPA.The analytical platform was well suited for studies of stereochemical preference in living cells because it integrated cell culture, sample injection, chiral separation, and MS detection into a single platform.Metabolism of DOPA in human SH-SY5Y neuronal cells was studied as a model system. On-chip incubation of SH-SY5Y cells with racemic DOPA was carried out, and the incubation solution was injected and in-line assayed at time intervals. It was found that l-DOPA concentration decreased gradually as incubation time increased while the concentration of coexisting d-DOPA remained constant. The results firmly indicated that SH-SY5Y cells metabolized l-DOPA effectively while left d-DOPA intact.

  6. A Model of Turbulence, Sediment Transport and Morphodynamics of Lateral Separation Zones in Canyon Rivers using Detached Eddy Simulation Technique

    NASA Astrophysics Data System (ADS)

    Alvarez, L. V.; Schmeeckle, M. W.; Grams, P. E.; Moreno, H. A.

    2015-12-01

    Lateral separation zones are featured by large-scale flow separation, secondary recirculation zones and free shear layers. In the Colorado River, lateral separation zones are the principal source of fine sediment for eddy sandbars. A parallelized, three-dimensional turbulence-resolving model is coupled with a continuum sediment transport model and tested in lateral separation zones located in two pools along the Colorado River in Marble Canyon. The model aims to study the flow and sediment dynamics of lateral separation zones, recognizing the important role that these processes play in the erosion, deposition and morphodynamics of eddy sandbars. The Detached Eddy Simulation (DES) technique is employed for fully resolved turbulence at larger scales than the Sub-Grid-Scale (SGS) while SGS turbulence is modeled using the Spalart-Allmaras one equation turbulence closure model. This DES-3D flow model is coupled to a sediment advection-diffusion formulation, wherein advection is provided by the DES velocity field minus particles settling velocity, and diffusion is provided by the SGS. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the near-bed grid cells. Five groups of sediment sizes are employed and estimated using a mixing layer model. Each fraction of the grain size group is redistributed every time step. Thus, the model is able to predict the exposure and burial of bedrock by fine grain size sediment. The simulated results show a pattern of unsteady pulsations in the exchange of concentration of sediment and deposition fluxes between the primary zone and the main channel. This exchange occurs at the convergence and divergence zones. These pulsations are more accentuated at the convergence zone, but still evidenced at the divergence zone. Along the simulated river-reach, the concentration values increase in the constrictions and decrease in the main channel. At both rapids, net

  7. Evolutionary multi-objective optimization based comparison of multi-column chromatographic separation processes for a ternary separation.

    PubMed

    Heinonen, Jari; Kukkonen, Saku; Sainio, Tuomo

    2014-09-01

    Performance characteristics of two advanced multi-column chromatographic separation processes with discontinuous feed, Multi-Column Recycling Chromatogrphy (MCRC) and Japan Organo (JO), were investigated for a ternary separation using multi-objective optimization with an evolutionary algorithm. Conventional batch process was used as a reference. Fractionation of a concentrated acid hydrolysate of wood biomass into sulfuric acid, monosaccharide, and acetic acid fractions was used as a model system. Comparison of the separation processes was based on selected performance parameters in their optimized states. Flow rates and step durations were taken as decision variables whereas the column configuration and dimensions were fixed. The MCRC process was found to be considerably more efficient than the other processes with respect to eluent consumption. The batch process gave the highest productivity and the JO process the lowest. Both of the multi-column processes gave significantly higher monosaccharide yield than the batch process. When eluent consumption and monosaccharide yield are taken into account together with productivity, the MCRC process was found to be the most efficient in the studied case. PMID:25060000

  8. Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra.

    PubMed

    Luce, Robert; Hildebrandt, Peter; Kuhlmann, Uwe; Liesen, Jörg

    2016-09-01

    The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for nonnegative matrix factorization that is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with the vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed. PMID:27635022

  9. FDI and Accommodation Using NN Based Techniques

    NASA Astrophysics Data System (ADS)

    Garcia, Ramon Ferreiro; de Miguel Catoira, Alberto; Sanz, Beatriz Ferreiro

    Massive application of dynamic backpropagation neural networks is used on closed loop control FDI (fault detection and isolation) tasks. The process dynamics is mapped by means of a trained backpropagation NN to be applied on residual generation. Process supervision is then applied to discriminate faults on process sensors, and process plant parameters. A rule based expert system is used to implement the decision making task and the corresponding solution in terms of faults accommodation and/or reconfiguration. Results show an efficient and robust FDI system which could be used as the core of an SCADA or alternatively as a complement supervision tool operating in parallel with the SCADA when applied on a heat exchanger.

  10. Sample injection and electrophoretic separation on a simple laminated paper based analytical device.

    PubMed

    Xu, Chunxiu; Zhong, Minghua; Cai, Longfei; Zheng, Qingyu; Zhang, Xiaojun

    2016-02-01

    We described a strategy to perform multistep operations on a simple laminated paper-based separation device by using electrokinetic flow to manipulate the fluids. A laminated crossed-channel paper-based separation device was fabricated by cutting a filter paper sheet followed by lamination. Multiple function units including sample loading, sample injection, and electrophoretic separation were integrated on a single paper based analytical device for the first time, by applying potential at different reservoirs for sample, sample waste, buffer, and buffer waste. As a proof-of-concept demonstration, mixed sample solution containing carmine and sunset yellow were loaded in the sampling channel, and then injected into separation channel followed by electrophoretic separation, by adjusting the potentials applied at the four terminals of sampling and separation channel. The effects of buffer pH, buffer concentration, channel width, and separation time on resolution of electrophoretic separation were studied. This strategy may be used to perform multistep operations such as reagent dilution, sample injection, mixing, reaction, and separation on a single microfluidic paper based analytical device, which is very attractive for building micro total analysis systems on microfluidic paper based analytical devices.

  11. WE-G-18C-07: Accelerated Water/fat Separation in MRI for Radiotherapy Planning Using Multi-Band Imaging Techniques

    SciTech Connect

    Crijns, S; Stemkens, B; Sbrizzi, A; Lagendijk, J; Berg, C van den; Andreychenko, A

    2014-06-15

    Purpose: Dixon sequences are used to characterize disease processes, obtain good fat or water separation in cases where fat suppression fails and to obtain pseudo-CT datasets. Dixon's method uses at least two images acquired with different echo times and thus requires prolonged acquisition times. To overcome associated problems (e.g., for DCE/cine-MRI), we propose to use a method for water/fat separation based on spectrally selective RF pulses. Methods: Two alternating RF pulses were used, that imposes a fat selective phase cycling over the phase encoding lines, which results in a spatial shift for fat in the reconstructed image, identical to that in CAIPIRINHA. Associated aliasing artefacts were resolved using the encoding power of a multi-element receiver array, analogous to SENSE. In vivo measurements were performed on a 1.5T clinical MR-scanner in a healthy volunteer's legs, using a four channel receiver coil. Gradient echo images were acquired with TE/TR = 2.3/4.7ms, flip angle 20°, FOV 45×22.5cm{sup 2}, matrix 480×216, slice thickness 5mm. Dixon images were acquired with TE,1/TE,2/TR=2.2/4.6/7ms. All image reconstructions were done in Matlab using the ReconFrame toolbox (Gyrotools, Zurich, CH). Results: RF pulse alternation yields a fat image offset from the water image. Hence the water and fat images fold over, which is resolved using in-plane SENSE reconstruction. Using the proposed technique, we achieved excellent water/fat separation comparable to Dixon images, while acquiring images at only one echo time. Conclusion: The proposed technique yields both inphase water and fat images at arbitrary echo times and requires only one measurement, thereby shortening the acquisition time by a factor 2. In future work the technique may be extended to a multi-band water/fat separation sequence that is able to achieve single point water/fat separation in multiple slices at once and hence yields higher speed-up factors.

  12. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method.

  13. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method. PMID:27614730

  14. A New Strategy of Lithography Based on Phase Separation of Polymer Blends.

    PubMed

    Guo, Xu; Liu, Long; Zhuang, Zhe; Chen, Xin; Ni, Mengyang; Li, Yang; Cui, Yushuang; Zhan, Peng; Yuan, Changsheng; Ge, Haixiong; Wang, Zhenlin; Chen, Yanfeng

    2015-01-01

    Herein, we propose a new strategy of maskless lithographic approach to fabricate micro/nano-porous structures by phase separation of polystyrene (PS)/Polyethylene glycol (PEG) immiscible polymer blend. Its simple process only involves a spin coating of polymer blend followed by a development with deionized water rinse to remove PEG moiety, which provides an extremely facile, low-cost, easily accessible nanofabrication method to obtain the porous structures with wafer-scale. By controlling the weight ratio of PS/PEG polymer blend, its concentration and the spin-coating speed, the structural parameters of the porous nanostructure could be effectively tuned. These micro/nano porous structures could be converted into versatile functional nanostructures in combination with follow-up conventional chemical and physical nanofabrication techniques. As demonstrations of perceived potential applications using our developed phase separation lithography, we fabricate wafer-scale pure dielectric (silicon)-based two-dimensional nanostructures with high broadband absorption on silicon wafers due to their great light trapping ability, which could be expected for promising applications in the fields of photovoltaic devices and thermal emitters with very good performances, and Ag nanodot arrays which possess a surface enhanced Raman scattering (SERS) enhancement factor up to 1.64 × 10(8) with high uniformity across over an entire wafer. PMID:26515790

  15. Paper-based device for separation and cultivation of single microalga.

    PubMed

    Chen, Chih-Chung; Liu, Yi-Ju; Yao, Da-Jeng

    2015-12-01

    Single-cell separation is among the most useful techniques in biochemical research, diagnosis and various industrial applications. Microalgae species have great economic importance as industrial raw materials. Microalgae species collected from environment are typically a mixed and heterogeneous population of species that must be isolated and purified for examination and further application. Conventional methods, such as serial dilution and a streaking-plate method, are intensive of labor and inefficient. We developed a paper-based device for separation and cultivation of single microalga. The fabrication was simply conducted with a common laser printer and required only a few minutes without lithographic instruments and clean-room. The driving force of the paper device was simple capillarity without a complicated pump connection that is part of most devices for microfluidics. The open-structure design of the paper device makes it operable with a common laboratory micropipette for sample transfer and manipulation with a naked eye or adaptable to a robotic system with functionality of high-throughput retrieval and analysis. The efficiency of isolating a single cell from mixed microalgae species is seven times as great as with a conventional method involving serial dilution. The paper device can serve also as an incubator for microalgae growth on simply rinsing the paper with a growth medium. Many applications such as highly expressed cell selection and various single-cell analysis would be applicable.

  16. A New Strategy of Lithography Based on Phase Separation of Polymer Blends

    PubMed Central

    Guo, Xu; Liu, Long; Zhuang, Zhe; Chen, Xin; Ni, Mengyang; Li, Yang; Cui, Yushuang; Zhan, Peng; Yuan, Changsheng; Ge, Haixiong; Wang, Zhenlin; Chen, Yanfeng

    2015-01-01

    Herein, we propose a new strategy of maskless lithographic approach to fabricate micro/nano-porous structures by phase separation of polystyrene (PS)/Polyethylene glycol (PEG) immiscible polymer blend. Its simple process only involves a spin coating of polymer blend followed by a development with deionized water rinse to remove PEG moiety, which provides an extremely facile, low-cost, easily accessible nanofabrication method to obtain the porous structures with wafer-scale. By controlling the weight ratio of PS/PEG polymer blend, its concentration and the spin-coating speed, the structural parameters of the porous nanostructure could be effectively tuned. These micro/nano porous structures could be converted into versatile functional nanostructures in combination with follow-up conventional chemical and physical nanofabrication techniques. As demonstrations of perceived potential applications using our developed phase separation lithography, we fabricate wafer-scale pure dielectric (silicon)-based two-dimensional nanostructures with high broadband absorption on silicon wafers due to their great light trapping ability, which could be expected for promising applications in the fields of photovoltaic devices and thermal emitters with very good performances, and Ag nanodot arrays which possess a surface enhanced Raman scattering (SERS) enhancement factor up to 1.64 × 108 with high uniformity across over an entire wafer. PMID:26515790

  17. A deterministic Lagrangian particle separation-based method for advective-diffusion problems

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Choi, K. W.

    2008-12-01

    A simple and robust Lagrangian particle scheme is proposed to solve the advective-diffusion transport problem. The scheme is based on relative diffusion concepts and simulates diffusion by regulating particle separation. This new approach generates a deterministic result and requires far less number of particles than the random walk method. For the advection process, particles are simply moved according to their velocity. The general scheme is mass conservative and is free from numerical diffusion. It can be applied to a wide variety of advective-diffusion problems, but is particularly suited for ecological and water quality modelling when definition of particle attributes (e.g., cell status for modelling algal blooms or red tides) is a necessity. The basic derivation, numerical stability and practical implementation of the NEighborhood Separation Technique (NEST) are presented. The accuracy of the method is demonstrated through a series of test cases which embrace realistic features of coastal environmental transport problems. Two field application examples on the tidal flushing of a fish farm and the dynamics of vertically migrating marine algae are also presented.

  18. Chip electrochromatographic systems: Novel vertically aligned carbon nanotube and silica monoliths based separations

    NASA Astrophysics Data System (ADS)

    Goswami, Shubhodeep

    2009-12-01

    Miniaturized chemical analysis systems, also know as 'lab-on-a-chip' devices have been rapidly developing over the last decade. Capillary electrochromatography (CEC), a multidimensional separation technique combining capillary electrophoresis (CE) and liquid chromatography (LC) has been of great interest for chip based applications. Preliminary work has been undertaken to develop vertically aligned carbon nanotubes and photopolymerizable silica solgel as novel stationary phase materials for 'chip CEC' separations. Patterned growth of CNTs in a specific location of the channel has been carried out using a solid phase Fe-Al catalyst as well as a vapor deposited ferrocene catalyst. Characterization of the CNT "forests" was achieved using optical microscopy, secondary electron microscopy, high resolution tunneling electron microscopy and Raman spectroscopy. Proof-of-concept applications were demonstrated using reversed phase CEC separations as well as solid phase extraction of a glycosylated protein using concanavilin A immobilized onto the CNT bed. Photopolymerizable silica solgel materials were developed as stationary phase for microfluidic electrochromatographic separations in disposable polydimethylsiloxane (PDMS) chip devices. Effect on morphology and pore size of gels were studied as function of UV and solgel polymerization conditions, porogen, salt additives, geometry and hydrolyzable methoxy-ies. Structural morphologies were studied with Secondary Electron Microscopy (SEM). Pore size and pore volumes were characterized by thermal porometry, nitrogen BET adsorptions and differential scanning calorimetry. Computational fluid dynamics and confocal microscopy tools were employed to study the transport of fluids and model analytes. These investigations were directed towards evolving improved strategies for rinsing of uncrosslinked monomers to form porous monoliths as well as to effect a desired separation under a set of electrochromatograhic conditions

  19. Flexible control techniques for a lunar base

    NASA Technical Reports Server (NTRS)

    Kraus, Thomas W.

    1992-01-01

    applications with little or no customization. This means that lunar process control projects will not be delayed by unforeseen problems or last minute process modifications. The software will include all of the tools needed to adapt to virtually any changes. In contrast to other space programs which required the development of tremendous amounts of custom software, lunar-based processing facilities will benefit from the use of existing software technology which is being proven in commercial applications on Earth.

  20. Improving the efficiency of case-based reasoning to deal with activated sludge solids separation problems.

    PubMed

    Martínez, M; Mérida-Campos, C; Sánchez-Marré, M; Comas, J; Rodríguez-Roda, I

    2006-06-01

    The potential of Case-Based Reasoning to use the knowledge gained from past experiences to solve problematic situations has made this Artificial Intelligence technique a useful decision support tool in different environmental domains such as wastewater treatment. Case-Based Reasoning tools automatically identify similarities between present and previous situations (cases) and reuse the experiences gained from the previous situations to solve current problems. Case retrieval can be considered to be the most important step in the process of Case-Based Reasoning. In the present study we propose incorporating a relevance network in order to increase the accuracy and the efficiency of case retrieval. The result is a context-sensitive feature-weighting methodology capable of defining the model of relationships between the different attributes or features that define the context in which Case-Based Reasoning is applied. These features affect the retrieval procedure directly. The feature's degree of relevance in the network is easily translated into a set of simple rules and applied during case retrieval, specifically during the similarity calculation. The results obtained in the present study show significant improvements in the accuracy of case retrieval. With the approach presented here experts considered more than 90% of the retrieved cases to be completely relevant according to the knowledge these cases provided for dealing with solids separation problems.

  1. Bispectrum-based feature extraction technique for devising a practical brain-computer interface

    NASA Astrophysics Data System (ADS)

    Shahid, Shahjahan; Prasad, Girijesh

    2011-04-01

    The extraction of distinctly separable features from electroencephalogram (EEG) is one of the main challenges in designing a brain-computer interface (BCI). Existing feature extraction techniques for a BCI are mostly developed based on traditional signal processing techniques assuming that the signal is Gaussian and has linear characteristics. But the motor imagery (MI)-related EEG signals are highly non-Gaussian, non-stationary and have nonlinear dynamic characteristics. This paper proposes an advanced, robust but simple feature extraction technique for a MI-related BCI. The technique uses one of the higher order statistics methods, the bispectrum, and extracts the features of nonlinear interactions over several frequency components in MI-related EEG signals. Along with a linear discriminant analysis classifier, the proposed technique has been used to design an MI-based BCI. Three performance measures, classification accuracy, mutual information and Cohen's kappa have been evaluated and compared with a BCI using a contemporary power spectral density-based feature extraction technique. It is observed that the proposed technique extracts nearly recording-session-independent distinct features resulting in significantly much higher and consistent MI task detection accuracy and Cohen's kappa. It is therefore concluded that the bispectrum-based feature extraction is a promising technique for detecting different brain states.

  2. Evidence-Based Practice: Separating Science From Pseudoscience

    PubMed Central

    Lee, Catherine M; Hunsley, John

    2015-01-01

    Evidence-based practice (EBP) requires that clinicians be guided by the best available evidence. In this article, we address the impact of science and pseudoscience on psychotherapy in psychiatric practice. We describe the key principles of evidence-based intervention. We describe pseudoscience and provide illustrative examples of popular intervention practices that have not been abandoned, despite evidence that they are not efficacious and may be harmful. We distinguish efficacy from effectiveness, and describe modular approaches to treatment. Reasons for the persistence of practices that are not evidence based are examined at both the individual and the professional system level. Finally, we offer suggestions for the promotion of EBP through clinical practice guidelines, modelling of scientific decision making, and training in core skills. PMID:26720821

  3. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method of making the same

    SciTech Connect

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.

    2011-02-15

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  4. A Word-Based Compression Technique for Text Files.

    ERIC Educational Resources Information Center

    Vernor, Russel L., III; Weiss, Stephen F.

    1978-01-01

    Presents a word-based technique for storing natural language text in compact form. The compressed text consists of a dictionary and a text that is a combination of actual running text and pointers to the dictionary. This technique has shown itself to be effective for both text storage and retrieval. (VT)

  5. Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption

    SciTech Connect

    Feng, X.; Pan, C.Y.; McMinis, C.W.; Ivory, J.; Ghosh, D.

    1998-07-01

    Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption (PSA) was studied experimentally. The high efficiency of hollow-fiber-based adsorbers for gas separation was illustrated by hydrogen separation using fine-powder-activated carbon and molecular sieve as adsorbents. The adsorption equilibrium and dynamics of the hollow-fiber adsorbers were determined. The pressure drop of the gas flowing through the adsorbers was also examined. The adsorbers were tested for hydrogen separation from nitrogen, carbon dioxide, and a multicomponent gas mixture simulating ammonia synthesis purge gas. The PSA systems using the hollow-fiber adsorbers were very effective for hydrogen purification. The high separation efficiency is derived from the fast mass-transfer rate and low pressure drop, two key features of hollow-fiber-based adsorbers.

  6. An efficient technique for nuclei segmentation based on ellipse descriptor analysis and improved seed detection algorithm.

    PubMed

    Xu, Hongming; Lu, Cheng; Mandal, Mrinal

    2014-09-01

    In this paper, we propose an efficient method for segmenting cell nuclei in the skin histopathological images. The proposed technique consists of four modules. First, it separates the nuclei regions from the background with an adaptive threshold technique. Next, an elliptical descriptor is used to detect the isolated nuclei with elliptical shapes. This descriptor classifies the nuclei regions based on two ellipticity parameters. Nuclei clumps and nuclei with irregular shapes are then localized by an improved seed detection technique based on voting in the eroded nuclei regions. Finally, undivided nuclei regions are segmented by a marked watershed algorithm. Experimental results on 114 different image patches indicate that the proposed technique provides a superior performance in nuclei detection and segmentation.

  7. A Nanoscale, Liquid-Phase DNA Separation Device Based on Brownian Ratchets

    NASA Astrophysics Data System (ADS)

    Bader, Joel S.

    1998-03-01

    Realizing the goals of the Human Genome Project depends on the ability to perform size-based separations of DNA molecules. DNA analysis has traditionally required inconvenient gel-based electrophoretic separations. We describe a novel, micromachined, non-electrophoretic device suitable for lab-on-a-chip applications. The device is designed to transport DNA using an asymmetric, periodic potential to rectify Brownian motion. The separation occurs in a homogeneous liquid, avoiding the use of gels or other special media. Experimental results from a working prototype NanoNiagara device validate theoretical predictions of its ability to transport DNA molecules based on size.

  8. Shape-based Particle Separation via Elasto-Inertia Pinched Flow Fractionation (eiPFF)

    NASA Astrophysics Data System (ADS)

    Lu, Xinyu; Xuan, Xiangchun

    2015-11-01

    We report in this talk a continuous-flow shape-based separation of spherical and peanut-shaped rigid particles of equal volume via elasto-inertial pinched flow fractionation (eiPFF). This separation exploits the shape-dependence of the cross-stream particle migration induced by the elaso-inertial lift force in viscoelastic fluids. The parametric effects on this separation are systematically investigated in terms of dimensionless numbers. It is found that this separation is strongly affected by the Reynolds number, Weissenberg number and channel aspect ratio. Interestingly, the elasto-inertial deflection of peanut particles can be either greater or smaller than that of spherical particles.

  9. Polynomial optimization techniques for activity scheduling. Optimization based prototype scheduler

    NASA Technical Reports Server (NTRS)

    Reddy, Surender

    1991-01-01

    Polynomial optimization techniques for activity scheduling (optimization based prototype scheduler) are presented in the form of the viewgraphs. The following subject areas are covered: agenda; need and viability of polynomial time techniques for SNC (Space Network Control); an intrinsic characteristic of SN scheduling problem; expected characteristics of the schedule; optimization based scheduling approach; single resource algorithms; decomposition of multiple resource problems; prototype capabilities, characteristics, and test results; computational characteristics; some features of prototyped algorithms; and some related GSFC references.

  10. The detection of bulk explosives using nuclear-based techniques

    SciTech Connect

    Morgado, R.E.; Gozani, T.; Seher, C.C.

    1988-01-01

    In 1986 we presented a rationale for the detection of bulk explosives based on nuclear techniques that addressed the requirements of civil aviation security in the airport environment. Since then, efforts have intensified to implement a system based on thermal neutron activation (TNA), with new work developing in fast neutron and energetic photon reactions. In this paper we will describe these techniques and present new results from laboratory and airport testing. Based on preliminary results, we contended in our earlier paper that nuclear-based techniques did provide sufficiently penetrating probes and distinguishable detectable reaction products to achieve the FAA operational goals; new data have supported this contention. The status of nuclear-based techniques for the detection of bulk explosives presently under investigation by the US Federal Aviation Administration (FAA) is reviewed. These include thermal neutron activation (TNA), fast neutron activation (FNA), the associated particle technique, nuclear resonance absorption, and photoneutron activation. The results of comprehensive airport testing of the TNA system performed during 1987-88 are summarized. From a technical point of view, nuclear-based techniques now represent the most comprehensive and feasible approach for meeting the operational criteria of detection, false alarms, and throughput. 9 refs., 5 figs., 2 tabs.

  11. Application of glyph-based techniques for multivariate engineering visualization

    NASA Astrophysics Data System (ADS)

    Glazar, Vladimir; Marunic, Gordana; Percic, Marko; Butkovic, Zlatko

    2016-01-01

    This article presents a review of glyph-based techniques for engineering visualization as well as practical application for the multivariate visualization process. Two glyph techniques, Chernoff faces and star glyphs, uncommonly used in engineering practice, are described, applied to the selected data set, run through the chosen optimization methods and user evaluated. As an example of how these techniques function, a set of data for the optimization of a heat exchanger with a microchannel coil is adopted for visualization. The results acquired by the chosen visualization techniques are related to the results of optimization carried out by the response surface method and compared with the results of user evaluation. Based on the data set from engineering research and practice, the advantages and disadvantages of these techniques for engineering visualization are identified and discussed.

  12. Novel Nanofiber-based Membrane Separators for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Yanilmaz, Meltem

    Lithium-ion batteries have been widely used in electronic devices including mobile phones, laptop computers, and cameras due to their high specific energy, high energy density, long cycling lifetime, and low self-discharge rate. Nowadays, lithium-ion batteries are finding new applications in electric/hybrid vehicles and energy storage for smart grids. To be used in these new applications, novel battery components are needed so that lithiumion batteries with higher cell performance, better safety, and lower cost can be developed. A separator is an important component to obtain safe batteries and its primary function is to prevent electronic contact between electrodes while regulating cell kinetics and ionic flow. Currently, microporous membranes are the most commonly used separator type and they have good mechanical properties and chemical stability. However, their wettability and thermal stabilities are not sufficient for applications that require high operating temperature and high performance. Due to the superior properties such as large specific surface area, small pore size and high porosity, electrospun nanofiber membranes can be good separator candidate for highperformance lithium-ion batteries. In this work, we focus our research on fabricating nanofiber-based membranes to design new high-performance separators with good thermal stability, as well as superior electrochemical performance compared to microporous polyolefin membranes. To combine the good mechanical strength of PP nonwovens with the excellent electrochemical properties of SiO2/polyvinylidene fluoride (PVDF) composite nanofibers, SiO 2/PVDF composite nanofiber-coated PP nonwoven membranes were prepared. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber-coated nonwoven membranes. Although ceramic/polymer composites can be prepared by encapsulating ceramic particles directly into polymer nanofibers, the performance

  13. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  14. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  15. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  16. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  17. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  18. Lipid-Based Immuno-Magnetic Separation of Archaea from a Mixed Community

    NASA Astrophysics Data System (ADS)

    Frickle, C. M.; Bailey, J.; Lloyd, K. G.; Shumaker, A.; Flood, B.

    2014-12-01

    Despite advancing techniques in microbiology, an estimated 98% of all microbial species on Earth have yet to be isolated in pure culture. Natural samples, once transferred to the lab, are commonly overgrown by "weed" species whose metabolic advantages enable them to monopolize available resources. Developing new methods for the isolation of thus-far uncultivable microorganisms would allow us to better understand their ecology, physiology and genetic potential. Physically separating target organisms from a mixed community is one approach that may allow enrichment and growth of the desired strain. Here we report on a novel method that uses known physiological variations between taxa, in this case membrane lipids, to segregate the desired organisms while keeping them alive and viable for reproduction. Magnetic antibodies bound to the molecule squalene, which is found in the cell membranes of certain archaea, but not bacteria, enable separation of archaea from bacteria in mixed samples. Viability of cells was tested by growing the separated fractions in batch culture. Efficacy and optimization of the antibody separation technique are being evaluated using qPCR and cell counts. Future work will apply this new separation technique to natural samples.

  19. An incentive-based source separation model for sustainable municipal solid waste management in China.

    PubMed

    Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin

    2015-05-01

    Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study.

  20. An incentive-based source separation model for sustainable municipal solid waste management in China.

    PubMed

    Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin

    2015-05-01

    Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. PMID:25819930

  1. Fabrication of zirconia composite membrane by in-situ hydrothermal technique and its application in separation of methyl orange.

    PubMed

    Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2015-11-01

    The main objective of the work was preparation of zirconia membrane on a low cost ceramic support through an in-situ hydrothermal crystallization technique for the separation of methyl orange dye. To formulate the zirconia film on the ceramic support, hydrothermal reaction mixture was prepared using zirconium oxychloride as a zirconia source and ammonia as a precursor. The synthesized zirconia powder was characterized by X-ray diffractometer (XRD), N2 adsorption/desorption isotherms, Thermogravimetric analysis (TGA), Fourier transform infrared analysis (FTIR), Energy-dispersive X-ray (EDX) analysis and particle size distribution (PSD) to identify the phases and crystallinity, specific surface area, pore volume and pore size distribution, thermal behavior, chemical composition and size of the particles. The porosity, morphological structure and pure water permeability of the prepared zirconia membrane, as well as ceramic support were investigated using the Archimedes' method, Field emission scanning electron microscopy (FESEM) and permeability. The specific surface area, pore volume, pore size distribution of the zirconia powder was found to be 126.58m(2)/g, 3.54nm and 0.3-10µm, respectively. The porosity, average pore size and pure water permeability of the zirconia membrane was estimated to be 42%, 0.66µm and 1.44×10(-6)m(3)/m(2)skPa, respectively. Lastly, the potential of the membrane was investigated with separation of methyl orange by means of flux and rejection as a function of operating pressure and feed concentration. The rejection was found to decrease with increasing the operating pressure and increases with increasing feed concentrations. Moreover, it showed a high ability to reject methyl orange from aqueous solution with a rejection of 61% and a high permeation flux of 2.28×10(-5)m(3)/m(2)s at operating pressure of 68kPa. PMID:25982409

  2. Fabrication of zirconia composite membrane by in-situ hydrothermal technique and its application in separation of methyl orange.

    PubMed

    Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2015-11-01

    The main objective of the work was preparation of zirconia membrane on a low cost ceramic support through an in-situ hydrothermal crystallization technique for the separation of methyl orange dye. To formulate the zirconia film on the ceramic support, hydrothermal reaction mixture was prepared using zirconium oxychloride as a zirconia source and ammonia as a precursor. The synthesized zirconia powder was characterized by X-ray diffractometer (XRD), N2 adsorption/desorption isotherms, Thermogravimetric analysis (TGA), Fourier transform infrared analysis (FTIR), Energy-dispersive X-ray (EDX) analysis and particle size distribution (PSD) to identify the phases and crystallinity, specific surface area, pore volume and pore size distribution, thermal behavior, chemical composition and size of the particles. The porosity, morphological structure and pure water permeability of the prepared zirconia membrane, as well as ceramic support were investigated using the Archimedes' method, Field emission scanning electron microscopy (FESEM) and permeability. The specific surface area, pore volume, pore size distribution of the zirconia powder was found to be 126.58m(2)/g, 3.54nm and 0.3-10µm, respectively. The porosity, average pore size and pure water permeability of the zirconia membrane was estimated to be 42%, 0.66µm and 1.44×10(-6)m(3)/m(2)skPa, respectively. Lastly, the potential of the membrane was investigated with separation of methyl orange by means of flux and rejection as a function of operating pressure and feed concentration. The rejection was found to decrease with increasing the operating pressure and increases with increasing feed concentrations. Moreover, it showed a high ability to reject methyl orange from aqueous solution with a rejection of 61% and a high permeation flux of 2.28×10(-5)m(3)/m(2)s at operating pressure of 68kPa.

  3. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics

    PubMed Central

    Yang, Chenxi; Zhong, Xuefei; Li, Lingjun

    2016-01-01

    Due to the significance of protein phosphorylation in various biological processes and signaling events, new analytical techniques for enhanced phosphoproteomics have been rapidly introduced in recent years. The combinatorial use of the phospho-specific enrichment techniques and prefractionation methods prior to MS analysis enables comprehensive profiling of the phosphoproteome and facilitates deciphering the critical roles that phosphorylation plays in signaling pathways in various biological systems. This review places special emphasis on the recent five-year (2009–2013) advances for enrichment and separation techniques that have been utilized for phosphopeptides prior to MS analysis. PMID:24687451

  4. Matrix interference in serum total thyroxin (T4) time-resolved fluorescence immunoassay (TRFIA) and its elimination with the use of streptavidin-biotin separation technique.

    PubMed

    Wu, F B; He, Y F; Han, S Q

    2001-06-01

    In our development of total serum thyroxin TRFIA using an immobilized second-antibody (S-Ab) as the separation agent, we observed a significant measurement bias caused by a matrix interference when the immobilized S-Ab had a relatively low binding capacity for the primary anti-T4 monoclonal antibody (McAb). Therefore, we employed a new separation system based on the highly active surface streptavidin and biotinylated anti-T4 McAb. Our results indicate that the matrix interference was removed and the assay performance was improved with the use of streptavidin-biotin separation technique. In our method, microwells were first coated with biotinylated BSA and then a streptavidin solution in the presence of 1% BSA was added to allow streptavidin to be immobilized via the pre-coated BSA-biotin. Surface streptavidin prepared in this protocol expressed a significantly increased binding capacity for the biotinylated anti-T4 McAb, compared to the passively adsorbed S-Ab for binding the original anti-T4 McAb. The immunoreactions between the biotinylated anti-T4 McAb and the T4 in the standard or sample or the europium-labeled T4-BSA conjugate mainly occurred in liquid solution, and then the immune complex was specifically trapped by the surface streptavidin and isolated from the free trace by washing. Serum TT4 TRFIA based on surface streptavidin was accurate, precise and economic, maintained all the merits of the directly immobilized surface antibodies.

  5. Conductivity of carbonate- and perfluoropolyether-based electrolytes in porous separators

    NASA Astrophysics Data System (ADS)

    Devaux, Didier; Chang, Yu H.; Villaluenga, Irune; Chen, X. Chelsea; Chintapalli, Mahati; DeSimone, Joseph M.; Balsara, Nitash P.

    2016-08-01

    In lithium batteries, a porous separator filled with an electrolyte is placed in between the electrodes. Properties of the separator such as porosity and wettability strongly influence the conductivity of the electrolyte-separator composite. This study focuses on three commercial separators: a single layer polypropylene (Celgard 2500), a trilayer polypropylene-polyethylene-polypropylene (PP-PE-PP), and a porous polytetrafluoroethylene (PTFE). Electron microscopy was used to characterize the pore structure, and these experiments reveal large differences in pore morphology. The separators were soaked in both carbonate- and perfluoropolyether-based electrolytes. The conductivity of the neat electrolytes (σ0) varied from 6.46 × 10-6 to 1.76 × 10-2 S cm-1. The porosity and wettability of the separator affect the electrolyte uptake that in turn affect the conductivity of electrolyte-separator composites. The conductivity of the electrolyte-separator composites (σ) was found to follow a master equation, σ = 0.51·σ0·ϕc3.2±0.2, where ϕc is the volume fraction of the electrolyte in each separator.

  6. Comparison of background ozone estimates over the western United States based on two separate model methodologies

    NASA Astrophysics Data System (ADS)

    Dolwick, Pat; Akhtar, Farhan; Baker, Kirk R.; Possiel, Norm; Simon, Heather; Tonnesen, Gail

    2015-05-01

    Two separate air quality model methodologies for estimating background ozone levels over the western U.S. are compared in this analysis. The first approach is a direct sensitivity modeling approach that considers the ozone levels that would remain after certain emissions are entirely removed (i.e., zero-out modeling). The second approach is based on an instrumented air quality model which tracks the formation of ozone within the simulation and assigns the source of that ozone to pre-identified categories (i.e., source apportionment modeling). This analysis focuses on a definition of background referred to as U.S. background (USB) which is designed to represent the influence of all sources other than U.S. anthropogenic emissions. Two separate modeling simulations were completed for an April-October 2007 period, both focused on isolating the influence of sources other than domestic manmade emissions. The zero-out modeling was conducted with the Community Multiscale Air Quality (CMAQ) model and the source apportionment modeling was completed with the Comprehensive Air Quality Model with Extensions (CAMx). Our analysis shows that the zero-out and source apportionment techniques provide relatively similar estimates of the magnitude of seasonal mean daily 8-h maximum U.S. background ozone at locations in the western U.S. when base case model ozone biases are considered. The largest differences between the two sets of USB estimates occur in urban areas where interactions with local NOx emissions can be important, especially when ozone levels are relatively low. Both methodologies conclude that seasonal mean daily 8-h maximum U.S. background ozone levels can be as high as 40-45 ppb over rural portions of the western U.S. Background fractions tend to decrease as modeled total ozone concentrations increase, with typical fractions of 75-100 percent on the lowest ozone days (<25 ppb) and typical fractions between 30 and 50% on days with ozone above 75 ppb. The finding that

  7. Efficient Plant Supervision Strategy Using NN Based Techniques

    NASA Astrophysics Data System (ADS)

    Garcia, Ramon Ferreiro; Rolle, Jose Luis Calvo; Castelo, Francisco Javier Perez

    Most of non-linear type one and type two control systems suffers from lack of detectability when model based techniques are applied on FDI (fault detection and isolation) tasks. In general, all types of processes suffer from lack of detectability also due to the ambiguity to discriminate the process, sensors and actuators in order to isolate any given fault. This work deals with a strategy to detect and isolate faults which include massive neural networks based functional approximation procedures associated to recursive rule based techniques applied to a parity space approach.

  8. Wavelet-based techniques for the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias; Lee, Samuel K.

    2016-07-01

    We demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from dark matter annihilation and extended gamma-ray point source populations in a data-driven way.

  9. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  10. Bond strength with custom base indirect bonding techniques.

    PubMed

    Klocke, Arndt; Shi, Jianmin; Kahl-Nieke, Bärbel; Bismayer, Ulrich

    2003-04-01

    Different types of adhesives for indirect bonding techniques have been introduced recently. But there is limited information regarding bond strength with these new materials. In this in vitro investigation, stainless steel brackets were bonded to 100 permanent bovine incisors using the Thomas technique, the modified Thomas technique, and light-cured direct bonding for a control group. The following five groups of 20 teeth each were formed: (1) modified Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Maximum Cure), (2) Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Custom I Q), (3) Thomas technique with light-cured base composite (Transbond XT) and chemically cured sealant (Sondhi Rapid Set), (4) modified Thomas technique with chemically cured base adhesive (Phase II) and chemically cured sealant (Maximum Cure), and (5) control group directly bonded with light-cured adhesive (Transbond XT). Mean bond strengths in groups 3, 4, and 5 were 14.99 +/- 2.85, 15.41 +/- 3.21, and 13.88 +/- 2.33 MPa, respectively, and these groups were not significantly different from each other. Groups 1 (mean bond strength 7.28 +/- 4.88 MPa) and 2 (mean bond strength 7.07 +/- 4.11 MPa) showed significantly lower bond strengths than groups 3, 4, and 5 and a higher probability of bond failure. Both the original (group 2) and the modified (group 1) Thomas technique were able to achieve bond strengths comparable to the light-cured direct bonded control group.

  11. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.

    PubMed

    Lin, Shiang-Chi; Lu, Jau-Ching; Sung, Yu-Lung; Lin, Chih-Ting; Tung, Yi-Chung

    2013-08-01

    Particle separation is a crucial step in sample preparation processes. The preparation of low volume samples is especially important for clinical diagnosis and chemical analysis. The advantages of microfluidic techniques have lead them to become potential candidates for particle separation. However, existing microfluidic devices require external pumping sources and extensive geometric patterns to attain high separation efficiency, which is disadvantageous when handling low volume samples. This paper presents a low sample volume particle separation microfluidic device with low voltage electrokinetic pumping based on circular travelling-wave electroosmosis (TWEO). Computational numerical software was utilized to simulate two electrokinetic mechanisms: circular TWEO and dielectrophoresis (DEP). The circular TWEO shear flow generates a velocity gradient in the radial direction which causes a shear stress-induced force to drag particles into the center region of the device. In contrast, the non-parallel electrodes induce negative DEP forces which push polystyrene beads towards the peripheral regions; the magnitude of the DEP forces are dependent on the sizes of the polystyrene beads. We used particles of various sizes to experimentally prove the concept of particle separation. Our experiments show that 15 μm beads are dragged into the center region due to the shear stress-induced force, and 1 μm beads move towards the outer region because of the large negative DEP force. The results show a separation purity of 94.4% and 80.0% for 15 μm and 1 μm beads respectively. We further demonstrated particle isolation from a sample of containing a small proportion of 6 μm beads mixed with 1 μm beads at a concentration ratio of 1 : 300. Therefore, the innovative device developed in this paper provides a promising solution to allow particle separation in sample volumes as low as 50 nL. PMID:23753015

  12. Bio-inspired particle separator design based on the food retention mechanism by suspension-feeding fish.

    PubMed

    Hung, Tien-Chieh; Piedrahita, Raul H; Cheer, Angela

    2012-12-01

    A new particle separator is designed using a crossflow filtration mechanism inspired by suspension-feeding fish in this study. To construct the model of the bio-inspired particle separator, computational fluid dynamics techniques are used, and parameters related to separator shape, fluid flow and particle properties that might affect the performance in removing particles from the flow, are varied and tested. The goal is to induce a flow rotation which enhances the separation of particles from the flow, reduce the particle-laden flow that exits via a collection zone at the lower/posterior end of the separator, while at the same time increase the concentration of particles in that flow. Based on preliminary particle removal efficiency tests, an exiting flow through the collection zone of about 8% of the influent flow rate is selected for all the performance tests of the separator including trials with particles carried by air flow instead of water. Under this condition, the simulation results yield similar particle removal efficiencies in water and air but with different particle properties. Particle removal efficiencies (percentage of influent particles that exit through the collection zone) were determined for particles ranging in size from 1 to 1500 µm with a density between 1000 and 1150 kg m(-3) in water and 2 and 19 mm and 68 and 2150 kg m(-3) in air. As an example, removal efficiencies are 66% and 64% for 707 µm diameter particles with a density of 1040 kg m(-3) in water and for 2 mm particles with a density of 68 kg m(-3) in air, respectively. No significant performance difference is found by geometrically scaling the inlet diameter of the separator up or down in the range from 2.5 to 10 cm.

  13. High Temperature Stable Separator for Lithium Batteries Based on SiO₂ and Hydroxypropyl Guar Gum.

    PubMed

    Carvalho, Diogo Vieira; Loeffler, Nicholas; Kim, Guk-Tae; Passerini, Stefano

    2015-01-01

    A novel membrane based on silicon dioxide (SiO₂) and hydroxypropyl guar gum (HPG) as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO₂ and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance. PMID:26512701

  14. Separability Criterion for Arbitrary Multipartite Pure State Based on the Rank of Reduced Density Matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Chao; Yang, Guo-wu; Li, Xiao-yu

    2016-09-01

    Nowadays, there are plenty of separability criteria which are used to detect entanglement. Many of them are limited to apply for some cases. In this paper, we propose a separability criterion for arbitrary multipartite pure state which is based on the rank of reduced density matrix. It is proved that the rank of reduced density matrices of a multipartite state is closely related to entanglement. In fact it can be used to characterize entanglement. Our separability criterion is a necessary and sufficient condition for detecting entanglement. Furthermore, it is able to help us find the completely separable form of a multipartite pure state according to some explicit examples. Finally it demonstrates that our method are more suitable for some specific case. Our separability criterion are simple to understand and it is operational.

  15. An efficient solution technique for shockwave-boundary layer interactions with flow separation and slot suction effects

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Mcrae, D. Scott

    1991-01-01

    An efficient method for computing two-dimensional compressible Navier-Stokes flow fields is presented. The solution algorithm is a fully-implicit approximate factorization technique based on an unsymmetric line Gauss-Seidel splitting of the equation system Jacobian matrix. Convergence characteristics are improved by the addition of acceleration techniques based on Shamanskii's method for nonlinear equations and Broyden's quasi-Newton update. Characteristic-based differencing of the equations is provided by means of Van Leer's flux vector splitting. In this investigation, emphasis is placed on the fast and accurate computation of shock-wave-boundary layer interactions with and without slot suction effects. In the latter context, a set of numerical boundary conditions for simulating the transpiration flow in an open slot is devised. Both laminar and turbulent cases are considered, with turbulent closure provided by a modified Cebeci-Smith algebraic model. Comparisons with computational and experimental data sets are presented for a variety of interactions, and a fully-coupled simulation of a plenum chamber/inlet flowfield with shock interaction and suction is also shown and discussed.

  16. Ultra-trace analysis of plutonium by thermal ionization mass spectrometry with a continuous heating technique without chemical separation.

    PubMed

    Lee, Chi-Gyu; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Song, Kyuseok

    2015-08-15

    Thermal ionization mass spectrometry (TIMS) with a continuous heating technique is known as an effective method for measuring the isotope ratio in trace amounts of uranium. In this study, the analytical performance of thermal ionization mass spectrometry with a continuous heating technique was investigated using a standard plutonium solution (SRM 947). The influence of the heating rate of the evaporation filament on the precision and accuracy of the isotope ratios was examined using a plutonium solution sample at the fg level. Changing the heating rate of the evaporation filament on samples ranging from 0.1fg to 1000fg revealed that the influence of the heating rate on the precision and accuracy of the isotope ratios was slight around the heating rate range of 100-250mA/min. All of the isotope ratios of plutonium (SRM 947), (238)Pu/(239)Pu, (240)Pu/(239)Pu, (241)Pu/(239)Pu and (242)Pu/(239)Pu, were measured down to sample amounts of 70fg. The ratio of (240)Pu/(239)Pu was measured down to a sample amount of 0.1fg, which corresponds to a PuO2 particle with a diameter of 0.2μm. Moreover, the signals of (239)Pu could be detected with a sample amount of 0.03fg, which corresponds to the detection limit of (239)Pu of 0.006fg as estimated by the 3-sigma criterion. (238)Pu and (238)U were clearly distinguished owing to the difference in the evaporation temperature between (238)Pu and (238)U. In addition, (241)Pu and (241)Am formed by the decay of (241)Pu can be discriminated owing to the difference in the evaporation temperature. As a result, the ratios of (238)Pu/(239)Pu and (241)Pu/(239)Pu as well as (240)Pu/(239)Pu and (242)Pu/(239)Pu in plutonium samples could be measured by TIMS with a continuous heating technique and without any chemical separation processes.

  17. Ultra-trace analysis of plutonium by thermal ionization mass spectrometry with a continuous heating technique without chemical separation.

    PubMed

    Lee, Chi-Gyu; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Song, Kyuseok

    2015-08-15

    Thermal ionization mass spectrometry (TIMS) with a continuous heating technique is known as an effective method for measuring the isotope ratio in trace amounts of uranium. In this study, the analytical performance of thermal ionization mass spectrometry with a continuous heating technique was investigated using a standard plutonium solution (SRM 947). The influence of the heating rate of the evaporation filament on the precision and accuracy of the isotope ratios was examined using a plutonium solution sample at the fg level. Changing the heating rate of the evaporation filament on samples ranging from 0.1fg to 1000fg revealed that the influence of the heating rate on the precision and accuracy of the isotope ratios was slight around the heating rate range of 100-250mA/min. All of the isotope ratios of plutonium (SRM 947), (238)Pu/(239)Pu, (240)Pu/(239)Pu, (241)Pu/(239)Pu and (242)Pu/(239)Pu, were measured down to sample amounts of 70fg. The ratio of (240)Pu/(239)Pu was measured down to a sample amount of 0.1fg, which corresponds to a PuO2 particle with a diameter of 0.2μm. Moreover, the signals of (239)Pu could be detected with a sample amount of 0.03fg, which corresponds to the detection limit of (239)Pu of 0.006fg as estimated by the 3-sigma criterion. (238)Pu and (238)U were clearly distinguished owing to the difference in the evaporation temperature between (238)Pu and (238)U. In addition, (241)Pu and (241)Am formed by the decay of (241)Pu can be discriminated owing to the difference in the evaporation temperature. As a result, the ratios of (238)Pu/(239)Pu and (241)Pu/(239)Pu as well as (240)Pu/(239)Pu and (242)Pu/(239)Pu in plutonium samples could be measured by TIMS with a continuous heating technique and without any chemical separation processes. PMID:25966386

  18. A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.

    PubMed

    Wang, Huaqing; Li, Ruitong; Tang, Gang; Yuan, Hongfang; Zhao, Qingliang; Cao, Xi

    2014-01-01

    A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to improve the compound faults diagnose of rolling bearings via signals' separation, the present paper proposes a new method to identify compound faults from measured mixed-signals, which is based on ensemble empirical mode decomposition (EEMD) method and independent component analysis (ICA) technique. With the approach, a vibration signal is firstly decomposed into intrinsic mode functions (IMF) by EEMD method to obtain multichannel signals. Then, according to a cross correlation criterion, the corresponding IMF is selected as the input matrix of ICA. Finally, the compound faults can be separated effectively by executing ICA method, which makes the fault features more easily extracted and more clearly identified. Experimental results validate the effectiveness of the proposed method in compound fault separating, which works not only for the outer race defect, but also for the rollers defect and the unbalance fault of the experimental system. PMID:25289644

  19. FPGA-based real-time blind source separation with principal component analysis

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew; Meyer-Baese, Uwe

    2015-05-01

    Principal component analysis (PCA) is a popular technique in reducing the dimension of a large data set so that more informed conclusions can be made about the relationship between the values in the data set. Blind source separation (BSS) is one of the many applications of PCA, where it is used to separate linearly mixed signals into their source signals. This project attempts to implement a BSS system in hardware. Due to unique characteristics of hardware implementation, the Generalized Hebbian Algorithm (GHA), a learning network model, is used. The FPGA used to compile and test the system is the Altera Cyclone III EP3C120F780I7.

  20. Laser-based direct-write techniques for cell printing

    PubMed Central

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2016-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088

  1. Calibration of a multichannel MEG system based on the signal space separation method.

    PubMed

    Chella, F; Zappasodi, F; Marzetti, L; Della Penna, S; Pizzella, V

    2012-08-01

    For an efficient use of multichannel MEG systems, an accurate sensor calibration is extremely important. This includes the knowledge of both channel sensitivities and channel arrangement, which can deviate from original system plans, e.g., because of thermal stresses. In this paper, we propose a new solution to the calibration of a multichannel MEG sensor array based on the signal space separation (SSS) method. It has been shown that an inaccurate knowledge of sensor calibration limits the performances of the SSS method, resulting in a mismatch between the measured neuromagnetic field and its SSS reconstruction. Given a set of known magnetic sources, we show that an objective function, which strongly depends on sensor geometry, can be derived from the principal angle between the measured vector signal and the SSS basis. Hence, the MEG sensor array calibration is carried out by minimizing the objective function through a standard large-scale optimization technique. Details on the magnetic sources and calibration process are presented here. Finally, an application to the calibration of the 153-channel whole-head MEG system installed at the University of Chieti is discussed.

  2. Calibration of a multichannel MEG system based on the signal space separation method.

    PubMed

    Chella, F; Zappasodi, F; Marzetti, L; Della Penna, S; Pizzella, V

    2012-08-01

    For an efficient use of multichannel MEG systems, an accurate sensor calibration is extremely important. This includes the knowledge of both channel sensitivities and channel arrangement, which can deviate from original system plans, e.g., because of thermal stresses. In this paper, we propose a new solution to the calibration of a multichannel MEG sensor array based on the signal space separation (SSS) method. It has been shown that an inaccurate knowledge of sensor calibration limits the performances of the SSS method, resulting in a mismatch between the measured neuromagnetic field and its SSS reconstruction. Given a set of known magnetic sources, we show that an objective function, which strongly depends on sensor geometry, can be derived from the principal angle between the measured vector signal and the SSS basis. Hence, the MEG sensor array calibration is carried out by minimizing the objective function through a standard large-scale optimization technique. Details on the magnetic sources and calibration process are presented here. Finally, an application to the calibration of the 153-channel whole-head MEG system installed at the University of Chieti is discussed. PMID:22797687

  3. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same

    SciTech Connect

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.

    2011-03-08

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  4. Characterization and application of a semi-automated separation and analysis technique for polychlorinated biphenyls in Great Lakes wildlife

    SciTech Connect

    Williams, L.L.

    1993-01-01

    Polychlorinated hydrocarbons (PCHs) are toxic, persistent compounds in the environment. The non-ortho substituted PCB congeners comprise most of the Ah receptor-mediated PCH toxicity in aquatic systems. The proportion of the most toxic congeners to the total concentration of PCBs is suspected to vary in the environment, but these congeners are difficult to quantify. The studies described here focus on the development and use of a semi-automated separation of the non-ortho substituted congeners from interferences using porous graphitic carbon (PGC). The PGC method developed it faster and uses less solvent than previous separations based on carbon columns. This method is both precise and accurate, with no discernable interferences. Results obtained from this method can be used with TCDD equivalency factors (TEFs) to calculate TCDD-equivalents (TEQs) derived from PCBs. The PGC method was used successfully to measure PCB congeners in eggs of fish-eating birds. Variability in TEQ and PCB concentrations among eggs within a double-crested cormorant colony was investigated. No significant differences in concentrations of PCBs to TEQs were observed among eggs from nests with different reproductive outcomes; therefore, concentrations of TEQs and PCBs could not be related to reproductive success of nests within a single colony. TEQs determined in an H4IIE bioassay for EROD activity were significantly greater than TEQs calculated from concentrations of PCB congeners. In another study, concentrations of TEQs and PCBs in red-breasted merganser eggs collected 13 years apart were compared. Concentrations of TEQs and PCBs declined significantly between 1977 and 1990, but the ratio of TEQ to total PCBH did not change.

  5. 31 CFR 29.313 - Federal Benefit Payments are computed based on retirement eligibility as of the separation date...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... based on retirement eligibility as of the separation date and service creditable as of June 30, 1997. 29... computed based on retirement eligibility as of the separation date and service creditable as of June 30... based on retirement eligibility as of the separation date and service creditable as of June 30,...

  6. 31 CFR 29.313 - Federal Benefit Payments are computed based on retirement eligibility as of the separation date...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... based on retirement eligibility as of the separation date and service creditable as of June 30, 1997. 29... computed based on retirement eligibility as of the separation date and service creditable as of June 30... based on retirement eligibility as of the separation date and service creditable as of June 30,...

  7. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications.

    PubMed

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D; Edelstein, Paul H; Collman, Ronald G; Bau, Haim H

    2013-11-01

    Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.

  8. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications

    PubMed Central

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D.; Edelstein, Paul H.; Collman, Ronald G.; Bau, Haim H.

    2014-01-01

    Often, high sensitivity, point of care, clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low abundance target molecules. We report on a simple to use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a “blood in-plasma out” capability, consistently extracting 275 ±33.5 μL of plasma from 1.8 mL of undiluted whole blood in less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3,500 and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid Testing And Was Successfully Subjected To Reverse Transcriptase Loop mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high efficiency nucleic acid amplification. PMID:24099566

  9. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.

    PubMed

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-01-01

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte-separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4-400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3-38.1 mN∙m(-1). It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations. PMID:26343636

  10. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.

    PubMed

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-08-27

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte-separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4-400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3-38.1 mN∙m(-1). It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations.

  11. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries

    PubMed Central

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-01-01

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte–separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4–400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3–38.1 mN∙m−1. It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations. PMID:26343636

  12. A Membrane-Based Electro-Separation Method (MBES) for Sample Clean-Up and Norovirus Concentration.

    PubMed

    Kang, Wei; Cannon, Jennifer L

    2015-01-01

    Noroviruses are the leading cause of acute gastroenteritis and foodborne illnesses in the United States. Enhanced methods for detecting noroviruses in food matrices are needed as current methods are complex, labor intensive and insensitive, often resulting in inhibition of downstream molecular detection and inefficient recovery. Membrane-based electro-separation (MBES) is a technique to exchange charged particles through a size-specific dialysis membrane from one solution to another using electric current as the driving force. Norovirus has a net negative surface charge in a neutrally buffered environment, so when placed in an electric field, it moves towards the anode. It can then be separated from the cathodic compartment where the sample is placed and then collected in the anodic compartment for downstream detection. In this study, a MBES-based system was designed, developed and evaluated for concentrating and recovering murine norovirus (MNV-1) from phosphate buffer. As high as 30.8% MNV-1 migrated from the 3.5 ml sample chamber to the 1.5 ml collection chamber across a 1 μm separation membrane when 20 V was applied for 30 min using 20 mM sodium phosphate with 0.01% SDS (pH 7.5) as the electrolyte. In optimization of the method, weak applied voltage (20 V), moderate duration (30 min), and low ionic strength electrolytes with SDS addition were needed to increase virus movement efficacy. The electric field strength of the system was the key factor to enhance virus movement, which could only be improved by shortening the electrodes distance, instead of increasing system applied voltage because of virus stability. This study successfully demonstrated the norovirus mobility in an electric field and migration across a size-specific membrane barrier in sodium phosphate electrolyte. With further modification and validation in food matrixes, a novel, quick, and cost-effective sample clean-up technique might be developed to separate norovirus particles from food

  13. From Input to Output: Communication-Based Teaching Techniques.

    ERIC Educational Resources Information Center

    Tschirner, Erwin

    1992-01-01

    Communication-based teaching techniques are described that lead German language students from input to output in a stimulating and motivating learning environment. Input activities are most useful for presenting speech acts, vocabulary, and grammar; output activities, for fine-tuning those areas as well as for expanding students' productive…

  14. "Ayeli": Centering Technique Based on Cherokee Spiritual Traditions.

    ERIC Educational Resources Information Center

    Garrett, Michael Tlanusta; Garrett, J. T.

    2002-01-01

    Presents a centering technique called "Ayeli," based on Cherokee spiritual traditions as a way of incorporating spirituality into counseling by helping clients identify where they are in their journey, where they want to be, and how they can get there. Relevant Native cultural traditions and meanings are explored. (Contains 25 references.) (GCP)

  15. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    NASA Astrophysics Data System (ADS)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  16. Clustering Algorithm for Unsupervised Monaural Musical Sound Separation Based on Non-negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Park, Sang Ha; Lee, Seokjin; Sung, Koeng-Mo

    Non-negative matrix factorization (NMF) is widely used for monaural musical sound source separation because of its efficiency and good performance. However, an additional clustering process is required because the musical sound mixture is separated into more signals than the number of musical tracks during NMF separation. In the conventional method, manual clustering or training-based clustering is performed with an additional learning process. Recently, a clustering algorithm based on the mel-frequency cepstrum coefficient (MFCC) was proposed for unsupervised clustering. However, MFCC clustering supplies limited information for clustering. In this paper, we propose various timbre features for unsupervised clustering and a clustering algorithm with these features. Simulation experiments are carried out using various musical sound mixtures. The results indicate that the proposed method improves clustering performance, as compared to conventional MFCC-based clustering.

  17. Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data

    NASA Astrophysics Data System (ADS)

    Thurai, M.; Gatlin, P. N.; Bringi, V. N.

    2016-03-01

    A technique for separating stratiform and convective rain types using the characteristics of two of the main drop size distribution (DSD) parameters is presented. The method was originally developed based on observations from dual-frequency profiler and dual-polarization radar observations in Darwin, Australia. In this paper, we will present the testing of the method using data from 2D video disdrometers (2DVD) from two very different locations, namely, Ontario, Canada, and Huntsville, Alabama, USA. One-minute DSDs from 2DVD are used as input to a gamma-fitting procedure and our separation technique uses the fitted values of log10(NW) and D0 (where NW is the scaling parameter and D0 is the median volume diameter) and an "index" to quantify where the points lie in the log10(NW) versus D0 domain. For the Ontario location, the output of the classification is compared with simultaneous observations from a collocated, vertically pointing, X-band Doppler radar. A "bright-band" detection algorithm is used to classify each height profile as either stratiform or convective, depending on whether or not a clearly defined melting layer is present at an expected height. If present, the maximum reflectivity within the melting layer and the corresponding height are determined. Similar testing is carried out for two events in Huntsville and compared with observations from a collocated UHF profiler (with Doppler capability). Additional case studies are required, but these results indicate our separation technique seems to be applicable to many different locations and climatologies based on previously published data.

  18. An advanced hybrid reprocessing system based on UF{sub 6} volatilization and chromatographic separation

    SciTech Connect

    Wei, Yuezhou; Liu, Ruiqin; Wu, Yan; Zu, Jianhua; Zhao, Long; Mimura, Hitoshi; Shi, Weiqun; Chai, Zhifang; Yang, Jinling; Ding, Youqian

    2013-07-01

    To recover U, Pu, MA (Np, Am, Cm) and some specific fission products FPs (Cs, Sr, Tc, etc.) from various spent nuclear fuels (LWR/FBR: Oxide, Metal Fuels), we are studying an advanced hybrid reprocessing system based on UF6 volatilization (Pyro) and chromatographic separation (Aqueous). Spent fuels are de-cladded by means of thermal and mechanical methods and then applied to the fluorination/volatilization process, which selectively recovers the most amount of U. Then, the remained fuel components are converted to oxides and dissolved by HNO{sub 3} solution. Compared to U, since Pu, MA and FPs are significantly less abundant in spent fuels, the scale of the aqueous separation process could become reasonably small and result in less waste. For the chromatographic separation processes, we have prepared different types of porous silica-based organic/inorganic adsorbents with fast diffusion kinetics, improved chemical stability and low pressure drop in a packed column. So they are advantageously applicable to efficient separation of the actinides and FP elements from the fuel dissolved solution. In this work, adsorption and separation behavior of representative actinides and FP elements was studied. Small scale separation tests using simulated and genuine fuel dissolved solutions were carried out to verify the feasibility of the proposed process. (authors)

  19. Signal-noise separation based on self-similarity testing in 1D-timeseries data

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe A.

    2015-08-01

    The continuous improvement of the resolution delivered by modern instrumentation is a cost-intensive part of any new space- or ground-based observatory. Typically, scientists later reduce the resolution of the obtained raw-data, for example in the spatial, spectral, or temporal domain, in order to suppress the effects of noise in the measurements. In practice, only simple methods are used that just smear out the noise, instead of trying to remove it, so that the noise can nomore be seen. In high-precision 1D-timeseries data, this usually results in an unwanted quality-loss and corruption of power spectra at selected frequency ranges. Novel methods exist that are based on non-local averaging, which would conserve much of the initial resolution, but these methods are so far focusing on 2D or 3D data. We present here a method specialized for 1D-timeseries, e.g. as obtained by magnetic field measurements from the recently launched MMS satellites. To identify the noise, we use a self-similarity testing and non-local averaging method in order to separate different types of noise and signals, like the instrument noise, non-correlated fluctuations in the signal from heliospheric sources, and correlated fluctuations such as harmonic waves or shock fronts. In power spectra of test data, we are able to restore significant parts of a previously know signal from a noisy measurement. This method also works for high frequencies, where the background noise may have a larger contribution to the spectral power than the signal itself. We offer an easy-to-use software tools set, which enables scientists to use this novel technique on their own noisy data. This allows to use the maximum possible capacity of the instrumental hardware and helps to enhance the quality of the obtained scientific results.

  20. Video multiple watermarking technique based on image interlacing using DWT.

    PubMed

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth. PMID:25587570

  1. Video multiple watermarking technique based on image interlacing using DWT.

    PubMed

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  2. Video Multiple Watermarking Technique Based on Image Interlacing Using DWT

    PubMed Central

    Ibrahim, Mohamed M.; Abdel Kader, Neamat S.; Zorkany, M.

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth. PMID:25587570

  3. A Rapid, Fluorescence-Based Field Screening Technique for Organic Species in Soil and Water Matrices.

    PubMed

    Russell, Amber L; Martin, David P; Cuddy, Michael F; Bednar, Anthony J

    2016-06-01

    Real-time detection of hydrocarbon contaminants in the environment presents analytical challenges because traditional laboratory-based techniques are cumbersome and not readily field portable. In the current work, a method for rapid and semi-quantitative detection of organic contaminants, primarily crude oil, in natural water and soil matrices has been developed. Detection limits in the parts per million and parts per billion were accomplished when using visual and digital detection methods, respectively. The extraction technique was modified from standard methodologies used for hydrocarbon analysis and provides a straight-forward separation technique that can remove interference from complex natural constituents. For water samples this method is semi-quantitative, with recoveries ranging from 70 % to 130 %, while measurements of soil samples are more qualitative due to lower extraction efficiencies related to the limitations of field-deployable procedures.

  4. Experiments on Adaptive Techniques for Host-Based Intrusion Detection

    SciTech Connect

    DRAELOS, TIMOTHY J.; COLLINS, MICHAEL J.; DUGGAN, DAVID P.; THOMAS, EDWARD V.; WUNSCH, DONALD

    2001-09-01

    This research explores four experiments of adaptive host-based intrusion detection (ID) techniques in an attempt to develop systems that can detect novel exploits. The technique considered to have the most potential is adaptive critic designs (ACDs) because of their utilization of reinforcement learning, which allows learning exploits that are difficult to pinpoint in sensor data. Preliminary results of ID using an ACD, an Elman recurrent neural network, and a statistical anomaly detection technique demonstrate an ability to learn to distinguish between clean and exploit data. We used the Solaris Basic Security Module (BSM) as a data source and performed considerable preprocessing on the raw data. A detection approach called generalized signature-based ID is recommended as a middle ground between signature-based ID, which has an inability to detect novel exploits, and anomaly detection, which detects too many events including events that are not exploits. The primary results of the ID experiments demonstrate the use of custom data for generalized signature-based intrusion detection and the ability of neural network-based systems to learn in this application environment.

  5. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions.

    PubMed

    Gómez-Muñoz, B; Case, S D C; Jensen, L S

    2016-03-01

    The combined effects of pig slurry acidification, subsequent separation techniques and biochar production from the solid fraction on N mineralisation and N2O and CO2 emissions in soil were investigated in an incubation experiment. Acidification of pig slurry increased N availability from the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions. PMID:26716355

  6. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions.

    PubMed

    Gómez-Muñoz, B; Case, S D C; Jensen, L S

    2016-03-01

    The combined effects of pig slurry acidification, subsequent separation techniques and biochar production from the solid fraction on N mineralisation and N2O and CO2 emissions in soil were investigated in an incubation experiment. Acidification of pig slurry increased N availability from the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions.

  7. Graphene-based terahertz photodetector by noise thermometry technique

    SciTech Connect

    Wang, Ming-Jye; Wang, Ji-Wun; Wang, Chun-Lun; Chiang, Yen-Yu; Chang, Hsian-Hong

    2014-01-20

    We report the characteristics of graphene-based terahertz (THz) photodetector based on noise thermometry technique by measuring its noise power at frequency from 4 to 6 GHz. Hot electron system in graphene microbridge is generated after THz photon pumping and creates extra noise power. The equivalent noise temperature and electron temperature increase rapidly in low THz pumping regime and saturate gradually in high THz power regime which is attributed to a faster energy relaxation process involved by stronger electron-phonon interaction. Based on this detector, a conversion efficiency around 0.15 from THz power to noise power in 4–6 GHz span has been achieved.

  8. The load separation technique in the elastic-plastic fracture analysis of two- and three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Sharobeam, Monir H.

    1994-01-01

    Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.

  9. An optical image segmentor using neural based wavelet filtering techniques

    NASA Astrophysics Data System (ADS)

    Veronin, Christopher P.; Rogers, Steven K.; Kabrisky, Matthew; Priddy, Kevin L.; Ayer, Kevin W.

    1991-10-01

    This paper presents a neural based optical image segmentation scheme for locating potential targets in cluttered FLIR images. The advantage of such a scheme is speed, i.e., the speed of light. Such a design is critical to achieve real-time segmentation and classification for machine vision applications. The segmentation scheme used was based on texture discrimination and employed biologically based orientation specific filters (wavelet filters) as its main component. These filters are well understood impulse response functions of mammalian vision systems from input to striate cortex. By using the proper choice of aperture pair separation, dilation, and orientation, targets in FLIR imagery were optically segmented. Wavelet filtering is illustrated for glass template slides, as well as segmentation for static and real-time FLIR imagery displayed on a liquid crystal television.

  10. Optical image segmentation using neural-based wavelet filtering techniques

    NASA Astrophysics Data System (ADS)

    Veronin, Christopher P.; Priddy, Kevin L.; Rogers, Steven K.; Ayer, Kevin W.; Kabrisky, Matthew; Welsh, Byron M.

    1992-02-01

    This paper presents a neural based optical image segmentation scheme for locating potential targets in cluttered FLIR images. The advantage of such a scheme is speed, i.e., the speed of light. Such a design is critical to achieve real-time segmentation and classification for machine vision applications. The segmentation scheme used was based on texture discrimination and employed biologically based orientation specific filters (wavelet filters) as its main component. These filters are well understood impulse response functions of mammalian vision systems from input to striate cortex. By using the proper choice of aperture pair separation, dilation, and orientation, targets in FLIR imagery were optically segmented. Wavelet filtering is illustrated for glass template slides, as well as segmentation for static and real-time FLIR imagery displayed on a liquid crystal television.

  11. Statistics and Machine Learning based Outlier Detection Techniques for Exoplanets

    NASA Astrophysics Data System (ADS)

    Goel, Amit; Montgomery, Michele

    2015-08-01

    Architectures of planetary systems are observable snapshots in time that can indicate formation and dynamic evolution of planets. The observable key parameters that we consider are planetary mass and orbital period. If planet masses are significantly less than their host star masses, then Keplerian Motion is defined as P^2 = a^3 where P is the orbital period in units of years and a is the orbital period in units of Astronomical Units (AU). Keplerian motion works on small scales such as the size of the Solar System but not on large scales such as the size of the Milky Way Galaxy. In this work, for confirmed exoplanets of known stellar mass, planetary mass, orbital period, and stellar age, we analyze Keplerian motion of systems based on stellar age to seek if Keplerian motion has an age dependency and to identify outliers. For detecting outliers, we apply several techniques based on statistical and machine learning methods such as probabilistic, linear, and proximity based models. In probabilistic and statistical models of outliers, the parameters of a closed form probability distributions are learned in order to detect the outliers. Linear models use regression analysis based techniques for detecting outliers. Proximity based models use distance based algorithms such as k-nearest neighbour, clustering algorithms such as k-means, or density based algorithms such as kernel density estimation. In this work, we will use unsupervised learning algorithms with only the proximity based models. In addition, we explore the relative strengths and weaknesses of the various techniques by validating the outliers. The validation criteria for the outliers is if the ratio of planetary mass to stellar mass is less than 0.001. In this work, we present our statistical analysis of the outliers thus detected.

  12. MEMS-based power generation techniques for implantable biosensing applications.

    PubMed

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  13. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  14. Insertion of interlayers in efficient polymer-based organic solar cells for control of phase separation

    NASA Astrophysics Data System (ADS)

    Taima, Tetsuya; Tanaka, Jun; Kuwabara, Takayuki; Takahashi, Kohshin

    2016-02-01

    To improve the solar cell performance of polymer-based organic solar cells, the control of phase separation in the bulk heterojunction (BHJ) layer is important. In the case of a thienothiophene-benzodithiophene-based polymer (PTB7)-based solar cell, 1,8-diiodoctane (DIO) is added into the chlorobenzene solvent. However, it is well known that DIO addition causes degradation in long-term operation. Here, we try to improve the performance of the PTB7-based BHJ solar cell by controlling the phase separation in the BHJ layer through the insertion of an inorganic semiconducting copper iodide (CuI) interlayer between the BHJ layer and indium tin oxide. The power conversion efficiency of the PTB7-based solar cell is improved from 3.5 to 3.9% upon inserting the CuI interlayer without DIO addition.

  15. Novel techniques and the future of skull base reconstruction.

    PubMed

    Meier, Joshua C; Bleier, Benjamin S

    2013-01-01

    The field of endoscopic skull base surgery has evolved considerably in recent years fueled largely by advances in both imaging and instrumentation. While the indications for these approaches continue to be extended, the ability to reconstruct the resultant defects has emerged as a rate-limiting obstacle. Postoperative failures with current multilayer grafting techniques remain significant and may increase as the indications for endoscopic resections continue to expand. Laser tissue welding represents a novel method of wound repair in which laser energy is applied to a chromophore doped biologic solder at the wound edge to create a laser weld (fig. 1). These repairs are capable of withstanding forces far exceeding those exerted by intracranial pressure with negligible collateral thermal tissue injury. Recent clinical trials have demonstrated the safety and feasibility of endoscopic laser welding while exposing the limitations of first generation hyaluronic acid based solders. Novel supersaturated gel based solders are currently being tested in clinical trials and appear to possess significantly improved viscoelastic properties. While laser tissue welding remains an experimental technique, continued success with these novel solder formulations may catalyze the widespread adoption of this technique for skull base repair in the near future.

  16. An Error Diagnosis Technique Based on Location Sets to Rectify Subcircuits

    NASA Astrophysics Data System (ADS)

    Shioki, Kosuke; Okada, Narumi; Ishihara, Toshiro; Hirose, Tetsuya; Kuroki, Nobutaka; Numa, Masahiro

    This paper presents an error diagnosis technique for incremental synthesis, called EXLLS (Extended X-algorithm for LUT-based circuit model based on Location sets to rectify Subcircuits), which rectifies five or more functional errors in the whole circuit based on location sets to rectify subcircuits. Conventional error diagnosis technique, called EXLIT, tries to rectify five or more functional errors based on incremental rectification for subcircuits. However, the solution depends on the selection and the order of modifications on subcircuits, which increases the number of locations to be changed. To overcome this problem, we propose EXLLS based on location sets to rectify subcircuits, which obtains two or more solutions by separating i) extraction of location sets to be rectified, and ii) rectification for the whole circuit based on the location sets. Thereby EXLLS can rectify five or more errors with fewer locations to change. Experimental results have shown that EXLLS reduces increase in the number of locations to be rectified with conventional technique by 90.1%.

  17. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.

    PubMed

    Yang, Xiaoxi; Forouzan, Omid; Brown, Theodore P; Shevkoplyas, Sergey S

    2012-01-21

    Many diagnostic tests in a conventional clinical laboratory are performed on blood plasma because changes in its composition often reflect the current status of pathological processes throughout the body. Recently, a significant research effort has been invested into the development of microfluidic paper-based analytical devices (μPADs) implementing these conventional laboratory tests for point-of-care diagnostics in resource-limited settings. This paper describes the use of red blood cell (RBC) agglutination for separating plasma from finger-prick volumes of whole blood directly in paper, and demonstrates the utility of this approach by integrating plasma separation and a colorimetric assay in a single μPAD. The μPAD was fabricated by printing its pattern onto chromatography paper with a solid ink (wax) printer and melting the ink to create hydrophobic barriers spanning through the entire thickness of the paper substrate. The μPAD was functionalized by spotting agglutinating antibodies onto the plasma separation zone in the center and the reagents of the colorimetric assay onto the test readout zones on the periphery of the device. To operate the μPAD, a drop of whole blood was placed directly onto the plasma separation zone of the device. RBCs in the whole blood sample agglutinated and remained in the central zone, while separated plasma wicked through the paper substrate into the test readout zones where analyte in plasma reacted with the reagents of the colorimetric assay to produce a visible color change. The color change was digitized with a portable scanner and converted to concentration values using a calibration curve. The purity and yield of separated plasma was sufficient for successful operation of the μPAD. This approach to plasma separation based on RBC agglutination will be particularly useful for designing fully integrated μPADs operating directly on small samples of whole blood.

  18. Blending Study of MgO-Based Separator Materials for Thermal Batteries

    SciTech Connect

    GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.; ANDAZOLA, ARTHUR H.

    2002-06-01

    The development and testing of a new technique for blending of electrolyte-binder (separator) mixes for use in thermal batteries is described. The original method of blending such materials at Sandia involved liquid Freon TF' as a medium. The ban on the use of halogenated solvents throughout much of the Department of Energy complex required the development of an alternative liquid medium as a replacement. The use of liquid nitrogen (LN) was explored and developed into a viable quality process. For comparison, a limited number of dry-blending tests were also conducted using a Turbula mixer. The characterization of pellets made from LN-blended separators involved deformation properties at 530 C and electrolyte-leakage behavior at 400 or 500 C, as well as performance in single-cells and five-cell batteries under several loads. Stack-relaxation tests were also conducted using 10-cell batteries. One objective of this work was to observe if correlations could be obtained between the mechanical properties of the separators and the performance in single cells and batteries. Separators made using three different electrolytes were examined in this study. These included the LiCl-KCl eutectic, the all-Li LiCl-LiBr-LiF electrolyte, and the low-melting LiBr-KBr-LiF eutectic. The electrochemical performance of separator pellets made with LN-blended materials was compared to that for those made with Freon T P and, in some cases, those that were dry blended. A satisfactory replacement MgO (Marinco 'OL', now manufactured by Morton) was qualified as a replacement for the standard Maglite 'S' MgO that has been used for years but is no longer commercially available. The separator compositions with the new MgO were optimized and included in the blending and electrochemical characterization tests.

  19. An overview of the use of microchips in electrophoretic separation techniques: fabrication, separation modes, sample preparation opportunities, and on-chip detection.

    PubMed

    Hendrickx, Stijn; de Malsche, Wim; Cabooter, Deirdre

    2015-01-01

    This chapter is intended as a basic introduction to microchip-based capillary electrophoresis to set the scene for newcomers and give pointers to reference material. An outline of some commonly used setups and key concepts is given, many of which are explored in greater depth in later chapters. PMID:25673478

  20. An overview of the use of microchips in electrophoretic separation techniques: fabrication, separation modes, sample preparation opportunities, and on-chip detection.

    PubMed

    Hendrickx, Stijn; de Malsche, Wim; Cabooter, Deirdre

    2015-01-01

    This chapter is intended as a basic introduction to microchip-based capillary electrophoresis to set the scene for newcomers and give pointers to reference material. An outline of some commonly used setups and key concepts is given, many of which are explored in greater depth in later chapters.

  1. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-07-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  2. Gabor-based fusion technique for Optical Coherence Microscopy.

    PubMed

    Rolland, Jannick P; Meemon, Panomsak; Murali, Supraja; Thompson, Kevin P; Lee, Kye-sung

    2010-02-15

    We recently reported on an Optical Coherence Microscopy technique, whose innovation intrinsically builds on a recently reported - 2 microm invariant lateral resolution by design throughout a 2 mm cubic full-field of view - liquid-lens-based dynamic focusing optical probe [Murali et al., Optics Letters 34, 145-147, 2009]. We shall report in this paper on the image acquisition enabled by this optical probe when combined with an automatic data fusion method developed and described here to produce an in-focus high resolution image throughout the imaging depth of the sample. An African frog tadpole (Xenopus laevis) was imaged with the novel probe and the Gabor-based fusion technique, demonstrating subcellular resolution in a 0.5 mm (lateral) x 0.5 mm (axial) without the need, for the first time, for x-y translation stages, depth scanning, high-cost adaptive optics, or manual intervention. In vivo images of human skin are also presented.

  3. Fractionation of Exosomes and DNA using Size-Based Separation at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wunsch, Benjamin; Smith, Joshua; Wang, Chao; Gifford, Stacey; Brink, Markus; Bruce, Robert; Solovitzky, Gustavo; Austin, Robert; Astier, Yann

    Exosomes, a key target of ``liquid biopsies'', are nano-vesicles found in nearly all biological fluids. Exosomes are secreted by eukaryotic and prokaryotic cells alike, and contain information about their originating cells, including surface proteins, cytoplasmic proteins, and nucleic acids. One challenge in studying exosome morphology is the difficulty of sorting exosomes by size and surface markers. Common separation techniques for exosomes include ultracentrifugation and ultrafiltration, for preparation of large volume samples, but these techniques often show contamination and significant heterogeneity between preparations. To date, deterministic lateral displacement (DLD) pillar arrays in silicon have proven an efficient technology to sort, separate, and enrich micron-scale particles including human parasites, eukaryotic cells, blood cells, and circulating tumor cells in blood; however, the DLD technology has never been translated to the true nanoscale, where it could function on bio-colloids such as exosomes. We have fabricated nanoscale DLD (nanoDLD) arrays capable of rapidly sorting colloids down to 20 nm in continuous flow, and demonstrated size sorting of individual exosome vesicles and dsDNA polymers, opening the potential for on-chip biomolecule separation and diagnosti

  4. Metal–organic framework-based separator for lithium–sulfur batteries

    NASA Astrophysics Data System (ADS)

    Bai, Songyan; Liu, Xizheng; Zhu, Kai; Wu, Shichao; Zhou, Haoshen

    2016-07-01

    Lithium–sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal–organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium–sulfur batteries, which selectively sieves Li+ ions while efficiently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium–sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.

  5. Metal-organic framework-based separator for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Bai, Songyan; Liu, Xizheng; Zhu, Kai; Wu, Shichao; Zhou, Haoshen

    2016-07-01

    Lithium-sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal-organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium-sulfur batteries, which selectively sieves Li+ ions while efficiently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium-sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.

  6. MEMBRANE TECHNOLOGY: OPPORTUNITIES FOR POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (POSS) IN MEMBRANE-BASED SEPARATIONS

    EPA Science Inventory

    Membrane Technology: Opportunities for Polyhedral Oligomeric Silsesquioxanes (POSS?) in Membrane-Based Separations

    Leland M. Vane, Ph.D.
    U.S. Environmental Protection Agency
    Office of Research & Development
    Cincinnati, OH 45268
    Vane.Leland@epa.gov

    A sign...

  7. Performance Metrics for Depth-based Signal Separation Using Deep Vertical Line Arrays

    NASA Astrophysics Data System (ADS)

    Boyle, John K.

    Vertical line arrays (VLAs) deployed below the critical depth in the deep ocean can exploit reliable acoustic path (RAP) propagation, which provides low transmission loss (TL) for targets at moderate ranges, and increased TL for distant interferers. However, sound from nearby surface interferers also undergoes RAP propagation, and without horizontal aperture, a VLA cannot separate these interferers from submerged targets. A recent publication by McCargar and Zurk (2013) addressed this issue, presenting a transform-based method for passive, depth-based separation of signals received on deep VLAs based on the depth-dependent modulation caused by the interference between the direct and surface-reflected acoustic arrivals. This thesis expands on that work by quantifying the transform-based depth estimation method performance in terms of the resolution and ambiguity in the depth estimate. Then, the depth discrimination performance is quantified in terms of the number of VLA elements.

  8. Fabrication of thermoplastics chips through lamination based techniques.

    PubMed

    Miserere, Sandrine; Mottet, Guillaume; Taniga, Velan; Descroix, Stephanie; Viovy, Jean-Louis; Malaquin, Laurent

    2012-04-24

    In this work, we propose a novel strategy for the fabrication of flexible thermoplastic microdevices entirely based on lamination processes. The same low-cost laminator apparatus can be used from master fabrication to microchannel sealing. This process is appropriate for rapid prototyping at laboratory scale, but it can also be easily upscaled to industrial manufacturing. For demonstration, we used here Cycloolefin Copolymer (COC), a thermoplastic polymer that is extensively used for microfluidic applications. COC is a thermoplastic polymer with good chemical resistance to common chemicals used in microfluidics such as acids, bases and most polar solvents. Its optical quality and mechanical resistance make this material suitable for a large range of applications in chemistry or biology. As an example, the electrokinetic separation of pollutants is proposed in the present study.

  9. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    PubMed Central

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  10. An image morphing technique based on optimal mass preserving mapping.

    PubMed

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2007-06-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  11. An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting.

    PubMed

    Morono, Yuki; Terada, Takeshi; Kallmeyer, Jens; Inagaki, Fumio

    2013-10-01

    Development of an improved technique for separating microbial cells from marine sediments and standardization of a high-throughput and discriminative cell enumeration method were conducted. We separated microbial cells from various types of marine sediment and then recovered the cells using multilayer density gradients of sodium polytungstate and/or Nycodenz, resulting in a notably higher percent recovery of cells than previous methods. The efficiency of cell extraction generally depends on the sediment depth; using the new technique we developed, more than 80% of the total cells were recovered from shallow sediment samples (down to 100 meters in depth), whereas ~50% of cells were recovered from deep samples (100-365 m in depth). The separated cells could be rapidly enumerated using flow cytometry (FCM). The data were in good agreement with those obtained from manual microscopic direct counts over the range 10(4)-10(8) cells cm(-3). We also demonstrated that sedimentary microbial cells can be efficiently collected using a cell sorter. The combined use of our new cell separation and FCM/cell sorting techniques facilitates high-throughput and precise enumeration of microbial cells in sediments and is amenable to various types of single-cell analyses, thereby enhancing our understanding of microbial life in the largely uncharacterized deep subseafloor biosphere. PMID:23731283

  12. An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting

    PubMed Central

    Morono, Yuki; Terada, Takeshi; Kallmeyer, Jens; Inagaki, Fumio

    2013-01-01

    Summary Development of an improved technique for separating microbial cells from marine sediments and standardization of a high-throughput and discriminative cell enumeration method were conducted. We separated microbial cells from various types of marine sediment and then recovered the cells using multilayer density gradients of sodium polytungstate and/or Nycodenz, resulting in a notably higher percent recovery of cells than previous methods. The efficiency of cell extraction generally depends on the sediment depth; using the new technique we developed, more than 80% of the total cells were recovered from shallow sediment samples (down to 100 meters in depth), whereas ∼ 50% of cells were recovered from deep samples (100–365 m in depth). The separated cells could be rapidly enumerated using flow cytometry (FCM). The data were in good agreement with those obtained from manual microscopic direct counts over the range 104–108 cells cm−3. We also demonstrated that sedimentary microbial cells can be efficiently collected using a cell sorter. The combined use of our new cell separation and FCM/cell sorting techniques facilitates high-throughput and precise enumeration of microbial cells in sediments and is amenable to various types of single-cell analyses, thereby enhancing our understanding of microbial life in the largely uncharacterized deep subseafloor biosphere. PMID:23731283

  13. The design of large separating angle ultracompact wavelength division demultiplexer based on photonic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Qing-Hua, Liao; Hong-Ming, Fan; Shu-Wen, Chen; Tong-Biao, Wang; Tian-Bao, Yu; Yong-Zhen, Huang

    2014-11-01

    The paper presents the design and simulation of a new and large separating angle ultracompact wavelength division demultiplexer based on the coupling characteristics between the waveguide and ring resonators in two dimensional photonic crystals. The transmission properties of the wavelength division demultiplexers, which ring resonators are both located on the same or different sides of input waveguide, have been numerically studied using the finite difference time domain method. It is shown that a good wavelength selection performance, a high transmittance, a large separating angle and high efficiency of the output channels may be obtained in this flexible structure.

  14. Blind separation of convolutive sEMG mixtures based on independent vector analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomei; Guo, Yina; Tian, Wenyan

    2015-12-01

    An independent vector analysis (IVA) method base on variable-step gradient algorithm is proposed in this paper. According to the sEMG physiological properties, the IVA model is applied to the frequency-domain separation of convolutive sEMG mixtures to extract motor unit action potentials information of sEMG signals. The decomposition capability of proposed method is compared to the one of independent component analysis (ICA), and experimental results show the variable-step gradient IVA method outperforms ICA in blind separation of convolutive sEMG mixtures.

  15. A Different Web-Based Geocoding Service Using Fuzzy Techniques

    NASA Astrophysics Data System (ADS)

    Pahlavani, P.; Abbaspour, R. A.; Zare Zadiny, A.

    2015-12-01

    Geocoding - the process of finding position based on descriptive data such as address or postal code - is considered as one of the most commonly used spatial analyses. Many online map providers such as Google Maps, Bing Maps and Yahoo Maps present geocoding as one of their basic capabilities. Despite the diversity of geocoding services, users usually face some limitations when they use available online geocoding services. In existing geocoding services, proximity and nearness concept is not modelled appropriately as well as these services search address only by address matching based on descriptive data. In addition there are also some limitations in display searching results. Resolving these limitations can enhance efficiency of the existing geocoding services. This paper proposes the idea of integrating fuzzy technique with geocoding process to resolve these limitations. In order to implement the proposed method, a web-based system is designed. In proposed method, nearness to places is defined by fuzzy membership functions and multiple fuzzy distance maps are created. Then these fuzzy distance maps are integrated using fuzzy overlay technique for obtain the results. Proposed methods provides different capabilities for users such as ability to search multi-part addresses, searching places based on their location, non-point representation of results as well as displaying search results based on their priority.

  16. [Separation mechanism of chiral stationary phase based on quinine and crown ether for the direct stereoselective separation of amino acids].

    PubMed

    Wu, Haixia; Wang, Dongqiang; Zhao, Jianchao; Ke, Yanxiong; Liang, Xinmiao

    2016-01-01

    A novel chiral stationary phase combining quinine and crown ether (QN-CR CSP) was developed to separate amino acid enantiomers. This CSP showed good enantioselectivity for some amino acids. Since the synergistic effect of ion exchange and complexation in chiral recognition of amino acids, a new adsorption isotherm was built. Using the method of frontal analysis by characteristic point (FACP), the adsorption isotherms of tryptophan (Trp) under different mobile phase conditions were determined and fitted the proposed adsorption isotherm model well. With the increase of the competition between metal cationic and amino to crown ether, the equilibrium constant of complexing adsorption was found increased. The chiral separation ability was decreased. The adsorption isotherm improved the understanding of the retention behavior of amino acids on QN-CR CSP, which was also benefit to optimize the structure of the stationary phase.

  17. [Separation mechanism of chiral stationary phase based on quinine and crown ether for the direct stereoselective separation of amino acids].

    PubMed

    Wu, Haixia; Wang, Dongqiang; Zhao, Jianchao; Ke, Yanxiong; Liang, Xinmiao

    2016-01-01

    A novel chiral stationary phase combining quinine and crown ether (QN-CR CSP) was developed to separate amino acid enantiomers. This CSP showed good enantioselectivity for some amino acids. Since the synergistic effect of ion exchange and complexation in chiral recognition of amino acids, a new adsorption isotherm was built. Using the method of frontal analysis by characteristic point (FACP), the adsorption isotherms of tryptophan (Trp) under different mobile phase conditions were determined and fitted the proposed adsorption isotherm model well. With the increase of the competition between metal cationic and amino to crown ether, the equilibrium constant of complexing adsorption was found increased. The chiral separation ability was decreased. The adsorption isotherm improved the understanding of the retention behavior of amino acids on QN-CR CSP, which was also benefit to optimize the structure of the stationary phase. PMID:27319166

  18. Hydrocarbon microseepage mapping using signature based target detection techniques

    NASA Astrophysics Data System (ADS)

    Soydan, Hilal; Koz, Alper; Şebnem Düzgün, H.; Aydin Alatan, A.

    2015-10-01

    In this paper, we compare the conventional methods in hydrocarbon seepage anomalies with the signature based detection algorithms. The Crosta technique [1] is selected as a basement in the experimental comparisons for the conventional approach. The Crosta technique utilizes the characteristic bands of the searched target for principal component transformation in order to determine the components characterizing the target in interest. Desired Target Detection and Classification Algorithm (DTDCA), Spectral Matched Filter (SMF), and Normalized Correlation (NC) are employed for signature based target detection. Signature based target detection algorithms are applied to the whole spectrum benefiting from the information stored in all spectral bands. The selected methods are applied to a multispectral Advanced SpaceBorne Thermal Emission and Radiometer (ASTER) image of the study region, with an atmospheric correction prior to the realization of the algorithms. ASTER provides multispectral bands covering visible, short wave, and thermal infrared region, which serves as a useful tool for the interpretation of the areas with hydrocarbon anomalies. The exploration area is selected as Gemrik Anticline which is located in South East Anatolia, Adıyaman, Bozova Oil Field, where microseeps can be observed with almost no vegetation cover. The spectral signatures collected with Analytical Spectral Devices Inc. (ASD) spectrometer from the reference valley [2] have been utilized as an input to the signature based detection algorithms. The experiments have indicated that DTDCA and MF outperforms the Crosta technique by locating the microseepage patterns along the mitigation pathways with a better contrast. On the other hand, NC has not been able to map the searched target with a visible distinction. It is concluded that the signature based algorithms can be more effective than the conventional methods for the detection of microseepage induced anomalies.

  19. Membrane gas separation. January 1970-May 1981 (citations from the NTIS data base). Report for Jan 70-May 81

    SciTech Connect

    Not Available

    1981-05-01

    This retrospective bibliography discusses the current literature on gas separation and purification using polymeric and metallic membranes. Included are topics such as isotope separation, osmotic techniques, reverse osmosis, and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties, of the membrane as well as its molecular structure. The selectivity of polymeric films for a variety of gases is also considered. (Contains 78 citations fully indexed and including a title list.)

  20. Membrane gas separation. January 1976-May 1981 (citations from the Energy Data Base). Report for Jan 76-May 81

    SciTech Connect

    Not Available

    1981-05-01

    This retrospective bibliography discusses the current literature on gas separation and purification using polymeric and metallic membranes. Included are topics such as isotope separation, osmotic techniques, reverse osmosis and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties of the membrane as well as its molecular structure. The selectivity of polymeric films for a variety of gases is also considered. (Contains 65 citations fully indexed and including a title list.)

  1. Membrane gas separation. January 1970-May 1981 (citations from the Engineering Index Data Base). Report for Jan 70-May 81

    SciTech Connect

    Not Available

    1981-05-01

    This retrospective bibliography discusses the current literature on gas separation and purification using polymeric and metallic membranes. Included are topics such as isotope separation, osmotic techniques, reverse osmosis and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties of the membrane as well as its molecular structure. The selectivity of polymeric films for a variety of gases is also considered. (Contains 51 citations fully indexed and including a title list.)

  2. Coupled achiral/chiral column techniques in subcritical fluid chromatography for the separation of chiral and nonchiral compounds.

    PubMed

    Phinney, K W; Sander, L C; Wise, S A

    1998-06-01

    A multicolumn approach was developed to address the limited achiral selectivity of chiral stationary phases. Groups of structurally related compounds, including beta-blockers and 1,4-benzodiazepines, were separated using coupled achiral/chiral stationary phases under subcritical fluid conditions. The achiral selectivity of amino and cyano stationary phases was used to modify the resolution of compounds on a Chiralcel OD chiral stationary phase by combining the achiral and chiral columns in series. In the case of the benzodiazepines, separation of achiral compounds was performed concurrently with the enantioseparation of chiral molecules. The separation of components of a multidrug cough and cold medication was also demonstrated on a cyano column coupled with a Chiralpak AD chiral stationary phase. The use of modified carbon dioxide eluents eliminated the mobile phase incompatibility problems associated with column coupling in liquid chromatography and incorporated the high efficiency of sub- and supercritical fluid chromatography.

  3. Gearbox coupling modulation separation method based on match pursuit and correlation filtering

    NASA Astrophysics Data System (ADS)

    He, Guolin; Ding, Kang; Lin, Huibin

    2016-01-01

    The vibration signal of faulty gearbox commonly involves complex coupling modulation components. The method of sparse representation has been successfully used for gearbox fault diagnosis, but most of the literatures only focus on the extraction of impact modulation and always neglect the steady modulation representing the distributed faults. This paper presents a new method for separating coupling modulation from vibration signal of gearbox based on match pursuit and correlation filtering. To separate the steady modulation caused by distributed fault and the impact modulation caused by impact fault, two sub-dictionaries are specially designed according to the gearbox operating and structural parameters and the characteristics of vibration signal. The new dictionaries have clear physical meaning and good adaptability. In addition, an amplitude recovery step is conducted to improve the matching accuracy in the match pursuit. Simulation and experimental results show that the proposed method can separate the coupling components of gearbox vibration signal effectively under intensive background noise.

  4. Self-operated blood plasma separation using micropump in polymer-based microfluidic device

    NASA Astrophysics Data System (ADS)

    Jang, Won Ick; Chung, Kwang Hyo; Pyo, Hyeon Bong; Park, Seon Hee

    2006-12-01

    The blood is one of the best indicators of health because blood circulates all body tissues and collects information. The COC(Cyclo Olefin Copolymer) has better various properties than PMMA(Polymethy Mechacrylate) and PC(Polycarbonate) that are widely used in biotechnology field. This paper presents a new method of plasma separation on the COC in terms of surface modification for the development of a disposable protein chip. The blood plasma separation device was composed of a whole blood inlet, microchannel with filtration region of micropillars, micropump with microheater, and a blood cell outlet. Micropump with microheater was designed by ANSYS and flow model in the microchannel was designed by CFD-ACE + simulators. We successfully fabricated a polymer based microfluidic device for blood plasma separation by MEMS(Micro Electro Mechanical System) technology. By using this device, cell-free plasma was successfully obtained through the filtration from a drop of whole blood without external force of a syringe pump.

  5. Enantiomeric separation of isochromene derivatives by high-performance liquid chromatography using cyclodextrin based stationary phases and principal component analysis of the separation data.

    PubMed

    Nanayakkara, Yasith S; Woods, Ross M; Breitbach, Zachary S; Handa, Sachin; Slaughter, LeGrande M; Armstrong, Daniel W

    2013-08-30

    Isochromene derivatives are very important precursors in the natural products industry. Hence the enantiomeric separations of chiral isochromenes are important in the pharmaceutical industry and for organic asymmetric synthesis. Here we report enantiomeric separations of 21 different chiral isochromene derivatives, which were synthesized using alkynylbenzaldehyde cyclization catalyzed by chiral gold(I) acyclic diaminocarbene complexes. All separations were achieved by high-performance liquid chromatography with cyclodextrin based (Cyclobond) chiral stationary phases. Retention data of 21 chiral compounds and 14 other previously separated isochromene derivatives were analyzed using principal component analysis. The effect of the structure of the substituents on the isochromene ring on enantiomeric resolution as well as the other separation properties was analyzed in detail. Using principal component analysis it can be shown that the structural features that contribute to increased retention are different from those that enhance enantiomeric resolution. In addition, principal component analysis is useful for eliminating redundant factors from consideration when analyzing the effect of various chromatographic parameters. It was found that the chiral recognition mechanism is different for the larger γ-cyclodextrin as compared to the smaller β-cyclodextrin derivatives. Finally this specific system of chiral analytes and cyclodextrin based chiral selectors provides an effective format to examine the application of principal component analysis to enantiomeric separations using basic retention data and structural features. PMID:23906806

  6. Microfluidic device based on a micro-hydrocyclone for particle-liquid separation.

    PubMed

    Bhardwaj, P; Bagdi, P; Sen, A K

    2011-12-01

    This paper presents theoretical analysis, design, simulation, fabrication and test of a microfluidic device ('Micro-hydrocyclone') for separation of micron and submicron size solid particles from liquid in a particle liquid mixture. A theoretical analysis of the micro-hydrocyclone is performed to understand the physics and develop suitable design models. The structure of the proposed device is designed based on the Bradley model, as it offers lower cut-size thus making it suitable for microfluidics applications. The operational parameters are derived from the dimensional group model. The particle separation process inside the micro-hydrocyclone is simulated by solving fluid flows using Navier-Stokes equations and particle dynamics using a Lagrangian approach in a Eulerian fluid. The influence of inlet velocity and density on separation efficiency is investigated. The device is fabricated with SU-8 photoresist on a PMMA substrate using a combination of photolithography and micro-milling. Experiments are performed to demonstrate particle-liquid separation using polystyrene microbeads suspended in PBS as the feed sample. The influence of inlet velocity and particle size on particle separation efficiency is measured and compared with that obtained from simulations and a good match was found. The proposed device can be easily integrated with micro-environments thus it is suitable for lab-on-chip and microsystems development. The device may have applications in chemical analysis, materials research, point-of-care, blood sample preparation and other biomedical applications.

  7. A simple separation method with a microfluidic channel based on alternating current potential modulation.

    PubMed

    Noh, Hui-Bog; Chandra, Pranjal; Kim, You-Jeong; Shim, Yoon-Bo

    2012-11-20

    A simple separation and detection system based on an electrochemical potential modulated microchannel (EPMM) device was developed for the first time. The application of alternating current (AC) potential to the microfluidic separation channel walls, which were composed of screen printed carbon electrodes, resulted in the oscillation and fluctuation of analytes and in the formation of a perfect flat flow front. These events resulted in an increase in the effective concentration and in the fine separation of samples. The performance of the EPMM device was examined through the analysis of endocrine disruptors (EDs) and heavy metal ions (HMIs) as model compounds. The analytical parameters that affected the separation and detection of EDs and HMIs were studied in terms of AC amplitude, AC frequency, flow rate, buffer concentration, pH, detection potential, and temperature. The separation efficiency was evaluated through measurements of the theoretical plate number (N), the retention time, and the half-peak width. Linear calibration plots for the detection of EDs and HMIs were obtained between 0.15 and 250.0 nM (detection limit 86.4 ± 2.9 pM) and between 0.01 and 10.0 nM (detection limit 9.5 ± 0.3 pM), respectively. The new device was successfully demonstrated with authentic and real samples. PMID:23075295

  8. Noninvasive in vivo glucose sensing using an iris based technique

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.; Cameron, Brent D.

    2011-03-01

    Physiological glucose monitoring is important aspect in the treatment of individuals afflicted with diabetes mellitus. Although invasive techniques for glucose monitoring are widely available, it would be very beneficial to make such measurements in a noninvasive manner. In this study, a New Zealand White (NZW) rabbit animal model was utilized to evaluate a developed iris-based imaging technique for the in vivo measurement of physiological glucose concentration. The animals were anesthetized with isoflurane and an insulin/dextrose protocol was used to control blood glucose concentration. To further help restrict eye movement, a developed ocular fixation device was used. During the experimental time frame, near infrared illuminated iris images were acquired along with corresponding discrete blood glucose measurements taken with a handheld glucometer. Calibration was performed using an image based Partial Least Squares (PLS) technique. Independent validation was also performed to assess model performance along with Clarke Error Grid Analysis (CEGA). Initial validation results were promising and show that a high percentage of the predicted glucose concentrations are within 20% of the reference values.

  9. FDTD technique based crosstalk analysis of bundled SWCNT interconnects

    NASA Astrophysics Data System (ADS)

    Singh Duksh, Yograj; Kaushik, Brajesh Kumar; Agarwal, Rajendra P.

    2015-05-01

    The equivalent electrical circuit model of a bundled single-walled carbon nanotube based distributed RLC interconnects is employed for the crosstalk analysis. The accurate time domain analysis and crosstalk effect in the VLSI interconnect has emerged as an essential design criteria. This paper presents a brief description of the numerical method based finite difference time domain (FDTD) technique that is intended for estimation of voltages and currents on coupled transmission lines. For the FDTD implementation, the stability of the proposed model is strictly restricted by the Courant condition. This method is used for the estimation of crosstalk induced propagation delay and peak voltage in lossy RLC interconnects. Both functional and dynamic crosstalk effects are analyzed in the coupled transmission line. The effect of line resistance on crosstalk induced delay, and peak voltage under dynamic and functional crosstalk is also evaluated. The FDTD analysis and the SPICE simulations are carried out at 32 nm technology node for the global interconnects. It is observed that the analytical results obtained using the FDTD technique are in good agreement with the SPICE simulation results. The crosstalk induced delay, propagation delay, and peak voltage obtained using the FDTD technique shows average errors of 4.9%, 3.4% and 0.46%, respectively, in comparison to SPICE.

  10. Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective

    SciTech Connect

    Bernstad, A.; Cour Jansen, J. la

    2012-05-15

    Highlight: Black-Right-Pointing-Pointer Four modern and innovative systems for household food waste collection are compared. Black-Right-Pointing-Pointer Direct emissions and resource use were based on full-scale data. Black-Right-Pointing-Pointer Conservation of nutrients/energy content over the system was considered. Black-Right-Pointing-Pointer Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4 kg NO{sub 3}{sup -}eq/ton food waste), acidification potential (-0.4 to -1.0 kg SO{sub 2}{sup -}eq/ton food waste), global warming potential (-790 to -960 kg CO{sub 2}{sup -}eq/ton food waste) and primary energy use (-1.7 to -3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the

  11. Optical accelerometer based on grating interferometer with phase modulation technique.

    PubMed

    Zhao, Shuangshuang; Zhang, Juan; Hou, Changlun; Bai, Jian; Yang, Guoguang

    2012-10-10

    In this paper, an optical accelerometer based on grating interferometer with phase modulation technique is proposed. This device architecture consists of a laser diode, a sensing chip and an optoelectronic processing circuit. The sensing chip is a sandwich structure, which is composed of a grating, a piezoelectric translator and a micromachined silicon structure consisting of a proof mass and four cantilevers. The detected signal is intensity-modulated with phase modulation technique and processed with a lock-in amplifier for demodulation. Experimental results show that this optical accelerometer has acceleration sensitivity of 619 V/g and high-resolution acceleration detection of 3 μg in the linear region. PMID:23052079

  12. A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems

    NASA Technical Reports Server (NTRS)

    Hall, Nancy Rabel

    2006-01-01

    A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.

  13. Removal of High Concentration Chromium by a Foam-separating Technique Using Casein Proteins as a Foaming Reagent

    NASA Astrophysics Data System (ADS)

    Sugimoto, Futoshi

    Foam separation of high concentration chromium in leather tanning wastewater was investigated using casein protein as a foaming reagent5mL of5w/v% ammonium acetate buffer was added to the sample chromium water. After adjusting the pH to 9.0,4g/L concentrations of casein and gelatin solution were added to recovery the coagulating flocs of chromium resulting foam separation. The sample water containing chromium flocs was incased in reactor, then mixed with distilled water and 1mL of ethanol to sum 200mL total. The foam separation was performed at time intervals of 3min with an air flow rate of 300mL/min. With casein reagent, the removal rate of chromium was not influenced by the presence of NaCl, however, the rate decreased tendency using with the use of gelatin. The proposed method, utilizing 4g/L of casein solution with water, was not influenced by the presence of calcium (<34mM), magnesium (<1mM), carbonate (<0.5mM), bicarbonate (<1.2mM) nor sulfate (<350mM) ions, and is ideal for foam separation in chromium concentrations of about 100mgCr/L.

  14. Separating the Research Question from the Laboratory Techniques: Advancing High-School Biology Teachers' Ability to Ask Research Questions

    ERIC Educational Resources Information Center

    Hasson, Eilat; Yarden, Anat

    2012-01-01

    Inquiry is essentially a process in which research questions are asked and an attempt is made to find the answers. However, the formulation of operational research questions of the sort used in authentic scientific inquiry is not a trivial task. Here, we set out to explore the possible influence of separating the research question from the…

  15. Separation and preconcentration of trace amounts of aluminum ions in surface water samples using different analytical techniques.

    PubMed

    Khan, Sumaira; Kazi, Tasneem G; Baig, Jameel A; Kolachi, Nida F; Afridi, Hassan I; Shah, Abdul Q; Kandhro, Ghulam A; Kumar, Sham

    2009-11-15

    A separation/preconcentration of aluminum (III) (Al(3+)) has been developed to overcome the problem of high matrix species, which may interfere with the determination of trace quantity of Al(3+) in natural water samples. The separation of Al(3+) in water samples was carried out from interfering cations by complexing them with 2-methyle 8-hyroxyquinoline (quinaldine) on activated silica. Whereas the separated trace amounts of Al(3+) was preconcentrated by cloud point extraction (CPE), as prior step to its determination by spectrofluorimetry (SPF) and flame atomic absorption spectrometry (FAAS). The Al(3+) react with 8-hydroxyquinoline (oxine) and then entrapped in non-ionic surfactant Triton X-114. The main factors affecting CPE efficiency, such as pH of sample solution, concentration of oxine and Triton X-114, equilibration temperature and time period for shaking were investigated in detail. The validity of separation/preconcentration of Al(3+) was checked by certified reference material of water (SRM-1643e). After optimization of the complexation and extraction conditions, a preconcentration factor of 20 was obtained for Al(3+) in 10 mL of natural water samples. The relative standard deviation for 6 replicates containing 100 microg L(-1) of Al(3+) was 5.41 and 4.53% for SPF and FAAS, respectively. The proposed method has been applied for determination of trace amount of Al(3+) in natural water samples with satisfactory results. PMID:19782206

  16. Vision based techniques for rotorcraft low altitude flight

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Suorsa, Ray; Smith, Philip

    1991-01-01

    An overview of research in obstacle detection at NASA Ames Research Center is presented. The research applies techniques from computer vision to automation of rotorcraft navigation. The development of a methodology for detecting the range to obstacles based on the maximum utilization of passive sensors is emphasized. The development of a flight and image data base for verification of vision-based algorithms, and a passive ranging methodology tailored to the needs of helicopter flight are discussed. Preliminary results indicate that it is possible to obtain adequate range estimates except at regions close to the FOE. Closer to the FOE, the error in range increases since the magnitude of the disparity gets smaller, resulting in a low SNR.

  17. Complete chromogen separation and analysis in double immunohistochemical stains using Photoshop-based image analysis.

    PubMed

    Lehr, H A; van der Loos, C M; Teeling, P; Gown, A M

    1999-01-01

    Simultaneous detection of two different antigens on paraffin-embedded and frozen tissues can be accomplished by double immunohistochemistry. However, many double chromogen systems suffer from signal overlap, precluding definite signal quantification. To separate and quantitatively analyze the different chromogens, we imported images into a Macintosh computer using a CCD camera attached to a diagnostic microscope and used Photoshop software for the recognition, selection, and separation of colors. We show here that Photoshop-based image analysis allows complete separation of chromogens not only on the basis of their RGB spectral characteristics, but also on the basis of information concerning saturation, hue, and luminosity intrinsic to the digitized images. We demonstrate that Photoshop-based image analysis provides superior results compared to color separation using bandpass filters. Quantification of the individual chromogens is then provided by Photoshop using the Histogram command, which supplies information on the luminosity (corresponding to gray levels of black-and-white images) and on the number of pixels as a measure of spatial distribution. (J Histochem Cytochem 47:119-125, 1999)

  18. Calculations of helium separation via uniform pores of stanene-based membranes

    PubMed Central

    Gao, Guoping; Jiao, Yan; Jiao, Yalong; Ma, Fengxian; Kou, Liangzhi

    2015-01-01

    Summary The development of low energy cost membranes to separate He from noble gas mixtures is highly desired. In this work, we studied He purification using recently experimentally realized, two-dimensional stanene (2D Sn) and decorated 2D Sn (SnH and SnF) honeycomb lattices by density functional theory calculations. To increase the permeability of noble gases through pristine 2D Sn at room temperature (298 K), two practical strategies (i.e., the application of strain and functionalization) are proposed. With their high concentration of large pores, 2D Sn-based membrane materials demonstrate excellent helium purification and can serve as a superior membrane over traditionally used, porous materials. In addition, the separation performance of these 2D Sn-based membrane materials can be significantly tuned by application of strain to optimize the He purification properties by taking both diffusion and selectivity into account. Our results are the first calculations of He separation in a defect-free honeycomb lattice, highlighting new interesting materials for helium separation for future experimental validation. PMID:26885459

  19. Comparison of zirconia- and silica-based reversed stationary phases for separation of enkephalins.

    PubMed

    Soukupová, K; Krafková, E; Suchánková, Jana; Tesarová, E

    2005-09-16

    In this study, the separation of biologically active peptides on two zirconia-based phases, polybutadiene (PBD)-ZrO2 and polystyrene (PS)-ZrO2, and a silica-based phase C18 was compared. Basic differences in interactions on both types of phases led to quite different selectivity. The retention characteristics were investigated in detail using a variety of organic modifiers, buffers, and temperatures. These parameters affected retention, separation efficiency, resolution and symmetry of peaks. Separation systems consisting of Discovery PBD-Zr column and mobile phase composed of a mixture of acetonitrile and phosphate buffer, pH 2.0 (45:55, v/v) at 70 degrees C and Discovery PS-Zr with acetonitrile and phosphate buffer, pH 3.5 in the same (v/v) ratio at 40 degrees C were suitable for a good resolution of enkephalin related peptides. Mobile phase composed of acetonitrile and phosphate buffer, pH 5.0 (22:78, v/v) was appropriate for separation of enkephalins on Supelcosil C18 stationary phase. PMID:16130703

  20. Calculations of helium separation via uniform pores of stanene-based membranes.

    PubMed

    Gao, Guoping; Jiao, Yan; Jiao, Yalong; Ma, Fengxian; Kou, Liangzhi; Du, Aijun

    2015-01-01

    The development of low energy cost membranes to separate He from noble gas mixtures is highly desired. In this work, we studied He purification using recently experimentally realized, two-dimensional stanene (2D Sn) and decorated 2D Sn (SnH and SnF) honeycomb lattices by density functional theory calculations. To increase the permeability of noble gases through pristine 2D Sn at room temperature (298 K), two practical strategies (i.e., the application of strain and functionalization) are proposed. With their high concentration of large pores, 2D Sn-based membrane materials demonstrate excellent helium purification and can serve as a superior membrane over traditionally used, porous materials. In addition, the separation performance of these 2D Sn-based membrane materials can be significantly tuned by application of strain to optimize the He purification properties by taking both diffusion and selectivity into account. Our results are the first calculations of He separation in a defect-free honeycomb lattice, highlighting new interesting materials for helium separation for future experimental validation. PMID:26885459

  1. Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector

    NASA Astrophysics Data System (ADS)

    Li, Baicheng; Miao, Quanlong; Wang, Shenyuan; Hui, Debin; Zhao, Tianqi; Liang, Kun; Yang, Ru; Han, Dejun

    2016-05-01

    In this report, we present Time-Correlated Photon Counting (TCPC) technique and its applications in time-correlated Raman spectroscopy. The main difference between TCPC and existing Time-Correlated Single Photon Counting (TCSPC) is that the TCPC employs a photon-number-resolving photodetector (SiPM, silicon photomultiplier) and measures exact photon number rather than counting single photon by reducing pulse light intensity, thus high measurement speed and efficiency can be expected. A home-made Raman spectrometer has demonstrated an Instrument Response Function (IRF) ~100ps (FWHM) based on TCPC with a strip SiPM (1mm×0.05mm, containing 500 micro cells), fast and weak Raman signals was separated from slow and strong fluorescence background of bulk trinitrotoluene TNT sample. The original Raman spectrum of bulk TNT, measured by TCPC technique, is compared with the result obtained by a commercial Micro-Raman Spectrometer.

  2. Simultaneous determination of iron (II) and ascorbic acid in pharmaceuticas based on flow sandwich technique.

    PubMed

    Vakh, Christina; Freze, Elena; Pochivalov, Alexsey; Evdokimova, Ekaterina; Kamencev, Mihail; Moskvin, Leonid; Bulatov, Andrey

    2015-01-01

    The simple and easy performed flow system based on sandwich technique has been developed for the simultaneous separate determination of iron (II) and ascorbic acid in pharmaceuticals. The implementation of sandwich technique assumed the injection of sample solution between two selective reagents and allowed the carrying out in reaction coil two chemical reactions simultaneously: iron (II) with 1,10-phenanthroline and ascorbic acid with sodium 2,6-dichlorophenolindophenol. For achieving of excellent repeatability and considerable reagent saving the various parameters such as flow rate, sample and reagent volumes, reaction coil length were also optimized. The limits of detection (LODs) obtained by using the developed flow sandwich-type approach were 0.2 mg L(-1) for iron (II) and 0.7 mg L(-1) for ascorbic acid. The suggested approach was validated according to the following parameters: linearity and sensitivity, precision, recoveries and accuracy. The sampling frequency was 41 h(-1). PMID:25862995

  3. An acoustic-array based structural health monitoring technique for wind turbine blades

    NASA Astrophysics Data System (ADS)

    Aizawa, Kai; Poozesh, Peyman; Niezrecki, Christopher; Baqersad, Javad; Inalpolat, Murat; Heilmann, Gunnar

    2015-04-01

    This paper proposes a non-contact measurement technique for health monitoring of wind turbine blades using acoustic beamforming techniques. The technique works by mounting an audio speaker inside a wind turbine blade and observing the sound radiated from the blade to identify damage within the structure. The main hypothesis for the structural damage detection is that the structural damage (cracks, edge splits, holes etc.) on the surface of a composite wind turbine blade results in changes in the sound radiation characteristics of the structure. Preliminary measurements were carried out on two separate test specimens, namely a composite box and a section of a wind turbine blade to validate the methodology. The rectangular shaped composite box and the turbine blade contained holes with different dimensions and line cracks. An acoustic microphone array with 62 microphones was used to measure the sound radiation from both structures when the speaker was located inside the box and also inside the blade segment. A phased array beamforming technique and CLEAN-based subtraction of point spread function from a reference (CLSPR) were employed to locate the different damage types on both the composite box and the wind turbine blade. The same experiment was repeated by using a commercially available 48-channel acoustic ring array to compare the test results. It was shown that both the acoustic beamforming and the CLSPR techniques can be used to identify the damage in the test structures with sufficiently high fidelity.

  4. Antimisting kerosene: Base fuel effects, blending and quality control techniques

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Ernest, J.; Sarohia, V.

    1984-01-01

    The problems associated with blending of the AMK additive with Jet A, and the base fuel effects on AMK properties are addressed. The results from the evaluation of some of the quality control techniques for AMK are presented. The principal conclusions of this investigation are: significant compositional differences for base fuel (Jet A) within the ASTM specification DI655; higher aromatic content of the base fuel was found to be beneficial for the polymer dissolution at ambient (20 C) temperature; using static mixer technology, the antimisting additive (FM-9) is in-line blended with Jet A, producing AMK which has adequate fire-protection properties 15 to 20 minutes after blending; degradability of freshly blended and equilibrated AMK indicated that maximum degradability is reached after adequate fire protection is obtained; the results of AMK degradability as measured by filter ratio, confirmed previous RAE data that power requirements to decade freshly blended AMK are significantly higher than equilibrated AMK; blending of the additive by using FM-9 concentrate in Jet A produces equilibrated AMK almost instantly; nephelometry offers a simple continuous monitoring capability and is used as a real time quality control device for AMK; and trajectory (jet thurst) and pressure drop tests are useful laboratory techniques for evaluating AMK quality.

  5. Water-based technique to produce porous PZT materials

    NASA Astrophysics Data System (ADS)

    Galassi, C.; Capiani, C.; Craciun, F.; Roncari, E.

    2005-09-01

    Water based colloidal processing of PZT materials was investigated in order to reduce costs and employ more environmental friendly manufacturing. The technique addressed was the production of porous thick samples by the so called “starch consolidation”. PZT “soft” compositions were used. The “starch consolidation” process allows to obtain the green body by raising the temperature of a suspension of PZT powder, soluble starch and water, cast into a metal mould. The influence of the processing parameters and composition on the morphology, pore volumes, pore size distributions and piezoelectric properties are investigated. Zeta potential determination and titration with different deflocculants were essential tools to adjust the slurry formulation.

  6. Foreign fiber detecting system based on multispectral technique

    NASA Astrophysics Data System (ADS)

    Li, Qi; Han, Shaokun; Wang, Ping; Wang, Liang; Xia, Wenze

    2015-08-01

    This paper presents a foreign fiber detecting system based on multi-spectral technique. The absorption rate and the reflectivity of foreign fibers differently under different wavelengths of light so that the characteristics of the image has difference in the different light irradiation. Contrast pyramid image fusion algorithm and adaptive enhancement is improved to extracted the foreign fiber from the cotton background. The experimental results show that the single light source can detect 6 kinds of foreign fiber in cotton and multi-spectral detection can detect eight kinds.

  7. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  8. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  9. Separation of large DNA molecules by size exclusion chromatography-based microchip with on-chip concentration structure

    NASA Astrophysics Data System (ADS)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2016-06-01

    The separation of DNA molecules according to their size represents a fundamental bioanalytical procedure. Here, we report the development of a chip-sized device, consisting of micrometer-sized fence structures fabricated in a microchannel, for the separation of large DNA molecules (over 10 kbp) based on the principle of size exclusion chromatography (SEC). In order to achieve separation, two approaches were utilized: first, the DNA samples were concentrated immediately prior to separation using nanoslit structures, with the aim of improving the resolution. Second, a theoretical model of SEC-based separation was established and applied in order to predict the optimal voltage range for separation. In this study, we achieved separation of λ DNA (48.5 kbp) and T4 DNA (166 kbp) using the present SEC-based microchip.

  10. Test of Actinide-Lanthanide Separation in an Aluminum-Based Pyrochemical System

    SciTech Connect

    Rault, Laurence; Heusch, Murielle; Allibert, Michel; Lemort, Florent; Deschane, Xavier; Boen, Roger

    2002-08-15

    The investigation of the actinide and lanthanide distribution between a liquid metal and a molten fluoride salt shows a significant increase of the separation coefficient by using an aluminum-based pyrochemical system instead of a zinc-based system. The obtained values partly depend on the LiF/AlF{sub 3} ratio and can reach more than 30 000 when AlF{sub 3} is in excess with regard to the formation of the cryolite (Li{sub 3} AlF{sub 6}). Furthermore, in the metal phase, the aluminum interacts with the lanthanides to a lesser extent than in other usual metallic solvents. This opens a new way to explore the feasibility of the separation of actinides and lanthanides in the field of nuclear fuel reprocessing.

  11. Horizontal diffusion elutriation: a new size-separation technique for preparation of rodent-respirable fibers for animal testing.

    PubMed

    Zoitos, Bruce K; Andrejcak, Michael J; Boymel, Paul M; Maxim, L Daniel; Niebo, Ron

    2007-01-01

    Short-and long-term animal experiments are used to examine the toxicology and biopersistence of various types of fibers. In order to ensure an adequate exposure dose for testing, modern experimental protocols specify that the exposure aerosol (in an inhalation test) or the fibers (in an intratracheal instillation [IT] test) must contain at least a minimum concentration of long (> 20 mum) rodent-respirable fibers. As produced and handled, most fibers contain a distribution of diameters and lengths, only some of which are both long and rodent-respirable. Therefore, it is necessary to size-separate the fibers to enrich the proportion of long, rodent-respirable fibers in the material to be tested. This article presents a new and relatively simple method for size separation that avoids some of the difficulties associated with other methods. The method, termed horizontal diffusion elutriation (HDE), is illustrated by size-separating refractory ceramic fiber (RCF) and four polycrystalline alumina (PCA) fibers. PMID:17127641

  12. Polymer-based separations: Synthesis and application of polymers for ionic and molecular recognition

    SciTech Connect

    Alexandratos, S.D.

    1992-01-01

    Polymer-based separations have utilized resins such as sulfonic, acrylic, and iminodiacetic acid resins and the XAD series. Selective polymeric reagents for reaction with a targeted metal ion were synthesized as polymers with two different types of functional groups, each operating on the ions through a different mechanism. There are 3 classes of DMBPs (dual mechanism bifunctional polymers). Research during this period dealing with metal ion recognition focused on two of these classes (reduction of metal ions to metal; selective complexation).

  13. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.

  14. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOEpatents

    Judkins, R.R.; Burchell, T.D.

    1999-07-20

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

  15. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.

    PubMed

    Park, Emily S; Jin, Chao; Guo, Quan; Ang, Richard R; Duffy, Simon P; Matthews, Kerryn; Azad, Arun; Abdi, Hamidreza; Todenhöfer, Tilman; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen

    2016-04-13

    Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label-free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 10(4) -fold enrichment of target cells relative to leukocytes. In patients with metastatic castration-resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. PMID:26917414

  16. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  17. Linear Frequency Estimation Technique for Reducing Frequency Based Signals

    PubMed Central

    Woodbridge, Jonathan; Bui, Alex; Sarrafzadeh, Majid

    2016-01-01

    This paper presents a linear frequency estimation (LFE) technique for data reduction of frequency-based signals. LFE converts a signal to the frequency domain by utilizing the Fourier transform and estimates both the real and imaginary parts with a series of vectors much smaller than the original signal size. The estimation is accomplished by selecting optimal points from the frequency domain and interpolating data between these points with a first order approximation. The difficulty of such a problem lies in determining which points are most significant. LFE is unique in the fact that it is generic to a wide variety of frequency-based signals such as electromyography (EMG), voice, and electrocardiography (ECG). The only requirement is that spectral coefficients are spatially correlated. This paper presents the algorithm and results from both EMG and voice data. We complete the paper with a description of how this method can be applied to pattern types of recognition, signal indexing, and compression.

  18. Transition metal cation separations with a resorcinarene-based amino acid stationary phase.

    PubMed

    Li, Na; Allen, Lee J; Harrison, Roger G; Lamb, John D

    2013-03-01

    A resorcinarene-based macrocyclic ligand functionalized with alanine and undecyl groups (AUA) was synthesized and applied to ion chromatographic separations. The selectivity and separation of transition metal ions on a column packed with AUA adsorbed onto 55% cross-linked styrene-divinylbenzene resin are presented. The upper and lower rims of the resorcinarene were modified with amino acids and -C(11)H(23) alkyl chains, respectively. The four carboxylic acid groups on the upper rim act as cation-exchangers while the four -C(11)H(23) alkyl chains serve to anchor the ligand to the resin surface by the hydrophobic effect. A systematic study of the effect of different eluent components including non-metal-chelating (HNO(3)) and chelating acids (oxalic acid, succinic acid, dipicolinic acid, and citric acid) on the retention of transition metal ions was investigated. Six metal ions (Mn(2+), Co(2+), Ni(2+), Cd(2+), Cu(2+), and Zn(2+)) were separated on the AUA column within a reasonable time with a single eluent gradient using oxalic acid. The separation is compared to that obtained using a commercial column containing carboxylic acid functional groups. The AUA column containing four preorganized carboxylic acid groups showed selectivity for Cu(2+) when no chelating eluent was present, a selectivity which was not observed with the comparison column.

  19. Optimization design of satellite separation systems based on Multi-Island Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Xingzhi; Chen, Xiaoqian; Zhao, Yong; Yao, Wen

    2014-03-01

    The separation systems are crucial for the launch of satellites. With respect to the existing design issues of satellite separation systems, an optimization design approach based on Multi-Island Genetic Algorithm is proposed, and a hierarchical optimization of system mass and separation angular velocity is designed. Multi-Island Genetic Algorithm is studied for the problem and the optimization parameters are discussed. Dynamic analysis of ADAMS used to validate the designs is integrated with iSIGHT. Then the optimization method is employed for a typical problem using the helical compression spring mechanism, and the corresponding objective functions are derived. It turns out that the mass of compression spring catapult is decreased by 30.7% after optimization and the angular velocity can be minimized considering spring stiffness errors. Moreover, ground tests and on-orbit flight indicate that the error of separation speed is controlled within 1% and the angular velocity is reduced by nearly 90%, which proves the design result and the optimization approach.

  20. Modern Micro and Nanoparticle-Based Imaging Techniques

    PubMed Central

    Ryvolova, Marketa; Chomoucka, Jana; Drbohlavova, Jana; Kopel, Pavel; Babula, Petr; Hynek, David; Adam, Vojtech; Eckschlager, Tomas; Hubalek, Jaromir; Stiborova, Marie; Kaiser, Jozef; Kizek, Rene

    2012-01-01

    The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted. PMID:23202187

  1. A polarization-based Thomson scattering technique for burning plasmas

    NASA Astrophysics Data System (ADS)

    Parke, E.; Mirnov, V. V.; Den Hartog, D. J.

    2014-02-01

    The traditional Thomson scattering diagnostic is based on measurement of the wavelength spectrum of scattered light, where electron temperature measurements are inferred from thermal broadening of the spectrum. At sufficiently high temperatures, especially those predicted for ITER and other burning plasmas, relativistic effects cause a change in the degree of polarization (P) of the scattered light; for fully polarized incident laser light, the scattered light becomes partially polarized. The resulting reduction of polarization is temperature dependent and has been proposed by other authors as a potential alternative to the traditional spectral decomposition technique. Following the previously developed Stokes vector approach, we analytically calculate the degree of polarization for incoherent Thomson scattering. For the first time, we obtain exact results valid for the full range of incident laser polarization states, scattering angles, and electron temperatures. While previous work focused only on linear polarization, we show that circularly polarized incident light optimizes the degree of depolarization for a wide range of temperatures relevant to burning plasmas. We discuss the feasibility of a polarization based Thomson scattering diagnostic for ITER-like plasmas with both linearly and circularly polarized light and compare to the traditional technique.

  2. A Membrane-Based Electro-Separation Method (MBES) for Sample Clean-Up and Norovirus Concentration

    PubMed Central

    Kang, Wei; Cannon, Jennifer L.

    2015-01-01

    Noroviruses are the leading cause of acute gastroenteritis and foodborne illnesses in the United States. Enhanced methods for detecting noroviruses in food matrices are needed as current methods are complex, labor intensive and insensitive, often resulting in inhibition of downstream molecular detection and inefficient recovery. Membrane-based electro-separation (MBES) is a technique to exchange charged particles through a size-specific dialysis membrane from one solution to another using electric current as the driving force. Norovirus has a net negative surface charge in a neutrally buffered environment, so when placed in an electric field, it moves towards the anode. It can then be separated from the cathodic compartment where the sample is placed and then collected in the anodic compartment for downstream detection. In this study, a MBES-based system was designed, developed and evaluated for concentrating and recovering murine norovirus (MNV-1) from phosphate buffer. As high as 30.8% MNV-1 migrated from the 3.5 ml sample chamber to the 1.5 ml collection chamber across a 1 μm separation membrane when 20 V was applied for 30 min using 20 mM sodium phosphate with 0.01% SDS (pH 7.5) as the electrolyte. In optimization of the method, weak applied voltage (20 V), moderate duration (30 min), and low ionic strength electrolytes with SDS addition were needed to increase virus movement efficacy. The electric field strength of the system was the key factor to enhance virus movement, which could only be improved by shortening the electrodes distance, instead of increasing system applied voltage because of virus stability. This study successfully demonstrated the norovirus mobility in an electric field and migration across a size-specific membrane barrier in sodium phosphate electrolyte. With further modification and validation in food matrixes, a novel, quick, and cost-effective sample clean-up technique might be developed to separate norovirus particles from food

  3. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  4. Titania-based stationary phase in separation of ondansetron and its related compounds.

    PubMed

    Zizkovský, Václav; Kucera, Radim; Klimes, Jirí; Dohnal, Jirí

    2008-05-01

    Improvements in stationary phase stability have been and remain a great task for research of new stationary phases. Metal oxide-based stationary phases appear as one of perspective alternatives to classical silica based stationary phases regarding to their similar effectiveness, different selectivity, different retention mechanism and mainly better chemical and thermal stability. In this study, the retention behaviour of ondansetron and its five pharmacopoeial impurities on TiO(2)-based reversed phase was investigated. The influence of buffer type, pH and concentration on retention was studied. Different types and amount of organic solvent in mobile phase were tested. The effect of temperature and flow rate on separation was investigated. The separation conditions were optimized and developed method validated. The retention parameters - retention time (t(R)), retention factor (k'), theoretical plate number (N), resolution between peaks due to nearby peaks (R(s)) and symmetry factor (A(s)) have been compared to parameters achieved on polybutadiene-coated zirconia column. The thermodynamic parameters of retention of analysed compounds - enthalpy, entropy and Gibbs free energy - were calculated and compared to those achieved on polybutadiene-coated zirconia column. This work proves similarity of retention behaviour of ondansetron and its five related compounds on zirconia-based and titania-based stationary phases and potential utilisation of polyethylene covered TiO(2)-based reversed stationary phase as an alternative to polybutadiene-coated ZrO(2) stationary phase in pharmaceutical analysis of ondansetron.

  5. Grid Based Techniques for Visualization in the Geosciences

    NASA Astrophysics Data System (ADS)

    Bollig, E. F.; Sowell, B.; Lu, Z.; Erlebacher, G.; Yuen, D. A.

    2005-12-01

    As experiments and simulations in the geosciences grow larger and more complex, it has become increasingly important to develop methods of processing and sharing data in a distributed computing environment. In recent years, the scientific community has shown growing interest in exploiting the powerful assets of Grid computing to this end, but the complexity of the Grid has prevented many scientists from converting their applications and embracing this possibility. We are investigating methods for development and deployment of data extraction and visualization services across the NaradaBrokering [1] Grid infrastructure. With the help of gSOAP [2], we have developed a series of C/C++ services for wavelet transforms, earthquake clustering, and basic 3D visualization. We will demonstrate the deployment and collaboration of these services across a network of NaradaBrokering nodes, concentrating on the challenges faced in inter-service communication, service/client division, and particularly web service visualization. Renderings in a distributed environment can be handled in three ways: 1) the data extraction service computes and renders everything locally and sends results to the client as a bitmap image, 2) the data extraction service sends results to a separate visualization service for rendering, which in turn sends results to a client as a bitmap image, and 3) the client itself renders images locally. The first two options allow for large visualizations in a distributed and collaborative environment, but limit interactivity of the client. To address this problem we are investigating the advantages of the JOGL OpenGL library [3] to perform renderings on the client side using the client's hardware for increased performance. We will present benchmarking results to ascertain the relative advantage of the three aforementioned techniques as a function of datasize and visualization task. [1] The NaradaBrokering Project, http://www.naradabrokering.org [2] gSOAP: C/C++ Web

  6. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation.

    PubMed

    Shu, Qing; Nawaz, Zeeshan; Gao, Jixian; Liao, Yuhui; Zhang, Qiang; Wang, Dezheng; Wang, Jinfu

    2010-07-01

    A solid acid catalyst that can keep high activity and stability is necessary when low cost feedstocks are utilized for biodiesel synthesis because the reaction medium contains a large amount of water. Three solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt. The structure of these catalysts was characterized by a variety of techniques. A new process that used the coupling of the reaction and separation was employed, which greatly improved the conversion of cottonseed oil (triglyceride) and free fatty acids (FFA) when a model waste oil feedstock was used. The vegetable oil asphalt-based catalyst showed the highest catalytic activity. This was due to the high density and stability of its acid sites, its loose irregular network, its hydrophobicity that prevented the hydration of -OH species, and large pores that provided more acid sites for the reactants.

  7. Introducing Students to Protein Analysis Techniques: Separation and Comparative Analysis of Gluten Proteins in Various Wheat Strains

    ERIC Educational Resources Information Center

    Pirinelli, Alyssa L.; Trinidad, Jonathan C.; Pohl, Nicola L. B.

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) is commonly taught in undergraduate laboratory classes as a traditional method to analyze proteins. An experiment has been developed to teach these basic protein gel skills in the context of gluten protein isolation from various types of wheat flour. A further goal is to relate this technique to current…

  8. An interactive tutorial-based training technique for vertebral morphometry.

    PubMed

    Gardner, J C; von Ingersleben, G; Heyano, S L; Chesnut, C H

    2001-01-01

    The purpose of this work was to develop a computer-based procedure for training technologists in vertebral morphometry. The utility of the resulting interactive, tutorial based training method was evaluated in this study. The training program was composed of four steps: (1) review of an online tutorial, (2) review of analyzed spine images, (3) practice in fiducial point placement and (4) testing. During testing, vertebral heights were measured from digital, lateral spine images containing osteoporotic fractures. Inter-observer measurement precision was compared between research technicians, and between technologists and radiologist. The technologists participating in this study had no prior experience in vertebral morphometry. Following completion of the online training program, good inter-observer measurement precision was seen between technologists, showing mean coefficients of variation of 2.33% for anterior, 2.87% for central and 2.65% for posterior vertebral heights. Comparisons between the technicians and radiologist ranged from 2.19% to 3.18%. Slightly better precision values were seen with height measurements compared with height ratios, and with unfractured compared with fractured vertebral bodies. The findings of this study indicate that self-directed, tutorial-based training for spine image analyses is effective, resulting in good inter-observer measurement precision. The interactive tutorial-based approach provides standardized training methods and assures consistency of instructional technique over time.

  9. Enhancing the effectiveness of IST through risk-based techniques

    SciTech Connect

    Floyd, S.D.

    1996-12-01

    Current IST requirements were developed mainly through deterministic-based methods. While this approach has resulted in an adequate level of safety and reliability for pumps and valves, insights from probabilistic safety assessments suggest a better safety focus can be achieved at lower costs. That is, some high safety impact pumps and valves are currently not tested under the IST program and should be added, while low safety impact valves could be tested at significantly greater intervals than allowed by the current IST program. The nuclear utility industry, through the Nuclear Energy Institute (NEI), has developed a draft guideline for applying risk-based techniques to focus testing on those pumps and valves with a high safety impact while reducing test frequencies on low safety impact pumps and valves. The guideline is being validated through an industry pilot application program that is being reviewed by the U.S. Nuclear Regulatory Commission. NEI and the ASME maintain a dialogue on the two groups` activities related to risk-based IST. The presenter will provide an overview of the NEI guideline, discuss the methodological approach for applying risk-based technology to IST and provide the status of the industry pilot plant effort.

  10. Functional Allocation for Ground-Based Automated Separation Assurance in NextGen

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Martin, Lynne; Homola, Jeffrey; Cabrall, Christopher; Brasil, Connie

    2010-01-01

    As part of an ongoing research effort into functional allocation in a NextGen environment, a controller-in-the-loop study on ground-based automated separation assurance was conducted at NASA Ames' Airspace Operations Laboratory in February 2010. Participants included six FAA front line managers, who are currently certified professional controllers and four recently retired controllers. Traffic scenarios were 15 and 30 minutes long where controllers interacted with advanced technologies for ground-based separation assurance, weather avoidance, and arrival metering. The automation managed the separation by resolving conflicts automatically and involved controllers only by exception, e.g., when the automated resolution would have been outside preset limits. Results from data analyses show that workload was low despite high levels of traffic, Operational Errors did occur but were closely tied to local complexity, and safety acceptability ratings varied with traffic levels. Positive feedback was elicited for the overall concept with discussion on the proper allocation of functions and trust in automation.

  11. Synergistic extraction and separation of Co(II)/Ni(II) by solvent extraction technique using TIOA/TOPO as carriers

    NASA Astrophysics Data System (ADS)

    Okatan, Ahmet; Eyüpoǧlu, Volkan; Kumbasar, Recep Ali; Turgut, Halil Ibrahim

    2016-04-01

    Cobalt and its compounds have wide range applications in some industrial and technological fields. These metals show excellent resistance to oxidation and corrosion under extreme conditions. However, these metals found together within metal ores in nature. This situation makes their separation difficult from each other. They have very similar physical and chemical properties making them very hard to be purified with using traditional separation pathways. Moreover, increasing supply-demand gap between them and decreasing valuable ores because of limited deposit in earth crust have been limited the sources of them. Under the light of this knowledge, one of the practical solutions should be produced to recycle cobalt and nickel from solid and liquid waste containing trace amounts of them. In this study, we investigated the selective and the synergistic cobalt extraction from acidic aqueous solutions by solvent extraction using tri-iso-octylamine (TIOA) and Tri-n-octyl phosphine oxide (TOPO) as carriers. The effective parameters on the extraction and the stripping of the cobalt were investigated, and optimum synergistic extraction and stripping conditions were identified. The cobalt extraction from aqueous Co/Ni solutions in various molar concentrations was examined in the optimum conditions to determine the synergism between TIOA and TOPO.

  12. Rapid and Efficient Filtration-Based Procedure for Separation and Safe Analysis of CBRN Mixed Samples

    PubMed Central

    Bentahir, Mostafa; Laduron, Frederic; Irenge, Leonid; Ambroise, Jérôme; Gala, Jean-Luc

    2014-01-01

    Separating CBRN mixed samples that contain both chemical and biological warfare agents (CB mixed sample) in liquid and solid matrices remains a very challenging issue. Parameters were set up to assess the performance of a simple filtration-based method first optimized on separate C- and B-agents, and then assessed on a model of CB mixed sample. In this model, MS2 bacteriophage, Autographa californica nuclear polyhedrosis baculovirus (AcNPV), Bacillus atrophaeus and Bacillus subtilis spores were used as biological agent simulants whereas ethyl methylphosphonic acid (EMPA) and pinacolyl methylphophonic acid (PMPA) were used as VX and soman (GD) nerve agent surrogates, respectively. Nanoseparation centrifugal devices with various pore size cut-off (30 kD up to 0.45 µm) and three RNA extraction methods (Invisorb, EZ1 and Nuclisens) were compared. RNA (MS2) and DNA (AcNPV) quantification was carried out by means of specific and sensitive quantitative real-time PCRs (qPCR). Liquid chromatography coupled to time-of-flight mass spectrometry (LC/TOFMS) methods was used for quantifying EMPA and PMPA. Culture methods and qPCR demonstrated that membranes with a 30 kD cut-off retain more than 99.99% of biological agents (MS2, AcNPV, Bacillus Atrophaeus and Bacillus subtilis spores) tested separately. A rapid and reliable separation of CB mixed sample models (MS2/PEG-400 and MS2/EMPA/PMPA) contained in simple liquid or complex matrices such as sand and soil was also successfully achieved on a 30 kD filter with more than 99.99% retention of MS2 on the filter membrane, and up to 99% of PEG-400, EMPA and PMPA recovery in the filtrate. The whole separation process turnaround-time (TAT) was less than 10 minutes. The filtration method appears to be rapid, versatile and extremely efficient. The separation method developed in this work constitutes therefore a useful model for further evaluating and comparing additional separation alternative procedures for a safe handling and

  13. Advanced SuperDARN meteor wind observations based on raw time series analysis technique

    NASA Astrophysics Data System (ADS)

    Tsutsumi, M.; Yukimatu, A. S.; Holdsworth, D. A.; Lester, M.

    2009-04-01

    The meteor observation technique based on SuperDARN raw time series analysis has been upgraded. This technique extracts meteor information as biproducts and does not degrade the quality of normal SuperDARN operations. In the upgrade the radar operating system (RADOPS) has been modified so that it can oversample every 15 km during the normal operations, which have a range resolution of 45 km. As an alternative method for better range determination a frequency domain interferometry (FDI) capability was also coded in RADOPS, where the operating radio frequency can be changed every pulse sequence. Test observations were conducted using the CUTLASS Iceland East and Finland radars, where oversampling and FDI operation (two frequencies separated by 3 kHz) were simultaneously carried out. Meteor ranges obtained in both ranging techniques agreed very well. The ranges were then combined with the interferometer data to estimate meteor echo reflection heights. Although there were still some ambiguities in the arrival angles of echoes because of the rather long antenna spacing of the interferometers, the heights and arrival angles of most of meteor echoes were more accurately determined than previously. Wind velocities were successfully estimated over the height range of 84 to 110 km. The FDI technique developed here can be further applied to the common SuperDARN operation, and study of fine horizontal structures of F region plasma irregularities is expected in the future.

  14. 5 CFR 837.802 - Benefits under another retirement system for Federal employees based on the most recent separation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Benefits under another retirement system for Federal employees based on the most recent separation. 837.802 Section 837.802 Administrative... system for Federal employees based on the most recent separation. (a) Generally. An annuitant who...

  15. Highly accurate and fast optical penetration-based silkworm gender separation system

    NASA Astrophysics Data System (ADS)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  16. Separation of amino acids by high performance liquid chromatography based on calixarene-bonded stationary phases.

    PubMed

    Zadmard, Reza; Tabar-Heydar, Kourosh; Imani, Maryam

    2015-01-01

    In this work, we present a new method for synthesis of silica gel stationary phases based on calix[4]arene derivatives. In order to achieve it, 25,27-dipropoxy-26,28-bis-[3-propyloxydimethylsililoxy]calix[4]arene has been synthesized in six steps and immobilized on silica via chlorotrimethylsilane. Stationary phases were characterized by elemental analysis, infrared spectroscopy and thermal analysis and used for the separation of amino acid derivatives by high performance liquid chromatography. The effect of isocratic and gradient elution, pH and column temperature on retention and selectivity of the Fmoc-protected amino acids were studied. The retention mechanism was also discussed. The results indicated that the stationary phase behaves like a reverse phase packing. Size exclusion, electron-π, π-π and hydrophobic interactions seem to be involved in the separation process.

  17. A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation

    SciTech Connect

    Zhu, X; Tian, CC; Mahurin, SM; Chai, SH; Wang, CM; Brown, S; Veith, GM; Luo, HM; Liu, HL; Dai, S

    2012-06-27

    A general strategy for the synthesis of porous, fluorescent, triazine-framework-based membranes with intrinsic porosity through an aromatic nitrile trimerization reaction is presented. The essence of this strategy lies in the use of a superacid to catalyze the cross-linking reaction efficiently at a low temperature, allowing porous polymer membrane architectures to be facilely derived. With fiinctionalized triazine units, the membrane exhibits an increased selectivity for membrane separation of CO2 over N-2. The good ideal CO2/N-2 selectivity of 29 +/- 2 was achieved with a CO2 permeability of 518 +/- 25 barrer. Through this general synthesis protocol, a new class of porous polymer membranes with tunable functionalities and porosities can be derived, significantly expanding the currently limited library of polymers with intrinsic microporosity for synthesizing functional membranes in separation, catalysis, and energy storage/conversion.

  18. Blind source separation based x-ray image denoising from an image sequence.

    PubMed

    Yu, Chun-Yu; Li, Yan; Fei, Bin; Li, Wei-Liang

    2015-09-01

    Blind source separation (BSS) based x-ray image denoising from an image sequence is proposed. Without priori knowledge, the useful image signal can be separated from an x-ray image sequence, for original images are supposed as different combinations of stable image signal and random image noise. The BSS algorithms such as fixed-point independent component analysis and second-order statistics singular value decomposition are used and compared with multi-frame averaging which is a common algorithm for improving image's signal-to-noise ratio (SNR). Denoising performance is evaluated in SNR, standard deviation, entropy, and runtime. Analysis indicates that BSS is applicable to image denoising; the denoised image's quality will get better when more frames are included in an x-ray image sequence, but it will cost more time; there should be trade-off between denoising performance and runtime, which means that the number of frames included in an image sequence is enough. PMID:26429442

  19. Blind source separation based x-ray image denoising from an image sequence

    NASA Astrophysics Data System (ADS)

    Yu, Chun-Yu; Li, Yan; Fei, Bin; Li, Wei-Liang

    2015-09-01

    Blind source separation (BSS) based x-ray image denoising from an image sequence is proposed. Without priori knowledge, the useful image signal can be separated from an x-ray image sequence, for original images are supposed as different combinations of stable image signal and random image noise. The BSS algorithms such as fixed-point independent component analysis and second-order statistics singular value decomposition are used and compared with multi-frame averaging which is a common algorithm for improving image's signal-to-noise ratio (SNR). Denoising performance is evaluated in SNR, standard deviation, entropy, and runtime. Analysis indicates that BSS is applicable to image denoising; the denoised image's quality will get better when more frames are included in an x-ray image sequence, but it will cost more time; there should be trade-off between denoising performance and runtime, which means that the number of frames included in an image sequence is enough.

  20. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  1. Plasma and trap-based techniques for science with positrons

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.; Dubin, D. H. E.; Greaves, R. G.; Surko, C. M.

    2015-01-01

    In recent years, there has been a wealth of new science involving low-energy antimatter (i.e., positrons and antiprotons) at energies ranging from 102 to less than 10-3 eV . Much of this progress has been driven by the development of new plasma-based techniques to accumulate, manipulate, and deliver antiparticles for specific applications. This article focuses on the advances made in this area using positrons. However, many of the resulting techniques are relevant to antiprotons as well. An overview is presented of relevant theory of single-component plasmas in electromagnetic traps. Methods are described to produce intense sources of positrons and to efficiently slow the typically energetic particles thus produced. Techniques are described to trap positrons efficiently and to cool and compress the resulting positron gases and plasmas. Finally, the procedures developed to deliver tailored pulses and beams (e.g., in intense, short bursts, or as quasimonoenergetic continuous beams) for specific applications are reviewed. The status of development in specific application areas is also reviewed. One example is the formation of antihydrogen atoms for fundamental physics [e.g., tests of invariance under charge conjugation, parity inversion, and time reversal (the CPT theorem), and studies of the interaction of gravity with antimatter]. Other applications discussed include atomic and materials physics studies and the study of the electron-positron many-body system, including both classical electron-positron plasmas and the complementary quantum system in the form of Bose-condensed gases of positronium atoms. Areas of future promise are also discussed. The review concludes with a brief summary and a list of outstanding challenges.

  2. Base flow separation: A comparison of analytical and mass balance methods

    NASA Astrophysics Data System (ADS)

    Lott, Darline A.; Stewart, Mark T.

    2016-04-01

    Base flow is the ground water contribution to stream flow. Many activities, such as water resource management, calibrating hydrological and climate models, and studies of basin hydrology, require good estimates of base flow. The base flow component of stream flow is usually determined by separating a stream hydrograph into two components, base flow and runoff. Analytical methods, mathematical functions or algorithms used to calculate base flow directly from discharge, are the most widely used base flow separation methods and are often used without calibration to basin or gage-specific parameters other than basin area. In this study, six analytical methods are compared to a mass balance method, the conductivity mass-balance (CMB) method. The base flow index (BFI) values for 35 stream gages are obtained from each of the seven methods with each gage having at least two consecutive years of specific conductance data and 30 years of continuous discharge data. BFI is cumulative base flow divided by cumulative total discharge over the period of record of analysis. The BFI value is dimensionless, and always varies from 0 to 1. Areas of basins used in this study range from 27 km2 to 68,117 km2. BFI was first determined for the uncalibrated analytical methods. The parameters of each analytical method were then calibrated to produce BFI values as close to the CMB derived BFI values as possible. One of the methods, the power function (aQb + cQ) method, is inherently calibrated and was not recalibrated. The uncalibrated analytical methods have an average correlation coefficient of 0.43 when compared to CMB-derived values, and an average correlation coefficient of 0.93 when calibrated with the CMB method. Once calibrated, the analytical methods can closely reproduce the base flow values of a mass balance method. Therefore, it is recommended that analytical methods be calibrated against tracer or mass balance methods.

  3. Detecting Molecular Properties by Various Laser-Based Techniques

    SciTech Connect

    Hsin, Tse-Ming

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  4. Investigations on landmine detection by neutron-based techniques.

    PubMed

    Csikai, J; Dóczi, R; Király, B

    2004-07-01

    Principles and techniques of some neutron-based methods used to identify the antipersonnel landmines (APMs) are discussed. New results have been achieved in the field of neutron reflection, transmission, scattering and reaction techniques. Some conclusions are as follows: The neutron hand-held detector is suitable for the observation of anomaly caused by a DLM2-like sample in different soils with a scanning speed of 1m(2)/1.5 min; the reflection cross section of thermal neutrons rendered the determination of equivalent thickness of different soil components possible; a simple method was developed for the determination of the thermal neutron flux perturbation factor needed for multi-elemental analysis of bulky samples; unfolded spectra of elastically backscattered neutrons using broad-spectrum sources render the identification of APMs possible; the knowledge of leakage spectra of different source neutrons is indispensable for the determination of the differential and integrated reaction rates and through it the dimension of the interrogated volume; the precise determination of the C/O atom fraction requires the investigations on the angular distribution of the 6.13MeV gamma-ray emitted in the (16)O(n,n'gamma) reaction. These results, in addition to the identification of landmines, render the improvement of the non-intrusive neutron methods possible.

  5. A study of trends and techniques for space base electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.; Mahmood, Q.

    1978-01-01

    A sputtering system was developed to deposit aluminum and aluminum alloys by the dc sputtering technique. This system is designed for a high level of cleanliness and for monitoring the deposition parameters during film preparation. This system is now ready for studying the deposition and annealing parameters upon double-level metal preparation. A technique recently applied for semiconductor analysis, the finite element method, was studied for use in the computer modeling of two dimensional MOS transistor structures. It was concluded that the method has not been sufficiently well developed for confident use at this time. An algorithm was developed for confident use at this time. An algorithm was developed for implementing a computer study which is based upon the finite difference method. The program which was developed was modified and used to calculate redistribution data for boron and phosphorous which had been predeposited by ion implantation with range and straggle conditions. Data were generated for 111 oriented SOS films with redistribution in N2, dry O2 and steam ambients.

  6. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques.

    PubMed

    Parkash, Om; Shueb, Rafidah Hanim

    2015-10-19

    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.

  7. Validation techniques for fault emulation of SRAM-based FPGAs

    DOE PAGES

    Quinn, Heather; Wirthlin, Michael

    2015-08-07

    A variety of fault emulation systems have been created to study the effect of single-event effects (SEEs) in static random access memory (SRAM) based field-programmable gate arrays (FPGAs). These systems are useful for augmenting radiation-hardness assurance (RHA) methodologies for verifying the effectiveness for mitigation techniques; understanding error signatures and failure modes in FPGAs; and failure rate estimation. For radiation effects researchers, it is important that these systems properly emulate how SEEs manifest in FPGAs. If the fault emulation systems does not mimic the radiation environment, the system will generate erroneous data and incorrect predictions of behavior of the FPGA inmore » a radiation environment. Validation determines whether the emulated faults are reasonable analogs to the radiation-induced faults. In this study we present methods for validating fault emulation systems and provide several examples of validated FPGA fault emulation systems.« less

  8. Validation techniques for fault emulation of SRAM-based FPGAs

    SciTech Connect

    Quinn, Heather; Wirthlin, Michael

    2015-08-07

    A variety of fault emulation systems have been created to study the effect of single-event effects (SEEs) in static random access memory (SRAM) based field-programmable gate arrays (FPGAs). These systems are useful for augmenting radiation-hardness assurance (RHA) methodologies for verifying the effectiveness for mitigation techniques; understanding error signatures and failure modes in FPGAs; and failure rate estimation. For radiation effects researchers, it is important that these systems properly emulate how SEEs manifest in FPGAs. If the fault emulation systems does not mimic the radiation environment, the system will generate erroneous data and incorrect predictions of behavior of the FPGA in a radiation environment. Validation determines whether the emulated faults are reasonable analogs to the radiation-induced faults. In this study we present methods for validating fault emulation systems and provide several examples of validated FPGA fault emulation systems.

  9. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques

    PubMed Central

    Parkash, Om; Hanim Shueb, Rafidah

    2015-01-01

    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed. PMID:26492265

  10. Mars laser altimeter based on a single photon ranging technique

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan; Hamal, Karel; Sopko, B.; Pershin, S.

    1993-01-01

    The Mars 94/96 Mission will carry, among others things, the balloon probe experiment. The balloon with the scientific cargo in the gondola underneath will drift in the Mars atmosphere, its altitude will range from zero, in the night, up to 5 km at noon. The accurate gondola altitude will be determined by an altimeter. As the Balloon gondola mass is strictly limited, the altimeter total mass and power consumption are critical; maximum allowed is a few hundred grams a few tens of mWatts of average power consumption. We did propose, design, and construct the laser altimeter based on the single photon ranging technique. Topics covered include the following: principle of operation, altimeter construction, and ground tests.

  11. Guide to CO{sub 2} separations in imidazolium-based room-temperature ionic liquids

    SciTech Connect

    Bara, J.E.; Carlisle, T.K.; Gabriel, C.J.; Camper, D.; Finotello, A.; Gin, D.L.; Noble, R.D.

    2009-03-18

    Room-temperature ionic liquids (RTILs) are nonvolatile, tunable solvents. The solubilities of gases, particularly CO{sub 2}, N{sub 2}, and CH{sub 4}, have been studied in a number of RTILs. Process temperature and the chemical structures of the cation and anion have significant impacts on gas solubility and gas pair selectivity. Models based on regular solution theory and group contributions are useful to predict and explain CO{sub 2} solubility and selectivity in imidazolium-based RTILs. In addition to their role as a physical solvent, RTILs might also be used in supported ionic liquid membranes (SILMs) as a highly permeable and selective transport medium. Performance data for SILMs indicates that they exhibit large permeabilities as well as CO{sub 2}/N{sub 2} selectivities that outperform many polymer membranes. Furthermore, the greatest potential of RTILs for CO{sub 2} separations might lie in their ability to chemically capture CO{sub 2} when used in combination with amines. Amines can be tethered to the cation or the anion, or dissolved in RTILs, providing a wide range of chemical solvents for CO{sub 2} capture. However, despite all of their promising features, RTILs do have drawbacks to use in CO{sub 2} separations, which have been overlooked as appropriate comparisons of RTILs to common organic solvents and polymers have not been reported. A thorough summary of the capabilities-and limitations-of imidazolium-based RTILs in CO{sub 2}-based separations with respect to a variety of materials is thus provided.

  12. An Open Trial of Acceptance-based Separated Family Treatment (ASFT) for Adolescents with Anorexia Nervosa

    PubMed Central

    Timko, C. Alix; Zucker, Nancy L.; Herbert, James D.; Rodriguez, Daniel; Merwin, Rhonda M.

    2016-01-01

    Family based-treatments have the most empirical support in the treatment of adolescent anorexia nervosa; yet, a significant percentage of adolescents and their families do not respond to manualized family based treatment (FBT). The aim of this open trial was to conduct a preliminary evaluation of an innovative family-based approach to the treatment of anorexia: Acceptance-based Separated Family Treatment (ASFT). Treatment was grounded in Acceptance and Commitment Therapy (ACT), delivered in a separated format, and included an ACT-informed skills program. Adolescents (ages 12–18) with anorexia or sub-threshold anorexia and their families received 20 treatment sessions over 24 weeks. Outcome indices included eating disorder symptomatology reported by the parent and adolescent, percentage of expected body weight achieved, and changes in psychological acceptance/avoidance. Half of the adolescents (48.0%) met criteria for full remission at the end of treatment, 29.8% met criteria for partial remission, and 21.3% did not improve. Overall, adolescents had a significant reduction in eating disorder symptoms and reached expected body weight. Treatment resulted in changes in psychological acceptance in the expected direction for both parents and adolescents. This open trial provides preliminary evidence for the feasibility, acceptability, and efficacy of ASFT for adolescents with anorexia. Directions for future research are discussed. PMID:25898341

  13. Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing

    NASA Astrophysics Data System (ADS)

    Ari, Gizem; Toker, Cenk

    2016-07-01

    Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  14. Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety

    NASA Astrophysics Data System (ADS)

    Jung, Yun-Chae; Kim, Seul-Ki; Kim, Moon-Sung; Lee, Jeong-Hye; Han, Man-Seok; Kim, Duck-Hyun; Shin, Woo-Cheol; Ue, Makoto; Kim, Dong-Won

    2015-10-01

    Flexible ceramic separators based on Li+-conducting lithium lanthanum zirconium oxide are prepared as thin films and directly applied onto negative electrode to produce a separator-electrode assembly with good interfacial adhesion and low interfacial resistances. The ceramic separators show an excellent thermal stability and high ionic conductivity as compared to conventional polypropylene separator. The lithium-ion batteries assembled with graphite negative electrode, Li+-conducting ceramic separator and LiCoO2 positive electrode exhibit good cycling performance in terms of discharge capacity, capacity retention and rate capability. It is also demonstrated that the use of a ceramic separator can greatly improve safety over cells employing a polypropylene separator, which is highly desirable for lithium-ion batteries with enhanced safety.

  15. Skull base tumours part I: imaging technique, anatomy and anterior skull base tumours.

    PubMed

    Borges, Alexandra

    2008-06-01

    Advances in cross-sectional imaging, surgical technique and adjuvant treatment have largely contributed to ameliorate the prognosis, lessen the morbidity and mortality of patients with skull base tumours and to the growing medical investment in the management of these patients. Because clinical assessment of the skull base is limited, cross-sectional imaging became indispensable in the diagnosis, treatment planning and follow-up of patients with suspected skull base pathology and the radiologist is increasingly responsible for the fate of these patients. This review will focus on the advances in imaging technique; contribution to patient's management and on the imaging features of the most common tumours affecting the anterior skull base. Emphasis is given to a systematic approach to skull base pathology based upon an anatomic division taking into account the major tissue constituents in each skull base compartment. The most relevant information that should be conveyed to surgeons and radiation oncologists involved in patient's management will be discussed.

  16. Motion-based, high-yielding, and fast separation of different charged organics in water.

    PubMed

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications.

  17. Separation of sperm and epithelial cells based on the hydrodynamic effect for forensic analysis

    PubMed Central

    Liu, Weiran; Chen, Weixing; Liu, Ran; Ou, Yuan; Liu, Haoran; Xie, Lan; Lu, Ying; Li, Caixia; Li, Bin; Cheng, Jing

    2015-01-01

    In sexual assault cases, forensic samples are a mixture of sperm from the perpetrator and epithelial cells from the victim. To obtain an independent short tandem repeat (STR) profile of the perpetrator, sperm cells must be separated from the mixture of cells. However, the current method used in crime laboratories, namely, differential extraction, is a time-consuming and labor-intensive process. To achieve a rapid and automated sample pretreatment process, we fabricated a microdevice for hydrodynamic and size-based separation of sperm and epithelial cells. When cells in suspension were introduced into the device's microfluidic channels, they were forced to flow along different streamlines and into different outlets due to their different diameters. With the proposed microdevice, sperm can be separated within a short period of time (0.5 h for a 50-μl mock sample). The STR profiles of the products in the sperm outlet reservoir demonstrated that a highly purified male DNA fraction could be obtained (94.0% male fraction). This microdevice is of low-cost and can be easily integrated with other subsequent analysis units, providing great potential in the process of analyzing sexual assault evidence as well as in other areas requiring cell sorting. PMID:26392829

  18. Facile synthesis of gradient mesoporous carbon monolith based on polymerization-induced phase separation

    NASA Astrophysics Data System (ADS)

    Xu, Shunjian; Luo, Yufeng; Zhong, Wei; Xiao, Zonghu; Luo, Yongping; Ou, Hui; Zhao, Xing-Zhong

    2014-06-01

    In this paper, a gradient mesoporous carbon (GMC) monolith derived from the mixtures of phenolic resin (PF) and ethylene glycol (EG) was prepared by a facile route based on polymerization-induced phase separation under temperature gradient (TG). A graded biphasic structure of PF-rich and EG-rich phases was first formed in preform under a TG, and then the preform was pyrolyzed to obtain the GMC monolith. The TG is mainly induced by the thermal resistance of the preferential phase separation layer at high temperature region. The pore structure of the monolith changes gradually along the TG direction. When the TG varies from 58°C to 29°C, the pore size, apparent porosity and specific surface area of the monolith range respectively from 18 nm to 83 nm, from 32% to 39% and from 140.5 m2/g to 515.3 m2/g. The gradient porous structure of the monolith is inherited from that of the preform, which depends on phase separation under TG in the resin mixtures. The pyrolysis mainly brings about the contraction of the pore size and wall thickness as well as the transformation of polymerized PF into glassy carbon.

  19. A rapid technique for lymphocyte preparation prior to two-color immunofluorescence analysis of lymphocyte subsets using flow cytometry. Comparison with density gradient separation.

    PubMed

    Mansour, I; Bourin, P; Rouger, P; Doinel, C

    1990-02-20

    A technique is described for lymphocyte preparation which permits analyses by two-color immunofluorescence and flow cytometry. It consists, briefly, of the lysis of red blood cells and washing of white blood cells prior to labeling. We tested this technique with a large panel of monoclonal antibodies in mono- and dual immunofluorescence. By comparing these results to those obtained after density gradient separation, we found the following statistically significant differences: the count of the phenotype B1+ was higher after whole blood lysis preparation than after density gradient separation; whereas, the corresponding counts of OKT4+ and Leu-4-Leu-7+ phenotypes were lower. No difference was detected with OKT8+, Leu-4+, OKT8+Leu-4+, OKT8+Leu-4-, OKT8-Leu-4+, OKT8+Leu-7+, Leu-4+Leu-7+, Leu-4-Leu-11c+, OKT8+Leu-11c+ and OKT8+Leu-15+ phenotypes. We have studied the reproducibility of both methods and the correlation between them. The disparity of the lymphocyte subset count between these two methods, though statistically significant, was relatively weak and seems to be due to the density gradient separation. Since the preparation of lymphocytes using the density gradient method is time consuming, we propose whole blood lysis as an alternative lymphocyte separation method when assessing immune status in human disease by flow cytometry. It offers the following advantages: (i) it does not require additional steps, (ii) it permits two-color immunofluorescence through the labeling of white blood cells after washing, (iii) it is reliable, (iv) it is reproducible, and (v) it is helpful in studies of lymphopenia since it offers the possibility of lymphocyte enrichment.

  20. New High Performance Magnet Structures for Bead Based MolecularSeparation

    SciTech Connect

    Humphries, David

    2005-06-01

    New High Performance Magnet Structures for Bead Based Molecular Separation David Humphries Lawrence Berkeley National Laboratory, D.O.E. Joint Genome Institute Abstract High performance Hybrid magnetic separation technology is under continuing development at the D.O.E. Joint Genome Institute and Lawrence Berkeley National Laboratory for general laboratory and high throughput automated applications. This technology has broad applicability for molecular separation in genomics, proteomics and other areas. It s applicability ranges from large and small scale microtiter plate and flow separation processes to single molecule DNA manipulation. It is currently an enabling purification technology for very high throughput production sequencing at the D.O.E. Joint Genome Institute. This technology incorporates hybrid magnetic structures that combine linear permanent magnet material and ferromagnetic material to produce significantly higher fields and gradients than those of currently available commercial devices. These structures incorporate ferromagnetic poles that can be easily shaped to produce complex field distributions for specialized applications. The higher maximum fields and strong gradients of the hybrid structures result in greater holding forces on magnetized targets that are being processed as well as faster extraction. Current development versions of these magnet plates have exhibited fields in excess of 1.0 tesla and gradients approaching 1000.0 tesla/meter. Second generation Hybrid magnet plates have now been developed for both 384 and 96-well applications. This technology is currently being made available to industry through the Tech Transfer Department at Lawrence Berkeley National Laboratory. This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program and the by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48, Lawrence

  1. On the Application of Inertial Microfluidics for the Size-Based Separation of Polydisperse Cementitious Particulates

    NASA Astrophysics Data System (ADS)

    Kumar, Aditya; Lewis, Peter; Balonis, Magdalena; Di Carlo, Dino; Sant, Gaurav

    2015-06-01

    The early-age performance of concrete is determined by the properties of the cementitious binder and the evolution of its chemical reactions. The chemical reactivity, and to some extent, the composition of cementitious particles can depend on particle size. Therefore, it is valuable to physically separate cementing minerals into well-defined size classes so that the influences of both particle size and composition on reaction progress can be studied without the confounding effects of a broad particle size distribution. However, conventional particle separation methods (e.g., density fractionation, wet sieving, field-flow extraction, ultrasonification-sedimentation) are time-consuming and cumbersome and result in poor particle yields and size-selectivity, thus, making them unsuitable for processing larger volumes of cementitious powders (on the order of grams). This study applies a novel inertial microfluidics (IMF) based procedure to separate cementitious powders on the basis of their size. Special attention is paid to optimizing operating variables to ensure that particles in a fluid streamline achieve unique equilibrium positions within the device. From such positions, particles can be retrieved as per their size using symmetrical outlet configurations with tuned fluidic resistances. The approach is critically assessed in terms of: (1) its ability to separate cementitious powders into narrow size bins, and therefore its feasibility as a fractionation procedure, and (2) quantitatively relating the operating parameters to the particle yield and size selectivity. The study establishes metrics for assessing the ability of IMF methods to classify minerals and other polydisperse particles on the basis of their size.

  2. Hyperspectral-imaging-based techniques applied to wheat kernels characterization

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Cesare, Daniela; Bonifazi, Giuseppe

    2012-05-01

    Single kernels of durum wheat have been analyzed by hyperspectral imaging (HSI). Such an approach is based on the utilization of an integrated hardware and software architecture able to digitally capture and handle spectra as an image sequence, as they results along a pre-defined alignment on a surface sample properly energized. The study was addressed to investigate the possibility to apply HSI techniques for classification of different types of wheat kernels: vitreous, yellow berry and fusarium-damaged. Reflectance spectra of selected wheat kernels of the three typologies have been acquired by a laboratory device equipped with an HSI system working in near infrared field (1000-1700 nm). The hypercubes were analyzed applying principal component analysis (PCA) to reduce the high dimensionality of data and for selecting some effective wavelengths. Partial least squares discriminant analysis (PLS-DA) was applied for classification of the three wheat typologies. The study demonstrated that good classification results were obtained not only considering the entire investigated wavelength range, but also selecting only four optimal wavelengths (1104, 1384, 1454 and 1650 nm) out of 121. The developed procedures based on HSI can be utilized for quality control purposes or for the definition of innovative sorting logics of wheat.

  3. Introducing Risk Management Techniques Within Project Based Software Engineering Courses

    NASA Astrophysics Data System (ADS)

    Port, Daniel; Boehm, Barry

    2002-03-01

    In 1996, USC switched its core two-semester software engineering course from a hypothetical-project, homework-and-exam course based on the Bloom taxonomy of educational objectives (knowledge, comprehension, application, analysis, synthesis, and evaluation). The revised course is a real-client team-project course based on the CRESST model of learning objectives (content understanding, problem solving, collaboration, communication, and self-regulation). We used the CRESST cognitive demands analysis to determine the necessary student skills required for software risk management and the other major project activities, and have been refining the approach over the last 5 years of experience, including revised versions for one-semester undergraduate and graduate project course at Columbia. This paper summarizes our experiences in evolving the risk management aspects of the project course. These have helped us mature more general techniques such as risk-driven specifications, domain-specific simplifier and complicator lists, and the schedule as an independent variable (SAIV) process model. The largely positive results in terms of review of pass / fail rates, client evaluations, product adoption rates, and hiring manager feedback are summarized as well.

  4. Parameter tuning of PVD process based on artificial intelligence technique

    NASA Astrophysics Data System (ADS)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In this study, an artificial intelligence technique is proposed to be implemented in the parameter tuning of a PVD process. Due to its previous adaptation in similar optimization problems, genetic algorithm (GA) is selected to optimize the parameter tuning of the RF magnetron sputtering process. The most optimized parameter combination obtained from GA's optimization result is expected to produce the desirable zinc oxide (ZnO) thin film from the sputtering process. The parameters involved in this study were RF power, deposition time and substrate temperature. The algorithm was tested to optimize the 25 datasets of parameter combinations. The results from the computational experiment were then compared with the actual result from the laboratory experiment. Based on the comparison, GA had shown that the algorithm was reliable to optimize the parameter combination before the parameter tuning could be done to the RF magnetron sputtering machine. In order to verify the result of GA, the algorithm was also been compared to other well known optimization algorithms, which were, particle swarm optimization (PSO) and gravitational search algorithm (GSA). The results had shown that GA was reliable in solving this RF magnetron sputtering process parameter tuning problem. GA had shown better accuracy in the optimization based on the fitness evaluation.

  5. Damage detection technique by measuring laser-based mechanical impedance

    SciTech Connect

    Lee, Hyeonseok; Sohn, Hoon

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  6. Assessment of ultra high performance supercritical fluid chromatography as a separation technique for the analysis of seized drugs: Applicability to synthetic cannabinoids.

    PubMed

    Breitenbach, Stephanie; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2016-04-01

    The recent development of modern methods for ultra high performance supercritical fluid chromatography (UHPSFC) has great potential for impacting the analysis of seized drugs. In the separation of synthetic cannabinoids the technique has the potential to produce superior resolution of positional isomers and diastereomers. To demonstrate this potential we have examined the capability of UHPSFC for the analysis of two different groups of synthetic cannabinoids. The first group was a mixture of 22 controlled synthetic cannabinoids, and the second group included JWH018 and nine of its non-controlled positional isomers The clear superiority of UHPSFC over other separation techniques was demonstrated, in that it was capable of near baseline separation of all 10 positional isomers using a chiral column. In total we examined four achiral columns, including Acquity UPC(2) Torus 2-PIC, Acquity UPC(2) Torus Diol, Acquity UPC(2) Torus DEA and Acquity UPC(2) Torus 1-AA (1.7μm 3.0×100mm), and three chiral columns, including Acquity UPC(2) Trefoil AMY1, Acquity UPC(2) Trefoil CEL1 and Acquity UPC(2) Trefoil CEL2 (2.5μm 3.0×150mm), using mobile phase compositions that combined carbon dioxide with methanol, acetonitrile, ethanol or isopropanol modifier gradients. Detection was performed using simultaneous PDA UV detection and quadrupole mass spectrometry. The orthogonality of UHPSFC, GC and UHPLC for the analysis of these compounds was demonstrated using principal component analysis. Overall we feel that this new technique should prove useful in the analysis and detection of seized drug samples, and will be a useful addition to the compendium of methods for drug analysis.

  7. Temperature effect on thin lipid film elasticity and phase separation: insights from Langmuir monolayer and fluorescence microscopy techniques

    NASA Astrophysics Data System (ADS)

    Khattari, Z.; Maghrabi, M.; Al-Abdullah, T.

    2015-07-01

    Langmuir monolayer pressure isotherms and compressibility modulus measurements of phospholipid mixtures in several Langmuir monolayer systems at the air/water interface were investigated in this study. The ultimate aim was to carry out a comparison of the elasticity modulus for monolayers with different mixtures of l,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), l,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and chicken egg yolk sphingomyelin (eSM), in the presence/absence of cholesterol (Chol). In particular, we were able to propose that the leading force beyond the phase separation into liquid expanded (LE-) and liquid condensed (LC-) phases emerges from the increasing barrier to incorporate DOPC molecules into a highly ordered LC-phase. In addition, our findings suggest that DOPC lipid molecules have a priority to incorporate in a disordered LE-phase, while DPPC and eSM prefer the ordered one. Also, Chol seems to split almost equally into both phases, indicating that Chol has no priority for either phase and there are no particular interactions between Chol and saturated lipid molecules.

  8. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique

    USGS Publications Warehouse

    Bushon, R.N.; Brady, A.M.; Likirdopulos, C.A.; Cireddu, J.V.

    2009-01-01

    Aims: The aim of this study was to examine a rapid method for detecting Escherichia coli and enterococci in recreational water. Methods and Results: Water samples were assayed for E. coli and enterococci by traditional and immunomagnetic separation/adenosine triphosphate (IMS/ATP) methods. Three sample treatments were evaluated for the IMS/ATP method: double filtration, single filtration, and direct analysis. Pearson's correlation analysis showed strong, significant, linear relations between IMS/ATP and traditional methods for all sample treatments; strongest linear correlations were with the direct analysis (r = 0.62 and 0.77 for E. coli and enterococci, respectively). Additionally, simple linear regression was used to estimate bacteria concentrations as a function of IMS/ATP results. The correct classification of water-quality criteria was 67% for E. coli and 80% for enterococci. Conclusions: The IMS/ATP method is a viable alternative to traditional methods for faecal-indicator bacteria. Significance and Impact of the Study: The IMS/ATP method addresses critical public health needs for the rapid detection of faecal-indicator contamination and has potential for satisfying US legislative mandates requiring methods to detect bathing water contamination in 2 h or less. Moreover, IMS/ATP equipment is considerably less costly and more portable than that for molecular methods, making the method suitable for field applications. ?? 2009 The Authors.

  9. Validation techniques of agent based modelling for geospatial simulations

    NASA Astrophysics Data System (ADS)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  10. Dynamic digital watermark technique based on neural network

    NASA Astrophysics Data System (ADS)

    Gu, Tao; Li, Xu

    2008-04-01

    An algorithm of dynamic watermark based on neural network is presented which is more robust against attack of false authentication and watermark-tampered operations contrasting with one watermark embedded method. (1) Five binary images used as watermarks are coded into a binary array. The total number of 0s and 1s is 5*N, every 0 or 1 is enlarged fivefold by information-enlarged technique. N is the original total number of the watermarks' binary bits. (2) Choose the seed image pixel p x,y and its 3×3 vicinities pixel p x-1,y-1,p x-1,y,p x-1,y+1,p x,y-1,p x,y+1,p x+1,y-1,p x+1,y,p x+1,y+1 as one sample space. The p x,y is used as the neural network target and the other eight pixel values are used as neural network inputs. (3) To make the neural network learn the sample space, 5*N pixel values and their closely relevant pixel values are randomly chosen with a password from a color BMP format image and used to train the neural network.(4) A four-layer neural network is constructed to describe the nonlinear mapped relationship between inputs and outputs. (5) One bit from the array is embedded by adjusting the polarity between a chosen pixel value and the output value of the model. (6) One randomizer generates a number to ascertain the counts of watermarks for retrieving. The randomly ascertained watermarks can be retrieved by using the restored neural network outputs value, the corresponding image pixels value, and the restore function without knowing the original image and watermarks (The restored coded-watermark bit=1, if ox,y(restored)>p x,y(reconstructed, else coded-watermark bit =0). The retrieved watermarks are different when extracting each time. The proposed technique can offer more watermarking proofs than one watermark embedded algorithm. Experimental results show that the proposed technique is very robust against some image processing operations and JPEG lossy compression. Therefore, the algorithm can be used to protect the copyright of one important image.

  11. Membrane gas separation. January 1970-September 1989 (Citations from the NTIS data base). Report for January 1970-September 1989

    SciTech Connect

    Not Available

    1989-09-01

    This bibliography contains citations concerning the research and development of gas separation and purification utilizing plastic and metal membranes. Among the topics included are isotope separation, osmotic techniques, reverse osmosis, and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties as well as molecular structure. The selectivity of polymeric films for a variety of gases is also included. (This updated bibliography contains 100 citations, 18 of which are new entries to the previous edition.)

  12. Membrane gas separation. January 1970-September 1988 (Citations from the NTIS data base). Report for January 1970-September 1988

    SciTech Connect

    Not Available

    1988-09-01

    This bibliography contains citations concerning the research and development of gas separation and purification utilizing plastic and metal membranes. Among the topics included are isotope separation, osmotic techniques, reverse osmosis, and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties as well as molecular structure. The selectivity of polymeric films for a variety of gases is also included. (This updated bibliography contains 150 citations, 27 of which are new entries to the previous edition.)

  13. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation.

    PubMed

    Mohammadi, Mahdi; Madadi, Hojjat; Casals-Terré, Jasmina; Sellarès, Jordi

    2015-06-01

    Evaluation and diagnosis of blood alterations is a common request for clinical laboratories, requiring a complex technological approach and dedication of health resources. In this paper, we present a microfluidic device that owing to a novel combination of hydrodynamic and dielectrophoretic techniques can separate plasma from fresh blood in a microfluidic channel and for the first time allows optical real-time monitoring of the components of plasma without pre- or post-processing. The microchannel is based on a set of dead-end branches at each side and is initially filled using capillary forces with a 2-μL droplet of fresh blood. During this process, stagnation zones are generated at the dead-end branches and some red blood cells (RBCs) are trapped there. An electric field is then applied and dielectrophoretic trapping of RBCs is used to prevent more RBCs entering into the channel, which works like a sieve. Besides, an electroosmotic flow is generated to sweep the rest of the RBCs from the central part of the channel. Consequently, an RBC-free zone of plasma is formed in the middle of the channel, allowing real-time monitoring of the platelet behavior. To study the generation of stagnation zones and to ensure RBC trapping in the initial constrictions, two numerical models were solved. The proposed experimental design separates up to 0.1 μL blood plasma from a 2-μL fresh human blood droplet. In this study, a plasma purity of 99 % was achieved after 7 min, according to the measurements taken by image analysis. Graphical Abstract Schematics of a real-time plasma monitoring system based on a Hydrodynamic and direct-current insulator-based dielectrophoresis microfluidic channel.

  14. All-optical packet header and payload separation based on two TOADs for optical packet switched networks

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Zhang, Min; Ye, Peida

    2006-09-01

    We present a novel all-optical header and payload separation technique that can be utilized in Un-Slotted optical packet switched networks. The technique uses two modified TOADs, one is for packet header extraction with differential modulation scheme and the other performs a simple XOR operation between the packet and its self-derived header to get the separated payload. The main virtue of this system is simple structure and low power consumption. Through numerical simulations, the operating characteristics of the scheme are illustrated. In addition, the system parameters are discussed and designed to optimize the performance of the proposed scheme.

  15. Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective.

    PubMed

    Bernstad, A; la Cour Jansen, J

    2012-05-01

    Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4kg NO(3)(-)eq/ton food waste), acidification potential (-0.4 to -1.0kg SO(2)(-)eq/ton food waste), global warming potential (-790 to -960kg CO(2)(-)eq/ton food waste) and primary energy use (-1.7 to -3.6GJ/ton food waste). Collection with vacuum system results in the largest net avoidence of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidence of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The hot spot identification shows that losses of organic matter in mechanical pretreatment as well as tank connected food waste disposal systems and energy in drying and vacuum systems reply to the largest impact on the results in each system respectively.

  16. Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process

    SciTech Connect

    Franks, C.; Quach, A.; Birnie III, D.; Ela, W.; Saez, A.E.; Zelinski, B.; Smith, H.; Smith, G.

    2004-01-01

    Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing wastewater residuals that minimize waste volume, water content and the long-term environmental risk from related by-products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 °C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hour. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic

  17. Structural Diagnostics of Ballistic-Like Damage Variation via Wave Propagation-Based Filtering Techniques

    NASA Astrophysics Data System (ADS)

    Ayers, J.; Apetre, N.; Ruzzene, M.

    2010-02-01

    This paper evaluates the ability of wave filtering techniques to identify and quantify defect variations in structures. The proposed techniques are based on the evaluation of reflection, transmission, and conversion of different Lamb wave modes in the presence of damages and of the spatial evaluation of their phases. The structure is excited by an enhanced fundamental symmetric mode, and the damage is initially located by evaluating the phase gradient of the converted Lamb mode. The process relies on mode separation and incident-wave removal procedures implemented in the frequency/wavenumber domain. Such procedures rely on the spatial integration of wave amplitudes in contrast to point-wise estimation previously proposed in the literature, as a way to reduce the effect of noise. Numerical and experimental parametric studies are conducted, where the specific damage geometry is varied to represent common external ballistic impact, from a sharp rectangular notch to a semi-circular depression. Likewise, the techniques are demonstrated on experimental data obtained from a Scanning Laser Doppler Vibrometer setup.

  18. Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation

    PubMed Central

    Guan, Guofeng; Wu, Lidan; Bhagat, Ali Asgar; Li, Zirui; Chen, Peter C. Y.; Chao, Shuzhe; Ong, Chong Jin; Han, Jongyoon

    2013-01-01

    The paper reports a new method for three-dimensional observation of the location of focused particle streams along both the depth and width of the channel cross-section in spiral inertial microfluidic systems. The results confirm that particles are focused near the top and bottom walls of the microchannel cross-section, revealing clear insights on the focusing and separation mechanism. Based on this detailed understanding of the force balance, we introduce a novel spiral microchannel with a trapezoidal cross-section that generates stronger Dean vortices at the outer half of the channel. Experiments show that particles focusing in such device are sensitive to particle size and flow rate, and exhibits a sharp transition from the inner half to the outer half equilibrium positions at a size-dependent critical flow rate. As particle equilibration positions are well segregated based on different focusing mechanisms, a higher separation resolution is achieved over conventional spiral microchannels with rectangular cross-section. PMID:23502529

  19. [The correlation based mid-infrared temperature and emissivity separation algorithm].

    PubMed

    Cheng, Jie; Nie, Ai-Xiu; Du, Yong-Ming

    2009-02-01

    Temperature and emissivity separation is the key problem in infrared remote sensing. Based on the analysis of the relationship between the atmospheric downward radiance and surface emissivity containing atmosphere residue without the effects of sun irradiation, the present paper puts forward a temperature and emissivity separation algorithm for the ground-based mid-infrared hyperspectral data. The algorithm uses the correlation between the atmospheric downward radiance and surface emissivity containing atmosphere residue as a criterion to optimize the surface temperature, and the correlation between the atmospheric downward radiance and surface emissivity containing atmosphere residue depends on the bias between the estimated surface temperature and true surface temperature. The larger the temperature bias, the greater the correlation. Once we have obtained the surface temperature, the surface emissivity can be calculated easily. The accuracy of the algorithm was evaluated with the simulated mid-infrared hyperspectral data. The results of simulated calculation show that the algorithm can achieve higher accuracy of temperature and emissivity inversion, and also has broad applicability. Meanwhile, the algorithm is insensitive to the instrumental random noise and the change in atmospheric downward radiance during the field measurements.

  20. Immunoliposome-based immunomagnetic concentration and separation assay for rapid detection of Cronobacter sakazakii.

    PubMed

    Shukla, Shruti; Lee, Gibaek; Song, Xinjie; Park, Sunhyun; Kim, Myunghee

    2016-03-15

    This study aimed to develop an immunoliposome-based immunomagnetic concentration and separation assay for the rapid detection of Cronobacter sakazakii (C. sakazakii), an acute opportunistic foodborne pathogenic bacterium, in both pure culture and infant formula. To develop the assay, magnetic nanoparticles (diameter 30 nm) were coated with immunoglobulin G (IgG), specifically anti-C. sakazakii IgG, and applied for the sensitive and efficient detection of C. sakazakii using immunoliposomes. The binding efficiency of anti-C. sakazakii IgG to the magnetic nanoparticles was 86.23 ± 0.59%. The assay developed in this study detected as few as 3.3 × 10(3) CFUmL(-1) of C. sakazakii in pure culture within 2h 30 min; in comparison, an indirect non-competitive enzyme-linked immunosorbent assay was able to detect 6.2 × 10(5) CFUmL(-1) of C. sakazakii in pure culture after 17 h. The developed assay did not show any cross-reactivity with other Cronobacter spp. or pathogens belonging to other genera. In addition, the method was able to detect 10(3) CFUmL(-1) of C. sakazakii in infant formula without any pre-incubation. These results confirm that the immunoliposome-based immunomagnetic concentration and separation assay may facilitate highly sensitive, efficient, and rapid detection of C. sakazakii. PMID:26547009

  1. A novel rocket-based in-situ collection technique for mesospheric and stratospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Reid, W.; Achtert, P.; Ivchenko, N.; Magnusson, P.; Kuremyr, T.; Shepenkov, V.; Tibert, G.

    2012-11-01

    A technique for collecting aerosol particles between altitudes of 85 and 17 km is described. Collection probes are ejected from a sounding rocket allowing for multi-point measurements. Each probe is equipped with 110 collection samples that are 3 mm in diameter. The collection samples are one of three types: standard transmission electron microscopy carbon grids, glass fibre filter paper or silicone gel. Each collection sample is exposed over a 50 m to 5 km height range with a total of 45 separate ranges. Post-flight electron microscopy gives size-resolved information on particle number, shape and elemental composition. Each collection probe is equipped with a suite of sensors to capture the probe's status during the fall. Parachute recovery systems along with GPS-based localization ensure that each probe can be located and recovered for post-flight analysis.

  2. Biogeosystem technique as a base of Sustainable Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdulmalik

    2016-04-01

    The world water strategy is to be changed because the current imitational gravitational frontal isotropic-continual paradigm of irrigation is not sustainable. This paradigm causes excessive consumption of fresh water - global deficit - up to 4-15 times, adverse effects on soils and landscapes. Current methods of irrigation does not control the water spread throughout the soil continuum. The preferable downward fluxes of irrigation water are forming, up to 70% and more of water supply loses into vadose zone. The moisture of irrigated soil is high, soil loses structure in the process of granulometric fractions flotation decomposition, the stomatal apparatus of plant leaf is fully open, transpiration rate is maximal. We propose the Biogeosystem technique - the transcendental, uncommon and non-imitating methods for Sustainable Natural Resources Management. New paradigm of irrigation is based on the intra-soil pulse discrete method of water supply into the soil continuum by injection in small discrete portions. Individual volume of water is supplied as a vertical cylinder of soil preliminary watering. The cylinder position in soil is at depth form 10 to 30 cm. Diameter of cylinder is 1-2 cm. Within 5-10 min after injection the water spreads from the cylinder of preliminary watering into surrounding soil by capillary, film and vapor transfer. Small amount of water is transferred gravitationally to the depth of 35-40 cm. The soil watering cylinder position in soil profile is at depth of 5-50 cm, diameter of the cylinder is 2-4 cm. Lateral distance between next cylinders along the plant raw is 10-15 cm. The soil carcass which is surrounding the cylinder of non-watered soil remains relatively dry and mechanically stable. After water injection the structure of soil in cylinder restores quickly because of no compression from the stable adjoining volume of soil and soil structure memory. The mean soil thermodynamic water potential of watered zone is -0.2 MPa. At this potential

  3. A Novel Methodology for Metal Ion Separation Based on Molecularly Imprinting

    SciTech Connect

    Zuo, Xiaobin; Mosha, Donnati; Hassan, Mansour M.; Givens, Richard S.; Busch, Daryle H.

    2004-03-31

    The siderophore-based extraction of iron from the soil by bacteria is proposed as a model for a new separation methodology labeled the soil poutice, a molecular device that would selectively retrieve the complex of a targeted metal ion. In this report we described the synthesis and characterization of molecularly imprinted polymers and their application in the specific recognition of macrocyclic metal complexes. The imprinting is based on non-covalent interactions such as hydrogen bonding, electrostatic attractions and minor metal-ligand coordination. Good rebinding capacity for the imprinting metal complex was observed in acetonitrile as well as in water. The polymers are resistant to strong acids and oxidizing agents and showed an increase of rebinding capacity during cycles of reuse. The imprinting procedure, combined with the previously known selective chelation of macrocyclic ligands, supports the feasibility of a new methodology that can be used to extract waste metal ions effectively and selectively from soils and ground water.

  4. Deformability-based red blood cell separation in deterministic lateral displacement devices—A simulation study

    PubMed Central

    Krüger, Timm

    2014-01-01

    We show, via three-dimensional immersed-boundary-finite-element-lattice-Boltzmann simulations, that deformability-based red blood cell (RBC) separation in deterministic lateral displacement (DLD) devices is possible. This is due to the deformability-dependent lateral extension of RBCs and enables us to predict a priori which RBCs will be displaced in a given DLD geometry. Several diseases affect the deformability of human cells. Malaria-infected RBCs, for example, tend to become stiffer than their healthy counterparts. It is therefore desirable to design microfluidic devices which can detect diseases based on the cells' deformability fingerprint, rather than preparing samples using expensive and time-consuming biochemical preparation steps. Our findings should be helpful in the development of new methods for sorting cells and particles by deformability. PMID:25584112

  5. Actuator fault tolerant multi-controller scheme using set separation based diagnosis

    NASA Astrophysics Data System (ADS)

    Seron, María M.; De Doná, José A.

    2010-11-01

    We present a fault tolerant control strategy based on a new principle for actuator fault diagnosis. The scheme employs a standard bank of observers which match the different fault situations that can occur in the plant. Each of these observers has an associated estimation error with distinctive dynamics when an estimator matches the current fault situation of the plant. Based on the information from each observer, a fault detection and isolation (FDI) module is able to reconfigure the control loop by selecting the appropriate control law from a bank of controllers, each of them designed to stabilise and achieve reference tracking for one of the given fault models. The main contribution of this article is to propose a new FDI principle which exploits the separation of sets that characterise healthy system operation from sets that characterise transitions from healthy to faulty behaviour. The new principle allows to provide pre-checkable conditions for guaranteed fault tolerance of the overall multi-controller scheme.

  6. Boronic Acid-Based Approach for Separation and Immobilization of Glycoproteins and Its Application in Sensing

    PubMed Central

    Wang, Xiaojin; Xia, Ning; Liu, Lin

    2013-01-01

    Glycoproteins influence a broad spectrum of biological processes including cell-cell interaction, host-pathogen interaction, or protection of proteins against proteolytic degradation. The analysis of their glyco-structures and concentration levels are increasingly important in diagnosis and proteomics. Boronic acids can covalently react with cis-diols in the oligosaccharide chains of glycoproteins to form five- or six-membered cyclic esters. Based on this interaction, boronic acid-based ligands and materials have attracted much attention in both chemistry and biology as the recognition motif for enrichment and chemo/biosensing of glycoproteins in recent years. In this work, we reviewed the progress in the separation, immobilization and detection of glycoproteins with boronic acid-functionalized materials and addressed its application in sensing. PMID:24141187

  7. Research on technique of wavefront retrieval based on Foucault test

    NASA Astrophysics Data System (ADS)

    Yuan, Lvjun; Wu, Zhonghua

    2010-05-01

    During finely grinding the best fit sphere and initial stage of polishing, surface error of large aperture aspheric mirrors is too big to test using common interferometer. Foucault test is widely used in fabricating large aperture mirrors. However, the optical path is disturbed seriously by air turbulence, and changes of light and dark zones can not be identified, which often lowers people's judging ability and results in making mistake to diagnose surface error of the whole mirror. To solve the problem, the research presents wavefront retrieval based on Foucault test through digital image processing and quantitative calculation. Firstly, real Foucault image can be gained through collecting a variety of images by CCD, and then average these image to eliminate air turbulence. Secondly, gray values are converted into surface error values through principle derivation, mathematical modeling, and software programming. Thirdly, linear deviation brought by defocus should be removed by least-square method to get real surface error. At last, according to real surface error, plot wavefront map, gray contour map and corresponding pseudo color contour map. The experimental results indicates that the three-dimensional wavefront map and two-dimensional contour map are able to accurately and intuitively show surface error on the whole mirrors under test, and they are beneficial to grasp surface error as a whole. The technique can be used to guide the fabrication of large aperture and long focal mirrors during grinding and initial stage of polishing the aspheric surface, which improves fabricating efficiency and precision greatly.

  8. Initial planetary base construction techniques and machine implementation

    NASA Technical Reports Server (NTRS)

    Crockford, William W.

    1987-01-01

    Conceptual designs of (1) initial planetary base structures, and (2) an unmanned machine to perform the construction of these structures using materials local to the planet are presented. Rock melting is suggested as a possible technique to be used by the machine in fabricating roads, platforms, and interlocking bricks. Identification of problem areas in machine design and materials processing is accomplished. The feasibility of the designs is contingent upon favorable results of an analysis of the engineering behavior of the product materials. The analysis requires knowledge of several parameters for solution of the constitutive equations of the theory of elasticity. An initial collection of these parameters is presented which helps to define research needed to perform a realistic feasibility study. A qualitative approach to estimating power and mass lift requirements for the proposed machine is used which employs specifications of currently available equipment. An initial, unmanned mission scenario is discussed with emphasis on identifying uncompleted tasks and suggesting design considerations for vehicles and primitive structures which use the products of the machine processing.

  9. Age estimation based on Kvaal's technique using digital panoramic radiographs

    PubMed Central

    Mittal, Samta; Nagendrareddy, Suma Gundareddy; Sharma, Manisha Lakhanpal; Agnihotri, Poornapragna; Chaudhary, Sunil; Dhillon, Manu

    2016-01-01

    Introduction: Age estimation is important for administrative and ethical reasons and also because of legal consequences. Dental pulp undergoes regression in size with increasing age due to secondary dentin deposition and can be used as a parameter of age estimation even beyond 25 years of age. Kvaal et al. developed a method for chronological age estimation based on the pulp size using periapical dental radiographs. There is a need for testing this method of age estimation in the Indian population using simple tools like digital imaging on living individuals not requiring extraction of teeth. Aims and Objectives: Estimation of the chronological age of subjects by Kvaal's method using digital panoramic radiographs and also testing the validity of regression equations as given by Kvaal et al. Materials and Methods: The study sample included a total of 152 subjects in the age group of 14-60 years. Measurements were performed on the standardized digital panoramic radiographs based on Kvaal's method. Different regression formulae were derived and the age was assessed. The assessed age was then correlated to the actual age of the patient using Student's t-test. Results: No significant difference between the mean of the chronological age and the estimated age was observed. However, the values of the mean age estimated by using regression equations as given previously in the study of Kvaal et al. significantly underestimated the chronological age in the present study sample. Conclusion: The results of the study give an inference for the feasibility of this technique by calculation of regression equations on digital panoramic radiographs. However, it negates the applicability of same regression equations as given by Kvaal et al. on the study population. PMID:27555738

  10. Novel technique: a pupillometer-based objective chromatic perimetry

    NASA Astrophysics Data System (ADS)

    Rotenstreich, Ygal; Skaat, Alon; Sher, Ifat; Kolker, Andru; Rosenfeld, Elkana; Melamed, Shlomo; Belkin, Michael

    2014-02-01

    Evaluation of visual field (VF) is important for clinical diagnosis and patient monitoring. The current VF methods are subjective and require patient cooperation. Here we developed a novel objective perimetry technique based on the pupil response (PR) to multifocal chromatic stimuli in normal subjects and in patients with glaucoma and retinitis pigmentosa (RP). A computerized infrared video pupillometer was used to record PR to short- and long-wavelength stimuli (peak 485 nm and 620 nm, respectively) at light intensities of 15-100 cd-s/m2 at thirteen different points of the VF. The RP study included 30 eyes of 16 patients and 20 eyes of 12 healthy participants. The glaucoma study included 22 eyes of 11 patients and 38 eyes of 19 healthy participants. Significantly reduced PR was observed in RP patients in response to short-wavelength stimuli at 40 cd-s/m2 in nearly all perimetric locations (P <0.05). By contrast, RP patients demonstrated nearly normal PR to long-wavelength in majority of perimetric locations. The glaucoma group showed significantly reduced PR to long- and short-wavelength stimuli at high intensity in all perimetric locations (P <0.05). The PR of glaucoma patients was significantly lower than normal in response to short-wavelength stimuli at low intensity mostly in central and 20° locations (p<0.05). This study demonstrates the feasibility of using pupillometer-based chromatic perimetry for objectively assessing VF defects and retinal function and optic nerve damage in patients with retinal dystrophies and glaucoma. Furthermore, this method may be used to distinguish between the damaged cells underlying the VF defect.

  11. When other separation techniques fail: compound-specific carbon isotope ratio analysis of sulfonamide containing pharmaceuticals by high-temperature-liquid chromatography-isotope ratio mass spectrometry.

    PubMed

    Kujawinski, Dorothea M; Zhang, Lijun; Schmidt, Torsten C; Jochmann, Maik A

    2012-09-18

    Compound-specific isotope analysis (CISA) of nonvolatile analytes has been enabled by the introduction of the first commercial interface to hyphenate liquid chromatography with an isotope ratio mass spectrometer (LC-IRMS) in 2004, yet carbon isotope analysis of unpolar and moderately polar compounds is still a challenging task since only water as the eluent and no organic modifiers can be used to drive the separation in LC. The only way to increase the elution strength of aqueous eluents in reversed phase LC is the application of high temperatures to the mobile and stationary phases (HT-LC-IRMS). In this context we present the first method to determine carbon isotope ratios of pharmaceuticals that cannot be separated by already existing separation techniques for LC-IRMS, such as reversed phase chromatography at normal temperatures, ion-chromatography, and mixed mode chomatography. The pharmaceutical group of sulfonamides, which is generally mixed with trimethoprim in pharmaceutical products, has been chosen as probe compounds. Substance amounts as low as 0.3 μg are sufficient to perform a precise analysis. The successful applicability and reproducibility of this method is shown by the analysis of real pharmaceutical samples. The method provides the first tool to study the pharmaceutical authenticity as well as degradation and mobility of such substances in the environment by using the stable isotopic signature of these compounds.

  12. Weighted graph based ordering techniques for preconditioned conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Clift, Simon S.; Tang, Wei-Pai

    1994-01-01

    We describe the basis of a matrix ordering heuristic for improving the incomplete factorization used in preconditioned conjugate gradient techniques applied to anisotropic PDE's. Several new matrix ordering techniques, derived from well-known algorithms in combinatorial graph theory, which attempt to implement this heuristic, are described. These ordering techniques are tested against a number of matrices arising from linear anisotropic PDE's, and compared with other matrix ordering techniques. A variation of RCM is shown to generally improve the quality of incomplete factorization preconditioners.

  13. Comparative study between extraction techniques and column separation for the quantification of sinigrin and total isothiocyanates in mustard seed.

    PubMed

    Cools, Katherine; Terry, Leon A

    2012-07-15

    Glucosinolates are β-thioglycosides which are found naturally in Cruciferae including the genus Brassica. When enzymatically hydrolysed, glucosinolates yield isothiocyanates and give a pungent taste. Both glucosinolates and isothiocyanates have been linked with anticancer activity as well as antifungal and antibacterial properties and therefore the quantification of these compounds is scientifically important. A wide range of literature exists on glucosinolates, however the extraction and quantification procedures differ greatly resulting in discrepancies between studies. The aim of this study was therefore to compare the most popular extraction procedures to identify the most efficacious method and whether each extraction can also be used for the quantification of total isothiocyanates. Four extraction techniques were compared for the quantification of sinigrin from mustard cv. Centennial (Brassica juncea L.) seed; boiling water, boiling 50% (v/v) aqueous acetonitrile, boiling 100% methanol and 70% (v/v) aqueous methanol at 70 °C. Prior to injection into the HPLC, the extractions which involved solvents (acetonitrile or methanol) were freeze-dried and resuspended in water. To identify whether the same extract could be used to measure total isothiocyanates, a dichloromethane extraction was carried out on the sinigrin extracts. For the quantification of sinigrin alone, boiling 50% (v/v) acetonitrile was found to be the most efficacious extraction solvent of the four tested yielding 15% more sinigrin than the water extraction. However, the removal of the acetonitrile by freeze-drying had a negative impact on the isothiocyanate content. Quantification of both sinigrin and total isothiocyanates was possible when the sinigrin was extracted using boiling water. Two columns were compared for the quantification of sinigrin revealing the Zorbax Eclipse to be the best column using this particular method. PMID:22743340

  14. The environmental applications and implications of nanotechnology in membrane-based separations for water treatment

    NASA Astrophysics Data System (ADS)

    Shan, Wenqian

    This dissertation presents results of three related projects focused on the applications of membrane separation technology to water treatment: 1) Experimental design and evaluation of polyelectrolyte multilayer films as regenerable membrane coatings with controllable surface properties; 2) Modeling of the interactions of nanoscale TiO2 and NOM molecules in aqueous solutions of environmentally relevant compositions; 3) Experimental design and preliminary testing of a membrane-based crossflow filtration hydrocyclone process for the separation of oil-in-water dispersions. Chapter 2 describes the design of polyelectrolyte multilayers as nanoscale membrane coatings and their application in nanofiltration of feed waters that contain suspended colloids and dissolved species. Layer-by-layer deposition of anionic and cationic polyelectrolytes was employed to prepare membrane coatings allowing for a fine control over their surface properties. This approach to membrane design also affords a possibility of regenerating coatings after they are fouled by colloids. This project demonstrated, for first time, the possibility of designing nanofiltration membranes with regenerable skin. Chapter 3 describes a study on the mechanisms of natural organic matter (NOM) adsorption onto the surface of titania nanoparticles. Titainia (TiO 2) is often used in the fabrication of ceramic membranes and understanding how NOM interacts with TiO2 can help to better predict ceramic membrane fouling by NOM-containing waters. The combined effect of pH and calcium on the interactions of nonozonated and ozonated NOM with nanoscale TiO 2 was investigated by applying extended Derjaguin --- Landau --- Verwey - Overbeek (XDLVO) modeling. XDLVO surface energy analysis predicted NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of

  15. Radioimmunoassay for salivary estriol, with use of an /sup 125/I radioligand and a solid-phase separation technique

    SciTech Connect

    Truran, P.L.; Read, G.F.; Walker, S.

    1982-12-01

    This simple, rapid radioimmunoassay for salivary unconjugated estriol in the third trimester of pregnancy is based on use of a Sepharose-coupled antiserum and a radioiodinated tracer, and requires only a 15-min incubation. Estriol conjugates are shown not to be present in saliva in significant concentrations; therefore a preliminary extraction is unnecessary. Determinations of unconjugated estriol in matched specimens of plasma and saliva correlate well (r . 0.95). A provisional normal range for 30 weeks to term agrees closely with those reported by others. This assay can give results quickly for the large numbers of specimens generated by weekly or daily sampling regimes.

  16. Novel Separation of Actinides

    SciTech Connect

    Mariella, R

    2011-02-17

    The separation of actinides and other elements of interest for nuclear forensics and threat reduction is currently performed using decades-old chemistries and ion-exchange columns. We propose to determine the technical feasibility of a novel method for separating actinide ions in solution. This method is based upon isotachophoresis (ITP), which has been applied in the purification of pharmaceuticals and other biochemical applications. This technique has the potential to separate inorganic ions more effectively than existing methods, which is key to analyzing very small samples. We will perform a quantitative assessment of the effectiveness of specific isotachophoretic approaches including predicting the physical and chemical properties, such as ion mobility, of inorganic ions under specific solvent conditions using a combination of ab initio calculations and semi-empirical methods. We expect to obtain a thorough understanding of the analytical systems parameters under which ITP is most effective for the separation of inorganic samples, including the influence of the double layer surrounding actinide ions, the Debye length for different ions and ion complexes, and Debye-Hueckel limits. Inorganic separations are key to nuclear forensics for countering terrorism and nuclear proliferation. If found to be feasible and potentially superior to currently used separation approaches, ITP could provide the conceptual basis for an improved means to separate samples of nuclear explosion debris for nuclear forensic analysis, in support of the Laboratory's missions in homeland and national security.

  17. Adhesive-based bonding technique for PDMS microfluidic devices.

    PubMed

    Thompson, C Shea; Abate, Adam R

    2013-02-21

    We present a simple and inexpensive technique for bonding PDMS microfluidic devices. The technique uses only adhesive tape and an oven; plasma bonders and cleanroom facilities are not required. It also produces channels that are immediately hydrophobic, allowing formation of aqueous-in-oil emulsions.

  18. Comparison Of Four FFT-Based Frequency-Acquisition Techniques

    NASA Technical Reports Server (NTRS)

    Shah, Biren N.; Hinedi, Sami M.; Holmes, Jack K.

    1993-01-01

    Report presents comparative theoretical analysis of four conceptual techniques for initial estimation of carrier frequency of suppressed-carrier, binary-phase-shift-keyed radio signal. Each technique effected by open-loop analog/digital signal-processing subsystem part of Costas-loop phase-error detector functioning in closed-loop manner overall.

  19. Anterolateral Ligament Reconstruction Technique: An Anatomic-Based Approach.

    PubMed

    Chahla, Jorge; Menge, Travis J; Mitchell, Justin J; Dean, Chase S; LaPrade, Robert F

    2016-06-01

    Restoration of anteroposterior laxity after an anterior cruciate ligament reconstruction has been predictable with traditional open and endoscopic techniques. However, anterolateral rotational stability has been difficult to achieve in a subset of patients, even with appropriate anatomic techniques. Therefore, differing techniques have attempted to address this rotational laxity by augmenting or reconstructing lateral-sided structures about the knee. In recent years, there has been a renewed interest in the anterolateral ligament as a potential contributor to residual anterolateral rotatory instability in anterior cruciate ligament-deficient patients. Numerous anatomic and biomechanical studies have been performed to further define the functional importance of the anterolateral ligament, highlighting the need for surgical techniques to address these injuries in the unstable knee. This article details our technique for an anatomic anterolateral ligament reconstruction using a semitendinosus tendon allograft. PMID:27656361

  20. Separation of uremic toxins from urine with resorcinarene-based ion chromatography columns.

    PubMed

    Panahi, Tayyebeh; Weaver, Douglas J; Lamb, John D; Harrison, Roger G

    2015-01-01

    People with chronic kidney disease suffer from uremic toxins which accumulate in their bodies. Detection and quantification of uremic toxins help diagnose kidney problems and start patient care. The aim of this research was to seek a new method to assist this diagnosis by trace level detection and separation of guanidine containing uremic toxins in water and urine. To detect and quantify the uremic toxins, new stationary phases for ion chromatography (IC) columns based on glutamic acid functionalized resorcinarenes bound to divinylbenzene macroporous resin were prepared. The new column packing material afforded separation of the five compounds: guanidinoacetic acid, guanidine, methylguanidine, creatinine, and guanidinobenzoic acid in 30min. Peak resolutions ranged from 7.6 to 1.3. Gradient elutions at ambient temperature with methanesulfonic acid (MSA) solution as eluent resulted in detection levels in water from 10 to 47ppb and in synthetic urine from 28 to 180ppb. Limits of quantification for the analytes using pulsed amperometric detection were 30-160ppb in water and 93-590ppb in urine. Trace levels of creatinine (1ppm) were detected in the urine of a healthy individual using the columns.

  1. Rapid Filtration Separation-Based Sample Preparation Method for Bacillus Spores in Powdery and Environmental Matrices

    PubMed Central

    Isabel, Sandra; Boissinot, Maurice; Charlebois, Isabelle; Fauvel, Chantal M.; Shi, Lu-E; Lévesque, Julie-Christine; Paquin, Amélie T.; Bastien, Martine; Stewart, Gale; Leblanc, Éric; Sato, Sachiko

    2012-01-01

    Authorities frequently need to analyze suspicious powders and other samples for biothreat agents in order to assess environmental safety. Numerous nucleic acid detection technologies have been developed to detect and identify biowarfare agents in a timely fashion. The extraction of microbial nucleic acids from a wide variety of powdery and environmental samples to obtain a quality level adequate for these technologies still remains a technical challenge. We aimed to develop a rapid and versatile method of separating bacteria from these samples and then extracting their microbial DNA. Bacillus atrophaeus subsp. globigii was used as a simulant of Bacillus anthracis. We studied the effects of a broad variety of powdery and environmental samples on PCR detection and the steps required to alleviate their interference. With a benchmark DNA extraction procedure, 17 of the 23 samples investigated interfered with bacterial lysis and/or PCR-based detection. Therefore, we developed the dual-filter method for applied recovery of microbial particles from environmental and powdery samples (DARE). The DARE procedure allows the separation of bacteria from contaminating matrices that interfere with PCR detection. This procedure required only 2 min, while the DNA extraction process lasted 7 min, for a total of <10 min. This sample preparation procedure allowed the recovery of cleaned bacterial spores and relieved detection interference caused by a wide variety of samples. Our procedure was easily completed in a laboratory facility and is amenable to field application and automation. PMID:22210204

  2. Preparations of PAN-based adsorbers for separation of cesium and cobalt from radioactive wastes.

    PubMed

    Nilchi, A; Atashi, H; Javid, A H; Saberi, R

    2007-05-01

    Ion-exchange adsorbers are widely used for radioisotope separation, as well as for the removal of hazardous fission products from aqueous waste prior to discharge to the environment. Inorganic exchangers are of particular interest because of their resistance to radiolytic damage and selectivity for specific fission products. Composite inorganic-organic adsorbers represent a group of inorganic ion exchangers modified by using binding organic material, polyacrylonitrile, for preparation of larger size particles with higher granular strength. At the same time, kinetics of ion exchange and sorption capacity of such composite adsorbers are not influenced by the binding polymer. The contents of active component in composite adsorber were varied over a very broad range of 5-95% of the dry weight of the composite adsorber, and tested for separation and concentration of various stimulated wastes. Three different inorganic sorbents, granular hexacyanoferrate-based ion exchanger, were developed for the removal of Cs and Co ions from waste solutions containing different complexing agents as detergents. Radiation and thermal stability studies show that these adsorbents can be used for medium-active waste treatment. PMID:17270450

  3. Principles for microscale separations based on redox-active surfactants and electrochemical methods.

    PubMed

    Rosslee, C A; Abbott, N L

    2001-10-15

    We report principles for microscale separations based on selective solubilization and deposition of sparingly water-soluble compounds by an aqueous solution of a redox-active surfactant. The surfactant, (11-ferrocenylundecyl)trimethylammonium bromide, undergoes a reversible change in micellization upon oxidation or reduction. This change in aggregation is exploited in a general scheme in which micelles of reduced surfactant are formed and then put in contact with a mixture of hydrophobic compounds leading to selective solubilization of the compounds. The micelles are then electrochemically disrupted, leading to the selective deposition of their contents. We measured the selectivity of the solubilization and deposition processes using mixtures of two model drug-like compounds, o-tolueneazo-beta-naphthol (I) and 1-phenylazo-2-naphthylamine (II). By repeatedly solubilizing and depositing a mixture that initially contained equal mole fractions of each compound, we demonstrate formation of a product that contains 98.4% of I after six cycles. Because the aggregation states of redox-active surfactants are easily controlled within simple microfabricated structures, including structures that define small stationary volumes (e.g., wells of a microtiter plate) or flowing volumes of liquids (e.g., microfabricated channels), we believe these principles may be useful for the purification or analysis of compounds in microscale chemical process systems. When used for purification, these principles provide separation of surfactant and product.

  4. Preparations of PAN-based adsorbers for separation of cesium and cobalt from radioactive wastes.

    PubMed

    Nilchi, A; Atashi, H; Javid, A H; Saberi, R

    2007-05-01

    Ion-exchange adsorbers are widely used for radioisotope separation, as well as for the removal of hazardous fission products from aqueous waste prior to discharge to the environment. Inorganic exchangers are of particular interest because of their resistance to radiolytic damage and selectivity for specific fission products. Composite inorganic-organic adsorbers represent a group of inorganic ion exchangers modified by using binding organic material, polyacrylonitrile, for preparation of larger size particles with higher granular strength. At the same time, kinetics of ion exchange and sorption capacity of such composite adsorbers are not influenced by the binding polymer. The contents of active component in composite adsorber were varied over a very broad range of 5-95% of the dry weight of the composite adsorber, and tested for separation and concentration of various stimulated wastes. Three different inorganic sorbents, granular hexacyanoferrate-based ion exchanger, were developed for the removal of Cs and Co ions from waste solutions containing different complexing agents as detergents. Radiation and thermal stability studies show that these adsorbents can be used for medium-active waste treatment.

  5. PHASE SEPARATION IN PM 2000 FE-BASE ODS ALLOY: EXPERIMENTAL STUDY AT THE ATOMIC LEVEL

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Russell, Kaye F; Chao, J.; Gonzalez-Carrasco, J. L.

    2008-01-01

    The coarsening of the three-dimensional microstructure resulting from phase separation during ageing at 748 K of a Fe-based PM 2000{trademark} oxide dispersion strengthened (ODS) steel has been investigated by atom probe tomography and hardness measurements. Phase separation resulted in the formation of isolated particles of the chromium-enriched {alpha}{prime} phase. The aluminum and titanium were found to preferential partition to the iron-rich {alpha} phase. The partitioning of aluminum is consistent with theoretical calculations. The change in the scale of the chromium-enriched {alpha}{prime} phase was found to fit a power law with a time exponent of 0.32 in accordance with that predicted by the classical Lifshitz, Slyozov and Wagner (LSW) theory. The solute concentrations of the coexisting {alpha} and {alpha}{prime} phases were estimated from concentration frequency distributions with the Langer-Bar-on-Miller (LBM) method and proximity histograms. The hardness was linearly related to the chromium content of the {alpha}{prime} phase.

  6. Microcapsule-based techniques for improving the safety of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Baginska, Marta

    Lithium-ion batteries are vital energy storage devices due to their high specific energy density, lack of memory effect, and long cycle life. While they are predominantly used in small consumer electronics, new strategies for improving battery safety and lifetime are critical to the successful implementation of high-capacity, fast-charging materials required for advanced Li-ion battery applications. Currently, the presence of a volatile, combustible electrolyte and an oxidizing agent (Lithium oxide cathodes) make the Li-ion cell susceptible to fire and explosions. Thermal overheating, electrical overcharging, or mechanical damage can trigger thermal runaway, and if left unchecked, combustion of battery materials. To improve battery safety, autonomic, thermally-induced shutdown of Li-ion batteries is demonstrated by depositing thermoresponsive polymer microspheres onto battery anodes. When the internal temperature of the cell reaches a critical value, the microspheres melt and conformally coat the anode and/or separator with an ion insulating barrier, halting Li-ion transport and shutting down the cell permanently. Charge and discharge capacity is measured for Li-ion coin cells containing microsphere-coated anodes or separators as a function of capsule coverage. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and re-solidification of polyethylene (PE) into the anode and polymer film formation at the anode/separator interface. As an extension of this autonomic shutdown approach, a particle-based separator capable of performing autonomic shutdown, but which reduces the shorting hazard posed by current bi- and tri-polymer commercial separators, is presented. This dual-particle separator is composed of hollow glass microspheres acting as a physical spacer between electrodes, and PE microspheres to impart autonomic shutdown functionality. An oil-immersion technique is

  7. Improved mesh based photon sampling techniques for neutron activation analysis

    SciTech Connect

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-07-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  8. Superficially Porous Particle Based Hydroxypropyl-β-cyclodextrin Stationary Phase for High-Efficiency Enantiomeric Separations.

    PubMed

    Spudeit, Daniel A; Breitbach, Zachary S; Dolzan, Maressa D; Micke, Gustavo A; Armstrong, Daniel W

    2015-11-01

    A superficially porous particle (SPP)-based hydroxypropyl-β-cyclodextrin (HPBCD) chiral stationary phase (CSP) was produced and its chromatographic performance was compared to both 5 µm and 3 µm fully porous particle (FPP)-based CSPs. The relative surface coverage of the HPBCD chiral selector on each particle was approximately equal, which resulted in equivalent enantiomeric selectivity (α) values on each phase when constant mobile phase conditions were used. Under such conditions, the SPP column resulted in greatly reduced analysis times and three times greater efficiencies compared to the FPP columns. When higher flow rates were used, efficiency gains per analysis times were five times greater for the SPP column compared to the FPP-based columns. When the mobile phases were altered to give similar analysis times on each column, resolution values were doubled for the SPP column. Finally, the novel SPP based HPBCD column proved to be stable for 500 injections under high flow rate (4.5 mL/min) and high pressure (400 bar) conditions used for an ultrafast (~45 sec) enantiomeric separation.

  9. Enantioselective separation of racemic secondary amines on a chiral crown ether-based liquid chromatography stationary phase.

    PubMed

    Steffeck, Robert J; Zelechonok, Yury; Gahm, Kyung H

    2002-02-22

    The first general enantioselective separation of racemic secondary amines on a crown ether-based liquid chromatography chiral stationary phase (CSP) is presented. The CSP is based on (+)- or (-)-(18-crown-6)-2,3,11,12-tetracarboxylic acid covalently bonded to silica gel. A mobile phase containing methanol, acetonitrile, triethylamine and acetic acid was employed in these separations of secondary amines with crown ether CSPs. The separation mechanism is believed to be the secondary amine forming a complex which includes crown ether coordination and electrostatic interaction of the positively charged amine with a carboxylate anion of the immobilized crown ether.

  10. Magnetic separation-based blood purification: a promising new approach for the removal of disease-causing compounds?

    PubMed

    Herrmann, I K; Schlegel, A A; Graf, R; Stark, W J; Beck-Schimmer, Beatrice

    2015-01-01

    Recent studies report promising results regarding extracorporeal magnetic separation-based blood purification for the rapid and selective removal of disease-causing compounds from whole blood. High molecular weight compounds, bacteria and cells can be eliminated from blood within minutes, hence offering novel treatment strategies for the management of intoxications and blood stream infections. However, risks associated with incomplete particle separation and the biological consequences of particles entering circulation remain largely unclear. This article discusses the promising future of magnetic separation-based purification while keeping important safety considerations in mind. PMID:26253109

  11. Magnetic separation-based blood purification: a promising new approach for the removal of disease-causing compounds?

    PubMed

    Herrmann, I K; Schlegel, A A; Graf, R; Stark, W J; Beck-Schimmer, Beatrice

    2015-01-01

    Recent studies report promising results regarding extracorporeal magnetic separation-based blood purification for the rapid and selective removal of disease-causing compounds from whole blood. High molecular weight compounds, bacteria and cells can be eliminated from blood within minutes, hence offering novel treatment strategies for the management of intoxications and blood stream infections. However, risks associated with incomplete particle separation and the biological consequences of particles entering circulation remain largely unclear. This article discusses the promising future of magnetic separation-based purification while keeping important safety considerations in mind.

  12. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Zhang, Shangbin; He, Qingbo; Kong, Fanrang

    2016-01-01

    Wayside acoustic condition monitoring and fault diagnosis for train bearings depend on acquired acoustic signals, which consist of mixed signals from different train bearings with obvious Doppler distortion as well as background noises. This study proposes a novel scheme to overcome the difficulties, especially the multi-source problem in wayside acoustic diagnosis system. In the method, a time-frequency data fusion (TFDF) strategy is applied to weaken the Heisenberg's uncertainty limit for a signal's time-frequency distribution (TFD) of high resolution. Due to the Doppler Effect, the signals from different bearings have different time centers even with the same frequency. A Doppler feature matching search (DFMS) algorithm is then put forward to locate the time centers of different bearings in the TFD spectrogram. With the determined time centers, time-frequency filters (TFF) are designed with thresholds to separate the acoustic signals in the time-frequency domain. Then the inverse STFT (ISTFT) is taken and the signals are recovered and filtered aiming at each sound source. Subsequently, a dynamical resampling method is utilized to remove the Doppler Effect. Finally, accurate diagnosis for train bearing faults can be achieved by applying conventional spectrum analysis techniques to the resampled data. The performance of the proposed method is verified by both simulated and experimental cases. It shows that it is effective to detect and diagnose multiple defective bearings even though they produce multi-source acoustic signals.

  13. Detection and separation of overlapping cells based on contour concavity for Leishmania images.

    PubMed

    Neves, João C; Castro, Helena; Tomás, Ana; Coimbra, Miguel; Proença, Hugo

    2014-06-01

    Life scientists often must count cells in microscopy images, which is a tedious and time-consuming task. Automatic approaches present a solution to this problem. Several procedures have been devised for this task, but the majority suffer from performance degradation in the case of cell overlap. In this article, we propose a method to determine the positions of macrophages and parasites in fluorescence images of Leishmania-infected macrophages. The proposed strategy is primarily based on blob detection, clustering, and separation using concave regions of the cells' contours. In comparison with the approaches of Nogueira (Master's thesis, Department of University of Porto Computer Science, 2011) and Leal et al. (Proceedings of the 9th international conference on Image Analysis and Recognition, Vol. II, ICIAR'12. Berlin, Heidelberg: Springer-Verlag; 2012. pp. 432-439), which also addressed this type of image, we conclude that the proposed methodology achieves better performance in the automatic annotation of Leishmania infections. PMID:24719205

  14. Illuminant color estimation based on pigmentation separation from human skin color

    NASA Astrophysics Data System (ADS)

    Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi

    2015-03-01

    Human has the visual system called "color constancy" that maintains the perceptive colors of same object across various light sources. The effective method of color constancy algorithm was proposed to use the human facial color in a digital color image, however, this method has wrong estimation results by the difference of individual facial colors. In this paper, we present the novel color constancy algorithm based on skin color analysis. The skin color analysis is the method to separate the skin color into the components of melanin, hemoglobin and shading. We use the stationary property of Japanese facial color, and this property is calculated from the components of melanin and hemoglobin. As a result, we achieve to propose the method to use subject's facial color in image and not depend on the individual difference among Japanese facial color.

  15. A simple model for solute-solvent separation through nanopores based on core-softened potentials

    NASA Astrophysics Data System (ADS)

    de Vasconcelos, Cláudia K. B.; Batista, Ronaldo J. C.; da Rocha Régis, McGlennon; Manhabosco, Taíse M.; de Oliveira, Alan B.

    2016-07-01

    We propose an effective model for solute separation from fluids through reverse osmosis based on core-softened potentials. Such potentials have been used to investigate anomalous fluids in several situations under a great variety of approaches. Due to their simplicity, computational simulations become faster and mathematical treatments are possible. Our model aims to mimic water desalination through nano-membranes through reverse osmosis, for which we have found reasonable qualitative results when confronted against all-atoms simulations found in the literature. The purpose of this work is not to replace any fully atomistic simulation at this stage, but instead to pave the first steps towards coarse-grained models for water desalination processes. This may help to approach problems in larger scales, in size and time, and perhaps make analytical theories more viable.

  16. Application of THz probe radiation in low-coherent tomographs based on spatially separated counterpropagating beams

    SciTech Connect

    Kuritsyn, I I; Shkurinov, A P; Nazarov, M M; Mandrosov, V I; Cherkasova, O P

    2013-10-31

    A principle of designing a high-resolution low-coherent THz tomograph, which makes it possible to investigate media with a high spatial resolution (in the range λ{sub 0} – 2λ{sub 0}, where λ{sub 0} is the average probe wavelength) is considered. The operation principle of this tomograph implies probing a medium by radiation with a coherence length of 8λ{sub 0} and recording a hologram of a focused image of a fixed layer of this medium using spatially separated counterpropagating object and reference beams. Tomograms of the medium studied are calculated using a temporal approach based on application of the time correlation function of probe radiation. (terahertz radiation)

  17. Experimental models of small closed systems with spatially separated unicellular organism-based components.

    PubMed

    Pis'man, T I; Pechurkin, N S; Sarangova, A B; Somova, L A

    1999-01-01

    Experimental models of small biotic cycles of different degree of closure and complexity with spatially separated components based on unicellular organisms have been studied. Gas closure of components looped into "autotroph-heterotroph" (chlorella-yeast) system doubled the lifetime of the system (as opposed to individually cultivated components). Higher complexity of the heterotroph component consisting of two yeast species also increased the lifetime of the system through more complete utilization of the substrate by competing yeast species. The lifetime of gas and substrate closed "producer-consumer" trophic chain (chlorella-paramecia) increased to 7 months. In 60 days the components' numbers reached their steady state followed by more than 40 cycles of the medium. The role of a predator organism (protozoan) in nitrogen cycling was demonstrated; reproduction of protozoa correlated directly with their emission of nitrogen in the ammonia form that is most optimum for growth of chlorella. PMID:11542240

  18. Polymeric Cryogel-Based Boronate Affinity Chromatography for Separation of Ribonucleic Acid from Bacterial Extracts.

    PubMed

    Shakya, Akhilesh Kumar; Srivastava, Akshay; Kumar, Ashok

    2015-01-01

    Three-dimensional monolithic columns are preferred stationary phase in column chromatography. Conventional columns based on silica or particles are efficient in bioseparation though associated with limitations of nonspecific interaction and uneven porosity that causes high mass transfer resistance for the movement of big molecules. Cryogels as a monolith column have shown promising application in bioseparation. Cryogels column can be synthesized in the form of a monolith at sub-zero temperature through gelation of pre-synthesized polymers or polymerization of monomers. Cryogels are macroporous and mechanically stable materials. They have open interconnected micron-sized pores with a wide range of porosity (10-200 μm). Current protocol demonstrated the ability of poly(hydroxymethyl methacrylate)-co-vinylphenyl boronic acid p(HEMA-co-VPBA) cryogel matrix for selective separation of RNA from the bacterial crude extract. PMID:26623972

  19. Vascularized rotational temporal bone flap for repair of anterior skull base defects: a novel operative technique.

    PubMed

    Zeiler, Frederick A; Kaufmann, Anthony M

    2015-11-01

    Repair of anterior skull base defects with vascularized grafts poses a significant challenge, given the location and small number of adequately sized vessels for free-flap anastomosis. This is particularly the case in the setting of redo surgery or in patients with preexisting soft-tissue trauma. Even more difficult is achieving a vascularized bone flap closure of such bony defects. The authors report a novel technique involving a rotational temporal bone flap with a temporalis muscle vascularized pedicle, which was used to repair an anterior fossa bony and soft-tissue defect created by recurrent malignancy. A 55-year-old man with history of scalp avulsion during a motor vehicle accident, anterior fossa/nasopharyngeal malignant neuroendocrine carcinoma postresection, and bone flap infection presented with a recurrence of his skull base malignancy. The tumor was located in the anterior fossa, extending interhemispherically and down through the cribriform plate, ethmoid air cells, and extending into the nasopharyngeal cavity. Resection of the recurrent tumor was performed. The bony defect in the anterior skull base was repaired with a novel vascularized rotational temporal bone flap, with acceptable separation of the nasopharynx from the intracranial cavity. The vascularized rotational temporal bone flap, in which a temporalis muscle pedicle is used, provides a novel and easily accessible means of vascularized bone closure of anterior skull base defects without the need for microsurgical free-flap grafting.

  20. Blood culture technique based on centrifugation: clinical evaluation.

    PubMed Central

    Dorn, G L; Burson, G G; Haynes, J R

    1976-01-01

    A total of 1,000 blood samples from patients suspected of having a bacteremia were analyzed concurrently, where possible, by three methods: (i) Trypticase soy broth with sodium polyanethol sulfonate and a CO2 atmosphere: (ii) pour plates with either brain heart infusion agar or Sabouraud dextrose agar; and (iii) centrifugation of the suspected organism in a hypertonic solution. There were 176 positive cultures. The centrifugation technique recovered 73% of the positive cultures. The broth and pour plate techniques recovered 38 and 49%, respectively. The centrifugation technique showed an increased isolation rate for Pseudomonas, fungi, and gram-positive cocci. In general, for each organism the time required for the detection of a positive culture was shortest for the centrifugation technique. PMID:1270591

  1. A local technique based on vectorized surfaces for craniofacial reconstruction.

    PubMed

    Tilotta, Françoise M; Glaunès, Joan A; Richard, Frédéric J P; Rozenholc, Yves

    2010-07-15

    In this paper, we focus on the automation of facial reconstruction. Since they consider the whole head as the object of interest, usual reconstruction techniques are global and involve a large number of parameters to be estimated. We present a local technique which aims at reaching a good trade-off between bias and variance following the paradigm of non-parametric statistics. The estimation is localized on patches delimited by surface geodesics between anatomical points of the skull. The technique relies on a continuous representation of the individual surfaces embedded in the vectorial space of extended normal vector fields. This allows to compute deformations and averages of surfaces. It consists in estimating the soft-tissue surface over patches. Using a homogeneous database described in [31], we obtain results on the chin and nasal regions with an average error below 1mm, outperforming the global reconstruction techniques.

  2. High-Performance Palladium Based Membrane for Hydrogen Separation and Purification

    SciTech Connect

    Hopkins, Scott

    2012-01-31

    The mission of the DOE's Fuel Cell Technologies'Hydrogen Fuels R&D effort is to research, develop, and validate technologies for producing, storing, and delivering hydrogen in an efficient, clean, safe, reliable, and affordable manner. A key program technical milestone for hydrogen technology readiness is to produce hydrogen from diverse, domestic resources at $2.00-$3.00 per gallon of gasoline equivalent (gge) delivered, untaxed. Low-cost, high-temperature hydrogen separation membranes represent a key enabling technology for small-scale distributed hydrogen production units. Availability of such membranes with high selectivity and high permeability for hydrogen will allow their integration with hydrocarbon reforming and water gas shift reactions, potentially reducing the cost of hydrogen produced. Pd-metal-based dense membranes are known for their excellent hydrogen selectivity and permeability characteristics, however, utilization of these membranes has so far been limited to small scale niche markets for hydrogen purification primarily due to the relatively high cost of Pd-alloy tubes compared to pressure swing adsorption (PSA) units. This project was aimed at development of thin-film Pd-alloy membranes deposited on Pall Corporation's DOE-based AccuSep® porous metal tube substrates to form a composite hydrogen separation membrane for these applications. Pall's composite membrane development addressed the typical limitations of composite structures by developing robust membranes capable of withstanding thermal and mechanical stresses resulting from high temperature (400C), high pressure (400 psi steam methane reformer and 1000 psi coal) operations and thermal cycling involved in conventional hydrogen production. In addition, the Pd-alloy membrane composition was optimized to be able to offer the most stability in the typical synthesis gas environments produced by reforming of natural gas and bio-derived liquid fuels (BILI) validating the technical

  3. Intensity-based signal separation algorithm for accuratequantification of clustered centrosomes in tissue sections

    SciTech Connect

    Fleisch, Markus C.; Maxell, Christopher A.; Kuper, Claudia K.; Brown, Erika T.; Parvin, Bahram; Barcellos-Hoff, Mary-Helen; Costes,Sylvain V.

    2006-03-08

    Centrosomes are small organelles that organize the mitoticspindle during cell division and are also involved in cell shape andpolarity. Within epithelial tumors, such as breast cancer, and somehematological tumors, centrosome abnormalities (CA) are common, occurearly in disease etiology, and correlate with chromosomal instability anddisease stage. In situ quantification of CA by optical microscopy ishampered by overlap and clustering of these organelles, which appear asfocal structures. CA has been frequently associated with Tp53 status inpremalignant lesions and tumors. Here we describe an approach toaccurately quantify centrosomes in tissue sections and tumors.Considering proliferation and baseline amplification rate the resultingpopulation based ratio of centrosomes per nucleus allow the approximationof the proportion of cells with CA. Using this technique we show that20-30 percent of cells have amplified centrosomes in Tp53 null mammarytumors. Combining fluorescence detection, deconvolution microscopy and amathematical algorithm applied to a maximum intensity projection we showthat this approach is superior to traditional investigator based visualanalysis or threshold-based techniques.

  4. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery

    PubMed Central

    Zhang, Jianjun; Yue, Liping; Kong, Qingshan; Liu, Zhihong; Zhou, Xinhong; Zhang, Chuanjian; Xu, Quan; Zhang, Bo; Ding, Guoliang; Qin, Bingsheng; Duan, Yulong; Wang, Qingfu; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-01-01

    A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented improved electrolyte uptake, better interface stability and enhanced ionic conductivity. In addition, the lithium cobalt oxide (LiCoO2)/graphite cell using this composite separator exhibited better rate capability and cycling retention than that for PP separator owing to its facile ion transport and excellent interfacial compatibility. Furthermore, the lithium iron phosphate (LiFePO4)/lithium cell with such composite separator delivered stable cycling performance and thermal dimensional stability even at an elevated temperature of 120°C. All these fascinating characteristics would boost the application of this composite separator for high-performance lithium ion battery. PMID:24488228

  5. A study of trends and techniques for space base electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.

    1978-01-01

    Furnaces and photolithography related equipment were applied to experiments on double layer metal. The double layer metal activity emphasized wet chemistry techniques. By incorporating the following techniques: (1) ultrasonic etching of the vias; (2) premetal clean using a modified buffered hydrogen fluoride; (3) phosphorus doped vapor; and (4) extended sintering, yields of 98 percent were obtained using the standard test pattern. The two dimensional modeling problems have stemmed from, alternately, instability and too much computation time to achieve convergence.

  6. Biogeosystem technique as a base of Sustainable Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdulmalik

    2016-04-01

    The world water strategy is to be changed because the current imitational gravitational frontal isotropic-continual paradigm of irrigation is not sustainable. This paradigm causes excessive consumption of fresh water - global deficit - up to 4-15 times, adverse effects on soils and landscapes. Current methods of irrigation does not control the water spread throughout the soil continuum. The preferable downward fluxes of irrigation water are forming, up to 70% and more of water supply loses into vadose zone. The moisture of irrigated soil is high, soil loses structure in the process of granulometric fractions flotation decomposition, the stomatal apparatus of plant leaf is fully open, transpiration rate is maximal. We propose the Biogeosystem technique - the transcendental, uncommon and non-imitating methods for Sustainable Natural Resources Management. New paradigm of irrigation is based on the intra-soil pulse discrete method of water supply into the soil continuum by injection in small discrete portions. Individual volume of water is supplied as a vertical cylinder of soil preliminary watering. The cylinder position in soil is at depth form 10 to 30 cm. Diameter of cylinder is 1-2 cm. Within 5-10 min after injection the water spreads from the cylinder of preliminary watering into surrounding soil by capillary, film and vapor transfer. Small amount of water is transferred gravitationally to the depth of 35-40 cm. The soil watering cylinder position in soil profile is at depth of 5-50 cm, diameter of the cylinder is 2-4 cm. Lateral distance between next cylinders along the plant raw is 10-15 cm. The soil carcass which is surrounding the cylinder of non-watered soil remains relatively dry and mechanically stable. After water injection the structure of soil in cylinder restores quickly because of no compression from the stable adjoining volume of soil and soil structure memory. The mean soil thermodynamic water potential of watered zone is -0.2 MPa. At this potential

  7. Determination of ambroxol hydrochloride, methylparaben and benzoic acid in pharmaceutical preparations based on sequential injection technique coupled with monolithic column.

    PubMed

    Satínský, Dalibor; Huclová, Jitka; Ferreira, Raquel L C; Montenegro, Maria Conceição B S M; Solich, Petr

    2006-02-13

    The porous monolithic columns show high performance at relatively low pressure. The coupling of short monoliths with sequential injection technique (SIA) results in a new approach to implementation of separation step to non-separation low-pressure method. In this contribution, a new separation method for simultaneous determination of ambroxol, methylparaben and benzoic acid was developed based on a novel reversed-phase sequential injection chromatography (SIC) technique with UV detection. A Chromolith SpeedROD RP-18e, 50-4.6 mm column with 10 mm precolumn and a FIAlab 3000 system with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-tetrahydrofuran-0.05M acetic acid (10:10:90, v/v/v), pH 3.75 adjusted with triethylamine, flow rate 0.48 mlmin(-1), UV-detection was at 245 nm. The analysis time was <11 min. A new SIC method was validated and compared with HPLC. The method was found to be useful for the routine analysis of the active compounds ambroxol and preservatives (methylparaben or benzoic acid) in various pharmaceutical syrups and drops.

  8. Optic nerve: separating compartments based on 23Na TQF spectra and TQF-diffusion anisotropy.

    PubMed

    Eliav, Uzi; Xu, Xiang; Jerschow, Alexej; Navon, Gil

    2013-06-01

    We present a triple quantum filtered (TQF) sodium spectroscopy study of an excised bovine optic nerve. By choosing proper experimental parameters, this technique allowed us to independently observe the satellite transitions originating from the various compartments in the tissue. TQF-based diffusion experiments provided further characterization of the compartments in terms of their geometry. As a result, the peak that exhibited the smallest residual quadrupolar splitting, and the largest diffusion anisotropy was assigned to axons. Two other pairs of satellite peaks were assigned to extra-cellular compartments on the basis of either the size of their quadrupolar splitting or the diffusion properties.

  9. A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jeon, Hyunkyu; Yeon, Daeyong; Lee, Taejoo; Park, Joonam; Ryou, Myung-Hyun; Lee, Yong Min

    2016-05-01

    To develop an environmentally friendly and cost-effective water-based inorganic coating process for hydrophobic, polyolefin-based microporous separators, the effect of surfactants in an aqueous inorganic coating solution comprising alumina (Al2O3) on polyethylene (PE)-based microporous separators is investigated. By using a selected surfactant, i.e., disodium laureth sulfosuccinate (DLSS), the aqueous Al2O3 coating solution maintained a dispersed state over time and facilitated the formation of a uniform Al2O3 coating layer on PE separator surfaces. Due to the hydrophilic nature of the Al2O3 coating layers, the as-prepared, ceramic-coated PE separators had better wetting properties, greater electrolyte uptake, and larger ionic conductivities compared to those of the bare PE separators. Furthermore, half cells (LiMn2O4/Li metal) containing Al2O3-coated PE separators showed improved capacity retention over several cycles (93.6% retention after 400 cycles for Al2O3 coated PE separators, compared to 89.2% for bare PE separators operated at C/2) and rate capability compared to those containing bare PE separators. Moreover, because the Al2O3-coated layers are more thermally stable, the coated separators had improved dimensional stability at high temperatures (140 °C).

  10. A Pilot Study of an Acceptance-Based Separated Family Treatment for Adolescent Anorexia Nervosa

    PubMed Central

    Merwin, Rhonda M.; Zucker, Nancy L.; Timko, C. Alix

    2016-01-01

    The treatment of adolescent anorexia nervosa (AN) has improved significantly with the increased emphasis on family-based intervention. Yet despite advances, a substantial number of adolescents do not respond optimally to existing treatment models and thus there is a need for treatment alternatives that address barriers to recovery. We developed and piloted an acceptance-based separated family treatment (ASFT) with 6 adolescents with AN or subthreshold AN (eating disorder not otherwise specified, with the primary symptoms of restriction and severe weight loss). Treatment acceptability was adequate. Overall, parents rated the treatment as credible and expected improvement in their child's condition. Five of the 6 adolescents treated with ASFT restored weight to their ideal body mass index as indicated by age, height, and sex and determined by individual growth charts. Many demonstrated improved psychological health and adaptive functioning. There was evidence of broad effects, with parents reporting decreased anxiety and caregiver burden. ASFT holds promise as a treatment option for AN. The efficacy of this therapeutic approach should be tested in larger trials and compared to current family-based interventions to determine unique effects. PMID:27307691

  11. Retention of denture bases fabricated by three different processing techniques – An in vivo study

    PubMed Central

    Chalapathi Kumar, V. H.; Surapaneni, Hemchand; Ravikiran, V.; Chandra, B. Sarat; Balusu, Srilatha; Reddy, V. Naveen

    2016-01-01

    Aim: Distortion due to Polymerization shrinkage compromises the retention. To evaluate the amount of retention of denture bases fabricated by conventional, anchorized, and injection molding polymerization techniques. Materials and Methods: Ten completely edentulous patients were selected, impressions were made, and master cast obtained was duplicated to fabricate denture bases by three polymerization techniques. Loop was attached to the finished denture bases to estimate the force required to dislodge them by retention apparatus. Readings were subjected to nonparametric Friedman two-way analysis of variance followed by Bonferroni correction methods and Wilcoxon matched-pairs signed-ranks test. Results: Denture bases fabricated by injection molding (3740 g), anchorized techniques (2913 g) recorded greater retention values than conventional technique (2468 g). Significant difference was seen between these techniques. Conclusions: Denture bases obtained by injection molding polymerization technique exhibited maximum retention, followed by anchorized technique, and least retention was seen in conventional molding technique. PMID:27382542

  12. [Hyperspectral Band Selection Based on Spectral Clustering and Inter-Class Separability Factor].

    PubMed

    Qin, Fang-pu; Zhang, Ai-wu; Wang, Shu-min; Meng, Xian-gang; Hu, Shao-xing; Sun, Wei-dong

    2015-05-01

    With the development of remote sensing technology and imaging spectrometer, the resolution of hyperspectral remote sensing image has been continually improved, its vast amount of data not only improves the ability of the remote sensing detection but also brings great difficulties for analyzing and processing at the same time. Band selection of hyperspectral imagery can effectively reduce data redundancy and improve classification accuracy and efficiency. So how to select the optimum band combination from hundreds of bands of hyperspectral images is a key issue. In order to solve these problems, we use spectral clustering algorithm based on graph theory. Firstly, taking of the original hyperspectral image bands as data points to be clustered , mutual information between every two bands is calculated to generate the similarity matrix. Then according to the graph partition theory, spectral decomposition of the non-normalized Laplacian matrix generated by the similarity matrix is used to get the clusters, which the similarity between is small and the similarity within is large. In order to achieve the purpose of dimensionality reduction, the inter-class separability factor of feature types on each band is calculated, which is as the reference index to choose the representative bands in the clusters furthermore. Finally, the support vector machine and minimum distance classification methods are employed to classify the hyperspectral image after band selection. The method in this paper is different from the traditional unsupervised clustering method, we employ spectral clustering algorithm based on graph theory and compute the interclass separability factor based on a priori knowledge to select bands. Comparing with traditional adaptive band selection algorithm and band index based on automatically subspace divided algorithm, the two sets of experiments results show that the overall accuracy of SVM is about 94. 08% and 94. 24% and the overall accuracy of MDC is about 87

  13. High Temperature Stable Separator for Lithium Batteries Based on SiO2 and Hydroxypropyl Guar Gum

    PubMed Central

    Carvalho, Diogo Vieira; Loeffler, Nicholas; Kim, Guk-Tae; Passerini, Stefano

    2015-01-01

    A novel membrane based on silicon dioxide (SiO2) and hydroxypropyl guar gum (HPG) as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO2 and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance. PMID:26512701

  14. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  15. Copyright protection for multimedia data based on asymmetric cryptographic techniques

    NASA Astrophysics Data System (ADS)

    Herrigel, Alexander

    1998-09-01

    This paper presents a new approach for the copyright protection of digital multimedia data. The system applies cryptographic protocols and a public key technique for different purposes, namely encoding/decoding a digital watermark generated by any spread spectrum technique and the secure transfer of watermarked data from the sender to the receiver in a commercial business process. The public key technique is applied for the construction of a one-way watermark embedding and verification function to identify and prove the uniqueness of the watermark. In addition, our approach provides secure owner authentication data who has initiated the watermark process for a specific data set. Legal dispute resolution is supported for multiple watermarking of digital data without revealing the confidential keying information.

  16. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  17. Efficient Separation of Europium Over Americium Using Cucurbit-[5]-uril Supramolecule: A Relativistic DFT Based Investigation.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar

    2016-01-19

    Achieving an efficient separation of chemically similar Am(3+)/Eu(3+) pair in high level liquid waste treatment is crucial for managing the long-term nuclear waste disposal issues. The use of sophisticated supramolecules in a rigid framework could be the next step toward solving the long-standing problem. Here, we have investigated the possibility of separating Am(3+)/Eu(3+) pair with cucurbit-[5]-uril (CB[5]), a macrocycle from the cucurbit-[n]-uril family, using relativistic density functional theory (DFT) based calculations. We have explored the structures, binding, and energetics of metal-CB[5] complexation processes with and without the presence of counterions. Our study reveals an excellent selectivity of Eu(3+) over Am(3+) with CB[5] (ion exchange free energy, ΔΔGAm/Eu > 10 kcal mol(-1)). Both metals bind with the carbonyl portals via μ(5) coordination arrangement with the further involvement of three external water molecules. The presence of counterions, particularly nitrate, inside the hydrophobic cavity of CB[5], induces a cooperative cation-anion binding, resulting in enhancement of metal binding at the host. The overall binding process is found to be entropy driven resembling the recent experimental observations (Rawat et al. Dalton Trans. 2015, 44, 4246-4258). The optimized structural parameters for Eu(3+)-CB[5] complexes are found to be in excellent agreement with the available experimental information. To rationalize the computed selectivity trend, electronic structures are further scrutinized using energy decomposition analysis (EDA), quantum theory of atom in molecules (QTAIM), Mülliken population analysis (MPA), Nalewajski-Mrojek (NM) bond order, and molecular orbital analyses. Strong electrostatic ion-dipole interaction along with efficient charge transfer between CB[5] and Eu(3+) outweighs the better degree of covalency between CB[5] and Am(3+) leading to superior selectivity of Eu(3+) over Am(3+). PMID:26741954

  18. Wavelet-based fMRI analysis: 3-D denoising, signal separation, and validation metrics

    PubMed Central

    Khullar, Siddharth; Michael, Andrew; Correa, Nicolle; Adali, Tulay; Baum, Stefi A.; Calhoun, Vince D.

    2010-01-01

    We present a novel integrated wavelet-domain based framework (w-ICA) for 3-D de-noising functional magnetic resonance imaging (fMRI) data followed by source separation analysis using independent component analysis (ICA) in the wavelet domain. We propose the idea of a 3-D wavelet-based multi-directional de-noising scheme where each volume in a 4-D fMRI data set is sub-sampled using the axial, sagittal and coronal geometries to obtain three different slice-by-slice representations of the same data. The filtered intensity value of an arbitrary voxel is computed as an expected value of the de-noised wavelet coefficients corresponding to the three viewing geometries for each sub-band. This results in a robust set of de-noised wavelet coefficients for each voxel. Given the decorrelated nature of these de-noised wavelet coefficients; it is possible to obtain more accurate source estimates using ICA in the wavelet domain. The contributions of this work can be realized as two modules. First, the analysis module where we combine a new 3-D wavelet denoising approach with better signal separation properties of ICA in the wavelet domain, to yield an activation component that corresponds closely to the true underlying signal and is maximally independent with respect to other components. Second, we propose and describe two novel shape metrics for post-ICA comparisons between activation regions obtained through different frameworks. We verified our method using simulated as well as real fMRI data and compared our results against the conventional scheme (Gaussian smoothing + spatial ICA: s-ICA). The results show significant improvements based on two important features: (1) preservation of shape of the activation region (shape metrics) and (2) receiver operating characteristic (ROC) curves. It was observed that the proposed framework was able to preserve the actual activation shape in a consistent manner even for very high noise levels in addition to significant reduction in false

  19. [Development of online conventional array-based two-dimensional liquid chromatographic system for proteins separation in human plasma].

    PubMed

    Huang, Zhi; Hong, Guangfeng; Gao, Mingxia; Zhang, Xiangmin

    2014-04-01

    Human plasma is one of the proteins-containing samples most difficult to characterize on account of the wide dynamic concentration range of its intact proteins. Herein, we developed a high-throughput conventional array-based two-dimensional liquid chromatographic system for proteins separation in human plasma in online mode. In the system, a conventional strong-anion exchange chromatographic column was used as the first separation dimension and eight parallel conventional reversed-phase liquid chromatographic columns were integrated as the second separation dimension. The fractions from the first dimension were sequentially transferred into the corresponding reversed-phase liquid chromatographic precolumns for retention and enrichment using a 10-port electrically actuated multi-position valve. The second dimensional solvent flow was directly and identically split into 8 channels. The fractions were concurrently back-flushed from the precolumns into the 8 conventional RP columns and were separated simultaneously. An 8-channel fraction collector was refitted to collect the reversed-phase liquid chromatographic fractions for further investigation. Bicinchoninic acid (BCA) dyein solution was conveniently used for high-abundance protein location. Two separation dimensions were relatively independent parts, as well as each channel of the second dimensional array separation. Therefore, the new system could improve the separation throughput and total peak capacity. The system was successfully applied for the separation of human plasma intact proteins. The results indicated the established system is an effective method for removing high abundance proteins in plasma and in-depth research in plasma proteomics.

  20. Feature Selection and Blind Source Separation in an EEG-Based Brain-Computer Interface

    NASA Astrophysics Data System (ADS)

    Peterson, David A.; Knight, James N.; Kirby, Michael J.; Anderson, Charles W.; Thaut, Michael H.

    2005-12-01

    Most EEG-based BCI systems make use of well-studied patterns of brain activity. However, those systems involve tasks that indirectly map to simple binary commands such as "yes" or "no" or require many weeks of biofeedback training. We hypothesized that signal processing and machine learning methods can be used to discriminate EEG in a direct "yes"/"no" BCI from a single session. Blind source separation (BSS) and spectral transformations of the EEG produced a 180-dimensional feature space. We used a modified genetic algorithm (GA) wrapped around a support vector machine (SVM) classifier to search the space of feature subsets. The GA-based search found feature subsets that outperform full feature sets and random feature subsets. Also, BSS transformations of the EEG outperformed the original time series, particularly in conjunction with a subset search of both spaces. The results suggest that BSS and feature selection can be used to improve the performance of even a "direct," single-session BCI.

  1. Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria

    PubMed Central

    Chen, Xiaolin; Xu, Jie

    2015-01-01

    Circulating tumor cells (CTCs) separation technology has made positive impacts on cancer science in many aspects. The ability of detecting and separating CTCs can play a key role in early cancer detection and treatment. In recent years, there has been growing interest in using deformability-based CTC separation microfilters due to their simplicity and low cost. Most of the previous studies in this area are mainly based on experimental work. Although experimental research provides useful insights in designing CTC separation devices, there is still a lack of design guidelines based on fundamental understandings of the cell separation process in the filters. While experimental efforts face challenges, especially microfabrication difficulties, we adopt numerical simulation here to study conical-shaped microfilters using deformability difference between CTCs and blood cells for the separation process. We use the liquid drop model for modeling a CTC passing through such microfilters. The accuracy of the model in predicting the pressure signature of the system is validated by comparing it with previous experiments. Pressure-deformability analysis of the cell going through the channel is then carried out in detail in order to better understand how a CTC behaves throughout the filtration process. Different system design criteria such as system throughput and unclogging of the system are discussed. Specifically, pressure behavior under different system throughput is analyzed. Regarding the unclogging issue, we define pressure ratio as a key parameter representing the ability to overcome clogging in such CTC separation devices and investigate the effect of conical angle on the optimum pressure ratio. Finally, the effect of unclogging applied pressure on the system performance is examined. Our study provides detailed understandings of the cell separation process and its characteristics, which can be used for developing more efficient CTC separation devices. PMID:26064193

  2. A Cost Benefit Technique for R & D Based Information.

    ERIC Educational Resources Information Center

    Stern, B. T.

    A cost benefit technique consisting of the following five phases is proposed: (a) specific objectives of the service, (b) measurement of work flow, (c) work costing, (d) charge to users of the information service, and (e) equating demand and cost. In this approach, objectives are best stated by someone not routinely concerned with the individual…

  3. Ground-based intercomparison of nitric acid measurement techniques

    NASA Astrophysics Data System (ADS)

    Fehsenfeld, Fred C.; Huey, L. Greg; Sueper, Donna T.; Norton, Richard B.; Williams, Eric J.; Eisele, Fred L.; Mauldin, R. Lee; Tanner, David J.

    1998-02-01

    An informal intercomparison of gas-phase nitric acid (HNO3) measuring techniques was carried out. The intercomparison involved two new chemical ionization mass spectrometers (CIMSs) that have been developed for the measurement of HNO3 along with an older, more established filter pack (FP) technique. The filter pack was composed of a teflon prefilter which collected aerosols followed by a nylon filter which collected the gas-phase HNO3. The study was carried out during the late winter and early spring of 1996 at a site located on the western edge of the Denver metropolitan area. Throughout the study the two CIMS techniques were in general agreement. However, under certain conditions the HNO3 levels obtained from the nylon filter of the FP gave values for the gas-phase concentration of HNO3 that were somewhat higher than that recorded by the two CIMS systems. The formation of ammonium nitrate (NH4NO3) containing aerosols is common during the colder months in this area. An analysis of these results suggests that the HNO3 collected by the nylon filter in the FP suffers an interference associated with the disproportionation of NH4NO3 from aerosols containing that compound that were initially collected on the teflon prefilter. This problem with the FP technique has been suggested from results obtained in previous intercomparisons.

  4. Separation of Climate Signals

    SciTech Connect

    Kamath, C; Fodor, I

    2002-11-13

    Understanding changes in global climate is a challenging scientific problem. Simulated and observed data include signals from many sources, and untangling their respective effects is difficult. In order to make meaningful comparisons between different models, and to understand human effects on global climate, we need to isolate the effects of different sources. Recent eruptions of the El Chichon and Mt. Pinatubo volcanoes coincided with large El Nino and Southern Oscillation (ENSO) events, which complicates the separation of their contributions on global temperatures. Current approaches for separating volcano and ENSO signals in global mean data involve parametric models and iterative techniques [3]. We investigate alternative methods based on principal component analysis (PCA) [2] and independent component analysis (ICA) [1]. Our goal is to determine if such techniques can automatically identify the signals corresponding to the different sources, without relying on parametric models.

  5. Results of a space shuttle pulme impingement investigation at stage separation in the NASA-MSFC impulse base flow facility

    NASA Technical Reports Server (NTRS)

    Mccanna, R. W.; Sims, W. H.

    1972-01-01

    Results are presented for an experimental space shuttle stage separation plume impingement program conducted in the NASA-Marshall Space Flight Center's impulse base flow facility (IBFF). Major objectives of the investigation were to: (1)determine the degree of dual engine exhaust plume simulation obtained using the equivalent engine; (2) determine the applicability of the analytical techniques; and (3) obtain data applicable for use in full-scale studies. The IBFF tests determined the orbiter rocket motor plume impingement loads, both pressure and heating, on a 3 percent General Dynamics B-15B booster configuration in a quiescent environment simulating a nominal staging altitude of 73.2 km (240,00 ft). The data included plume surveys of two 3 percent scale orbiter nozzles, and a 4.242 percent scaled equivalent nozzle - equivalent in the sense that it was designed to have the same nozzle-throat-to-area ratio as the two 3 percent nozzles and, within the tolerances assigned for machining the hardware, this was accomplished.

  6. Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli.

    PubMed

    Wang, Ziyuan; Wang, Danhui; Chen, Juhong; Sela, David A; Nugen, Sam R

    2016-02-01

    The application of bacteriophage combined with the use of magnetic separation techniques has emerged as a valuable tool for the sensitive identification and detection of bacteria. In this study, bacteriophage T7 labelled magnetic beads were developed for the detection of viable bacterial cells. Fusion of the biotin acceptor peptide (BAP) with the phage capsid protein gene and the insertion of the biotin ligase (BirA) gene enabled the display of the BAP ligand and the expression protein BirA during the replication cycle of phage infection. The replicated Escherichia coli specific bacteriophage was biotinylated in vivo and coated on magnetic beads via streptavidin-biotin interaction. Immobilization efficiency of the recombinant phage was investigated on magnetic beads and the phage-bead complex was evaluated by detecting E. coli from inoculated broth. When compared to the wild type phage, the recombinant phage T7birA-bap had a high immobilization density on streptavidin-coated magnetic beads and could capture 86.2% of E. coli cells from broth within 20 min. As this phage-based biomagnetic detection approach provided a low detection limit of 10(2) CFU mL(-1) without pre-enrichment, we believe this assay could be further developed to detect other bacteria of interest by applying host-specific phages. This would be of particular use in detecting bacteria which are difficult to grow or replicate slowly in culture. PMID:26689710

  7. Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli.

    PubMed

    Wang, Ziyuan; Wang, Danhui; Chen, Juhong; Sela, David A; Nugen, Sam R

    2016-02-01

    The application of bacteriophage combined with the use of magnetic separation techniques has emerged as a valuable tool for the sensitive identification and detection of bacteria. In this study, bacteriophage T7 labelled magnetic beads were developed for the detection of viable bacterial cells. Fusion of the biotin acceptor peptide (BAP) with the phage capsid protein gene and the insertion of the biotin ligase (BirA) gene enabled the display of the BAP ligand and the expression protein BirA during the replication cycle of phage infection. The replicated Escherichia coli specific bacteriophage was biotinylated in vivo and coated on magnetic beads via streptavidin-biotin interaction. Immobilization efficiency of the recombinant phage was investigated on magnetic beads and the phage-bead complex was evaluated by detecting E. coli from inoculated broth. When compared to the wild type phage, the recombinant phage T7birA-bap had a high immobilization density on streptavidin-coated magnetic beads and could capture 86.2% of E. coli cells from broth within 20 min. As this phage-based biomagnetic detection approach provided a low detection limit of 10(2) CFU mL(-1) without pre-enrichment, we believe this assay could be further developed to detect other bacteria of interest by applying host-specific phages. This would be of particular use in detecting bacteria which are difficult to grow or replicate slowly in culture.

  8. Silica-based polypeptide-monolithic stationary phase for hydrophilic chromatography and chiral separation.

    PubMed

    Zhao, Licong; Yang, Limin; Wang, Qiuquan

    2016-05-13

    Glutathione (GSH)-, somatostatin acetate (ST)- and ovomucoid (OV)-functionalized silica-monolithic stationary phases were designed and synthesized for HILIC and chiral separation using capillary electrochromatography (CEC). GSH, ST and OV were covalently incorporated into the silica skeleton via the epoxy ring-opening reaction between their amino groups and the glycidyl moiety in γ-glycidoxypropyltrimethoxysilane (GPTMS) together with polycondensation and copolymerization of tetramethyloxysilane and GPTMS. Not only could the direction and electroosmotic flow magnitude on the prepared GSH-, ST- and OV-silica hybrid monolithic stationary phases be controlled by the pH of the mobile phase, but also a typical HILIC behavior was observed so that the nucleotides and HPLC peptide standard mixture could be baseline separated using an aqueous mobile phase without any acetonitrile during CEC. Moreover, the prepared monolithic columns had a chiral separation ability to separate dl-amino acids. The OV-silica hybrid monolithic column was most effective in chiral separation and could separate dl-glutamic acid (Glu) (the resolution R=1.07), dl-tyrosine (Tyr) (1.57) and dl-histidine (His) (1.06). Importantly, the chiral separation ability of the GSH-silica hybrid monolithic column could be remarkably enhanced when using gold nanoparticles (AuNPs) to fabricate an AuNP-mediated GSH-AuNP-GSH-silica hybrid monolithic column. The R of dl-Glu, dl-Tyr and dl-His reached 1.19, 1.60 and 2.03. This monolithic column was thus applied to separate drug enantiomers, and quantitative separation of all four R/S drug enantiomers were achieved with R ranging from 4.36 to 5.64. These peptide- and protein-silica monolithic stationary phases with typical HILIC separation behavior and chiral separation ability implied their promise for the analysis of not only the future metabolic studies, but also drug enantiomers recognition.

  9. Electrically Tunable Microlens via Photopolymerization-Induced Phase Separation of Liquid Crystal/Monomer Mixtures Based on Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; Nwabunma, Domasius

    2001-03-01

    We introduce a new method of fabricating electrically tunable liquid crystal (LC) microlens via photopolymerization-induced phase separation of LC/monomer mixtures using four-wave mixing technique, i.e., interference of two horizontal and two vertical waves. The microlens forming process was simulated based on a spatially modulated photopolymerization reaction coupled with the time-dependent Ginzburg-Landau (TDGL) Model C equations, which incorporate free energy densities due to isotropic mixing, LC ordering, and polymer network elasticity. Our simulation revealed that the calculated LC microlens are similar to the compound eyes found in the eyes of insects such as flies, ants, and wasps.

  10. Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode.

    PubMed

    Svec, Frantisek

    2012-03-01

    The separations of small molecules using columns containing porous polymer monoliths invented two decades ago went a long way from the very modest beginnings to the current capillary columns with efficiencies approaching those featured by their silica-based counterparts. This review article presents a variety of techniques that have been used to form capillary formats of monolithic columns with enhanced separation performance in isocratic elutions. The following text first describes the traditional approaches used for the preparation of efficient monoliths comprising variations in polymerization conditions including temperature as well as composition of monomers and porogenic solvents. Encouraging results of these experiments fueled research of completely new preparation methods such as polymerization to an incomplete conversion, use of single crosslinker, hypercrosslinking, and incorporation of carbon nanotubes that are described in the second part of the text. PMID:21816401

  11. Separation of actinides from irradiated An-Zr based fuel by electrorefining on solid aluminium cathodes in molten LiCl-KCl

    NASA Astrophysics Data System (ADS)

    Souček, P.; Murakami, T.; Claux, B.; Meier, R.; Malmbeck, R.; Tsukada, T.; Glatz, J.-P.

    2015-04-01

    An electrorefining process for metallic spent nuclear fuel treatment is being investigated in ITU. Solid aluminium cathodes are used for homogeneous recovery of all actinides within the process carried out in molten LiCl-KCl eutectic salt at a temperature of 500 °C. As the selectivity, efficiency and performance of solid Al has been already shown using un-irradiated An-Zr alloy based test fuels, the present work was focused on laboratory-scale demonstration of the process using irradiated METAPHIX-1 fuel composed of U67-Pu19-Zr10-MA2-RE2 (wt.%, MA = Np, Am, Cm, RE = Nd, Ce, Gd, Y). Different electrorefining techniques, conditions and cathode geometries were used during the experiment yielding evaluation of separation factors, kinetic parameters of actinide-aluminium alloy formation, process efficiency and macro-structure characterisation of the deposits. The results confirmed an excellent separation and very high efficiency of the electrorefining process using solid Al cathodes.

  12. Optical detection of ultrasound using AFC-based quantum memory technique in cryogenic rare earth ion doped crystals

    NASA Astrophysics Data System (ADS)

    Taylor, Luke R.; McAuslan, David L.; Longdell, Jevon J.

    2013-03-01

    We present results of a novel and highly sensitive technique for the optical detection of ultrasound using the selective storage of frequency shifted photons in an inherently highly efficient and low noise atomic frequency comb (AFC) based quantum memory. The ultrasound `tagged' optical sidebands are absorbed within a pair of symmetric AFCs, generated via optical pumping in a Pr3+:Y2SiO5 sample (tooth separation Δ = 150 kHz, comb finesse fc ~ 2 and optical depth αL ~ 2), separated by twice the ultrasound modulation frequency (1.5 MHz) and centered on either side of a broad spectral pit (1.7 MHz width) allowing transmission of the carrier. The stored sidebands are recovered with 10-20% efficiency as a photon echo (as defined by the comb parameters), and we demonstrate a record 49 dB discrimination between the sidebands and the carrier pulse, high discrimination being important for imaging tissues at depth. We further demonstrate detector limited discrimination (~29 dB) using a highly scattered beam, confirming that the technique is immune to speckle decorrelation. We show that it also remains valid in the case of optically thin samples, and thus represents a significant improvement over other ultrasound detection methods based on rare-earth-ion-doped crystals. These results strongly suggest the suitability of our technique for high-resolution non-contact real-time imaging of biological tissues.

  13. HPLC separation of human serum albumin isoforms based on their isoelectric points.

    PubMed

    Turell, Lucía; Botti, Horacio; Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael

    2014-01-01

    Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA-SHg(+)), HSA with Cys34 oxidized to sulfenic acid (HSA-SOH) and HSA oxidized to sulfinate anion (HSA-SO2(-)) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3-585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA.

  14. HPLC separation of human serum albumin isoforms based on their isoelectric points.

    PubMed

    Turell, Lucía; Botti, Horacio; Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael

    2014-01-01

    Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA-SHg(+)), HSA with Cys34 oxidized to sulfenic acid (HSA-SOH) and HSA oxidized to sulfinate anion (HSA-SO2(-)) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3-585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA. PMID:24316526

  15. A peculiar segmented flow microfluidics for isoquercitrin biosynthesis based on coupling of reaction and separation.

    PubMed

    Gong, An; Gu, Shuang-Shuang; Wang, Jun; Sheng, Sheng; Wu, Fu-An

    2015-10-01

    A segmented flow containing a buffer-ionic liquid/solvent in a micro-channel reactor was applied to synthesize isoquercitrin by the hesperidinase-catalyzed selective hydrolysis of rutin, based on a novel system of reaction coupling with separation. Within the developed microchannel reactor with one T-shaped inlet and outlet, the maximum isoquercitrin yield (101.7 ± 2.6%) was achieved in 20 min at 30 °C and 4 μL/min. Compared with a continuous-flow reactor, reaction rate was increased 4-fold due to a glycine-sodium hydroxide:[Bmim][BF4]/glycerol triacetate (1:1, v/v) system that formed a slug flow in microchannel and significantly increased mass transfer rates. The mass transfer coefficient significantly increased and exhibited a linear relationship with the flow rate. Hesperidinase could be efficiently reused at least 5 times, without losing any activity. The bonding mechanism and secondary structure of hesperidinase indicated that hesperidinase had a greater affinity to rutin at a production rate of 4 μL/min in this segmented flow microreactor. PMID:26163760

  16. A peculiar segmented flow microfluidics for isoquercitrin biosynthesis based on coupling of reaction and separation.

    PubMed

    Gong, An; Gu, Shuang-Shuang; Wang, Jun; Sheng, Sheng; Wu, Fu-An

    2015-10-01

    A segmented flow containing a buffer-ionic liquid/solvent in a micro-channel reactor was applied to synthesize isoquercitrin by the hesperidinase-catalyzed selective hydrolysis of rutin, based on a novel system of reaction coupling with separation. Within the developed microchannel reactor with one T-shaped inlet and outlet, the maximum isoquercitrin yield (101.7 ± 2.6%) was achieved in 20 min at 30 °C and 4 μL/min. Compared with a continuous-flow reactor, reaction rate was increased 4-fold due to a glycine-sodium hydroxide:[Bmim][BF4]/glycerol triacetate (1:1, v/v) system that formed a slug flow in microchannel and significantly increased mass transfer rates. The mass transfer coefficient significantly increased and exhibited a linear relationship with the flow rate. Hesperidinase could be efficiently reused at least 5 times, without losing any activity. The bonding mechanism and secondary structure of hesperidinase indicated that hesperidinase had a greater affinity to rutin at a production rate of 4 μL/min in this segmented flow microreactor.

  17. Novel Fission-Product Separation Based on Room-Temperature Ionic Liquids

    SciTech Connect

    Luo, Huimin; Dai, Sheng

    2003-09-10

    A new solvent extraction process for separation of cesium-137 and strontium-90 from high-level wastes based on room-temperature ionic liquids has been studied. Room-temperature ionic liquids that are liquid at ambient temperatures can act as solvents for a broad spectrum of chemical species. A very unique intrinsic property of these melts is that they consist only of ions and that they can be made hydrophobic. The dual properties of these new ionic liquids make them efficient solvents for the extraction of ionic species from aqueous solutions. In this presentation, we will discuss our recent results on the solvent extraction of Na+, K+, Cs+ and Sr2+ by ionic liquids containing calix[4]arene-bis(tert-octylbenzo-crown-6)(BoBcalixC6) and dicyclohexano-18-crown-6 (DCH18C6). We will also present the synthesis of several new DCH18C6 derivatives with one of the oxygen atoms replaced by an azo group. With these new crown ethers, we are able to recycle crown ethers after the extraction experiments for metal cations in ionic liquids by pH modulation.

  18. Separation of parabens on a zirconia-based stationary phase in superheated water chromatography.

    PubMed

    Yarita, Takashi; Aoyagi, Yoshie; Sasai, Haruka; Nishigaki, Atsuko; Shibukawa, Masami

    2013-01-01

    A superheated water chromatography (SWC) method for the separation of alkyl esters of 4-hydroxybenzoic acid (parabens) using a zirconia-based stationary phase was developed and applied to real sample analysis. First, the SWC system was optimized in terms of the proper length of the preheating coil for establishing thermal equilibration of the mobile phase entering the column at the oven temperature. Next, the effect of the column temperature on the retention was investigated at 100-180°C. The elution time for all parabens decreased with increasing column temperature, and linear relationships between ln k and 1/T were obtained. At higher column temperatures, the elution time was further shortened because of the increased mobile-phase flow rate. Nevertheless, the loss of column efficiency at the higher flow rates was not significant. The application of the present method to the analysis of commercial lotions was then demonstrated. The quantification results obtained from SWC showed good agreement with those from a conventional HPLC method.

  19. Developing NASA's VIIRS LST and Emissivity EDRs using a physics based Temperature Emissivity Separation (TES) algorithm

    NASA Astrophysics Data System (ADS)

    Islam, T.; Hulley, G. C.; Malakar, N.; Hook, S. J.

    2015-12-01

    Land Surface Temperature and Emissivity (LST&E) data are acknowledged as critical Environmental Data Records (EDRs) by the NASA Earth Science Division. The current operational LST EDR for the recently launched Suomi National Polar-orbiting Partnership's (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) payload utilizes a split-window algorithm that relies on previously-generated fixed emissivity dependent coefficients and does not produce a dynamically varying and multi-spectral land surface emissivity product. Furthermore, this algorithm deviates from its MODIS counterpart (MOD11) resulting in a discontinuity in the MODIS/VIIRS LST time series. This study presents an alternative physics based algorithm for generation of the NASA VIIRS LST&E EDR in order to provide continuity with its MODIS counterpart algorithm (MOD21). The algorithm, known as temperature emissivity separation (TES) algorithm, uses a fast radiative transfer model - Radiative Transfer for (A)TOVS (RTTOV) in combination with an emissivity calibration model to isolate the surface radiance contribution retrieving temperature and emissivity. Further, a new water-vapor scaling (WVS) method is developed and implemented to improve the atmospheric correction process within the TES system. An independent assessment of the VIIRS LST&E outputs is performed against in situ LST measurements and laboratory measured emissivity spectra samples over dedicated validation sites in the Southwest USA. Emissivity retrievals are also validated with the latest ASTER Global Emissivity Database Version 4 (GEDv4). An overview and current status of the algorithm as well as the validation results will be discussed.

  20. Cellulose oligomers production and separation for the synthesis of new fully bio-based amphiphilic compounds.

    PubMed

    Billès, Elise; Onwukamike, Kelechukwu N; Coma, Véronique; Grelier, Stéphane; Peruch, Frédéric

    2016-12-10

    Cellulose oligomers are water-soluble, on the contrary to cellulose, which greatly increase their application range. In this study, cellulose oligomers were obtained from the acidic hydrolysis of cellulose with phosphoric acid. The global yield in water-soluble oligomers was around 23% with polymerization degree (DP) ranging from 1 to 12. The cellulose oligomers DP distribution was successfully reduced by differential solubilisation in methanol as one of the goals of this work was to avoid the use of a time-consuming full chromatographic separation. The methanol-soluble oligomers were mainly low DP (≤3). The oligomers of higher molar mass, composed of 42% of cellotetraose and 36% of cellopentaose, were then functionalized and coupled with stearic acid through azide-alkyne click chemistry to obtain amphiphilic compounds. The self-assembly of these new bio-based compounds was finally investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) and their critical micellar concentration (CMC) was found to be in the same range as alkylmaltosides and alkylglucosides. PMID:27577903