Science.gov

Sample records for separation technique based

  1. Plastic substrates based separation channels in electromigration techniques.

    PubMed

    Charvátová, Jana; Deyl, Zdenek; Klevar, Miroslav; Miksík, Ivan; Eckhardt, Adam

    2004-02-05

    Three types of plastic materials (polyester, polyurethane and polymethylmethacrylate) were tested as materials for manufacturing separation columns (polyester and polyurethane capillaries were used) or separation channels (polymethylmethacrylate) in the chip format. A set of 11 fluorescein isothiocyanate amino acid derivatives was used as the test mixture. Using alpha-cyclodextrin additive to the background electrolyte in the case of the chip separation was also tested. The main problem with all plastic separation media was the selectivity of the separation. The best results, practically identical with bare fused silica capillary, were obtained with the polymethylmethacrylate chip, provided that alpha-cyclodextrin in a concentration 40 mmol/l was added to the background electrolyte. An important observation was that in SDS containing background electrolyte all the plastic materials used exhibited a distinct electroosmotic flow, which was ascribe to the sorption of the negatively charged constituents of the background electrolyte to the capillary wall. Regarding the order in which the individual components of the test mixture were brought to the detector only a single change was observed. Histidine migrated in the polystyrene and polymethylmethacrylate separation channels more slowly than in the bare silica or polyurethane based capillaries.

  2. Separation techniques: Chromatography

    PubMed Central

    Coskun, Ozlem

    2016-01-01

    Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406

  3. Carbon Dioxide Capture and Separation Techniques for Gasification-based Power Generation Point Sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Jones, K.L.; Morsi, B.I.; Heintz, Y.J.; Ilconich, J.B.

    2007-06-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (post-combustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, dry, regenerable processes based on sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

  4. Assessment of blind source separation techniques for video-based cardiac pulse extraction

    NASA Astrophysics Data System (ADS)

    Wedekind, Daniel; Trumpp, Alexander; Gaetjen, Frederik; Rasche, Stefan; Matschke, Klaus; Malberg, Hagen; Zaunseder, Sebastian

    2017-03-01

    Blind source separation (BSS) aims at separating useful signal content from distortions. In the contactless acquisition of vital signs by means of the camera-based photoplethysmogram (cbPPG), BSS has evolved the most widely used approach to extract the cardiac pulse. Despite its frequent application, there is no consensus about the optimal usage of BSS and its general benefit. This contribution investigates the performance of BSS to enhance the cardiac pulse from cbPPGs in dependency to varying input data characteristics. The BSS input conditions are controlled by an automated spatial preselection routine of regions of interest. Input data of different characteristics (wavelength, dominant frequency, and signal quality) from 18 postoperative cardiovascular patients are processed with standard BSS techniques, namely principal component analysis (PCA) and independent component analysis (ICA). The effect of BSS is assessed by the spectral signal-to-noise ratio (SNR) of the cardiac pulse. The preselection of cbPPGs, appears beneficial providing higher SNR compared to standard cbPPGs. Both, PCA and ICA yielded better outcomes by using monochrome inputs (green wavelength) instead of inputs of different wavelengths. PCA outperforms ICA for more homogeneous input signals. Moreover, for high input SNR, the application of ICA using standard contrast is likely to decrease the SNR.

  5. Effect of temperature on acid-base equilibria in separation techniques. A review.

    PubMed

    Gagliardi, Leonardo G; Tascon, Marcos; Castells, Cecilia B

    2015-08-19

    Studies on the theoretical principles of acid-base equilibria are reviewed and the influence of temperature on secondary chemical equilibria within the context of separation techniques, in water and also in aqueous-organic solvent mixtures, is discussed. In order to define the relationships between the retention in liquid chromatography or the migration velocity in capillary electrophoresis and temperature, the main properties of acid-base equilibria have to be taken into account for both, the analytes and the conjugate pairs chosen to control the solution pH. The focus of this review is based on liquid-liquid extraction (LLE), liquid chromatography (LC) and capillary electrophoresis (CE), with emphasis on the use of temperature as a useful variable to modify selectivity on a predictable basis. Simplified models were evaluated to achieve practical optimizations involving pH and temperature (in LLE and CE) as well as solvent composition in reversed-phase LC. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Error separation technique for measuring aspheric surface based on dual probes

    NASA Astrophysics Data System (ADS)

    Wei, Zhong-wei; Jing, Hong-wei; Kuang, Long; Wu, Shi-bin

    2013-09-01

    In this paper, we present an error separation method based on dual probes for the swing arm profilometer to calibrate the rotary table errors. Two probes and the rotation axis of swinging arm are in a plane. The scanning tracks cross each other as both probes scan the mirror edge to edge. Since the surface heights should ideally be the same at these scanning crossings, this crossings height information can be used to calibrate the rotary table errors. But the crossings height information contains the swing arm air bearing errors and measurement errors of probes. The errors seriously affect the correction accuracy of rotary table errors. The swing arm air bearing errors and measurement errors of probes are randomly distributed, we use least square method to remove these errors. In this paper, we present the geometry of the dual probe swing arm profilometer system, and the profiling pattern made by both probes. We analyze the influence the probe separation has on the measurement results. The algorithm for stitching together the scans into a surface is also presented. The difference of the surface heights at the crossings of the adjacent scans is used to find a transformation that describes the rotary table errors and then to correct for the errors. To prove the error separation method based on a dual probe can successfully calibrate the rotary table errors, we establish SAP error model and simulate the effect of the error separation method based on a dual probe on calibrating the rotary table errors.

  7. Survey of Biochemical Separation Techniques

    ERIC Educational Resources Information Center

    Nilsson, Melanie R.

    2007-01-01

    A simple laboratory exercise is illustrated that exposes students to wide range of separation techniques in one laboratory program and provides a nice complement to a project-oriented program. Students have learned the basic principles of syringe filtration, centricon, dialysis, gel filtration and solid-phase extraction methodologies and have got…

  8. Radioactive-gas separation technique

    NASA Technical Reports Server (NTRS)

    Haney, R.; King, K. J.; Nellis, D. O.; Nisson, R. S.; Robling, P.; Womack, W.

    1977-01-01

    Cryogenic technique recovers gases inexpensively. Method uses differences in vapor pressures, melting points, and boiling points of components in gaseous mixture. Series of temperature and pressure variations converts gases independently to solid and liquid states, thereby simplifying separation. Apparatus uses readily available cryogen and does not require expensive refrigeration equipment.

  9. Survey of Biochemical Separation Techniques

    ERIC Educational Resources Information Center

    Nilsson, Melanie R.

    2007-01-01

    A simple laboratory exercise is illustrated that exposes students to wide range of separation techniques in one laboratory program and provides a nice complement to a project-oriented program. Students have learned the basic principles of syringe filtration, centricon, dialysis, gel filtration and solid-phase extraction methodologies and have got…

  10. Particle separations by electrophoretic techniques

    SciTech Connect

    Ballou, N.E.; Petersen, S.L.; Ducatte, G.R.; Remcho, V.T.

    1996-03-01

    A new method for particle separations based on capillary electrophoresis has been developed and characterized. It uniquely separates particles according to their chemical nature. Separations have been demonstrated with chemically modified latex particles and with inorganic oxide and silicate particles. Separations have been shown both experimentally and theoretically to be essentially independent of particle size in the range of about 0.2 {mu}m to 10 {mu}m. The method has been applied to separations of U0{sub 2} particles from environmental particulate material. For this, an integrated method was developed for capillary electrophoretic separation, collection of separated fractions, and determinations of U0{sub 2} and environmental particles in each fraction. Experimental runs with the integrated method on mixtures of UO{sub 2} particles and environmental particulate material demonstrated enrichment factors of 20 for UO{sub 2} particles in respect to environmental particles in the U0{sub 2}containing fractions. This enrichment factor reduces the costs and time for processing particulate samples by the lexan process by a factor of about 20.

  11. Approaches for enantioselective resolution of pharmaceuticals by miniaturised separation techniques with new chiral phases based on nanoparticles and monolithis.

    PubMed

    Sierra, Isabel; Marina, Maria Luisa; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Silva, Mariana

    2016-10-01

    This article discusses new developments in the preparation of nanoparticles and monoliths with emphasis upon their application as the stationary and pseudo-stationary phases for miniaturised liquid phase separation techniques, which have occurred in the last 10 years (from 2006 to the actuality). References included in this review represent current trends and state of the art in the application of these materials to the analysis, by EKC, CEC and miniaturised chromatography, of chiral compounds with environmental interest such as pharmaceuticals. Due to their extraordinary properties, columns prepared with these new chiral stationary or pseudo-stationary phases, based on materials such as gold nanoparticles, metal-organic frameworks, ordered mesoporous silicas, carbonaceous materials, polymeric-based and silica-based monoliths or molecularly imprinted materials, can usually show some improvements in the separation selectivity, column efficiency and chemical stability in comparison with conventional chiral columns available commercially. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparison of in-gel protein separation techniques commonly used for fractionation in mass spectrometry-based proteomic profiling

    PubMed Central

    Jafari, Mohieddin; Primo, Vincent; Smejkal, Gary B.; Moskovets, Eugene V.; Kuo, Winston P.; Ivanov, Alexander R.

    2014-01-01

    Fractionation of complex samples at the cellular, subcellular, protein or peptide level is an indispensable strategy to improve the sensitivity in mass spectrometry-based proteomic profiling. This study revisits, evaluates, and compares the most common gel-based protein separation techniques i.e., 1-D SDS PAGE, preparative 1-D SDS PAGE, isoelectric focusing in immobilized pH gradients (IEF-IPG), and 2-D PAGE in their performance as fractionation approaches in nanoLC-ESI-MS/MS analysis of a mixture of protein standards and mitochondrial extracts isolated from rat liver. This work demonstrates that all the above techniques provide complementary protein identification results, but 1-D SDS PAGE and IEF-IPG had the highest number of identifications. The IEF-IPG technique resulted in the highest average number of detected peptides per protein. The 2-D PAGE was evaluated as a protein fractionation approach. This work shows that the recovery of proteins and resulting proteolytic digests is highly dependent on the total volume of the gel matrix. The performed comparison of the fractionation techniques demonstrates the potential of a combination of orthogonal 1-D SDS PAGE and IEF-IPG for the improved sensitivity of profiling without significant decrease in throughput. PMID:22899259

  13. Ionic liquids in separation techniques.

    PubMed

    Berthod, A; Ruiz-Angel, M J; Carda-Broch, S

    2008-03-14

    The growing interest in ionic liquids (ILs) has resulted in an exponentially increasing production of analytical applications. The potential of ILs in chemistry is related to their unique properties as non-molecular solvents: a negligible vapor pressure associated to a high thermal stability. ILs found uses in different sub-disciplines of analytical chemistry. After drawing a rapid picture of the physicochemical properties of selected ILs, this review focuses on their use in separation techniques: gas chromatography (GC), liquid chromatography (LC) and electrophoretic methods (CE). In LC and CE, ILs are not used as pure solvents, but rather diluted in aqueous solutions. In this situation ILs are just salts. They are dual in nature. Too often the properties of the cations are taken as the properties of the IL itself. The lyotropic theory is recalled and the effects of a chaotropic anion are pointed out. Many results can be explained considering all ions present in the solution. Ion-pairing and ion-exchange mechanisms are always present, associated with hydrophobic interactions, when dealing with IL in diluted solutions. Chromatographic and electrophoretic methods are also mainly employed for the control and monitoring of ILs. These methods are also considered. ILs will soon be produced on an industrial scale and it will be necessary to develop reliable analytical procedures for their analysis and control.

  14. Wavelet-based artifact identification and separation technique for EEG signals during galvanic vestibular stimulation.

    PubMed

    Adib, Mani; Cretu, Edmond

    2013-01-01

    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of -1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters.

  15. On-line sample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography.

    PubMed

    Sueyoshi, Kenji; Kitagawa, Fumihiko; Otsuka, Koji

    2008-02-15

    This paper describes a novel on-line sample preconcentration and separation technique named transient trapping (tr-trapping), which improves the efficiencies of separation and concentration by using a partially injected short micellar plug in microchip electrophoresis. Although a longer separation length often provides a better resolution of complexed or closely migrating analytes, our proposed theoretical model indicated that a trap-and-release mechanism enables a short micellar zone, which was partially injected into the separation channel, to work as an effective concentration and separation field. Application of the tr-trapping technique to microchip micellar electrokinetic chromatography (MCMEKC) was performed on a newly fabricated 5-way-cross microchip by using sodium dodecyl sulfate and rhodamine dyes as test micelle and analytes, respectively. When the injection times of micelle (t(inj),M) and sample solution (t(inj),S) were 1.0 and 2.0 s, respectively, both the preconcentration and separation of the dyes were completely finished within only 3.0 s. At t(inj),S of 8.0 s, a 393-fold improvement of the detectability was achieved in comparison with conventional MCMEKC. The resolution obtained with tr-trapping-MCMEKC was also better than that with conventional MCMEKC in spite of the 160-fold shorter length of the injected micellar zone at t(inj),M of 1.0 s. These results clearly demonstrated that the tr-trapping technique in MCMEKC provides a rapid, high-resolution and detectability analysis even in the short separation channel on the microchips.

  16. Optimization-based technique for separation and detection of saccadic movements and eye-blinking in electrooculography biosignals.

    PubMed

    Krupiński, Robert; Mazurek, Przemysław

    2011-01-01

    Electrooculography (EOG) gives the possibility of eye tracking using biosignal measurements. Typical EOG signal consists of rapid value changes (saccades) separated by almost constant values. Additionally, the pulse shape from eyelid blinking is observed. The separation of them is possible using numerous methods, like median filtering. The proposed optimization method based on a model fitting using the variable number of parameters gives the possibility of features localization even for nearby saccades and blinking pulses.

  17. Magnetic separation techniques in diagnostic microbiology.

    PubMed Central

    Olsvik, O; Popovic, T; Skjerve, E; Cudjoe, K S; Hornes, E; Ugelstad, J; Uhlén, M

    1994-01-01

    The principles of magnetic separation aided by antibodies or other specific binding molecules have been used for isolation of specific viable whole organisms, antigens, or nucleic acids. Whereas growth on selective media may be helpful in isolation of a certain bacterial species, immunomagnetic separation (IMS) technology can isolate strains possessing specific and characteristic surface antigens. Further separation, cultivation, and identification of the isolate can be performed by traditional biochemical, immunologic, or molecular methods. PCR can be used for amplification and identification of genes of diagnostic importance for a target organism. The combination of IMS and PCR reduces the assay time to several hours while increasing both specificity and sensitivity. Use of streptavidin-coated magnetic beads for separation of amplified DNA fragments, containing both biotin and a signal molecule, has allowed for the conversion of the traditional PCR into an easy-to-read microtiter plate format. The bead-bound PCR amplicons can also easily be sequenced in an automated DNA sequencer. The latter technique makes it possible to obtain sequence data of 300 to 600 bases from 20 to 30 strains, starting with clinical samples, within 12 to 24 h. Sequence data can be used for both diagnostic and epidemiologic purposes. IMS has been demonstrated to be a useful method in diagnostic microbiology. Most recent publications describe IMS as a method for enhancing the specificity and sensitivity of other detection systems, such as PCR, and providing considerable savings in time compared with traditional diagnostic systems. The relevance to clinical diagnosis has, however, not yet been fully established for all of these new test principles. In the case of PCR, for example, the presence of specific DNA in a food sample does not demonstrate the presence of a live organism capable of inducing a disease. However, all tests offering increased sensitivity and specificity of detection

  18. Supramolecular structures based on regioisomers of cinnamyl-α-cyclodextrins – new media for capillary separation techniques

    PubMed Central

    Benkovics, Gabor; Hodek, Ondrej; Havlikova, Martina; Bosakova, Zuzana; Coufal, Pavel; Malanga, Milo; Fenyvesi, Eva; Darcsi, Andras; Beni, Szabolcs

    2016-01-01

    Summary This work focuses on the preparation and application of supramolecular structures based on mono-cinnamyl-α-cyclodextrins (Cin-α-CD). Pure regioisomers of Cin-α-CD having the cinnamyl moiety at the 2-O- or at the 3-O-position, respectively, were prepared, characterized and applied in capillary electrophoresis as additives to the background electrolyte. These new monomer units with a potential to self-organize into supramolecular structures were synthesized via a straightforward one-step synthetic procedure and purified using preparative reversed-phase chromatography allowing a large scale separation of the regioisomers. The ability of the monomers to self-assemble was proved by various methods including NMR spectroscopy and dynamic light scattering (DLS). The light scattering experiments showed that the monomer units have distinguishable ability to form supramolecular structures in different solvents and the size distribution of the aggregates in water can be easily modulated using different external stimuli, such as temperature or competitive guest molecules. The obtained results indicated that the two regioisomers of Cin-α-CD formed different supramolecular assemblies highlighting the fact that the position of the cinnamyl group plays an important role in the intermolecular complex formation. PMID:26877812

  19. Insights into Nano- and Micron-Scale Phase Separation in Amorphous Solid Dispersions Using Fluorescence-Based Techniques in Combination with Solid State Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Purohit, Hitesh S; Ormes, James D; Saboo, Sugandha; Su, Yongchao; Lamm, Matthew S; Mann, Amanda K P; Taylor, Lynne S

    2017-07-01

    Miscibility between the drug and the polymer in an amorphous solid dispersion (ASD) is considered to be one of the most important factors impacting the solid state stability and dissolution performance of the active pharmaceutical ingredient (API). The research described herein utilizes emerging fluorescence-based methodologies to probe (im)miscibility of itraconazole (ITZ)-hydroxypropyl methylcellulose (HPMC) ASDs. The ASDs were prepared by solvent evaporation with varying evaporation rates and were characterized by steady-state fluorescence spectroscopy, confocal imaging, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (ssNMR) spectroscopy. The size of the phase separated domains for the ITZ-HPMC ASDs was affected by the solvent evaporation rate. Smaller domains (<10 nm) were observed in spray-dried ASDs, whereas larger domains (>30 nm) were found in ASDs prepared using slower evaporation rates. Confocal imaging provided visual confirmation of phase separation along with chemical specificity, achieved by selectively staining drug-rich and polymer-rich phases. ssNMR confirmed the results of fluorescence-based techniques and provided information on the size of phase separated domains. The fluorescence-based methodologies proved to be sensitive and rapid in detecting phase separation, even at the nanoscale, in the ITZ-HPMC ASDs. Fluorescence-based methods thus show promise for miscibility evaluation of spray-dried ASDs.

  20. Separation of plant membranes by electromigration techniques.

    PubMed

    Canut, H; Bauer, J; Weber, G

    1999-02-05

    The review focuses on the multiple separating regimes that offers the free flow electrophoresis technique: free flow zone electrophoresis, isoelectric focusing, isotachophoresis, free flow step electrophoresis. Also, the feasibility to apply either interval or continuous flow electrophoresis is evaluated. The free flow zone electrophoresis regime is generally selected for the separation of cells, organelles and membranes while the other regimes find their largest fields of applications in the purification of proteins and peptides. The latter regimes present the highest resolution efficiency. Therefore, a large part of this review is devoted to the applicabilities of these different regimes to the purification of organelles and membrane vesicles at the preparative scale. Recent developments, both in instrumentation and procedures, are described. The major achievements in plant membrane fractionation obtained with free flow electrophoresis are outlined. The related procedures are both analytical and preparative: they separate tonoplast and plasma membrane simultaneously from the same homogenate, they discriminate for one type of membrane vesicles of opposite orientation, and process large quantities of membrane material by reason of the continuous flow mode. Recent advances using electromigration techniques that permit confirmation of the dynamic state of membranes, characterisation of complex membrane-dependent functions and discovery of new membrane-localised activities are presented.

  1. Separation of single-walled carbon nanotubes by gel-based chromatography using surfactant step-gradient techniques and development of new instrumentation for studying SWCNT reaction processes

    NASA Astrophysics Data System (ADS)

    Breindel, Leonard M.

    Single-walled carbon nanotube (SWCNT) synthesis methods such as CoMoCATTM, HiPcoTM, pulsed laser vaporization (PLV), and catalytic chemical vapor deposition (CCVD) produce several different distributions of (n,m) SWCNT structures, where ( n,m) defines the nanotube diameter and chiral wrapping angle. Post-synthesis processing such as functionalization and/or separations must therefore be employed to yield high purity electronic or single (n,m) samples. Through the use of a surfactant gradient across a gel-based chromatographic column, separations of single (n,m) species can be achieved. Anionic surfactants such as SDS, SDBS, and AOT display different separation effectiveness for single (n,m) species. Results of near-infrared optical absorption for separated SWCNT surfactant suspensions will be discussed, leading to a broader understanding of the important factors necessary for the gel chromatography separation technique. In particular, the effects of SWCNT/surfactant micelle structure are found to be key to achieving fast, simple SWCNT electronic type separations. Additionally, development of new instrumentation for the near-infrared spectrofluorimetric analysis (NIR-SFA) of SWCNTs is useful to the advancement of fundamental SWCNT research and applications. NIR-SFA, for instance, allows for the (n,m) structures of a sample to be identified and monitored during the progress of a chemical reaction or separation experiment. Seeking to achieve the time resolutions necessary for such experiments, the design and optimizations of a system utilizing single-wavelength excitation by diode lasers coupled with a fast NIR detection system are presented.

  2. Design of pervaporation membrane for organic-liquid separation based on solubility control by plasma-graft filling polymerization technique

    SciTech Connect

    Yamaguchi, Takeo; Nakao, Shinichi; Kimura, Shoji )

    1993-05-01

    Pervaporation performance through the membranes showed the same tendency as solubility results. The authors have prepared the filling-polymerized membrane for pervaporation of organic-liquid mixtures by the plasma-graft polymerization technique. The membrane is composed of two different polymers: a porous substrate which can suppress membrane swelling and a grafted polymer which forms in the pores of the substrate and exhibits selectivity due to its solubility. The objectives of the present study are to design a suitable membrane for an organic-mixture system by the control of the filling-polymer solubility. Specifically, a porous high-density polyethylene membrane and poly(methylacrylate/acrylamide) copolymer were employed as the porous substrate and grafted polymer, respectively, and grafted copolymer solubility was predicted by Hansen solubility parameters (HSP). The grafted polymer composition and its solubility behavior could be controlled by varying the monomer composition, and the solubility change was in accordance with the prediction by HSP. Pervaporation performance through the membranes showed the same tendency as solubility results. The authors concluded that an optimum pervaporation membrane can be designed on the basis of solubility control through use of these techniques for polymerization and prediction.

  3. Technique to separate lidar signal and sunlight.

    PubMed

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.

  4. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review

    NASA Astrophysics Data System (ADS)

    Tang, Malcolm S. Y.; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Loke Show, Pau

    2016-08-01

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.

  5. Extraction and separation of lactate dehydrogenase inhibitors from Poria cocos (Schw.) Wolf based on a hyphenated technique and in vitro methods.

    PubMed

    Li, Sainan; Zhang, Jianxu; Li, Senlin; Liu, Chunming; Liu, Shu; Liu, Zhiqiang

    2017-02-20

    Stroke is one of the most common diseases worldwide. Lactate dehydrogenase inhibitors are widely used in the treatment of ischemic stroke, with natural products considered a promising source of lactate dehydrogenase inhibitors. In this study, ultrafiltration liquid chromatography coupled with mass spectrometry was used for the screening and identification of lactate dehydrogenase inhibitors from Poria cocos. Five lactate dehydrogenase inhibitors were selected: dehydropachymic acid, pachymic acid, dehydrotrametenolic acid, trametenolic acid, and eburicoic acid. The inhibitors were extracted and isolated with purities of 96.75, 98.15, 97.25, 95.46, and 94.88%, respectively, by using a new "hyphenated" strategy of microwave-assisted extraction coupled with counter-current chromatography and centrifugal partition chromatography by a two-phase solvent system of n-hexane/ethyl acetate/ethanol/water at the volume ratio 0.965:1.000:0.936:0.826 v/v/v/v. The bioactivity of the isolated compounds was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay in PC12 cells. The results also showed that the hyphenated technique of microwave-assisted extraction coupled with counter-current chromatography and centrifugal partition chromatography was an efficient method for the continuous extraction and online isolation of chemical constituents from medicinal herbs. Furthermore, the research route based on the activity screening, extraction, separation, and activity verification of the compounds offered advantages of efficiency, orientation, and objectivity.

  6. Separation/Preconcentration Techniques for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    Hu, Bin; He, Man; Chen, Beibei; Jiang, Zucheng

    2016-10-01

    The main aim of this chapter exactly characterizes the contribution. The analytical chemistry of the rare earth elements (REEs) very often is highly complicated and the determination of a specific element is impossible without a sample pre-concentration. Sample preparation can be carried out either by separation of the REEs from the matrix or by concentrating the REEs. The separation of REEs from each other is mainly made by chromatography. At the beginning of REE analysis, the method of precipitation/coprecipitation was applied for the treatment of REE mixtures. The method is not applicable for the separation of trace amounts of REEs. The majority of the methods used are based on the distribution of REEs in a two-phase system, a liquid-liquid or a liquid-solid system. Various techniques have been developed for the liquid-liquid extraction (LLE), in particular the liquid phase micro-extraction. The extraction is always combined with a pre-concentration of the REEs in a single drop of extractant or in a hollow fiber filled with the extractant. Further modified techniques for special applications and for difficult REE separation have been developed. Compared to the LLE, the solid phase micro-extraction is preferred. The method is robust and easy to handle, in which the solid phase loaded with the REEs can be used directly for subsequent determination methods. At present, very new solid materials, like nanotubes, are developed and tested for solid phase extraction.

  7. Column-coupling strategies for multidimensional electrophoretic separation techniques.

    PubMed

    Kler, Pablo A; Sydes, Daniel; Huhn, Carolin

    2015-01-01

    Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the

  8. [Study of the effect of heat source separation distance on plasma physical properties in laser-pulsed GMAW hybrid welding based on spectral diagnosis technique].

    PubMed

    Liao, Wei; Hua, Xue-Ming; Zhang, Wang; Li, Fang

    2014-05-01

    In the present paper, the authors calculated the plasma's peak electron temperatures under different heat source separation distance in laser- pulse GMAW hybrid welding based on Boltzmann spectrometry. Plasma's peak electron densities under the corresponding conditions were also calculated by using the Stark width of the plasma spectrum. Combined with high-speed photography, the effect of heat source separation distance on electron temperature and electron density was studied. The results show that with the increase in heat source separation distance, the electron temperatures and electron densities of laser plasma did not changed significantly. However, the electron temperatures of are plasma decreased, and the electron densities of are plasma first increased and then decreased.

  9. Comparison of pixel and sub-pixel based techniques to separate Pteronia incana invaded areas using multi-temporal high resolution imagery

    NASA Astrophysics Data System (ADS)

    Odindi, John; Kakembo, Vincent

    2009-08-01

    Remote Sensing using high resolution imagery (HRI) is fast becoming an important tool in detailed land-cover mapping and analysis of plant species invasion. In this study, we sought to test the separability of Pteronia incana invader species by pixel content aggregation and pixel content de-convolution using multi-temporal infrared HRI. An invaded area in Eastern Cape, South Africa was flown in 2001, 2004 and 2006 and HRI of 1x1m resolution captured using a DCS 420 colour infrared camera. The images were separated into bands, geo-rectified and radiometrically corrected using Idrisi Kilimanjaro GIS. Value files were extracted from the bands in order to compare spectral values for P. incana, green vegetation and bare surfaces using the pixel based Perpendicular Vegetation Index (PVI), while Constrained Linear Spectral Unmixing (CLSU) surface endmembers were used to generate sub-pixel land surface image fractions. Spectroscopy was used to validate spectral trends identified from HRI. The PVI successfully separated the multi-temporal imagery surfaces and was consistent with the unmixed surface image fractions from CLSU. Separability between the respective surfaces was also achieved using reflectance measurements.

  10. Implementation of the Frequency Separation Technique in general lineshape codes

    NASA Astrophysics Data System (ADS)

    Alexiou, S.

    2013-06-01

    The Frequency Separation Technique (FST) has been proposed and theoretically documented. It is a technique capable of unifying and improving lineshape calculations, for both accuracy and speed. In this work, we briefly recall its key features and advantages and present a practical way of implementing it in lineshape codes. We note that the FST is a general technique, capable of working with practically any modern lineshape framework that can either employ or go beyond the standard framework.

  11. Separators - Technology review: Ceramic based separators for secondary batteries

    NASA Astrophysics Data System (ADS)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.

    2014-06-01

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  12. Separators - Technology review: Ceramic based separators for secondary batteries

    SciTech Connect

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Meyer, Dirk C.; Schilm, Jochen; Leisegang, Tilmann

    2014-06-16

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  13. Technologies and microstructures for separation techniques in chemical analysis

    NASA Astrophysics Data System (ADS)

    Spiering, Vincent L.; Lammerink, Theo S. J.; Jansen, Henri V.; Fluitman, Jan H.; van den Berg, Albert

    1996-09-01

    The possibilities for microtechnology in chemical analysis and separation techniques are discussed. The combination of the materials and the dimensions of structures can limit the sample and waste volumes on the one hand, but also increases the performance of the chemical systems. Especially in high performance chromatography separation systems, where the separation quality is directly depending on the length to width ratio of the fluid channels, there is a large potential for applications. Novel technologies as well as demonstrator devices for different applications will be presented in this paper. Finally, a modular concept for microfluidic systems, in which these micromachined structures can be incorporated, is described and illustrated with a demonstrator.

  14. Sample detection and analysis techniques for electrophoretic separation

    NASA Technical Reports Server (NTRS)

    Falb, R. D.; Hughes, K. E.; Powell, T. R.

    1975-01-01

    Methods for detecting and analyzing biological agents suitable for space flight operations were studied primarily by literature searches which were conducted of cell separation techniques. Detection methods discussed include: photometrometric, electric, radiometric, micrometry, ultrasonic, microscopic, and photographic. A bibliography, and a directory of vendors are included along with an index of commercial hardware.

  15. Filtrates and Residues: Gel Filtration--An Innovative Separation Technique.

    ERIC Educational Resources Information Center

    Blumenfeld, Fred; Gardner, James

    1985-01-01

    Gel filtration is a form of liquid chromatography that separates molecules primarily on the basis of their size. Advantages of using this technique, theoretical aspects, and experiments (including procedures used) are discussed. Several questions for students to answer (with answers) are also provided. (JN)

  16. Food analysis: a continuous challenge for miniaturized separation techniques.

    PubMed

    Asensio-Ramos, María; Hernández-Borges, Javier; Rocco, Anna; Fanali, Salvatore

    2009-11-01

    One of the current trends of modern analytical chemistry is the miniaturization of the various tools daily used by a large number of researchers. Ultrafast separations, consumption of small amounts of both samples and reagents as well as a high sensitivity and automation are some of the most important goals desired to be achieved. For many years a large number of research laboratories and analytical instrument manufacturing companies have been investing their efforts in this field, which includes miniaturized extraction materials, sample pre-treatment procedures and separation techniques. Among the separation techniques, capillary electromigration methods (which also include CEC), microchip and nano-LC/capillary LC have received special attention. Besides their well-known advantages over other separation tools, the role of these miniaturized techniques in food analysis is still probably in an early stage. In fact, applications in this field carried out by CEC, microchip, nano-LC and capillary LC are only a few when compared with other more established procedures such as conventional GC or HPLC. The scope of this review is to gather and discuss the different applications of such miniaturized techniques in this field. Concerning CE, microchip-CE and CEC works, emphasis has been placed on articles published after January 2007.

  17. [Separation of chiral pharmaceutical drugs by chromatographic and electrophoretic techniques].

    PubMed

    Morin, P

    2009-07-01

    magnitude. Furthermore, the mechanism of separation in CE is much simpler to understand and predict. However, the low capacity of CD column prevents its use at the preparative scale and consequently hampers its development as an analytical technique. Today, the increasing number of new drug candidate molecules produced daily, and for which the determination of enantiomeric purity is required before further development, encourages the pharmaceutical industry to seek fast chiral analysis methods based on simple protocols. The speed of analysis is more important than resolution. Thus, screening strategies are implemented with HPLC, SFC and CE including the selection of a limited number of chiral selectors with strong powers of chiral recognition.

  18. The use of micellar solutions for novel separation techniques

    SciTech Connect

    Roberts, Bruce Lynn

    1993-01-01

    Surfactant based separation techniques based on the solubilization of organic compounds into the nonpolar interior of a micelle or electrostatic attraction of ionized metals and metal complexes to the charged surface of a micelle were studied in this work. Micellar solutions were used to recover two model volatile organic compounds emitted by the printing and painting industries (toluene and amyl acetate) and to investigate the effect of the most important variables in the surfactant enhanced carbon regeneration (SECR) process. SECR for liquid phase applications was also investigated in which the equilibrium adsorption of cetyl pyridinium chloride (CPC) and sodium dodecyl sulfate (SDS) on activated carbon were measured. Micellar-enhanced ultrafiltration (MEUF) was investigated using spiral wound membranes for the simultaneous removal of organic compounds, metals and metal complexes dissolved in water, with emphasis on pollution control applications. Investigations of MEUF to remove 99+ per cent of trichloroethylene (TCE) from contaminated groundwater using criteria such as: membrane flux, solubilization equilibrium constant, surfactant molecular weight, and Krafft temperature led to the selection of an anionic disulfonate with a molecular weight of 642 (DOWFAX 8390). These data and results from supporting experiments were used to design a system which could clean-up water in a 100,000 gallon/day operation. A four stage process was found to be an effective design and estimated cost for such an operation were found to be in the range of the cost of mature competitive technologies.

  19. Enhanced Landfill Mining case study: Innovative separation techniques

    NASA Astrophysics Data System (ADS)

    Cuyvers, Lars; Moerenhout, Tim; Helsen, Stefan; Van de Wiele, Katrien; Behets, Tom; Umans, Luk; Wille, Eddy

    2014-05-01

    In 2011, a corporate vision on Enhanced Landfill Mining (ELFM)1 was approved by the OVAM Board of directors, which resulted in an operational programme over the period 2011-2015. OVAM (Public Waste Agency of Flanders) is the competent authority in charge of waste, Sustainable Materials Management (SMM) and contaminated soil management in Flanders. The introduction of the ELFM concept needs to be related with the concept of SMM and the broader shift to a circular economy. Within the concept of ELFM, landfills are no longer considered to be a final and static situation, but a dynamic part of the materials cycle. The main goal of this research programme is to develop a comprehensive policy on resource management to deal with the issue of former landfills. In order to investigate the opportunities of ELFM, the OVAM is applying a three step approach including mapping, surveying and mining of these former landfills. As a result of the mapping part over 2,000 landfill sites, that will need to be dealt with, were revealed. The valorisation potential of ELFM could be assigned to different goals, according to the R³P-concept : Recycling of Materials, Recovery of Energy, Reclamation of Land and Protection of drinking water supply. . On behalf of the OVAM, ECOREM was assigned to follow-up a pilot case executed on a former landfill, located in Zuienkerke, Flanders. Within this case study some technical tests were carried out on the excavated waste material to investigate the possibilities for a waste to resource conversion. The performance of both on site and off site techniques were evaluated. These testings also contribute to the mapping part of OVAM's research programme on ELFM and reveal more information on the composition of former landfills dating from different era's. In order to recover as many materials as possible, five contractors were assigned to perform separation tests on the bulk material from the Zuienkerke landfill. All used techniques were described

  20. Retrieval of a separated instrument using Masserann technique

    PubMed Central

    Thirumalai, Arun Kulandaivelu; Sekar, Mahalaxmi; Mylswamy, Sumitha

    2008-01-01

    The fracture of endodontic instruments is a procedural problem creating a major obstacle to normal routine therapy. The separated instrument, particularly a broken file, leads to metallic obstruction in the root canal and impedes efficient cleaning and shaping. When an attempt to bypass such a fragment becomes difficult, it should be retrieved by mechanical devices. Masserann kit is one such device for orthograde removal of intracanal metallic obstructions. These clinical cases demonstrate the usage of Masserann technique in removal of separated instruments in anterior and also the posterior teeth. PMID:20142883

  1. Beneficiation of coal pond ash by physical separation techniques.

    PubMed

    Lee, Sung-Joo; Cho, Hee-Chan; Kwon, Ji-Hoe

    2012-08-15

    In this study, investigations to develop a beneficiation process for separating coal pond ash into various products were undertaken. To this end, coal pond ash samples with different particle size ranges were tested in terms of their washability characteristics in a float-and-sink analysis. It was found that coal pond ash was heterogeneous in nature consisting of particles that varied in terms of their size and composition. However, it can be made more homogenous using a gravity separation method. Therefore, the possibility of separating coal pond ash was tested on standard equipment typically used for gravity concentration. To increase the separation efficiency, coal ash was separated according to the size of the particles and each size fraction was tested using equipment appropriate for the corresponding sizes. A hindered-settling column and a shaking table were tested for their ability to treat the 1.19 × 0.074 mm size fraction, and a Falcon concentrator was evaluated for its ability to treat the -0.074 mm size fraction. The results showed that various marketable products, such as lightweight aggregate, sand and high-carbon fuel, can be recovered from coal pond ash using simple physical separation techniques.

  2. Separation of similar yeast strains by IEF techniques.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel

    2009-06-01

    Rapid and reliable identification of the etiological agents of infectious diseases, especially species that are hardly distinguishable by routinely used laboratory methods, e.g. Candida albicans from C. dubliniensis, is necessary for early administration of an appropriate therapy. Similarly, the differentiation between biofilm-positive and biofilm-negative yeast strains is necessary for the choice of a therapeutic strategy due to higher resistance of the biofilm-positive strains to antifungals. In this study rapid separation and identification of similar strains of Candida, cells and/or their lysates, based on IEF are outlined. The isoelectric points of the monitored "similar pairs" of Candidas, C. albicans and C. dubliniensis and the biofilm-positive C. parapsilosis, C. tropicalis and their biofilm-negative strains were determined by CIEF with UV detection in the acidic pH gradient. The differences between their isoelectric points were up to 0.3 units of pI. Simultaneously, a fast and a simple technique was developed for the lysis of the outer membrane cell and characteristic fingerprints were found in lysate electrophoreograms and in gels from the capillary or the gel IEF, respectively.

  3. RBI-EMML signal separation for imaging techniques

    NASA Astrophysics Data System (ADS)

    Meidunas, Eduardo C.; Puetz, Angela; Hoke, Michael L.; Byrne, Charles L.

    2002-08-01

    Many imaging techniques commonly involve the extraction of mixed signal information from a pixel. In most mixed pixel cases, this is assumed to be a linear mixture and signal separation routines have been developed with this mixing compositions scheme in mind. One such signal separation routine incorporates the Expectation Maximization Maximum Likelihood (EMML) algorithm for the determination of signal mixtures in a pixel. This routine, however is very inefficient in that it requires large iteration values to converge to a solution. This report is the result of the implementation of a Re-scaled Block Iterative EMML approach, commonly used in the medical field for emission tomography image processing, to perform signal separation, while greatly increasing the efficiency in computation and rate of convergence to a solution.

  4. Remove volatile organic compounds (VOCs) with membrane separation techniques.

    PubMed

    Zhang, Lin; Weng, Huan-xin; Chen, Huan-lin; Gao, Cong-jie

    2002-04-01

    Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy-saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.

  5. Separation techniques for quantification of radionuclides in environmental samples.

    PubMed

    Galanda, Dusan; Rajec, Pavol; Mátel, Lubomir; Rosskopfová, Olga; Dulanská, Silvia

    2009-11-01

    The reliable and quantitative measurement of radionuclides is important in order to determine environmental quality and radiation safety, and to monitor regulatory compliance. We examined soil samples from Podunajske Biskupice, near the city of Bratislava in the Slovak Republic, for the presence of several natural ((238)U, (232)Th, (40)K) and anthropogenic ((137)Cs, (90)Sr, (239)Pu, (240)Pu, (241)Am) radionuclides. The area is adjacent to a refinery and hazardous waste processing center, as well as the municipal incinerator plant, and so might possess an unusually high level of ecotoxic metals. We found that the levels of both naturally occurring and anthropogenic radionuclides fell within the expected ranges, indicating that these facilities pose no radiological threat to the local environment. During the course of our analysis, we modified existing techniques in order to allow us to handle the unusually large and complex samples that were needed to determine the levels of (239)Pu, (240)Pu, and (241)Am activity. We also rated three commercial techniques for the separation of 90Sr from aqueous solutions and found that two of them, AnaLig Sr-01 and Empore Extraction Disks, were suitable for the quantitative and reliable separation of (90)Sr, while the third, Sr-Spec Resin, was less so. The main criterion in evaluating these methods was the chemical recovery of (90)Sr, which was less than we had expected. We also considered speed of separation and additional steps needed to prepare the sample for separation.

  6. Floating-point scaling technique for sources separation automatic gain control

    NASA Astrophysics Data System (ADS)

    Fermas, A.; Belouchrani, A.; Ait-Mohamed, O.

    2012-07-01

    Based on the floating-point representation and taking advantage of scaling factor indetermination in blind source separation (BSS) processing, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an automatic gain control in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division-free BSS algorithm with two inputs, two outputs. The proposed technique is computationally cheaper and efficient for a hardware implementation compared to the Euclidean normalisation.

  7. Cell separation technique in dilectrophoretic chip with bulk electrode

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Tay, Francis E. H.; Xu, Guolin; Yu, Liming

    2006-01-01

    This paper presents a new technique for separation of two cell populations in a dielectrophoretic chip with bulk silicon electrode. A characteristic of the dielectrophoretic chip is its "sandwich" structure: glass/silicon/glass that generates a unique definition of the microfluidic channel with conductive walls (silicon) and isolating floor and ceiling (glass). The structure confers the opportunity to use the electrodes not only to generate a gradient of the electric field but also to generate a gradient of velocity of the fluid inside the channel. This interesting combination gives rise to a new solution for dielectrophoretic separation of two cell populations. The separation method consists of four steps. First, the microchannel is field with the cells mixture. Second, the cells are trapped in different locations of the microfluidic channel, the cell population which exhibits positive dielectrophoresis is trapped in the area where the distance between the electrodes is the minimum whilst, the other population that exhibit negative dielectrophoresis is trapped where the distance between electrodes is the maximum. In the next step, increasing the flow in the microchannel will result in an increased hydrodynamic force that sweeps the cells trapped by positive dielectrophoresis out of the chip. In the last step, the electric field is removed and the second population is sweep out and collected at the outlet. The device was tested for separation of dead yeast cells from live yeast cells. The paper presents analytical aspects of the separation method a comparative study between different electrode profiles and experimental results.

  8. Magnetic separation techniques in sample preparation for biological analysis: a review.

    PubMed

    He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke

    2014-12-01

    Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed.

  9. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  10. Adaptive parameter blind source separation technique for wheel condition monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Gao, Hongli; Liu, Qiyue; Farzadpour, F.; Grebe, C.; Tian, Ying

    2017-06-01

    Wheel condition monitoring has played a key role in the safe operation of railway vehicles. Blind source separation (BSS) is an attractive tool due to its excellent performance in separating source signals from their mixtures when no detailed knowledge of defective sources and the mixing process is assumed. In this paper, we propose an adaptive parameter BSS approach based on the adaptive time-frequency distributions theory in order to deal with the non-stationary blind separation problem and apply it to wheel defect monitoring. Some classical time-frequency signal analysis and BSS methods are applied in comparison with the proposed approach through frequency-varying non-stationary and time-varying non-stationary simulations. Experiments of single and multi-fault wheels have been conducted using the wheel/rail simulation facility to illustrate the effectiveness of the proposed method in processing the non-stationary signals with varying fault complexity.

  11. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  12. Separations Science Data Base: an abstractor's manual

    SciTech Connect

    Roddy, J.W.; McDowell, W.J.; Michelson, D.C.

    1981-07-01

    The Separations Science Data Base, designed specifically for the retrieval of information needed in chemical separations problems (i.e., how to perform a given separation under given conditions), is described. The procedure for entering records into the data base is given. The initial entries are concerned primarily with liquid-liquid extraction and liquid-solid ion exchange methods for metal ions and salts; however, the data base is constructed so that almost any separations process can be accommodated. Each record is indexed with information provided under the following fields: author; title; publication source; date of publication; organization performing and/or sponsoring the work; brief abstract of the work; abstract number if the work has been so referenced, and/or abstractor's initials; type of separation system used (e.g., flotation); specific or generic name of the separation agent used (e.g., acetylacetone); list of substances separated (e.g., gold, copper); qualitative description of the supporting medium or matrix containing the substances before separation (e.g., nitrate); type of literature where the article was printed (e.g., book); and type of information that the article contains. Each of these fields may be searched independently of the others (or in combination), and the last six fields contain specific key words that are listed on the input form. Definitions are provided for the 39 information terms.

  13. Complementary home mechanical ventilation techniques. SEPAR Year 2014.

    PubMed

    Chiner, Eusebi; Sancho-Chust, José N; Landete, Pedro; Senent, Cristina; Gómez-Merino, Elia

    2014-12-01

    This is a review of the different complementary techniques that are useful for optimizing home mechanical ventilation (HMV). Airway clearance is very important in patients with HMV and many patients, particularly those with reduced peak cough flow, require airway clearance (manual or assisted) or assisted cough techniques (manual or mechanical) and suctioning procedures, in addition to ventilation. In the case of invasive HMV, good tracheostomy cannula management is essential for success. HMV patients may have sleep disturbances that must be taken into account. Sleep studies including complete polysomnography or respiratory polygraphy are helpful for identifying patient-ventilator asynchrony. Other techniques, such as bronchoscopy or nutritional support, may be required in patients on HMV, particularly if percutaneous gastrostomy is required. Information on treatment efficacy can be obtained from HMV monitoring, using methods such as pulse oximetry, capnography or the internal programs of the ventilators themselves. Finally, the importance of the patient's subjective perception is reviewed, as this may potentially affect the success of the HMV. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  14. Ab Initio Molecular Dynamics Using Recursive, Spatially Separated, Overlapping Model Subsystems Mixed within an ONIOM-Based Fragmentation Energy Extrapolation Technique.

    PubMed

    Li, Junjie; Iyengar, Srinivasan S

    2015-09-08

    Here, we demonstrate the application of fragment-based electronic structure calculations in (a) ab initio molecular dynamics (AIMD) and (b) reduced dimensional potential calculations, for medium- and large-sized protonated water clusters. The specific fragmentation algorithm used here is derived from ONIOM, but includes multiple, overlapping “model” systems. The interaction between the various overlapping model systems is (a) approximated by invoking the principle of inclusion-exclusion at the chosen higher level of theory and (b) within a real calculation performed at the chosen lower level of theory. The fragmentation algorithm itself is written using bit-manipulation arithmetic, which will prove to be advantageous, since the number of fragments in such methods has the propensity to grow exponentially with system size. Benchmark calculations are performed for three different protonated water clusters: H₉O₄⁺, H₁₃O₆⁺ and H(H₂O)₂₁⁺. For potential energy surface benchmarks, we sample the normal coordinates and compare our surface energies with full MP2 and CCSD(T) calculations. The mean absolute error for the fragment-based algorithm is <0.05 kcal/mol, when compared with MP2 calculations, and <0.07 kcal/mol, when compared with CCSD(T) calculations over 693 different geometries for the H₉O₄⁺ system. For the larger H(H₂O)₂₁⁺ water cluster, the mean absolute error is on the order of a 0.1 kcal/mol, when compared with full MP2 calculations for 84 different geometries, at a fraction of the computational cost. Ab initio dynamics calculations were performed for H₉O₄⁺ and H₁₃O₆⁺, and the energy conservation was found to be of the order of 0.01 kcal/mol for short trajectories (on the order of a picosecond). The trajectories were kept short because our algorithm does not currently include dynamical fragmentation, which will be considered in future publications. Nevertheless, the velocity autocorrelation functions and their

  15. Separation of turkey lactate dehydrogenase isoenzymes using isoelectric focusing technique.

    PubMed

    Heinová, Dagmar; Kostecká, Zuzana; Csank, Tomáš

    2016-01-01

    Native polyacrylamide gel electrophoresis at pH 8.8 did not allow to separate lactate dehydrogenase (LDH) isoenzymes of turkey origin. Five electrophoretically distinguishable forms of the enzyme were detected in serum and tissues of turkey using IEF technique in a pH range of 3-9. Generally, three different groups were seen: (i) those having an anodic domination (heart, kidney, pancreas, and erythrocytes) with mainly LDH-1 fraction, (ii) those having a cathodic domination (breast muscle and serum) with prevalence of LDH-5, and (iii) those with a more uniform distribution (liver, spleen, lung, and brain). The specific enzyme activity was the highest in the breast muscle, followed by heart muscle, and brain. Low activities were detected in serum, kidney, and liver.

  16. Composite separators and redox flow batteries based on porous separators

    DOEpatents

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  17. Recent advances on ionic liquid uses in separation techniques.

    PubMed

    Berthod, A; Ruiz-Ángel, M J; Carda-Broch, S

    2017-09-22

    The molten organic salts with melting point below 100°C, commonly called ionic liquids (ILs) have found numerous uses in separation sciences due to their exceptional properties as non molecular solvents, namely, a negligible vapor pressure, a high thermal stability, and unique solvating properties due to polarity and their ionic character of molten salts. Other properties, such as viscosity, boiling point, water solubility, and electrochemical window, are adjustable playing with which anion is associated with which cation. This review focuses on recent development of the uses of ILs in separation techniques actualizing our 2008 article (same authors, J. Chromatogr. A, 1184 (2008) 6-18) focusing on alkyl methylimidazolium salts. These developments include the use of ILs in nuclear waste reprocessing, highly thermally stable ILs that allowed for the introduction of polar gas chromatography capillary columns able to work at temperature never seen before (passing 300°C), the use of ILs in liquid chromatography and capillary electrophoresis, and the introduction of tailor-made ILs for mass spectrometry detection of trace anions at the few femtogram level. The recently introduced deep eutectic solvents are not exactly ILs, they are related enough so that their properties and uses in countercurrent chromatography are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A simple color separation technique for solar tissue photocoagulation

    NASA Astrophysics Data System (ADS)

    Batista, Nídia; Liang, Dawei

    2011-07-01

    Aiming at studying solar photocoagulation in biological tissue with both low energy and high energy portions of solar spectrum, a simple color separation technique is proposed. The chromatic aberration characteristic of Fresnel lens is exploited to achieve color separation by a plane mirror with a large central elliptical hole, reflecting the solar radiation above 600nm to one fused silica light guide, while allowing the passage of the remaining radiation to another guide. ZEMAX™ ray-tracing code is used to optimize the performance of each optical component. To attain a stable solar coagulation, the prototype is tested on a two-axis solar tracker. The ex vivo measurement is performed on chicken breasts at the solar power level of 30W and the exposure time of 60 seconds, attaining a uniform coagulation over a large area of 15mm x 15mm. A strong dependence of the penetration depth on wavelength is observed. Our cost effective solar photocoagulation prototype produces the same type and extent of tissue coagulation ordinarily achieved with surgical laser equipment.

  19. Stable isotope enrichment techniques and ORNL separation status

    NASA Astrophysics Data System (ADS)

    Tracy, J. G.; Bell, W. A.; Veach, A. M.; Caudill, H. H.; Milton, H. T.

    1987-05-01

    The isotope separation program is described, emphasizing present state-of-the-art techniques utilized to achieve specific isotopic requirements. An interesting problem addressed here is the calutron enrichment of rare-earth isotopes where small quantities of feed (< 5 g) are available, and the unresolved feed is to be recovered and recycled. Conventional ion-source units using graphite and stainless steel deteriorate in the halogenating atmosphere or are permeable to rare-earth compounds, reducing the process efficiency. An ion source has been developed using boron nitride for containing the halogenating agent and rare-earth compounds. Tests have been successfully conducted using Lu 2O 3 and the in situ chlorinating technique with CCl 4. Collectively, 166 mg of 176Lu were recovered from two runs using 2.95 and 1.10 g of 44.5% 176Lu. Process efficiency of 10.5% was achieved, and 1.2 g of the unresolved feed were recovered. Material compatibility of the boron nitride, carbon tetrachloride, and lutetium compounds has been established.

  20. Sheathless Size-Based Acoustic Particle Separation

    PubMed Central

    Guldiken, Rasim; Jo, Myeong Chan; Gallant, Nathan D.; Demirci, Utkan; Zhe, Jiang

    2012-01-01

    Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications. PMID:22368502

  1. Single-step spatial rotation error separation technique for the ultraprecision measurement of surface profiles.

    PubMed

    Hou, Maosheng; Qiu, Lirong; Zhao, Weiqian; Wang, Fan; Liu, Entao; Ji, Lin

    2014-01-20

    To improve the measurement accuracy of the profilometer for large optical surfaces, a new single-step spatial rotation error separation technique (SSEST) is proposed to separate the surface profile error and spindle spatial rotation error, and a novel SSEST-based system for surface profile measurement is developed. In the process of separation, two sets of measured results at the ith measurement circle are obtained before and after the rotation of error separation table, the surface profile error and spatial rotation error of spindle can be determined using discrete Fourier-transform and harmonic analysis. Theoretical analyses and experimental results indicate that SSEST can accurately separate spatial rotation error of spindle from the measured surface profile results within the range of 1-100 upr and improve the accuracy of surface profile measurements.

  2. Use of Chromatography Techniques to Separate a Mixture of Substances

    ERIC Educational Resources Information Center

    Donaldson, W.

    1976-01-01

    Explains the separation of the constituents of mixtures on one piece of chromatography paper. The example presented involves a vitamin C tablet, a disprin tablet, and a glucose tablet. Outlined are two methods for separating the constituents. (GS)

  3. Use of Chromatography Techniques to Separate a Mixture of Substances

    ERIC Educational Resources Information Center

    Donaldson, W.

    1976-01-01

    Explains the separation of the constituents of mixtures on one piece of chromatography paper. The example presented involves a vitamin C tablet, a disprin tablet, and a glucose tablet. Outlined are two methods for separating the constituents. (GS)

  4. Controlled shear filtration: A novel technique for animal cell separation.

    PubMed

    Vogel, J H; Kroner, K H

    1999-06-20

    A novel rotary microfiltration technique specifically suited for the separation of animal cells has been developed. The concept allows the independent adjustment of wall shear stress, transmembrane pressure, and residence time, allowing straightforward optimization of the microfiltration process. By using a smooth, conically shaped rotor, it is possible to establish a controlled shear field in which animal cells experience a significant hydrodynamic lift away from the membrane surface. It is shown in preliminary experiments that shear-induced cell-rupture speeds up membrane clogging and that cell debris poses the most significant problem in harvesting of BHK cell cultures by dynamic microfiltration. However, a threshold value of shear stability exists which depends on the frequency of passing the shear field, the residence time in the shear field, as well as on cell status. By operating close to this threshold value, cell viability can be maintained while concentration polarization is efficiently minimized. By applying this concept, it is possible to attain flux rates several times higher compared to conventional crossflow filtration. Controlled shear filtration (CSF) can be used for batch harvesting as well as for cell retention in high cell density systems. In batch harvesting of hIL-2 from rBHK cell culture, a constant flux rate of 290 L h-1 m-2 has been adjusted without indication of membrane clogging or fouling.

  5. Developing synthesis techniques for zeolitic-imidazolate framework membranes for high resolution propylene/propane separation

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Taek

    Propylene/propane separation is one of the most challenging separations, currently achieved by energy-intensive cryogenic distillation. Despite the great potentials for energy-efficient membrane-based propylene/propane separation processes, no commercial membranes are available due to the limitations (i.e., low selectivity) of current polymeric materials. Zeolitic imidazolate frameworks (ZIFs) are promising membrane materials primarily due to their well-defined ultra-micropores with controllable surface chemistry along with their relatively high thermal/chemical stabilities. In particular, ZIF-8 with the effective aperture size of ~ 4.0 A has been shown very promising for propylene/propane separation. Despite the extensive research on ZIF-8 membranes, only a few of ZIF-8 membranes have displayed good propylene/propane separation performances presumably due to the challenges of controlling the microstructures of polycrystalline membranes. Since the membrane microstructures are greatly influenced by processing techniques, it is critically important to develop new techniques. In this dissertation, three state-of-the-art ZIF membrane synthesis techniques are developed. The first is a one-step in-situ synthesis technique based on the concept of counter diffusion. The technique enabled us to obtain highly propylene selective ZIF-8 membranes in less than a couple of hours with exceptional mechanical strength. Most importantly, due to the nature of the counter-diffusion concept, the new method offered unique opportunities such as healing defective membranes (i.e., poorly-intergrown) as well as significantly reducing the consumption of costly ligands and organic solvents. The second is a microwave-assisted seeding technique. Using this new seeding technique, we were able to prepare seeded supports with a high packing density in a couple of minutes, which subsequently grown into highly propylene-selective ZIF-8 membranes with an average propylene/propane selectivity of ~40

  6. Achiral and Chiral Separations Using Micellar Electrokinetic Chromatography, Polyelectrolyte Multilayer Coatings, and Mixed Mode Separation Techniques with Molecular Micelles

    PubMed Central

    Luces, Candace A.; Warner, Isiah M.

    2014-01-01

    Mixed mode separation using a combination of micellar electrokinetic chromatography (MEKC) and polyelectrolyte multilayer (PEM) coatings is herein reported for the separation of achiral and chiral analytes. Many analytes are difficult to separate by MEKC and PEM coatings alone. Therefore, the implementation of a mixed mode separation provides several advantages for overcoming the limitations of these well-established methods. In this study, it was observed that achiral separations using MEKC and PEM coatings individually resulted in partial resolution of 8 very similar aryl ketones when the molecular micelle (sodium poly(N-undecanoyl-l-glycinate) (poly-SUG)) concentration was varied from 0.25% – 1.00% (w/v) and the bilayer number varied from 2 – 4. However, when mixed mode separation was introduced, baseline resolution was achieved for all 8 analytes. In the case of chiral separations, temazepam, aminoglutethimide, benzoin, benzoin methyl ether and coumachlor were separated using the three separation techniques. For chiral separations, the chiral molecular micelle, sodium poly(N-undecanoyl-l-leucylvalinate) (poly-l-SULV), was employed at concentrations of 0.25–1.50% (w/v) for both MEKC and PEM coatings. Overall, the results revealed partial separation with MEKC and PEM coatings individually. However, mixed mode separation enabled baseline separation of each chiral mixture. The separation of achiral and chiral compounds from different compound classes demonstrates the versatility of this mixed mode approach. PMID:20155738

  7. Multi-stage separations based on dielectrophoresis

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-07-13

    A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.

  8. Separation of Acids, Bases, and Neutral Compounds

    NASA Astrophysics Data System (ADS)

    Fujita, Megumi; Mah, Helen M.; Sgarbi, Paulo W. M.; Lall, Manjinder S.; Ly, Tai Wei; Browne, Lois M.

    2003-01-01

    Separation of Acids, Bases, and Neutral Compounds requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime plug-in, version compatible with your OS and browser (available from MDL); and Flash player, version 5 or higher (available from Macromedia).

  9. Metal-organic frameworks for membrane-based separations

    NASA Astrophysics Data System (ADS)

    Denny, Michael S.; Moreton, Jessica C.; Benz, Lauren; Cohen, Seth M.

    2016-12-01

    As research into metal-organic frameworks (MOFs) enters its third decade, efforts are naturally shifting from fundamental studies to applications, utilizing the unique features of these materials. Engineered forms of MOFs, such as membranes and films, are being investigated to transform laboratory-synthesized MOF powders to industrially viable products for separations, chemical sensors and catalysts. Following encouraging demonstrations of gas separations using MOF-based membranes, liquid-phase separations are now being explored in an effort to build effective membranes for these settings. In this Review, we highlight MOF applications that are in their nascent stages, specifically liquid-phase separations using MOF-based mixed-matrix membranes. We also highlight the analytical techniques that provide important insights into these materials, particularly at surfaces and interfaces, to better understand MOFs and their interactions with other materials, which will ultimately lead to their use in advanced technologies.

  10. Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).

    PubMed

    Goldfarb, James W

    2010-04-01

    The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.

  11. Shape-based separation of microparticles with magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Zhou, Ran

    2016-11-01

    Precise manipulations, e.g., sorting and focusing, of nonspherical micro-particles in fluidic environment has important applications in the fields of biology sciences and biomedical engineering. However, non-spherical microparticles are hard to manipulate because they tumble in shear flows. Most of existing techniques, including traditional filtration and centrifugation, and recent microfluidic technology, have difficulty in separating microparticles by shape. We demonstrate a novel shape-based separation technique by combining external magnetic fields with pressure-driven flows in a microchannel. Due to the magnetic field, prolate ellipsoidal particles migrate laterally at different speeds than the spherical ones, leading to effective separation. Our experimental investigations reveal the underlying physical mechanism of the observed shape-dependent migration. We find that the magnetic field breaks the rotational symmetry of the nonspherical particles, and induces shape-dependent lift force and migration velocity.

  12. Signal Separation of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation

    DTIC Science & Technology

    2016-10-01

    UNCLASSIFIED Signal Separation Of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation Si Tran Nguyen Nguyen 1, Sandun Kodituwakku...RR–0436 ABSTRACT A novel wavelet-based sparse signal representation technique is used to separate the main and tail rotor blade components of a... separation techniques cannot be applied. A sparse signal representation technique is now proposed for this problem with the tunable Q wavelet transform

  13. Nonconventional techniques for separation of biosynthetic amino acids.

    PubMed

    Kloetzer, Lenuţa; Poştaru, Mădălina; Cheptea, Corina; Caşcaval, D; Galaction, Anca-Irina

    2014-01-01

    Amino acids can be obtained by biosynthesis, by protein hydrolysis or by extraction from natural sources. The most efficient methods are the first two, but the separation of amino acids from fermentation broths or protein hydrolysates is rather difficult. Amino acids dissociate in aqueous solutions, forming characteristic ionic species depending on the solution pH-value. These properties make amino acids to be hydrophilic at any pH-value. This paper presents a review of the separation studies of some amino acids by nonconventional methods, namely individual or selective reactive extraction. Separation of some amino acids from their mixture obtained either by fermentation or protein hydrolysis by reactive extraction with different extractants indicated the possibility of the amino acids selective separation as a function of the pH-value of aqueous solution correlated with the acidic or basic character of each amino acid.

  14. A new technique for the separation and analysis of organomercury compounds: HPLC-PCO-CVAAS

    SciTech Connect

    Engelhart, W.G.

    1994-12-31

    While methodologies and instrumentation for mercury are well established, a simple, reliable technique for quantifying organomercury compounds has not emerged. The environmental impact of organomercurials cannot be accurately assessed without data from reliable, standardized analytical procedures. AOAC methods do exist for the analysis of methylmercury in fish tissue and are used for compliance monitoring of the FDA`s 1 ppm action level. However, these gas chromatographic based methods exhibit poor selectivity for organomercury compounds and limited sensitivity due to the small injection volumes used. Virtually all other publications in the field are feasibility studies reporting results obtained using modified, experimental instrumentation. Difficulties in interfacing the instruments required for separation with the instruments performing the quantitation function have hindered adoption of these experimental approaches as routine analytical methods. A new technique for the separation and analysis of organomercury compounds that overcomes the limitations of other techniques has recently been demonstrated. This technique termed HPLC-PCO-CVAAS combines high performance liquid chromatography with a post column oxidation step by followed by cold vapor atomic absorption spectroscopy. The underlying principles of the HPLC-PCO-CVAAS technique will be discussed and contrasted with other techniques. Analytical results obtained with methyl, phenyl and ethyl mercury species, and inorganic mercury (II) will be reported.

  15. Pervaporation membranes--a novel separation technique for trace organics

    SciTech Connect

    Zhu, C.L.; Yuang, C.W.; Fried, J.R.; Greenberg, D.B.

    1983-05-01

    A viable separation of chlorinated hydrocarbons from dilute aqueous solutions can be achieved by a process known as pervaporation. It is applicable to the removal of chlorinated organics, pesticides, herbicides, etc., from industrial and municipal water supplies. The process separates trace amounts of hydrocarbons through polymer membranes by means of a liquid-vapor mass-transfer. The method involves the selective sorption of a liquid mixture, followed by diffusion, and then desorption into a vapor phase on the downstream side of the membrane. (JMT)

  16. A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation

    NASA Astrophysics Data System (ADS)

    Li, M.; Li, W. H.; Zhang, J.; Alici, G.; Wen, W.

    2014-02-01

    The development of lab-on-a-chip (LOC) devices over the past decade has attracted growing interest. LOC devices aim to achieve the miniaturization, integration, automation and parallelization of biological and chemical assays. One of the applications, the ability to effectively and accurately manipulate and separate micro- and nano-scale particles in an aqueous solution, is particularly appealing in biological, chemical and medical fields. Among the technologies that have been developed and implemented in microfluidic microsystems for particle manipulation and separation (such as mechanical, inertial, hydrodynamic, acoustic, optical, magnetic and electrical methodologies), dielectrophoresis (DEP) may prove to be the most popular because of its label-free nature, ability to manipulate neutral bioparticles, analyse with high selectivity and sensitivity, compatibility with LOC devices, and easy and direct interface with electronics. The required spatial electric non-uniformities for the DEP effect can be generated by patterning microelectrode arrays within microchannels, or placing insulating obstacles within a microchannel and curving the microchannels. A wide variety of electrode- and insulator-based DEP microdevices have been developed, fabricated, and successfully employed to manipulate and separate bioparticles (i.e. DNA, proteins, bacteria, viruses, mammalian and yeast cells). This review provides an overview of the state-of-the-art of microfabrication techniques and of the structures of dielectrophoretic microdevices aimed towards different applications. The techniques used for particle manipulation and separation based on microfluidics are provided in this paper. In addition, we also present the theoretical background of DEP.

  17. Validation of a simple isotopic technique for the measurement of global and separated renal function

    SciTech Connect

    Chachati, A.; Meyers, A.; Rigo, P.; Godon, J.P.

    1986-01-01

    Schlegel and Gates described an isotopic method for the measurement of global and separated glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) based on the determination by scintillation camera of the fraction of the injected dose (99mTc-DTPA-(/sup 131/I)hippuran) present in the kidneys 1-3 min after its administration. This method requires counting of the injected dose and attenuation correction, but no blood or urine sampling. We validated this technique by the simultaneous infusion of inulin and para-amino hippuric acid (PAH) in patients with various levels of renal function (anuric to normal). To better define individual renal function we studied 9 kidneys in patients either nephrectomized or with a nephrostomy enabling separated function measurement. A good correlation between inulin, PAH clearance, and isotopic GFR-ERPF measurement for both global and separate renal function was observed.

  18. Separation techniques: spiral-wound permeators for purification

    SciTech Connect

    Schell, W.J.; Houston, C.D.

    1982-10-01

    Separex Corp., through its subsidiary, Spectrum Separations, Inc., initiated work on membrane gas separation in 1979. Since that time, Spectrum has developed a cellulose acetate membrane and membrane element that exhibit greater selectivity and higher permeation rates for gas separations of commerical interest than previously found. These elements, when inserted into pipes, become part of a modular system capable of processing a wide range of feed flow rates. Up to 6 elements are connected in series in a single, 22-ft (6.7-m) long pipe or tube. A rubber U-cup attached to the element serves to seal the element with the inner diameter of the pressure tube, thereby forcing the feed gas to flow through the element. The pressure tubes usually contain 6 elements each and are mounted in racks on a skid. Commercial-size elements are typically 8 in. (203 mm) in diam by 42 in. (1070 mm) long and contain from 150 to 275 sq ft (14 to 26 sq m) of membrane area.

  19. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds.

    PubMed

    Soares, Belinda; Passos, Helena; Freire, Carmen S R; Coutinho, João A P; Silvestre, Armando J D; Freire, Mara G

    2016-09-07

    Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction-separation processes using IL aqueous solutions are suggested within a green chemistry perspective.

  20. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds

    PubMed Central

    Freire, Carmen S. R.; Coutinho, João A. P.; Silvestre, Armando J. D.; Freire, Mara G.

    2016-01-01

    Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction–separation processes using IL aqueous solutions are suggested within a green chemistry perspective. PMID:27667965

  1. A millisecond micro-RNA separation technique by a hybrid structure of nanopillars and nanoslits.

    PubMed

    Wu, Qiong; Kaji, Noritada; Yasui, Takao; Rahong, Sakon; Yanagida, Takeshi; Kanai, Masaki; Nagashima, Kazuki; Tokeshi, Manabu; Kawai, Tomoji; Baba, Yoshinobu

    2017-03-08

    A millisecond micro-RNA separation of a mixture of total RNA and genomic DNA, extracted from cultured HeLa cells, was successfully achieved using a hybrid structure of nanopillars and nanoslits contained inside a microchannel. The nanopillars, 250-nm in diameter and 100-nm in height, were fabricated with a 750-nm space inside the nanoslits, which were 100-nm in height and 25-μm in width; the nanopillars were then applied as a new sieve matrix. This ultra-fast technique for the separation of miRNA can be an effective pretreatment for semiconductor nanopore DNA sequencing, which has an optimum reading speed of 1 base/ms to obtain effective signal-to-noise ratio and discriminate each base by ion or tunneling current during the passage of nucleic acids.

  2. A millisecond micro-RNA separation technique by a hybrid structure of nanopillars and nanoslits

    PubMed Central

    Wu, Qiong; Kaji, Noritada; Yasui, Takao; Rahong, Sakon; Yanagida, Takeshi; Kanai, Masaki; Nagashima, Kazuki; Tokeshi, Manabu; Kawai, Tomoji; Baba, Yoshinobu

    2017-01-01

    A millisecond micro-RNA separation of a mixture of total RNA and genomic DNA, extracted from cultured HeLa cells, was successfully achieved using a hybrid structure of nanopillars and nanoslits contained inside a microchannel. The nanopillars, 250-nm in diameter and 100-nm in height, were fabricated with a 750-nm space inside the nanoslits, which were 100-nm in height and 25-μm in width; the nanopillars were then applied as a new sieve matrix. This ultra-fast technique for the separation of miRNA can be an effective pretreatment for semiconductor nanopore DNA sequencing, which has an optimum reading speed of 1 base/ms to obtain effective signal-to-noise ratio and discriminate each base by ion or tunneling current during the passage of nucleic acids. PMID:28272420

  3. Separation techniques: membranes for natural gas sweetening and CO/sub 2/ enrichment

    SciTech Connect

    Mazur, W.H.; Chan, M.C.

    1982-10-01

    The ability of polymeric membranes to separate gases has been poor since the 19th century. Early polymeric membranes showed poor selectivity (separation); even the most permeable of gases exhibited poor productivities (fluxes). Due to the inability to perfect a process to produce uniformly good membranes in quantity, practical industrial gas separation systems were not successful. In 1960, a technical breakthrough came with the development of asymmetric membranes for reverse osmosis and their subsequent adaptation to gaseous separation. Based upon development and commercialization of membranes for water desalination by reverse osmosis, Envirogenics Systems Co. has developed gas separation membranes suitable for large-scale industrial applications. The cellulose acetate membrane is produced in flat sheet form and to retain its asymmetric character the membrane is heat-treated and dried by proprietary techniques. This produces a highly selective, dense, active layer with a thick porous support layer having high mechanical stability to withstand high feed gas pressures and high pressure differentials. The membrane is incorporated into spiral-wound elements similar to those for reverse osmosis applications. The membrane, which has been field tested for sweetening natural gas, also can be used for enhanced oil recovery and oxygen enrichment.

  4. A temporally constrained ICA (TCICA) technique for artery-vein separation of cerebral microvasculature

    NASA Astrophysics Data System (ADS)

    Mehrabian, Hatef; Lindvere, Liis; Stefanovic, Bojana; Martel, Anne L.

    2010-03-01

    A fully automatic ICA based data driven technique which incorporates additional a priori information from physiological modeling of the cerebral microcirculation (gamma variate model) is developed for the separation of arteries and veins in contrast-enhanced studies of the cerebral microvasculature. A dynamic data set of 50 images taken by a two-photon laser scanning microscopy technique that monitors the passage of a bolus of dye through artery and vein is used here. A temporally constrained ICA (TCICA) technique is developed to extract the vessel specific dynamics of artery and vein by adding two constraints to classical ICA algorithm. One of the constraints guarantees that the extracted curves follow the gamma variate model of blood passage through vessels. Positivity as the second constraint indicates that none of the extracted component images that correspond to the artery, vein or other capillaries in the imaging field of view, has negative impact on the acquired images. Experimental results show improved performance of the proposed temporally constrained ICA (TCICA) over the most commonly used classical ICA technique (fast-ICA) in generating physiologically meaningful curves; they are also closer to that of pixel by pixel model fitting algorithms and perform better in handling noise. This technique is also fully automatic and does not require specifying regions of interest which is critical in model based techniques.

  5. Recent developments in liquid-phase separation techniques for metabolomics.

    PubMed

    Ramautar, Rawi; de Jong, Gerhardus J

    2014-04-01

    Metabolomics is the comprehensive analysis of low molecular weight compounds in biological samples such as cells, body fluids and tissues. Comprehensive profiling of metabolites in complex sample matrices with the current analytical toolbox remains a huge challenge. Over the past few years, liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) have emerged as powerful complementary analytical techniques in the field of metabolomics. This Review provides an update of the most recent developments in LC-MS and CE-MS for metabolomics. Concerning LC-MS, attention is paid to developments in column technology and miniaturized systems, while strategies are discussed to improve the reproducibility and the concentration sensitivity of CE-MS for metabolomics studies. Novel interfacing techniques for coupling CE to MS are also considered. Representative examples illustrate the potential of the recent developments in LC-MS and CE-MS for metabolomics. Finally, some conclusions and perspectives are provided.

  6. Techniques of preparing plant material for chromatographic separation and analysis.

    PubMed

    Romanik, G; Gilgenast, E; Przyjazny, A; Kamiński, M

    2007-03-10

    This paper discusses preparation techniques of samples of plant material for chromatographic analysis. Individual steps of the procedures used in sample preparation, including sample collection from the environment or from tissue cultures, drying, comminution, homogenization, leaching, extraction, distillation and condensation, analyte enrichment, and obtaining the final extracts for chromatographic analysis are discussed. The techniques most often used for isolation of analytes from homogenized plant material, i.e., Soxhlet extraction, ultrasonic solvent extraction (sonication), accelerated solvent extraction, microwave-assisted extraction, supercritical-fluid extraction, steam distillation, as well as membrane processes are emphasized. Sorptive methods of sample enrichment and removal of interferences, i.e., solid-phase extraction, and solid-phase micro-extraction are also discussed.

  7. Bibliography of articles and reports on mineral-separation techniques, processes, and applications

    NASA Technical Reports Server (NTRS)

    Harmon, R. S.

    1971-01-01

    A bibliography of published articles and reports on mineral-separation techniques, processes, and applications is presented along with an author and subject index. This information is intended for use in the mineral-separation facility of the Lunar Receiving Laboratory at the NASA Manned Spacecraft Center and as an aid and reference to persons involved or interested in mineral separation.

  8. Flocculation, coagulation, and precipitation of manure affecting three separation techniques.

    PubMed

    Hjorth, Maibritt; Christensen, Morten Lykkegaard; Christensen, Peter Vittrup

    2008-12-01

    The effects of polymer flocculation before manure separation were investigated, through testing both a linear and a branched polymer. Centrifugation removed 60% of phosphorus from raw manure (control), whereas raw manure clogged the filters during gravity drainage and pressure filtration. At optimum flocculation, 95% of phosphorus was removed using any of the three methods. Optimum flocculation was achieved when 2.8meq of polymer charge was added per kg of manure, corresponding to 0.6g/kg of highly charged, branched polymer or 0.85g/kg of less-charged, linear polymer. If 10mmol of ferric chloride was added per kg of manure, 2% more phosphorus was precipitated and removed. The linear polymer formed loose flocs and was superior for reducing turbidity, whereas the branched polymer formed compact flocs that deflocculated at high polymer doses. The branched polymer, however, was best for pressure filtration, as overdosing with the linear polymer resulted in high resistance.

  9. Wavelet-based technique for target segmentation

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz A.

    1995-07-01

    Segmentation of targets embedded in clutter obtained by IR imaging sensors is one of the challenging problems in automatic target recognition (ATR). In this paper a new texture-based segmentation technique is presented that uses the statistics of 2D wavelet decomposition components of the lcoal sections of the image. A measure of statistical similarity is then used to segment the image and separate the target from the background. This technique is applied on a set of real sequential IR imagery and has shown to produce a high degree of segmentation accuracy across varying ranges.

  10. Interactions Between Antigens and Nanoemulsion Adjuvants: Separation and Characterization Techniques.

    PubMed

    Chan, Michelle Y; Fedor, Dawn M; Phan, Tony; V, Lucien Barnes; Kramer, Ryan M

    2017-01-01

    Determining the association of vaccine components in a formulation is of interest for designing and optimizing well characterized vaccines. Three methods are described to assess interactions between protein antigens and oil-in-water nanoemulsion adjuvants. The methods include (1) ultracentrifugation to measure free versus adjuvant-associated protein, (2) size exclusion chromatography (SEC) to qualitatively assess existing interactions, and (3) Native PAGE as a means to visualize the formulation run in its native state on a polyacrylamide gel. As with many techniques, the methods alone are not definitive, but data from multiple orthogonal assays can provide a more complete picture of protein-adjuvant interactions.

  11. Mode separation of Lamb waves based on dispersion compensation method.

    PubMed

    Xu, Kailiang; Ta, Dean; Moilanen, Petro; Wang, Weiqi

    2012-04-01

    Ultrasonic Lamb modes typically propagate as a combination of multiple dispersive wave packets. Frequency components of each mode distribute widely in time domain due to dispersion and it is very challenging to separate individual modes by traditional signal processing methods. In the present study, a method of dispersion compensation is proposed for the purpose of mode separation. This numerical method compensates, i.e., compresses, the individual dispersive waveforms into temporal pulses, which thereby become nearly un-overlapped in time and frequency and can thus be extracted individually by rectangular time windows. It was further illustrated that the dispersion compensation also provided a method for predicting the plate thickness. Finally, based on reversibility of the numerical compensation method, an artificial dispersion technique was used to restore the original waveform of each mode from the separated compensated pulse. Performances of the compensation separation techniques were evaluated by processing synthetic and experimental signals which consisted of multiple Lamb modes with high dispersion. Individual modes were extracted with good accordance with the original waveforms and theoretical predictions.

  12. Isolation and identification of epithelial-like cells in culture by a collagenase-separation technique.

    PubMed

    Kanoza, R J; Brunette, D M; Purdon, A D; Sodek, J

    1978-09-01

    An operational criterion for the identification and isolation of epithelial-like (E) cells, based on their ability to cover and protect a collagen gel from the action of collagenase, has been developed. The E cells isolated by this collagenase-separation technique (CST) exhibited the ultrastructural features, including desmosomes and abundant tonofilaments, that are considered characteristic of this cell type. Unlike confluent cultures of fibroblast-like (F) cells, E cells were not found to have large external transformation-sensitive (LETS) protein on their surface membranes. The CST provides a nondestructive and efficient means of identifying and isolating E cells from mixed populations.

  13. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  14. Atmospheric Pressure Surface Sampling/Ionization Techniques for Direct Coupling of Planar Separations with Mass Spectrometry

    SciTech Connect

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-01-01

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in-situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature.

  15. Characterization and separation of ash from CANMET coprocessing residue by oil phase agglomeration techniques

    SciTech Connect

    Majid, A.; Coleman, R.D.; Toll, R.; Pleizier, G.; Deslandes, Y.; Sparks, B.D.; Ikura, M.

    1993-12-31

    CANMET`s coal/heavy oil coprocessing unit yields a solid residue that contains most of the ash originally associated with the feed coal as well as reacted catalyst solids. Removal of these ash solids would make it possible to recycle the material to extinction, thereby increasing production of lighter oils. In this investigation the authors have used surface characterization techniques such as Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDXA) and X-ray Photoelectron Spectroscopy (XPS) to characterize toluene insoluble solids associated with the pitch residue, in order to evaluate the separation potential using oil phase agglomeration techniques. Washability studies using float-sink tests were also carried out to determine empirically the level of ash separation attainable. Based on the results of these studies several tests were carried out to beneficiate the organic matter in the residue pitch, by using liquid phase agglomeration techniques. Levels of ash rejection in these tests ranged from 20% to 40%. SEM and EDXA analysis of the agglomerated product and the reject material and Inductively Coupled Plasma (ICP) analysis of the ash from both materials suggest that most of the iron from added catalyst is retained in the agglomerates.

  16. Development of chromatofocusing techniques employing mixed-mode column packings for protein separations.

    PubMed

    Guo, Hui; Li, Xiang; Frey, Douglas D

    2014-01-03

    Recent studies reported in the literature using mixed-mode chromatography (MMC) column packings have shown that multiple modes of interactions between the column packing and proteins can be usefully exploited to yield excellent resolution as well as salt-tolerant adsorption of the target protein. In this study, a mixed-mode separation method using commercially available column packings was explored which combines the techniques of hydrophobic-interaction chromatography and chromatofocusing. Two different column packings, one based on mercapto-ethyl-pyridine (MEP) and the other based on hexylamine (HEA) were investigated with regard to their ability to separate proteins when using internally generated, retained pH gradients. The effects of added salt and urea on the behavior of the retained pH gradient and the protein separation achieved when using MMC column packings for chromatofocusing were also investigated. Numerical simulations using methods developed in previous work were shown to agree with experimental results when using reasonable physical parameters. These numerical simulations were also shown to be a useful qualitative method to select the compositions of the starting and elution buffers in order to achieve desired shapes for the pH and ionic strength gradients. The use of the method to fractionate blood serum was explored as a prototype example application. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Fast centrifugal partition chromatography as a preparative-scale separation technique for citrus flavones

    USDA-ARS?s Scientific Manuscript database

    Fast centrifugal partition chromatography (FCPC) is a preparative-scale separations methodology based on the principles of counter current chromatography. Separations by FCPC are typically achieved with higher recoveries and with lower solvent use compared to conventional column chromatography. HSCP...

  18. Electrical field-induced extraction and separation techniques: promising trends in analytical chemistry--a review.

    PubMed

    Yamini, Yadollah; Seidi, Shahram; Rezazadeh, Maryam

    2014-03-03

    Sample preparation is an important issue in analytical chemistry, and is often a bottleneck in chemical analysis. So, the major incentive for the recent research has been to attain faster, simpler, less expensive, and more environmentally friendly sample preparation methods. The use of auxiliary energies, such as heat, ultrasound, and microwave, is one of the strategies that have been employed in sample preparation to reach the above purposes. Application of electrical driving force is the current state-of-the-art, which presents new possibilities for simplifying and shortening the sample preparation process as well as enhancing its selectivity. The electrical driving force has scarcely been utilized in comparison with other auxiliary energies. In this review, the different roles of electrical driving force (as a powerful auxiliary energy) in various extraction techniques, including liquid-, solid-, and membrane-based methods, have been taken into consideration. Also, the references have been made available, relevant to the developments in separation techniques and Lab-on-a-Chip (LOC) systems. All aspects of electrical driving force in extraction and separation methods are too specific to be treated in this contribution. However, the main aim of this review is to provide a brief knowledge about the different fields of analytical chemistry, with an emphasis on the latest efforts put into the electrically assisted membrane-based sample preparation systems. The advantages and disadvantages of these approaches as well as the new achievements in these areas have been discussed, which might be helpful for further progress in the future.

  19. Battery Separators Based on Polyphenylquinoxaline Polymer Blends.

    DTIC Science & Technology

    1981-04-01

    concluded that PPQ/ Cellulose Acetate is a good candidate material for alkaline battery separators; however, because of cost considerations, it is not competative with similar state-of-the-art materials. (Author)

  20. Separator Reconnection at the Magnetopause for Predominantly Northward and Southward IMF: Techniques and Results

    NASA Technical Reports Server (NTRS)

    Glocer, Alex; Dorelli, J.; Toth, G.; Komar, C. M.; Cassak, P. A.

    2016-01-01

    In this work, we demonstrate how to track magnetic separators in three-dimensional simulated magnetic fields with or without magnetic nulls, apply these techniques to enhance our understanding of reconnection at the magnetopause. We present three methods for locating magnetic separators and apply them to 3-D resistive MHD simulations of the Earth's magnetosphere using the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme code. The techniques for finding separators and determining the reconnection rate are insensitive to interplanetary magnetic field (IMF) clock angle and can in principle be applied to any magnetospheric model. Moreover, the techniques have a number of advantages over prior separator finding techniques applied to the magnetosphere. The present work examines cases of high and low resistivity for two clock angles. We go beyond previous work examine the separator during Flux Transfer Events (FTEs). Our analysis of reconnection on the magnetopause yields a number of interesting conclusions: Reconnection occurs all along the separator even during predominately northward IMF cases. Multiple separators form in low-resistivity conditions, and in the region of an FTE the separator splits into distinct branches. Moreover, the local contribution to the reconnection rate, as determined by the local parallel electric field, drops in the vicinity of the FTE with respect to the value when there are none.

  1. Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques.

    PubMed

    Kilár, Anikó; Dörnyei, Ágnes; Kocsis, Béla

    2013-01-01

    The focus of this review is the application of mass spectrometry to the structural characterization of bacterial lipopolysaccharides (LPSs), also referred to as "endotoxins," because they elicit the strong immune response in infected organisms. Recently, a wide variety of MS-based applications have been implemented to the structure elucidation of LPS. Methodological improvements, as well as on- and off-line separation procedures, proved the versatility of mass spectrometry to study complex LPS mixtures. Special attention is given in the review to the tandem mass spectrometric methods and protocols for the analyses of lipid A, the endotoxic principle of LPS. We compare and evaluate the different ionization techniques (MALDI, ESI) in view of their use in intact R- and S-type LPS and lipid A studies. Methods for sample preparation of LPS prior to mass spectrometric analysis are also described. The direct identification of intrinsic heterogeneities of most intact LPS and lipid A preparations is a particular challenge, for which separation techniques (e.g., TLC, slab-PAGE, CE, GC, HPLC) combined with mass spectrometry are often necessary. A brief summary of these combined methodologies to profile LPS molecular species is provided.

  2. Comparison Between Digital and Analog Pulse Shape Discrimination Techniques For Neutron and Gamma Ray Separation

    SciTech Connect

    R. Aryaeinejad; John K. Hartwell

    2005-11-01

    Recent advancement in digital signal processing (DSP) using fast processors and computer makes it possible to be used in pulse shape discrimination applications. In this study, we have investigated the feasibility of using a DSP to distinguish between the neutrons and gamma rays by the shape of their pulses in a liquid scintillator detector (BC501), and have investigated pulse shape-based techniques to improve the resolution performance of room-temperature cadmium zinc telluride (CZT) detectors. For the neutron/gamma discrimination, the advantage of using a DSP over the analog method is that in analog system two separate charge-sensitive ADC's are required. One ADC is used to integrate the beginning of the pulse risetime while the second ADC is for integrating the tail part. Using a DSP eliminates the need for separate ADCs as one can easily get the integration of two parts of the pulse from the digital waveforms. This work describes the performance of these DSP techniques and compares the results with the analog method.

  3. Removing muscle and eye artifacts using blind source separation techniques in ictal EEG source imaging.

    PubMed

    Hallez, H; De Vos, M; Vanrumste, B; Van Hese, P; Assecondi, S; Van Laere, K; Dupont, P; Van Paesschen, W; Van Huffel, S; Lemahieu, I

    2009-07-01

    The contamination of muscle and eye artifacts during an ictal period of the EEG significantly distorts source estimation algorithms. Recent blind source separation (BSS) techniques based on canonical correlation (BSS-CCA) and independent component analysis with spatial constraints (SCICA) have shown much promise in the removal of these artifacts. In this study we want to use BSS-CCA and SCICA as a preprocessing step before the source estimation during the ictal period. Both the contaminated and cleaned ictal EEG were subjected to the RAP-MUSIC algorithm. This is a multiple dipole source estimation technique based on the separation of the EEG in signal and noise subspace. The source estimates were compared with the subtracted ictal SPECT (iSPECT) coregistered to magnetic resonance imaging (SISCOM) by means of the euclidean distance between the iSPECT activations and the dipole location estimates. SISCOM results in an image denoting the ictal onset zone with a propagation. We applied the artifact removal and the source estimation on 8 patients. Qualitatively, we can see that 5 out of 8 patients show an improvement of the dipoles. The dipoles are nearer to or have tighter clusters near the iSPECT activation. From the median of the distance measure, we could appreciate that 5 out of 8 patients show improvement. The results show that BSS-CCA and SCICA can be applied to remove artifacts, but the results should be interpreted with care. The results of the source estimation can be misleading due to excessive noise or modeling errors. Therefore, the accuracy of the source estimation can be increased by preprocessing the ictal EEG segment by BSS-CCA and SCICA. This is a pilot study where EEG source localization in the presurgical evaluation can be made more reliable, if preprocessing techniques such as BSS-CCA and SCICA are used prior to EEG source analysis on ictal episodes.

  4. Computational techniques for aerodynamic simulations of multiple objects emphasizing paratrooper-aircraft separation

    NASA Astrophysics Data System (ADS)

    Udoewa, Victor

    Our target is to develop computational techniques for studying aerodynamic interactions between multiple objects with emphasis on studying the fluid mechanics and dynamics of an object exiting and separating from an aircraft. The object could be a paratrooper jumping out of a transport aircraft or a package of emergency aid dropped from a cargo plane. These are applications with major practical significance, and what I learn and what I develop can make a major impact on this technology area. In all these cases, the computational challenge is to predict the dynamic behavior and path of the object, so that the separation process is safe and effective. This is a very complex problem because it has an unsteady, three-dimensional nature and requires the solution of complex equations that govern the fluid dynamics of the object and the aircraft together, with their relative positions changing in time. The gravitational and aerodynamic forces acting on the object determine its dynamics and path. Sometimes those aerodynamic forces are not properly computed due to excessively thick numerical boundary layers (numerical meaning unphysical and unreal). Methods for reducing this thickness are presented here. The aerodynamic forces heavily depend on the unsteady flow field around the aircraft. The computational tools I am developing are based on the simultaneous solution of the time-dependent Navier-Stokes equations governing the airflow around the aircraft and the separating object, as well as the equations governing the motion of that object. These computational methods include suitable mesh update techniques that are essential for simulations with my core computational technique---the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) formulation. In the research I present here, I focus on developing mesh update methods that help me perform my computations with more numerical accuracy and better computational efficiency. These methods range from remeshing tactics with

  5. [Evidence-based TEP technique].

    PubMed

    Köckerling, F

    2017-01-13

    The guidelines of all international hernia societies recommend as procedures of choice the laparoendoscopic techniques total extraperitoneal patch plasty (TEP) and transabdominal preperitoneal patch plasty (TAPP) as well as the open Lichtenstein operation for elective inguinal hernia repair. The learning curve associated with the laparoendoscopic techniques, in particular TEP, is longer than that for the open Lichtenstein technique due to the complexity of the procedures. Accordingly, for laparoendoscopic techniques it is particularly important that the operations are conducted in a standardized manner in compliance with the evidence-based recommendations given for the technical details. When procedures are carried out in strict compliance with the guidelines of the international hernia societies, low rates of perioperative complications, complication-related reoperations, recurrences and chronic pain can be expected for TEP. Compliance with the guidelines can also positively impact mastery of the learning curve for TEP. The technical guidelines on TEP are based on study results and on the experiences of numerous experts; therefore, it is imperative that they are implemented in routine surgical practice.

  6. Digital microfluidic magnetic separation for particle-based immunoassays.

    PubMed

    Ng, Alphonsus H C; Choi, Kihwan; Luoma, Robert P; Robinson, John M; Wheeler, Aaron R

    2012-10-16

    We introduce a new format for particle-based immunoassays relying on digital microfluidics (DMF) and magnetic forces to separate and resuspend antibody-coated paramagnetic particles. In DMF, fluids are electrostatically controlled as discrete droplets (picoliters to microliters) on an array of insulated electrodes. By applying appropriate sequences of potentials to these electrodes, multiple droplets can be manipulated simultaneously and various droplet operations can be achieved using the same device design. This flexibility makes DMF well-suited for applications that require complex, multistep protocols such as immunoassays. Here, we report the first particle-based immunoassay on DMF without the aid of oil carrier fluid to enable droplet movement (i.e., droplets are surrounded by air instead of oil). This new format allowed the realization of a novel on-chip particle separation and resuspension method capable of removing greater than 90% of unbound reagents in one step. Using this technique, we developed methods for noncompetitive and competitive immunoassays, using thyroid stimulating hormone (TSH) and 17β-estradiol (E2) as model analytes, respectively. We show that, compared to conventional methods, the new DMF approach reported here reduced reagent volumes and analysis time by 100-fold and 10-fold, respectively, while retaining a level of analytical performance required for clinical screening. Thus, we propose that the new technique has great potential for eventual use in a fast, low-waste, and inexpensive instrument for the quantitative analysis of proteins and small molecules in low sample volumes.

  7. Membrane-based technologies for biogas separations.

    PubMed

    Basu, Subhankar; Khan, Asim L; Cano-Odena, Angels; Liu, Chunqing; Vankelecom, Ivo F J

    2010-02-01

    Over the past two decades, membrane processes have gained a lot of attention for the separation of gases. They have been found to be very suitable for wide scale applications owing to their reasonable cost, good selectivity and easily engineered modules. This critical review primarily focuses on the various aspects of membrane processes related to the separation of biogas, more in specific CO(2) and H(2)S removal from CH(4) and H(2) streams. Considering the limitations of inorganic materials for membranes, the present review will only focus on work done with polymeric materials. An overview on the performance of commercial membranes and lab-made membranes highlighting the problems associated with their applications will be given first. The development studies carried out to enhance the performance of membranes for gas separation will be discussed in the subsequent section. This review has been broadly divided into three sections (i) performance of commercial polymeric membranes (ii) performance of lab-made polymeric membranes and (iii) performance of mixed matrix membranes (MMMs) for gas separations. It will include structural modifications at polymer level, polymer blending, as well as synthesis of mixed matrix membranes, for which addition of silane-coupling agents and selection of suitable fillers will receive special attention. Apart from an overview of the different membrane materials, the study will also highlight the effects of different operating conditions that eventually decide the performance and longevity of membrane applications in gas separations. The discussion will be largely restricted to the studies carried out on polyimide (PI), cellulose acetate (CA), polysulfone (PSf) and polydimethyl siloxane (PDMS) membranes, as these membrane materials have been most widely used for commercial applications. Finally, the most important strategies that would ensure new commercial applications will be discussed (156 references).

  8. New separation-free assay technique for SNPs using two-photon excitation fluorometry

    PubMed Central

    Vaarno, Jonne; Ylikoski, Emmi; Meltola, Niko J.; Soini, Juhani T.; Hänninen, Pekka; Lahesmaa, Riitta; Soini, Aleksi E.

    2004-01-01

    A new separation-free method for detection of single nucleotide polymorphisms (SNPs) is described. The method is based on the single base extension principle, fluorescently labeled dideoxy nucleotides and two-photon fluorescence excitation technology, known as ArcDia™ TPX technology. In this assay technique, template-directed single base extension is carried out for primers which have been immobilized on polymer microparticles. Depending on the sequence of the template DNA, the primers are extended either with a labeled or with a non-labeled nucleotide. The genotype of the sample is determined on the basis of two-photon excited fluorescence of individual microparticles. The effect of various assay condition parameters on the performance of the assay method is studied. The performance of the new assay method is demonstrated by genotyping the SNPs of human individuals using double-stranded PCR amplicons as samples. The results show that the new SNP assay method provides sensitivity and reliability comparable to the state-of-the-art SNaPshot™ assay method. Applicability of the new method in routine laboratory use is discussed with respect to alternative assay techniques. PMID:15263064

  9. Separation of Doppler radar-based respiratory signatures.

    PubMed

    Lee, Yee Siong; Pathirana, Pubudu N; Evans, Robin J; Steinfort, Christopher L

    2016-08-01

    Respiration detection using microwave Doppler radar has attracted significant interest primarily due to its unobtrusive form of measurement. With less preparation in comparison with attaching physical sensors on the body or wearing special clothing, Doppler radar for respiration detection and monitoring is particularly useful for long-term monitoring applications such as sleep studies (i.e. sleep apnoea, SIDS). However, motion artefacts and interference from multiple sources limit the widespread use and the scope of potential applications of this technique. Utilising the recent advances in independent component analysis (ICA) and multiple antenna configuration schemes, this work investigates the feasibility of decomposing respiratory signatures into each subject from the Doppler-based measurements. Experimental results demonstrated that FastICA is capable of separating two distinct respiratory signatures from two subjects adjacent to each other even in the presence of apnoea. In each test scenario, the separated respiratory patterns correlate closely to the reference respiration strap readings. The effectiveness of FastICA in dealing with the mixed Doppler radar respiration signals confirms its applicability in healthcare applications, especially in long-term home-based monitoring as it usually involves at least two people in the same environment (i.e. two people sleeping next to each other). Further, the use of FastICA to separate involuntary movements such as the arm swing from the respiratory signatures of a single subject was explored in a multiple antenna environment. The separated respiratory signal indeed demonstrated a high correlation with the measurements made by a respiratory strap used currently in clinical settings.

  10. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  11. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  12. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  13. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  14. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  15. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    PubMed Central

    Zhang, Jeff L; Morey, A Michael; Kadrmas, Dan J

    2016-01-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. PMID:26788888

  16. When Less Is More: The indications for MIS Techniques and Separation Surgery in Metastatic Spine Disease.

    PubMed

    Zuckerman, Scott L; Laufer, Ilya; Sahgal, Arjun; Yamada, Yoshiya J; Schmidt, Meic H; Chou, Dean; Shin, John H; Kumar, Naresh; Sciubba, Daniel M

    2016-10-15

    Systematic review. The aim of this study was to review the techniques, indications, and outcomes of minimally invasive surgery (MIS) and separation surgery with subsequent radiosurgery in the treatment of patients with metastatic spine disease. The utilization of MIS techniques in patients with spine metastases is a growing area within spinal oncology. Separation surgery represents a novel paradigm where radiosurgery provides long-term control after tumor is surgically separated from the neural elements. PubMed, Embase, and CINAHL databases were systematically queried for literature reporting MIS techniques or separation surgery in patients with metastatic spine disease. PRISMA guidelines were followed. Of the initial 983 articles found, 29 met inclusion criteria. Twenty-five articles discussed MIS techniques and were grouped according to the primary objective: percutaneous stabilization (8), tubular retractors (4), mini-open approach (8), and thoracoscopy/endoscopy (5). The remaining 4 studies reported separation surgery. Indications were similar across all studies and included patients with instability, refractory pain, or neurologic compromise. Intraoperative variables, outcomes, and complications were similar in MIS studies compared to traditional approaches, and some MIS studies showed a statistically significant improvement in outcomes. Studies of mini-open techniques had the strongest evidence for superiority. Low-quality evidence currently exists for MIS techniques and separation surgery in the treatment of metastatic spine disease. Given the early promising results, the next iteration of research should include higher-quality studies with sufficient power, and will be able to provide higher-level evidence on the outcomes of MIS approaches and separation surgery. N/A.

  17. Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution

    SciTech Connect

    Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi

    2013-07-01

    We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.

  18. Optimal separable bases and molecular collisions

    SciTech Connect

    Poirier, Lionel W.

    1997-12-01

    A new methodology is proposed for the efficient determination of Green`s functions and eigenstates for quantum systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is obtained from the set of all Hilbert space operators. It is shown that this determination itself, as well as the solution of the resultant approximation, are problems of reduced dimensionality for most systems of physical interest. Moreover, the approximate eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. These distorted waves give rise to a Born series with optimized convergence properties. Analytical results are presented for an application of the method to the two-dimensional shifted harmonic oscillator system. The primary interest however, is quantum reactive scattering in molecular systems. For numerical calculations, the use of distorted waves corresponds to numerical preconditioning. The new methodology therefore gives rise to an optimized preconditioning scheme for the efficient calculation of reactive and inelastic scattering amplitudes, especially at intermediate energies. This scheme is particularly suited to discrete variable representations (DVR`s) and iterative sparse matrix methods commonly employed in such calculations. State to state and cumulative reactive scattering results obtained via the optimized preconditioner are presented for the two-dimensional collinear H + H2 → H2 + H system. Computational time and memory requirements for this system are drastically reduced in comparison with other methods, and results are obtained for previously prohibitive energy regimes.

  19. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations.

    PubMed

    Kirby, Brian J; Hasselbrink, Ernest F

    2004-01-01

    This paper summarizes theory, experimental techniques, and the reported data pertaining to the zeta potential of silica and silicon with attention to use as microfluidic substrate materials, particularly for microchip chemical separations. Dependence on cation concentration, buffer and cation type, pH, cation valency, and temperature are discussed. The Debye-Hückel limit, which is often correctly treated as a good approximation for describing the ion concentration in the double layer, can lead to serious errors if it is extended to predict the dependence of zeta potential on the counterion concentration. For indifferent univalent electrolytes (e.g., sodium and potassium), two simple scalings for the dependence of zeta potential on counterion concentration can be derived in high- and low-zeta limits of the nonlinear Poisson-Boltzman equation solution in the double layer. It is shown that for most situations relevant to microchip separations, the high-zeta limit is most applicable, leading to the conclusion that the zeta potential on silica substrates is approximately proportional to the logarithm of the molar counterion concentration. The zeta vs. pH dependence measurements from several experiments are compared by normalizing the zeta based on concentration.

  20. Clusius-Dickel Separations (CDS): A new look at an old technique

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The history, applications, and theoretical basis of the CDS technique are reviewed. The advantage to be realized by conduction of CDSs in low-g, space environments are deduced. The results are reported of investigations aimed at further improving CDS efficiencies by altering convective flow patterns. The question of whether multicellular flow or turbulence can introduce a new separation mechanism which would boost separation efficiencies at least an order of magnitude is considered. Results are presented and discussed.

  1. The use of extrapolation concepts to augment the Frequency Separation Technique

    NASA Astrophysics Data System (ADS)

    Alexiou, Spiros

    2015-03-01

    The Frequency Separation Technique (FST) is a general method formulated to improve the speed and/or accuracy of lineshape calculations, including strong overlapping collisions, as is the case for ion dynamics. It should be most useful when combined with ultrafast methods, that, however have significant difficulties when the impact regime is approached. These difficulties are addressed by the Frequency Separation Technique, in which the impact limit is correctly recovered. The present work examines the possibility of combining the Frequency Separation Technique with the addition of extrapolation to improve results and minimize errors resulting from the neglect of fast-slow coupling and thus obtain the exact result with a minimum of extra effort. To this end the adequacy of one such ultrafast method, the Frequency Fluctuation Method (FFM) for treating the nonimpact part is examined. It is found that although the FFM is unable to reproduce the nonimpact profile correctly, its coupling with the FST correctly reproduces the total profile.

  2. Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants

    SciTech Connect

    Witczak, Steven C.; Winokur, Peter S.; Lacoe, Ronald C.; Mayer, Donald C.

    2000-06-01

    An improved charge separation technique for metal-oxide-silicon (MOS) capacitors is presented which accounts for the deactivation of substrate dopants by hydrogen at elevated irradiation temperatures or small irradiation biases. Using high-frequency capacitance-voltage measurements, radiation-induced inversion voltage shifts are separated into components due to oxide trapped charge, interface traps, and deactivated dopants, where the latter is computed from a reduction in Si capacitance. In the limit of no radiation-induced dopant deactivation, this approach reduces to the standard midgap charge separation technique used widely for the analysis of room-temperature irradiations. The technique is demonstrated on a p-type MOS capacitor irradiated with {sup 60}Co {gamma} rays at 100 degree sign C and zero bias, where the dopant deactivation is significant.(c) 2000 American Institute of Physics.

  3. Development of separation techniques for a direct contact thermal energy storage system

    SciTech Connect

    Min, T.C.; Tomlinson, J.J.

    1989-03-01

    In direct contact ice-making processes, the refrigerant will pick up water vapor through direct percolation and oil from the compressor. The purpose of this project is to investigate methods for separating water vapor and oil from a mixture to complete a refrigeration cycle. In this paper, we report critical review on two separation techniques. From a literature search, we have identified a third technique; and plan to evaluate this method by bench-scale experiments. A recommendation for future work is included.

  4. Stable isotope production in the former USSR by electromagnetic separation techniques

    NASA Astrophysics Data System (ADS)

    Kaschejev, N. A.; Polyakov, L. A.; Tunin, V. V.

    1993-09-01

    The present paper gives a brief review of the status of electromagnetic isotope separation techniques in the former USSR. It describes the basic specifications of the equipment as well as the general scheme of the production process, and considers questions relating to the chemical processing of isotopic material and analytical control techniques. Finally, a summary is given of the main separation data obtained during the last ten years, and the prospects of future development and of enhancing the economical effectiveness of isotope production are discussed.

  5. Generalized separable parameter space techniques for fitting 1K-5K serial compartment models

    PubMed Central

    Kadrmas, Dan J.; Oktay, M. Bugrahan

    2013-01-01

    Purpose: Kinetic modeling is widely used to analyze dynamic imaging data, estimating kinetic parameters that quantify functional or physiologic processes in vivo. Typical kinetic models give rise to nonlinear solution equations in multiple dimensions, presenting a complex fitting environment. This work generalizes previously described separable nonlinear least-squares techniques for fitting serial compartment models with up to three tissue compartments and five rate parameters. Methods: The approach maximally separates the linear and nonlinear aspects of the modeling equations, using a formulation modified from previous basis function methods to avoid a potential mathematical degeneracy. A fast and robust algorithm for solving the linear subproblem with full user-defined constraints is also presented. The generalized separable parameter space technique effectively reduces the dimensionality of the nonlinear fitting problem to one dimension for 2K-3K compartment models, and to two dimensions for 4K-5K models. Results: Exhaustive search fits, which guarantee identification of the true global minimum fit, required approximately 10 ms for 2K-3K and 1.1 s for 4K-5K models, respectively. The technique is also amenable to fast gradient-descent iterative fitting algorithms, where the reduced dimensionality offers improved convergence properties. The objective function for the separable parameter space nonlinear subproblem was characterized and found to be generally well-behaved with a well-defined global minimum. Separable parameter space fits with the Levenberg-Marquardt algorithm required fewer iterations than comparable fits for conventional model formulations, averaging 1 and 7 ms for 2K-3K and 4K-5K models, respectively. Sensitivity to initial conditions was likewise reduced. Conclusions: The separable parameter space techniques described herein generalize previously described techniques to encompass 1K-5K compartment models, enable robust solution of the linear

  6. Generalized separable parameter space techniques for fitting 1K-5K serial compartment models.

    PubMed

    Kadrmas, Dan J; Oktay, M Bugrahan

    2013-07-01

    Kinetic modeling is widely used to analyze dynamic imaging data, estimating kinetic parameters that quantify functional or physiologic processes in vivo. Typical kinetic models give rise to nonlinear solution equations in multiple dimensions, presenting a complex fitting environment. This work generalizes previously described separable nonlinear least-squares techniques for fitting serial compartment models with up to three tissue compartments and five rate parameters. The approach maximally separates the linear and nonlinear aspects of the modeling equations, using a formulation modified from previous basis function methods to avoid a potential mathematical degeneracy. A fast and robust algorithm for solving the linear subproblem with full user-defined constraints is also presented. The generalized separable parameter space technique effectively reduces the dimensionality of the nonlinear fitting problem to one dimension for 2K-3K compartment models, and to two dimensions for 4K-5K models. Exhaustive search fits, which guarantee identification of the true global minimum fit, required approximately 10 ms for 2K-3K and 1.1 s for 4K-5K models, respectively. The technique is also amenable to fast gradient-descent iterative fitting algorithms, where the reduced dimensionality offers improved convergence properties. The objective function for the separable parameter space nonlinear subproblem was characterized and found to be generally well-behaved with a well-defined global minimum. Separable parameter space fits with the Levenberg-Marquardt algorithm required fewer iterations than comparable fits for conventional model formulations, averaging 1 and 7 ms for 2K-3K and 4K-5K models, respectively. Sensitivity to initial conditions was likewise reduced. The separable parameter space techniques described herein generalize previously described techniques to encompass 1K-5K compartment models, enable robust solution of the linear subproblem with full user-defined constraints

  7. Novel platform for minimizing cell loss on separation process: Droplet-based magnetically activated cell separator

    NASA Astrophysics Data System (ADS)

    Kim, Youngho; Hong, Su; Lee, Sang Ho; Lee, Kangsun; Yun, Seok; Kang, Yuri; Paek, Kyeong-Kap; Ju, Byeong-Kwon; Kim, Byungkyu

    2007-07-01

    To reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACS—which consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tube—we could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry. We could find that the number (3241/59940) of cells lost in the DMACS is much less than that (22360/59940) in the MACS while the efficiency of cell separation in the DMACS (96.07%) is almost the same as that in the MACS (96.72%). Practically, with fluorescent images, it was visually confirmed that the statistical data are reliable. From the viability test by using Hoechst 33 342, it was also demonstrated that there was no cell damage on a gas-liquid interface. Conclusively, DMACS will be a powerful tool to separate rare cells and applicable as a separator, key component of lab-on-a-chip.

  8. Calibration of base flow separation methods with streamflow conductivity.

    PubMed

    Stewart, Mark; Cimino, Joseph; Ross, Mark

    2007-01-01

    The conductivity mass-balance (CMB) method can be used to calibrate analytical base flow separation methods. The principal CMB assumptions are base flow conductivity is equal to streamflow conductivity at lowest flows, runoff conductivity is equal to streamflow conductivity at highest flows, and base flow and runoff conductivities are assumed to be constants over the period of record. To test the CMB assumptions, fluid conductivities of ground water, surface runoff, and streamflow were measured during wet and dry conditions in a 12-km(2) stream basin. Ground water conductivities at wells varied an average of 6% from dry to wet conditions, while stream conductivities varied 58%. Shallow ground water conductivity varied significantly with distance from the stream, with lowest conductivities of 87 microS/cm near the divide, a maximum of 520 microS/cm 59 m from the stream, and 215 microS/cm 22 m from the stream. Runoff conductivities measured in three rain events remained nearly constant, with lower conductivities of 35 microS/cm near the divide and 50 microS/cm near the stream. The CMB method was applied to the records from 10 USGS stream-gauging stations in Texas, Kentucky, Georgia, and Florida to calibrate the USGS base flow separation technique, HYSEP, by varying the time parameter 2N*. There is a statistically significant relationship between basin areas and calibrated values of 2N*, expressed as N = 0.46A(0.44), with N in days and A in km(2). The widely accepted relationship N = 0.83A(0.2) is not valid for these basins. Other analytic methods can also be calibrated with the CMB method.

  9. [New technique for nanoparticle capillary electrophoresis/microfluidic chip and its uses in enantioselective separation].

    PubMed

    Chen, Jie; Ding, Guosheng; Yue, Chunyue; Tang, Anna

    2012-01-01

    Nanoparticles have been widely used in separation science due to their large specific surface area and good biocompatibility. Nanoparticle capillary electrophoresis (CE)/microfluidic chip (MC) technique is the hybrid of nanomaterial and the CE/MC technique. By being adsorbed or bonded onto the inner surface of the capillary, the nanoparticles can interact with the analytes as stationary phase. As a kind of separation medium, the nanoparticles can also participate in the separation process acting as a pseudostationary phase (PSP) to improve the separation efficiency and selectivity. Chirality is one of the intrinsic characters of the nature. It is important to develop the novel, fast, highly efficient and sensitive chiral separation technique in many research areas, such as stereoselective synthesis of enantiomers, pharmacology, chiral compounds purity check and environment monitoring. Herein, the recent applications of different types of nanoparticles such as polymer nanoparticles, magnetic nanoparticles, gold nanoparticles and carbon nanotubes in enantioseparation by CE/MC are reviewed, and the future developments in this area are also prospected.

  10. Comparison study of solid/liquid separation techniques for oilfield pit closures

    SciTech Connect

    Wojtanowicz, A.K.; Field, S.D.; Osterman, M.C.

    1987-07-01

    Vacuum filtration, belt-press filtration, screw-press filtration, and centrifuging techniques were evaluated in full-scale experiments for use in oilfield waste volume reduction. Centrifuging and belt-press filtration proved applicable to oilfield pit cleanups. Also, an effective chemical conditioning (coagulation and flocculation) was found for deliquoring seven types of oilfield waste slurries before separation.

  11. A Practical Introduction to Separation and Purification Techniques for the Beginning Organic Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Leonard, Jack E.

    1981-01-01

    Describes a sequence of experiments developed at Texas A&M University for use in one-semester and two-semester (nonmajors) organic chemistry courses to teach a maximum number of separation and purification techniques such as distillations, recrystallization, liquid-liquid extraction, and chromatography. (SK)

  12. A Practical Introduction to Separation and Purification Techniques for the Beginning Organic Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Leonard, Jack E.

    1981-01-01

    Describes a sequence of experiments developed at Texas A&M University for use in one-semester and two-semester (nonmajors) organic chemistry courses to teach a maximum number of separation and purification techniques such as distillations, recrystallization, liquid-liquid extraction, and chromatography. (SK)

  13. Anxiety: the importunate companion. Psychoanalytic theory of castration and separation anxieties and implications for clinical technique.

    PubMed

    Davies, Rosemary

    2012-10-01

    In this article I consider the implications of our differing psychoanalytic theories of anxiety on clinical technique. Drawing on differentiations between the focus on separation or castration anxiety and the relative neglect of the latter in contemporary writing, I look in detail at two clinical examples of psychoanalysis in borderline young adults to exemplify the issue.(1).

  14. Conceptual design of distillation-based hybrid separation processes.

    PubMed

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  15. Performance limitations of temperature-emissivity separation techniques in long-wave infrared hyperspectral imaging applications

    NASA Astrophysics Data System (ADS)

    Pieper, Michael; Manolakis, Dimitris; Truslow, Eric; Cooley, Thomas; Brueggeman, Michael; Jacobson, John; Weisner, Andrew

    2017-08-01

    Accurate estimation or retrieval of surface emissivity from long-wave infrared or thermal infrared (TIR) hyperspectral imaging data acquired by airborne or spaceborne sensors is necessary for many scientific and defense applications. This process consists of two interwoven steps: atmospheric compensation and temperature-emissivity separation (TES). The most widely used TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the atmospheric transmission function. We develop a model to explain and evaluate the performance of TES algorithms using a smoothing approach. Based on this model, we identify three sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect temperature, and the errors caused by sensor noise. For each TES smoothing technique, we analyze the bias and variability of the temperature errors, which translate to emissivity errors. The performance model explains how the errors interact to generate temperature errors. Since we assume exact knowledge of the atmosphere, the presented results provide an upper bound on the performance of TES algorithms based on the smoothness assumption.

  16. Oil-field wastewater purification by magnetic separation technique using a novel magnetic nanoparticle

    NASA Astrophysics Data System (ADS)

    Liu, Zhuonan; Yang, Huihui; Zhang, Hao; Huang, Chuanjun; Li, Laifeng

    2012-12-01

    In the present work, oil-field wastewater purification through superconducting magnetic separation technique using a novel magnetic nanoparticle was investigated. The magnetic nanoparticle, which has a multi-shell structure with ferroferric oxide as core, dense nonporous silica as inter layer and mesoporous silica as outer layer, was synthesized by co-precipitation method. To functionalize the magnetic nanoparticle, plasma polymerization technique was adopted and poly methyl acrylate (PMA) was formed on the surface of the nanoparticle. The multi-shell structure of the nanoparticle was confirmed by transmission electron microscope (TEM) and the characteristic is measurable by FTIR. It is found that most of the pollutants (85% by turbidity or 84% by COD value) in the oil-field wastewater are removed through the superconducting magnetic separation technique using this novel magnetic nanoparticle.

  17. ICA-based UHF RFID multi-tag hybrid data blind separation

    NASA Astrophysics Data System (ADS)

    Li, Hua; Wang, Hong-jun; Song, Zi-liang

    2013-03-01

    This work presents an ICA-based UHF RFID multi-tag hybrid data blind separation algorithm. After analysis, we find that UHF RFID multi-tag hybrid data is consistent with the requirements of ICA algorithm. Simulated experimental results show that excellent results can be obtained by using ICA techniques in blind separating of tags data. For evaluating the separation performance objectively, a new indicator- the Similarity of Sources and Results (SSR) is defined. The anti- noise performance of this algorithm is analyzed quantitatively too. A good theoretical and experimental basis for applying blind separation technology to UHF RFID tags anti-collision algorithm has been established in this paper.

  18. Multipoint Suture Fixation Technique for Abdominal Wall Reconstruction with Component Separation and Onlay Biological Mesh Placement.

    PubMed

    Denney, Brad; de la Torre, Jorge I

    2017-05-01

    Component separation with mesh reinforcement has become the primary modality for complex abdominal wall reconstruction. However, many fundamental questions remain unanswered, such as whether underlay versus overlay mesh placement is superior, and what is the best means of suture fixation technique for mesh placement? This study presents the senior author's technique for onlay biologic mesh placement with multipoint suture fixation in combination with component separation and its subsequent low recurrence rates. This is a retrospective review of the senior author's cases of component separation with onlay biologic mesh placement during his tenure at the home institution of the University of Alabama at Birmingham. A total of 75 patients were included, all of whom underwent complex abdominal wall reconstruction from September 2002 to April 2012. Patients were excluded from the dataset if their surgery occurred less than two years before date of data collection to give a minimum 2-year follow-up. Patients were identified by Current Procedural Terminology codes for component separation and their charts reviewed by the home institution's electronic medical record. Data point entries included patient demographics and comorbidities, concomitant procedures such as bowel resection or panniculectomy, and characteristics of the reconstruction such as type of mesh used. Primary data endpoints were complications following surgery, particularly recurrence and laxity. A total of 75 patients were included in the study from September 2002 to April 2012 with a minimum 2-year follow-up period. The recurrence rate was 13 per cent and the rate of laxity 2.7 per cent. There was one death (1.35%). The most frequent complication was seromas at a rate of 17 per cent. Multipoint fixation suture technique for abdominal wall reconstruction with component separation and onlay biologic mesh is a reproducible technique with reliably low recurrence rates.

  19. Development of Techniques for Separating Waterproof Layer from XLPE Cable Sheath by Hot Water Heating

    NASA Astrophysics Data System (ADS)

    Okazaki, Masato; Nakade, Masahiko; Okashita, Minoru; Tanimoto, Mihoko

    Waterproof layer is used to prevent penetration of water which is one of the factors of dielectric breakdown in XLPE cables more than 66kV class. A XLPE cable sheath with waterproof layer is done landfill disposal as industrial waste because separation of waterproof layer is difficult for technology and cost. However, around 20 years passes after waterproof layer was introduced, and social consciousness for environment changes during these 20 years, and responsibility of company for environment of a society grows bigger. We report the result that examined techniques for separating waterproof layer.

  20. Review of chemometric analysis techniques for comprehensive two dimensional separations data.

    PubMed

    Pierce, Karisa M; Kehimkar, Benjamin; Marney, Luke C; Hoggard, Jamin C; Synovec, Robert E

    2012-09-14

    Comprehensive two-dimensional (2D) separations, such as comprehensive 2D gas chromatography (GC×GC), liquid chromatography (LC×LC), and related instrumental techniques, provide very large and complex data sets. It is often up to the software to assist the analyst in transforming these complex data sets into useful information, and that is precisely where the field of chemometric data analysis plays a pivotal role. Chemometric tools for comprehensive 2D separations are continually being developed and applied as researchers make significant advances in novel state-of-the-art algorithms and software, and as the commercial sector continues to provide user friendly chemometric software. In this review, we build upon previous reviews of this topic, by focusing primarily on advances that have been reported in the past five years. Most of the reports focus on instrumental platforms using GC×GC with either flame ionization detection (FID) or time-of-flight mass spectrometry (TOFMS) detection, or LC×LC with diode array absorbance detection (DAD). The review covers the following general topics: data preprocessing techniques, target analyte techniques, comprehensive nontarget analysis techniques, and software for chemometrics in multidimensional separations.

  1. Development of novel separation techniques for biological samples in capillary electrophoresis

    SciTech Connect

    Chang, Huan -Tsung

    1994-07-27

    This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.

  2. Carbon dioxide capture and separation techniques for advanced power generation point sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  3. Separation of oil-water-sludge emulsions coming from palm oil mill process through microwave techniques.

    PubMed

    Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S

    2008-01-01

    The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.

  4. DNA Based Electrolyte/Separator for Lithium Battery Application (Postprint)

    DTIC Science & Technology

    2015-10-07

    electronics to hybrid and electric vehicles . Two general categories of secondary batteries are mainly explored: the first are liquid electrolyte metal-ion...AFRL-RX-WP-JA-2016-0302 DNA BASED ELECTROLYTE/SEPARATOR FOR LITHIUM BATTERY APPLICATION (POSTPRINT) Jitendra Kumar1, Fahima...BASED ELECTROLYTE/SEPARATOR FOR LITHIUM BATTERY APPLICATION (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-D-5405-0001 5b. GRANT NUMBER 5c. PROGRAM

  5. An exactly solvable Ogston model of gel electrophoresis: X. Application to high-field separation techniques.

    PubMed

    Gauthier, Michel G; Slater, Gary W

    2003-01-01

    Recently, we generalized our lattice model of gel electrophoresis to study the net velocity of particles being pulled by a high-intensity electric field through an arbitrary distribution of immobile obstacles (Gauthier, M. G., Slater, G. W., J. Chem. Phys. 2002, 117, 6745-6756). In this article, we show how the high-field version of our model can be used to compare the velocity of particles with different electric charges and/or physical sizes. We then investigate specific two-dimensional distributions of obstacles that can be used to separate particles, e.g., in a microfluidic device. More precisely, we compare the velocity of differently charged or sized analytes in sieving, trapping and deflecting systems to model various electrophoretic separation techniques. In particular, we study the nonlinear effects present in ratchet systems and how they can be combined with time-asymmetric pulsed fields to provide new modes of separation.

  6. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    NASA Technical Reports Server (NTRS)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  7. Biophysical separation of Staphylococcus epidermidis strains based on antibiotic resistance

    PubMed Central

    Jones, Paul V.; Huey, Shannon; Davis, Paige; McLemore, Ryan; McLaren, Alex

    2015-01-01

    Electrophoretic and dielectrophoretic approaches to separations can provide unique capabilities. In the past, capillary and microchip-based approaches to electrophoresis have demonstrated extremely high-resolution separations. More recently, dielectrophoretic systems have shown excellent results for the separation of bioparticles. Here we demonstrate resolution of a difficult pair of targets: gentamicin resistant and susceptible strains of Staphylococcus epidermidis. This separation has significant potential implications for healthcare. This establishes a foundation for biophysical separations as a direct diagnostic tool, potentially improving nearly every figure of merit for diagnostics and antibiotic stewardship. The separations are performed on a modified gradient insulator-based dielectrophoresis (g-iDEP) system and demonstrate that the presence of antibiotic resistance enzymes (or secondary effects) produces a sufficient degree of electrophysical difference to allow separation. The differentiating factor is the ratio of electrophoretic to dielectrophoretic mobilities. This factor is 4.6 ± 0.6 × 109 V m–2 for the resistant strain, versus 9.2 ± 0.4 × 109 V m–2 for the susceptible strain. Using g-iDEP separation, this difference produces clear and easily discerned differentiation of the two strains. PMID:26086047

  8. An enzymatic technique to facilitate air separation of the stroma-Descemet's membrane junction.

    PubMed

    Espana, Edgar M; Huang, Bo; Fratkin, Jonathan; Henegar, Jeffrey

    2011-12-09

    To describe an enzymatic technique that facilitates air separation of Descemet's membrane from the corneal stroma. Fresh human corneoscleral tissue was mounted on an artificial anterior chamber. In a control group, air was injected into the stroma. A second group received a stromal injection of 2.5 mg/mL collagenase type 2 in balanced salt solution that was left in the stroma for 1 hour and 15 minutes. A third group received an injection of 2.5 mg/mL collagenase type 2 in balanced salt solution followed 1 hour and 15 minutes later by an injection of air into the stroma. All injections were performed with a 27-gauge needle into the deep stroma without penetrating Descemet's membrane. Anterior segment optical coherence tomography (AS-OCT), histologic examination, and electron microscopy of the junction between the stroma and Descemet's membrane were performed. The trypan blue exclusion and TUNEL assays were used to study endothelial cell viability after collagenase incubation. Injection of air or collagenase into the deep corneal stroma did not result in a reproducible separation of the stroma-Descemet's junction. In contrast, the stroma was easily and reproducibly separated from Descemet's membrane with a combination of intrastromal collagenase and air injection. The separation was confirmed by using light and electron microscopy. The cleavage plane seemed to be located between the junction of the posterior stroma and the anterior banded layer of Descemet's membrane. Trypan blue staining demonstrated the viability of endothelial cells after collagenase incubation. TUNEL assay confirmed excellent viability after collagenase+air separation. This technique facilitates the separation of Descemet's membrane from the stroma without affecting endothelial cell viability.

  9. Protein separation using affinity-based reversed micelles

    PubMed

    Sun; Gu; Tong; Bai; Ichikawa; Furusaki

    1999-05-01

    Reversed micellar two-phase extraction is a developing technique for protein separation. Introduction of an affinity ligand is considered to be an effective approach to increase the selectivity and capacity of reversed micelles. In this article, Cibacron Blue F3G-A (CB) as an affinity ligand was immobilized to reversed micelles composed of soybean lecithin by a two-phase reaction. The affinity partitioning of lysozyme and bovine serum albumin (BSA) to the CB-lecithin micelles was studied. Formation of mixed micelles by additionally introducing a nonionic surfactant, Tween 85, to the CB-lecithin micelles was effective to increase the solubilization of lysozyme due to the increase of W0 (water/surfactant molar ratio)/micellar size. The partitioning isotherms of lysozyme to the CB-lecithin micelles with and without Tween 85 were expressed by the Langmuir equation. The dissociation constants in the Langmuir equation decreased on addition of Tween 85, indicating the increase of the effectiveness of lysozyme binding to the immobilized CB. On addition of 20 g/L Tween 85 to 50 g/L lecithin/hexane micellar phase containing 0.1 mmol/L CB, the extraction capacity for lysozyme could be increased by 42%. Moreover, the CB-lecithin micelles with or without Tween 85 showed significant size exclusion for BSA due to its high molecular weight. Thus, lysozyme and BSA were separated from artificial solutions containing the two proteins. In addition, the affinity-based reversed micellar phase containing Tween 85 was recycled three times for lysozyme purification from crude egg-white solutions. Lysozyme purity increased by 16-18-fold, reaching 60-70% in the recycled use.

  10. Development of a Technique for Separating Raman Scattering Signals from Background Emission with Single-Shot Measurement Potential

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Dobson, Chris; Eskridge, Richard; Wehrmeyer, Joseph A.

    1997-01-01

    A novel technique for extracting Q-branch Raman signals scattered by a diatomic species from the emission spectrum resulting from the irradiation of combustion products using a broadband excimer laser has been developed. This technique is based on the polarization characteristics of vibrational Raman scattering and can be used for both single-shot Raman extraction and time-averaged data collection. The Q-branch Raman signal has a unique set of polarization characteristics which depend on the direction of the scattering while fluorescence signals are unpolarized. For the present work, a calcite crystal is used to separate the horizonal component of a collected signal from the vertical component. The two components are then sent through a UV spectrometer and imaged onto an intensified CCD camera separately. The vertical component contains both the Raman signal and the interfering fluorescence signal. The horizontal component contains the fluorescence signal and a very weak component of the Raman signal; hence, the Raman scatter can be extracted by taking the difference between the two signals. The separation of the Raman scatter from interfering fluorescence signals is critically important to the interpretation of the Raman for cases in which a broadband ultraviolet (UV) laser is used as an excitation source in a hydrogen-oxygen flame and in all hydrocarbon flames. The present work provides a demonstration of the separation of the Raman scatter from the fluorescence background in real time.

  11. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational... Program (Montgomery GI Bill-Active Duty) Eligibility § 21.7045 Eligibility based on involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An...

  12. Blood separation on microfluidic paper-based analytical devices.

    PubMed

    Songjaroen, Temsiri; Dungchai, Wijitar; Chailapakul, Orawon; Henry, Charles S; Laiwattanapaisal, Wanida

    2012-09-21

    A microfluidic paper-based analytical device (μPAD) for the separation of blood plasma from whole blood is described. The device can separate plasma from whole blood and quantify plasma proteins in a single step. The μPAD was fabricated using the wax dipping method, and the final device was composed of a blood separation membrane combined with patterned Whatman No.1 paper. Blood separation membranes, LF1, MF1, VF1 and VF2 were tested for blood separation on the μPAD. The LF1 membrane was found to be the most suitable for blood separations when fabricating the μPAD by wax dipping. For blood separation, the blood cells (both red and white) were trapped on blood separation membrane allowing pure plasma to flow to the detection zone by capillary force. The LF1-μPAD was shown to be functional with human whole blood of 24-55% hematocrit without dilution, and effectively separated blood cells from plasma within 2 min when blood volumes of between 15-22 μL were added to the device. Microscopy was used to confirm that the device isolated plasma with high purity with no blood cells or cell hemolysis in the detection zone. The efficiency of blood separation on the μPAD was studied by plasma protein detection using the bromocresol green (BCG) colorimetric assay. The results revealed that protein detection on the μPAD was not significantly different from the conventional method (p > 0.05, pair t-test). The colorimetric measurement reproducibility on the μPAD was 2.62% (n = 10) and 5.84% (n = 30) for within-day and between day precision, respectively. Our proposed blood separation on μPAD has the potential for reducing turnaround time, sample volume, sample preparation and detection processes for clinical diagnosis and point-of care testing.

  13. Long base line interferometry: a new technique.

    PubMed

    Broten, N W; Legg, T H; Locke, J L; McLeish, C W; Richards, R S; Chisholm, R M; Gush, H P; Yen, J L; Galt, J A

    1967-06-23

    The technique of using magnetic-tape recorders and atomic frequency standards to operate two widely separated radio telescopes as a phase-coherent interferometer when the stations have no radio-frequency connecting link has been successfully tested at the National Research Council of Canada's Algonquin Radio Observatory.

  14. Battery separators based on polyphenylquinoxaline polymer blends. Final report

    SciTech Connect

    Angres, I.; Kowalchik, L.; Parkhurst, W.

    1981-04-01

    This document is a final report on battery separators based on polyphenylquinoxaline (PPQ) polymer blends. The report describes the preparation of the polymer blends and their extrusion into membranes, reports a series of quality assurance tests for the membranes, and reports cycle life testing of the new membranes. The test results for the PPQ blend membranes are compared with the results obtained for standard separator membranes. It is concluded that PPQ/Cellulose Acetate is a good candidate material for alkaline battery separators; however, because of cost considerations, it is not competative with similar state-of-the-art materials.

  15. Separations systems data base: a users' manual. Revision I

    SciTech Connect

    Roddy, J.W.; McDowell, W.J.

    1981-01-01

    A separations systems data base (SEPSYS), designed specifically for the retrieval of information needed in chemical separations problems (i.e., how to perform a given separation under given conditions), is described. Included are descriptions of the basic methods of searching and retrieving information from the data base, the procedure for entering records into the data base, a listing of additional references concerning the computer information process, and an example of a typical record. The initial entries are concerned primarily with liquid-liquid extraction and liquid-solid ion exchange methods for metal ions and salts; however, the data base is constructed so that almost any separation process can be accommodated. Each record is indexed with information provided under the following fields: author; title; publication source; date of publication; organization sponsoring the work; brief abstract of the work; abstract number if the work has been so referenced, and/or abstractors initials; type of separation system used (e.g., flotation); specific or generic name of the separation agent used (e.g., acetylacetone); list of substances separated (e.g., gold, copper); qualitative description of the supporting medium or matrix containing the substances before separation (e.g., nitrate); type of literature where the record was printed (e.g., book); and type of information that the article contains. Each of these fields may be searched independently of the others (or in combination), and the last six fields contain specific key words that are listed in the report. Definitions are provided for the 36 information terms.

  16. A Technique for Separating the Gravitational Torques of Bars and Spirals in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Buta, R.; Block, D. L.; Knapen, J. H.

    2003-09-01

    We describe a Fourier-based method of separating bars from spirals in near-infrared images. The method takes advantage of the fact that a bar is typically a feature with a relatively fixed position angle and uses the simple assumption that the relative Fourier amplitudes due to the bar decline with radius past a maximum in the same or a similar manner as they rose to that maximum. With such an assumption, the bar can be extrapolated into the spiral region and removed from an image, leaving just the spiral and the axisymmetric background disk light. We refer to such a bar-subtracted image as the ``spiral plus disk'' image. The axisymmetric background (Fourier index m=0 image) can then be added back to the bar image to give the ``bar plus disk'' image. The procedure allows us to estimate the maximum gravitational torque per unit mass per unit square of the circular speed for the bar and spiral forcing separately, parameters that quantitatively define the bar strength Qb and the spiral strength Qs following the recent study of Buta & Block. For the first time, we are able to measure the torques generated by spiral arms alone, and we can now define spiral torque classes, in the same manner as bar torque classes are delineated. We outline the complete procedure here using a 2.1 μm image of NGC 6951, a prototypical SAB(rs)bc spiral having an absolute blue magnitude of -21 and a maximum rotation velocity of 230 km s-1. Comparison between a rotation curve predicted from the m=0 near-infrared light distribution and an observed rotation curve suggests that NGC 6951 is maximum disk in its bar and main spiral region, implying that our assumption of a constant mass-to-light ratio in our analysis is probably reliable. We justify our assumption on how to make the bar extrapolation using an analysis of NGC 4394, a barred spiral with only weak near-infrared spiral structure, and we justify the number of needed Fourier terms using NGC 1530, one of the most strongly barred galaxies

  17. A Convex Geometry-Based Blind Source Separation Method for Separating Nonnegative Sources.

    PubMed

    Yang, Zuyuan; Xiang, Yong; Rong, Yue; Xie, Kan

    2015-08-01

    This paper presents a convex geometry (CG)-based method for blind separation of nonnegative sources. First, the unaccessible source matrix is normalized to be column-sum-to-one by mapping the available observation matrix. Then, its zero-samples are found by searching the facets of the convex hull spanned by the mapped observations. Considering these zero-samples, a quadratic cost function with respect to each row of the unmixing matrix, together with a linear constraint in relation to the involved variables, is proposed. Upon which, an algorithm is presented to estimate the unmixing matrix by solving a classical convex optimization problem. Unlike the traditional blind source separation (BSS) methods, the CG-based method does not require the independence assumption, nor the uncorrelation assumption. Compared with the BSS methods that are specifically designed to distinguish between nonnegative sources, the proposed method requires a weaker sparsity condition. Provided simulation results illustrate the performance of our method.

  18. Impactless, in-tube sabot separation technique useful for modest-sized supersonic ballistic ranges

    NASA Astrophysics Data System (ADS)

    Sasoh, Akihiro; Oshiba, Shin

    2006-10-01

    A simple and high performance sabot separation technique which is useful even in about 10-m-long supersonic ballistic ranges has been developed. The normal in-flight sabot separation distance is vastly reduced by adding an addition tube with no diaphragm that may cause damage to the projectile. The launch tube of the ballistic range is subdivided to the acceleration, ventilation, and sabot separation sections. In the ventilation section, both the precursor shock wave driven by the sabot when coasting through the acceleration section and the driver gas is vented out to the dump chamber. In the sabot separation section, only the sabot experiences a great dragging pressure imbalance whereas the drag to the projectile is kept negligible. Initially, the whole system except for the driver gas chamber is connected without any diaphragm; the range operation is not accompanied by any high-speed impact among the sabot, diaphragm, and other related solid parts. The experimental environment can be kept clean. The influence of the muzzle blast is eliminated within a reasonably short distance from the muzzle because it delays owing to the ventilation section. Calibration experiments and the demonstration of flow visualization and boom measurement of supersonic flight were conducted using a 25mm bore, Mach-2 ballistic range.

  19. Neuroproteomic profiling of human brain tissue using multidimensional separation techniques and selective enrichment of membrane proteins.

    PubMed

    Musunuri, Sravani; Shevchenko, Ganna; Bergquist, Jonas

    2012-12-01

    Hydrophobic membrane proteins (MPs) occupy a unique niche in the brain proteome research due to their important physiological roles. Therefore, the extraction, separation, and identification of MPs are of great interest in proteomic analysis. We applied various proteomic techniques to enrich, separate, and analyze the human brain proteome, including membrane proteome. Temperature-induced phase fractionation with the nonionic surfactant Triton X-114 was used to simultaneously extract, separate, and concentrate low abundant hydrophobic and high abundant hydrophilic proteins from human brain tissue. The extracted and delipidated proteins were analyzed by two-dimensional gel electrophoresis (2DE). Approximately 600 spots were detected in the gels. In-solution digestion was performed on 3 kDa spin filters. Tryptic peptides were separated using RP nano-LC and analyzed using two different high performance mass spectrometers, linear ion trap-Fourier transform and a linear ion trap-Orbitrap to reveal the low abundant MPs. In total, 837 and 780 unique proteins were identified by using linear ion trap-Fourier transform and linear ion trap-Orbitrap mass spectrometers, respectively. More than 29% of the identified proteins were classified as MPs with significant biological functions such as ion channels and transporters. Our study establishes a simple and rapid shotgun approach for the characterization of the brain proteome, and allows comprehensive analysis of brain membrane proteomes.

  20. Balloon-based interferometric techniques

    NASA Technical Reports Server (NTRS)

    Rees, David

    1985-01-01

    A balloon-borne triple-etalon Fabry-Perot Interferometer, observing the Doppler shifts of absorption lines caused by molecular oxygen and water vapor in the far red/near infrared spectrum of backscattered sunlight, has been used to evaluate a passive spaceborne remote sensing technique for measuring winds in the troposphere and stratosphere. There have been two successful high altitude balloon flights of the prototype UCL instrument from the National Scientific Balloon Facility at Palestine, TE (May 80, Oct. 83). The results from these flights have demonstrated that an interferometer with adequate resolution, stability and sensitivity can be built. The wind data are of comparable quality to those obtained from operational techniques (balloon and rocket sonde, cloud-top drift analysis, and from the gradient wind analysis of satellite radiance measurements). However, the interferometric data can provide a regular global grid, over a height range from 5 to 50 km in regions of clear air. Between the middle troposphere (5 km) and the upper stratosphere (40 to 50 km), an optimized instrument can make wind measurements over the daylit hemisphere with an accuracy of about 3 to 5 m/sec (2 sigma). It is possible to obtain full height profiles between altitudes of 5 and 50 km, with 4 km height resolution, and a spatial resolution of about 200 km, along the orbit track. Below an altitude of about 10 km, Fraunhofer lines of solar origin are possible targets of the Doppler wind analysis. Above an altitude of 50 km, the weakness of the backscattered solar spectrum (decreasing air density) is coupled with the low absorption crosssection of all atmospheric species in the spectral region up to 800 nm (where imaging photon detectors can be used), causing the along-the-track resolution (or error) to increase beyond values useful for operational purposes. Within the region of optimum performance (5 to 50 km), however, the technique is a valuable potential complement to existing wind

  1. Capillarity-driven blood plasma separation on paper-based devices.

    PubMed

    Kar, Shantimoy; Maiti, Tapas Kumar; Chakraborty, Suman

    2015-10-07

    We demonstrate capillarity-driven plasma separation from whole blood on simple paper-based H-channels. This methodology, unlike other reported techniques, does not necessitate elaborate and complex instrumentation, and the usage of expensive consumables. We believe that this technique will be ideally suited to be implemented in rapid and portable blood diagnostic devices designed to be operative at locations with limited resources.

  2. BASEFLOW SEPARATION BASED ON ANALYTICAL SOLUTIONS OF THE BOUSSINESQ EQUATION. (R824995)

    EPA Science Inventory

    Abstract

    A technique for baseflow separation is presented based on similarity solutions of the Boussinesq equation. The method makes use of the simplifying assumptions that a horizontal impermeable layer underlies a Dupuit aquifer which is drained by a fully penetratin...

  3. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective

  4. Recent trends in analytical methods and separation techniques for drugs of abuse in hair.

    PubMed

    Baciu, T; Borrull, F; Aguilar, C; Calull, M

    2015-01-26

    Hair analysis of drugs of abuse has been a subject of growing interest from a clinical, social and forensic perspective for years because of the broad time detection window after intake in comparison to urine and blood analysis. Over the last few years, hair analysis has gained increasing attention and recognition for the retrospective investigation of drug abuse in a wide variety of contexts, shown by the large number of applications developed. This review aims to provide an overview of the state of the art and the latest trends used in the literature from 2005 to the present in the analysis of drugs of abuse in hair, with a special focus on separation analytical techniques and their hyphenation with mass spectrometry detection. The most recently introduced sample preparation techniques are also addressed in this paper. The main strengths and weaknesses of all of these approaches are critically discussed by means of relevant applications.

  5. Spectral separation of optical spin based on antisymmetric Fano resonances

    PubMed Central

    Piao, Xianji; Yu, Sunkyu; Hong, Jiho; Park, Namkyoo

    2015-01-01

    We propose a route to the spectral separation of optical spin angular momentum based on spin-dependent Fano resonances with antisymmetric spectral profiles. By developing a spin-form coupled mode theory for chiral materials, the origin of antisymmetric Fano spectra is clarified in terms of the opposite temporal phase shift for each spin, which is the result of counter-rotating spin eigenvectors. An analytical expression of a spin-density Fano parameter is derived to enable quantitative analysis of the Fano-induced spin separation in the spectral domain. As an application, we demonstrate optical spin switching utilizing the extreme spectral sensitivity of the spin-density reversal. Our result paves a path toward the conservative spectral separation of spins without any need of the magneto-optical effect or circular dichroism, achieving excellent purity in spin density superior to conventional approaches based on circular dichroism. PMID:26561372

  6. Improved Separability Criteria Based on Bloch Representation of Density Matrices

    PubMed Central

    Shen, Shu-Qian; Yu, Juan; Li, Ming; Fei, Shao-Ming

    2016-01-01

    The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria. PMID:27350031

  7. Comparison Between Digital and Analog Pulse Shape Discrimination Techniques for Neutron and Gamma Ray Separation

    SciTech Connect

    Rahmat Aryaeinejad

    2005-10-01

    Recent advancements in digital signal processing (DSP) using fast processors and a computer allows one to envision using it in pulse shape discrimination. In this study, we have investigated the feasibility of using a DSP to distinguish between neutrons and gamma rays by the shape of their pulses in a liquid scintillator detector (BC501). For neutron/gamma discrimination, the advantage of using a DSP over the analog method is that in an analog system, two separate charge-sensitive ADCs are required. One ADC is used to integrate the beginning of the pulse rise time while the second ADC is for integrating the tail part. In DSP techniques the incoming pulses coming directly from the detector are immediately digitized and can be decomposed into individual pulses waveforms. This eliminates the need for separate ADCs as one can easily get the integration of two parts of the pulse from the digital waveforms. This work describes the performance of these DSP techniques and compares the results with the analog method.

  8. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    PubMed

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  9. Base-Catalyzed Depolymerization of Lignin: Separation of Monomers

    SciTech Connect

    Vigneault, A.; Johnson, D. K.; Chornet, E.

    2007-12-01

    In our quest for fractionating lignocellulosic biomass and valorizing specific constitutive fractions, we have developed a strategy for the separation of 12 added value monomers generated during the hydrolytic based-catalyzed depolymerization of a Steam Exploded Aspen Lignin. The separation strategy combines liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. LLE, vacuum distillation and flash LC were tested experimentally. Batch vacuum distillation produced up to 4 fractions. Process simulation confirmed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, 3 of which require further chromatography and crystallization for purification.

  10. Subspace-Based Bayesian Blind Source Separation for Hyperspectral Imagery

    DTIC Science & Technology

    2009-12-01

    Subspace-based Bayesian blind source separation for hyperspectral imagery Nicolas Dobigeon∗, Saı̈d Moussaoui †, Martial Coulon∗, Jean-Yves Tourneret... Moussaoui , J.-Y. Tourneret, and C. Carteret, “Bayesian separation of spectral sources under non-negativity and full additivity constraints,” Sig. Proc...vol. 89, no. 12, pp. 2657–2669, Dec. 2009. [3] S. Moussaoui , D. Brie, A. Mohammad-Djafari, and C. Carteret, “Sepa- ration of non-negative mixture

  11. Separating Stars and Galaxies Probabilistically Based on Color

    NASA Astrophysics Data System (ADS)

    Strait, Victoria

    2015-01-01

    Using photometric data from the Deep Lens Survey (DLS) we develop a star-galaxy separation algorithm based on objects' colors in six bands (B,V,R,z,J,K). Using a training set selected from a catalog of stars classified via their DLS shapes, we fit a third order polynomial to the filtered color-color data to approximate the stellar locus. Our algorithm produces a weighted probability of an object being a star. Based on each object's distance from the stellar locus in color-color space, we fit the resulting histogram as the sum of two Gaussians. We find that near-infrared information (J and K) provide the best separation, but explore using optical information alone to determine the classification as well. Our results demonstrate that the use of color information in a probabilistic algorithm has the potential to dramatically improve star-galaxy classification when used in conjunction with existing shape-based algorithms.​

  12. Techniques for Enhancing Web-Based Education.

    ERIC Educational Resources Information Center

    Barbieri, Kathy; Mehringer, Susan

    The Virtual Workshop is a World Wide Web-based set of modules on high performance computing developed at the Cornell Theory Center (CTC) (New York). This approach reaches a large audience, leverages staff effort, and poses challenges for developing interesting presentation techniques. This paper describes the following techniques with their…

  13. Auto white balance method using a pigmentation separation technique for human skin color

    NASA Astrophysics Data System (ADS)

    Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi

    2016-11-01

    The human visual system maintains the perception of colors of an object across various light sources. Similarly, current digital cameras feature an auto white balance function, which estimates the illuminant color and corrects the color of a photograph as if the photograph was taken under a certain light source. The main subject in a photograph is often a person's face, which could be used to estimate the illuminant color. However, such estimation is adversely affected by differences in facial colors among individuals. The present paper proposes an auto white balance algorithm based on a pigmentation separation method that separates the human skin color image into the components of melanin, hemoglobin and shading. Pigment densities have a uniform property within the same race that can be calculated from the components of melanin and hemoglobin in the face. We, thus, propose a method that uses the subject's facial color in an image and is unaffected by individual differences in facial color among Japanese people.

  14. Auto white balance method using a pigmentation separation technique for human skin color

    NASA Astrophysics Data System (ADS)

    Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi

    2017-02-01

    The human visual system maintains the perception of colors of an object across various light sources. Similarly, current digital cameras feature an auto white balance function, which estimates the illuminant color and corrects the color of a photograph as if the photograph was taken under a certain light source. The main subject in a photograph is often a person's face, which could be used to estimate the illuminant color. However, such estimation is adversely affected by differences in facial colors among individuals. The present paper proposes an auto white balance algorithm based on a pigmentation separation method that separates the human skin color image into the components of melanin, hemoglobin and shading. Pigment densities have a uniform property within the same race that can be calculated from the components of melanin and hemoglobin in the face. We, thus, propose a method that uses the subject's facial color in an image and is unaffected by individual differences in facial color among Japanese people.

  15. Ion separations based on electrical potentials nanoporous and microporous membranes

    NASA Astrophysics Data System (ADS)

    Armstrong, Jason

    This dissertation examines several types of ion separations in nanometer to micrometer pores in membranes. Membranes provide an attractive platform for ion separations, primarily because they operate continuously (i.e. not in a batch mode), and small pores offer the potential for ion separation based on charge and electrophoretic mobility differences. Initial studies employed charged, nanoporous membranes to separate monovalent and divalent ions. Adsorption of polyelectrolyte multilayers in nanoporous membranes afforded control over the surface charge and pore radii in track-etched membranes, and electrostatic ion-exclusion, particularly for divalent ions, occurred in these membranes because the electrical double layer filled the entire nanopore. Initial experiments employed adsorption of (PSS/PAH) multilayers in the 50-nm diameter pores of PCTE membranes to give a K+/Mg2+ selectivity of ~10 in pressure-driven dead-end filtration. Adsorption of (PSS/PAH) 1 films in 30-nm pores gave a similar K+/Mg2+ selectivity with a simpler modification procedure. Separations utilizing (PSS/PAH)1 films in 30-nm pores showed the lowest ion rejections with high ion concentrations, consistent with enhanced screening of the electrical double layer at high ionic strength. However, solutions with < 5 mM ionic strength exhibited essentially 100% Mg2+ rejections (the Mg2+ concentration in the permeate was below the method detection limit). Moreover, K+ rejections increased in the presence of Mg2+, which may stem from Mg2+-adsorption within the PEM and increased surface charge. Finally, separation of Br- and SO42- with a PSS1-modified, 30-nm PCTE membrane validated the exclusion mechanism for anions. The average Br-/SO42- selectivity was 3.4 +/- 0.8 for a solution containing 0.5 mM NaBr and 0.5 mM Na2SO4. The low selectivity in this case likely stems from a relatively large pore. The membranes used for the separation of monovalent and divalent ions also facilitated separation of

  16. Graphene reflux: improving the yield of liquid-exfoliated nanosheets through repeated separation techniques

    NASA Astrophysics Data System (ADS)

    Rountree, Kyler S.; Shah, Smit A.; Sweeney, Charles B.; Irin, Fahmida; Green, Micah J.

    2016-12-01

    Scalable production of graphene through liquid-phase exfoliation has been plagued by low yields. Although several recent studies have attempted to improve graphene exfoliation technology, the problem of separating colloidal nanosheets from unexfoliated parent material has received far less attention. Here we demonstrate a scalable method for improving nanosheet yield through a facile washing process. By probing the sedimentation of liquid-phase exfoliated slurries of graphene nanosheets and parent material, we found that a portion of exfoliated graphene is entrapped in the sediment, but can be recovered by repeatedly washing the slurry of nanosheet and parent material with additional solvent. We found this process to significantly increase the overall yield of graphene (graphene/parent material) and recover a roughly constant proportion of graphene with each wash. The cumulative amount of graphene recovered is only a function of total solvent volume. Moreover, we found this technique to be applicable to other types of nanosheets such as boron nitride nanosheets.

  17. Characterization of Polysulfone Membranes Prepared with Thermally Induced Phase Separation Technique

    NASA Astrophysics Data System (ADS)

    Tiron, L. G.; Pintilie, Ș C.; Vlad, M.; Birsan, I. G.; Baltă, Ș

    2017-06-01

    Abstract Membrane technology is one of the most used water treatment technology because of its high removal efficiency and cost effectiveness. Preparation techniques for polymer membranes show an important aspect of membrane properties. Generally, polysulfone (PSf) and polyethersulfone (PES) are used for the preparation of ultrafiltration (UF) membranes. Polysulfone (PSf) membranes have been widely used for separation and purification of different solutions because of their excellent chemical and thermal stability. Polymeric membranes were obtained by phase inversion method. The polymer solution introduced in the nonsolvent bath (distilled water) initiate the evaporation of the solvent from the solution, this phenomenon has a strong influence on the transport properties. The effect of the coagulation bath temperature on the membrane properties is of interest for this study. Membranes are characterized by pure water flux, permeability, porosity and retention of methylene blue. The low temperature of coagulation bath improve the membrane’s rejection and its influence was most notable.

  18. Sample preparation and separation techniques for bioanalysis of morphine and related substances.

    PubMed

    Hansen, Steen Honoré

    2009-03-01

    In present time the use or misuse of morphine and its derivatives are monitored by assaying the presence of the drug and its metabolites in biofluids. In the present review, focus is placed on the sample preparation and on the separation techniques used in the current best practices of bioanalysis of morphine and its major metabolites. However, as methods for testing the misuse of heroin, a morphine derivative, often involve bioanalytical methods that cover a number of other illicit drug substances, such methods are also included in the review. Furthermore, the review also includes bioanalysis in a broader perspective as analysis of plant materials, cell cultures and environmental samples. The review is not intended to cover all publications that include bioanalysis of morphine but is more to be considered a view into the current best practices of bioanalysis of morphine, its metabolites and other related substances.

  19. Carbonylation as a separation technique for removal of non-radioactive species for tank waste

    SciTech Connect

    Visnapuu, A.; Hollenberg, G.W.; Creed, R.F. Jr.

    1994-05-01

    Much of the waste generated from five decades of weapons production in the US Department of Energy complex contains highly radioactive constituents. With the high cost of permanent disposal space, it is necessary to separate as many of the nonradioactive species from the radioactive as possible. This paper discusses the transfer of carbonyl processing technology from mineral beneficiation and powder metallurgy operations to the separation of Fe and Ni from radioactively contaminated waste streams. Samples of simulated composite Hanford Tank Waste residue were first processed with a calcine/dissolution technique which resulted in a residue powder consisting of 31.9 pct Fe and 3.3 pct Ni. Because of the specification for waste glass compositions, these two constituents become important in determining the number of waste glass logs produced. Pyrometallurgical reduction of the residue powders, followed by subsequent carbonylation, extracted up to 92.0 pct of the Fe and 95.7 pct of the Ni. The resultant product contained as little as 4.9 pct Fe and 0.3 pct Ni. At this level, Fe would no longer be a limiting constituent in the waste glass.

  20. Application of capillary fluid management techniques to the design of a phase separating microgravity bioreactor

    NASA Technical Reports Server (NTRS)

    Finger, Barry W.; Neville, Gale E., Jr.; Sager, John C.

    1993-01-01

    Manned space missions require the development of compact, efficient, and reliable life support systems. A number of aqueous biological conversion processes are associated with bioregenerative life support systems. Vessels, or bioreactors, capable of supporting these processes in microgravity must be developed. An annular flow bioreactor has been conceived. It has the potential to incorporate containment, phase separation, gas exchange, and illumination into a single vessel. The bioreactor utilizes capillary fluid management techniques and is configured as a cylindrical tube in which a two-phase liquid-gas flow is maintained. Vanes placed around the inner perimeter enhance capillary forces and cause the liquid phase to attach and flow along the interior surface of the tube. No physical barrier is required to complete phase separation. It is shown analytically that liquid film thickness is limited only by vane geometry and that an annular flow bioreactor capable of managing 284 liters would occupy 0.7 cubic m, less than half the volume of a Spacelab experiment rack.

  1. Application of capillary fluid management techniques to the design of a phase separating microgravity bioreactor

    NASA Technical Reports Server (NTRS)

    Finger, Barry W.; Neville, Gale E., Jr.; Sager, John C.

    1993-01-01

    Manned space missions require the development of compact, efficient, and reliable life support systems. A number of aqueous biological conversion processes are associated with bioregenerative life support systems. Vessels, or bioreactors, capable of supporting these processes in microgravity must be developed. An annular flow bioreactor has been conceived. It has the potential to incorporate containment, phase separation, gas exchange, and illumination into a single vessel. The bioreactor utilizes capillary fluid management techniques and is configured as a cylindrical tube in which a two-phase liquid-gas flow is maintained. Vanes placed around the inner perimeter enhance capillary forces and cause the liquid phase to attach and flow along the interior surface of the tube. No physical barrier is required to complete phase separation. It is shown analytically that liquid film thickness is limited only by vane geometry and that an annular flow bioreactor capable of managing 284 liters would occupy 0.7 cubic m, less than half the volume of a Spacelab experiment rack.

  2. Application of capillary fluid management techniques to the design of a phase separating microgravity bioreactor

    SciTech Connect

    Finger, B.W.; Neville, G.E. Jr.; Sager, J.C.

    1993-12-31

    Manned space missions require the development of compact, efficient, and reliable life support systems. A number of aqueous biological conversion processes are associated with bioregenerative life support systems. Vessels, or bioreactors, capable of supporting these processes in microgravity must be developed. An annular flow bioreactor has been conceived. It has the potential to incorporate containment, phase separation, gas exchange, and illumination into a single vessel. The bioreactor utilizes capillary fluid management techniques and is configured as a cylindrical tube in which a two-phase liquid-gas flow is maintained. Vanes placed around the inner perimeter enhance capillary forces and cause the liquid phase to attach and flow along the interior surface of the tube. No physical barrier is required to complete phase separation. It is shown analytically that liquid film thickness is limited only by vane geometry and that an annular flow bioreactor capable of managing 284 liters would occupy 0.7 cubic m, less than half the volume of a Spacelab experiment rack.

  3. Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques.

    PubMed

    Provazi, Kellie; Campos, Beatriz Amaral; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    2011-01-01

    The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted.

  4. A hydrophobic ionic liquid compartmentalized sampling/labeling and its separation techniques in polydimethylsiloxane microchip capillary electrophoresis.

    PubMed

    Quan, Hong Hua; Li, Ming; Huang, Yan; Hahn, Jong Hoon

    2017-01-01

    This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients

    PubMed Central

    Kokkinakis, Kostas; Loizou, Philipos C.

    2008-01-01

    Bilateral cochlear implants seek to restore the advantages of binaural hearing by improving access to binaural cues. Bilateral implant users are currently fitted with two processors, one in each ear, operating independent of one another. In this work, a different approach to bilateral processing is explored based on blind source separation (BSS) by utilizing two implants driven by a single processor. Sentences corrupted by interfering speech or speech-shaped noise are presented to bilateral cochlear implant users at 0 dB signal-to-noise ratio in order to evaluate the performance of the proposed BSS method. Subjects are tested in both anechoic and reverberant settings, wherein the target and masker signals are spatially separated. Results indicate substantial improvements in performance in both anechoic and reverberant settings over the subjects’ daily strategies for both masker conditions and at various locations of the masker. It is speculated that such improvements are due to the fact that the proposed BSS algorithm capitalizes on the variations of interaural level differences and interaural time delays present in the mixtures of the signals received by the two microphones, and exploits that information to spatially separate the target from the masker signals. PMID:18397040

  6. High throughput SNP detection system based on magnetic nanoparticles separation.

    PubMed

    Liu, Bin; Jia, Yingying; Ma, Man; Li, Zhiyang; Liu, Hongna; Li, Song; Deng, Yan; Zhang, Liming; Lu, Zhuoxuan; Wang, Wei; He, Nongyue

    2013-02-01

    Single-nucleotide polymorphism (SNP) was one-base variations in DNA sequence that can often be helpful to find genes associations for hereditary disease, communicable disease and so on. We developed a high throughput SNP detection system based on magnetic nanoparticles (MNPs) separation and dual-color hybridization or single base extension. This system includes a magnetic separation unit for sample separation, three high precision robot arms for pipetting and microtiter plate transferring respectively, an accurate temperature control unit for PCR and DNA hybridization and a high accurate and sensitive optical signal detection unit for fluorescence detection. The cyclooxygenase-2 gene promoter region--65G > C polymorphism locus SNP genotyping experiment for 48 samples from the northern Jiangsu area has been done to verify that if this system can simplify manual operation of the researchers, save time and improve efficiency in SNP genotyping experiments. It can realize sample preparation, target sequence amplification, signal detection and data analysis automatically and can be used in clinical molecule diagnosis and high throughput fluorescence immunological detection and so on.

  7. Preliminary investigation of a technique to separate fission noble metals from fission product mixtures

    SciTech Connect

    Mellinger, G.B.; Jensen, G.A.

    1982-08-01

    A variation of the gold-ore fire assay technique was examined as a method for recovering Pd, Rh and Ru from fission products. The mixture of fission product oxides is combined with glass-forming chemicals, a metal oxide such as PbO (scavenging agent), and a reducing agent such as charcoal. When this mixture is melted, a metal button is formed which extracts the noble metals. The remainder cools to form a glass for nuclear waste storage. Recovery depended only on reduction of the scavenger oxide to metal. When such reduction was achieved, no difference in noble metal recovery efficiency was found among the scavengers studied (PbO, SnO, CuO, Bi/sub 2/O/sub 3/, Sb/sub 2/O/sub 3/). Not all reducing agents studied, however, were able to reduce all scavenger oxides to metal. Only graphite would reduce SnO and CuO and allow noble metal recovery. The scavenger oxides Sb/sub 2/O/sub 3/, Bi/sub 2/O/sub 3/, and PbO, however, were reduced by all of the reducing agents tested. Similar noble metal recovery was found with each. Lead oxide was found to be the most promising of the potential scavengers. It was reduced by all of the reducing agents tested, and its higher density may facilitate the separation. Use of lead oxide also appeared to have no deterimental effect on the glass quality. Charcoal was identified as the preferred reducing agent. As long as a separable metal phase was formed in the melt, noble metal recovery was not dependent on the amount of reducing agent and scavenger oxide. High glass viscosities inhibited separation of the molten scavenger, while low viscosities allowed volatile loss of RuO/sub 4/. A viscosity of approx. 20 poise at the processing temperature offered a good compromise between scavenger separation and Ru recovery. Glasses in which PbO was used as the scavenging agent were homogeneous in appearance. Resistance to leaching was close to that of certain waste glasses reported in the literature. 12 figures. 7 tables.

  8. Utility of magnetic cell separation as a molecular sperm preparation technique.

    PubMed

    Said, Tamer M; Agarwal, Ashok; Zborowski, Maciej; Grunewald, Sonja; Glander, Hans-Juergen; Paasch, Uwe

    2008-01-01

    Assisted reproductive techniques (ARTs) have become the treatment of choice in many cases of infertility; however, the current success rates of these procedures remain suboptimal. Programmed cell death (apoptosis) most likely contributes to failed ART and to the decrease in sperm quality after cryopreservation. There is a likelihood that some sperm selected for ART will display features of apoptosis despite their normal appearance, which may be partially responsible for the low fertilization and implantation rates seen with ART. One of the features of apoptosis is the externalization of phosphatidylserine (PS) residues, which are normally present on the inner leaflet of the sperm plasma membrane. Colloidal superparamagnetic microbeads ( approximately 50 nm in diameter) conjugated with annexin V bind to PS and are used to separate dead and apoptotic spermatozoa by magnetic-activated cell sorting (MACS). Cells with externalized PS will bind to these microbeads, whereas nonapoptotic cells with intact membranes do not bind and could be used during ARTs. We have conducted a series of experiments to investigate whether the MACS technology could be used to improve ART outcomes. Our results clearly indicate that integrating MACS as a part of sperm preparation techniques will improve semen quality and cryosurvival rates by eliminating apoptotic sperm. Nonapoptotic spermatozoa prepared by MACS display higher quality in terms of routine sperm parameters and apoptosis markers. The higher sperm quality is represented by an increased oocyte penetration potential and cryosurvival rates. Thus, the selection of nonapoptotic spermatozoa by MACS should be considered to enhance ART success rates.

  9. Chromatographic Studies of Protein-Based Chiral Separations.

    PubMed

    Bi, Cong; Zheng, Xiwei; Azaria, Shiden; Beeram, Sandya; Li, Zhao; Hage, David S

    2016-09-01

    The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations.

  10. Chromatographic Studies of Protein-Based Chiral Separations

    PubMed Central

    Bi, Cong; Zheng, Xiwei; Azaria, Shiden; Beeram, Sandya; Li, Zhao; Hage, David S.

    2016-01-01

    The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations. PMID:28344977

  11. Fabrication and testing of novel blood separation devices based on microchannel bend structures

    NASA Astrophysics Data System (ADS)

    Blattert, C.; Jurischka, R.; Schoth, A.; Kerth, P.; Menz, W.

    2005-02-01

    Most clinical chemistry tests are performed on cell-free serum or plasma. Therefore micro assay devices for blood tests require integrated on-chip microfluidics for separation of plasma or serum from blood. Polymers are ideally suited for these applications due to their material properties and their applicability for high volume production. These requirements are achieved by a new on-chip blood separation technique based on microchannel bend structures and a rapid processing technology for micro assay devices using injection molding or hot embossing. Different prototype polymer chips with channel dimensions down to 20 μm and aspect ratios of 4 have been fabricated by injection molding and hot embossing. The inserts for the molding tools were fabricated by an UV-LIGA technology. The separation efficiency of these chips has been tested with human blood samples. The results show different separation efficiencies up to 100 % for blood cells and plasma depending on microchannel geometry as well as cell concentration. As compared to present microfluidic devices for the separation of blood cells like filters, membranes or filtration by diffusion the microchannel bend is an integrated on-chip blood separation method. It combines the advantages of rapid separation times and a simple geometry that leads to cost-effective high volume production using injection molding.

  12. Separation of peptides on superficially porous particle based macrocyclic glycopeptide liquid chromatography stationary phases: consideration of fast separations.

    PubMed

    Wimalasinghe, Rasangi M; Breitbach, Zachary S; Lee, Jauh T; Armstrong, Daniel W

    2017-03-01

    Macrocyclic glycopeptide based liquid chromatography stationary phases are known for their highly selective peptide separations. Fast and ultrafast (t R < 1 min) high-efficiency separations were achieved with superficially porous particle (SPP)-based stationary phases. Separations of pharmaceutically important classes of peptides such as enkephalins and bradykinins have been achieved in less than 5 min in isocratic elution modes. Selectivity for peptides structurally similar to one another was increased with use of teicoplanin-based stationary phases compared with commercial C18 stationary phases. Ultrafast isocratic separations of structurally related peptides were achieved with teicoplanin- and vancomycin-based short SPP columns. Acidic mobile phases produced better separations. Ammonium formate was the optimal mobile phase buffer additive. Use of an appropriate combination of a macrocyclic glycopeptide stationary phase and a mobile phase permits faster and more electrospray ionization mass spectrometry compatible isocratic separations than previous gradient approaches. The tryptic peptide separation characteristics of the teicoplanin stationary phase are demonstrated. Additionally, compared with commercial C18 stationary phases, teicoplanin showed tryptic peptide separations with different selectivities. Graphical Abstract Ultrafast separation of enkephalin peptide epimers.

  13. High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

    SciTech Connect

    Zhong, Wenwan

    2003-01-01

    Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in this manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.

  14. Mechanical Properties Based Particle Separation via Traveling Surface Acoustic Wave.

    PubMed

    Ma, Zhichao; Collins, David J; Guo, Jinhong; Ai, Ye

    2016-12-06

    Most microfluidics-based sorting methodologies utilize size differences between suspended micro-objects as the defining characteristic by which they are sorted. Sorting based on mechanical properties, however, would provide a new avenue for sample preparation, detection and diagnosis for a number of emerging biological and medical analyses. In this study, we demonstrate separation of polystyrene (PS) and poly(methyl methacrylate) (PMMA) microspheres based entirely on their difference in mechanical properties using traveling surface acoustic waves (TSAWs). We theoretically examine the correlation of the applied TSAW frequency, particle density and sound speed with respect to the resultant acoustic radiation force (ARF) that acts to translate particles, and experimentally corroborate these predictions by translating PS and PMMA particles simultaneously in a stationary flow. Even when PS and PMMA particles have the same diameters, they exhibit strongly nonlinear and distinct acoustophoretic responses as a function of their mechanical properties and the applied TSAW frequency. By specifically matching the appropriate acoustic frequency to the desired particle size, each particle population can be selectively translated and sorted. We demonstrate that this mechanical property based sorting can continuously separate these particle populations with at least 95% efficiency in the mixed 10/15 μm diameter PS and PMMA particle solutions tested.

  15. Citrate based ``TALSPEAK`` lanthanide-actinide separation process

    SciTech Connect

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ``geological`` periods of time. The costs of building, maintaining, and operating a ``geological TRU repository`` can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ``TALSPEAK`` process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced.

  16. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.

    PubMed

    Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco

    2017-02-01

    Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Instantaneous and Frequency-Warped Signal Processing Techniques for Auditory Source Separation.

    NASA Astrophysics Data System (ADS)

    Wang, Avery Li-Chun

    which require a small fraction of the computational power of conventional FIR implementations. This design strategy is based on truncated and stabilized IIR filters. These signal-processing methods have been applied to the problem of auditory source separation, resulting in voice separation from complex music that is significantly better than previous results at far lower computational cost.

  18. Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies

    SciTech Connect

    McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

    2011-09-28

    This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

  19. Hydrate-based heavy metal separation from aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  20. Dehumidification via membrane separation for space-based applications

    NASA Technical Reports Server (NTRS)

    Gienger, Jane Kucera; Ray, Roderick J.; Chullen, Cinda

    1988-01-01

    The paper describes the development of a membrane-based dehumidification process for space-based applications, such as spacecraft cabins and EVA space suits. Results presented are from: (1) screening tests conducted to determine the efficacy of various membranes to separate water vapor from air, and (2) parametric and long-term tests of membranes operated at conditions that simulate the range of environmental conditions (e.g., temperature and relative humidity) expected in the planned Space Station. Also included in this paper is a discussion of preliminary designs of membrane-based dehumidification processes for the Space Station and EVA space suits. These designs result in compact and energy-efficient systems that offer significant advantages over conventional dehumidification processes.

  1. Dehumidification via membrane separation for space-based applications

    NASA Technical Reports Server (NTRS)

    Gienger, Jane Kucera; Ray, Roderick J.; Chullen, Cinda

    1988-01-01

    The paper describes the development of a membrane-based dehumidification process for space-based applications, such as spacecraft cabins and EVA space suits. Results presented are from: (1) screening tests conducted to determine the efficacy of various membranes to separate water vapor from air, and (2) parametric and long-term tests of membranes operated at conditions that simulate the range of environmental conditions (e.g., temperature and relative humidity) expected in the planned Space Station. Also included in this paper is a discussion of preliminary designs of membrane-based dehumidification processes for the Space Station and EVA space suits. These designs result in compact and energy-efficient systems that offer significant advantages over conventional dehumidification processes.

  2. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  3. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  4. Optical coherence tomography of Descemet membrane separation by the big bubble technique.

    PubMed

    Kaiserman, Igor; Bahar, Irit; Rootman, David S

    2007-10-01

    To image Descemet membrane separation by the big bubble technique in human corneas by using anterior segment optical coherence tomography (OCT). Five human corneoscleral rims were placed on an artificial anterior chamber and partially trephinated. A 23-gauge needle was inserted into the stroma under slit-lamp control and air was injected. The procedure was continuously imaged by anterior segment OCT. In all corneoscleral rims, a big bubble was created. The spread of air seemed to follow the interlamellar spaces without crossing lamellae. It involved mainly the inner layers of the stroma while sparing the outer 212 +/- 41 microm of the cornea (range, 168-271 microm). Intrastromal pressure build-up forced air above the Descemet membrane, creating tiny air bubbles of approximately 355 +/- 111 microm (range, 210-560 microm). When the pressure inside those bubbles reached a certain level, the bubbles spontaneously coalesced to form a big bubble. OCT is useful in imaging intracorneal air spread. The main obstacle to creating a big bubble is the impermeability to air of the imperforated posterior stromal lamellae.

  5. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry.

    PubMed

    Holtkamp, Hannah; Grabmann, Gerlinde; Hartinger, Christian G

    2016-04-01

    Electrophoretic methods have been widely applied in research on the roles of metal complexes in biological systems. In particular, CE, often hyphenated to a sensitive MS detector, has provided valuable information on the modes of action of metal-based pharmaceuticals, and more recently new methods have been added to the electrophoretic toolbox. The range of applications continues to expand as a result of enhanced CE-to-MS interfacing, with sensitivity often at picomolar level, and evolved separation modes allowing for innovative sample analysis. This article is a followup to previous reviews about CE methods in metallodrug research (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis, 2007, 28, 3436-3446; Electrophoresis, 2012, 33, 622-634), also providing a comprehensive overview of metal species studied by electrophoretic methods hyphenated to MS. It highlights the latest CE developments, takes a sneak peek into gel electrophoresis, traces biomolecule labeling, and focuses on the importance of early-stage drug development.

  6. Combination of separation methods and data mining techniques for prediction of anomalous areas in Susanvar, Central Iran

    NASA Astrophysics Data System (ADS)

    Ghannadpour, Seyyed Saeed; Hezarkhani, Ardeshir; Roodpeyma, Taraneh

    2017-10-01

    Structural method U-statistics is an eminent technique for delineating geochemical patterns; on the other hand, it is worthwhile to introduce Mahalanobis distance approach decreasing the background effects and intensifying the correlation factor of points as a powerful non-structural method. Undoubtedly, predicting the anomalous values could play an important role in the inchoate stages of exploration. Therefore, it is essential to find the most accurate approach to separate anomalous values from background and afterward use the results to anticipate each arbitrary sample. In this study, results of the combination between U-statistics & Mahalanobis distance algorithms are used to distinguish anomalous values from background on an accurate point of view. Then, three data mining methods will be applied to produce practical equations and finally determine anomalous values. Separation of geochemical anomalies, based on the combination of the U-statistics and the Mahalanobis distance approaches, would be done; then, under the influence of their results and the other parameters - x and y coordinates and Au and As grades - three data mining methods, K nearest neighbor (K-NN), decision tree, and naïve Bayes classifier, have been applied. For this purpose after separation of anomalous values according to the number of 603 samples by applying above combination, the data mining methods would be utilized to anticipate anomalous values for each unknown point. Finally, in order to judge about the designed networks, training samples would be considered as test samples under the application of the networks. Therefore according to the results, decision tree method would appear as the more powerful approach than the other due to far fewer number of wrong estimated samples and approving high accuracy of the designed network, that is, resubstitution error for this network is noted only 0.0232. Noteworthy is that the numbers of wrong estimated samples are 30 and 61 and the rates of

  7. Separation of Fission Products Based on Ionic Liquids: Anion Effect

    SciTech Connect

    Luo, Huimin; Dai, Sheng; Bonnesen, Peter V.

    2004-03-28

    The applications of ionic liquids (ILs) as new separation media have been actively investigated recently. The most commonly studied class of ILs for such applications is based on dialkyl imidazolium cations. In comparison with conventional molecular solvents, ILs exhibit enhanced distribution coefficients for a number of complexing neutral ligands in extraction of metal ions from aqueous solutions. The effect of the alkyl chain length of imidazolium cations on the distribution coefficients of solvent extraction using crown ethers was the subject of a number of the previous investigations. The distribution coefficients have been found to decrease with the alkyl chain length of the IL cations. This observation implies that the extraction process also involves the exchange of the IL cations with metal ions. The longer the alkyl chain lengths of the IL cations are, the more hydrophobic the IL cations are and the more difficult to be transported into aqueous phases via ion exchange. Accordingly, the ion-exchange process is another unique property of IL-based extractions involving charged species. Here, we report the investigation about the effect of the variation of IL anions on the solvent extraction of metal ions using crown ethers as extractants. The elucidation of different solvation effects involved in ionic liquids could lead to optimized separation media for these novel solvents.

  8. An Improved Method for Detectingand Separating Cloud from Drizzle Radar Signatures Using a Time Domain Parametric Technique

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Chandra, C. V.

    2014-12-01

    The separation of radar signatures depicting cloud and drizzle within a pulse radar volume is a fundamental problem whose solution is required to decouple the microphysical and dynamical processes introduced by turbulence. Such a solution would lead to the development of new meteorological products.In this presentation, a method to detect, separate and estimate multiple radar echoes from cloud and drizzle obtained from vertically pointing cloud Doppler spectra is described. In the case when only clouds are present, the Doppler spectrum is symmetrical and is well approximated by a Gaussian. To extract cloud echoes, a parametric maximum likelihood estimator in the time domain is employed using the recorded radar Doppler spectra data. To detect skewness in the radar spectrum, goodness of fit parameters are defined. It is shown that these new detection parameters exhibit a low level sensitivity to poor signal-to-noise ratios and large signal spectrum widths. The proposed method can consequently be applied to signals with shorter integration time; this significantly reduces the impact of small-scale dynamics present in the Doppler spectrum. Additionally, signals near the cloud top and cloud base are used as constraints to optimize the detection and estimation algorithm's performance.The applications of the technique include inference of the vertical air motion and the particle size distribution of the drizzle. The method will be tested on datasets that have been collected by the ARM cloud radars.

  9. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator.

    PubMed

    Zhang, Jianjun; Liu, Zhihong; Kong, Qingshan; Zhang, Chuanjian; Pang, Shuping; Yue, Liping; Wang, Xuejiang; Yao, Jianhua; Cui, Guanglei

    2013-01-01

    A renewable and superior thermal-resistant cellulose-based composite nonwoven was explored as lithium-ion battery separator via an electrospinning technique followed by a dip-coating process. It was demonstrated that such nanofibrous composite nonwoven possessed good electrolyte wettability, excellent heat tolerance, and high ionic conductivity. The cells using the composite separator displayed better rate capability and enhanced capacity retention, when compared to those of commercialized polypropylene separator under the same conditions. These fascinating characteristics would endow this renewable composite nonwoven a promising separator for high-power lithium-ion battery.

  10. Chitosan-based membrane chromatography for protein adsorption and separation.

    PubMed

    Liu, Yezhuo; Feng, Zhicheng; Shao, Zhengzhong; Chen, Xin

    2012-08-01

    A chitosan-based membrane chromatography was set up by using natural chitosan/carboxymethylchitosan (CS/CMCS) blend membrane as the matrix. The dynamic adsorption property for protein (lysozyme as model protein) was detailed discussed with the change in pore size of the membrane, the flow rate and the initial concentration of the feed solution, and the layer of membrane in membrane stack. The best dynamic adsorption capacity of lysozyme on the CS/CMCS membrane chromatography was found to be 15.3mg/mL under the optimal flow conditions. Moreover, the CS/CMCS membrane chromatography exhibited good repeatability and reusability with the desorption efficiency of ~90%. As an application, lysozyme and ovalbumin were successfully separated from their binary mixture through the CS/CMCS membrane chromatography. This implies that such a natural chitosan-based membrane chromatography may have great potential on the bioseparation field in the future.

  11. A technique based on droplet evaporation to recognize alcoholic drinks

    NASA Astrophysics Data System (ADS)

    González-Gutiérrez, Jorge; Pérez-Isidoro, Rosendo; Ruiz-Suárez, J. C.

    2017-07-01

    Chromatography is, at present, the most used technique to determine the purity of alcoholic drinks. This involves a careful separation of the components of the liquid elements. However, since this technique requires sophisticated instrumentation, there are alternative techniques such as conductivity measurements and UV-Vis and infrared spectrometries. We report here a method based on salt-induced crystallization patterns formed during the evaporation of alcoholic drops. We found that droplets of different samples form different structures upon drying, which we characterize by their radial density profiles. We prove that using the dried deposit of a spirit as a control sample, our method allows us to differentiate between pure and adulterated drinks. As a proof of concept, we study tequila.

  12. A technique based on droplet evaporation to recognize alcoholic drinks.

    PubMed

    González-Gutiérrez, Jorge; Pérez-Isidoro, Rosendo; Ruiz-Suárez, J C

    2017-07-01

    Chromatography is, at present, the most used technique to determine the purity of alcoholic drinks. This involves a careful separation of the components of the liquid elements. However, since this technique requires sophisticated instrumentation, there are alternative techniques such as conductivity measurements and UV-Vis and infrared spectrometries. We report here a method based on salt-induced crystallization patterns formed during the evaporation of alcoholic drops. We found that droplets of different samples form different structures upon drying, which we characterize by their radial density profiles. We prove that using the dried deposit of a spirit as a control sample, our method allows us to differentiate between pure and adulterated drinks. As a proof of concept, we study tequila.

  13. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  14. Novel nanostructured biodegradable polymer matrices fabricated by phase separation techniques for tissue regeneration.

    PubMed

    Hsu, S-H; Huang, S; Wang, Y-C; Kuo, Y-C

    2013-06-01

    Biomimetic nanostructures have a wide range of applications. In particular, biodegradable polymer nanostructures that mimic the subtleties of extracellular matrix may provide favorable cell interactions. In this study, a co-solvent system was developed to configure a thermodynamically metastable biodegradable polymer solution, from which novel nanostructured matrices subsequently formed via wet phase separation (quaternary) or a combination with thermally induced phase separation. Three-dimensional (3D) nanostructured porous matrices were further fabricated by combination with particle-leaching (100-300μm glucose). The new co-solvent system may generate matrices with reproducible nanostructures from a variety of biodegradable polymers such as poly(d,l-lactide) (PLA), poly(ε-caprolactone) (PCL) and PCL-based polyurethane. In vitro cell culture experiments were performed with mouse pre-osteoblasts (MC3T3-E1) and human bone marrow-derived mesenchymal stem cells (hBM-MSC) to evaluate the osteoinductive potential of PLA nanostructures. The results showed that nanofibrous (<100nm) membranes promoted the bone-related marker gene expression and matrix mineralization of MC3T3-E1 at 14days. Nanofibrous 3D matrices seeded with hBM-MSC without osteogenic induction supplements demonstrated a 2.5-fold increase in bone matrix deposition vs. the conventional microporous matrices after 14 and 21days. Antimicrobial nanofibers were further obtained by plasma-assisted coating of chitosan on PLA nanofibers. This study reveals a platform for fabricating novel biodegradable nanofibrous architecture, with potential in tissue regeneration.

  15. Modified components separation technique: experience treating large, complex ventral hernias at a University Hospital.

    PubMed

    Torregrosa-Gallud, A; Sancho Muriel, J; Bueno-Lledó, J; García Pastor, P; Iserte-Hernandez, J; Bonafé-Diana, S; Carreño-Sáenz, O; Carbonell-Tatay, F

    2017-08-01

    An increasing number of patients have large or complex abdominal wall defects. Component separation technique (CST) is a very effective method for reconstructing complex midline abdominal wall defects in a manner that restores innervated muscle function without excessive tension. Our goal is to show our results by a modified CST for treating large ventral hernias. A total of 351 patients with complex ventral hernias have been treated over a 10-year period. Pre- and postoperative CT scans were performed in all patients. All ventral hernias were W3, according to the EHS classification 1. We analyzed demographic variables, co-morbidities, hernia characteristics, operative, and postoperative variables. One hundred and seventy patients (48.4%) were men; the average age of the study population was 51.6 ± 23.2 years with an average BMI of 32.3 ± 1.3. The hernia was located in the midline in 321 cases (91.5%) versus the flank in 30 (8.5%). In 45 patients, preoperative botulinum toxin (BT) and progressive pneumoperitoneum (PPP) were needed due to giant hernia defects when the VIH/VAC ratio was >20%. Postoperative complications related to the surgical site were seroma (35.1%), hematoma (9.1%), infection (7.2%), and wound necrosis (8.8%). Complications related to the repair were evisceration in 3 patients (1.1%), small bowel fistula in 4 patients (1.5%), 11 cases of mesh infection (2.9%), and abdominal compartment syndrome (ACS) in 2 patients. There were 29 hernia recurrences (8.2%) with a mean follow-up of 31.6 ± 8.1 months. The modified CST is an effective strategy for managing complex ventral hernias that enables primary fascial closure with low rates of morbidity and hernia recurrence.

  16. Limitations of Adjoint-Based Optimization for Separated Flows

    NASA Astrophysics Data System (ADS)

    Otero, J. Javier; Sharma, Ati; Sandberg, Richard

    2015-11-01

    Cabin noise is generated by the transmission of turbulent pressure fluctuations through a vibrating panel and can lead to fatigue. In the present study, we model this problem by using DNS to simulate the flow separating off a backward facing step and interacting with a plate downstream of the step. An adjoint formulation of the full compressible Navier-Stokes equations with varying viscosity is used to calculate the optimal control required to minimize the fluid-structure-acoustic interaction with the plate. To achieve noise reduction, a cost function in wavenumber space is chosen to minimize the excitation of the lower structural modes of the structure. To ensure the validity of time-averaged cost functions, it is essential that the time horizon is long enough to be a representative sample of the statistical behaviour of the flow field. The results from the current study show how this scenario is not always feasible for separated flows, because the chaotic behaviour of turbulence surpasses the ability of adjoint-based methods to compute time-dependent sensitivities of the flow.

  17. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.

    PubMed

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.

  18. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation

    PubMed Central

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  19. Charge- and size-based separation of macromolecules using ultrathin silicon membranes.

    PubMed

    Striemer, Christopher C; Gaborski, Thomas R; McGrath, James L; Fauchet, Philippe M

    2007-02-15

    Commercial ultrafiltration and dialysis membranes have broad pore size distributions and are over 1,000 times thicker than the molecules they are designed to separate, leading to poor size cut-off properties, filtrate loss within the membranes, and low transport rates. Nanofabricated membranes have great potential in molecular separation applications by offering more precise structural control, yet transport is also limited by micrometre-scale thicknesses. This limitation can be addressed by a new class of ultrathin nanostructured membranes where the membrane is roughly as thick (approximately 10 nm) as the molecules being separated, but membrane fragility and complex fabrication have prevented the use of ultrathin membranes for molecular separations. Here we report the development of an ultrathin porous nanocrystalline silicon (pnc-Si) membrane using straightforward silicon fabrication techniques that provide control over average pore sizes from approximately 5 nm to 25 nm. Our pnc-Si membranes can retain proteins while permitting the transport of small molecules at rates an order of magnitude faster than existing materials, separate differently sized proteins under physiological conditions, and separate similarly sized molecules carrying different charges. Despite being only 15 nm thick, pnc-Si membranes that are free-standing over 40,000 microm2 can support a full atmosphere of differential pressure without plastic deformation or fracture. By providing efficient, low-loss macromolecule separations, pnc-Si membranes are expected to enable a variety of new devices, including membrane-based chromatography systems and both analytical and preparative microfluidic systems that require highly efficient separations.

  20. Charge- and size-based separation of macromolecules using ultrathin silicon membranes

    NASA Astrophysics Data System (ADS)

    Striemer, Christopher C.; Gaborski, Thomas R.; McGrath, James L.; Fauchet, Philippe M.

    2007-02-01

    Commercial ultrafiltration and dialysis membranes have broad pore size distributions and are over 1,000 times thicker than the molecules they are designed to separate, leading to poor size cut-off properties, filtrate loss within the membranes, and low transport rates. Nanofabricated membranes have great potential in molecular separation applications by offering more precise structural control, yet transport is also limited by micrometre-scale thicknesses. This limitation can be addressed by a new class of ultrathin nanostructured membranes where the membrane is roughly as thick (~10nm) as the molecules being separated, but membrane fragility and complex fabrication have prevented the use of ultrathin membranes for molecular separations. Here we report the development of an ultrathin porous nanocrystalline silicon (pnc-Si) membrane using straightforward silicon fabrication techniques that provide control over average pore sizes from approximately 5nm to 25nm. Our pnc-Si membranes can retain proteins while permitting the transport of small molecules at rates an order of magnitude faster than existing materials, separate differently sized proteins under physiological conditions, and separate similarly sized molecules carrying different charges. Despite being only 15nm thick, pnc-Si membranes that are free-standing over 40,000μm2 can support a full atmosphere of differential pressure without plastic deformation or fracture. By providing efficient, low-loss macromolecule separations, pnc-Si membranes are expected to enable a variety of new devices, including membrane-based chromatography systems and both analytical and preparative microfluidic systems that require highly efficient separations.

  1. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  2. Single and multipoint measurement techniques used in the study of separated flows

    NASA Astrophysics Data System (ADS)

    Stokes, Sheldon David

    1999-07-01

    root of the product of the streamwise and wall-normal stresses. This database satisfies this inequality everywhere. The above mentioned database was used to verify the results of the flying hot-wire database. Due to the addition of the new tunnel parts to accommodate the flying hot-wire mechanical elements, it was a concern that the flow may be significantly changed. Using the flying hot-wire technique, a database of two component velocity measurements were generated. This database consists of a cube of data that is 13 step-heights in the streamwise direction, 1.5 step heights in the wall-normal direction, and 2 step heights in the spanwise direction. Within this cube, 750 streamwise locations were sampled, 17 spanwise locations were sampled, and 8 wall-normal locations were sampled. Using this data base, the single point turbulent statistics were generated and compared to the LV database. The two point correlation tensors were also generated for points within this cube. The two point correlation tensor allows the use of techniques for studying the large scale coherent structures in this flow. These techniques include Proper Orthogonal Decomposition (POD) and Linear Stochastic Estimation (LSE). Using the LSE technique, an entire volume of the temporally and spatially evolving velocity field has been estimated using time series data at 8 points surrounding that volume. This time series data was collected in a second stationary hotwire experiment. Both 1D vectorial POD and 2D vectorial POD has been used to analyze the coherent structures in this flow. A complimentary technique was also used which combines the advantages of both the POD and the LSE. Using the techniques described above to analyze this flow, some clues as to how the organized structures evolve in this flow-field. It appears that there is a breakdown of the streak-lines connecting the large spanwise organized structures. This is shown in the spanwise wavenumber analysis. Using the complimentary technique

  3. Clogging-free microfluidics for continuous size-based separation of microparticles

    PubMed Central

    Yoon, Yousang; Kim, Seonil; Lee, Jusin; Choi, Jaewoong; Kim, Rae-Kwon; Lee, Su-Jae; Sul, Onejae; Lee, Seung-Beck

    2016-01-01

    In microfluidic filtration systems, one of the leading obstacles to efficient, continuous operation is clogging of the filters. Here, we introduce a lateral flow microfluidic sieving (μ-sieving) technique to overcome clogging and to allow continuous operation of filter based microfluidic separation. A low frequency mechanical oscillation was added to the fluid flow, which made possible the release of aggregated unwanted polystyrene (PS) particles trapped between the larger target PS particles in the filter demonstrating continuous μ-sieving operation. We achieved collection of the target PS particles with 100% separation efficiency. Also, on average, more than 98% of the filtered target particles were retrieved after the filtration showing high retrieval rates. Since the oscillation was applied to the fluid but not to the microfluidic filter system, mechanical stresses to the system was minimized and no additional fabrication procedures were necessary. We also applied the μ-sieving technique to the separation of cancer cells (MDA-MB-231) from whole blood and showed that the fluidic oscillations prevented the filters from being blocked by the filtered cancer cells allowing continuous microfluidic separation with high efficiency. PMID:27198601

  4. Hydrate-based heavy metal separation from aqueous solution

    PubMed Central

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-01-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01–90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b–effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b–effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater. PMID:26887357

  5. PVA-based tunable buffering membranes for isoelectric trapping separations.

    PubMed

    Fleisher-Craver, Helen C; Vigh, Gyula

    2008-11-01

    PVA-based buffering membranes with tunable pH values were prepared on a PVA substrate by reacting PVA, glycerol-1,3-diglycidyl ether, -NH2 group-containing buffers and -NH2 group-containing titrants in the presence of sodium hydroxide. The pH of the buffering membranes could be tuned in the 3separate proteins having a DeltapI as small as 0.1. The membranes were mechanically and hydrolytically stable and could be stored, even in 10

  6. Expanded separation technique for chlorophyll metabolites in Oriental tobacco leaf using non aqueous reversed phase chromatography.

    PubMed

    Ishida, Naoyuki

    2011-08-26

    An improved separation method for chlorophyll metabolites in Oriental tobacco leaf was developed. While Oriental leaf still gives the green color even after the curing process, little attention has been paid to the detailed composition of the remaining green pigments. This study aimed to identify the green pigments using non aqueous reversed phase chromatography (NARPC). To this end, liquid chromatograph (LC) equipped with a photo diode array detector (DAD) and an atmospheric pressure chemical ionization/mass spectrometer (APCI/MSD) was selected, because it is useful for detecting low polar non-volatile compounds giving green color such as pheophytin a. Identification was based on the wavelength spectrum, mass spectrum and retention time, comparing the analytes in Oriental leaf with the commercially available and synthesized components. Consequently, several chlorophyll metabolites such as hydroxypheophytin a, solanesyl pheophorbide a and solanesyl hydroxypheophorbide a were newly identified, in addition to typical green pigments such as chlorophyll a and pheophytin a. Chlorophyll metabolites bound to solanesol were considered the tobacco specific components. NARPC expanded the number of detectable low polar chlorophyll metabolites in Oriental tobacco leaf.

  7. Novel technique to separate systematic and random defects during 65nm and 45nm process development

    NASA Astrophysics Data System (ADS)

    Yeh, J. H.; Park, Allen

    2007-03-01

    Defect inspections performed in R&D may often result in 100k to 1M defect counts on a single wafer. Such defect data combine systematic and random defects that may be yield limiting or just nuisance defects. It is difficult to identify systematic defects from defect wafer map by traditional defect classification where random sample of 50 to 100 defects are reviewed on review SEM. Missing important systematic defect types by traditional sampling technique can be very costly in device introduction. Being able to efficiently sample defects for SEM review is not only challenging, but can result in a Pareto that lacks in usefulness for R& D and for yield improvement. To mitigate the issue and to reduce yield improvement cycle in advanced technology, a novel method has been proposed. Instead of using random sampling method, we have applied a pattern search engine to correlate defect of interest (DOI) to its pattern background. Based on the approach we have identified an important defect type, STI cave defect, to be the major defect type on defect Pareto. For the defect type, stack die map was generated that indicated a distinctive signature. The result was compared against design layout to confirm that the defects were occurring at certain locations of design layout. Afterwards the defect types were reviewed using SEM and in-line FIB for further confirmation. We have found the cause of this void defect type to be poor gap-fill in deposition step. Based on the novel technique, we were able to filter out a systematic defect type quickly and efficiently from wafer map that consist of random and systematic defects.

  8. Multiview video codec based on KTA techniques

    NASA Astrophysics Data System (ADS)

    Seo, Jungdong; Kim, Donghyun; Ryu, Seungchul; Sohn, Kwanghoon

    2011-03-01

    Multi-view video coding (MVC) is a video coding standard developed by MPEG and VCEG for multi-view video. It showed average PSNR gain of 1.5dB compared with view-independent coding by H.264/AVC. However, because resolutions of multi-view video are getting higher for more realistic 3D effect, high performance video codec is needed. MVC adopted hierarchical B-picture structure and inter-view prediction as core techniques. The hierarchical B-picture structure removes the temporal redundancy, and the inter-view prediction reduces the inter-view redundancy by compensated prediction from the reconstructed neighboring views. Nevertheless, MVC has inherent limitation in coding efficiency, because it is based on H.264/AVC. To overcome the limit, an enhanced video codec for multi-view video based on Key Technology Area (KTA) is proposed. KTA is a high efficiency video codec by Video Coding Expert Group (VCEG), and it was carried out for coding efficiency beyond H.264/AVC. The KTA software showed better coding gain than H.264/AVC by using additional coding techniques. The techniques and the inter-view prediction are implemented into the proposed codec, which showed high coding gain compared with the view-independent coding result by KTA. The results presents that the inter-view prediction can achieve higher efficiency in a multi-view video codec based on a high performance video codec such as HEVC.

  9. Introducing the concept of centergram. A new tool to squeeze data from separation techniques-mass spectrometry couplings.

    PubMed

    Erny, Guillaume L; Simó, Carolina; Cifuentes, Alejandro; Esteves, Valdemar I

    2014-02-21

    In separation techniques hyphenated to mass spectrometry (MS) the bulk from the separation step is continuously flowing into the mass spectrometer where the compounds, arriving at each separation time, are ionized and further separated based on their m/z ratio. An MS detector is recognized as being a universal detector, although it can also be a very selective instrument. In spite of these advantages, classical two dimensional representations from these hyphenated systems, such as those based on the base peak of electropherogram/chromatogram or on the total ion of electropherogram/chromatogram, usually hide a large number of features that if correctly assessed will show the presence of co-migrating species and/or the low abundant ones. The uses of peak picking algorithms to detect and measure as many peaks as possible from a dataset allow extracting much more information. However, a single migrating compound usually produces a multiplicity of ions, making difficult to differentiate peaks generated by the same compound from other peaks due e.g., to closely co-migrating/eluting species. In this work, a new representation is proposed and its usefulness demonstrated with experimental data from capillary electrophoresis-hyphenated to a time of flight mass spectrometer via an electrospray interface. This representation, called centergram, is obtained after using a peak picking methodology that detects electrophoretic peaks of single ions and measure their positions. The centergram is the histogram (i.e. the count of the number of observations that fall into each one of the intervals, known as bins, as determined by the user) of the measured positions. The intensity of the bars in this histogram will indicate the amount of peaks in the whole dataset whose centers are within each interval. As a compound that has been separated and has entered the MS instrument will produce multiple images at the same position along the m/z dimension, the centergram will exhibit a series of

  10. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  11. Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; Samperi, Roberto; Laganà, Aldo

    2011-12-09

    Mass spectrometry used in combination with a wide variety of separation methods is the principal methodology for proteomics. In bottom-up approach, proteins are cleaved with a specific proteolytic enzyme, followed by peptide separation and MS identification. In top-down approach intact proteins are introduced into the mass spectrometer. The ions generated by electrospray ionization are then subjected to gas-phase separation, fragmentation, fragment separation, and automated interpretation of mass spectrometric and chromatographic data yielding both the molecular weight of the intact protein and the protein fragmentation pattern. This approach requires high accuracy mass measurement analysers capable of separating the multi-charged isotopic cluster of proteins, such as hybrid ion trap-Fourier transform instruments (LTQ-FTICR, LTQ-Orbitrap). Front-end separation technologies tailored for proteins are of primary importance to implement top-down proteomics. This review intends to provide the state of art of protein chromatographic and electrophoretic separation methods suitable for MS coupling, and to illustrate both monodimensional and multidimensional approaches used for LC-MS top-down proteomics. In addition, some recent progresses in protein chromatography that may provide an alternative to those currently employed are also discussed.

  12. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics

    PubMed Central

    Sarkar, Aniruddh; Hou, Han Wei; Mahan, Alison. E.; Han, Jongyoon; Alter, Galit

    2016-01-01

    Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary ‘bind-elute’ separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets–cells or proteins–bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients. PMID:27026280

  13. Initial stage of the phase separation, observed with fluorescent excitation transfer technique

    NASA Astrophysics Data System (ADS)

    Goun, Alexei; Fayer, Michael

    2010-03-01

    The use of the fluorescent resonant excitation transfer (FRET) to study the phase transition kinetics is demonstrated. The laser temperature jump is applied to the water/2,6-lutidine mixture and causes the demixing of the mixture components. Coumarin 480 and hydroxypyrene laser dyes form excitation transfer pair once they are in the uniform phase of the mixture. Due to the differential solubility of these dyes in the componens of the mixture, the excitation transfer ceases once the phase separation occurs. The increase of the donor fluorescence indicates the extent of the phase separation. The spatial resolution of the method is determined by the Forster distance of the excitation transfer pair, and in this case is equal to 3 nm. The phase separation is completed within 1 microsecond. The rising edge of the fluorescence is consistent with polynomial growth of the phase separated domains, and not with Cahn-Hilliard fixed length instability.

  14. Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques.

    PubMed

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki

    2014-05-07

    Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process.

  15. Proteomic analysis of estrogen response of premalignant human breast cells using a 2-D liquid separation/mass mapping technique.

    PubMed

    Zhao, Jia; Zhu, Kan; Lubman, David M; Miller, Fred R; Shekhar, Malthy P V; Gerard, Brigitte; Barder, Timothy J

    2006-07-01

    A 2-D liquid-phase separation method based on chromatofocusing and nonporous silica RP-HPLC followed by ESI-TOF-MS was used to analyze proteins in whole cell lysates from estrogen-treated and untreated premalignant, estrogen-responsive cell line MCF10AT1 cells. 2-D mass maps in the pH range 4.6-6.0 were generated with good correlation to theoretical M(r) values for intact proteins. Proteins were identified based on intact M(r), pI and PMF, or MS/MS sequencing. About 300 unique proteins were identified and 120 proteins in mass range 5-75 kDa were quantified upon treatment of estrogen. Around 40 proteins were found to be more highly expressed (>four-fold) and 17 were down-regulated (>four-fold) in treated cells. In our study, we found that many altered proteins have characteristics consistent with the development of a malignant phenotype. Some of them have a role in the ras pathway or play an important role in signal pathways. These changed proteins might be essential in the estrogen regulation mechanism. Our study highlights the use of the MCF10AT1 cell line to examine estrogen-induced changes in premalignant breast cells and the ability of the 2-D mass mapping technique to quantitatively study protein expression changes on a proteomic scale.

  16. Stage Separation Failure: Model Based Diagnostics and Prognostics

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry; Hafiychuk, Vasyl; Kulikov, Igor; Smelyanskiy, Vadim; Patterson-Hine, Ann; Hanson, John; Hill, Ashley

    2010-01-01

    Safety of the next-generation space flight vehicles requires development of an in-flight Failure Detection and Prognostic (FD&P) system. Development of such system is challenging task that involves analysis of many hard hitting engineering problems across the board. In this paper we report progress in the development of FD&P for the re-contact fault between upper stage nozzle and the inter-stage caused by the first stage and upper stage separation failure. A high-fidelity models and analytical estimations are applied to analyze the following sequence of events: (i) structural dynamics of the nozzle extension during the impact; (ii) structural stability of the deformed nozzle in the presence of the pressure and temperature loads induced by the hot gas flow during engine start up; and (iii) the fault induced thrust changes in the steady burning regime. The diagnostic is based on the measurements of the impact torque. The prognostic is based on the analysis of the correlation between the actuator signal and fault-induced changes in the nozzle structural stability and thrust.

  17. Microchip separations-based sensors for cellular analysis

    NASA Astrophysics Data System (ADS)

    Manica, Drew Prentice

    The objective of this thesis has been to introduce and develop novel methods for microchip separations for bioanalytical applications. A novel detection scheme is introduced, involving simultaneous dual amperometric and fluorescence detection on a microchip. Dual detection is shown to increase selectivity and throughput, resolve co-migrating species that may be selectively detected, and provide a convenient means to normalize for the irreproducibility of migration times often encountered in CE applications. Such normalization is expected to facilitate the use of microchip CE to monitor biological samples, which are inclined to exacerbate the irreproducibility of migration times. The use of electrochemical detection presents a unique and fundamental challenge. An effective method for reproducibly regenerating a clean surface is demonstrated. The method is optimized and utilized to achieve high sensitivity even for highly adsorptive compounds, such as those released from mast cells. The development of an in-situ electrode-cleaning protocol is an essential step toward reliably monitoring cellular release on a microchip CEEC device. Two novel techniques are presented which are capable of producing disposable microanalytical systems on glass. Electrodes and channels produced with these methods exhibit performance characteristics that are comparable to examples in current literature. These techniques demonstrate the feasibility of manufacturing a disposable glass lab-on-a-chip, which may be used for cellular analysis or as a point-of-use sensor. Increased interest in analyzing biological samples has led to the development of a wide range of derivatizing agents for biological compounds such as amino acids and peptides. A common tag that is both fluorescent and electroactive is naphthalene-2,3-dicarboxaldehyde (NDA). While there has been much discussion regarding the stability of a similar compound, o-phthalaldehyde, there has been no discussion regarding the stability of

  18. Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis

    SciTech Connect

    Swafford, A.M.; Keller, J.M.

    1993-03-17

    Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences is necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.

  19. GC-Based Techniques for Breath Analysis: Current Status, Challenges, and Prospects.

    PubMed

    Xu, Mingjun; Tang, Zhentao; Duan, Yixiang; Liu, Yong

    2016-07-03

    Breath analysis is a noninvasive diagnostic method that profiles a person's physical state by volatile organic compounds in the breath. It has huge potential in the field of disease diagnosis. In order to offer opportunities for practical applications, various GC-based techniques have been investigated for on-line breath analysis since GC is the most preferred technique for mixed gas separation. This article reviews the development of breath analysis and GC-based techniques in basic breath research, involving sampling methods, preconcentration methods, conventional GC-based techniques, and newly developed GC techniques for breath analysis. The combination of GC and newly developed detection techniques takes advantages of the virtues of each. In addition, portable GC or micro GC are poised to become field GC-based techniques in breath analysis. Challenges faced in GC-based techniques for breath analysis are discussed candidly. Effective cooperation of experts from different fields is urgent to promote the development of breath analysis.

  20. An osmolyte-based micro-volume ultrafiltration technique.

    PubMed

    Ghosh, Raja

    2014-12-07

    This paper discusses a novel, simple, and inexpensive micro-volume ultrafiltration technique for protein concentration, desalting, buffer exchange, and size-based protein purification. The technique is suitable for processing protein samples in a high-throughput mode. It utilizes a combination of capillary action, and osmosis for drawing water and other permeable species from a micro-volume sample droplet applied on the surface of an ultrafiltration membrane. A macromolecule coated on the permeate side of the membrane functions as the osmolyte. The action of the osmolyte could, if required, be augmented by adding a supersorbent polymer layer over the osmolyte. The mildly hydrophobic surface of the polymeric ultrafiltration membrane used in this study minimized sample droplet spreading, thus making it easy to recover the retained material after separation, without sample interference and cross-contamination. High protein recoveries were observed in the micro-volume ultrafiltration experiments described in the paper.

  1. New MPLS network management techniques based on adaptive learning.

    PubMed

    Anjali, Tricha; Scoglio, Caterina; de Oliveira, Jaudelice Cavalcante

    2005-09-01

    The combined use of the differentiated services (DiffServ) and multiprotocol label switching (MPLS) technologies is envisioned to provide guaranteed quality of service (QoS) for multimedia traffic in IP networks, while effectively using network resources. These networks need to be managed adaptively to cope with the changing network conditions and provide satisfactory QoS. An efficient strategy is to map the traffic from different DiffServ classes of service on separate label switched paths (LSPs), which leads to distinct layers of MPLS networks corresponding to each DiffServ class. In this paper, three aspects of the management of such a layered MPLS network are discussed. In particular, an optimal technique for the setup of LSPs, capacity allocation of the LSPs and LSP routing are presented. The presented techniques are based on measurement of the network state to adapt the network configuration to changing traffic conditions.

  2. Separation of single-base sequential isomers of single-stranded DNA by capillary electrophoresis and its application in the discrimination of single-base DNA mutations.

    PubMed

    Sakurai, Takao; Hoshino, Hitoshi; Takahashi, Toru

    2017-08-01

    Separation of single-base substitution sequential DNA isomers remains one of the most challenging tasks in DNA separation by capillary electrophoresis. We developed a simple, versatile capillary electrophoresis technique for the separation of single-base sequential isomers of DNA having the same chain length. This technique is based on charge differences resulting from the different protonation (acid dissociation) properties of the four DNA bases. A mixture of 13 single-base sequential isomers of 12-mer single-stranded DNA was separated by using an electrophoretic buffer solution containing 20 mM phosphoric acid (pH 2.0) and 8 M urea. We demonstrated that our method could separate all possible mutation patterns under identical experimental conditions. In addition, application of our method to the separation of the polymerase chain reaction product of a 68-mer gene fragment and its single-base isomers indicates that in combination with the appropriate genomic DNA extraction techniques, the method can detect single-base gene mutations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Components separation technique is feasible for assisting delayed primary fascial closure of open abdomen.

    PubMed

    Rasilainen, S K; Mentula, P J; Leppäniemi, A K

    2016-03-01

    The goal after open abdomen treatment is to reach primary fascial closure. Modern negative pressure wound therapy systems are sometimes inefficient for this purpose. This retrospective chart analysis describes the use of the 'components separation' method in facilitating primary fascial closure after open abdomen. A total of 16 consecutive critically ill surgical patients treated with components separation during open abdomen management were analyzed. No patients were excluded. Primary fascial closure was achieved in 75% (12/16). Components separation was performed during ongoing open abdomen treatment in 7 patients and at the time of delayed primary fascial closure in 9 patients. Of the former, 3/7 (43%) patients reached primary fascial closure, whereas all 9 patients in the latter group had successful fascial closure without major complications (p = 0.019). Components separation is a useful method in contributing to successful primary fascial closure in patients treated for open abdomen. Best results were obtained when components separation was performed simultaneously with primary fascial closure at the end of the open abdomen treatment. © The Finnish Surgical Society 2015.

  4. A Comprehensive Review on Separation Methods and Techniques for Single-Walled Carbon Nanotubes

    PubMed Central

    Komatsu, Naoki; Wang, Feng

    2010-01-01

    Structural control of single-walled carbon nanotubes (SWNTs) is attracting enormous interest in view of their applications to nanoelectronics and nanooptics. Actually, more than 200 papers regarding separation of SWNTs have been published since 1998. In this review, they are classified into the following five sections according to the separation methods; electrophoresis, centrifugation, chromatography, selective solubilization and selective reaction. In each method, all literature is summarized in tables showing the separated objects (metallic/semiconducting (M/S), length, diameter, (n, m) structure and/or handedness), the production process of the used SWNTs (CoMoCAT, HiPco, arc discharge and/or laser vaporization) and the employed chemicals, such as detergents and polymers. Changes in annual number of publications related to this subject are also discussed. PMID:28883313

  5. Electromagnetic Separation of Isotopes at Oak Ridge: An informal account of history, techniques, and accomplishments.

    PubMed

    Love, L O

    1973-10-26

    In 1960 I attended a European conference on isotope separation, after which I visited the Niels Bohr Institute in Copenhagen. A staff member there ventured the opinion that the separation of isotopes will be first on the list of important contributions to the peaceful uses of the atom when the Atomic Energy Commission's memoirs are written in the year 2000. In 1968 the AEC Division of Research contracted with the National Research Council of the National Academy of Sciences to conduct a review of the AEC program for the separation of stable isotopes by electromagnetic and thermal diffusion methods. This ad hoc panel comprised seven scientists from the fields of chemistry, classical physics, geochemistry, geophysics, medicine, and physics. In their final report on national uses and needs for separated stable isotopes (9), they referred to the store of separated isotopes as a "real national asset that attains increasing value as science and technology develop" and recommended "continuation of the program as a national resource of great value to the United States." Later, in a discussion of this report with A. M. Weinberg, J. Koch, himself a pioneer in electromagnetic isotope separation and member of the Danish Atomic Energy Program, said he would correct the statement that the Oak Ridge electromagnetic facility is a "national asset" to read "international asset." From my narrow viewpoint after an extended and complete engrossment with this program for so many years, it is gratifying to learn that such men as those mentioned above share my belief that the work has indeed been worthwhile.

  6. Biomagnetic separation of Salmonella Typhimurium with high affine and specific ligand peptides isolated by phage display technique

    NASA Astrophysics Data System (ADS)

    Steingroewer, Juliane; Bley, Thomas; Bergemann, Christian; Boschke, Elke

    2007-04-01

    Analyses of food-borne pathogens are of great importance in order to minimize the health risk for customers. Thus, very sensitive and rapid detection methods are required. Current conventional culture techniques are very time consuming. Modern immunoassays and biochemical analysis also require pre-enrichment steps resulting in a turnaround time of at least 24 h. Biomagnetic separation (BMS) is a promising more rapid method. In this study we describe the isolation of high affine and specific peptides from a phage-peptide library, which combined with BMS allows the detection of Salmonella spp. with a similar sensitivity as that of immunomagnetic separation using antibodies.

  7. Separation of phytochemicals from Helichrysum italicum: An analysis of different isolation techniques and biological activity of prepared extracts.

    PubMed

    Maksimovic, Svetolik; Tadic, Vanja; Skala, Dejan; Zizovic, Irena

    2017-06-01

    Helichrysum italicum presents a valuable source of natural bioactive compounds. In this work, a literature review of terpenes, phenolic compounds, and other less common phytochemicals from H. italicum with regard to application of different separation methods is presented. Data including extraction/separation methods and experimental conditions applied, obtained yields, number of identified compounds, content of different compound groups, and analytical techniques applied are shown as corresponding tables. Numerous biological activities of both isolates and individual compounds are emphasized. In addition, the data reported are discussed, and the directions for further investigations are proposed.

  8. Proteomic changes in bovine heart mitochondria with age: using a novel technique for organelle separation and enrichment.

    PubMed

    Kiri, Ajay N; Tran, Hung-Cuong; Drahos, Kate L; Lan, Wenkui; McRorie, Donald K; Horn, Marcus J

    2005-12-01

    Separation and enrichment of organelles from complex biological mixtures are important for proteomic analysis. Two widely used current standard techniques to isolate individual organelles include differential and density-gradient centrifugation. Although these techniques have proven useful for processing small volumes of sample, multiple rounds of centrifugation are required when performing a large-scale purification. In this report, we have introduced a novel technique: continuous-flow ultracentrifugation using a sucrose gradient to separate, accumulate, and highly enrich bovine heart mitochondria in one step. To demonstrate the advantage of the technique, mitochondrial proteins from two different bovine hearts (3-8 mo and 18-30 mo old) were examined. For each age group, 100 g of bovine heart tissue were homogenized by a blending procedure. After removal of the nuclei, the entire remaining homogenate was loaded onto a proteomics continuous-flow ultracentrifuge to separate and enrich the organelles. Fractions were collected and mitochondria-enriched fractions were identified by Western blot analysis. To study the protein profile changes with aging in the mitochondrial proteome, the mitochondria-enriched fractions were applied to two-dimensional gel electrophoresis. The resulting two-dimensional PAGE gels were subsequently analyzed by image analysis software to identify proteins unique to each age group and proteins with at least twofold differences in protein expression. These proteins were then digested with trypsin and identified by mass spectrometer. Significant differences in the protein profiles of the two differently aged mitochondria preparations were found. The continuous-flow ultracentrifugation technique was demonstrated to be a powerful tool for separation and enrichment of organelles and their sub-types.

  9. Artificial Intelligence based technique for BTS placement

    NASA Astrophysics Data System (ADS)

    Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.

    2013-12-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.

  10. Experimental Studies of Surface-Driven Capillary Flow in PMMA Microfluidic Devices Prepared by Direct Bonding Technique and Passive Separation of Microparticles in Microfluidic Laboratory-On Systems

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Subhadeep; Banerjee, J. P.; Mathur, Ashish; Tweedie, M.; McLaughlin, J. A.; Roy, Susanta Sinha

    2015-05-01

    Proper bonding technique is investigated to achieve leakage-free surface-driven capillary flow in polymethylmethacrylate (PMMA) microfluidic devices. SU-8-based silicon stamp is fabricated by maskless lithography. This stamp is used to produce PMMA microchannel structure by hot embossing lithography. A direct bonding technique is mainly employed for leakage-free sealing inside PMMA microfluidic devices. The effect of surface wettability on surface-driven capillary flow is also investigated in PMMA microfluidic devices. The separation of polystyrene microparticles in PMMA laboratory-on-a-chip systems is investigated with the reduction of separation time by air dielectric barrier discharge (DBD) plasma processing of channel surfaces. This study is useful to fabricate the microfluidic laboratory-on-a-chip systems and to understand the surface-driven capillary flow.

  11. Separations techniques for recovery and/or removal of toxic metals from spent textile dyebaths

    SciTech Connect

    Babocsi, E.E.; Hallen, R.T.

    1994-02-01

    The Textile Resource Conservation Project (TReC) is a major initiative of the American Textile Partnership (AMTEX) focusing on energy and the environment. The largest proposed project in the TReC is Raw Material Recovery and Reuse. The main task within the Raw Material Recovery and Reuse Project is Textile Chemical Recovery. The initial focus of this task is the separation/removal of colorants from solution. Screening studies were performed at a number of US Department of Energy National Laboratories to identify promising technologies for the treatment and recovery of dyes containing toxic metals. These dyes were chosen because of the environmental concern associated with their disposal. The research group at Pacific Northwest Laboratory (PNL) took two approaches to the removal and recovery of the toxic metals in the dyes. One approach was to react or destroy the organic fraction of the dye, releasing the metals for conventional separation such as ion exchange. PNL evaluated the Rapid Thermal Decomposition of precursors in Solution (RTDS) and Corona Discharge processes for metal release. The other approach was to separate and concentrate the dye, metal-complex intact, from the bulk of the spent solution. Membrane separation was evaluated for recovery of the dyes with the metals left intact. The RTDS process was found to be effective for destroying color and releasing or precipitating metals for recovery. Corona Discharge was effective at selectively destroying color, but the metals were not sufficiently released to allow recovery with a chelating resin. Ultrafiltration membranes were effective for separating and recovering the metal-containing dye as a potentially reusable concentrated stream.

  12. A TRUEX-based separation of americium from the lanthanides

    SciTech Connect

    Bruce J. Mincher; Nicholas C. Schmitt; Mary E. Case

    2011-03-01

    Abstract: The inextractability of the actinide AnO2+ ions in the TRUEX process suggests the possibility of a separation of americium from the lanthanides using oxidation to Am(V). The only current method for the direct oxidation of americium to Am(V) in strongly acidic media is with sodium bismuthate. We prepared Am(V) over a wide range of nitric acid concentrations and investigated its solvent extraction behavior for comparison to europium. While a separation is achievable in principal, the presence of macro amounts of cerium competes for the sparingly soluble oxidant and the oxidant itself competes for CMPO complexation. These factors conspire to reduce the Eu/Am separation factor from ~40 using tracer solutions to ~5 for extractions from first cycle raffinate simulant solution. To separate pentavalent americium directly from the lanthanides using the TRUEX process, an alternative oxidizing agent will be necessary.

  13. Fundamentals and Theory of HPTLC-Based Separation

    NASA Astrophysics Data System (ADS)

    Variyar, Prasad S.; Chatterjee, Suchandra; Sharma, Arun

    High-performance thin-layer chromatography (HPTLC) is a form of thin-layer chromatography (TLC) that provides superior separation power using optimized coating material, novel procedures for mobile-phase feeding, layer conditioning, and improved sample application. It promotes for higher separation efficiencies, shorter analysis time, lower amounts of mobile phase, and efficient data acquisition and processing. The major parameters that influence separation of the constituents within a mixture are the partition coefficients, retention factor (R f ), and capacity factor of the individual constituents on the plate, selectivity of the mobile and stationary phase to the solutes, and the plate height that decide the separation efficiency as well as resolution of the individual constituents within a mixture. The partition coefficient is defined as the molar concentration of the analyte in the stationary phase to that in the mobile phase. R f , a fundamental qualitative value, is expressed as the ratio of migration distances of an individual components of a mix relative to the mobile phase. Capacity factor (k) is a fundamental characteristic of a substance that determines its qualitative chromatographic behavior. It can be expressed as the ratio of the retention time of the substance in the stationary to that in the mobile phase and is influenced by the chemical nature of the two phases. The separation number (SN) that influences separation power of HPLC is defined as the highest possible number of components that are completely separated in a mixture under a gradient-free isocratic TLC. The efficacy of separation of two components of a mixture in a chromatogram is termed as resolution and is influenced by the selectivity of the components between the stationary and the mobile phase, mobile phase flow rate influenced by particle size and solvent strength that influence capacity factors.

  14. Deterministic Migration-Based Separation of White Blood Cells.

    PubMed

    Kim, Byeongyeon; Choi, Young Joon; Seo, Hyekyung; Shin, Eui-Cheol; Choi, Sungyoung

    2016-10-01

    Functional and phenotypic analyses of peripheral white blood cells provide useful clinical information. However, separation of white blood cells from peripheral blood requires a time-consuming, inconvenient process and thus analyses of separated white blood cells are limited in clinical settings. To overcome this limitation, a microfluidic separation platform is developed to enable deterministic migration of white blood cells, directing the cells into designated positions according to a ridge pattern. The platform uses slant ridge structures on the channel top to induce the deterministic migration, which allows efficient and high-throughput separation of white blood cells from unprocessed whole blood. The extent of the deterministic migration under various rheological conditions is explored, enabling highly efficient migration of white blood cells in whole blood and achieving high-throughput separation of the cells (processing 1 mL of whole blood less than 7 min). In the separated cell population, the composition of lymphocyte subpopulations is well preserved, and T cells secrete cytokines without any functional impairment. On the basis of the results, this microfluidic platform is a promising tool for the rapid enrichment of white blood cells, and it is useful for functional and phenotypic analyses of peripheral white blood cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Time Series Separation and Reconstruction (TSSR) Technique to Estimate Daily Suspended Sediment Concentrations

    EPA Science Inventory

    High suspended sediment concentrations (SSCs) from natural and anthropogenic sources are responsible for biological impairments of many streams, rivers, lakes, and estuaries, but techniques to estimate sediment concentrations or loads accurately at the daily temporal resolution a...

  16. A Time Series Separation and Reconstruction (TSSR) Technique to Estimate Daily Suspended Sediment Concentrations

    EPA Science Inventory

    High suspended sediment concentrations (SSCs) from natural and anthropogenic sources are responsible for biological impairments of many streams, rivers, lakes, and estuaries, but techniques to estimate sediment concentrations or loads accurately at the daily temporal resolution a...

  17. Analytical-scale separations of lanthanides : a review of techniques and fundamentals.

    SciTech Connect

    Nash, K. L.; Jensen, M. P.

    1999-10-27

    Separations chemistry is at the heart of most analytical procedures to determine the rare earth content of both man-made and naturally occurring materials. Such procedures are widely used in mineral exploration, fundamental geology and geochemistry, material science, and in the nuclear industry. Chromatographic methods that rely on aqueous solutions containing complexing agents sensitive to the lanthanide cationic radius and cation-exchange phase transfer reactions (using a variety of different solid media) have enjoyed the greatest success for these procedures. In this report, they will briefly summarize the most important methods for completing such analyses. they consider in some detail the basic aqueous (and two-phase) solution chemistry that accounts for separations that work well and offer explanations for why others are less successful.

  18. RBF-based technique for statistical demodulation of pathological tremor.

    PubMed

    Gianfelici, Francesco

    2013-10-01

    This paper presents an innovative technique based on the joint approximation capabilities of radial basis function (RBF) networks and the estimation capability of the multivariate iterated Hilbert transform (IHT) for the statistical demodulation of pathological tremor from electromyography (EMG) signals in patients with Parkinson's disease. We define a stochastic model of the multichannel high-density surface EMG by means of the RBF networks applied to the reconstruction of the stochastic process (characterizing the disease) modeled by the multivariate relationships generated by the Karhunen-Loéve transform in Hilbert spaces. Next, we perform a demodulation of the entire random field by means of the estimation capability of the multivariate IHT in a statistical setting. The proposed method is applied to both simulated signals and data recorded from three Parkinsonian patients and the results show that the amplitude modulation components of the tremor oscillation can be estimated with signal-to-noise ratio close to 30 dB with root-mean-square error for the estimates of the tremor instantaneous frequency. Additionally, the comparisons with a large number of techniques based on all the combinations of the RBF, extreme learning machine, backpropagation, support vector machine used in the first step of the algorithm; and IHT, empirical mode decomposition, multiband energy separation algorithm, periodic algebraic separation and energy demodulation used in the second step of the algorithm, clearly show the effectiveness of our technique. These results show that the proposed approach is a potential useful tool for advanced neurorehabilitation technologies that aim at tremor characterization and suppression.

  19. Blind Source Separation Techniques for the Decomposition of Multiply Labeled Fluorescence Images

    PubMed Central

    Neher, Richard A.; Mitkovski, Mišo; Kirchhoff, Frank; Neher, Erwin; Theis, Fabian J.; Zeug, André

    2009-01-01

    Methods of blind source separation are used in many contexts to separate composite data sets according to their sources. Multiply labeled fluorescence microscopy images represent such sets, in which the sources are the individual labels. Their distributions are the quantities of interest and have to be extracted from the images. This is often challenging, since the recorded emission spectra of fluorescent dyes are environment- and instrument-specific. We have developed a nonnegative matrix factorization (NMF) algorithm to detect and separate spectrally distinct components of multiply labeled fluorescence images. It operates on spectrally resolved images and delivers both the emission spectra of the identified components and images of their abundance. We tested the proposed method using biological samples labeled with up to four spectrally overlapping fluorescent labels. In most cases, NMF accurately decomposed the images into contributions of individual dyes. However, the solutions are not unique when spectra overlap strongly or when images are diffuse in their structure. To arrive at satisfactory results in such cases, we extended NMF to incorporate preexisting qualitative knowledge about spectra and label distributions. We show how data acquired through excitations at two or three different wavelengths can be integrated and that multiple excitations greatly facilitate the decomposition. By allowing reliable decomposition in cases where the spectra of the individual labels are not known or are known only inaccurately, the proposed algorithms greatly extend the range of questions that can be addressed with quantitative microscopy. PMID:19413985

  20. Monolithic capillary columns based on pentaerythritol acrylates for molecular-size-based separations of synthetic polymers.

    PubMed

    Kurganov, Alexander; Victorova, Elena; Kanateva, Anastasiia

    2015-07-01

    Monolithic capillary columns based on pentaerythritol triacrylate and pentaerythritol tetraacrylate were synthesized using different compositions of polymerization mixtures and different polymerization conditions. The impact of porogen type and porogen/monomer ratio on the porosity of synthesized monoliths was investigated. Porogen type appears to be the main factor influencing the separating properties of the monolithic sorbent. Using optimal polymerization conditions (porogen type, porogen/monomer ratio, reaction temperature, time etc.) monoliths with a porous structure optimized for polymer separations can be obtained. The monolithic capillary columns containing porous sorbents with optimized porosity are capable of separating 10 to 12 polystyrene standards in one chromatographic run utilizing both size exclusion chromatography and hydrodynamic chromatography separation mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Assessment of Carbon- and Metal-Based Nanoparticle DNA Damage with Microfluidic Electrophoretic Separation Technology.

    PubMed

    Schrand, Amanda M; Powell, Thomas; Robertson, Tiffany; Hussain, Saber M

    2015-02-01

    In this study, we examined the feasibility of extracting DNA from whole cell lysates exposed to nanoparticles using two different methodologies for evaluation of fragmentation with microfluidic electrophoretic separation. Human lung macrophages were exposed to five different carbon- and metal-based nanoparticles at two different time points (2 h, 24 h) and two different doses (5 µg/ml, 100 µg/ml). The primary difference in the banding patterns after 2 h of nanoparticle exposure is more DNA fragmentation at the higher NP concentration when examining cells exposed to nanoparticles of the same composition. However, higher doses of carbon and silver nanoparticles at both short and long dosing periods can contribute to erroneous or incomplete data with this technique. Also comparing DNA isolation methodologies, we recommend the centrifugation extraction technique, which provides more consistent banding patterns in the control samples compared to the spooling technique. Here we demonstrate that multi-walled carbon nanotubes, 15 nm silver nanoparticles and the positive control cadmium oxide cause similar DNA fragmentation at the short time point of 2 h with the centrifugation extraction technique. Therefore, the results of these studies contribute to elucidating the relationship between nanoparticle physicochemical properties and DNA fragmentation results while providing the pros and cons of altering the DNA isolation methodology. Overall, this technique provides a high throughput way to analyze subcellular alterations in DNA profiles of cells exposed to nanomaterials to aid in understanding the consequences of exposure and mechanistic effects. Future studies in microfluidic electrophoretic separation technologies should be investigated to determine the utility of protein or other assays applicable to cellular systems exposed to nanoparticles.

  2. Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres

    SciTech Connect

    Huang, Kai-Jian; Qin, S.-J. Bai, Zhong-Chen; Zhang, Xin; Mai, John D.

    2013-11-21

    A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid and a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.

  3. A frequency-control particle separation device based on resultant effects of electroosmosis and dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Lin, Shiang-Chi; Tung, Yi-Chung; Lin, Chih-Ting

    2016-08-01

    Particle separation plays an important role in microfluidic sample preparation for various biomedical applications. In this paper, we report a particle manipulation and separation scheme using a microfluidic device based on low-volume/low-voltage electrokinetic frequency modulation. Utilizing a circular micro-electrode array, both electroosmosis and dielectrophoresis can be contributed to manipulate particles in the device by controlling the frequency of applied sinusoidal travelling wave signals. Theoretical simulations based on finite-element methods are employed to establish fundamental understanding of the developed scheme. For experimental demonstration, polystyrene beads (6 μm in diameter) and human promyelocytic leukaemia cells (HL-60) are used to validate the frequency-modulation effect. Furthermore, different diameter polystyrene beads (6 μm and 10 μm in diameter) are mixed to show potentials of precise particle separations (˜90% efficiency) by the reported frequency-controlled electrokinetic device. The developed technique can be exploited as an actuation scheme and particle manipulation method for microfluidic sample preparations of low ionic concentration samples.

  4. Stormflow-hydrograph separation based on isotopes: the thrill is gone--what's next?

    USGS Publications Warehouse

    Burns, Douglas A.

    2002-01-01

    Beginning in the 1970s, the promise of a new method for separatingstormflow hydrographs using18O,2H, and3Hprovedanirresistibletemptation, and was a vast improvement over graphical separationand solute tracer methods that were prevalent at the time. Eventu-ally, hydrologists realized that this new method entailed a plethoraof assumptions about temporal and spatial homogeneity of isotopiccomposition (many of which were commonly violated). Nevertheless,hydrologists forged ahead with dozens of isotope-based hydrograph-separation studies that were published in the 1970s and 1980s.Hortonian overland flow was presumed dead. By the late 1980s,the new isotope-based hydrograph separation technique had movedinto adolescence, accompanied by typical adolescent problems suchas confusion and a search for identity. As experienced hydrologistscontinued to use the isotope technique to study stormflow hydrol-ogy in forested catchments in humid climates, their younger peersfollowed obligingly—again and again. Was Hortonian overland flowreally dead and forgotten, though? What about catchments in whichpeople live and work? And what about catchments in dry climatesand the tropics? How useful were study results when several of theassumptions about the homogeneity of source waters were commonlyviolated? What if two components could not explain the variation ofisotopic composition measured in the stream during stormflow? Andwhat about uncertainty? As with many new tools, once the initialshine wore off, the limitations of the method became a concern—oneof which was that isotope-based hydrograph separations alone couldnot reveal much about the flow paths by which water arrives at astream channel during storms.

  5. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation.

    PubMed

    Yang, Huifen; Jing, Lili; Zhang, Baogang

    2011-01-30

    A technique with coal-based direct reduction followed by magnetic separation is presented in this study for recovering and reusing iron otherwise wasted in vanadium tailings. Process parameters such as usage of additives, tailings/reductant/additives ratio, reduction temperature and time, as well as particle size were experimentally determined. The optimum process parameters were proposed as follows: using lime as the additive, lignite as the reductant, weight ratios of vanadium tailings/lignite/lime at 100:30:10, reduction roasting at 1200 °C for 60 min, and particle size of 98% less than 30 μm in the final roasted product feeding to magnetic separation. Under these conditions, a magnetic concentrate containing 90.31% total iron and 89.76% metallization iron with a total iron recovery rate of 83.88% was obtained. In addition, mineralography of vanadium tailings, coal-based reduction product and magnetic concentrate were studied by X-ray powder diffraction technique (XRD). The microstructures of above products were analyzed by scanning electron microscope (SEM) to help understand the mechanism. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Evaporation-based Ge/.sup.68 Ga Separation

    DOEpatents

    Mirzadeh, Saed; Whipple, Richard E.; Grant, Patrick M.; O'Brien, Jr., Harold A.

    1981-01-01

    Micro concentrations of .sup.68 Ga in secular equilibrium with .sup.68 Ge in strong aqueous HCl solution may readily be separated in ionic form from the .sup.68 Ge for biomedical use by evaporating the solution to dryness and then leaching the .sup.68 Ga from the container walls with dilute aqueous solutions of HCl or NaCl. The chloro-germanide produced during the evaporation may be quantitatively recovered to be used again as a source of .sup.68 Ga. If the solution is distilled to remove any oxidizing agents which may be present as impurities, the separation factor may easily exceed 10.sup.5. The separation is easily completed and the .sup.68 Ga made available in ionic form in 30 minutes or less.

  7. AGARD Flight Test Techniques Series. Volume 5. Store Separation Flight Testing

    DTIC Science & Technology

    1986-04-01

    is normally limited to citizens of the NATO nations. The content of this publication has been reproduced directly from material supplied by AGARD...Role of Experience in Structuring Mission Summaries 2 8 6.0 FLIGHT TEST PREPARATIONS 28 6.1 Purpose of Comparing Flight Test Results with Analyses 2... 8 6.2 Analysis Requirements 29 6.3 Camera Requirements 30 6.4 Video Cameras 32 6.5 Data Reduction Techniques for Cameras 33 6.5.1 Techniques

  8. Monsoon Forecasting based on Imbalanced Classification Techniques

    NASA Astrophysics Data System (ADS)

    Ribera, Pedro; Troncoso, Alicia; Asencio-Cortes, Gualberto; Vega, Inmaculada; Gallego, David

    2017-04-01

    Monsoonal systems are quasiperiodic processes of the climatic system that control seasonal precipitation over different regions of the world. The Western North Pacific Summer Monsoon (WNPSM) is one of those monsoons and it is known to have a great impact both over the global climate and over the total precipitation of very densely populated areas. The interannual variability of the WNPSM along the last 50-60 years has been related to different climatic indices such as El Niño, El Niño Modoki, the Indian Ocean Dipole or the Pacific Decadal Oscillation. Recently, a new and longer series characterizing the monthly evolution of the WNPSM, the WNP Directional Index (WNPDI), has been developed, extending its previous length from about 50 years to more than 100 years (1900-2007). Imbalanced classification techniques have been applied to the WNPDI in order to check the capability of traditional climate indices to capture and forecast the evolution of the WNPSM. The problem of forecasting has been transformed into a binary classification problem, in which the positive class represents the occurrence of an extreme monsoon event. Given that the number of extreme monsoons is much lower than the number of non-extreme monsoons, the resultant classification problem is highly imbalanced. The complete dataset is composed of 1296 instances, where only 71 (5.47%) samples correspond to extreme monsoons. Twenty predictor variables based on the cited climatic indices have been proposed, and namely, models based on trees, black box models such as neural networks, support vector machines and nearest neighbors, and finally ensemble-based techniques as random forests have been used in order to forecast the occurrence of extreme monsoons. It can be concluded that the methodology proposed here reports promising results according to the quality parameters evaluated and predicts extreme monsoons for a temporal horizon of a month with a high accuracy. From a climatological point of view

  9. Separation of the atmospheric variability into non-Gaussian multidimensional sources by projection pursuit techniques

    NASA Astrophysics Data System (ADS)

    Pires, Carlos A. L.; Ribeiro, Andreia F. S.

    2017-02-01

    We develop an expansion of space-distributed time series into statistically independent uncorrelated subspaces (statistical sources) of low-dimension and exhibiting enhanced non-Gaussian probability distributions with geometrically simple chosen shapes (projection pursuit rationale). The method relies upon a generalization of the principal component analysis that is optimal for Gaussian mixed signals and of the independent component analysis (ICA), optimized to split non-Gaussian scalar sources. The proposed method, supported by information theory concepts and methods, is the independent subspace analysis (ISA) that looks for multi-dimensional, intrinsically synergetic subspaces such as dyads (2D) and triads (3D), not separable by ICA. Basically, we optimize rotated variables maximizing certain nonlinear correlations (contrast functions) coming from the non-Gaussianity of the joint distribution. As a by-product, it provides nonlinear variable changes `unfolding' the subspaces into nearly Gaussian scalars of easier post-processing. Moreover, the new variables still work as nonlinear data exploratory indices of the non-Gaussian variability of the analysed climatic and geophysical fields. The method (ISA, followed by nonlinear unfolding) is tested into three datasets. The first one comes from the Lorenz'63 three-dimensional chaotic model, showing a clear separation into a non-Gaussian dyad plus an independent scalar. The second one is a mixture of propagating waves of random correlated phases in which the emergence of triadic wave resonances imprints a statistical signature in terms of a non-Gaussian non-separable triad. Finally the method is applied to the monthly variability of a high-dimensional quasi-geostrophic (QG) atmospheric model, applied to the Northern Hemispheric winter. We find that quite enhanced non-Gaussian dyads of parabolic shape, perform much better than the unrotated variables in which concerns the separation of the four model's centroid regimes

  10. Localized modes of the Hirota equation: Nth order rogue wave and a separation of variable technique

    NASA Astrophysics Data System (ADS)

    Mu, Gui; Qin, Zhenyun; Chow, Kwok Wing; Ee, Bernard K.

    2016-10-01

    The Hirota equation is a special extension of the intensively studied nonlinear Schrödinger equation, by incorporating third order dispersion and one form of the self-steepening effect. Higher order rogue waves of the Hirota equation can be calculated theoretically through a Darboux-dressing transformation by a separation of variable approach. A Taylor expansion is used and no derivative calculation is invoked. Furthermore, stability of these rogue waves is studied computationally. By tracing the evolution of an exact solution perturbed by random noise, it is found that second order rogue waves are generally less stable than first order ones.

  11. 100% foundry compatible packaging and full wafer release and die separation technique for surface micromachined devices

    SciTech Connect

    OLIVER,ANDREW D.; MATZKE,CAROLYN M.

    2000-04-06

    A completely foundry compatible chip-scale package for surface micromachines has been successfully demonstrated. A pyrex (Corning 7740) glass cover is placed over the released surface micromachined die and anodically bonded to a planarized polysilicon bonding ring. Electrical feedthroughs for the surface micromachine pass underneath the polysilicon sealing ring. The package has been found to be hermetic with a leak rate of less than 5 x 10{sup {minus}8} atm cm{sup {minus}3}/s. This technology has applications in the areas of hermetic encapsulation and wafer level release and die separation.

  12. Using Essential Oils to Teach Advanced-Level Organic Chemistry Separation Techniques and Spectroscopy

    ERIC Educational Resources Information Center

    Bott, Tina M.; Wan, Hayley

    2013-01-01

    Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…

  13. Using Essential Oils to Teach Advanced-Level Organic Chemistry Separation Techniques and Spectroscopy

    ERIC Educational Resources Information Center

    Bott, Tina M.; Wan, Hayley

    2013-01-01

    Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…

  14. Progress and possible applications of miniaturised separation techniques and elemental mass spectrometry for quantitative, heteroatom-tagged proteomics.

    PubMed

    Pröfrock, Daniel

    2010-11-01

    The application of miniaturised separation techniques such as capillary LC, nano LC or capillary electrophoresis offers a number of advantages in terms of analytical performance, solvent consumption and the ability to analyse very small sample amounts. These features make them attractive for various bioanalytical tasks, in particular those related to the analysis of proteins and peptides. The skillful combination of such techniques with inductively coupled plasma mass spectrometry (ICP-MS) has recently permitted the design of combined analytical approaches utilising either elemental or molecule-specific detection techniques such as electrospray ionisation (ESI) or matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry in a highly complementary manner for, as an example, proteomics-orientated research (heteroatom-tagged proteomics). Such hybrid approaches are, in particular, providing promising new options for the fast screening of complex samples for specific metal-containing or--more generally speaking--heteroatom-containing biomolecules, as well as the accurate absolute quantification of biomolecules, which is still an unsolved problem in bioanalysis. Here, progress in as well as the potential and the special requirements of hyphenating miniaturised separation techniques with ICP-MS are reviewed and critically discussed. In addition, selected applications are highlighted to indicate current and possible future trends within this emerging area of research.

  15. Development of a field-based separator for the rapid identification of uranium and plutonium

    SciTech Connect

    Mertz, Carol J.; Kaminski, Michael D.; Shkrob, Ilya A.; Kalensky, Michael; Sullivan, Vivian S.; Tsai, Yifen

    2015-07-01

    The development of rapid, radioanalytical techniques to separate uranium and plutonium from complex, field samples are needed for the timely and accurate determination of nuclear material origin, and processing activities. Widespread use of nuclear power and technology in the world has increased demands on analytical laboratories from the monitoring of numerous low-level, environmental samples with variable compositions. Environmental sampling has proven to be one of the strongest technical measures for detecting nuclear material and activities. With the increase in sampling demands, new technologies must offer improvements such as automation, high throughput, reproducible chemical separations, short analysis times, and reduced costs to be effective. We have been developing a portable, separations system for uranium (U) and plutonium (Pu) separations based upon selective extraction of target elements using an extraction chromatographic resin which would allow for simple and fast identifcation when coupled with the appropriate sample digestor and detection systems. The microfluidic design minimizes elution volumes and concentrates the elements of interest in a purified stream. Flowsheet development and testing was demonstrated on a single, micro-column system with an acidified, iron, uranium, and plutonium nitrate stream. The recovery of Pu was optimized by examining various reducing agents at different concentrations for rapid, quantitative recovery from the flow-through design. Quantitative recovery and high selectivity of U and Pu was achieved in the appropriate stripping stages and provided purified and concentrated U and Pu streams. The microfluidic system suggests automation in a small, footprint unit while exploiting the in-line processing of extraction chromatographic resins as the primary means of concentrating the radionuclides from the raw acidic feed and separating the elements into purified streams.

  16. Design, development and characterization of microfluidic media for continuous size-based separation of particles

    NASA Astrophysics Data System (ADS)

    Devendra, Raghavendra

    Microfluidics is a growing field of research in separations. Microfluidic technologies offer a greater control over system properties with an efficient performance while providing a potential for integration of several processes into one micro-total-analysis system. While several conventional separation technologies have been miniaturized to micro-scale techniques, there is an effort to develop novel processes that take advantage of the features of micro-scale flows, such as similarities in pore-species dimensions and the ability to tailor the geometric structures of the stationary phase to specific applications. In certain cases, the geometric structure of the pore space drives the separative displacement; the advances in microfabrication allow greater control over the geometry as well as the surface chemistry of the media. It is convenient and possible to integrate the microstructure into main separation channel and design autonomous continuous flow separation systems on a lab-on-achip platform. A promising approach to develop passive and continuous flow microfluidic separation devices is to design periodic arrays of obstacles that cause different species to move in different directions within the device, also known as vector chromatography. The principle of separation of small particles in such periodic microstructures is based on the mobility of particles. The mobility of a particle is based on its size, the geometry of the stationary phase and the viscosity of the suspending phase. In the first part of this thesis, we present a study of diffusive transport in periodic anisotropic systems. We designed and fabricated anisotropic periodicities in microfluidic devices and characterized the mobilities in principal directions by directly measuring the one dimensional diffusivities through experiments. In anisotropic periodic microstructures, the mobility has unequal components, by virtue of which the velocity of the particle does not remain collinear with the

  17. Separation and preconcentration of aluminum in parenteral solutions and bottled mineral water using different analytical techniques.

    PubMed

    Kazi, Tasneem G; Khan, Sumaira; Baig, Jameel A; Kolachi, Nida F; Afridi, Hassan I; Kandhro, Ghulam A; Kumar, Sham; Shah, Abdul Q

    2009-12-30

    A new method is reported for the separation of aluminum ions [Al(III)] from interfering elements in parenteral and pharmaceutical solutions (PS) and bottled mineral water (BMW) samples, through solid-phase extraction with 2-methyl-8-hydroxyquinoline (quinaldine) adsorbed onto activated silica gel. While the enrichment step of separated Al(III) was carried out by cloud point extraction (CPE) using 8-hydroxyquinoline as complexing reagent, the resulted complex was entrapped in a non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114). The enriched Al(III) in sample solutions were determined by spectrofluorometry (SPF) at lambda(excitation) 370 nm and lambda(emission) 510 nm, and flame atomic absorption spectrometry (FAAS) for comparative purpose. The variables affecting the complexation and extraction steps were studied and optimized. The validity of methodology was checked with certified reference material of water and standard addition method. The enrichment factor and detection limit of Al(III) for the preconcentration of 50 ml of PS and BMW were found to be 100 and 0.25 microg/L, respectively. The proposed method has been applied for the determination of trace amount of Al(III) in PS and BMW samples with satisfactory results. In PS the levels of Al(III) are above than permissible limit (25 microg/L).

  18. Kinetics study of phase separation in polyacrylic acid/nematic LC system by optical technique

    NASA Astrophysics Data System (ADS)

    Mucha, Maria; Krolikowski, Z.

    2002-06-01

    Thin polymer layers containing liquid crystal LC of non- linear optical properties were obtained from polyacrylic acid. Samples were produced by phase separation as a consequence of chemical polymerization (PIPS method) resulting in precipitation of liquid crystals in the form of droplets in a polymer matrix being formed. Films were produced in variable conditions of polymerization time and temperature and different content of an initiator (1 - 3 wt%). They contained of 10 - 40 wt% of LC. The cell thickness was constant and equal to 20 micrometers . Systems obtained in this way were subjected to thermo-optical and electro-optical studies, morphological structure investigation and DSC analysis. The polymerization time has a significant influence on the size and number of LC droplets. The presence of benzoyl peroxide can cause partial destruction of LC properties which is reflected by a decrease of isotropization temperature TI of the liquid crystal. An increase of the initiator amount shortens the time of polymerization (ti), while process enthalpy ((Delta) H) increases. Hence, the liquid crystal separation time decreases as well. Films prepared by this method present good electro-optical properties. Rise and decay times of orientation are short and equal to 2 - 17 ms (depending on driving voltage applied) and about 80 ms, respectively. Threshold voltage for the best sample is equal to 5 V. Optimal conditions are found: LC content equals 20%, wt(i) equals 1%, polymerization temperature Tp equals 100 - 110 degree(s)C.

  19. Plasma separation: physical separation at the molecular level

    NASA Astrophysics Data System (ADS)

    Gueroult, Renaud; Rax, Jean-Marcel; Fisch, Nathaniel J.

    2016-09-01

    Separation techniques are usually divided in two categories depending on the nature of the discriminating property: chemical or physical. Further to this difference, physical and chemical techniques differ in that chemical separation typically occurs at the molecular level, while physical separation techniques commonly operate at the macroscopic scale. Separation based on physical properties can in principle be realized at the molecular or even atomic scale by ionizing the mixture. This is in essence plasma based separation. Due to this fundamental difference, plasma based separation stands out from other separation techniques, and features unique properties. In particular, plasma separation allows separating different elements or chemical compounds based on physical properties. This could prove extremely valuable to separate macroscopically homogeneous mixtures made of substances of similar chemical formulation. Yet, the realization of plasma separation techniques' full potential requires identifying and controlling basic mechanisms in complex plasmas which exhibit suitable separation properties. In this paper, we uncover the potential of plasma separation for various applications, and identify the key physics mechanisms upon which hinges the development of these techniques.

  20. Component separations.

    PubMed

    Heller, Lior; McNichols, Colton H; Ramirez, Oscar M

    2012-02-01

    Component separation is a technique used to provide adequate coverage for midline abdominal wall defects such as a large ventral hernia. This surgical technique is based on subcutaneous lateral dissection, fasciotomy lateral to the rectus abdominis muscle, and dissection on the plane between external and internal oblique muscles with medial advancement of the block that includes the rectus muscle and its fascia. This release allows for medial advancement of the fascia and closure of up to 20-cm wide defects in the midline area. Since its original description, components separation technique underwent multiple modifications with the ultimate goal to decrease the morbidity associated with the traditional procedure. The extensive subcutaneous lateral dissection had been associated with ischemia of the midline skin edges, wound dehiscence, infection, and seroma. Although the current trend is to proceed with minimally invasive component separation and to reinforce the fascia with mesh, the basic principles of the techniques as described by Ramirez et al in 1990 have not changed over the years. Surgeons who deal with the management of abdominal wall defects are highly encouraged to include this technique in their collection of treatment options.

  1. Risk-Based Causal Modeling of Airborne Loss of Separation

    NASA Technical Reports Server (NTRS)

    Geuther, Steven C.; Shih, Ann T.

    2015-01-01

    Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.

  2. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering.

    PubMed

    Akbarzadeh, Rosa; Yousefi, Azizeh-Mitra

    2014-08-01

    Tissue engineering makes use of 3D scaffolds to sustain three-dimensional growth of cells and guide new tissue formation. To meet the multiple requirements for regeneration of biological tissues and organs, a wide range of scaffold fabrication techniques have been developed, aiming to produce porous constructs with the desired pore size range and pore morphology. Among different scaffold fabrication techniques, thermally induced phase separation (TIPS) method has been widely used in recent years because of its potential to produce highly porous scaffolds with interconnected pore morphology. The scaffold architecture can be closely controlled by adjusting the process parameters, including polymer type and concentration, solvent composition, quenching temperature and time, coarsening process, and incorporation of inorganic particles. The objective of this review is to provide information pertaining to the effect of these parameters on the architecture and properties of the scaffolds fabricated by the TIPS technique. © 2014 Wiley Periodicals, Inc.

  3. Entropy-based automated classification of independent components separated from fMCG.

    PubMed

    Comani, S; Srinivasan, V; Alleva, G; Romani, G L

    2007-03-07

    Fetal magnetocardiography (fMCG) is a noninvasive technique suitable for the prenatal diagnosis of the fetal heart function. Reliable fetal cardiac signals can be reconstructed from multi-channel fMCG recordings by means of independent component analysis (ICA). However, the identification of the separated components is usually accomplished by visual inspection. This paper discusses a novel automated system based on entropy estimators, namely approximate entropy (ApEn) and sample entropy (SampEn), for the classification of independent components (ICs). The system was validated on 40 fMCG datasets of normal fetuses with the gestational age ranging from 22 to 37 weeks. Both ApEn and SampEn were able to measure the stability and predictability of the physiological signals separated with ICA, and the entropy values of the three categories were significantly different at p <0.01. The system performances were compared with those of a method based on the analysis of the time and frequency content of the components. The outcomes of this study showed a superior performance of the entropy-based system, in particular for early gestation, with an overall ICs detection rate of 98.75% and 97.92% for ApEn and SampEn respectively, as against a value of 94.50% obtained with the time-frequency-based system.

  4. NOTE: Entropy-based automated classification of independent components separated from fMCG

    NASA Astrophysics Data System (ADS)

    Comani, S.; Srinivasan, V.; Alleva, G.; Romani, G. L.

    2007-03-01

    Fetal magnetocardiography (fMCG) is a noninvasive technique suitable for the prenatal diagnosis of the fetal heart function. Reliable fetal cardiac signals can be reconstructed from multi-channel fMCG recordings by means of independent component analysis (ICA). However, the identification of the separated components is usually accomplished by visual inspection. This paper discusses a novel automated system based on entropy estimators, namely approximate entropy (ApEn) and sample entropy (SampEn), for the classification of independent components (ICs). The system was validated on 40 fMCG datasets of normal fetuses with the gestational age ranging from 22 to 37 weeks. Both ApEn and SampEn were able to measure the stability and predictability of the physiological signals separated with ICA, and the entropy values of the three categories were significantly different at p <0.01. The system performances were compared with those of a method based on the analysis of the time and frequency content of the components. The outcomes of this study showed a superior performance of the entropy-based system, in particular for early gestation, with an overall ICs detection rate of 98.75% and 97.92% for ApEn and SampEn respectively, as against a value of 94.50% obtained with the time-frequency-based system.

  5. A study of heart sound and lung sound separation by independent component analysis technique.

    PubMed

    Chien, Jen-Chien; Huang, Ming-Chuan; Lin, Yue-Der; Chong, Fok-ching

    2006-01-01

    In the hospital, using percussion and auscultation are the most common ways for physical examination. Recently, in order to develop tele-medicine and home care system and to assist physician getting better auscultation results; electric stethoscope and computer analysis have become an inevitable trend. However, two important physical signals heart sound and lung sound recorded from chest overlap on spectrum chart. Therefore, in order to reduce human factor (ex. misplace or untrained of using) and minimize correlated effect in computer analysis; it's necessary for separated heart sound and lung sound. Independent component analysis can divide these sounds efficiency. In this paper, we use two microphones to collect signals from left and right chest. We have successfully divide heart and lung sounds by fast ICA algorithm. Therefore, it can assist physician examine and also using on tele-medicine and home care by this way.

  6. Primary Energy Efficiency Analysis of Different Separate Sensible and Latent Cooling Techniques

    SciTech Connect

    Abdelaziz, Omar

    2015-01-01

    Separate Sensible and Latent cooling (SSLC) has been discussed in open literature as means to improve air conditioning system efficiency. The main benefit of SSLC is that it enables heat source optimization for the different forms of loads, sensible vs. latent, and as such maximizes the cycle efficiency. In this paper I use a thermodynamic analysis tool in order to analyse the performance of various SSLC technologies including: multi-evaporators two stage compression system, vapour compression system with heat activated desiccant dehumidification, and integrated vapour compression with desiccant dehumidification. A primary coefficient of performance is defined and used to judge the performance of the different SSLC technologies at the design conditions. Results showed the trade-off in performance for different sensible heat factor and regeneration temperatures.

  7. Development of a Technique for Separating Raman Scattering Signals from Background Emission with Single-Shot Measurement Potential

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy

    1996-01-01

    Raman scattering is a powerful technique for quantitatively probing high temperature and high speed flows. However, this technique has typically been limited to clean hydrogen flames because of the broadband fluorescence interference which occurs in hydrocarbon flames. Fluorescence can also interfere with the Raman signal in clean hydrogen flames when broadband UV lasers are used as the scattering source. A solution to this problem has been demonstrated. The solution to the fluorescence interference lies in the fact that the vibrational Q-branch Raman signal is highly polarized for 90 deg. signal collection and the fluorescence background is essentially unpolarized. Two basic schemes are available for separating the Raman from the background. One scheme involves using a polarized laser and collecting a signal with both horizontal and vertical laser polarizations separately. The signal with the vertical polarization will contain both the Raman and the fluorescence while the signal with the horizontal polarization will contain only the fluorescence. The second scheme involves polarization discrimination on the collection side of the optical setup. For vertical laser polarization, the scattered Q-branch Raman signal will be vertically polarized; hence the two polarizations can be collected separately and the difference between the two is the Raman signal. This approach has been used for the work found herein and has the advantage of allowing the data to be collected from the same laser shot(s). This makes it possible to collect quantitative Raman data with single shot resolution in conditions where interference cannot otherwise be eliminated.

  8. Protein elasticity probed with two synchrotron-based techniques.

    SciTech Connect

    Leu, B. M.; Alatas, A.; Sinn, H.; Alp, E. E.; Said, A.; Yavas, H.; Zhao, J.; Sage, J. T.; Sturhahn, W.; X-Ray Science Division; Hasylab; Northeastern Univ.

    2010-02-25

    Compressibility characterizes three interconnecting properties of a protein: dynamics, structure, and function. The compressibility values for the electron-carrying protein cytochrome c and for other proteins, as well, available in the literature vary considerably. Here, we apply two synchrotron-based techniques - nuclear resonance vibrational spectroscopy and inelastic x-ray scattering - to measure the adiabatic compressibility of this protein. This is the first report of the compressibility of any material measured with this method. Unlike the methods previously used, this novel approach probes the protein globally, at ambient pressure, does not require the separation of protein and solvent contributions to the total compressibility, and uses samples that contain the heme iron, as in the native state. We show, by comparing our results with molecular dynamics predictions, that the compressibility is almost independent of temperature. We discuss potential applications of this method to other materials beyond proteins.

  9. Protein elasticity probed with two synchrotron-based techniques.

    PubMed

    Leu, Bogdan M; Alatas, Ahmet; Sinn, Harald; Alp, E Ercan; Said, Ayman H; Yavaş, Hasan; Zhao, Jiyong; Sage, J Timothy; Sturhahn, Wolfgang

    2010-02-28

    Compressibility characterizes three interconnecting properties of a protein: dynamics, structure, and function. The compressibility values for the electron-carrying protein cytochrome c and for other proteins, as well, available in the literature vary considerably. Here, we apply two synchrotron-based techniques--nuclear resonance vibrational spectroscopy and inelastic x-ray scattering--to measure the adiabatic compressibility of this protein. This is the first report of the compressibility of any material measured with this method. Unlike the methods previously used, this novel approach probes the protein globally, at ambient pressure, does not require the separation of protein and solvent contributions to the total compressibility, and uses samples that contain the heme iron, as in the native state. We show, by comparing our results with molecular dynamics predictions, that the compressibility is almost independent of temperature. We discuss potential applications of this method to other materials beyond proteins.

  10. Recovery of Escherichia coli O157:H7 by immunomagnetic separation techniques and potential for regrowth in finished composts

    USDA-ARS?s Scientific Manuscript database

    Introduction: Mature, finished compost made from various feedstocks should undergo testing for the presence of Escherichia coli O157:H7 to ensure thermal destruction of the pathogen during composting. Immunomagnetic separation (IMS) –based methods may provide an assay which can be conducted within...

  11. Inkjet Printing Based Separation of Mammalian Cells by Capillary Electrophoresis.

    PubMed

    Zhang, Weifei; Li, Nan; Zeng, Hulie; Nakajima, Hizuru; Lin, Jin-Ming; Uchiyama, Katsumi

    2017-09-05

    This study describes a method to investigate the separation of cells by capillary electrophoresis (CE) coupled with inkjet printing system. The results validated the feasibility of inkjet printing for mammalian cells to achieve the drop-on-demand and convenient sampling into capillary then zone electrophoresis was applied to separate different cells according to their electrophoretic mobility, finally the peak signal were measured by UV detector. Linear relationship between the peak area and the droplet number was obtained within the range of 25-400 drops (R(2) = 0.996) at a fixed cell concentration 10(6)/mL, indicating that this system could be used for rapid and accurate quantification of cells.

  12. Bacteriophage-based nanoprobes for rapid bacteria separation

    NASA Astrophysics Data System (ADS)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying

  13. New Developments in Membrane-Based Chemical Separations

    DTIC Science & Technology

    2007-11-02

    triacetate polymeric membrane with a crown ether incorporated as a carrier. They studied the properties and stability of these membranes for metal ion...authors is consistent with the thermodynamic stability of the crown ether with these ions as well as the trend in transport of these ions in other liquid...pyridine from quinine . Figure 4, shows the UV absorbance spectra of the feed and the permeate solutions in a molecular- separation experiment. Such

  14. Gas separation device based on electrical swing adsorption

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-10-26

    A method and apparatus for separating one constituent, especially carbon dioxide, from a fluid mixture, such as natural gas. The fluid mixture flows through an adsorbent member having an affinity for molecules of the one constituent, the molecules being adsorbed on the adsorbent member. A voltage is applied to the adsorbent member, the voltage imparting a current flow which causes the molecules of the one constituent to be desorbed from the adsorbent member.

  15. Optimization of the separation of lysergic acid diethylamide in urine by a sweeping technique using micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang

    2002-07-25

    The separation and on-line concentrations of lysergic acid diethylamide (LSD), iso-lysergic acid diethylamide (iso-LSD) and lysergic acid N,N-methylpropylamide (LAMPA) in human urine were investigated by capillary electrophoresis-fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as an anionic surfactant. A number of parameters such as buffer pH, SDS concentration, Brij-30 concentration and the content of organic solvent used in separation, were optimized. The techniques of sweeping-micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were used for determining on-line concentrations. The advantages and disadvantages of this procedure with respect to sensitivity, precision and simplicity are discussed and compared. Copyright 2002 Elsevier Science BV.

  16. Thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films for the hot slumping technique

    NASA Astrophysics Data System (ADS)

    Ma, Shuang; Wen, Ming-Wu; Wang, Zhan-Shan

    2016-07-01

    The thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films are studied in this paper. Several types of adhesion layers were investigated: 10.0 nm Pt, 1.5 nm Cr + 50.0 nm Pt, 2.5 nm Cr + 50.0 nm Pt and 3.5 nm Cr + 50.0 nm Pt fabricated using direct current magnetron sputtering. The variation of layer thickness, roughness, crystallization and surface topography of Pt/Cr films were analyzed by grazing incidence X-ray reflectometry, large angle X-ray diffraction and optical profiler before and after heating. 2.5 nm Cr + 50.0 nm Pt film exhibits the best thermal stability and separation characteristics according to the heating and hot slumping experiments. The film was also applied as an anti-sticking layer to optimize the maximum temperature of the hot slumping technique. Supported by CAS XTP project XDA04060605

  17. Cryptosporidium oocyst detection in water samples: floatation technique enhanced with immunofluorescence is as effective as immunomagnetic separation method.

    PubMed

    Koompapong, Khuanchai; Sutthikornchai, Chantira; Sukthana, Yowalark

    2009-12-01

    Cryptosporidium can cause gastrointestinal diseases worldwide, consequently posing public health problems and economic burden. Effective techniques for detecting contaminated oocysts in water are important to prevent and control the contamination. Immunomagnetic separation (IMS) method has been widely employed recently due to its efficiency, but, it is costly. Sucrose floatation technique is generally used for separating organisms by using their different specific gravity. It is effective and cheap but time consuming as well as requiring highly skilled personnel. Water turbidity and parasite load in water sample are additional factors affecting to the recovery rate of those 2 methods. We compared the efficiency of IMS and sucrose floatation methods to recover the spiked Cryptosporidium oocysts in various turbidity water samples. Cryptosporidium oocysts concentration at 1, 10(1), 10(2), and 10(3) per 10 microl were spiked into 3 sets of 10 ml-water turbidity (5, 50, and 500 NTU). The recovery rate of the 2 methods was not different. Oocyst load at the concentration < 10(2) per 10 ml yielded unreliable results. Water turbidity at 500 NTU decreased the recovery rate of both techniques. The combination of sucrose floatation and immunofluorescense assay techniques (SF-FA) showed higher recovery rate than IMS and immunofluorescense assay (IMS-FA). We used this SF-FA to detect Cryptosporidium and Giardia from the river water samples and found 9 and 19 out of 30 (30% and 63.3%) positive, respectively. Our results favored sucrose floatation technique enhanced with immunofluorescense assay for detecting contaminated protozoa in water samples in general laboratories and in the real practical setting.

  18. Cryptosporidium Oocyst Detection in Water Samples: Floatation Technique Enhanced with Immunofluorescence Is as Effective as Immunomagnetic Separation Method

    PubMed Central

    Koompapong, Khuanchai; Sutthikornchai, Chantira

    2009-01-01

    Cryptosporidium can cause gastrointestinal diseases worldwide, consequently posing public health problems and economic burden. Effective techniques for detecting contaminated oocysts in water are important to prevent and control the contamination. Immunomagnetic separation (IMS) method has been widely employed recently due to its efficiency, but, it is costly. Sucrose floatation technique is generally used for separating organisms by using their different specific gravity. It is effective and cheap but time consuming as well as requiring highly skilled personnel. Water turbidity and parasite load in water sample are additional factors affecting to the recovery rate of those 2 methods. We compared the efficiency of IMS and sucrose floatation methods to recover the spiked Cryptosporidium oocysts in various turbidity water samples. Cryptosporidium oocysts concentration at 1, 101, 102, and 103 per 10 µl were spiked into 3 sets of 10 ml-water turbidity (5, 50, and 500 NTU). The recovery rate of the 2 methods was not different. Oocyst load at the concentration < 102 per 10 ml yielded unreliable results. Water turbidity at 500 NTU decreased the recovery rate of both techniques. The combination of sucrose floatation and immunofluorescense assay techniques (SF-FA) showed higher recovery rate than IMS and immunofluorescense assay (IMS-FA). We used this SF-FA to detect Cryptosporidium and Giardia from the river water samples and found 9 and 19 out of 30 (30% and 63.3%) positive, respectively. Our results favored sucrose floatation technique enhanced with immunofluorescense assay for detecting contaminated protozoa in water samples in general laboratories and in the real practical setting. PMID:19967082

  19. 3D Xplane Echocardiographic Technique for Validation of Mitral Leaflet Separation to Assess Severity of Mitral Stenosis.

    PubMed

    Gokhroo, Rajendra K; Ranwa, Bhanwar L; Kishor, Kamal; Priti, Kumari; Avinash, Ananthraj; Gupta, Sajal; Bisht, Devendra

    2016-06-01

    Determining the severity of mitral stenosis (MS) is important for both prognostic and therapeutic implications. Mitral valve area (MVA) calculation techniques have more limitations. Mitral leaflet separation (MLS) is a precise and operator friendly alternative to planimetry. In contrast to previous researchers, we have used a novel 3D Xplane technique to validate MLS for assessing the severity of MS. 3D Xplane is superior for validation of MLS due to simultaneous real time acquisition of MLS in parasternal long-axis view and corresponding MVA by planimetry in parsternal short-axis view. It was a prospective observational single center study. A total of 174 patients with MS were evaluated for MVA estimation by various echocardiographic modalities. Maximum leaflet separation and corresponding planimetered MVA were measured using novel 3D Xplane technique. With 3D Xplane technique, there was strong positive correlation between planimetered MVA and MLS (R = 0.925, P < 0.001), irrespective of coexisting MR (R = 0.886, P < 0.001) or AF (R = 0.912, P < 0.001). Receiver operating characteristic curves of MLS demonstrated AUC for mild and severe MS to be 0.966 and 0.995, respectively. MLS less than 8.62 mm predicted severe MS with 95.5% sensitivity and 94.7% specificity and MLS more than 12.23 mm predicted mild MS with 93.2% sensitivity and 91.4% specificity. In our study, a strong correlation between planimetered MVA and MLS was found using 3D Xplane technique. 3D Xplane thus validates and standardizes MLS by excluding errors due to temporal and spatial variations which are important limitations of 2D echocardiography. © 2016, Wiley Periodicals, Inc.

  20. Membrane gas separation. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-08-01

    The bibliography contains citations concerning the research and development of gas separation and purification techniques involving the use of plastic and metal membranes. Among the topics included are isotope separation, osmotic techniques, reverse osmosis, and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties as well as molecular structure. The selectivity of polymeric films for a variety of gases is also included. (Contains a minimum of 168 citations and includes a subject term index and title list.)

  1. Chemical components separation with botulinum toxin A: a novel technique to improve primary fascial closure rates of the open abdomen.

    PubMed

    Zielinski, M D; Goussous, N; Schiller, H J; Jenkins, D

    2013-02-01

    Failure to definitively close the open abdomen (OA) after damage control laparotomy leads to considerable morbidity and mortality. We have developed a novel technique, the "chemical components separation," which incorporates injection of botulinum toxin A (BTX), a long-term flaccid paralytic, into the lateral abdominal wall musculature. This is a retrospective review of all OA patients (age ≥18) from December 2009-June 2010 who underwent BTX injection. Under ultrasound guidance, a total of 300 units of BTX were injected into the external oblique, internal oblique and transversus abdominus. A total of 18 patients were injected with a median age of 66 years (56 % male). Indications for OA treatment included questionable bowel viability (39 %), shock (33 %), loss of abdominal domain (6 %) and feculent contamination (17 %). Median ASA score was 3 with an APACHE 3 score of 85. Patients underwent a median of 4 serial abdominal explorations. The primary fascial closure rate was 83 % with a partial fascial closure rate of 6 % and planned ventral hernia rate of 11 %. Of the 9 patients injected within 24 h of their initial OA procedure, 89 % achieved primary fascial closure. Mortality was 11 %; death was unrelated to BTX injection. The overall complication rate was 67 %; specific complications rates included fascial dehiscence (11 %), enterocutaneous fistula development (0 %), intra-abdominal abscess (44 %) and deep surgical site infection (33 %). The "chemical components separation" technique described is safe and avoids the extensive dissection necessary for mechanical components separation in critically ill patients with infected/contaminated abdominal domains. While further evaluation is required, the described technique provides potential to improve delayed primary fascial closure rates in the OA setting.

  2. Size based separation of micro-particles using adhesive ciliated surfaces: Mimicing the behaviour of suspension feeders

    NASA Astrophysics Data System (ADS)

    Tripathi, Anurag; Bhattacharya, Amitabh; Balazs, Anna

    2013-03-01

    Separation of different size micro-particles in microfluidic devices is important for many biomedical applications. Inspired by the selective intake of small food particles by marine suspension feeders, we propose a novel separation mechanism of micro-particles using active cilia arrays with adhesive tips. By means of Lattice Boltzmann simulations, we show that mixture of two different size particles with size ratio greater than or equal to two can be nearly completely separated by tuning adhesion strength and cilia stiffness. The proposed technique can be used even at low Reynolds number (Re << 1) where separation mechanisms based on inertial effects will be of little use. For a given cilia-particle interaction, the balance of hydrodynamic and adhesive forces favors capture of particles below a critical size, which can be predicted by a simple analytical model.

  3. Nuclear based techniques for detection of contraband

    SciTech Connect

    Gozani, T.

    1993-12-31

    The detection of contraband such as explosives and drugs concealed in luggage or other container can be quite difficult. Nuclear techniques offer capabilities which are essential to having effective detection devices. This report describes the features of various nuclear techniques and instrumentation.

  4. Magnetic-based microfluidic platform for biomolecular separation.

    PubMed

    Ramadan, Qasem; Samper, Victor; Poenar, Daniel; Yu, Chen

    2006-06-01

    A novel microfluidic platform for manipulation of micro/nano magnetic particles was designed, fabricated and tested for applications dealing with biomolecular separation. Recently, magnetic immunomagnetic cell separation has attracted a noticeable attention due to the high selectivity of such separation methods. Strong magnetic field gradients can be developed along the entire wire, and the miniaturized size of these current-carrying conductors strongly enhances the magnetic field gradient and therefore produces large, tunable and localized magnetic forces that can be applied on magnetic particles and confine them in very small spots. Further increases in the values of the generated magnetic field gradients can be achieved by employing miniaturized ferromagnetic structures (pillars) which can be magnetized by an external magnetic field or by micro-coils on the same chip. In this study, we demonstrate magnetic beads trapping, concentration, transportation and sensing in a liquid sample under continuous flow by employing high magnetic field gradients generated by novel multi-functional magnetic micro-devices. Each individual magnetic micro-device consists of the following components: 1. Cu micro-coils array embedded in the silicon substrate with high aspect ratio conductors for efficient magnetic field generation 2. Magnetic pillar(s) made of the magnetic alloy NiCoP for magnetic field focusing and magnetic field gradient enhancement. Each pillar is magnetized by its corresponding coil 3. Integrated sensing coil for magnetic beads detection 4. Microfluidic chamber containing all the previous components. Magnetic fields of about 0.1 T and field gradients of around 300 T/cm have been achieved, which allowed to develop a magnetic force of 3 x 10(-9) N on a magnetic particle with radius of 1 mum. This force is large enough to trap/move this particle as the required force to affect such particles in a liquid sample is on the order of approximately pN. Trapping rates of up

  5. Carbon nanotube-based separation columns for microchip electrochromatography.

    PubMed

    Mogensen, K B; Delacourt, B; Kutter, J P

    2015-01-01

    Fabrication of the stationary phase for microchip chromatography is most often done by packing of the individual separation channel after fabrication of the microfluidic chip, which is a very time-consuming and costly process (Kutter. J Chromatogr A 1221:72-82, 2012). Here, we describe in detail the fabrication and operation protocols for devices with microfabricated carbon nanotube stationary phases for reverse-phase chromatography. In this protocol, the lithographically defined stationary phase is fabricated in the channel before bonding of a lid, thereby circumventing the difficult packaging procedures used in more conventional protocols.

  6. Numerical study of insulator-based dielectrophoresis method for circulating tumor cell separation

    NASA Astrophysics Data System (ADS)

    Aghaamoo, Mohammad; Aghilinejad, Arian; Chen, Xiaolin

    2017-02-01

    Insulator-based dielectrophoresis (iDEP) is known as a powerful technique for separation and manipulation of bioparticles. In recent years, iDEP designs using arrays of insulating posts have shown promising results towards reaching high-efficient bioparticles manipulation. However, there is still an essential need for providing comprehensive design guidelines and further optimizing such devices. In this research, we utilized numerical simulation to study, in detail, insulating posts iDEP technique with the specific application of bioparticles separation. To achieve this, we first developed a robust numerical model to predict the electric and fluid flow fields' distribution, and how bioparticles are being manipulated inside the system. This enabled us to study the fundamental principles of such an iDEP method. In the next step, different design aspects of insulating posts iDEP were investigated. Specifically, we focused on the effect of posts geometry and configuration on the systems' key operation criteria such as the effectiveness of the electric field non-uniformity, the flow velocity distribution and shear stress rates. Furthermore, we studied how different electrodes' setup may affect the electric field distribution and consequently the device performance. Finally, the developed numerical tool was used to demonstrate separation of circulating tumor cells (CTCs) from white blood cells (WBCs). For this purpose, MDA-231 breast cancer cells and Granulocytes were chosen as an indicator of CTCs ad WBCs. Our developed numerical model and presented results lay the groundwork for design and fabrication of high-efficient insulating posts iDEP microchips.

  7. Production of monozygotic twin calves using the blastomere separation technique and Well of the Well culture system.

    PubMed

    Tagawa, M; Matoba, S; Narita, M; Saito, N; Nagai, T; Imai, K

    2008-03-15

    The present study was conducted to establish a simple and efficient method of producing monozygotic twin calves using the blastomere separation technique. To produce monozygotic twin embryos from zona-free two- and eight-cell embryos, blastomeres were separated mechanically by pipetting to form two demi-embryos; each single blastomere from the two-cell embryo and tetra-blastomeres from the eight-cell embryo were cultured in vitro using the Well of the Well culture system (WOW). This culture system supported the successful arrangement of blastomeres, resulting in their subsequent aggregation to form a demi-embryo developing to the blastocyst stage without a zona pellucida. There was no significant difference in the development to the blastocyst stage between blastomeres separated from eight-cell (72.0%) and two-cell (62.0%) embryos. The production rates of the monozygotic pair blastocysts and transferable paired blastocysts for demi-embryos obtained from eight-cell embryos (64.0 and 45.0%, respectively) were higher than those for demi-embryos obtained from two-cell embryos (49.0 and 31.0%, P<0.05). The separated demi-embryos obtained from eight-cell embryos produced by IVM/IVF of oocytes collected by ovum pick-up (OPU) from elite cows and cultured in wells tended to have a higher pregnancy rate (78.9% vs. 57.1%) and similar monozygotic twinning rate (40.0% vs. 33.3%) compared with monozygotic twin blastocysts obtained by the conventional bisection of in vivo derived blastocysts. In conclusion, producing twins by separation of blastomeres in OPU-IVF embryos, followed by the WOW culture system, yielded viable monozygotic demi-embryos, resulting in high rates of pregnancy and twinning rates after embryo transfer.

  8. Synergistic Separation Behavior of Boron in Metallurgical Grade Silicon Using a Combined Slagging and Gas Blowing Refining Technique

    NASA Astrophysics Data System (ADS)

    Wu, Jijun; Zhou, Yeqiang; Ma, Wenhui; Xu, Min; Yang, Bin

    2017-02-01

    A combined slagging and gas blowing refining technique for boron removal from metallurgical grade silicon using the CaO-SiO2-CaCl2 slag and the mixed Ar-O2-H2O gas is investigated. The oxygen gas blowing in combination with water vapor shows a wonderful removal efficiency of boron compared with the single oxygen or the single water vapor blowing. It is analyzed from the thermodynamics that a synergistic separation behavior of boron is resulted from CaCl2 and O2. Boron is removed and reduced from 22 to 0.75 ppmw with a removal efficiency of 96.6 pct.

  9. A novel flotation technique for the separation of nonadherent micro-organisms from a substrate.

    PubMed

    Kadlec, Robert; Jakubec, Martin; Jaglic, Zoran

    2014-06-01

    An understanding of adherence ability is crucial in many areas, for example, in research on biofilms, evaluation of probiotics or in biotechnology. In all these analyses, the reproducible washing is very important in the prevention of false results. During washing, the force, direction of the flow, position of the pipette tip, number of washing cycles, type of washing solution and the way of removing the washing solution can be sources of inappropriate stress to attached cells. To overcome these problems, we here propose the use of high mass density solutions as flotation agents. As the density of bacteria is lower than that of the flotation solutions, nonattached or weakly attached bacteria are moved to the surface due to hydrostatic force. Caesium chloride, ammonium nitrate and sodium diatrizoate solutions, which are commonly used as FAs, were compared with a standard method of rinsing. Several concentrations of agents were used to investigate the optimal concentration and influence of hydrostatic pressure on adhered micro-organisms. We show that flotation is a rapid method for distinguishing between adhered and weakly attached or loosed cells with reproducible results. Due to its range of possible mass density concentration, the best FA was shown to be caesium chloride. This is the first study that suggests using flotation agents to separate planktonic from adhered bacteria. When a high-density solution is used, buoyancy of bacteria ensures their segregation in the solution. Flotation agents could be used instead of washing procedure, which is inaccurate and hardly reproducible. High-density flotation agents could be used for more precise evaluation of bacterial adherence in many assays, such as research of biofilms or evaluation of probiotics. © 2014 The Society for Applied Microbiology.

  10. A new method for base flow separation based on heads illustrated in the Pang catchment (UK)

    NASA Astrophysics Data System (ADS)

    Peters, E.; van Lanen, H. A. J.

    2003-04-01

    A new separation filter based on observed groundwater heads was developed to separate streamflow into two components: base flow and direct runoff. Base flow was estimated using heads and direct runoff was estimated using excess precipitation. Together they were calibrated on the observed total streamflow. Instead of one best solution, a range of satisfactory solutions derived from a Monte Carlo simulation was accepted. For the calibration, data from two nested gauging stations in the Pang catchment (UK) were used. The streamflow at the upstream station is strongly dominated by base flow from the main aquifer. The downstream station also includes a significant flow component from a fast responding region with low permeability deposits. The results of this separation filter were compared to the results from three other filters, namely an arithmetic filter (BFI), the Boughton two-parameter digital filter and another filter based on heads developed by Kliner and Knĕžek. For the upstream station three of the filters gave reasonable, consistent estimates, only the estimates from the Kliner and Knĕžek filter, which are minimum estimates, were lower. For the downstream station, however, the base flow estimates differ. The base flow estimate from the method proposed in this paper is considerably lower than for the BFI and Boughton filters. These filters do not distinguish between interflow from the low permeability deposits in the downstream part of the catchment and the much more delayed outflow from the main aquifer, and thus the base flow estimate was only slightly smaller for the downstream station than for the upstream station. The filter proposed in this paper based on heads only estimates the base flow component derived from the main aquifer. The main difference occurs during winter. Apparantly in this period of the year a large component interflow occurs which cannot directly be related to precipitation, but which is neither derived from the main aquifer.

  11. Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based microfluidic device.

    PubMed

    Didar, Tohid Fatanat; Li, Kebin; Veres, Teodor; Tabrizian, Maryam

    2013-07-01

    Despite the advances made in the field of regenerative medicine, the progress in cutting-edge technologies for separating target therapeutic cells are still at early stage of development. These cells are often rare, such as stem cells or progenitor cells that their overall properties should be maintained during the separation process for their subsequent application in regenerative medicine. This work, presents separation of oligodendrocyte progenitor cells (OPCs) from rat brain primary cultures using an integrated thermoplastic elastomeric (TPE)- based multilayer microfluidic device fabricated using hot-embossing technology. OPCs are frequently used in recovery, repair and regeneration of central nervous system after injuries. Indeed, their ability to differentiate in vitro into myelinating oligodendrocytes, are extremely important for myelin repair. OPCs form 5-10% of the glial cells population. The traditional macroscale techniques for OPCs separation require pre-processing of cells and/or multiple time consuming steps with low efficiency leading very often to alteration of their properties. The proposed methodology implies to separate OPCs based on their smaller size compared to other cells from the brain tissue mixture. Using aforementioned microfluidic chip embedded with a 5 μm membrane pore size and micropumping system, a separation efficiency more than 99% was achieved. This microchip was able to operate at flow rates up to 100 μl/min, capable of separating OPCs from a confluent 75 cm(2) cell culture flask in less than 10 min, which provides us with a high-throughput and highly efficient separation expected from any cell sorting techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Magnetic separation of iron-based nanosorbents from watery solutions

    NASA Astrophysics Data System (ADS)

    Medvedeva, Irina; Bakhteeva, Iuliia; Zhakov, Sergey; Baerner, Klaus

    2016-04-01

    Iron and iron oxide magnetic nanoparticles (MNP) both naked and with chemically modified surface are promising agents for different environmental applications, in particular for water purification and for analytical control of water and soil pollution. The MNP can be used as sorbents with selective abilities due to designed surface functionalization. While a lot of research has been devoted to the impurity sorption processes, the second part, that is the efficient removal of the MNP sorbents from the watery solution, has not been sufficiently studied so far. For that particles with magnetic cores are especially attractive due to the possibility of their subsequent magnetic separation from water without using coagulants, i.e. without a secondary water pollution, just by applying external magnetic fields B. In order to remove magnetic sorbent nanoparticles ( 10-100 nm) effectively from the water solution gradient magnetic fields are required. Depending on the MNP size, the magnetic moment, the chemical properties of the solution, the water purification conditions , either the low gradient magnetic separation (LGMS) with dB/dz < 100 T/m or the high gradient magnetic separation (HGMS) with dB/dz > 100 T/m is used. The gradient magnetic field is provided by permanent magnets or electromagnets of different configuration. In this work the sedimentation dynamics of naked Fe3O4 and Fe3O4@SiO2 nanoparticles (10-30 nm) in water was studied in a vertical gradient magnetic field (B1 ≤ 0.3T, dB/dz ≤ 0.13 T/cm). By this LGMS , the sedimentation time of the naked Fe3O4 NP is reduced down from several days to several minutes. The sedimentation time for Fe3O4@SiO2 decreases from several weeks to several hours and to several minutes when salts Na2SO4, CaCl2, NaH2PO4 are added to the solution. The results are interpreted in terms of MNP aggregate formation caused by electrostatic, steric and magnetic inter-particle interactions in the watery solution. ACKNOWLEDGMENTS The work was

  13. An investigation of paper based microfluidic devices for size based separation and extraction applications.

    PubMed

    Zhong, Z W; Wu, R G; Wang, Z P; Tan, H L

    2015-09-01

    Conventional microfluidic devices are typically complex and expensive. The devices require the use of pneumatic control systems or highly precise pumps to control the flow in the devices. This work investigates an alternative method using paper based microfluidic devices to replace conventional microfluidic devices. Size based separation and extraction experiments conducted were able to separate free dye from a mixed protein and dye solution. Experimental results showed that pure fluorescein isothiocyanate could be separated from a solution of mixed fluorescein isothiocyanate and fluorescein isothiocyanate labeled bovine serum albumin. The analysis readings obtained from a spectrophotometer clearly show that the extracted tartrazine sample did not contain any amount of Blue-BSA, because its absorbance value was 0.000 measured at a wavelength of 590nm, which correlated to Blue-BSA. These demonstrate that paper based microfluidic devices, which are inexpensive and easy to implement, can potentially replace their conventional counterparts by the use of simple geometry designs and the capillary action. These findings will potentially help in future developments of paper based microfluidic devices.

  14. Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates

    PubMed Central

    Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura

    2016-01-01

    Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790

  15. A comparative study of Sephadex, glass wool and Percoll separation techniques on sperm quality and IVF results for cryopreserved bovine semen.

    PubMed

    Lee, Hae-Lee; Kim, Sue-Hee; Ji, Dong-Beom; Kim, Yong-Jun

    2009-09-01

    The aim of this study was to compare the effects of spermatozoa separation techniques on sperm quality and in-vitro fertilization (IVF) results for cryopreserved bovine semen. Sephadex, glass wool and Percoll gradient separation techniques were used for sperm separation and sperm motility, morphology and membrane integrity were evaluated before and after separation. Also, cleavage and blastocyst developmental rate were investigated after IVF with sperm recovered by each separation technique. The motility of samples obtained by the three separation techniques were greater compared to the control samples (p < 0.05). The percentage of spermatozoa with intact plasma-membrane integrity, identified by 6-carboxyfluoresceindiacetate/ propidium iodide fluorescent staining and the hypo-osmotic swelling test, was highest in the glass wool filtration samples (p < 0.05). The cleavage and blastocyst rate of total oocytes produced from glass wool filtration samples were also higher than the control and Sephadex filtration samples (p < 0.05), but were not significantly different from Percoll separation samples. However, a significantly greater number of cleaved embryos produced by glass wool filtration developed to blastocyst stage than those produced by Percoll separation (p < 0.05). These results indicate that spermatozoa with good quality can be achieved by these three separation techniques and can be used for bovine IVF. In particular, it suggests that glass wool filtration would be the most effective method of the three for improving sperm quality and embryo production for cryopreserved bovine spermatozoa.

  16. DCT-based cyber defense techniques

    NASA Astrophysics Data System (ADS)

    Amsalem, Yaron; Puzanov, Anton; Bedinerman, Anton; Kutcher, Maxim; Hadar, Ofer

    2015-09-01

    With the increasing popularity of video streaming services and multimedia sharing via social networks, there is a need to protect the multimedia from malicious use. An attacker may use steganography and watermarking techniques to embed malicious content, in order to attack the end user. Most of the attack algorithms are robust to basic image processing techniques such as filtering, compression, noise addition, etc. Hence, in this article two novel, real-time, defense techniques are proposed: Smart threshold and anomaly correction. Both techniques operate at the DCT domain, and are applicable for JPEG images and H.264 I-Frames. The defense performance was evaluated against a highly robust attack, and the perceptual quality degradation was measured by the well-known PSNR and SSIM quality assessment metrics. A set of defense techniques is suggested for improving the defense efficiency. For the most aggressive attack configuration, the combination of all the defense techniques results in 80% protection against cyber-attacks with PSNR of 25.74 db.

  17. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

    PubMed Central

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised. PMID:25731716

  18. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2015-03-03

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised.

  19. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

    NASA Astrophysics Data System (ADS)

    Brown, Philip S.; Bhushan, Bharat

    2015-03-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised.

  20. Evolutionary multi-objective optimization based comparison of multi-column chromatographic separation processes for a ternary separation.

    PubMed

    Heinonen, Jari; Kukkonen, Saku; Sainio, Tuomo

    2014-09-05

    Performance characteristics of two advanced multi-column chromatographic separation processes with discontinuous feed, Multi-Column Recycling Chromatogrphy (MCRC) and Japan Organo (JO), were investigated for a ternary separation using multi-objective optimization with an evolutionary algorithm. Conventional batch process was used as a reference. Fractionation of a concentrated acid hydrolysate of wood biomass into sulfuric acid, monosaccharide, and acetic acid fractions was used as a model system. Comparison of the separation processes was based on selected performance parameters in their optimized states. Flow rates and step durations were taken as decision variables whereas the column configuration and dimensions were fixed. The MCRC process was found to be considerably more efficient than the other processes with respect to eluent consumption. The batch process gave the highest productivity and the JO process the lowest. Both of the multi-column processes gave significantly higher monosaccharide yield than the batch process. When eluent consumption and monosaccharide yield are taken into account together with productivity, the MCRC process was found to be the most efficient in the studied case.

  1. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yanilmaz, Meltem; Lu, Yao; Zhu, Jiadeng; Zhang, Xiangwu

    2016-05-01

    Silica/polyacrylonitrile (SiO2/PAN) hybrid nanofiber membranes were fabricated by using sol-gel and electrospinning techniques and their electrochemical performance was evaluated for use as separators in lithium-ion batteries. The aim of this study was to design high-performance separator membranes with enhanced electrochemical performance and good thermal stability compared to microporous polyolefin membranes. In this study, SiO2 nanoparticle content up to 27 wt% was achieved in the membranes by using sol-gel technique. It was found that SiO2/PAN hybrid nanofiber membranes had superior electrochemical performance with good thermal stability due to their high SiO2 content and large porosity. Compared with commercial microporous polyolefin membranes, SiO2/PAN hybrid nanofiber membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN hybrid nanofiber membranes with different SiO2 contents (0, 16, 19 and 27 wt%) were also assembled into lithium/lithium iron phosphate cells, and high cell capacities and good cycling performance were demonstrated at room temperature. In addition, cells using SiO2/PAN hybrid nanofiber membranes with high SiO2 contents showed superior C-rate performance compared to those with low SiO2 contents and commercial microporous polyolefin membrane.

  2. Onsets, autocorrelation functions and spikes for direction-based sound source separation

    NASA Astrophysics Data System (ADS)

    Smith, Leslie S.; Fraser, Dagmar S.

    2005-04-01

    The aim of this work is separation of foreground speech from background sound sources using selective remixing of bandpass filtered channels. Clearly, the remixing parameters must be dynamic since the speech and noise spectra are highly non-stationary. Remixing parameters are recomputed at onsets, detected using biologically motivated techniques [L. S. Smith and D. S. Fraser, IEEE TNNS 15, 1125-1134 (2004)]. However, onsets may originate from the foreground or the background. To select appropriate onsets from the foreground source (whose direction is known) a two microphone system is used, selecting onsets for which the estimated direction in that channel corresponds to the foreground direction. Two different techniques for direction estimation are used: a channel by channel short-term autocorrelation technique, and a channel by channel spike based phase synchronous system (SBPSS), computing ITDs [L. S. Smith, in Artificial Neural Networks, Proc ICANN 2001, LNCS 2130, pp. 1103-1108 (Springer, 2001)] and IIDs [L. S. Smith, in From Animals to Animats, Vol. 7, pp. 60-61 (MIT Press, 2002)]. Results comparing the performance of autocorrelation and SBPSS on single source and source plus noise signals in an office environment are presented. [Work supported by UK EPSRC.

  3. Nasal base narrowing: the combined alar base excision technique.

    PubMed

    Foda, Hossam M T

    2007-01-01

    To evaluate the role of the combined alar base excision technique in narrowing the nasal base and correcting excessive alar flare. The study included 60 cases presenting with a wide nasal base and excessive alar flaring. The surgical procedure combined an external alar wedge resection with an internal vestibular floor excision. All cases were followed up for a mean of 32 (range, 12-144) months. Nasal tip modification and correction of any preexisting caudal septal deformities were always completed before the nasal base narrowing. The mean width of the external alar wedge excised was 7.2 (range, 4-11) mm, whereas the mean width of the sill excision was 3.1 (range, 2-7) mm. Completing the internal excision first resulted in a more conservative external resection, thus avoiding any blunting of the alar-facial crease. No cases of postoperative bleeding, infection, or keloid formation were encountered, and the external alar wedge excision healed with an inconspicuous scar that was well hidden in the depth of the alar-facial crease. Finally, the risk of notching of the alar rim, which can occur at the junction of the external and internal excisions, was significantly reduced by adopting a 2-layered closure of the vestibular floor (P = .01). The combined alar base excision resulted in effective narrowing of the nasal base with elimination of excessive alar flare. Commonly feared complications, such as blunting of the alar-facial crease or notching of the alar rim, were avoided by using simple modifications in the technique of excision and closure.

  4. Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides.

    PubMed

    Madera, Milan; Mechref, Yehia; Novotny, Milos V

    2005-07-01

    Silica-based lectin microcolumns are described in this study together with the chemical procedures necessary for their preparation. The analytical merits of Canavalia ensiformis and Sambucus nigra lectins, [immobilized on activated macroporous silica], such as binding capacity, trapping reproducibility, and substrate selectivity, have been evaluated using model glycoproteins. The described microcolumns are applicable to high-pressure analytical schemes utilizing microvalving procedures, washing steps, and quantitative desorption for LC/MS analysis. The described analytical systems are amenable to the applications aiming at fractionation of complex glycopeptide mixtures and determination of the sites of glycosylation.

  5. Blind I/Q Signal Separation-Based Solutions for Receiver Signal Processing

    NASA Astrophysics Data System (ADS)

    Valkama, Mikko; Renfors, Markku; Koivunen, Visa

    2005-12-01

    This paper introduces some novel digital signal processing (DSP)-based approaches to some of the most fundamental tasks of radio receivers, namely, channel equalization, carrier synchronization, and I/Q mismatch compensation. The leading principle is to show that all these problems can be solved blindly (i.e., without training signals) by forcing the I and Q components of the observed data as independent as possible. Blind signal separation (BSS) is then introduced as an efficient tool to carry out these tasks, and simulation examples are used to illustrate the performance of the proposed approaches. The main application area of the presented carrier synchronization and I/Q mismatch compensation techniques is in direct-conversion type receivers, while the proposed channel equalization principles basically apply to any radio architecture.

  6. Gold nanomaterials based pseudostationary phases in capillary electrophoresis: a brand-new attempt at chondroitin sulfate isomers separation.

    PubMed

    Zhao, Ting; Zhou, Guanglian; Wu, Yuanhong; Liu, Xiumei; Wang, Fengshan

    2015-02-01

    In this work, a CE method with bare gold nanorods (GNRs) based pseudostationary phase was developed and applied for the separation of chondroitin sulfate (CS) isomers, CS, and dermatan sulfate (DS). The separation efficiency was investigated by varying the experimental parameters such as concentration and pH of the BGE, separation voltage, internal diameter of capillary, different size, and morphology of gold nanomaterials. Results showed that different size and morphology of gold nanomaterials had different effects on the separation of CS and DS. The best separation of CS and DS was achieved in the BGE composed of aqueous 150 mmol/L (mM) ethylenediamine + 20 mM sodium dihydrogen phosphate + 30% v/v GNRs, pH 4.5, at the separation voltage of -10 kV. Capillary was 59.2 cm in length (effective length 49 cm), 50 μm id capillary thermostated at 25°C. CE with bare GNRs used as pseudostationary phase was shown to be a suitable technique for the separation of CS and DS mixtures with wider peaks. RSD of migration time and peak area of CS and DS were 0.13, 0.14 and 0.86, 1.07%, respectively.

  7. Applying knowledge compilation techniques to model-based reasoning

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    Researchers in the area of knowledge compilation are developing general purpose techniques for improving the efficiency of knowledge-based systems. In this article, an attempt is made to define knowledge compilation, to characterize several classes of knowledge compilation techniques, and to illustrate how some of these techniques can be applied to improve the performance of model-based reasoning systems.

  8. A Model of Turbulence, Sediment Transport and Morphodynamics of Lateral Separation Zones in Canyon Rivers using Detached Eddy Simulation Technique

    NASA Astrophysics Data System (ADS)

    Alvarez, L. V.; Schmeeckle, M. W.; Grams, P. E.; Moreno, H. A.

    2015-12-01

    Lateral separation zones are featured by large-scale flow separation, secondary recirculation zones and free shear layers. In the Colorado River, lateral separation zones are the principal source of fine sediment for eddy sandbars. A parallelized, three-dimensional turbulence-resolving model is coupled with a continuum sediment transport model and tested in lateral separation zones located in two pools along the Colorado River in Marble Canyon. The model aims to study the flow and sediment dynamics of lateral separation zones, recognizing the important role that these processes play in the erosion, deposition and morphodynamics of eddy sandbars. The Detached Eddy Simulation (DES) technique is employed for fully resolved turbulence at larger scales than the Sub-Grid-Scale (SGS) while SGS turbulence is modeled using the Spalart-Allmaras one equation turbulence closure model. This DES-3D flow model is coupled to a sediment advection-diffusion formulation, wherein advection is provided by the DES velocity field minus particles settling velocity, and diffusion is provided by the SGS. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the near-bed grid cells. Five groups of sediment sizes are employed and estimated using a mixing layer model. Each fraction of the grain size group is redistributed every time step. Thus, the model is able to predict the exposure and burial of bedrock by fine grain size sediment. The simulated results show a pattern of unsteady pulsations in the exchange of concentration of sediment and deposition fluxes between the primary zone and the main channel. This exchange occurs at the convergence and divergence zones. These pulsations are more accentuated at the convergence zone, but still evidenced at the divergence zone. Along the simulated river-reach, the concentration values increase in the constrictions and decrease in the main channel. At both rapids, net

  9. Lab-chip HPLC with integrated droplet-based microfluidics for separation and high frequency compartmentalisation.

    PubMed

    Kim, Jin-Young; Cho, Soong-Won; Kang, Dong-Ku; Edel, Joshua B; Chang, Soo-Ik; deMello, Andrew J; O'Hare, Danny

    2012-09-21

    We demonstrate the integration of a droplet-based microfluidic device with high performance liquid chromatography (HPLC) in a monolithic format. Sequential operations of separation, compartmentalisation and concentration counter were conducted on a monolithic chip. This describes the use of droplet-based microfluidics for the preservation of chromatographic separations, and its potential application as a high frequency fraction collector.

  10. Flood alert system based on bayesian techniques

    NASA Astrophysics Data System (ADS)

    Gulliver, Z.; Herrero, J.; Viesca, C.; Polo, M. J.

    2012-04-01

    The problem of floods in the Mediterranean regions is closely linked to the occurrence of torrential storms in dry regions, where even the water supply relies on adequate water management. Like other Mediterranean basins in Southern Spain, the Guadalhorce River Basin is a medium sized watershed (3856 km2) where recurrent yearly floods occur , mainly in autumn and spring periods, driven by cold front phenomena. The torrential character of the precipitation in such small basins, with a concentration time of less than 12 hours, produces flash flood events with catastrophic effects over the city of Malaga (600000 inhabitants). From this fact arises the need for specific alert tools which can forecast these kinds of phenomena. Bayesian networks (BN) have been emerging in the last decade as a very useful and reliable computational tool for water resources and for the decision making process. The joint use of Artificial Neural Networks (ANN) and BN have served us to recognize and simulate the two different types of hydrological behaviour in the basin: natural and regulated. This led to the establishment of causal relationships between precipitation, discharge from upstream reservoirs, and water levels at a gauging station. It was seen that a recurrent ANN model working at an hourly scale, considering daily precipitation and the two previous hourly values of reservoir discharge and water level, could provide R2 values of 0.86. BN's results slightly improve this fit, but contribute with uncertainty to the prediction. In our current work to Design a Weather Warning Service based on Bayesian techniques the first steps were carried out through an analysis of the correlations between the water level and rainfall at certain representative points in the basin, along with the upstream reservoir discharge. The lower correlation found between precipitation and water level emphasizes the highly regulated condition of the stream. The autocorrelations of the variables were also

  11. Entanglement-Based dc Magnetometry with Separated Ions*

    NASA Astrophysics Data System (ADS)

    Ruster, T.; Kaufmann, H.; Luda, M. A.; Kaushal, V.; Schmiegelow, C. T.; Schmidt-Kaler, F.; Poschinger, U. G.

    2017-07-01

    We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type |↑↓ ⟩ +ei φ|↓↑ ⟩ encoded in two 40Ca+ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ , which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1 /2 ground state and in the D5 /2 metastable state are used to separate an ac Zeeman shift from the linear dc Zeeman effect. We measure magnetic-field differences over distances of up to 6.2 mm, with accuracies down to 300 fT and sensitivities down to 12 pT /√{Hz }. Our sensing scheme features spatial resolutions in the 20-nm range. For optimizing the information gain while maintaining a high dynamic range, we implement an algorithm for Bayesian frequency estimation.

  12. Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra

    NASA Astrophysics Data System (ADS)

    Luce, R.; Hildebrandt, P.; Kuhlmann, U.; Liesen, J.

    2016-09-01

    The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for non-negative matrix factorization which is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.

  13. Selective surface modification technique for improvement of chromatographic separation selectivity for sugar derivatives.

    PubMed

    Hosoya, Ken; Yoshizako, Kimihiro; Kubo, Takuya; Ikegami, Tohru; Tanaka, Nobuo; Haginaka, Jun

    2002-01-01

    Highly cross-linked macroporous polymers were prepared utilizing ethylene dimethacrylate as a cross-linking agent, in the presence or absence of methyl-alpha-D-glucoside as a kind of template molecule with methacrylic acid as a functional monomer. After the preparation of the polymers, we applied a high temperature to the cross-linked polymers to study the changes of adsorption properties of the polymers for sugar derivatives including the template molecule utilized. Interestingly, the heat treatment up to 250 degrees C afforded improvement of relative adsorption affinity for several sugar derivatives including the template molecule, while heat treatment up to 150 degrees C did not afford those improvements. The detailed studies including polymers prepared using acrylic acid as a functional monomer instead of methacrylic acid prove that temperatures higher than the Tg temperature of the polymer derived from a functional monomer such as methacrylic acid and higher than the melting point (mp) of the sugar template are necessary to afford the observed improvement of relative affinity based on the surface modification effects through the heat treatment to cross-linked polymers.

  14. Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra.

    PubMed

    Luce, Robert; Hildebrandt, Peter; Kuhlmann, Uwe; Liesen, Jörg

    2016-09-01

    The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for nonnegative matrix factorization that is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with the vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.

  15. Sample injection and electrophoretic separation on a simple laminated paper based analytical device.

    PubMed

    Xu, Chunxiu; Zhong, Minghua; Cai, Longfei; Zheng, Qingyu; Zhang, Xiaojun

    2016-02-01

    We described a strategy to perform multistep operations on a simple laminated paper-based separation device by using electrokinetic flow to manipulate the fluids. A laminated crossed-channel paper-based separation device was fabricated by cutting a filter paper sheet followed by lamination. Multiple function units including sample loading, sample injection, and electrophoretic separation were integrated on a single paper based analytical device for the first time, by applying potential at different reservoirs for sample, sample waste, buffer, and buffer waste. As a proof-of-concept demonstration, mixed sample solution containing carmine and sunset yellow were loaded in the sampling channel, and then injected into separation channel followed by electrophoretic separation, by adjusting the potentials applied at the four terminals of sampling and separation channel. The effects of buffer pH, buffer concentration, channel width, and separation time on resolution of electrophoretic separation were studied. This strategy may be used to perform multistep operations such as reagent dilution, sample injection, mixing, reaction, and separation on a single microfluidic paper based analytical device, which is very attractive for building micro total analysis systems on microfluidic paper based analytical devices.

  16. Baseflow separation in a premontane transitional rainforest using stable isotope techniques

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; DuMont, A.; Roark, E.; Cahill, A. T.; Brumbelow, J. K.

    2013-12-01

    Hydrologic, geologic, and biologic processes are critical to understanding the ecosystem in the tropical premontane transitional forests of Costa Rica. Precipitation is significantly lower during the dry season, and incoming rainfall can be completely intercepted and re-evaporated by the canopy during light events. These canopy processes can affect the rates of runoff and infiltration by changing the quantity and timing of rainfall reaching the ground surface. However, the resulting partitioning of stream water sources between event-water and baseflow from groundwater is not well quantified due to limited accessibility and complex subsurface conditions. This study focuses on research conducted at the Texas A&M Soltis Center for Education and Research, near San Ramón, Costa Rica. We have monitored a 2.2 ha watershed there, measuring precipitation and transpiration rates for over two years, and groundwater levels and stream flow rates for nearly one year. Precipitation rates for the watershed averaged 4.4 m/yr since 2010. Stream flow (runoff, spring flow, and baseflow) averaged 0.09 m^3/sec during the 2012-2013 wet seasons. At 1.2 mm/day, transpiration was a relatively minor component of the water budget. Over a 40-day span during summer 2013, we collected a combination of daily and rain-event based samples from locations throughout the watershed. Sources included: the main stream and two small tributaries, groundwater from piezometers, pore water from suction lysimeters, throughfall and stemflow from under canopy collection systems, and xylem water from 8 tree species across the watershed. We then measured stable isotope fractions (δ18O and δD) in the water using a Picarro L2120i CRDS. Isotope ratios for all surface water averaged -5.50‰ for δ18O and -28.00‰ for δD, while that measured under baseflow conditions were -5.45‰ for δ18O and -29.18‰ for δD. These results indicate that baseflow is the dominate source of stream water even in the wet season

  17. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evidence-Based Practice: Separating Science From Pseudoscience

    PubMed Central

    Lee, Catherine M; Hunsley, John

    2015-01-01

    Evidence-based practice (EBP) requires that clinicians be guided by the best available evidence. In this article, we address the impact of science and pseudoscience on psychotherapy in psychiatric practice. We describe the key principles of evidence-based intervention. We describe pseudoscience and provide illustrative examples of popular intervention practices that have not been abandoned, despite evidence that they are not efficacious and may be harmful. We distinguish efficacy from effectiveness, and describe modular approaches to treatment. Reasons for the persistence of practices that are not evidence based are examined at both the individual and the professional system level. Finally, we offer suggestions for the promotion of EBP through clinical practice guidelines, modelling of scientific decision making, and training in core skills. PMID:26720821

  19. Evidence-Based Practice: Separating Science From Pseudoscience.

    PubMed

    Lee, Catherine M; Hunsley, John

    2015-12-01

    Evidence-based practice (EBP) requires that clinicians be guided by the best available evidence. In this article, we address the impact of science and pseudoscience on psychotherapy in psychiatric practice. We describe the key principles of evidence-based intervention. We describe pseudoscience and provide illustrative examples of popular intervention practices that have not been abandoned, despite evidence that they are not efficacious and may be harmful. We distinguish efficacy from effectiveness, and describe modular approaches to treatment. Reasons for the persistence of practices that are not evidence based are examined at both the individual and the professional system level. Finally, we offer suggestions for the promotion of EBP through clinical practice guidelines, modelling of scientific decision making, and training in core skills.

  20. Chemical shift-based water/fat separation in the presence of susceptibility-induced fat resonance shift

    PubMed Central

    Karampinos, Dimitrios C.; Yu, Huanzhou; Shimakawa, Ann; Link, Thomas M.; Majumdar, Sharmila

    2011-01-01

    Chemical shift-based water/fat separation methods have been emerging due to the growing clinical need for fat quantification in different body organs. Accurate quantification of proton-density fat fraction requires the assessment of many confounding factors, including the need of modeling the presence of multiple peaks in the fat spectrum. Most recent quantitative chemical shift-based water/fat separation approaches rely on a multi-peak fat spectrum with pre-calibrated peak locations and pre-calibrated or self-calibrated peak relative amplitudes. However, water/fat susceptibility differences can induce fat spectrum resonance shifts depending on the shape and orientation of the fatty inclusions. The effect is of particular interest in the skeletal muscle due to the anisotropic arrangement of extracellular lipids. In the present work, the effect of susceptibility-induced fat resonance shift on the fat fraction is characterized in a conventional complex-based chemical shift-based water/fat separation approach that does not model the susceptibility-induced fat resonance shift. A novel algorithm is then proposed in order to quantify the resonance shift in a complex-based chemical shift-based water/fat separation approach that considers the fat resonance shift in the signal model, aiming to extract information about the orientation/geometry of lipids. The technique is validated in a phantom and preliminary in vivo results are shown in the calf musculature of healthy and diabetic subjects. PMID:22247024

  1. A New Strategy of Lithography Based on Phase Separation of Polymer Blends

    PubMed Central

    Guo, Xu; Liu, Long; Zhuang, Zhe; Chen, Xin; Ni, Mengyang; Li, Yang; Cui, Yushuang; Zhan, Peng; Yuan, Changsheng; Ge, Haixiong; Wang, Zhenlin; Chen, Yanfeng

    2015-01-01

    Herein, we propose a new strategy of maskless lithographic approach to fabricate micro/nano-porous structures by phase separation of polystyrene (PS)/Polyethylene glycol (PEG) immiscible polymer blend. Its simple process only involves a spin coating of polymer blend followed by a development with deionized water rinse to remove PEG moiety, which provides an extremely facile, low-cost, easily accessible nanofabrication method to obtain the porous structures with wafer-scale. By controlling the weight ratio of PS/PEG polymer blend, its concentration and the spin-coating speed, the structural parameters of the porous nanostructure could be effectively tuned. These micro/nano porous structures could be converted into versatile functional nanostructures in combination with follow-up conventional chemical and physical nanofabrication techniques. As demonstrations of perceived potential applications using our developed phase separation lithography, we fabricate wafer-scale pure dielectric (silicon)-based two-dimensional nanostructures with high broadband absorption on silicon wafers due to their great light trapping ability, which could be expected for promising applications in the fields of photovoltaic devices and thermal emitters with very good performances, and Ag nanodot arrays which possess a surface enhanced Raman scattering (SERS) enhancement factor up to 1.64 × 108 with high uniformity across over an entire wafer. PMID:26515790

  2. A New Strategy of Lithography Based on Phase Separation of Polymer Blends

    NASA Astrophysics Data System (ADS)

    Guo, Xu; Liu, Long; Zhuang, Zhe; Chen, Xin; Ni, Mengyang; Li, Yang; Cui, Yushuang; Zhan, Peng; Yuan, Changsheng; Ge, Haixiong; Wang, Zhenlin; Chen, Yanfeng

    2015-10-01

    Herein, we propose a new strategy of maskless lithographic approach to fabricate micro/nano-porous structures by phase separation of polystyrene (PS)/Polyethylene glycol (PEG) immiscible polymer blend. Its simple process only involves a spin coating of polymer blend followed by a development with deionized water rinse to remove PEG moiety, which provides an extremely facile, low-cost, easily accessible nanofabrication method to obtain the porous structures with wafer-scale. By controlling the weight ratio of PS/PEG polymer blend, its concentration and the spin-coating speed, the structural parameters of the porous nanostructure could be effectively tuned. These micro/nano porous structures could be converted into versatile functional nanostructures in combination with follow-up conventional chemical and physical nanofabrication techniques. As demonstrations of perceived potential applications using our developed phase separation lithography, we fabricate wafer-scale pure dielectric (silicon)-based two-dimensional nanostructures with high broadband absorption on silicon wafers due to their great light trapping ability, which could be expected for promising applications in the fields of photovoltaic devices and thermal emitters with very good performances, and Ag nanodot arrays which possess a surface enhanced Raman scattering (SERS) enhancement factor up to 1.64 × 108 with high uniformity across over an entire wafer.

  3. Paper-based device for separation and cultivation of single microalga.

    PubMed

    Chen, Chih-Chung; Liu, Yi-Ju; Yao, Da-Jeng

    2015-12-01

    Single-cell separation is among the most useful techniques in biochemical research, diagnosis and various industrial applications. Microalgae species have great economic importance as industrial raw materials. Microalgae species collected from environment are typically a mixed and heterogeneous population of species that must be isolated and purified for examination and further application. Conventional methods, such as serial dilution and a streaking-plate method, are intensive of labor and inefficient. We developed a paper-based device for separation and cultivation of single microalga. The fabrication was simply conducted with a common laser printer and required only a few minutes without lithographic instruments and clean-room. The driving force of the paper device was simple capillarity without a complicated pump connection that is part of most devices for microfluidics. The open-structure design of the paper device makes it operable with a common laboratory micropipette for sample transfer and manipulation with a naked eye or adaptable to a robotic system with functionality of high-throughput retrieval and analysis. The efficiency of isolating a single cell from mixed microalgae species is seven times as great as with a conventional method involving serial dilution. The paper device can serve also as an incubator for microalgae growth on simply rinsing the paper with a growth medium. Many applications such as highly expressed cell selection and various single-cell analysis would be applicable.

  4. Chip electrochromatographic systems: Novel vertically aligned carbon nanotube and silica monoliths based separations

    NASA Astrophysics Data System (ADS)

    Goswami, Shubhodeep

    2009-12-01

    Miniaturized chemical analysis systems, also know as 'lab-on-a-chip' devices have been rapidly developing over the last decade. Capillary electrochromatography (CEC), a multidimensional separation technique combining capillary electrophoresis (CE) and liquid chromatography (LC) has been of great interest for chip based applications. Preliminary work has been undertaken to develop vertically aligned carbon nanotubes and photopolymerizable silica solgel as novel stationary phase materials for 'chip CEC' separations. Patterned growth of CNTs in a specific location of the channel has been carried out using a solid phase Fe-Al catalyst as well as a vapor deposited ferrocene catalyst. Characterization of the CNT "forests" was achieved using optical microscopy, secondary electron microscopy, high resolution tunneling electron microscopy and Raman spectroscopy. Proof-of-concept applications were demonstrated using reversed phase CEC separations as well as solid phase extraction of a glycosylated protein using concanavilin A immobilized onto the CNT bed. Photopolymerizable silica solgel materials were developed as stationary phase for microfluidic electrochromatographic separations in disposable polydimethylsiloxane (PDMS) chip devices. Effect on morphology and pore size of gels were studied as function of UV and solgel polymerization conditions, porogen, salt additives, geometry and hydrolyzable methoxy-ies. Structural morphologies were studied with Secondary Electron Microscopy (SEM). Pore size and pore volumes were characterized by thermal porometry, nitrogen BET adsorptions and differential scanning calorimetry. Computational fluid dynamics and confocal microscopy tools were employed to study the transport of fluids and model analytes. These investigations were directed towards evolving improved strategies for rinsing of uncrosslinked monomers to form porous monoliths as well as to effect a desired separation under a set of electrochromatograhic conditions

  5. On Bitstream Based Edge Detection Techniques

    DTIC Science & Technology

    2009-01-01

    IEEE Transactions on, vol. 38, no. 1, pp. xviii– iv, Feb 1992. [5] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Addison-Wesley...Carmona-Poyato, R. Medina- Carnicer, and F. J. Madrid- Cuevas , “Automatic genera- tion of consensus ground truth for the comparison of edge detection techniques,” Image Vision Comput., vol. 26, no. 4, pp. 496–511, 2008.

  6. WE-G-18C-07: Accelerated Water/fat Separation in MRI for Radiotherapy Planning Using Multi-Band Imaging Techniques

    SciTech Connect

    Crijns, S; Stemkens, B; Sbrizzi, A; Lagendijk, J; Berg, C van den; Andreychenko, A

    2014-06-15

    Purpose: Dixon sequences are used to characterize disease processes, obtain good fat or water separation in cases where fat suppression fails and to obtain pseudo-CT datasets. Dixon's method uses at least two images acquired with different echo times and thus requires prolonged acquisition times. To overcome associated problems (e.g., for DCE/cine-MRI), we propose to use a method for water/fat separation based on spectrally selective RF pulses. Methods: Two alternating RF pulses were used, that imposes a fat selective phase cycling over the phase encoding lines, which results in a spatial shift for fat in the reconstructed image, identical to that in CAIPIRINHA. Associated aliasing artefacts were resolved using the encoding power of a multi-element receiver array, analogous to SENSE. In vivo measurements were performed on a 1.5T clinical MR-scanner in a healthy volunteer's legs, using a four channel receiver coil. Gradient echo images were acquired with TE/TR = 2.3/4.7ms, flip angle 20°, FOV 45×22.5cm{sup 2}, matrix 480×216, slice thickness 5mm. Dixon images were acquired with TE,1/TE,2/TR=2.2/4.6/7ms. All image reconstructions were done in Matlab using the ReconFrame toolbox (Gyrotools, Zurich, CH). Results: RF pulse alternation yields a fat image offset from the water image. Hence the water and fat images fold over, which is resolved using in-plane SENSE reconstruction. Using the proposed technique, we achieved excellent water/fat separation comparable to Dixon images, while acquiring images at only one echo time. Conclusion: The proposed technique yields both inphase water and fat images at arbitrary echo times and requires only one measurement, thereby shortening the acquisition time by a factor 2. In future work the technique may be extended to a multi-band water/fat separation sequence that is able to achieve single point water/fat separation in multiple slices at once and hence yields higher speed-up factors.

  7. The use of conducting polymers in membrane-based separations: a review and recent developments.

    PubMed

    Pellegrino, John

    2003-03-01

    As a material family, pi-conjugated polymers (also known as intrinsically conductive polymers) elicit the possibility of both exploiting the chemical and physical attributes of the polymer for membrane-based separations and incorporating its electronic and electrochemical properties to enhance the separation figures-of-merit. This review article, although by no means comprehensive, provides a current snapshot of the investigations from many research laboratories in the use of conducting polymers for membrane-based separations. The review focuses primarily on polyaniline, polypyrrole, and substituted-polythiophene and includes applications in gas separations, liquid (and/or vapor) separations, and ion separations. Additionally, we discuss the broad challenges and accomplishments in membrane formation from conducting polymers.

  8. Conventional and Advanced Separations in Mass Spectrometry-Based Metabolomics: Methodologies and Applications

    SciTech Connect

    Heyman, Heino M.; Zhang, Xing; Tang, Keqi; Baker, Erin Shammel; Metz, Thomas O.

    2016-02-16

    Metabolomics is the quantitative analysis of all metabolites in a given sample. Due to the chemical complexity of the metabolome, optimal separations are required for comprehensive identification and quantification of sample constituents. This chapter provides an overview of both conventional and advanced separations methods in practice for reducing the complexity of metabolite extracts delivered to the mass spectrometer detector, and covers gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), supercritical fluid chromatography (SFC) and ion mobility spectrometry (IMS) separation techniques coupled with mass spectrometry (MS) as both uni-dimensional and as multi-dimensional approaches.

  9. Evaluation of strategies for size based separation of polydisperse vesicle suspensions

    NASA Astrophysics Data System (ADS)

    Storslett, Kari J.; Muller, Susan J.

    2016-11-01

    Microfluidic devices can be used to separate suspensions of deformable particles with different intrinsic characteristics (e.g. size) with reasonable throughputs and without external labeling. Using vesicle suspensions to test microfluidic separation schemes provides insight into cell separation. Two schemes for separating vesicle suspensions by size are discussed: filtration and inertial focusing. The filter physically prevents most large vesicles from passing through. The filtrate is collected at one outlet and the larger vesicles are collected at another. This device showed good size separation between the two collected suspensions and was able to reduce the polydispersity of the collected suspensions relative to the original suspension. The inertial separation device was based on a design studied by Di Carlo et al.. This design was modified for our suspension and showed an ability to separate the suspension by size; however, the separated suspension's polydispersity was only slightly reduced. The advantage of the inertial separation device was its greatly increased throughput. A separation strategy may be selected based on the relative importance of high throughput vs. reduced polydispersity.

  10. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method of making the same

    SciTech Connect

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.

    2011-02-15

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  11. A search technique for planets in nearby binary stars using a ground-based interferometer

    NASA Astrophysics Data System (ADS)

    Traub, W. A.; Carleton, N. P.; Porro, I. L.

    1996-04-01

    A search for Jovian-type planets in 100 nearby binary stars could be carried out with the existing ground-based infrared-optical telescope array (IOTA) interferometer. We would study binaries with sufficiently great separation (25-50 AU; typical separation around 0.4 arcsec) that such a planet could be in a stable orbit about one member of the pair. The method is to measure the angular separation of stars in each binary, with a single-measurement accuracy sufficient to detect the amplitude of a Uranus orbiting one of the stars. The technique is based on an auxiliary device, the pupil-splitting interferometer (PSI), which substantially reduces systematic and random errors by converting a measurement of angular separation into a measurement of the differential optical delay between the two components of the binary. The program would be relatively economical, and could begin soon.

  12. Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators.

    PubMed

    Davalos, Rafael V; McGraw, Gregory J; Wallow, Thomas I; Morales, Alfredo M; Krafcik, Karen L; Fintschenko, Yolanda; Cummings, Eric B; Simmons, Blake A

    2008-02-01

    Efficient and robust particle separation and enrichment techniques are critical for a diverse range of lab-on-a-chip analytical devices including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. Previously, using insulator-based dielectrophoresis (iDEP) in microfluidic glass devices, we demonstrated simultaneous particle separation and concentration of various biological organisms, polymer microbeads, and viruses. As an alternative to glass, we evaluate the performance of similar iDEP structures produced in polymer-based microfluidic devices. There are numerous processing and operational advantages that motivate our transition to polymers such as the availability of numerous innate chemical compositions for tailoring performance, mechanical robustness, economy of scale, and ease of thermoforming and mass manufacturing. The polymer chips we have evaluated are fabricated through an injection molding process of the commercially available cyclic olefin copolymer Zeonor 1060R. This publication is the first to demonstrate insulator-based dielectrophoretic biological particle differentiation in a polymeric device injection molded from a silicon master. The results demonstrate that the polymer devices achieve the same performance metrics as glass devices. We also demonstrate an effective means of enhancing performance of these microsystems in terms of system power demand through the use of a dynamic surface coating. We demonstrate that the commercially available nonionic block copolymer surfactant, Pluronic F127, has a strong interaction with the cyclic olefin copolymer at very low concentrations, positively impacting performance by decreasing the electric field necessary to achieve particle trapping by an order of magnitude. The presence of this dynamic surface coating, therefore, lowers the power required to operate such devices and minimizes Joule heating. The results of this study demonstrate that iDEP polymeric

  13. Towards mosquito sterile insect technique programmes: exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes.

    PubMed

    Gilles, Jeremie R L; Schetelig, Marc F; Scolari, Francesca; Marec, František; Capurro, Margareth L; Franz, Gerald; Bourtzis, Kostas

    2014-04-01

    When considering a mosquito release programme, one of the first issues to be addressed is how to eliminate/separate the females. The greatest number of options might eventually be available for those who can use transgenic mosquitoes, but the inherent characteristics of the target species may also provide possibilities for interim measures until more efficient methods can be developed. Differences in intrinsic size, in behaviour and in development rate between females and males are often available and useful for sexing. Efficient species-specific systems for eliminating females at the embryo stage have been developed, but most have since been discarded due to lack of use. Ideal systems specifically kill female embryos using some treatment that can be manipulated during production. Such killing systems are far more efficient than using intrinsic sexual differences, but they systems require selectable genetic markers and sex-linkage created by rare random chromosomal rearrangements. While intrinsic sexual differences should not be considered as long-term candidates for the development of robust and efficient sexing approaches, in the absence of these, the accessibility and integration of less efficient systems can provide a stop-gap measure that allows rapid start up with a minimum of investment. The International Atomic Energy Agency is funding over a 5 year period (2013-2018) a new Coordinated Research Project on "Exploring Genetic, Molecular, Mechanical and Behavioural Methods of Sex Separation in Mosquitoes" to network researchers and to address the critical need of genetic sexing strains for the implementation of the sterile insect technique (using radiation-sterilised or transgenic male mosquitoes) and for insect incompatibility technique programmes against disease-transmitting mosquitoes. Copyright © 2013 International Atomic Energy Agency. Published by Elsevier B.V. All rights reserved.

  14. Liquid Tunable Microlenses based on MEMS techniques

    PubMed Central

    Zeng, Xuefeng; Jiang, Hongrui

    2013-01-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven, and those integrated within microfluidic systems. PMID:24163480

  15. PIE: A Dynamic Failure-Based Technique

    NASA Technical Reports Server (NTRS)

    Voas, Jeffrey M.

    1990-01-01

    This paper presents a dynamic technique for statistically estimating three program characteristics that affect a program's computational behavior: (1) the probability that a particular section of a program is executed, (2) the probability that the particular section affects the data state, and (3) the probability that a data state produced by that section has an effect on program output. These three characteristics can be used to predict whether faults are likely to be uncovered by software testing. Index Terms: Software testing, data state, fault, failure, testability. 1 Introduction

  16. Separation of bone from iodine- and gadolinium-based contrast agents using dual energy CT

    NASA Astrophysics Data System (ADS)

    Chong, Daniel Y.; Angel, Erin; Kim, Hyun J.; Cole, Graham B.; Boyadzhyan, Lousine; Panknin, Christoph; Gomez, Ana M.; Goldin, Jonathan G.; Brown, Matthew S.; McNitt-Gray, Michael F.

    2008-03-01

    This study aims to evaluate the separability of bone from iodine- and gadolinium-based intravenous contrast agents using dual energy CT techniques in a phantom. The phantom was prepared containing varying concentrations of iodine-based contrast, gadolinium-based contrast, and calcium hydroxyapatite (to simulate bone). Thirteen iodine concentrations from 0.1 to 12 mg/mL, twelve gadolinium concentrations from 0.72 to 34.42 mg/mL, and four calcium concentrations from 0 to 200 mg/mL were used. These phantoms were scanned on a dual source CT using two different source spectra, producing one set of data at 80 kVp and another at 140 kVp. On each resulting image, the mean HU was measured at every concentration level for iodine, gadolinium, and calcium, and plotted on a graph of HU value at 80 versus 140 kVp. Linear regression was used to produce a best-fit line for each material. These lines were compared to test for a difference of slopes between calcium and iodine as well as between calcium and gadolinium. Each material exhibited a linear relationship between the HU values at 140 and 80 kVp (R2 = 0.99) and demonstrated a unique slope to this line. The slope for iodine was 2.00, for gadolinium was 1.63, and for calcium was 1.55. The slopes of the calcium and iodine lines were significantly different (p < 0.05), while the slopes of the calcium and gadolinium lines were not significantly different (p > 0.05). Our results suggest that while it is technically feasible to separate iodine from bone, gadolinium-based contrast does not appear to be as readily separable from bone as iodine. This result is surprising as the atomic number and k-edge of calcium (Z = 20, k-edge = 4 keV) are closer to iodine (Z = 53, k-edge = 33 keV) than to gadolinium (Z = 64, k-edge = 50 keV).

  17. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  18. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  19. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  20. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  1. Posterior Distal Clavicle Beveling for Chronic Nonincarcerated Type IV Acromioclavicular Separations: Surgical Technique and Early Clinical Outcomes.

    PubMed

    Buss, Daniel D; Anderson, Kelly; Tervola, Ned; Giveans, M Russell

    2017-01-01

    To describe the arthroscopic partial posterior distal clavicle beveling technique for treatment of chronic nonincarcerated type IV acromioclavicular (AC) separations and report clinical outcomes and return to sport. All patients who underwent the arthroscopic partial distal clavicle beveling technique and met eligibility criteria were identified and retrospectively reviewed. Inclusion criteria included the clinical diagnosis of a chronic nonincarcerated type IV AC separation and a minimum follow-up period of 24 months. Subjects completed the American Shoulder Elbow Surgeons shoulder assessment and a study-designed questionnaire. Radiographic images and clinical charts were also reviewed. This study identified 15 consecutive patients with 2 lost to follow-up, resulting in inclusion of 13 subjects (9 males and 4 females). Dominant arm was involved in 77% of cases. Mean age at operation was 33.2 years (range, 19-56 years). The mean period between injury and operation was 12.5 months (range, 3-37 months), and follow-up was 48.5 months (range, 24-126 months). The mean preoperative ASES score was 46.6 ± 16.9 (range, 33-68), and the mean postoperative ASES score was 87.3 ± 17.4 (range, 50-100) (P < .0001). All 9 athletes in the study returned to competition with a mean recovery period of 2.3 months (range, 2 weeks to 4 months). Mean timeframe for return to work was 2 weeks (range, 1 day to 2 months). One subject underwent a subsequent coracoclavicular ligament reconstruction for continued pain. The mean satisfaction level was 4.3 out of 5, and 91% would choose to have the surgery again. One subject indicated dissatisfaction with shoulder appearance. The arthroscopic partial distal clavicle beveling procedure for nonincarcerated type IV AC separations resulted in a significant reduction in pain, improved daily function, and early return to sport. Level IV, therapeutic case series. Copyright © 2016 Arthroscopy Association of North America. Published by

  2. 5 CFR 843.311 - Annuity based on death of a separated employee.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... beginning on the day after the death of the separated employee. (ii) The rate of the adjusted annuity equals... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Annuity based on death of a separated... SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-DEATH BENEFITS AND EMPLOYEE...

  3. Depth-based signal separation with vertical line arrays in the deep ocean.

    PubMed

    McCargar, Reid; Zurk, Lisa M

    2013-04-01

    Deep vertical line arrays can exploit the reliable acoustic path (RAP), which provides low transmission loss (TL) for targets at moderate ranges, and increased TL for distant interferers. However, nearby surface interference also has favorable RAP propagation and cannot be separated from a submerged target without horizontal aperture. In this work, a physics-based Fourier transform variant is introduced, which achieves depth-based signal separation by exploiting the spatial structure resulting from the coherent addition of the direct and surface-reflected propagation paths present for submerged sources. Simulation results demonstrate depth-based signal separation without requiring knowledge of the ocean environment.

  4. A Nanoscale, Liquid-Phase DNA Separation Device Based on Brownian Ratchets

    NASA Astrophysics Data System (ADS)

    Bader, Joel S.

    1998-03-01

    Realizing the goals of the Human Genome Project depends on the ability to perform size-based separations of DNA molecules. DNA analysis has traditionally required inconvenient gel-based electrophoretic separations. We describe a novel, micromachined, non-electrophoretic device suitable for lab-on-a-chip applications. The device is designed to transport DNA using an asymmetric, periodic potential to rectify Brownian motion. The separation occurs in a homogeneous liquid, avoiding the use of gels or other special media. Experimental results from a working prototype NanoNiagara device validate theoretical predictions of its ability to transport DNA molecules based on size.

  5. Shape-based Particle Separation via Elasto-Inertia Pinched Flow Fractionation (eiPFF)

    NASA Astrophysics Data System (ADS)

    Lu, Xinyu; Xuan, Xiangchun

    2015-11-01

    We report in this talk a continuous-flow shape-based separation of spherical and peanut-shaped rigid particles of equal volume via elasto-inertial pinched flow fractionation (eiPFF). This separation exploits the shape-dependence of the cross-stream particle migration induced by the elaso-inertial lift force in viscoelastic fluids. The parametric effects on this separation are systematically investigated in terms of dimensionless numbers. It is found that this separation is strongly affected by the Reynolds number, Weissenberg number and channel aspect ratio. Interestingly, the elasto-inertial deflection of peanut particles can be either greater or smaller than that of spherical particles.

  6. Apprenticeship Learning Techniques for Knowledge Based Systems

    DTIC Science & Technology

    1988-12-01

    domain, such as medicine. The Odysseus explanation-based learning program constructs explanations of problem-solving actions in the domain of medical...theories and empirical methods so as to allow construction of an explanation. The Odysseus learning program provides the first demonstration of using the... Odysseus explanation-based learning program is presfuted, which constructs explanations of human problem-solving actions in the domain of medical di

  7. Trends and Techniques for Space Base Electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.

    1979-01-01

    Simulations of various phosphorus and boron diffusions in SOS were completed and a sputtering system, furnaces, and photolithography related equipment were set up. Double layer metal experiments initially utilized wet chemistry techniques. By incorporating ultrasonic etching of the vias, premetal cleaning a modified buffered HF, phosphorus doped vapox, and extended sintering, yields of 98% were obtained using the standard test pattern. A two dimensional modeling program was written for simulating short channel MOSFETs with nonuniform substrate doping. A key simplifying assumption used is that the majority carriers can be represented by a sheet charge at the silicon dioxide silicon interface. Although the program is incomplete, the two dimensional Poisson equation for the potential distribution was achieved. The status of other Z-D MOSFET simulation programs is summarized.

  8. Current status of ceramic-based membranes for oxygen separation from air.

    PubMed

    Hashim, Salwa Meredith; Mohamed, Abdul Rahman; Bhatia, Subhash

    2010-10-15

    There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Sound field separating on arbitrary surfaces enclosing a sound scatterer based on combined integral equations.

    PubMed

    Fan, Zongwei; Mei, Deqing; Yang, Keji; Chen, Zichen

    2014-12-01

    To eliminate the limitations of the conventional sound field separation methods which are only applicable to regular surfaces, a sound field separation method based on combined integral equations is proposed to separate sound fields directly in the spatial domain. In virtue of the Helmholtz integral equations for the incident and scattering fields outside a sound scatterer, combined integral equations are derived for sound field separation, which build the quantitative relationship between the sound fields on two arbitrary separation surfaces enclosing the sound scatterer. Through boundary element discretization of the two surfaces, corresponding systems of linear equations are obtained for practical application. Numerical simulations are performed for sound field separation on different shaped surfaces. The influences induced by the aspect ratio of the separation surfaces and the signal noise in the measurement data are also investigated. The separated incident and scattering sound fields agree well with the original corresponding fields described by analytical expressions, which validates the effectiveness and accuracy of the combined integral equations based separation method. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Novel Nanofiber-based Membrane Separators for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Yanilmaz, Meltem

    Lithium-ion batteries have been widely used in electronic devices including mobile phones, laptop computers, and cameras due to their high specific energy, high energy density, long cycling lifetime, and low self-discharge rate. Nowadays, lithium-ion batteries are finding new applications in electric/hybrid vehicles and energy storage for smart grids. To be used in these new applications, novel battery components are needed so that lithiumion batteries with higher cell performance, better safety, and lower cost can be developed. A separator is an important component to obtain safe batteries and its primary function is to prevent electronic contact between electrodes while regulating cell kinetics and ionic flow. Currently, microporous membranes are the most commonly used separator type and they have good mechanical properties and chemical stability. However, their wettability and thermal stabilities are not sufficient for applications that require high operating temperature and high performance. Due to the superior properties such as large specific surface area, small pore size and high porosity, electrospun nanofiber membranes can be good separator candidate for highperformance lithium-ion batteries. In this work, we focus our research on fabricating nanofiber-based membranes to design new high-performance separators with good thermal stability, as well as superior electrochemical performance compared to microporous polyolefin membranes. To combine the good mechanical strength of PP nonwovens with the excellent electrochemical properties of SiO2/polyvinylidene fluoride (PVDF) composite nanofibers, SiO 2/PVDF composite nanofiber-coated PP nonwoven membranes were prepared. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber-coated nonwoven membranes. Although ceramic/polymer composites can be prepared by encapsulating ceramic particles directly into polymer nanofibers, the performance

  11. A protein molecular weight map of ES2 clear cell ovarian carcinoma cells using a two-dimensional liquid separations/mass mapping technique.

    PubMed

    Wang, Haixing; Kachman, Maureen T; Schwartz, Donald R; Cho, Kathleen R; Lubman, David M

    2002-09-01

    A molecular weight map of the protein content of ES2 human clear cell ovarian carcinoma cells has been produced using a two-dimensional (2-D) liquid separations/mass mapping technique. This method uses a 2-D liquid separation of proteins from whole cell lysates coupled on-line to an electrospray ionization-time of flight (ESI-TOF) mass spectrometer to map the accurate intact molecular weight (M(r)) of the protein content of the cells. The two separation dimensions involve the use of liquid isoelectric focusing as the first phase and nonporous silica reversed-phase high-performance liquid chromatography (HPLC) as the second phase of separation. The detection by ESI-TOF-MS provides an image of pI versus M(r) analogous to 2-D gel electrophoresis. Each protein is then identified based upon matrix-assisted laser desorption/ionization (MALDI)-TOF-MS peptide mapping and intact M(r) so that a standard map is produced against which other ovarian carcinoma cell lines can be compared. The accurate intact M(r) together with the pI fraction, and peptide map serve to tag the protein for future interlysate comparisons. An internal standard is also used to provide a means for quantitation for future interlysate studies. In the ES2 cell line under study it is shown that nearly 900 M(r) bands are detected over 17 pI fractions from pH 4 to 12 and a M(r) range up to 85 kDa and that around 290 of these bands can be identified using mass spectrometric based techniques. The protein M(r) is detected within an accuracy of 150 ppm and it is shown that many of the proteins in this human cancer sample are modified compared to the database. The protein M(r) map may serve as a highly reproducible standard Web-based method for comparing proteins from related human cell lines.

  12. Lipid-Based Immuno-Magnetic Separation of Archaea from a Mixed Community

    NASA Astrophysics Data System (ADS)

    Frickle, C. M.; Bailey, J.; Lloyd, K. G.; Shumaker, A.; Flood, B.

    2014-12-01

    Despite advancing techniques in microbiology, an estimated 98% of all microbial species on Earth have yet to be isolated in pure culture. Natural samples, once transferred to the lab, are commonly overgrown by "weed" species whose metabolic advantages enable them to monopolize available resources. Developing new methods for the isolation of thus-far uncultivable microorganisms would allow us to better understand their ecology, physiology and genetic potential. Physically separating target organisms from a mixed community is one approach that may allow enrichment and growth of the desired strain. Here we report on a novel method that uses known physiological variations between taxa, in this case membrane lipids, to segregate the desired organisms while keeping them alive and viable for reproduction. Magnetic antibodies bound to the molecule squalene, which is found in the cell membranes of certain archaea, but not bacteria, enable separation of archaea from bacteria in mixed samples. Viability of cells was tested by growing the separated fractions in batch culture. Efficacy and optimization of the antibody separation technique are being evaluated using qPCR and cell counts. Future work will apply this new separation technique to natural samples.

  13. An incentive-based source separation model for sustainable municipal solid waste management in China.

    PubMed

    Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin

    2015-05-01

    Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. © The Author(s) 2015.

  14. CANDU in-reactor quantitative visual-based inspection techniques

    NASA Astrophysics Data System (ADS)

    Rochefort, P. A.

    2009-02-01

    This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is

  15. Information fusion based techniques for HEVC

    NASA Astrophysics Data System (ADS)

    Fernández, D. G.; Del Barrio, A. A.; Botella, Guillermo; Meyer-Baese, Uwe; Meyer-Baese, Anke; Grecos, Christos

    2017-05-01

    Aiming at the conflict circumstances of multi-parameter H.265/HEVC encoder system, the present paper introduces the analysis of many optimizations' set in order to improve the trade-off between quality, performance and power consumption for different reliable and accurate applications. This method is based on the Pareto optimization and has been tested with different resolutions on real-time encoders.

  16. Accelerator based techniques for contraband detection

    NASA Astrophysics Data System (ADS)

    Vourvopoulos, George

    1994-05-01

    It has been shown that narcotics, explosives, and other contraband materials, contain various chemical elements such as H, C, N, O, P, S, and Cl in quantities and ratios that differentiate them from each other and from other innocuous substances. Neutrons and γ-rays have the ability to penetrate through various materials at large depths. They are thus able, in a non-intrusive way, to interrogate volumes ranging from suitcases to Sea-Land containers, and have the ability to image the object with an appreciable degree of reliability. Neutron induced reactions such as (n, γ), (n, n') (n, p) or proton induced γ-resonance absorption are some of the reactions currently investigated for the identification of the chemical elements mentioned above. Various DC and pulsed techniques are discussed and their advantages, characteristics, and current progress are shown. Areas where use of these methods is currently under evaluation are detection of hidden explosives, illicit drug interdiction, chemical war agents identification, nuclear waste assay, nuclear weapons destruction and others.

  17. A simple cellulose acetate membrane-based small lanes technique for protein electrophoresis.

    PubMed

    Na, Na; Liu, Tingting; Yang, Xiaojun; Sun, Binjie; Ouyang, Jenny; Ouyang, Jin

    2012-08-01

    Combining electrophoresis with a cellulose acetate membrane-based technique, we developed a simple and low-cost method, named cellulose acetate membrane-based small lanes (CASL), for protein electrophoresis. A home-made capillary plotter controlled by a 3D moving stage was used to create milli-to-micro channels by printing poly(dimethylsiloxane) on to a hydrophilic cellulose acetate membrane. In the hydrophilic channels, 5 nL protein mixture was separated on the basis of electro-migration under an electric field. Compared with polyacrylamide gel electrophoresis (PAGE), CASL resulted in higher protein signal intensity for separation of mixtures containing the same mass of protein. The platform was easily fabricated at low cost (approx. $0.005 for each 1-mm-wide channel), and separation of three protein mixtures was completed in 15 min. Both electrophoresis time and potential affected the separation. Rather than chromatographic separation, this method accomplished application of microchannel techniques for cellulose acetate membrane-based protein electrophoresis. It has potential in proteomic analysis, especially for rapid, low-cost, and low-volume sample analysis in clinical diagnosis.

  18. A robust physiology-based source separation method for QRS detection in low amplitude fetal ECG recordings.

    PubMed

    Vullings, R; Peters, C H L; Hermans, M J M; Wijn, P F F; Oei, S G; Bergmans, J W M

    2010-07-01

    The use of the non-invasively obtained fetal electrocardiogram (ECG) in fetal monitoring is complicated by the low signal-to-noise ratio (SNR) of ECG signals. Even after removal of the predominant interference (i.e. the maternal ECG), the SNR is generally too low for medical diagnostics, and hence additional signal processing is still required. To this end, several methods for exploiting the spatial correlation of multi-channel fetal ECG recordings from the maternal abdomen have been proposed in the literature, of which principal component analysis (PCA) and independent component analysis (ICA) are the most prominent. Both PCA and ICA, however, suffer from the drawback that they are blind source separation (BSS) techniques and as such suboptimum in that they do not consider a priori knowledge on the abdominal electrode configuration and fetal heart activity. In this paper we propose a source separation technique that is based on the physiology of the fetal heart and on the knowledge of the electrode configuration. This technique operates by calculating the spatial fetal vectorcardiogram (VCG) and approximating the VCG for several overlayed heartbeats by an ellipse. By subsequently projecting the VCG onto the long axis of this ellipse, a source signal of the fetal ECG can be obtained. To evaluate the developed technique, its performance is compared to that of both PCA and ICA and to that of augmented versions of these techniques (aPCA and aICA; PCA and ICA applied on preprocessed signals) in generating a fetal ECG source signal with enhanced SNR that can be used to detect fetal QRS complexes. The evaluation shows that the developed source separation technique performs slightly better than aPCA and aICA and outperforms PCA and ICA and has the main advantage that, with respect to aPCA/PCA and aICA/ICA, it performs more robustly. This advantage renders it favorable for employment in automated, real-time fetal monitoring applications.

  19. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics

    PubMed Central

    Yang, Chenxi; Zhong, Xuefei; Li, Lingjun

    2016-01-01

    Due to the significance of protein phosphorylation in various biological processes and signaling events, new analytical techniques for enhanced phosphoproteomics have been rapidly introduced in recent years. The combinatorial use of the phospho-specific enrichment techniques and prefractionation methods prior to MS analysis enables comprehensive profiling of the phosphoproteome and facilitates deciphering the critical roles that phosphorylation plays in signaling pathways in various biological systems. This review places special emphasis on the recent five-year (2009–2013) advances for enrichment and separation techniques that have been utilized for phosphopeptides prior to MS analysis. PMID:24687451

  20. Fabrication of zirconia composite membrane by in-situ hydrothermal technique and its application in separation of methyl orange.

    PubMed

    Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2015-11-01

    The main objective of the work was preparation of zirconia membrane on a low cost ceramic support through an in-situ hydrothermal crystallization technique for the separation of methyl orange dye. To formulate the zirconia film on the ceramic support, hydrothermal reaction mixture was prepared using zirconium oxychloride as a zirconia source and ammonia as a precursor. The synthesized zirconia powder was characterized by X-ray diffractometer (XRD), N2 adsorption/desorption isotherms, Thermogravimetric analysis (TGA), Fourier transform infrared analysis (FTIR), Energy-dispersive X-ray (EDX) analysis and particle size distribution (PSD) to identify the phases and crystallinity, specific surface area, pore volume and pore size distribution, thermal behavior, chemical composition and size of the particles. The porosity, morphological structure and pure water permeability of the prepared zirconia membrane, as well as ceramic support were investigated using the Archimedes' method, Field emission scanning electron microscopy (FESEM) and permeability. The specific surface area, pore volume, pore size distribution of the zirconia powder was found to be 126.58m(2)/g, 3.54nm and 0.3-10µm, respectively. The porosity, average pore size and pure water permeability of the zirconia membrane was estimated to be 42%, 0.66µm and 1.44×10(-6)m(3)/m(2)skPa, respectively. Lastly, the potential of the membrane was investigated with separation of methyl orange by means of flux and rejection as a function of operating pressure and feed concentration. The rejection was found to decrease with increasing the operating pressure and increases with increasing feed concentrations. Moreover, it showed a high ability to reject methyl orange from aqueous solution with a rejection of 61% and a high permeation flux of 2.28×10(-5)m(3)/m(2)s at operating pressure of 68kPa.

  1. A Belief-Based Model of Air Traffic Controllers Performing Separation Assurance

    NASA Technical Reports Server (NTRS)

    Landry, S.J.

    2009-01-01

    A model of an air traffic controller performing a separation assurance task was produced. The model was designed to be simple to use and deploy in a simulator, but still provide realistic behavior. The model is based upon an evaluation of the safety function of the controller for separation assurance, and utilizes fast and frugal heuristics and belief networks to establish a knowledge set for the controller model. Based on this knowledge set, the controller acts to keep aircraft separated. Validation results are provided to demonstrate the model s performance.

  2. A Belief-Based Model of Air Traffic Controllers Performing Separation Assurance

    NASA Technical Reports Server (NTRS)

    Landry, S.J.

    2009-01-01

    A model of an air traffic controller performing a separation assurance task was produced. The model was designed to be simple to use and deploy in a simulator, but still provide realistic behavior. The model is based upon an evaluation of the safety function of the controller for separation assurance, and utilizes fast and frugal heuristics and belief networks to establish a knowledge set for the controller model. Based on this knowledge set, the controller acts to keep aircraft separated. Validation results are provided to demonstrate the model s performance.

  3. Linear solvation energy relationships in normal phase chromatography based on gradient separations.

    PubMed

    Wu, Di; Lucy, Charles A

    2017-09-22

    Coupling the modified Soczewiñski model and one gradient run, a gradient method was developed to build a linear solvation energy relationship (LSER) for normal phase chromatography. The gradient method was tested on dinitroanilinopropyl (DNAP) and silica columns with hexane/dichloromethane (DCM) mobile phases. LSER models built based on the gradient separation agree with those derived from a series of isocratic separations. Both models have similar LSER coefficients and comparable goodness of fit, but the LSER model based on gradient separation required fewer trial and error experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Continuous-flow separation of live and dead yeasts using reservoir-based dielectrophoresis (rDEP)

    NASA Astrophysics Data System (ADS)

    Patel, Saurin; Showers, Daniel; Vedantam, Pallavi; Tzeng, Tzuen-Rong; Qian, Shizhi; Xuan, Xiangchun

    2012-11-01

    Separating live and dead cells is critical to the diagnosis of early stage diseases and to the efficacy test of drug screening etc. We develop a novel microfluidic approach to continuous separation of yeast cells by viability inside a reservoir. It exploits the cell dielectrophoresis that is induced by the inherent electric field gradient at the reservoir-microchannel junction to selectively trap dead yeasts and continuously sort them from live ones. We term this approach reservoir-based dielectrophoresis (rDEP). The transporting, focusing, and trapping of live and dead yeast cells at the reservoir-microchannel junction are studied separately by varying the DC-biased AC electric fields. These phenomena can all be reasonably predicted by a 2D numerical model. We find that the AC to DC field ratio for live yeast trapping is higher than that for dead cells because the former experiences a weaker rDEP while having a larger electrokinetic mobility. It is this difference in the AC to DC field ratio that enables the viability-based yeast cell separation. The rDEP approach has unique advantages over existing DEP-based techniques such as the occupation of zero channel space and the elimination of in-channel mechanical or electrical parts. NSF

  5. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.

    PubMed

    Choi, Sungyoung; Park, Je-Kyun

    2005-10-01

    This paper presents a novel microfluidic device for dielectrophoretic separation based on a trapezoidal electrode array (TEA). In this method, particles with different dielectric properties are separated by the device composed of the TEA for the dielectrophoretic deflection of particles under negative dielectrophoresis (DEP) and poly(dimethylsiloxane)(PDMS) microfluidic channel with a sinuous and expanded region. Polystyrene microparticles are exposed to an electric field generated from the TEA in the microfluidic channel and are dielectrophoretically focused to make all of them line up to one sidewall. When these particles arrive at the region of another TEA for dielectrophoretic separation, they are separated having different positions along the perpendicular direction to the fluid flow due to their different dielectrophoretic velocities. To evaluate the separation process and performance, both the effect of the flow rate on dielectrophoretic focusing and the influence of the number of trapezoidal electrodes on dielectrophoretic separation are investigated. Now that this method utilizes the TEA as a source of negative DEP, non-specific particle adhering to the electrode surface can be prevented; conventional separation approaches depending on the positive DEP force suffer from this problem. In addition, since various particle types are continuously separated, this method can be easily applicable to the separation and analysis of various dielectric particles with high particle recovery and selectivity.

  6. Conductivity of carbonate- and perfluoropolyether-based electrolytes in porous separators

    NASA Astrophysics Data System (ADS)

    Devaux, Didier; Chang, Yu H.; Villaluenga, Irune; Chen, X. Chelsea; Chintapalli, Mahati; DeSimone, Joseph M.; Balsara, Nitash P.

    2016-08-01

    In lithium batteries, a porous separator filled with an electrolyte is placed in between the electrodes. Properties of the separator such as porosity and wettability strongly influence the conductivity of the electrolyte-separator composite. This study focuses on three commercial separators: a single layer polypropylene (Celgard 2500), a trilayer polypropylene-polyethylene-polypropylene (PP-PE-PP), and a porous polytetrafluoroethylene (PTFE). Electron microscopy was used to characterize the pore structure, and these experiments reveal large differences in pore morphology. The separators were soaked in both carbonate- and perfluoropolyether-based electrolytes. The conductivity of the neat electrolytes (σ0) varied from 6.46 × 10-6 to 1.76 × 10-2 S cm-1. The porosity and wettability of the separator affect the electrolyte uptake that in turn affect the conductivity of electrolyte-separator composites. The conductivity of the electrolyte-separator composites (σ) was found to follow a master equation, σ = 0.51·σ0·ϕc3.2±0.2, where ϕc is the volume fraction of the electrolyte in each separator.

  7. Tunable separations based on a molecular size effect for biomolecules by poly(ethylene glycol) gel-based capillary electrophoresis.

    PubMed

    Kubo, Takuya; Nishimura, Naoki; Furuta, Hayato; Kubota, Kei; Naito, Toyohiro; Otsuka, Koji

    2017-06-16

    We report novel capillary gel electrophoresis (CGE) with poly(ethylene glycol) (PEG)-based hydrogels for the effective separations of biomolecules containing sugars and DNAs based on a molecular size effect. The gel capillaries were prepared in a fused silica capillary modified with 3-(trimethoxysilyl)propylmethacrylate using a variety of the PEG-based hydrogels. After the fundamental evaluations in CGE regarding the separation based on the molecular size effect depending on the crosslinking density, the optimized capillary provided the efficient separation of glucose ladder (G1 to G20). In addition, another capillary showed the successful separation of DNA ladder in the range of 10-1100 base pair, which is superior to an authentic acrylamide-based gel capillary. For both glucose and DNA ladders, the separation ranges against the molecular size were simply controllable by alteration of the concentration and/or units of ethylene oxide in the PEG-based crosslinker. Finally, we demonstrated the separations of real samples, which included sugars carved out from monoclonal antibodies, mAbs, and then the efficient separations based on the molecular size effect were achieved. Copyright © 2017. Published by Elsevier B.V.

  8. Comparison of background ozone estimates over the western United States based on two separate model methodologies

    NASA Astrophysics Data System (ADS)

    Dolwick, Pat; Akhtar, Farhan; Baker, Kirk R.; Possiel, Norm; Simon, Heather; Tonnesen, Gail

    2015-05-01

    Two separate air quality model methodologies for estimating background ozone levels over the western U.S. are compared in this analysis. The first approach is a direct sensitivity modeling approach that considers the ozone levels that would remain after certain emissions are entirely removed (i.e., zero-out modeling). The second approach is based on an instrumented air quality model which tracks the formation of ozone within the simulation and assigns the source of that ozone to pre-identified categories (i.e., source apportionment modeling). This analysis focuses on a definition of background referred to as U.S. background (USB) which is designed to represent the influence of all sources other than U.S. anthropogenic emissions. Two separate modeling simulations were completed for an April-October 2007 period, both focused on isolating the influence of sources other than domestic manmade emissions. The zero-out modeling was conducted with the Community Multiscale Air Quality (CMAQ) model and the source apportionment modeling was completed with the Comprehensive Air Quality Model with Extensions (CAMx). Our analysis shows that the zero-out and source apportionment techniques provide relatively similar estimates of the magnitude of seasonal mean daily 8-h maximum U.S. background ozone at locations in the western U.S. when base case model ozone biases are considered. The largest differences between the two sets of USB estimates occur in urban areas where interactions with local NOx emissions can be important, especially when ozone levels are relatively low. Both methodologies conclude that seasonal mean daily 8-h maximum U.S. background ozone levels can be as high as 40-45 ppb over rural portions of the western U.S. Background fractions tend to decrease as modeled total ozone concentrations increase, with typical fractions of 75-100 percent on the lowest ozone days (<25 ppb) and typical fractions between 30 and 50% on days with ozone above 75 ppb. The finding that

  9. FDI and Accommodation Using NN Based Techniques

    NASA Astrophysics Data System (ADS)

    Garcia, Ramon Ferreiro; de Miguel Catoira, Alberto; Sanz, Beatriz Ferreiro

    Massive application of dynamic backpropagation neural networks is used on closed loop control FDI (fault detection and isolation) tasks. The process dynamics is mapped by means of a trained backpropagation NN to be applied on residual generation. Process supervision is then applied to discriminate faults on process sensors, and process plant parameters. A rule based expert system is used to implement the decision making task and the corresponding solution in terms of faults accommodation and/or reconfiguration. Results show an efficient and robust FDI system which could be used as the core of an SCADA or alternatively as a complement supervision tool operating in parallel with the SCADA when applied on a heat exchanger.

  10. Target segmentation in IR imagery using a wavelet-based technique

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz A.

    1995-10-01

    Segmentation of ground based targets embedded in clutter obtained by airborne Infrared (IR) imaging sensors is one of the challenging problems in automatic target recognition. In this paper a new texture based segmentation technique is presented that uses the statistics of 2D wavelet decomposition components of the local sections of the image. A measure of statistical similarity is then used to segment the image and separate the target from the background. This technique is applied on a set of real sequential IR imagery and has shown to produce a high degree of segmentation accuracy across varying ranges.

  11. Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation.

    PubMed

    Hou, Han Wei; Bhagat, Ali Asgar S; Chong, Alvin Guo Lin; Mao, Pan; Tan, Kevin Shyong Wei; Han, Jongyoon; Lim, Chwee Teck

    2010-10-07

    In blood vessels with luminal diameter less than 300 µm, red blood cells (RBCs) which are smaller in size and more deformable than leukocytes, migrate to the axial centre of the vessel due to flow velocity gradient within the vessels. This phenomenon displaces the leukocytes to the vessel wall and is aptly termed as margination. Here, we demonstrate using microfluidics that stiffer malaria-infected RBCs (iRBCs) behave similar to leukocytes and undergo margination towards the sidewalls. This provides better understanding of the hemodynamic effects of iRBCs in microcirculation and its contribution to pathophysiological outcome relating to cytoadherence to endothelium. In this work, cell margination is mimicked for the separation of iRBCs from whole blood based on their reduced deformability. The malaria infected sample was tested in a simple long straight channel microfluidic device fabricated in polydimethylsiloxane. In this microchannel, cell margination was directed along the channel width with the iRBCs aligning near each sidewall and then subsequently removed using a 3-outlet system, thus achieving separation. Tests were conducted using ring stage and late trophozoite/schizont stage iRBCs. Device performance was quantified by analyzing the distribution of these iRBCs across the microchannel width at the outlet and also conducting flow cytometry analysis. Results indicate recovery of approximately 75% for early stage iRBCs and >90% for late stage iRBCs at the side outlets. The simple and passive system operation makes this technique ideal for on-site iRBCs enrichment in resource-limited settings, and can be applied to other blood cell diseases, e.g. sickle cell anemia and leukemia, characterized by changes in cell stiffness.

  12. Arts-based data collection techniques used in child research.

    PubMed

    Driessnack, Martha; Furukawa, Ryoko

    2012-01-01

    The purpose of this study was to identify the different arts-based techniques being used in health-related research with children. A systematic survey of literature was conducted. Two hundred and ten articles were initially identified and reviewed. Of these, 116 met inclusion criteria of arts-based techniques in research with children 7-12 years of age. The different categories of techniques identified included (a) drawings, (b) photographs, (c) graphics, and (d) artifacts. Only 19% of the studies were health related. Further, 79% were conducted outside the United States, revealing that arts-based techniques appear to be underused by nurses and other healthcare researchers, especially in the United States. To ensure that children actively engage in research involving them, nurses can familiarize themselves with and advocate for the use of arts-based techniques. © 2011, Wiley Periodicals, Inc.

  13. Suspended nanoparticles in surfactant media as a microextraction technique for simultaneous separation and preconcentration of cobalt, nickel and copper ions for electrothermal atomic absorption spectrometry determination.

    PubMed

    Dadfarnia, Shayessteh; Shakerian, Farid; Shabani, Ali Mohammad Haji

    2013-03-15

    The aim of this study was to describe a new method of microextraction based on the suspension of alumina nanoparticles in the surfactant media for simultaneous separation and preconcentration of the ultra-traces of cobalt, nickel and copper ions. In this technique, the alumina nanoparticles were suspended in the non-ionic surfactant solution of Triton X-114. The analytes in the sample solution were adsorbed onto the nanoparticles. After the phase separation based on the cloud point of the mixture at 40 °C, the nanoparticles settled down in the surfactant rich phase. Then 120 μL of nitric acid (3.0 mol L(-1)) was added to the surfactant rich phase which caused desorption of the analytes. Finally, the liquid phase was separated by centrifugation from the nanoparticles and was used for the quantification of the analytes by the electrothermal atomic absorption spectrometry (ETAAS). The parameters affecting the extraction and detection processes were optimized. Under the optimized experimental conditions (i.e. pH∼8, Triton X-114, 0.05% (v/v); temperature 40 °C), a sample volume of 25 mL resulted in the enhancement factors of 198, 205 and 206 and detection limits (defined as 3Sb/m) of 2.5, 2.8 and 2.6 ng L(-1) for Co(II), Ni(II) and Cu(II) respectively. The sorbent showed high capacity for these metal ions (30-40 mg g(-1) sorbent). The method was successfully applied to the determination of the analytes in natural water samples.

  14. Combined submuscular tissue expansion and anterior component separation technique for abdominal wall reconstruction: Long-term outcome analysis.

    PubMed

    Alleyne, Brendan; Ozturk, Cemile Nurdan; Rampazzo, Antonio; Johnson, Jeffrey; Gurunluoglu, Raffi

    2017-06-01

    We report the long-term outcome analysis of 12 patients who underwent two-stage abdominal wall reconstruction using combined submuscular tissue expansion and anterior components separation (CS) technique. Outcome measures were (1) the patients were assessed for the presence or absence of recurrence; (2) patient-reported outcomes on physical functioning in relation with the abdominal wall reconstruction were evaluated using the SF 36-item health survey. The mean age, average expansion volume, and mean time expansion were 37.5 years, 1250 cc, and 9.5 weeks, respectively. The average soft tissue deficiency size was 15.5 (width) × 19.5 (length) cm(2). The average fascial defect was 17 (width) × 21.5 (length) cm(2). No mesh-assisted technique was required. Primary closure was obtained in all. The average follow-up was 39.6 months. Hernia recurrence was noted in one patient (8.3%). All 12 patients completed the SF 36-item health survey. Moreover, 75% of the patients reported 100%, indicating "Not limited in vigorous activities," and 25% indicated "limited a little." All patients reported 100% "not limited at all" in lifting or carrying groceries, climbing several flights of stairs, climbing one flight of stairs, bending, kneeling, stooping, walking more than a mile, walking several blocks, walking one block, bathing, or dressing. Parietal laxity obtained with tissue expansion increases the possibility of direct closure of the fascial layer, skin, and subcutaneous tissue components. Combined use of tissue expansion and CS may result in favorable long-term outcomes as evidenced by patient-reported physical functioning data and low rate of hernia recurrence. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Bispectrum-based feature extraction technique for devising a practical brain-computer interface

    NASA Astrophysics Data System (ADS)

    Shahid, Shahjahan; Prasad, Girijesh

    2011-04-01

    The extraction of distinctly separable features from electroencephalogram (EEG) is one of the main challenges in designing a brain-computer interface (BCI). Existing feature extraction techniques for a BCI are mostly developed based on traditional signal processing techniques assuming that the signal is Gaussian and has linear characteristics. But the motor imagery (MI)-related EEG signals are highly non-Gaussian, non-stationary and have nonlinear dynamic characteristics. This paper proposes an advanced, robust but simple feature extraction technique for a MI-related BCI. The technique uses one of the higher order statistics methods, the bispectrum, and extracts the features of nonlinear interactions over several frequency components in MI-related EEG signals. Along with a linear discriminant analysis classifier, the proposed technique has been used to design an MI-based BCI. Three performance measures, classification accuracy, mutual information and Cohen's kappa have been evaluated and compared with a BCI using a contemporary power spectral density-based feature extraction technique. It is observed that the proposed technique extracts nearly recording-session-independent distinct features resulting in significantly much higher and consistent MI task detection accuracy and Cohen's kappa. It is therefore concluded that the bispectrum-based feature extraction is a promising technique for detecting different brain states.

  16. Single channel speech separation in modulation frequency domain based on a novel pitch range estimation method

    NASA Astrophysics Data System (ADS)

    Mahmoodzadeh, Azar; Abutalebi, Hamid Reza; Soltanian-Zadeh, Hamid; Sheikhzadeh, Hamid

    2012-12-01

    Computational Auditory Scene Analysis (CASA) has been the focus in recent literature for speech separation from monaural mixtures. The performance of current CASA systems on voiced speech separation strictly depends on the robustness of the algorithm used for pitch frequency estimation. We propose a new system that estimates pitch (frequency) range of a target utterance and separates voiced portions of target speech. The algorithm, first, estimates the pitch range of target speech in each frame of data in the modulation frequency domain, and then, uses the estimated pitch range for segregating the target speech. The method of pitch range estimation is based on an onset and offset algorithm. Speech separation is performed by filtering the mixture signal with a mask extracted from the modulation spectrogram. A systematic evaluation shows that the proposed system extracts the majority of target speech signal with minimal interference and outperforms previous systems in both pitch extraction and voiced speech separation.

  17. There's plenty of gloom at the bottom: the many challenges of accurate quantitation in size-based oligomeric separations.

    PubMed

    Striegel, André M

    2013-11-01

    There is a variety of small-molecule species (e.g., tackifiers, plasticizers, oligosaccharides) the size-based characterization of which is of considerable scientific and industrial importance. Likewise, quantitation of the amount of oligomers in a polymer sample is crucial for the import and export of substances into the USA and European Union (EU). While the characterization of ultra-high molar mass macromolecules by size-based separation techniques is generally considered a challenge, it is this author's contention that a greater challenge is encountered when trying to perform, for quantitation purposes, separations in and of the oligomeric region. The latter thesis is expounded herein, by detailing the various obstacles encountered en route to accurate, quantitative oligomeric separations by entropically dominated techniques such as size-exclusion chromatography, hydrodynamic chromatography, and asymmetric flow field-flow fractionation, as well as by methods which are, principally, enthalpically driven such as liquid adsorption and temperature gradient interaction chromatography. These obstacles include, among others, the diminished sensitivity of static light scattering (SLS) detection at low molar masses, the non-constancy of the response of SLS and of commonly employed concentration-sensitive detectors across the oligomeric region, and the loss of oligomers through the accumulation wall membrane in asymmetric flow field-flow fractionation. The battle is not lost, however, because, with some care and given a sufficient supply of sample, the quantitation of both individual oligomeric species and of the total oligomeric region is often possible.

  18. Flexible control techniques for a lunar base

    NASA Technical Reports Server (NTRS)

    Kraus, Thomas W.

    1992-01-01

    applications with little or no customization. This means that lunar process control projects will not be delayed by unforeseen problems or last minute process modifications. The software will include all of the tools needed to adapt to virtually any changes. In contrast to other space programs which required the development of tremendous amounts of custom software, lunar-based processing facilities will benefit from the use of existing software technology which is being proven in commercial applications on Earth.

  19. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.

    PubMed

    Lin, Shiang-Chi; Lu, Jau-Ching; Sung, Yu-Lung; Lin, Chih-Ting; Tung, Yi-Chung

    2013-08-07

    Particle separation is a crucial step in sample preparation processes. The preparation of low volume samples is especially important for clinical diagnosis and chemical analysis. The advantages of microfluidic techniques have lead them to become potential candidates for particle separation. However, existing microfluidic devices require external pumping sources and extensive geometric patterns to attain high separation efficiency, which is disadvantageous when handling low volume samples. This paper presents a low sample volume particle separation microfluidic device with low voltage electrokinetic pumping based on circular travelling-wave electroosmosis (TWEO). Computational numerical software was utilized to simulate two electrokinetic mechanisms: circular TWEO and dielectrophoresis (DEP). The circular TWEO shear flow generates a velocity gradient in the radial direction which causes a shear stress-induced force to drag particles into the center region of the device. In contrast, the non-parallel electrodes induce negative DEP forces which push polystyrene beads towards the peripheral regions; the magnitude of the DEP forces are dependent on the sizes of the polystyrene beads. We used particles of various sizes to experimentally prove the concept of particle separation. Our experiments show that 15 μm beads are dragged into the center region due to the shear stress-induced force, and 1 μm beads move towards the outer region because of the large negative DEP force. The results show a separation purity of 94.4% and 80.0% for 15 μm and 1 μm beads respectively. We further demonstrated particle isolation from a sample of containing a small proportion of 6 μm beads mixed with 1 μm beads at a concentration ratio of 1 : 300. Therefore, the innovative device developed in this paper provides a promising solution to allow particle separation in sample volumes as low as 50 nL.

  20. Production and separation of no-carrier-added radioactive tracers of yttrium, strontium and rubidium from heavy-ion irradiated germanium target: applicability to the standardization of a separation technique for production of positron-emitting radionuclide 86Y.

    PubMed

    Pal, Sujit; Chattopadhyay, Sankha; Das, M K; Sudersanan, M

    2006-12-01

    Among various positron-emitting radionuclides, certain radioisotopes of Y, Sr and Rb have important applications in diagnostic and therapeutic nuclear medicine. In the present work, an attempt has been made to produce some of those radioisotopes by irradiating a natural Ge-target material with heavy-ion oxygen ((16)O(+6)) projectiles. An effective radiochemical separation scheme was developed to isolate Y, Sr and Rb radiotracers from the irradiated Ge-matrix in no-carrier-added form with a view to applying those radiotracers for standardization of a technique for the radiochemical separation of Y from natural Sr target. The standardized separation technique could be utilized for the production of the positron-emitting (86)Y from an enriched (86)Sr target irradiated at a medical cyclotron.

  1. FPGA-based real-time blind source separation with principal component analysis

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew; Meyer-Baese, Uwe

    2015-05-01

    Principal component analysis (PCA) is a popular technique in reducing the dimension of a large data set so that more informed conclusions can be made about the relationship between the values in the data set. Blind source separation (BSS) is one of the many applications of PCA, where it is used to separate linearly mixed signals into their source signals. This project attempts to implement a BSS system in hardware. Due to unique characteristics of hardware implementation, the Generalized Hebbian Algorithm (GHA), a learning network model, is used. The FPGA used to compile and test the system is the Altera Cyclone III EP3C120F780I7.

  2. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures

    PubMed Central

    Fan, Liang-Liang; He, Xu-Kun; Han, Yu; Du, Li; Zhao, Liang; Zhe, Jiang

    2014-01-01

    A new microchannel with a series of symmetric sharp corner structures is reported for passive size-dependent particle separation. Micro particles of different sizes can be completely separated based on the combination of the inertial lift force and the centrifugal force induced by the sharp corner structures in the microchannel. At appropriate flow rate and Reynolds number, the centrifugal force effect on large particles, induced by the sharp corner structures, is stronger than that on small particles; hence after passing a series of symmetric sharp corner structures, large particles are focused to the center of the microchannel, while small particles are focused at two particle streams near the two side walls of the microchannel. Particles of different sizes can then be completely separated. Particle separation with this device was demonstrated using 7.32 μm and 15.5 μm micro particles. Experiments show that in comparison with the prior multi-orifice flow fractionation microchannel and multistage-multiorifice flow fractionation microchannel, this device can completely separate two-size particles with narrower particle stream band and larger separation distance between particle streams. In addition, it requires no sheath flow and complex multi-stage separation structures, avoiding the dilution of analyte sample and complex operations. The device has potentials to be used for continuous, complete particle separation in a variety of lab-on-a-chip and biomedical applications. PMID:24738015

  3. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures.

    PubMed

    Fan, Liang-Liang; He, Xu-Kun; Han, Yu; Du, Li; Zhao, Liang; Zhe, Jiang

    2014-03-01

    A new microchannel with a series of symmetric sharp corner structures is reported for passive size-dependent particle separation. Micro particles of different sizes can be completely separated based on the combination of the inertial lift force and the centrifugal force induced by the sharp corner structures in the microchannel. At appropriate flow rate and Reynolds number, the centrifugal force effect on large particles, induced by the sharp corner structures, is stronger than that on small particles; hence after passing a series of symmetric sharp corner structures, large particles are focused to the center of the microchannel, while small particles are focused at two particle streams near the two side walls of the microchannel. Particles of different sizes can then be completely separated. Particle separation with this device was demonstrated using 7.32 μm and 15.5 μm micro particles. Experiments show that in comparison with the prior multi-orifice flow fractionation microchannel and multistage-multiorifice flow fractionation microchannel, this device can completely separate two-size particles with narrower particle stream band and larger separation distance between particle streams. In addition, it requires no sheath flow and complex multi-stage separation structures, avoiding the dilution of analyte sample and complex operations. The device has potentials to be used for continuous, complete particle separation in a variety of lab-on-a-chip and biomedical applications.

  4. Charge-based separation of proteins and peptides by electrically induced dynamic pH profiles.

    PubMed

    Brod, E; S Ben-Yosef, V; Bandhakavi, S; Sivan, U

    2016-01-29

    A new method for generating complex, dynamic pH profiles in an ampholyte-free separation channel is presented together with the theory behind its operation. The pH is modulated by an array of proton and hydroxide ion injectors placed along the separation channel. The ions generated in-situ by electrically driven water splitting across a bipolar membrane are injected to the channel in the presence of a longitudinal electric field, leading to the formation of a multi-step pH profile. Real-time control over the pH profile along the channel facilitates new dynamic separation strategies as well as steering and harvesting of focused molecules, which are both impossible with conventional separation methods. These freedoms are particularly attractive for Lab-on-a-Chip applications. The pH step-like profile alleviates one of the main hurdles of conventional isoelectric separation methods, namely, the slowing down of focused molecules as they approach their focusing spot. As a result, separation is completed within minutes for both peptides and proteins, even with low applied electric fields. We demonstrate protein and peptide separation within minutes, and resolution of ΔpI=0.2. Novel separation strategies based on spatio-temporal pH control are demonstrated as well.

  5. A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.

    PubMed

    Wang, Huaqing; Li, Ruitong; Tang, Gang; Yuan, Hongfang; Zhao, Qingliang; Cao, Xi

    2014-01-01

    A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to improve the compound faults diagnose of rolling bearings via signals' separation, the present paper proposes a new method to identify compound faults from measured mixed-signals, which is based on ensemble empirical mode decomposition (EEMD) method and independent component analysis (ICA) technique. With the approach, a vibration signal is firstly decomposed into intrinsic mode functions (IMF) by EEMD method to obtain multichannel signals. Then, according to a cross correlation criterion, the corresponding IMF is selected as the input matrix of ICA. Finally, the compound faults can be separated effectively by executing ICA method, which makes the fault features more easily extracted and more clearly identified. Experimental results validate the effectiveness of the proposed method in compound fault separating, which works not only for the outer race defect, but also for the rollers defect and the unbalance fault of the experimental system.

  6. An efficient solution technique for shockwave-boundary layer interactions with flow separation and slot suction effects

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Mcrae, D. Scott

    1991-01-01

    An efficient method for computing two-dimensional compressible Navier-Stokes flow fields is presented. The solution algorithm is a fully-implicit approximate factorization technique based on an unsymmetric line Gauss-Seidel splitting of the equation system Jacobian matrix. Convergence characteristics are improved by the addition of acceleration techniques based on Shamanskii's method for nonlinear equations and Broyden's quasi-Newton update. Characteristic-based differencing of the equations is provided by means of Van Leer's flux vector splitting. In this investigation, emphasis is placed on the fast and accurate computation of shock-wave-boundary layer interactions with and without slot suction effects. In the latter context, a set of numerical boundary conditions for simulating the transpiration flow in an open slot is devised. Both laminar and turbulent cases are considered, with turbulent closure provided by a modified Cebeci-Smith algebraic model. Comparisons with computational and experimental data sets are presented for a variety of interactions, and a fully-coupled simulation of a plenum chamber/inlet flowfield with shock interaction and suction is also shown and discussed.

  7. Comparison and improvement of color-based image retrieval techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Yujin; Liu, Zhong W.; He, Yun

    1997-12-01

    With the increasing popularity of image manipulation with contents, many color-based image retrieval techniques have been proposed in the literature. A systematic and comparative study of 8 representative techniques is first presented in this paper, which uses a database of 200 images of flags and trademarks. These techniques are determined to cover the variations of the color models used, of the characteristic color features employed and of the distance measures calculated for judging the similarity of color images. The results of this comparative study are presented both by the list of retrieved images for subjective visual inspection and by the retrieving ratios computed for objective judgement. All of them show that the cumulative histogram based techniques using Euclidean distance measures in two perception related color spaces give best results among the 8 techniques under consideration. Started from the best performed techniques, works toward further improving their retrieving capability are then carried on and this has resulted 2 new techniques which use local cumulative histograms. The new techniques have been tested by using a database of 400 images of real flowers which are quite complicated in color contents. Some satisfactory results, compared to that obtained by using existing cumulative histogram based techniques are obtained and presented.

  8. An efficient technique for nuclei segmentation based on ellipse descriptor analysis and improved seed detection algorithm.

    PubMed

    Xu, Hongming; Lu, Cheng; Mandal, Mrinal

    2014-09-01

    In this paper, we propose an efficient method for segmenting cell nuclei in the skin histopathological images. The proposed technique consists of four modules. First, it separates the nuclei regions from the background with an adaptive threshold technique. Next, an elliptical descriptor is used to detect the isolated nuclei with elliptical shapes. This descriptor classifies the nuclei regions based on two ellipticity parameters. Nuclei clumps and nuclei with irregular shapes are then localized by an improved seed detection technique based on voting in the eroded nuclei regions. Finally, undivided nuclei regions are segmented by a marked watershed algorithm. Experimental results on 114 different image patches indicate that the proposed technique provides a superior performance in nuclei detection and segmentation.

  9. Noisy blind source separation based on CEEMD and Savitzky-Golay filter

    NASA Astrophysics Data System (ADS)

    Peng, Hua-Fu; Huang, Gao-Ming

    2017-09-01

    The standard independent component analysis (ICA) algorithm is difficult to extract signals in noise condition, a blind separation algorithm based on denoising pretreatment was proposed. Mixed signals firstly were decomposed into several stationary intrinsic mode components (IMF) using complementary ensemble empirical mode decomposition (CEEMD), and high frequency IMF components were filtered with Savitzky-Golay filtering, then using the whole components reconstructed the mixed signals, finally applying the fast independent component analysis(FastICA) to separate the reconstructed signals. Simulation results showed that the proposed method improved the effect of blind signal separation under low signal-to-noise ratio.

  10. Research of Longitudinal Safety Separation Based on Nagel-Schreckenberg Traffic Flow Model

    NASA Astrophysics Data System (ADS)

    Zhaoning, Zhang; Ming, Cai; Lili, Wang; Chang, Sun

    The relation of traffic flow elements and safe separation is studied in this paper. Under the current separation standard, the reaction times of pilot and the probability of random deceleration were considered, based on Nagel-Schreckenberg traffic flow model, a flight Nagel-Schreckenberg traffic flow model was built according to the movement of the planes on the route. By computing an example the result can show the relation of the probability of random deceleration and the key element of air traffic flow. Furthermore, the optimal longitudinal safety separation of specific airplane is obtained. Compared with the actual air traffic flow, the model is feasible

  11. Enantiomeric separation of biaryl atropisomers using cyclofructan based chiral stationary phases.

    PubMed

    Woods, Ross M; Patel, Darshan C; Lim, Yeeun; Breitbach, Zachary S; Gao, Hongyin; Keene, Craig; Li, Gongqiang; Kürti, László; Armstrong, Daniel W

    2014-08-29

    Normal phase chiral HPLC methods are presented for the enantiomeric separation of 30 biaryl atropisomers including 18 new compounds recently produced via a novel synthetic approach. Three new cyclofructan based chiral stationary phases were evaluated. Separations were achieved for all but six analytes and the LARIHC™ CF6-P alone provided 15 baseline separations. Effects of polar modifiers and temperature effects also were studied. Apparent thermodynamic parameters were determined by van't Hoff plots. Preparative scale methods were developed and employed resulting in the first ever isolation of these novel atropisomers in their pure enantiomeric form. Insights into the mechanism of retention and chiral discrimination are presented.

  12. Enantiomeric Separation of Biaryl Atropisomers Using Cyclofructan Based Chiral Stationary Phases

    PubMed Central

    Woods, Ross M.; Patel, Darshan C.; Lim, Yeeun; Breitbach, Zachary S.; Gao, Hongyin; Keene, Craig; Li, Gongqiang; Kürti, László

    2014-01-01

    Normal phase chiral HPLC methods are presented for the enantiomeric separation of 30 biaryl atropisomers including 18 new compounds recently produced via a novel synthetic approach. Three new cyclofructan based chiral stationary phases were evaluated. Separations were achieved for all but six analytes and the LARIHC™ CF6-P alone provided 15 baseline separations. Effects of polar modifiers and temperature effects also were studied. Apparent thermodynamic parameters were determined by van't Hoff plots. Preparative scale methods were developed and employed resulting in the first ever isolation of these novel atropisomers in their pure enantiomeric form. Insights into the mechanism of retention and chiral discrimination are presented. PMID:24835594

  13. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same

    SciTech Connect

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.

    2011-03-08

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  14. Influence of anionic species on uranium separation from acid mine water using strong base resins.

    PubMed

    Ladeira, Ana Claudia Queiroz; Gonçalves, Carlos Renato

    2007-09-30

    The presence of uranium and other elements in high concentrations in acid mine drainage at Poços de Caldas Uranium Mine (Brazil) is a matter of concern. The acid water pH is around 2.7, the uranium concentration is in the range of 6-14 mg L(-1), sulfate concentration near 1400 mg L(-1), fluoride 140 mg L(-1) and iron 180 mg L(-1). In this solution, where sulfate is present in elevated concentrations, uranium is basically in the form of UO(2)(SO(4))(3)(4-). This study investigated the separation of uranium from the other anions present in the acid water under batch and column mode using ion exchange technique. The pH studied was 2.7 and 3.9. Two strong base anionic resins were tested. The influence of ions, commonly found in acid waters like sulfate and fluoride, on ion exchange process was also assessed. Equilibrium studies were carried out to determine the maximum adsorption capacities of the resins. The resins showed a significant capacity for uranium uptake which varied from 66 to 108 mg g(-1) for IRA 910U and 53 to 79 mg g(-1) for Dowex A. The results also showed that SO(4)(2-) is the most interfering ion and it had a deleterious effect on the recovery in the pH range studied. Fluoride did not affect uranium removal.

  15. A Word-Based Compression Technique for Text Files.

    ERIC Educational Resources Information Center

    Vernor, Russel L., III; Weiss, Stephen F.

    1978-01-01

    Presents a word-based technique for storing natural language text in compact form. The compressed text consists of a dictionary and a text that is a combination of actual running text and pointers to the dictionary. This technique has shown itself to be effective for both text storage and retrieval. (VT)

  16. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    PubMed

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  17. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications

    PubMed Central

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D.; Edelstein, Paul H.; Collman, Ronald G.; Bau, Haim H.

    2014-01-01

    Often, high sensitivity, point of care, clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low abundance target molecules. We report on a simple to use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a “blood in-plasma out” capability, consistently extracting 275 ±33.5 μL of plasma from 1.8 mL of undiluted whole blood in less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3,500 and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid Testing And Was Successfully Subjected To Reverse Transcriptase Loop mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high efficiency nucleic acid amplification. PMID:24099566

  18. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications.

    PubMed

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D; Edelstein, Paul H; Collman, Ronald G; Bau, Haim H

    2013-11-05

    Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.

  19. Characterization and application of a semi-automated separation and analysis technique for polychlorinated biphenyls in Great Lakes wildlife

    SciTech Connect

    Williams, L.L.

    1993-01-01

    Polychlorinated hydrocarbons (PCHs) are toxic, persistent compounds in the environment. The non-ortho substituted PCB congeners comprise most of the Ah receptor-mediated PCH toxicity in aquatic systems. The proportion of the most toxic congeners to the total concentration of PCBs is suspected to vary in the environment, but these congeners are difficult to quantify. The studies described here focus on the development and use of a semi-automated separation of the non-ortho substituted congeners from interferences using porous graphitic carbon (PGC). The PGC method developed it faster and uses less solvent than previous separations based on carbon columns. This method is both precise and accurate, with no discernable interferences. Results obtained from this method can be used with TCDD equivalency factors (TEFs) to calculate TCDD-equivalents (TEQs) derived from PCBs. The PGC method was used successfully to measure PCB congeners in eggs of fish-eating birds. Variability in TEQ and PCB concentrations among eggs within a double-crested cormorant colony was investigated. No significant differences in concentrations of PCBs to TEQs were observed among eggs from nests with different reproductive outcomes; therefore, concentrations of TEQs and PCBs could not be related to reproductive success of nests within a single colony. TEQs determined in an H4IIE bioassay for EROD activity were significantly greater than TEQs calculated from concentrations of PCB congeners. In another study, concentrations of TEQs and PCBs in red-breasted merganser eggs collected 13 years apart were compared. Concentrations of TEQs and PCBs declined significantly between 1977 and 1990, but the ratio of TEQ to total PCBH did not change.

  20. Chemometric experimental design based optimization techniques in capillary electrophoresis: a critical review of modern applications.

    PubMed

    Hanrahan, Grady; Montes, Ruthy; Gomez, Frank A

    2008-01-01

    A critical review of recent developments in the use of chemometric experimental design based optimization techniques in capillary electrophoresis applications is presented. Current advances have led to enhanced separation capabilities of a wide range of analytes in such areas as biological, environmental, food technology, pharmaceutical, and medical analysis. Significant developments in design, detection methodology and applications from the last 5 years (2002-2007) are reported. Furthermore, future perspectives in the use of chemometric methodology in capillary electrophoresis are considered.

  1. The detection of bulk explosives using nuclear-based techniques

    SciTech Connect

    Morgado, R.E.; Gozani, T.; Seher, C.C.

    1988-01-01

    In 1986 we presented a rationale for the detection of bulk explosives based on nuclear techniques that addressed the requirements of civil aviation security in the airport environment. Since then, efforts have intensified to implement a system based on thermal neutron activation (TNA), with new work developing in fast neutron and energetic photon reactions. In this paper we will describe these techniques and present new results from laboratory and airport testing. Based on preliminary results, we contended in our earlier paper that nuclear-based techniques did provide sufficiently penetrating probes and distinguishable detectable reaction products to achieve the FAA operational goals; new data have supported this contention. The status of nuclear-based techniques for the detection of bulk explosives presently under investigation by the US Federal Aviation Administration (FAA) is reviewed. These include thermal neutron activation (TNA), fast neutron activation (FNA), the associated particle technique, nuclear resonance absorption, and photoneutron activation. The results of comprehensive airport testing of the TNA system performed during 1987-88 are summarized. From a technical point of view, nuclear-based techniques now represent the most comprehensive and feasible approach for meeting the operational criteria of detection, false alarms, and throughput. 9 refs., 5 figs., 2 tabs.

  2. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.

    PubMed

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-08-27

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte-separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4-400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3-38.1 mN∙m(-1). It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations.

  3. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries

    PubMed Central

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-01-01

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte–separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4–400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3–38.1 mN∙m−1. It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations. PMID:26343636

  4. Single-channel mixed signal blind source separation algorithm based on multiple ICA processing

    NASA Astrophysics Data System (ADS)

    Cheng, Xiefeng; Li, Ji

    2017-01-01

    Take separating the fetal heart sound signal from the mixed signal that get from the electronic stethoscope as the research background, the paper puts forward a single-channel mixed signal blind source separation algorithm based on multiple ICA processing. Firstly, according to the empirical mode decomposition (EMD), the single-channel mixed signal get multiple orthogonal signal components which are processed by ICA. The multiple independent signal components are called independent sub component of the mixed signal. Then by combining with the multiple independent sub component into single-channel mixed signal, the single-channel signal is expanded to multipath signals, which turns the under-determined blind source separation problem into a well-posed blind source separation problem. Further, the estimate signal of source signal is get by doing the ICA processing. Finally, if the separation effect is not very ideal, combined with the last time's separation effect to the single-channel mixed signal, and keep doing the ICA processing for more times until the desired estimated signal of source signal is get. The simulation results show that the algorithm has good separation effect for the single-channel mixed physiological signals.

  5. Thermally assisted acoustophoresis as a new stiffness-based separation method

    NASA Astrophysics Data System (ADS)

    Dolatmoradi, Ata; El-Zahab, Bilal

    2017-02-01

    The use of acoustophoretic separation devices provides a feasible means in biomedical diagnostics for label-free separation of diseased cells. Separation via acoustophoresis, however, has been restricted mainly to size contrast. Thermally-assisted acoustophoresis, as a newly-developed approach, integrates acoustic and thermal actuators on the same platform, enabling a stiffness-based separation when adjusted properly. Using this method, we have demonstrated the possibility of separating cell-mimicking liposomes based on their membrane stiffness. In a temperature-tuned microchannel with an overlaid ultrasonic standing wave, the acoustic contrast factor of a liposome is mainly determined according to its compressibility compared to that of medium. The sign of this factor was observed to flip to a negative value at a specific temperature, unique to the composition of the liposome. This sign switch was hypothesized to be due to the thermotropic phase transitions in the liposome's membrane upon which an apparent effect on the compressibility is experienced by the liposome. By choosing the midpoint of the existing temperature window for two different compositions, within which liposomes were mechanically distinct enough to become differentiable in the acoustic radiation field, we examined the separation efficiency under different flow rate conditions.

  6. Community-based surveillance to monitor trends in unaccompanied and separated children in eastern DRC.

    PubMed

    Rubenstein, Beth L; Spencer, Craig; Mansourian, Hani; Noble, Eva; Munganga, Gustave B; Stark, Lindsay

    2015-12-01

    Children who are separated from their families and usual caregivers in emergencies face a multitude of risks. The humanitarian community lacks methods to systematically capture changes in the frequency and nature of such separations over time. A mobile phone-based community surveillance system was piloted in the Democratic Republic of the Congo. The goal was to identify new cases of unaccompanied and separated children on a weekly basis. Over an 11-week period, community focal points reported 62 cases of separation across 10 communities. The majority of children had been under the care of their parents prior to separation. More than half of the children were unaccompanied, meaning that they were living without an adult relative or customary caregiver. The pilot results suggest that implementing a mobile phone-based surveillance system in a humanitarian setting may be feasible and cost-effective and fills a critical gap in the measurement of separated and unaccompanied children in emergencies. A longer pilot to better understand how the system performs over time is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. An advanced hybrid reprocessing system based on UF{sub 6} volatilization and chromatographic separation

    SciTech Connect

    Wei, Yuezhou; Liu, Ruiqin; Wu, Yan; Zu, Jianhua; Zhao, Long; Mimura, Hitoshi; Shi, Weiqun; Chai, Zhifang; Yang, Jinling; Ding, Youqian

    2013-07-01

    To recover U, Pu, MA (Np, Am, Cm) and some specific fission products FPs (Cs, Sr, Tc, etc.) from various spent nuclear fuels (LWR/FBR: Oxide, Metal Fuels), we are studying an advanced hybrid reprocessing system based on UF6 volatilization (Pyro) and chromatographic separation (Aqueous). Spent fuels are de-cladded by means of thermal and mechanical methods and then applied to the fluorination/volatilization process, which selectively recovers the most amount of U. Then, the remained fuel components are converted to oxides and dissolved by HNO{sub 3} solution. Compared to U, since Pu, MA and FPs are significantly less abundant in spent fuels, the scale of the aqueous separation process could become reasonably small and result in less waste. For the chromatographic separation processes, we have prepared different types of porous silica-based organic/inorganic adsorbents with fast diffusion kinetics, improved chemical stability and low pressure drop in a packed column. So they are advantageously applicable to efficient separation of the actinides and FP elements from the fuel dissolved solution. In this work, adsorption and separation behavior of representative actinides and FP elements was studied. Small scale separation tests using simulated and genuine fuel dissolved solutions were carried out to verify the feasibility of the proposed process. (authors)

  8. High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility

    NASA Astrophysics Data System (ADS)

    l'Abee, Roy; DaRosa, Fabien; Armstrong, Mark J.; Hantel, Moritz M.; Mourzagh, Djamel

    2017-03-01

    We report (electro-)chemically stable, high temperature resistant and fast wetting Li-ion battery separators produced through a phase inversion process using novel polyetherimides (PEI) based on bisphenol-aceton diphthalic anhydride (BPADA) and para-phenylenediamine (pPD). In contrast to previous studies using PEI based on BPADA and meta-phenylenediamine (mPD), the separators reported herein show limited swelling in electrolytes and do not require fillers to render sufficient mechanical strength and ionic conductivity. In this work, the produced 15-25 μm thick PEI-pPD separators show excellent electrolyte compatibility, proven by low degrees of swelling in electrolyte solvents, low contact angles, fast electrolyte wicking and high electrolyte uptake. The separators cover a tunable range of morphologies and properties, leading to a wide range of ionic conductivities as studied by Electrochemical Impedance Spectroscopy (EIS). Dynamic Mechanical Analysis (DMA) demonstrated dimensional stability up to 220 °C. Finally, single layer graphite/lithium nickel manganese cobalt oxide (NMC) pouch cells were assembled using this novel PEI-pPD separator, showing an excellent capacity retention of 89.3% after 1000 1C/2C cycles, with a mean Coulombic efficiency of 99.77% and limited resistance build-up. We conclude that PEI-pPD is a promising new material candidate for high performance separators.

  9. Clustering Algorithm for Unsupervised Monaural Musical Sound Separation Based on Non-negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Park, Sang Ha; Lee, Seokjin; Sung, Koeng-Mo

    Non-negative matrix factorization (NMF) is widely used for monaural musical sound source separation because of its efficiency and good performance. However, an additional clustering process is required because the musical sound mixture is separated into more signals than the number of musical tracks during NMF separation. In the conventional method, manual clustering or training-based clustering is performed with an additional learning process. Recently, a clustering algorithm based on the mel-frequency cepstrum coefficient (MFCC) was proposed for unsupervised clustering. However, MFCC clustering supplies limited information for clustering. In this paper, we propose various timbre features for unsupervised clustering and a clustering algorithm with these features. Simulation experiments are carried out using various musical sound mixtures. The results indicate that the proposed method improves clustering performance, as compared to conventional MFCC-based clustering.

  10. Recent developments in membrane-based separations in biotechnology processes: review.

    PubMed

    Rathore, A S; Shirke, A

    2011-01-01

    Membrane-based separations are the most ubiquitous unit operations in biotech processes. There are several key reasons for this. First, they can be used with a large variety of applications including clarification, concentration, buffer exchange, purification, and sterilization. Second, they are available in a variety of formats, such as depth filtration, ultrafiltration, diafiltration, nanofiltration, reverse osmosis, and microfiltration. Third, they are simple to operate and are generally robust toward normal variations in feed material and operating parameters. Fourth, membrane-based separations typically require lower capital cost when compared to other processing options. As a result of these advantages, a typical biotech process has anywhere from 10 to 20 membrane-based separation steps. In this article we review the major developments that have occurred on this topic with a focus on developments in the last 5 years.

  11. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    NASA Astrophysics Data System (ADS)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  12. Separation behavior of electron-beam curing derived, acrylate-based monoliths.

    PubMed

    Bandari, Rajendar; Elsner, Christian; Knolle, Wolfgang; Kühnel, Christa; Decker, Ulrich; Buchmeiser, Michael R

    2007-11-01

    Electron beam (EB) curing-derived monolith materials were prepared from ethyl methacrylate (EMA), trimethylolpropane triacrylate (TMPTA), 2-propanol, 1-dodecanol, and toluene within the confines of 3 mmx100 mm id glass columns, applying a total dose of 22 kGy for curing. Monolithic columns were checked for their separation behavior for selected dansylated (DNS)-amino acids as well as for cyclophilin 18. Their separation performance was compared to that of a C18-modified silica-based rigid rod (Chromoliths). In the separation of dansylated amino acids, retention times were reduced on EB-derived columns, where the peak resolution was significantly better than on a Chromolith. This finding was attributed to a larger fraction of small pores (<2.15 nm) in the EB curing-derived monoliths. Finally, EB curing-derived monoliths have been used to separate cyclophilin 18 from crude cell lysis mixtures.

  13. Separation of soybean isoflavone aglycone homologues by ionic liquid-based extraction.

    PubMed

    Cao, Yifeng; Xing, Huabin; Yang, Qiwei; Bao, Zongbi; Su, Baogen; Yang, Yiwen; Ren, Qilong

    2012-04-04

    The separation of a compound of interest from its structurally similar homologues is an important and challenging problem in producing high-purity natural products, such as the separation of genistein from other soybean isoflavone aglycone (SIA) homologues. The present work provided a novel method for separating genistein from its structurally similar homologues by ionic liquid (IL)-based liquid-liquid extraction using hydrophobic IL-water or hydrophilic IL/water-ethyl acetate biphasic systems. Factors that influence the distribution equilibrium of SIAs, including the structure and concentration of IL, pH value of the aqueous phase, and temperature, were investigated. Adequate distribution coefficients and selectivities over 7.0 were achieved with hydrophilic IL/water-ethyl acetate biphasic system. Through a laboratory-scale simulation of fractional extraction process containing four extraction stages and four scrubbing stages, genistein was separated from the SIA homologues with a purity of 95.3% and a recovery >90%.

  14. Towards DMD-Based Estimation and Control of Flow Separation using an Array of Surface Pressure Sensors

    NASA Astrophysics Data System (ADS)

    Deem, Eric; Cattafesta, Louis; Zhang, Hao; Rowley, Clancy

    2016-11-01

    Closed-loop control of flow separation requires the spatio-temporal states of the flow to be fed back through the controller in real time. Previously, static and dynamic estimation methods have been employed that provide reduced-order model estimates of the POD-coefficients of the flow velocity using surface pressure measurements. However, this requires a "learning" dataset a priori. This approach is effective as long as the dynamics during control do not stray from the learning dataset. Since only a few dynamical features are required for feedback control of flow separation, many of the details provided by full-field snapshots are superfluous. This motivates a state-observation technique that extracts key dynamical features directly from surface pressure, without requiring PIV snapshots. The results of identifying DMD modes of separated flow through an array of surface pressure sensors in real-time are presented. This is accomplished by employing streaming DMD "on the fly" to surface pressure snapshots. These modal characteristics exhibit striking similarities to those extracted from PIV data and the pressure field obtained via solving Poisson's equation. Progress towards closed-loop separation control based on the dynamic modes of surface pressure will be discussed. Supported by AFOSR Grant FA9550-14-1-0289.

  15. Design of Low-Cost FPGA Hardware for Real-time ICA-Based Blind Source Separation Algorithm

    NASA Astrophysics Data System (ADS)

    Charoensak, Charayaphan; Sattar, Farook

    2005-12-01

    Blind source separation (BSS) of independent sources from their convolutive mixtures is a problem in many real-world multisensor applications. In this paper, we propose and implement an efficient FPGA hardware architecture for the realization of a real-time BSS. The architecture can be implemented using a low-cost FPGA (field programmable gate array). The architecture offers a good balance between hardware requirement (gate count and minimal clock speed) and separation performance. The FPGA design implements the modified Torkkola's BSS algorithm for audio signals based on ICA (independent component analysis) technique. Here, the separation is performed by implementing noncausal filters, instead of the typical causal filters, within the feedback network. This reduces the required length of the unmixing filters as well as provides better separation and faster convergence. Description of the hardware as well as discussion of some issues regarding the practical hardware realization are presented. Results of various FPGA simulations as well as real-time testing of the final hardware design in real environment are given.

  16. Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data

    NASA Astrophysics Data System (ADS)

    Thurai, M.; Gatlin, P. N.; Bringi, V. N.

    2016-03-01

    A technique for separating stratiform and convective rain types using the characteristics of two of the main drop size distribution (DSD) parameters is presented. The method was originally developed based on observations from dual-frequency profiler and dual-polarization radar observations in Darwin, Australia. In this paper, we will present the testing of the method using data from 2D video disdrometers (2DVD) from two very different locations, namely, Ontario, Canada, and Huntsville, Alabama, USA. One-minute DSDs from 2DVD are used as input to a gamma-fitting procedure and our separation technique uses the fitted values of log10(NW) and D0 (where NW is the scaling parameter and D0 is the median volume diameter) and an "index" to quantify where the points lie in the log10(NW) versus D0 domain. For the Ontario location, the output of the classification is compared with simultaneous observations from a collocated, vertically pointing, X-band Doppler radar. A "bright-band" detection algorithm is used to classify each height profile as either stratiform or convective, depending on whether or not a clearly defined melting layer is present at an expected height. If present, the maximum reflectivity within the melting layer and the corresponding height are determined. Similar testing is carried out for two events in Huntsville and compared with observations from a collocated UHF profiler (with Doppler capability). Additional case studies are required, but these results indicate our separation technique seems to be applicable to many different locations and climatologies based on previously published data.

  17. Latent practice profiles of substance abuse treatment counselors: do evidence-based techniques displace traditional techniques?

    PubMed

    Smith, Brenda D; Liu, Junqing

    2014-04-01

    As more substance abuse treatment counselors begin to use evidence-based treatment techniques, questions arise regarding the continued use of traditional techniques. This study aims to (1) assess whether there are meaningful practice profiles among practitioners reflecting distinct combinations of cognitive-behavioral and traditional treatment techniques; and (2) if so, identify practitioner characteristics associated with the distinct practice profiles. Survey data from 278 frontline counselors working in community substance abuse treatment organizations were used to conduct latent profile analysis. The emergent practice profiles illustrate that practitioners vary most in the use of traditional techniques. Multinomial regression models suggest that practitioners with less experience, more education, and less traditional beliefs about treatment and substance abuse are least likely to mix traditional techniques with cognitive-behavioral techniques. Findings add to the understanding of how evidence-based practices are implemented in routine settings and have implications for training and support of substance abuse treatment counselors. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Microfluidic Separation of Circulating Tumor Cells Based on Size and Deformability.

    PubMed

    Park, Emily S; Duffy, Simon P; Ma, Hongshen

    2017-01-01

    Circulating tumor cells (CTCs) have been implicated as the seeds of cancer metastasis and therefore have the potential to provide significant prognostic and diagnostic values. Here, we describe a procedure for separating CTCs from whole blood based on size and deformability using the microfluidic ratchet device. This device leverages the ratcheting motion of single cells created as they are deformed through funnel-shaped constrictions using oscillatory flow in order to divert cells based on differences in size and deformability. Subsequent methods for CTC identification and enumeration using immunofluorescence after separation are also described.

  19. Model based separation of transmitted and received signal for single transducer distance measurement applications

    NASA Astrophysics Data System (ADS)

    Schröder, A.; Henning, B.

    2012-05-01

    Single transducer distance measurement systems have a blind zone which is increased if the transmitted signals are coded to reduce errors due to crosstalk. A method to reduce this blind zone is a model based separation of the transmitted and received signal. This contribution compares two systems, one working with the measured band pass signals, and another one which is based on I/Q-demodulated base band signals.

  20. Novel Perfluorinated Polymer-Based Pervaporation Membranes for Separation of Solvent/Water Mixtures.

    PubMed

    Smuleac, V; Wu, J; Nemser, S; Majumdar, S; Bhattacharyya, D

    2010-04-15

    Traditionally, the pervaporation of water-solvent mixtures where the solvent is the major component is performed using hydrophilic membranes (such as PVA or zeolites). In the present paper a new type of pervaporation membrane (amorphous perfluorinated polymer, hydrophobic) was studied for separation of water-solvent mixtures. This membrane has high free volume and is inert for all solvents, and has a remarkable mechanical, chemical and thermal stability. The water is transported by solution diffusion model and the separation of solvent is primarily based on molecular sieving (size exclusion) principles. The membrane shows a high stability for operation over a broad range of feed concentrations without swelling; the operating temperature does not have a significant effect on membrane separation performance. Separation factors as high as 349 and 500 for water-ethanol and water-IPA mixtures (2-98 % wt water-solvent) and fluxes of 0.15 and 0.05 kg/m(2)h, respectively were obtained at 22 °C. The permeance-based selectivities were also calculated, and the selectivity is approximately constant for a wide range of feed concentrations. The pervaporation of more complex (ternary) mixtures of water-ethanol-ethyl acetate showed that this system could be successfully applied for solute separation based on size exclusion.

  1. Novel Perfluorinated Polymer-Based Pervaporation Membranes for Separation of Solvent/Water Mixtures

    PubMed Central

    Smuleac, V.; Wu, J.; Nemser, S.; Majumdar, S.; Bhattacharyya, D.

    2012-01-01

    Traditionally, the pervaporation of water-solvent mixtures where the solvent is the major component is performed using hydrophilic membranes (such as PVA or zeolites). In the present paper a new type of pervaporation membrane (amorphous perfluorinated polymer, hydrophobic) was studied for separation of water-solvent mixtures. This membrane has high free volume and is inert for all solvents, and has a remarkable mechanical, chemical and thermal stability. The water is transported by solution diffusion model and the separation of solvent is primarily based on molecular sieving (size exclusion) principles. The membrane shows a high stability for operation over a broad range of feed concentrations without swelling; the operating temperature does not have a significant effect on membrane separation performance. Separation factors as high as 349 and 500 for water-ethanol and water-IPA mixtures (2-98 % wt water-solvent) and fluxes of 0.15 and 0.05 kg/m2h, respectively were obtained at 22 °C. The permeance-based selectivities were also calculated, and the selectivity is approximately constant for a wide range of feed concentrations. The pervaporation of more complex (ternary) mixtures of water-ethanol-ethyl acetate showed that this system could be successfully applied for solute separation based on size exclusion. PMID:22879688

  2. Wavelet-based techniques for the gamma-ray sky

    DOE PAGES

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias; ...

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from darkmore » matter annihilation and extended gamma-ray point source populations in a data-driven way.« less

  3. Wavelet-based techniques for the gamma-ray sky

    SciTech Connect

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias; Lee, Samuel K.

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from dark matter annihilation and extended gamma-ray point source populations in a data-driven way.

  4. Wavelet-based techniques for the gamma-ray sky

    SciTech Connect

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias; Lee, Samuel K.

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from dark matter annihilation and extended gamma-ray point source populations in a data-driven way.

  5. Efficient Plant Supervision Strategy Using NN Based Techniques

    NASA Astrophysics Data System (ADS)

    Garcia, Ramon Ferreiro; Rolle, Jose Luis Calvo; Castelo, Francisco Javier Perez

    Most of non-linear type one and type two control systems suffers from lack of detectability when model based techniques are applied on FDI (fault detection and isolation) tasks. In general, all types of processes suffer from lack of detectability also due to the ambiguity to discriminate the process, sensors and actuators in order to isolate any given fault. This work deals with a strategy to detect and isolate faults which include massive neural networks based functional approximation procedures associated to recursive rule based techniques applied to a parity space approach.

  6. The load separation technique in the elastic-plastic fracture analysis of two- and three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Sharobeam, Monir H.

    1994-01-01

    Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.

  7. Evaluation of two immunomagnetic separation techniques for the detection and recovery of E. coli O157:H7 from finished composts

    USDA-ARS?s Scientific Manuscript database

    Two rapid immunomagnetic separation (IMS) protocols were evaluated to recover 1-2 log CFU/g inoculated E. coli O157:H7 from 30 different commercial, finished compost samples. Both protocols detected E. coli O157:H7 in compost samples; PCR techniques required the removal of inhibitors to reduce poss...

  8. A new technique for minimally invasive abdominal wall reconstruction of complex incisional hernias: totally laparoscopic component separation and incisional hernia repair.

    PubMed

    Moazzez, Ashkan; Mason, Rodney J; Katkhouda, Namir

    2010-10-01

    Since Ramirez et al. presented the first case of component separation for abdominal wall hernias in 1990, it has undergone multiple modifications. This technique, which has been mainly used for large hernias where primary closure of the abdominal wall is not feasible, or for staged management of patients with open abdomens, results in multiple wound complications. In 2007, Rosen et al. reported on the laparoscopic approach to component separation that is associated with less subcutaneous dissection and the consequent advantage of a decreased risk of flap necrosis and wound infection. Here we discuss our totally laparoscopic approach to abdominal wall reconstruction. A minimally invasive abdominal wall reconstruction consists of a bilateral component separation, an intra-abdominal adhesiolysis, primary approximation of rectus muscles, and placement of an intraperitoneal mesh for reinforcing the repair, all performed laparoscopically. Patient-selection criteria, detailed operative technique, tips in preventing and managing the potential pitfalls, and postoperative care are discussed.

  9. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions.

    PubMed

    Gómez-Muñoz, B; Case, S D C; Jensen, L S

    2016-03-01

    The combined effects of pig slurry acidification, subsequent separation techniques and biochar production from the solid fraction on N mineralisation and N2O and CO2 emissions in soil were investigated in an incubation experiment. Acidification of pig slurry increased N availability from the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions.

  10. Heat-Flow-Driven Oligonucleotide Gelation Separates Single-Base Differences.

    PubMed

    Morasch, Matthias; Braun, Dieter; Mast, Christof B

    2016-06-01

    DNA phase transitions are often induced by the addition of condensation agents or by dry concentration. Herein, we show that the non-equilibrium setting of a moderate heat flow across a water-filled chamber separates and gelates DNA strands with single-base resolution. A dilute mix of DNA with two slightly different gel-forming sequences separates into sequence-pure hydrogels under constant physiological solvent conditions. A single base change in a 36 mer DNA inhibits gelation. Only sequences with the ability to form longer strands are concentrated, further elongated, and finally gelated by length-dependent thermal trapping. No condensation agents, such as multivalent ions, were added. Equilibrium aggregates from dry concentration did not show any sequence separation. RNA is expected to behave identically owing to its equal thermophoretic properties. The highly sequence-specific phase transition points towards new possibilities for non-equilibrium origins of life.

  11. A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles.

    PubMed

    Zhang, Jun; Yan, Sheng; Yuan, Dan; Zhao, Qianbin; Tan, Say Hwa; Nguyen, Nam-Trung; Li, Weihua

    2016-10-05

    Separation of microparticles has found broad applications in biomedicine, industry and clinical diagnosis. In a conventional aqueous ferrofluid, separation of microparticles usually employs a sheath flow or two offset magnets to confine particle streams for downstream particle sorting. This complicates the fluid control, device fabrication, and dilutes the particle sample. In this work, we propose and develop a novel viscoelastic ferrofluid by replacing the Newtonian base medium of the conventional ferrofluid with non-Newtonian poly(ethylene oxide) (PEO) aqueous solution. The properties of both viscoelastic 3D focusing and negative magnetophoresis of the viscoelastic ferrofluid were verified and investigated. By employing the both properties in a serial manner, continuous and sheathless separation of nonmagnetic particles based on particle size has been demonstrated. This novel viscoelastic ferrofluid is expected to bring more flexibility and versatility to the design and functionality in microfluidic devices.

  12. Fully automated objective-based method for master recession curve separation.

    PubMed

    Posavec, Kristijan; Parlov, Jelena; Nakić, Zoran

    2010-01-01

    The fully automated objective-based method for master recession curve (MRC) separation was developed by using Microsoft Excel spreadsheet and Visual Basic for Applications (VBA) code. The core of the program code is used to construct an MRC by using the adapted matching strip method (Posavec et al. 2006). Criteria for separating the MRC into two or three segments are determined from the flow-duration curve and are represented as the probable range of percent of flow rate duration. Successive separations are performed automatically on two and three MRCs using sets of percent of flow rate duration from selected ranges and an optimal separation model scenario, having the highest average coefficient of determination R(2), is selected as the most appropriate one. The resulting separated master recession curves are presented graphically, whereas the statistics are presented numerically, all in separate sheets. Examples of field data obtained from two springs in Istria, Croatia, are used to illustrate its application. The freely available Excel spreadsheet and VBA program ensures the ease of use and applicability for larger data sets.

  13. An innovative device for powders classification based on combined aerodynamic and electrostatic separation of particles

    NASA Astrophysics Data System (ADS)

    Piriou, Bruno; Mayer-Laigle, Claire; Maalel, Firas; Plissot, Jorys; Rouau, Xavier

    2017-06-01

    An innovative separator have been developed which aims at sorting out powders fractions according to aerodynamic and electrostatic properties of particles. The prototype is composed of a projection unit, a separation module and a classification/collection zone. The projection part is ensured by a pressurized gun. The separation module is conceived to disperse particles according to front and transverse directions. At the output of the gun, electrodes can be disposed to deviate the trajectory of charged particles. The classification part is made of a series of collecting bins. Starch, fine ash powders, and mixtures of these two materials were used to test the working of the separator. The efficiency of the separation was assessed by yields and particle sizes distribution of the collected fractions in the different bins. An aerodynamic classification was achieved along the main axis, with the finest particles crossing larger distances. With a blend of starch and ash, particles from both materials were unevenly distributed in the classifyier, opening the way to a possible separation based simply on aerodynamic properties. When an electric deviation was applied in addition to the projection of powders, the distribution of particles in the collecting part was modified.

  14. Separation studies of As(III), Sb(III) and Bi(III) by reversed-phase paper chromatographic technique

    SciTech Connect

    Raman, B.; Shinde, V.M.

    1987-07-01

    Reversed-phase paper chromatographic separations of As(III), Sb(III) and Bi(III) have been carried out on Whatman No 1 filter paper impregnated with triphenylphosphine oxide as stationary phase and using organic complexing agents such as sodium acetate, sodium succinate and sodium malonate solutions as active mobile phases. Results for the separation of binary and ternary mixtures are reported and the method has been successfully applied to the separation and detection of these elements present in real samples and at ppm level concentration.

  15. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  16. An overview of the use of microchips in electrophoretic separation techniques: fabrication, separation modes, sample preparation opportunities, and on-chip detection.

    PubMed

    Hendrickx, Stijn; de Malsche, Wim; Cabooter, Deirdre

    2015-01-01

    This chapter is intended as a basic introduction to microchip-based capillary electrophoresis to set the scene for newcomers and give pointers to reference material. An outline of some commonly used setups and key concepts is given, many of which are explored in greater depth in later chapters.

  17. Impact of Knowledge-Based Techniques on Emerging Technologies

    DTIC Science & Technology

    2006-09-01

    coherent location (PCL), tracking in multistatic radar, and ‘spatial denial’ as a waveform diversity technique to prevent the exploitation by an enemy...performing a variety of surveillance and tracking tasks. Knowledge-based processing may be used to control the scheduling of tasks in such a radar, showing...techniques to bistatic and multistatic radar, including the use of information on waveform properties in passive coherent location (PCL), tracking

  18. Bond strength with custom base indirect bonding techniques.

    PubMed

    Klocke, Arndt; Shi, Jianmin; Kahl-Nieke, Bärbel; Bismayer, Ulrich

    2003-04-01

    Different types of adhesives for indirect bonding techniques have been introduced recently. But there is limited information regarding bond strength with these new materials. In this in vitro investigation, stainless steel brackets were bonded to 100 permanent bovine incisors using the Thomas technique, the modified Thomas technique, and light-cured direct bonding for a control group. The following five groups of 20 teeth each were formed: (1) modified Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Maximum Cure), (2) Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Custom I Q), (3) Thomas technique with light-cured base composite (Transbond XT) and chemically cured sealant (Sondhi Rapid Set), (4) modified Thomas technique with chemically cured base adhesive (Phase II) and chemically cured sealant (Maximum Cure), and (5) control group directly bonded with light-cured adhesive (Transbond XT). Mean bond strengths in groups 3, 4, and 5 were 14.99 +/- 2.85, 15.41 +/- 3.21, and 13.88 +/- 2.33 MPa, respectively, and these groups were not significantly different from each other. Groups 1 (mean bond strength 7.28 +/- 4.88 MPa) and 2 (mean bond strength 7.07 +/- 4.11 MPa) showed significantly lower bond strengths than groups 3, 4, and 5 and a higher probability of bond failure. Both the original (group 2) and the modified (group 1) Thomas technique were able to achieve bond strengths comparable to the light-cured direct bonded control group.

  19. Dissociation techniques in mass spectrometry-based proteomics.

    PubMed

    Jones, Andrew W; Cooper, Helen J

    2011-09-07

    The field of proteomics, the large-scale analysis of proteins, has undergone a huge expansion over the past decade. Mass spectrometry-based proteomics relies on the dissociation of peptide and/or protein ions to provide information on primary sequence and sites of post-translational modifications. Fragmentation techniques include collision-induced dissociation, electron capture dissociation and electron transfer dissociation. Here, we describe each of these techniques and their use in proteomics. The principles, advantages, limitations, and applications are discussed.

  20. Review of surface profile measurement techniques based on optical interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Dong, Lianlian

    2017-06-01

    With the fast development of modern science and technology, two or three-dimensional surface profile measurement techniques with high resolution and large dynamic range are urgently required. Among them, the techniques based on optical interferometry have been widely used for their good properties of non-contact, high resolution, large dynamic measurement range and well-defined traceability route to the definition of meter. A review focused on surface profile measurement techniques of optical interferometry is introduced in this paper with a detailed classification sorted by operating principles. Examples in each category are discussed and analyzed for better understanding.

  1. Image analysis techniques associated with automatic data base generation.

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.; Atkinson, R. J.; Hodges, B. C.; Thomas, D. T.

    1973-01-01

    This paper considers some basic problems relating to automatic data base generation from imagery, the primary emphasis being on fast and efficient automatic extraction of relevant pictorial information. Among the techniques discussed are recursive implementations of some particular types of filters which are much faster than FFT implementations, a 'sequential similarity detection' technique of implementing matched filters, and sequential linear classification of multispectral imagery. Several applications of the above techniques are presented including enhancement of underwater, aerial and radiographic imagery, detection and reconstruction of particular types of features in images, automatic picture registration and classification of multiband aerial photographs to generate thematic land use maps.

  2. Blending Study of MgO-Based Separator Materials for Thermal Batteries

    SciTech Connect

    GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.; ANDAZOLA, ARTHUR H.

    2002-06-01

    The development and testing of a new technique for blending of electrolyte-binder (separator) mixes for use in thermal batteries is described. The original method of blending such materials at Sandia involved liquid Freon TF' as a medium. The ban on the use of halogenated solvents throughout much of the Department of Energy complex required the development of an alternative liquid medium as a replacement. The use of liquid nitrogen (LN) was explored and developed into a viable quality process. For comparison, a limited number of dry-blending tests were also conducted using a Turbula mixer. The characterization of pellets made from LN-blended separators involved deformation properties at 530 C and electrolyte-leakage behavior at 400 or 500 C, as well as performance in single-cells and five-cell batteries under several loads. Stack-relaxation tests were also conducted using 10-cell batteries. One objective of this work was to observe if correlations could be obtained between the mechanical properties of the separators and the performance in single cells and batteries. Separators made using three different electrolytes were examined in this study. These included the LiCl-KCl eutectic, the all-Li LiCl-LiBr-LiF electrolyte, and the low-melting LiBr-KBr-LiF eutectic. The electrochemical performance of separator pellets made with LN-blended materials was compared to that for those made with Freon T P and, in some cases, those that were dry blended. A satisfactory replacement MgO (Marinco 'OL', now manufactured by Morton) was qualified as a replacement for the standard Maglite 'S' MgO that has been used for years but is no longer commercially available. The separator compositions with the new MgO were optimized and included in the blending and electrochemical characterization tests.

  3. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.

    PubMed

    Yang, Xiaoxi; Forouzan, Omid; Brown, Theodore P; Shevkoplyas, Sergey S

    2012-01-21

    Many diagnostic tests in a conventional clinical laboratory are performed on blood plasma because changes in its composition often reflect the current status of pathological processes throughout the body. Recently, a significant research effort has been invested into the development of microfluidic paper-based analytical devices (μPADs) implementing these conventional laboratory tests for point-of-care diagnostics in resource-limited settings. This paper describes the use of red blood cell (RBC) agglutination for separating plasma from finger-prick volumes of whole blood directly in paper, and demonstrates the utility of this approach by integrating plasma separation and a colorimetric assay in a single μPAD. The μPAD was fabricated by printing its pattern onto chromatography paper with a solid ink (wax) printer and melting the ink to create hydrophobic barriers spanning through the entire thickness of the paper substrate. The μPAD was functionalized by spotting agglutinating antibodies onto the plasma separation zone in the center and the reagents of the colorimetric assay onto the test readout zones on the periphery of the device. To operate the μPAD, a drop of whole blood was placed directly onto the plasma separation zone of the device. RBCs in the whole blood sample agglutinated and remained in the central zone, while separated plasma wicked through the paper substrate into the test readout zones where analyte in plasma reacted with the reagents of the colorimetric assay to produce a visible color change. The color change was digitized with a portable scanner and converted to concentration values using a calibration curve. The purity and yield of separated plasma was sufficient for successful operation of the μPAD. This approach to plasma separation based on RBC agglutination will be particularly useful for designing fully integrated μPADs operating directly on small samples of whole blood.

  4. Determination of uranium and rare-earth metals separation coefficients in LiCl KCl melt by electrochemical transient techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. A.; Hayashi, H.; Minato, K.; Gaune-Escard, M.

    2005-09-01

    The main step in the pyrometallurgical process of spent nuclear fuel recycling is a molten salt electrorefining. The knowledge of separation coefficients of actinides (U, Np, Pu and Am) and rare-earth metals (Y, La, Ce, Nd and Gd) is very important for this step. Usually the separation coefficients are evaluated from the formal standard potentials of metals in melts containing their own ions, values obtained by potentiometric method. Electrochemical experiments were carried out at 723-823 K in order to estimate separation coefficients in LiCl-KCl eutectic melt containing uranium and lanthanum trichlorides. It was shown that for the calculation of uranium and lanthanum separation coefficients it is necessary to determine the voltammetric peak potentials of U(III) and La(III), their concentration in the melt and the kinetic parameters relating to U(III) discharge such as transfer and diffusion coefficients, and standard rate constants of charge transfer.

  5. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-07-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  6. Mechanical modeling of battery separator based on microstructure image analysis and stochastic characterization

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi; Zhu, Min; Marcicki, James; Yang, Xiao Guang

    2017-03-01

    A microstructure-based modeling method is developed to predict the mechanical behaviors of lithium-ion battery separators. Existing battery separator modeling methods cannot capture the structural features on the microscale. To overcome this issue, we propose an image-based microstructure Representative Volume Element (RVE) modeling method, which facilitates the understanding of the separators' complex macro mechanical behaviors from the perspective of microstructural features. A generic image processing workflow is developed to identify different phases in the microscopic image. The processed RVE image supplies microstructural information to the Finite Element Analysis (FEA). Both mechanical behavior and microstructure evolution are obtained from the simulation. The evolution of microstructure features is quantified using the stochastic microstructure characterization methods. The proposed method successfully captures the anisotropic behavior of the separator under tensile test, and provides insights into the microstructure deformation, such as the growth of voids. We apply the proposed method to a commercially available separator as the demonstration. The analysis results are validated using experimental testing results that are reported in literature.

  7. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects.

    PubMed

    Bhardwaj, R; van der Meer, A; Das, S K; de Bruin, M; Gascon, J; Wolterbeek, H T; Denkova, A G; Serra-Crespo, P

    2017-03-13

    (177)Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β(-) emission results in very efficient energy deposition in small-size tumours. Because of this, (177)Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, (177m)Lu and (177)Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The (177m)Lu/(177)Lu radionuclide generator provides a new production route for the therapeutic radionuclide (177)Lu and can bring significant growth in the research and development of (177)Lu based pharmaceuticals.

  8. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects

    PubMed Central

    Bhardwaj, R.; van der Meer, A.; Das, S. K.; de Bruin, M.; Gascon, J.; Wolterbeek, H. T.; Denkova, A. G.; Serra-Crespo, P.

    2017-01-01

    177Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β− emission results in very efficient energy deposition in small-size tumours. Because of this, 177Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177mLu and 177Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177mLu/177Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177Lu and can bring significant growth in the research and development of 177Lu based pharmaceuticals. PMID:28287131

  9. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects

    NASA Astrophysics Data System (ADS)

    Bhardwaj, R.; van der Meer, A.; Das, S. K.; de Bruin, M.; Gascon, J.; Wolterbeek, H. T.; Denkova, A. G.; Serra-Crespo, P.

    2017-03-01

    177Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β‑ emission results in very efficient energy deposition in small-size tumours. Because of this, 177Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177mLu and 177Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177mLu/177Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177Lu and can bring significant growth in the research and development of 177Lu based pharmaceuticals.

  10. Fractionation of Exosomes and DNA using Size-Based Separation at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wunsch, Benjamin; Smith, Joshua; Wang, Chao; Gifford, Stacey; Brink, Markus; Bruce, Robert; Solovitzky, Gustavo; Austin, Robert; Astier, Yann

    Exosomes, a key target of ``liquid biopsies'', are nano-vesicles found in nearly all biological fluids. Exosomes are secreted by eukaryotic and prokaryotic cells alike, and contain information about their originating cells, including surface proteins, cytoplasmic proteins, and nucleic acids. One challenge in studying exosome morphology is the difficulty of sorting exosomes by size and surface markers. Common separation techniques for exosomes include ultracentrifugation and ultrafiltration, for preparation of large volume samples, but these techniques often show contamination and significant heterogeneity between preparations. To date, deterministic lateral displacement (DLD) pillar arrays in silicon have proven an efficient technology to sort, separate, and enrich micron-scale particles including human parasites, eukaryotic cells, blood cells, and circulating tumor cells in blood; however, the DLD technology has never been translated to the true nanoscale, where it could function on bio-colloids such as exosomes. We have fabricated nanoscale DLD (nanoDLD) arrays capable of rapidly sorting colloids down to 20 nm in continuous flow, and demonstrated size sorting of individual exosome vesicles and dsDNA polymers, opening the potential for on-chip biomolecule separation and diagnosti

  11. Reduction of stochastic conductance-based neuron models with time-scales separation.

    PubMed

    Wainrib, Gilles; Thieullen, Michèle; Pakdaman, Khashayar

    2012-04-01

    We introduce a method for systematically reducing the dimension of biophysically realistic neuron models with stochastic ion channels exploiting time-scales separation. Based on a combination of singular perturbation methods for kinetic Markov schemes with some recent mathematical developments of the averaging method, the techniques are general and applicable to a large class of models. As an example, we derive and analyze reductions of different stochastic versions of the Hodgkin Huxley (HH) model, leading to distinct reduced models. The bifurcation analysis of one of the reduced models with the number of channels as a parameter provides new insights into some features of noisy discharge patterns, such as the bimodality of interspike intervals distribution. Our analysis of the stochastic HH model shows that, besides being a method to reduce the number of variables of neuronal models, our reduction scheme is a powerful method for gaining understanding on the impact of fluctuations due to finite size effects on the dynamics of slow fast systems. Our analysis of the reduced model reveals that decreasing the number of sodium channels in the HH model leads to a transition in the dynamics reminiscent of the Hopf bifurcation and that this transition accounts for changes in characteristics of the spike train generated by the model. Finally, we also examine the impact of these results on neuronal coding, notably, reliability of discharge times and spike latency, showing that reducing the number of channels can enhance discharge time reliability in response to weak inputs and that this phenomenon can be accounted for through the analysis of the reduced model.

  12. Cholinium-based supported ionic liquid membranes: a sustainable route for carbon dioxide separation.

    PubMed

    Tomé, Liliana C; Patinha, David J S; Ferreira, Rui; Garcia, Helga; Silva Pereira, Cristina; Freire, Carmen S R; Rebelo, Luís Paulo N; Marrucho, Isabel M

    2014-01-01

    Aiming at full sustainability of CO2 separation processes, a series of supported ionic liquid membranes based on environmentally friendly cholinium carboxylate ionic liquids were successfully prepared. Their gas permeation properties were measured and high permselectivities were obtained for both CO2 /CH4 and CO2 /N2 .

  13. MEMBRANE TECHNOLOGY: OPPORTUNITIES FOR POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (POSS) IN MEMBRANE-BASED SEPARATIONS

    EPA Science Inventory

    Membrane Technology: Opportunities for Polyhedral Oligomeric Silsesquioxanes (POSS?) in Membrane-Based Separations

    Leland M. Vane, Ph.D.
    U.S. Environmental Protection Agency
    Office of Research & Development
    Cincinnati, OH 45268
    Vane.Leland@epa.gov

    A sign...

  14. Metal-organic framework-based separator for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Bai, Songyan; Liu, Xizheng; Zhu, Kai; Wu, Shichao; Zhou, Haoshen

    2016-07-01

    Lithium-sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal-organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium-sulfur batteries, which selectively sieves Li+ ions while efficiently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium-sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.

  15. MEMBRANE TECHNOLOGY: OPPORTUNITIES FOR POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (POSS) IN MEMBRANE-BASED SEPARATIONS

    EPA Science Inventory

    Membrane Technology: Opportunities for Polyhedral Oligomeric Silsesquioxanes (POSS?) in Membrane-Based Separations

    Leland M. Vane, Ph.D.
    U.S. Environmental Protection Agency
    Office of Research & Development
    Cincinnati, OH 45268
    Vane.Leland@epa.gov

    A sign...

  16. A simple and rapid technique for radiochemical separation of iodine radionuclides from irradiated tellurium using an activated charcoal column.

    PubMed

    Chattopadhyay, Sankha; Saha Das, Sujata

    2009-10-01

    A simple and inexpensive method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed. The beta(-) emitting (131)I radionuclide, produced by the decay of (131)Te through the (nat)Te(n, gamma)(131)Te nuclear reaction, was used for standardization of the radiochemical separation procedure. The radiochemical separation was performed by precipitation followed by column (activated charcoal) chromatography. Quantitative post-irradiation recovery of the TeO(2) target material (98-99%), in a form suitable for reuse in future irradiations, was achieved. The overall radiochemical yield for the complete separation of (131)I was 75-85% (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purities and did not contain detectable amounts of the target material. This method can be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation.

  17. Application of Silica-Based Hyper-Crosslinked Sulfonate-Modified Reversed Stationary Phases for Separating Highly Hydrophilic Basic Compounds

    PubMed Central

    Luo, Hao; Ma, Lianjia; Paek, Changyub; Carr, Peter W.

    2008-01-01

    The separation and determination of hydrophilic basic compounds are of great importance in many fields including clinical and biological research, pharmaceutical development and forensic analysis. However, the most widely used analytical separation technique in these disciplines, reversed-phase liquid chromatography (RPLC), usually does not provide sufficient retention for several of the important classes of highly hydrophilic basic compounds including catecholamines, many drug metabolites and many drugs of abuse. Commonly eluents having little or no organic modifier and/or strong ion pairing agents must be used to achieve sufficient retention and separation. Use of highly aqueous eluents can lead to column failure by dewetting, resulting in poor retention, selectivity, reproducibility and slow recovery of performance. The use of a strong ion pairing agent to increase retention renders the separation incompatible with mass spectrometric detection and complicates preparative separations. This paper describes the successful applications of a novel type of silica-based, hyper-crosslinked, sulfonate-modified reversed stationary phase, denoted as −SO3-HC-C8-L, for the separation of highly hydrophilic cations and related compounds by a hydrophobically assisted cation-exchange mechanism. Compared to conventional reversed-phases, the −SO3-HC-C8-L phase showed significantly improved retention and separation selectivity. Concurrently, due to the presence of both cation-exchange and reversed-phase retention mechanisms and the high acid stability of hyper-crosslinked phases, the separation can be optimized by changing the type or concentration of ionic additive or organic modifier, and by varying the column temperature. In addition, gradients generated by programming the concentration of either the ionic additive or the organic modifier can be applied to reduce the analysis time without compromising resolution. Furthermore, remarkably different chromatographic

  18. Concurrent DNA Preconcentration and Separation in Bipolar Electrode-Based Microfluidic Device

    PubMed Central

    Song, Hongjun; Wang, Yi; Garson, Charles; Pant, Kapil

    2015-01-01

    This paper presents a bipolar electrode (BPE) device in a microfluidic dual-channel design for concurrent preconcentration and separation of composite DNA containing samples. The novelty of the present effort relies on the combination of BPE-induced ion concentration polarization (ICP) and end-labeled free-solution electrophoresis (ELFSE). The ion concentration polarization effect arising from the faradaic reaction on the BPE is utilized to exert opposing electrophoretic and electroosmotic forces on the DNA samples. Meanwhile, end-labeled free-solution electrophoresis alters the mass-charge ratio to enable simultaneous DNA separation in free solution. The microfluidic device was fabricated using standard and soft lithography techniques to form gold-on-glass electrode capped with a PDMS microfluidic channel. Experimental testing with various DNA samples was carried out over a range of applied electric field. Concentration ratios up to 285× within 5 minutes for a 102-mer DNA, and concurrent preconcentration and free-solution separation of binary mixture of free and bound 102-mer DNA within 6 minutes was demonstrated. The effect of applied electric field was also interrogated with respect to pertinent performance metrics of preconcentration and separation. PMID:26005497

  19. Chiral Separations

    NASA Astrophysics Data System (ADS)

    Stalcup, A. M.

    2010-07-01

    The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.

  20. Toner and paper-based fabrication techniques for microfluidic applications.

    PubMed

    Coltro, Wendell Karlos Tomazelli; de Jesus, Dosil Pereira; da Silva, José Alberto Fracassi; do Lago, Claudimir Lucio; Carrilho, Emanuel

    2010-08-01

    The interest in low-cost microfluidic platforms as well as emerging microfabrication techniques has increased considerably over the last years. Toner- and paper-based techniques have appeared as two of the most promising platforms for the production of disposable devices for on-chip applications. This review focuses on recent advances in the fabrication techniques and in the analytical/bioanalytical applications of toner and paper-based devices. The discussion is divided in two parts dealing with (i) toner and (ii) paper devices. Examples of miniaturized devices fabricated by using direct-printing or toner transfer masking in polyester-toner, glass, PDMS as well as conductive platforms as recordable compact disks and printed circuit board are presented. The construction and the use of paper-based devices for off-site diagnosis and bioassays are also described to cover this emerging platform for low-cost diagnostics.

  1. Laser-based direct-write techniques for cell printing

    PubMed Central

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2016-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088

  2. Laser-based direct-write techniques for cell printing.

    PubMed

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2010-09-01

    Fabrication of cellular constructs with spatial control of cell location (+/-5 microm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing.

  3. Performance Metrics for Depth-based Signal Separation Using Deep Vertical Line Arrays

    NASA Astrophysics Data System (ADS)

    Boyle, John K.

    Vertical line arrays (VLAs) deployed below the critical depth in the deep ocean can exploit reliable acoustic path (RAP) propagation, which provides low transmission loss (TL) for targets at moderate ranges, and increased TL for distant interferers. However, sound from nearby surface interferers also undergoes RAP propagation, and without horizontal aperture, a VLA cannot separate these interferers from submerged targets. A recent publication by McCargar and Zurk (2013) addressed this issue, presenting a transform-based method for passive, depth-based separation of signals received on deep VLAs based on the depth-dependent modulation caused by the interference between the direct and surface-reflected acoustic arrivals. This thesis expands on that work by quantifying the transform-based depth estimation method performance in terms of the resolution and ambiguity in the depth estimate. Then, the depth discrimination performance is quantified in terms of the number of VLA elements.

  4. Separation of piracetam derivatives on polysaccharide-based chiral stationary phases.

    PubMed

    Kažoka, H; Koliškina, O; Veinberg, G; Vorona, M

    2013-03-15

    High-performance liquid chromatography was used for the enantiomeric separation of two chiral piracetam derivatives. The suitability of six commercially available polysaccharide-based chiral stationary phases (CSPs) under normal phase mode for direct enantioseparation has been investigated. The influence of the CSPs as well the nature and content of an alcoholic modifier in the mobile phase on separation and elution order was studied. It was established that CSP Lux Amylose-2 shows high chiral recognition ability towards 4-phenylsubstituted piracetam derivatives. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. [Separation of enantiomers by supercritical fluid chromatography on polysaccharide derivative-based chiral stationary phases].

    PubMed

    Li, Dongyan; Wu, Xi; Hao, Fangli; Yang, Yang; Chen, Xiaoming

    2016-01-01

    Eleven kinds of chiral compounds have been well separated within 10 min on polysaccharide derivative-based chiral stationary phases named Chiralpak IA, IB, IC, ID, IE and IF by supercritical fluid chromatography (SFC). The chiral recognition of these chiral compounds has demonstrated good complementary enantioselectivities of the six chiral columns, which were proved to be useful for chiral SFC. Both the elution time and enantioselectivies could be significantly affected by the modifier types and their concentrations, such as methanol, ethanol and isopropanol, which should be optimized during the experiments. In addition, the solvent versatility of the immobilized chiral stationary phase on the optimization of the chiral separation was helpful.

  6. Sheath-Free Elasto-Inertia Separation of Particles Based on Shape in Straight Rectangular Microchannels

    NASA Astrophysics Data System (ADS)

    Xuan, Xiangchun; Lu, Xinyu

    2016-11-01

    We demonstrate the use of straight rectangular microchannels to obtain a shape-based separation of equal-volumed spherical and peanut-shaped particles in viscoelastic fluids. This continuous sheath-free separation arises from the shape-dependent equilibrium particle positions as a result of the flow-induced elasto-inertial lift. A continuous transition from single to dual and to triple equilibrium positions is observed for both types of particles with the increase of flow rate. However, the flow rate at which the transition occurs differs with the particle shape, which is thought to correlate the rotational effects of non-spherical particles.

  7. Blind separation of convolutive sEMG mixtures based on independent vector analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomei; Guo, Yina; Tian, Wenyan

    2015-12-01

    An independent vector analysis (IVA) method base on variable-step gradient algorithm is proposed in this paper. According to the sEMG physiological properties, the IVA model is applied to the frequency-domain separation of convolutive sEMG mixtures to extract motor unit action potentials information of sEMG signals. The decomposition capability of proposed method is compared to the one of independent component analysis (ICA), and experimental results show the variable-step gradient IVA method outperforms ICA in blind separation of convolutive sEMG mixtures.

  8. Enhance separations with electricity

    SciTech Connect

    Muralidhara, H.S.

    1994-05-01

    To satisfy growing environmental regulations, control energy costs, or just to stay competitive, one must improve existing separation technologies and make them more efficient. New challenges in food processing and requirements for novel purification technologies in the biotech industry also will require more efficient separation techniques. This paper discusses some enhanced separation processes based on the application of an electric field in the combined-fields approach. In a combined-fields approach, the emphasis is on the generation of additional driving forces to work simultaneously with the conventional driving force of the process. Here the authors concentrate on the application of an electric field to generate the additional driving force.

  9. Fission-Product Separation Based on Room-Temperature Ionic Liquids

    SciTech Connect

    Luo, Huimin; Rogers, Robin D.; Dai, Sheng, Dai; Bonnesen, Peter V.; Buchanan, A. C. III; Hussey, Charles L.

    2003-06-16

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  10. Fission-Product Separation Based on Room-Temperature Ionic Liquids

    SciTech Connect

    Luo, Huimin; Hussey, Charles L.

    2005-09-30

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  11. Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations

    SciTech Connect

    Hillesheim, Patrick C; Mahurin, Shannon Mark; Fulvio, Pasquale F; Yeary, Joshua S; Oyola, Yatsandra; Jiang, Deen; Dai, Sheng

    2012-01-01

    A series of novel thiazolium-bis(triflamide) based ionic liquids has been synthesized and characterized. Physicochemical properties of the ionic liquids such as thermal stability, phase transitions, and infrared spectra were analysed and compared to the imidazolium-based congeners. Several unique classes of ancillary substitutions are examined with respect to impacts on overall structure, in addition to their carbon dioxide absorption properties in supported ionic-liquid membranes for gas separation.

  12. Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations

    SciTech Connect

    Hillesheim, PC; Mahurin, SM; Fulvio, PF; Yeary, JS; Oyola, Y; Jiang, DE; Dai, S

    2012-09-05

    A series of novel thiazolium-bis(triflamide) based ionic liquids has been synthesized and characterized. Physicochemical properties of the ionic liquids such as thermal stability, phase transitions, and infrared spectra were analyzed and compared to the imidazolium-based congeners. Several unique classes of ancillary substitutions are examined with respect to impacts on overall structure, in addition to their carbon dioxide absorption properties in supported ionic-liquid membranes for gas separation.

  13. Separation of base flow from streamflow using groundwater levels - illustrated for the Pang catchment (UK)

    NASA Astrophysics Data System (ADS)

    Peters, E.; van Lanen, H. A. J.

    2005-03-01

    A new filter to separate base flow from streamflow has developed that uses observed groundwater levels. To relate the base flow to the observed groundwater levels, a non-linear relation was used. This relation is suitable for unconfined aquifers with deep groundwater levels that do not respond to individual rainfall event. Because the filter was calibrated using total streamflow, an estimate of the direct runoff was also needed. The direct runoff was estimated from precipitation and potential evapotranspiration using a water balance model. The parameters for the base flow and direct runoff were estimated simultaneously using a Monte Carlo approach. Instead of one best solution, a range of satisfactory solutions was accepted. The filter was applied to data from two nested gauging stations in the Pang catchment (UK). Streamflow at the upstream station (Frilsham) is strongly dominated by base flow from the main aquifer, whereas at the downstream station (Pangbourne) a significant component of direct runoff also occurs. The filter appeared to provide satisfactory estimates at both stations. For Pangbourne, the rise of the base flow was strongly delayed compared with the rise of the streamflow. However, base flow exceeded streamflow on several occasions, especially during summer and autumn, which might be explained by evapotranspiration from riparian vegetation. To evaluate the results, the base flow was also estimated using three existing base-flow separation filters: an arithmetic filter (BFI), a digital filter (Boughton) and another filter based on groundwater levels (Kliner and Knek). Both the BFI and Boughton filters showed a much smaller difference in base flow between the two stations. The Kliner and Knek filter gave consistently lower estimates of the base flow. Differences and lack of clarity in the definition of base flow complicated the comparison between the filters. An advantage of the method introduced in this paper is the clear interpretation of the

  14. Size-based separation and collection of mouse pancreatic islets for functional analysis.

    PubMed

    Nam, Ki-Hwan; Yong, Wang; Harvat, Tricia; Adewola, Adeola; Wang, Shesun; Oberholzer, Jose; Eddington, David T

    2010-10-01

    Islet size has recently been demonstrated to be an important factor in determining human islet transplantation outcomes. In this study, a multi-layered microfluidic device was developed and quantified for size-based separation of a heterogeneous population of mouse islets. The device was fabricated using standard soft lithography and polydimethylsiloxane (PDMS). Size-based separation was first demonstrated via injection of a heterogeneous population of glass beads between 50-300 microm in diameter which were separated into five sub-populations based on their diameter. Next, a heterogeneous population of mouse pancreatic islets, between 50-250 microm in diameter was separated into four sub-populations. Throughout this process the islets remained intact without any signs of damage, as indicated by cell viability staining. Islet glucose-stimulated insulin secretion of each sub-population of islets was also evaluated demonstrating that islets smaller than 150 microm have superior stimulation indexes (SI) compared to islets larger than 150 microm. In this study, we found that islets between 100 microm and 150 microm in diameter had the greatest SI value in a heterogeneous population of islets.

  15. Enantiomeric separation of isochromene derivatives by high-performance liquid chromatography using cyclodextrin based stationary phases and principal component analysis of the separation data.

    PubMed

    Nanayakkara, Yasith S; Woods, Ross M; Breitbach, Zachary S; Handa, Sachin; Slaughter, LeGrande M; Armstrong, Daniel W

    2013-08-30

    Isochromene derivatives are very important precursors in the natural products industry. Hence the enantiomeric separations of chiral isochromenes are important in the pharmaceutical industry and for organic asymmetric synthesis. Here we report enantiomeric separations of 21 different chiral isochromene derivatives, which were synthesized using alkynylbenzaldehyde cyclization catalyzed by chiral gold(I) acyclic diaminocarbene complexes. All separations were achieved by high-performance liquid chromatography with cyclodextrin based (Cyclobond) chiral stationary phases. Retention data of 21 chiral compounds and 14 other previously separated isochromene derivatives were analyzed using principal component analysis. The effect of the structure of the substituents on the isochromene ring on enantiomeric resolution as well as the other separation properties was analyzed in detail. Using principal component analysis it can be shown that the structural features that contribute to increased retention are different from those that enhance enantiomeric resolution. In addition, principal component analysis is useful for eliminating redundant factors from consideration when analyzing the effect of various chromatographic parameters. It was found that the chiral recognition mechanism is different for the larger γ-cyclodextrin as compared to the smaller β-cyclodextrin derivatives. Finally this specific system of chiral analytes and cyclodextrin based chiral selectors provides an effective format to examine the application of principal component analysis to enantiomeric separations using basic retention data and structural features. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Continuous separation of racemic 3,5-dinitrobenzoyl-amino acids in a centrifugal contact separator with the aid of cinchona-based chiral host compounds.

    PubMed

    Hallett, Andrew J; Kwant, Gerard J; de Vries, Johannes G

    2009-01-01

    Resolution through revolution: It is possible to extract 3,5-dinitrobenzoyl-protected amino acids enantioselectively with the aid of a table-top centrifugal contact separator and a catalytic amount of a chiral host compound based on the Cinchona alkaloids. Enantioselectivities of up to 80 % could be reached in a single pass. This allows the development of a process for the continuous separation of racemates.The resolution of racemates is mostly performed by crystallisation of diastereomeric salts. Direct physical separation could be much more efficient, but so far most concepts, with the exception of SMB, have proven to be non-scaleable. Here we report the first scalable process for the resolution of N-protected amino acid derivatives through selective extraction, with the aid of a catalytic amount of a chiral host compound based on Cinchona alkaloids. The method hinges on the use of centrifugal contact separators (CCSs) for fast mixing and separation. Although the highest ee obtained was only 80 %, the concept can be extended through the use of a series of CCSs in countercurrent mode to effect full separation.

  17. An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting

    PubMed Central

    Morono, Yuki; Terada, Takeshi; Kallmeyer, Jens; Inagaki, Fumio

    2013-01-01

    Summary Development of an improved technique for separating microbial cells from marine sediments and standardization of a high-throughput and discriminative cell enumeration method were conducted. We separated microbial cells from various types of marine sediment and then recovered the cells using multilayer density gradients of sodium polytungstate and/or Nycodenz, resulting in a notably higher percent recovery of cells than previous methods. The efficiency of cell extraction generally depends on the sediment depth; using the new technique we developed, more than 80% of the total cells were recovered from shallow sediment samples (down to 100 meters in depth), whereas ∼ 50% of cells were recovered from deep samples (100–365 m in depth). The separated cells could be rapidly enumerated using flow cytometry (FCM). The data were in good agreement with those obtained from manual microscopic direct counts over the range 104–108 cells cm−3. We also demonstrated that sedimentary microbial cells can be efficiently collected using a cell sorter. The combined use of our new cell separation and FCM/cell sorting techniques facilitates high-throughput and precise enumeration of microbial cells in sediments and is amenable to various types of single-cell analyses, thereby enhancing our understanding of microbial life in the largely uncharacterized deep subseafloor biosphere. PMID:23731283

  18. Gearbox coupling modulation separation method based on match pursuit and correlation filtering

    NASA Astrophysics Data System (ADS)

    He, Guolin; Ding, Kang; Lin, Huibin

    2016-01-01

    The vibration signal of faulty gearbox commonly involves complex coupling modulation components. The method of sparse representation has been successfully used for gearbox fault diagnosis, but most of the literatures only focus on the extraction of impact modulation and always neglect the steady modulation representing the distributed faults. This paper presents a new method for separating coupling modulation from vibration signal of gearbox based on match pursuit and correlation filtering. To separate the steady modulation caused by distributed fault and the impact modulation caused by impact fault, two sub-dictionaries are specially designed according to the gearbox operating and structural parameters and the characteristics of vibration signal. The new dictionaries have clear physical meaning and good adaptability. In addition, an amplitude recovery step is conducted to improve the matching accuracy in the match pursuit. Simulation and experimental results show that the proposed method can separate the coupling components of gearbox vibration signal effectively under intensive background noise.

  19. Impact of tuning CO2-philicity in polydimethylsiloxane-based membranes for carbon dioxide separation

    DOE PAGES

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon M.; ...

    2017-02-22

    Amidoxime-functionalized polydimethylsiloxane (AO-PDMSPNB) membranes with various amidoxime compositions were synthesized via ring-opening metathesis polymerization followed by post-polymerization modification. Compared to other previously reported PDMS-based membranes, the amidoxime-functionalized membranes show enhanced CO2 permeability and CO2/N2 selectivity. The overall gas separation performance (CO2 permeability 6800 Barrer; CO2/N2 selectivity 19) of the highest performing membrane exceeds the Robeson upper bound line, and the excellent permeability of the copolymer itself provides great potential for real world applications where huge volumes of gases are separated. This study details how tuning the CO2-philicity within rubbery polymer matrices influences gas transport properties. Key parameters for tuning gasmore » transport properties are discussed, and the experimental results show good consistency with theoretical calculations. Finally, this study provides a roadmap to enhancing gas separation performance in rubbery polymers by tuning gas solubility selectivity.« less

  20. Self-operated blood plasma separation using micropump in polymer-based microfluidic device

    NASA Astrophysics Data System (ADS)

    Jang, Won Ick; Chung, Kwang Hyo; Pyo, Hyeon Bong; Park, Seon Hee

    2006-12-01

    The blood is one of the best indicators of health because blood circulates all body tissues and collects information. The COC(Cyclo Olefin Copolymer) has better various properties than PMMA(Polymethy Mechacrylate) and PC(Polycarbonate) that are widely used in biotechnology field. This paper presents a new method of plasma separation on the COC in terms of surface modification for the development of a disposable protein chip. The blood plasma separation device was composed of a whole blood inlet, microchannel with filtration region of micropillars, micropump with microheater, and a blood cell outlet. Micropump with microheater was designed by ANSYS and flow model in the microchannel was designed by CFD-ACE + simulators. We successfully fabricated a polymer based microfluidic device for blood plasma separation by MEMS(Micro Electro Mechanical System) technology. By using this device, cell-free plasma was successfully obtained through the filtration from a drop of whole blood without external force of a syringe pump.